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Conventional Image 
Sampling!

sample uniformly at 
the points in a lattice!

100 samples!

Cutset Image 
Sampling!

sample densely 
on a grid of lines!

98 samples!
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Evolution of Cutset Sampling!
!   Sabbatical at Northwestern  !

–  My goal:  use Markov random field (MRF) models to develop new image 
compression methods.!

–  Result:  lossy image compression method for bilevel images based on 
cutset subsampling and MRF model.  !

!   Later!
–  Lossless image encoding for bilevel images based on cutset 

subsampling, MRF models and arithmetic coding.!

–  Cutset sampling as a general approach to image sampling!
•  reconstruction algorithms!
•  sampling theorems!

–  Sensor networks with cutset deployment of sensors!
•  Low energy localization algorithms!
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Outline of Talk!
!   Overview of Markov random fields (MRF)!

!   Cutsets!

!   Image Compression based on cutset encoding!

–  Overview of image compression!

–  Lossy compression of bilevel images based on MRF models!

–  Lossless compression of bilevel images based on MRF models an 
arithmetic coding !

!   Cutset sampling as a general technique for sampling images!
–  Motivation!
–  Reconstruction methods!
–  Sampling Theorem!

!   Sensor networks with cutset deployment!

–  Low energy localization!
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Overview of Markov Random Fields!
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A 1-Dimensional Markov Random Field is a  
Conventional Markov Chain!

!   The usual specification:!

Xn+1  conditionally independent of  Xn-1, Xn-2, …   given   Xn!

!   Symmetric specification:!
Given  Xn ,  all random variables before n are conditionally 
independent of all random variables after n .  !
Or:   Given Xn , …, Xn+m , all random variables before n are 
conditionally independent of all random variables after n+m . !

!   Graphical representation:!

Xn+1! Xn+2! Xn+3!Xn!Xn-1!Xn-2!

Xn+1! Xn+2!Xn!Xn-1!Xn-2! Xn+3!
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Two-Dimensional Markov Random Field!
!  Specified in terms of a graph:  nodes,  undirected edges!

!  At each node  i,  there is random variable  Xi!

!  Edge e = (i,j) connecting nodes i and j indicates strong 
correlation between Xi  and Xi  !

!  More precisely, an MRF is defined by any of the 
following conditional independence properties!

–  No edge connects  i  and  j  iff  Xi and Xj   are 
conditionally independent given all other  Xʼs!

–  If set of nodes R surrounds set of nodes G,  then  
given  XR,  XG  is conditionally independent of  XB.   !

–  If set of nodes R separates set of nodes G  !
!from set of  nodes  B,   then given  XR,!

   XG is conditionally independent of XB. !

8-way graph 
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!   Hammersley-Clifford Theorem:    X  is MRF, iff  p(x)  factors!

where  ψ(x,y)  is an edge potential function,  φ(x)  is a node potential function!

    

€ 

p( x) = ψ( xi ,x j )
edges e=( i , j )

∏ φ( xi )
nodes i
∏
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Ising MRF Model for Bilevel Image!
!       X = [X1, …, XN],   ith pixel   Xi  =   0  or 1 !
! ! !        wrt some ordering of pixels!

!where!

!   Equivalently, !

!where  t (x) =  number adjacent pairs of pixels that 
disagree, i.e., black-white transitions, called odd bonds !

!    x  has high prob. iff  t (x)  small !!
!i.e., few odd bonds!

    

€ 

p( x) = ψ( xi ,x j )
edges e=( i , j )

∏

  

€ 

ψ( xi ,x j ) =
eβ , xi = x j

e−β , xi ≠ x j

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

    

€ 

p( x) =
1
Z

e−2β t( x )

8-way graph 

high prob low prob 

β = 0.0 

β = 0.1 

β = 0.2 

β = 0.4 

an actual 
image 
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Definition of Cutset!
!   A set of nodes/pixels that partitions all other pixels into groups such 

that one cannot go from one group to another without going through 
cutset pixels.!

!   Given the cutset pixels, the groups are conditionally independent of 
one other.  !

!   Prime example:  Manhattan grid cutset!
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Overview of Image Compression!

!   Image compression system  =  encoder  +  decoder!

!   Performance!
–  Coding/compression rate:   R  =  # bits/pixel!
–  Reproduction quality:   D  =  distortion in reproduction,  e.g. MSE, SNR, PSNR!

!   Lossless and Lossy Image Coding!

!   Theory for predicting performance and performance limits!
–  Lossless coding -- entropy theory !
–  Lossy coding – (a) Shannon rate-distortion theory, !

(b) high-resolution theory!

encoder decoder 
bits 

image image reproduction 

Shannon 
information 

theory 
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Lossy Cutset Coding (LCC) of Bilevel Images!
!   Encoder:   losslessly encodes Manhattan-

grid cutset   (thatʼs it!)!
•  for example, with Arithmetic Coding!
•  typically  0.1 to 0.3 bits per cutset   which 

(enabled by closeness of cutset pixels)!

[Reyes et al., ICIP 2007;  Reyes, UM PhD Dissertation, 2011] 

!   Decoder:   reconstructs/
estimates/interpolates block 
interiors using MRF model 
and MAP rule !
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Decoding:  MAP Reconstruction for MRF Model!
!   Decoding “game”:  given boundary of a block, find the interior with fewest 

black-to-white transitions (odd bonds).  !

!   Can be found by iterative algorithm such as loopy belief propagation.!

!   Can be found analytically for the three most common types of block 
boundaries. !

         monotone ! !          one-run ! !           two-run 
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•  There is monotone  
HV path from each 
interior pixel to a 
boundary pixel of 
same color.   !

•  Equivalently, no 
“islands” in the 
interior, i.e., every 
monotone loop 
must be filled with 
same color!

•  Proof:!

Key Property of MAP reconstructions!

not MAP                      could be MAP 
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Block MAP Reconstructions for Common Boundaries!

         monotone             one-run              two-run 

Monotone Boundary!
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One Run Boundary: Reconstruction Paths!

•  Since it can have no islands, any MAP reconstruction of one run boundary is 
determined by a reconstruction path, either black or white.!

•  Therefore, wlog w restrict attention to reconstructions defined by 
reconstruction paths, one for each run.!
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Boundary with One Black Run: MAP paths !

•  Theorem:  For  1-run boundary containing c corners and having  major and 
minor differences  Δmax  and  Δmin!

(1)  all MAP paths have  Δmax    edges!

(2)  c ≤ 2:      !         MAP paths;  all simple;   3 Δmax +  Δmin+ 5 – 2c   odd bonds!

(3)  c = 3:   ! ! ! MAP paths;  all simple;   3 Δmax +  Δmin– 1   odd bonds!

(4)  c = 4:   1 MAP path;    not simple;    3 Δmax – 1   odd bonds!
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Two-Run Boundary!
•   First thought:    merge two 1-run MAP reconstructions!
•  Not necessarily MAP:   deviating from 1-run optimality !

to make1-run reconʼs touch, can decrease odd bonds!
•  Instead find &compare best of 3 types of reconstructions:!
    -  white HV-connected!
    -  black HV-connected!
    -  bi-connected: white and black connected, but neither is HV-connected!
•  If white- or black HV-connected, merge two 1-run opt. reconstructions!
•  In bi-connected, “widget” reduces # number of odd bonds!

white HV-connected! black HV-connected! bi-connected!
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Widget Theorems!
•   A MAP reconstruction for any boundary can have no widgets in its interior.!

•  A MAP reconstruction for a two-run boundary can have at most one 
widget on the boundary!

not MAP! MAP!
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2-Run MAP Reconstructions!
•  Theorem:  Consider block with two 

boundary runs!

•  If one run contains four corners, the 
only MAP recon is entirely this color.!

•  If not, and boundary is one of two types 
shown to right, MAP is bi-connected as 
shown.!

•  If not, MAP is white HV-connected 
formed by any pair of simple non-
touching black reconstruction paths,  !
or black HV-connected formed by any 
pair of simple non-touching white  
reconstruction paths, !
according to which has fewer odd 
bonds ! ! !

! ! !   
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Boundary with More Than Two Runs!
!   Belief propagation, or !

!   Simple ad hoc decoding rule!
–  Find the color with the two longest runs!
–  Change all other pixels to the other color!
–  Apply the two-run solution!
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Sample Decoded Result!

LCC!
blocksize 8!

R = 0.05 bpp!
D = 3.5% !

original!
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Decision-bit Coding!
•  Problem:   When thin line passes through block,  boundary has 2 runs,  

and MAP rule sometimes produces white-HV-connected reconstruction, 
when black-HV-connected is better, and vice versa.  !

•   Fix:   Whenever block boundary has two runs, “decision bit coding” tests 
to see which connection is best, and sends extra bit to tell decoder.!
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Decision-bit Coding!

blocksize 8!
w/o decision bit!

blocksize  8!
with decision bit!
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Rate-Distortion Performance!

•  Compare to Culik and Valenta ’97, and nonlinear filter+JBIG 
• For scenic bilevel images (complex, but not text or halftone) LCC is best 

method of which we are aware 
• Percent error is less than ideal as a distortion measure. 
• LCC coded images “look” much better than C&V coded images 
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Another image!
B = 6!

N = 8!

B = 10!

basic!

decision 
bit!

R = 0.053 bpp!
D = 1.3 % !

R = 0.035 bpp!
D = 1.8 % !
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Cutset-First Lossless Image Compression !
!   Step 1:   Encode cutset.  Use arithmetic coding (AC) 

with MRF model guiding coding distributions.!
!   Step 2:  Encode remaining pixels.  Use AC to 

conditionally encode remainder given cutset pixels, 
again with MRF model guiding coding distributions.!

!   Choose cutset such that it is feasible to use Belief 
Propagation (BP) to compute: !
a.  approximately optimal “reduced” coding 

distributions for cutset!
b.  opt. conditional coding distributions for remainder!

[Reyes, DN,  DCC 2010;   Reyes, PhD Dissertation, U. Mich., 2011] 

bilevel MRF model, β = 0.5 
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Lossless Image Coding with Arithmetic Codes (AC)!

!   Encode grid in a 1-D scan order  x = (x1, …,xN)  such that for each pixel except 
1st, a horizontally or vertically adjacent pixel, called its context, is scanned first.!

!   Accompany pixel  xi  with coding prob distribution   {fi(0), fi(1)}  (not just fi(xi) )!

!   fi(0) = fraction of previous pixels that are zero and whose context is same as pixel  
!as context of pixel i.  !

!   # bits produced by AC encoder produces: !         ! !  !

    

€ 

l(x) ≅ −log(fi (xi ))
i=1

N
∑ ≅ H(X2 | X1)

AC encoder AC decoder

inference of
coding distr’ns

10110...

inference of
coding distr’ns

x = (xN , ..., x2, x1)

fN , ..., f2, f1 fN , ..., f2, f1
l(x)

pixel values encoded bits
x = (xN , ..., x2, x1)
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Cutset Sampling as  
General Approach to Sampling Grayscale Images  !
!    Motivation!

–  Physical constraints such as sampling from vehicles!

–  Potentially better edge preservation!

–  Sensor networks – less wire,  less energy!

!   Goals!

–  Reconstruct image from cutset samples!

–  Identify images that can be perfectly reconstructed, i.e., find a sampling 
theorem!

–  Develop sensor network signal processing algorithms that benefit from 
cutset deployment!

•  source localization, tracking, …!
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Motivation:  Physical Constraint -- 
Sampling from a Boat, Airplane or Vehicle!
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!   Conventional sampling!

!   Samp. density  = !

Motivation:  Potentially Better Edge Preservation!

!   Cutset sampling!

!   Samp. density  =  !

€ 

1
S2

=
1
4

€ 

H +V( ) /s −1
HV

=
1
4

s = 1 

V = 8 

S = 2 H = 7 

!   With same sample density, cutset sensors are closer to each other, 
with potential to capture edges more accurately.!
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!   Conventional sampling!

!   Samp. density  = !

Motivation:  Sensor Networks -- 
Two Deployments with same density!

!   Cutset sampling!

!   Samp. density  =  !

€ 

1
S2

=
1
4

€ 

H +V( ) /s −1
HV

=
1
4

s = 1 

V = 8 

S = 2 H = 7 

!   If  H = V = K s,   cutset sampling saves factor of : !

o                      in wire for wired network!

o                          in energy for wireless network,  where  r = 2 to 4. !
    

€ 

2K −1/ 2

    

€ 

(K / 2K −1)r
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Image Reconstruction from Cutset Samples!
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!   Conventional sampling!

!   Density = !

Discrete Space Image Setting!

!   Cutset sampling!

!   Density =  !

€ 

1
MN

=
1
4

€ 

M + N −1
MN

=
1
4

N = 7 

M = 8 

N = 2 

M = 2 
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Image Reconstruction!

Three-Step Segment-Based Reconstruction!

1.  Segment cutset  !
–  Based only on cutset values!
–  Criteria: no edges within a segment!

2.  Segment block interiors  !
–  I.e. estimate segmentation of interior!
–  Based only on segmented cutset  !

3.  Segment-based gray-level interpolation 
of block interiors  !
–  Based only on cutset values            

and segmented blocks and cutset!
–  Each pixel is interpolated based only 

on cutset pixels in same segment!

[Farmer et al., ICIP 2011] 
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1.  Segment Cutset!
!   We adapt ACA segmentation to cutset segmentation [Pappas `92]!

original full ACA 
segmentation 

ACA 
segmentation of 

7x7 cutset 
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2.  Segment Block Interiors!
!   Approach!

–  Model ʻideal segmentationʼ of a block as a bilevel MRF. !

–  Produce MAP estimate of block interior from 
segmentation of boundary, using LCC decoder 
reconstruction algorithm!

original ACA cutset segmentation cutset + interior segmentation 
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3.  Segment-Based Block Interior Reconstruction!
!   Key idea:  estimate each pixel  xi  in block based only on !

block boundary pixels  yj in the same segment  !

!   MMSE linear estimation:!

where!

µi  =  mean of segment containing pixel  i, !
!!  estimated as emp. mean of pixels in  segment boundary!

A  =  [ai,j],  !

!   Assume Gaussian MRF model!

€ 

x i = µi + ai, j
j
∑ (yj -µi )

€ 

A = KY
−1KYXi
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Gaussian MRF Model!

!     Node and edge potential functions!

µi  =  seg. mean, est. as emp. mean of pixels in  segment    boundary!
c,  d   chosen so inverse covariance matrix  K-1  is positive definite!

!   Either:                                               and  !

!   Or run loopy Belief Propagation on graph.!

€ 

p(x) = 1
Z

Φi(xi ) Ψi, j (xi ,x j )
i, j
∏

i
∏

€ 

Φi(xi ) = exp -
1
2
d(xi -µi )

2{ },

€ 

Ψi, j (xi ,x j ) = exp - cd(xi -µi )(x j -µ j ){ } if (i, j) is edge,
& i, j in same seg.

0, else

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

€ 

Kij
−1 =

d, i = j
−cd, i ≠ j, (i, j) an edge

0, else

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

  

€ 



€ 

x i = µi + ai, j
j
∑ (yj -µi )

€ 

A = KY
−1KYXi
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Example:  Sampling Density 1/4!

original 7x7 cutset sampling 
full ACA segmentation 

PSNR = 28.8 dB 

conventional sampling 

bilinear reconstruction 
PSNR = 27.1 dB 
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Example:  Sampling Density 1/2!

original 4x3 cutset sampling 
ACA cutset segmentation 

Gaussian MRF model 
MMSE estimation 
PSNR = 32.2 dB 

conventional sampling 

bilinear reconstruction 
PSNR = 34.5 dB 
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PNSR for ʻal!̓

ACA! cut-
set!

no! ACA! cut-
set!

no! ACA! cut-
set!

no! convʼl!
samplng!

28.8! 27.2! 27.1! 28.2! 28.3! 28.9! 27.3! 27.5! 26.9! 27.1!
33.1! 32.2! 32.2! 33.4! 33.8! 34.7! 32.2! 32.2! 30.1! 34.5!

MRF MMSE!  expon. corr. MMSE! distance-based! bilinear!
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PNSR for ʻtools!̓

ACA! cut-
set!

no! ACA! cut-
set!

no! ACA! cut-
set!

no! convʼl!
samplng!

29.1! 26.7! 27.8! 27.9! 27.8! 29.2! 27.3! 27.1! 26.9! 29.9!
33.8! 33.2! 35.7! 33.5! 33.7! 34.7! 33.9! 33.8! 33.0! 38.7!

MRF MMSE!  expon. corr. MMSE! distance-based! bilinear!
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Improved Reconstruction Method!
!   Matt Prelee et al. ICIP 2012:!

–  Image is modeled as piecewise planar plus MRF,!
!i.e., as MRF whose mean is piecewise planar!

–  For each cutset block, “K-planes algorithm” finds K planes that 
match image on block boundary, and segments boundary 
according to the planes associated with it.   (typically K=3)!

–  Each block interior pixel is associated with one of the K-plans via 
ad hoc rule, i.e. segmentation extended to the block interior.!

–  Each block interior pixel is interpolated as before using MRF model 
from pixels associated with the same plane (and only these), and 
with the plane giving the mean of MRF.!
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Comparison of New and Previous Method!
!   B=7!

ICIP 2011 ! ! !      ICIP 2012!
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Sampling Theorem for Manhattan Cutset Sampling!
!   If image spectrum is bandlimited to 

cross-shaped region below,!

!   No larger sampling rate is possible for 
images bandlimited to this region!

!   No larger frequency region permits 
perfect reconstruction!

it can be perfectly recovered 
from Manhattan cutset 
sampling below!

[ICASSP 2012, M. Prelee, DN]!
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Source Localization!
!   Goal:  Wireless sensor network nodes measures signal strength and 

collaborate to estimation position.  !

!   Performance:  mean-squared position error vs. communication energy!

conventional lattice deployment! cutset deployment!

[ICASSP 2012, M. Prelee, DN]!
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Source Localization Scenario!
!   N  sensors deployed over some geographic region!

!   Each sensor measures signal strength                                     !

!   Sensors whose measurements lie above a threshold communicate and 
collaborate to make estimate of position.!

!   Performance measures:!
•  Detection rate!
•  False alarm rate!
•  Mean squared position error!
•  Energy required for communication!

! ! !E  =  # bits  x   # hops/bit   x   energy per bit per hop !

energy per bit per hop  =   c (distance)β ,      β ≅ 4 typical!

  

€ 

yi =
A

xi − θ
β

+ ni

[ICASSP 2013, M. Prelee, DN]!
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!   POCS is Projection onto Convex Sets Method of Blatt, Hero, 2006, for 
random sensor deployment.!

!   Midpoint algorithm is very simple, very low energy algorithm that separately 
estimates horizontal and vertical coordinate of source as midpoint of 
sensors above threshold. !
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Ongoing Work and Future Directions!
!   Hierarchical version of lossy bilevel coding!

!   Improved reconstruction methods for nonbandlimited images!

!   Cutset and Manhattan sampling in higher dimensions!
–  For video, for example!
–  Reconstruction methods!
–  Sampling theorems!

!   Sensor networks with Manhattan grid sensor deployment!
–  Localization!
–  Communication throughput scaling analysis!
–  Other sensor network tasks!


