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Evolution of Cutset Sampling

B Sabbatical at Northwestern

— My goal: use Markov random field (MRF) models to develop new image
compression methods.

—| Result: lossy image compression method for bilevel images based on
cutset subsampling and MRF model.

B Later

— Lossless image encoding for bilevel images based on cutset
subsampling, MRF models and arithmetic coding.

—| Cutset sampling as a general approach to image sampling
e reconstruction algorithms

e sampling theorems

— Sensor networks with cutset deployment of sensors
* Low energy localization algorithms
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Outline of Talk

Overview of Markov random fields (MRF)
Cutsets
Image Compression based on cutset encoding

— Qverview of image compression

—[ Lossy compression of bilevel images based on MRF models ]

— Lossless compression of bilevel images based on MRF models an
arithmetic coding

Cutset sampling as a general technique for sampling images
— Motivation

— Reconstruction methods

— Sampling Theorem
Sensor networks with cutset deployment

— Low energy localization



Overview of Markov Random Fields



A 1-Dimensional Markov Random Field is a
Conventional Markov Chain

B The usual specification:

X, ., conditionally independent of X 4, X 5, ... given X,

n
B Symmetric specification:

Given X, all random variables before n are conditionally
independent of all random variables after n .

Or: Given X, ..., X.,,, all random variables before n are
conditionally independent of all random variables after n+m .

B Graphical representation:
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Two-Dimensional Markov Random Field

B Specified in terms of a graph: nodes, undirected edges
B At each node i, there is random variable X

E Edge e = (i,j) connecting nodes i and j indicates strong
correlation between X; and X;

B More precisely, an MRF is defined by any of the
following conditional independence properties

— No edge connects i and | iff X;and X; are
conditionally independent given all other X’s

— |If set of nodes R surrounds set of nodes G, then
given Xg, Xz is conditionally independent of Xg.

— If set of nodes R separates set of nodes G
from set of nodes B, then given X,

X is conditionally independent of Xg.
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Two-Dimensional Markov Random Field

B Specified in terms of a graph: nodes, undirected edges
B At each node i, there is random variable X
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Two-Dimensional Markov Random Field

B Specified in terms of a graph: nodes, undirected edges
B At each node i, there is random variable X

E Edge e = (i,j) connecting nodes i and j indicates strong
correlation between X; and X;

B More precisely, an MRF is defined by any of the
following conditional independence properties

— No edge connects i and | iff X;and X; are
conditionally independent given all other X’s

— |If set of nodes R surrounds set of nodes G, then
given Xg, Xz is conditionally independent of Xg.

— If set of nodes R separates set of nodes G
from set of nodes B, then given X,

X is conditionally independent of Xg.
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B Hammersley-Clifford Theorem: X is MRF, iff p(x) factors

p(x) = ] WX, xj) 11 o(x;)

edgese=(i,j) nodes i

where y(x,y) is an edge potential function, ¢(x) is a node potential function
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Ising MRF Model for Bilevel Image

X=[X, ..., X\], ithpixel X = 0 or1

wrt some ordering of pixels

p(x) = 11 w(x,x;)

edgese=(i,j)
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Equivalently,

1 -2 t(x)

Z

where t(x) = number adjacent pairs of pixels that
disagree, i.e., black-white transitions, called odd bonds

x has high prob. iff {(x) small -
i.e., few odd bonds
LT

high prob low prob

p(x) =

an actual
image
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Definition of Cutset

B A set of nodes/pixels that partitions all other pixels into groups such

that one cannot go from one group to another without going through
cutset pixels.

B Given the cutset pixels, the groups are conditionally independent of
one other.

B Prime example: Manhattan grid cutset
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Overview of Image Compression

—— 3| encoder

bits

image

%

decoder

image reproduction

Image compression system = encoder + decoder

Performance

— Coding/compression rate: R = # bits/pixel

— Reproduction quality: D = distortion in reproduction, e.g. MSE, SNR, PSNR

Lossless and Lossy Image Coding

Theory for predicting performance and performance limits
— Lossless coding -- entropy theory

<

Shannon

-~

information

— Lossy coding — (a) Shannon rate-distortion theory, </ theory

(b) high-resolution theory
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Lossy Cutset Coding (LCC) of Bilevel Images

B Encoder: losslessly encodes Manhattan- B Decoder: reconstructs/
grid cutset (that’s it!) estimates/interpolates block
« for example, with Arithmetic Coding interiors using MRF model
and MAP rule

 typically 0.1 to 0.3 bits per cutset which
(enabled by closeness of cutset pixels)

ir

\

[Reyes et al., ICIP 2007; Reyes, UM PhD Dissertation, 2011]




Decoding: MAP Reconstruction for MRF Model

Decoding “game”: given boundary of a block, find the interior with fewest
black-to-white transitions (odd bonds).

Can be found by iterative algorithm such as loopy belief propagation.

Can be found analytically for the three most common types of block
boundaries.

monotone one-run two-run

16



Key Property of MAP reconstructions

« There is monotone
HV path from each
interior pixel to a
boundary pixel of
same color.

- Equivalently, no
“islands” in the
interior, i.e., every
monotone loop
must be filled with
same color

* Proof:

i

not MAP

could be MAP
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Block MAP Reconstructions for Common Boundaries

monotone one-run two-run

Monotone Boundary

18




One Run Boundary: Reconstruction Paths

« Since it can have no islands, any MAP reconstruction of one run boundary is
determined by a reconstruction path, either black or white.

« Therefore, wlog w restrict attention to reconstructions defined by
reconstruction paths, one for each run.

19



Boundary with One Black Run: MAP paths
Ami1r1
——

Amax

« Theorem: For 1-run boundary containing ¢ corners and having major and

minor differences A and A,

max

(1) all MAP paths have A edges

max

(2) c<2: (ﬁﬁ?ﬁf) MAP paths; all simple; 3 A

+ A+ 5—2c odd bonds

max

(8) c=3: (Amax~!) MAP paths; all simple; 3 A

1min

(4) c=4: 1 MAP path; notsimple; 3 A

+ Api— 1 odd bonds

max

1 odd bonds

max
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Two-Run Boundary

 First thought: merge two 1-run MAP reconstructions I

* Not necessarily MAP: deviating from 1-run optimality
to make1-run recon’s touch, can decrease odd bonds

 Instead find &compare best of 3 types of reconstructions:
- white HV-connected

- black HV-connected

- bi-connected: white and black connected, but neither is HV-connected

« |If white- or black HV-connected, merge two 1-run opt. reconstructions
* In bi-connected, “widget” reduces # number of odd bonds H

white HV-connected black HV-connected bi-connected
21



Widget Theorems e

« A MAP reconstruction for any boundary can have no widgets in its interior.

« A MAP reconstruction for a two-run boundary can have at most one
widget on the boundary

1.
)
T

not MAP MAP



2-Run MAP Reconstructions

« Theorem: Consider block with two
boundary runs

* |f one run contains four corners, the
only MAP recon is entirely this color.

* If not, and boundary is one of two types
shown to right, MAP is bi-connected as
shown.

* If not, MAP is white HV-connected
formed by any pair of simple non-
touching black reconstruction paths,

or black HV-connected formed by any
pair of simple non-touching white
reconstruction paths,

according to which has fewer odd
bonds

I

fi..
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Boundary with More Than Two Runs

B Belief propagation, or

B Simple ad hoc decoding rule
— Find the color with the two longest runs
— Change all other pixels to the other color

— Apply the two-run solution

24



Sample Decoded Result
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Decision-bit Coding

+ Problem: When thin line passes through block, boundary has 2 runs,
and MAP rule sometimes produces white-HV-connected reconstruction,

when black-HV-connected is better, and vice versa.

« Fix: Whenever block boundary has two runs, “decision bit coding” tests
to see which connection is best, and sends extra bit to tell decoder.

i

- fez.
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Decision-bit Coding

blocksize 8 blocksize 8
w/0 decision bit with decision bit
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Rate-Distortion Performance

0.1
—o—MRF Basic
—e— |\ RF Decision
0.08 -e-JBIG
? ~v- Culik
O I
© 0.06
S
o 0.04r
0.02+
0 : S N : : &
0 0.05 0.1 0.15 0.2
bit rate

e Compare to Culik and Valenta *97, and nonlinear filter+JBIG

* For scenic bilevel images (complex, but not text or halftone) LCC 1is best
method of which we are aware

e Percent error is less than i1deal as a distortion measure.
* LCC coded 1mages “look” much better than C&V coded images
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Another image

basic 006
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Decison-bit
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blt 0L oM 0B 0B o1 012 o

R =0.053 bpp R = 0.035 bpp
D=1.3% D=1.8 %
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Cutset-First Lossless Image Compression

B Step 1: Encode cutset. Use arithmetic coding (AC)
with MRF model guiding coding distributions.

B Step 2: Encode remaining pixels. Use AC to
conditionally encode remainder given cutset pixels,
again with MRF model guiding coding distributions.

B Choose cutset such that it is feasible to use Belief
Propagation (BP) to compute:

a. approximately optimal “reduced” coding
distributions for cutset

b. opt. conditional coding distributions for remainder
0.5
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0477
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=»=lines
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bilevel MRF model, p = 0.5 02

1 2 3

[Reyes, DN, DCC 2010; Reyes, PhD Dissertation, U. Mich., 2011]
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Lossless Image Coding with Arithmetic Codes (AC)

pixel values

X = (XN, .r X2, X1)

L inference of

coding distr’ns

-

encoded bits

10110...
AC encoder »| AC decoder
\/'/
| I(x) |
INs o J2, /1

X = (XN, .oer X2, X1)

-

'

N, ... f2, f1 |coding distr’ns

inference of

B Encode grid in a 1-D scan order x = (x4, ...,X,) such that for each pixel except
18t a horizontally or vertically adjacent pixel, called its context, is scanned first.

E Accompany pixel x; with coding prob distribution {f;(0), fi(1)} (not just f.(x;))

E £(0) = fraction of previous pixels that are zero and whose context is same as pixel
as context of pixel i.

B # bits produced by AC encoder produces:

N
100 = 3-log(f,(x)) = H(X;1X,)
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Cutset Sampling as
General Approach to Sampling Grayscale Images

B Motivation
— Physical constraints such as sampling from vehicles
— Potentially better edge preservation

— Sensor networks — less wire, less energy

B Goals
— Reconstruct image from cutset samples

— ldentify images that can be perfectly reconstructed, i.e., find a sampling
theorem

— Develop sensor network signal processing algorithms that benefit from
cutset deployment

 source localization, tracking, ...

32



Motivation: Physical Constraint --

Sampling from a Boat, Airplane or Vehicle

’
_r*\—l-
Wi
I
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Motivation: Potentially Better Edge Preservation

B Cutset sampling B Conventional sampling
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B With same sample density, cutset sensors are closer to each other,
with potential to capture edges more accurately.
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Motivation: Sensor Networks --
Two Deployments with same density

B Cutset sampling B Conventional sampling
=1 s7d Nt
7K:oooooo:oooooo:ooo e ©6 ©6 06 © 06 0 o o
: : : e © © o 0 © o o o
V=8: S : e ©6 06 06 06 0 o o o
: : : e © 6 ¢ o o o o o
M:oooooo:oooooo:ooo e © 6 o o o o o o
: : : e © ¢ o o o © o o
: : : e ©6 ¢ o o © o o o
: : : e © o 6 o 0 o o o
:oooooo:oooooo:ooo e ©6 ©6 6 ©6 6 0 o o

(H+V)ls=1 _ 1 B Samp. density = Lz _ !
HV 4 S 4
B If H=V=Ks, cutset sampling saves factor of :
o Wv2K -1/2 in wire for wired network

o (K/42K =1)" in energy for wireless network, where r=2to 4.

B Samp. density =
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Image Reconstruction from Cutset Samples

36



Discrete Space Image Setting

B Cutset sampling
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Image Reconstruction
[Farmer et al., ICIP 2011]

Three-Step Segment-Based Reconstruction

1. Segment cutset

— Based only on cutset values
Illlllll=l=l

— Criteria: no edges within a segment EEEEEEEEEEEEEE

EEEEN|
o

2. Segment block interiors
— l.e. estimate segmentation of interior
— Based only on segmented cutset

3. Segment-based gray-level interpolation
of block interiors

— Based only on cutset values
and segmented blocks and cutset

— Each pixel is interpolated based only
on cutset pixels in same segment

38



1. Segment Cutset

B We adapt ACA segmentation to cutset segmentation [Pappas 92]

original

full ACA
segmentation

segmentation of
7X7 cutset
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2. Segment Block Interiors

B Approach
— Model ‘ideal segmentation’ of a block as a bilevel MRF.
— Produce MAP estimate of block interior from 1

segmentation of boundary, using LCC decoder
reconstruction algorithm

ACA cutset segmentation ~ cutset + interior segmentation

40



3. Segment-Based Block Interior Reconstruction

¥ Key idea: estimate each pixel x; in block based only on

2000
block boundary pixels Vi in the same segment 0:§+//40§0);§/O

e+-® O 65O

B MMSE linear estimation: o \.\o
o 'a/'iaxa o

Xp=wi+ Yya;;(yi-u)
J

where

w; = mean of segment containing pixel |,
estimated as emp. mean of pixels in segment boundary

-1
[ai, '], A = KY KYXl-

A

B Assume Gaussian MRF model

41



Gaussian MRF Model

1
B p(x) = = [1P;(x) [] W, i(x;.x )
i ij

B Node and edge potential functions

D.(x;) = exp{—;d(xi i Mi)z},

if (i,j) is edge,
qji,j(xi ’xj) — exp{— Cd(xi - Aui)(xj - xuj )} & i,j in same seg.
0, else

u, = seg. mean, est. as emp. mean of pixels in segmenf] boundary
¢, d chosen so inverse covariance matrix k! is positive definite
[ d, i=j

-1
Kl:j =

7\

—cd, i= j, (i,j) an edge

0, else

B Either: x; =u;+Ya;;(y;-u;) and A=K§1KYX,-
J

B Or run loopy Belief Propagation on graph.

42



original

7

P

A

7x7 cutset sampling
full ACA segmentation
PSNR = 28.8 dB

Wy

Example: Sampling Density 1/4

¥,

conventional sampling

bilinear reconstruction
PSNR =27.1 dB
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Example: Sampling Density 1/2

original 4x3 cutset sampling conventional sampling
ACA cutset segmentation D
Gaussian MRF model Tececece
©° 0° 900 0o
MMSE estimation °®cecece
PSNR = 322 dB bilinear reconstruction

PSNR =34.5 dB




PNSR for ‘al’

MRF MMSE expon. corr. MMSE| distance-based

grid ACA

7X7 | 28.8
4x3 | 33.1

cut- cut- no
set set

272 27.1) 28.2 283 289|273 275 26.9

322 32.2]| 334 338 34.7] 322 32.2 30.1

bilinear

conv’l
sampling

27.1
34.5
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X7
4x3

PNSR for ‘tools’

MRF MMSE expon. corr. MMSE| distance-based

:

29.1 26.7 278|279 278 292|273 271 26.9
33.8 33.2 35.7|33.5 33.7 34.7]33.9 33.8 33.0

bilinear

conv'l

sampling
29.9
38.7

46



Improved Reconstruction Method

Matt Prelee et al. ICIP 2012:

Image is modeled as piecewise planar plus MRF,
i.e., as MRF whose mean is piecewise planar

For each cutset block, “K-planes algorithm” finds K planes that
match image on block boundary, and segments boundary
according to the planes associated with it. (typically K=3)

Each block interior pixel is associated with one of the K-plans via
ad hoc rule, i.e. segmentation extended to the block interior.

Each block interior pixel is interpolated as before using MRF model
from pixels associated with the same plane (and only these), and
with the plane giving the mean of MRF.

47



Comparison of New and Previous Method

B=7

y/ .

ICIP 2011 ICIP 2012
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Sampling Theorem for Manhattan Cutset Sampling

B If image spectrum is bandlimited to it can be perfectly recovered
cross-shaped region below, from Manhattan cutset
sampling below
Ay
-1/2), 124, 1, 1724, 1/20, Al
: | . - 1/24, a A
! X X
! FXXAXXX XX XX XX
124, X X
u X X
124, A< » » }}\‘y
X X
I 1, S OXX XX X XX X X XX
X ~ X
B No larger sampling rate is possible for Ay

images bandlimited to this region

B No larger frequency region permits

perfect reconstruction
[ICASSP 2012, M. Prelee, DN]
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Source Localization

B Goal: Wireless sensor network nodes measures signal strength and
collaborate to estimation position.
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B Performance: mean-squared position error vs. communication energy

[ICASSP 2012, M. Prelee, DN]



Source Localization Scenario

N sensors deployed over some geographic region

Each sensor measures signal strength  y; = + 1,

i -of

Sensors whose measurements lie above a threshold communicate and
collaborate to make estimate of position.

Performance measures:;

Detection rate

False alarm rate
Mean squared position error

Energy required for communication

E = #bits x # hops/bit x energy per bit per hop

energy per bit perhop = ¢ (distance)ﬁ , P =4typical

[ICASSP 2013, M. Prelee, DN]
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@ POCS, Random
—— POCS, MGrid

o5l 4 —©— Midpoint, MGrid ||
E
S 2r .
L0
3
§ 4
3 1.5f 1
N
[
(48]
D
= 1k i
3
(@)
o

0.5 ]

@
0 - .
10° 10° 107

Relative Energy Cost

B POCS is Projection onto Convex Sets Method of Blatt, Hero, 20086, for
random sensor deployment.

B Midpoint algorithm is very simple, very low energy algorithm that separately
estimates horizontal and vertical coordinate of source as midpoint of
sensors above threshold.
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Ongoing Work and Future Directions

Hierarchical version of lossy bilevel coding

Improved reconstruction methods for nonbandlimited images

Cutset and Manhattan sampling in higher dimensions
— For video, for example

— Reconstruction methods

— Sampling theorems

Sensor networks with Manhattan grid sensor deployment
— Localization

— Communication throughput scaling analysis

— Other sensor network tasks
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