ECE
ECE
ECE ECE


Defense Event

Informative Data Fusion: Beyond Canonical Correlation Analysis

Nick Asendorf


PhD Candidate
 
Monday, May 04, 2015
10:00am - 12:00pm
1003 EECS

Add to Google Calendar

About the Event

Multi-modal data fusion is a challenging but common problem arising in fields such as economics, statistical signal processing, medical imaging, and machine learning. In such applications, we have access to multiple datasets that use different data modalities to describe some system feature. Canonical correlation analysis (CCA) is a multidimensional joint dimensionality reduction algorithm for exactly two datasets. CCA finds a linear transformation for each feature vector set such that the correlation between the two transformed feature sets is maximized. These linear transformations are easily found by solving the SVD of a matrix that only involves the covariance and cross-covariance matrices of the feature vector sets. When these covariance matrices are unknown, an empirical version of CCA substitutes sample covariance estimates formed from training data. However, when the number of training samples is less than the combined dimension of the datasets, CCA fails to reliably detect correlation between the datasets. This thesis explores the the problem of detecting correlations from data modeled by the ubiquitous signal-plus noise data model. We present a modification to CCA, which we call informative CCA (ICCA) that first projects each dataset onto a low-dimensional informative signal subspace. We verify the superior performance of ICCA on real-world datasets and argue the benefits of trim-then-fuse over fuse-then-trim correlation analysis strategies. We provide a significance test for the correlations returned by ICCA and derive improved estimates of the population canonical vectors using insights from random matrix theory. We then extend the analysis of CCA to regularized CCA (RCCA) and demonstrate that setting the regularization parameter to infinity results in the best performance and has the same solution as taking the SVD of the cross-covariance matrix of the two datasets. Finally, we apply the ideas learned from ICCA to multiset CCA (MCCA), which analyzes correlations for more than two datasets. We consider MAXVAR, provide an informative version of the algorithm, which we call informative MCCA (IMCCA), and demonstrate its superiority on a real-world dataset.

Additional Information

Sponsor(s): ECE

Faculty Sponsor: Raj Nadakuditi

Open to: Public