Sparse Modeling for Prospective Head Motion Correction

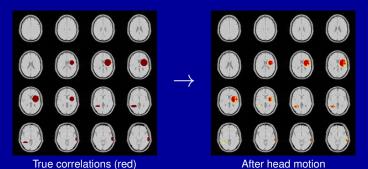
Daniel S. Weller

University of Michigan

September 26, 2013

Motivation

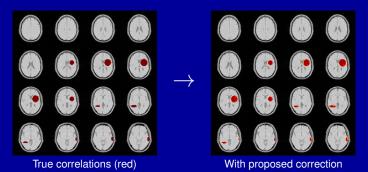
- Head motion reduces the sensitivity of functional magnetic resonance imaging (fMRI) experiments.
- I propose a motion compensation method that uses just the data collected during a conventional fMRI.



CSP Seminar - Fall 2013

Motivation

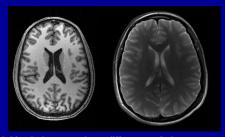
- Head motion reduces the sensitivity of functional magnetic resonance imaging (fMRI) experiments.
- I propose a motion compensation method that uses just the data collected during a conventional fMRI.



Outline

- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

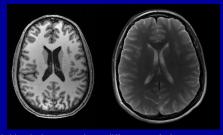
What is MRI?



Axial brain images show different soft tissue contrast.

- Magnetic resonance imaging (MRI) provides excellent soft tissue contrast.
- Densities and magnetic properties of particles tell us a lot about organ structure and composition.
- Dynamic/functional MRI time series capture organ function.

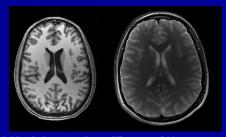
What is MRI?



Axial brain images show different soft tissue contrast.

- Magnetic resonance imaging (MRI) provides excellent soft tissue contrast.
- Densities and magnetic properties of particles tell us a lot about organ structure and composition.
- Dynamic/functional MRI time series capture organ function.

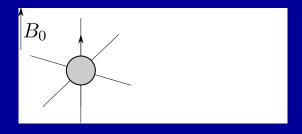
What is MRI?



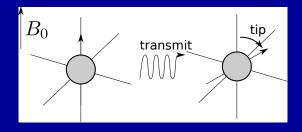
Axial brain images show different soft tissue contrast.

- Magnetic resonance imaging (MRI) provides excellent soft tissue contrast.
- Densities and magnetic properties of particles tell us a lot about organ structure and composition.
- Dynamic/functional MRI time series capture organ function.

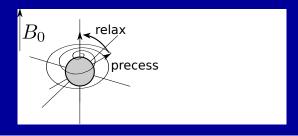
- Certain particles have magnetic moments (spins), which tend to align with a strong external magnetic field B₀.
- When excited by a radiofrequency (RF) pulse, these spins tip away from the main field.
- They precess at the Larmor frequency γB_0 , proportional to the main field, as they return to equilibrium (relax).
- These spins induce an emf in a nearby receiver loop coil.



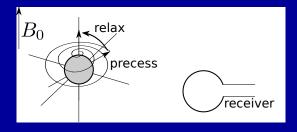
- Certain particles have magnetic moments (spins), which tend to align with a strong external magnetic field B₀.
- When excited by a radiofrequency (RF) pulse, these spins tip away from the main field.
- They precess at the Larmor frequency γB_0 , proportional to the main field, as they return to equilibrium (relax).
- These spins induce an emf in a nearby receiver loop coil.



- Certain particles have magnetic moments (spins), which tend to align with a strong external magnetic field B₀.
- When excited by a radiofrequency (RF) pulse, these spins tip away from the main field.
- They precess at the Larmor frequency γB_0 , proportional to the main field, as they return to equilibrium (relax).
- These spins induce an emf in a nearby receiver loop coil.



- Certain particles have magnetic moments (spins), which tend to align with a strong external magnetic field B₀.
- When excited by a radiofrequency (RF) pulse, these spins tip away from the main field.
- They precess at the Larmor frequency γB_0 , proportional to the main field, as they return to equilibrium (relax).
- These spins induce an emf in a nearby receiver loop coil.



$$s(t) = e^{-j\gamma B_0 t} \iint_S m(x, y) \, dx \, dy.$$

- Gradient coils control additional spatially varying magnetic fields G_x , G_y to acquire images: $B_z = B_0 + G_x x + G_y y$.
- The received signal is called k-space:

$$e^{j\gamma B_0 t} s(t) = \iint_S m(x, y) e^{-j\gamma (\int_0^t G_x(\tau)x + G_y(\tau)y d\tau)} dx dy.$$

- By adjusting the gradients, we effectively sample k-space.
- Applying z-gradient G_z during excitation selects a slice.

$$s(t) = e^{-j\gamma B_0 t} \iint_S m(x, y) \, dx \, dy.$$

- Gradient coils control additional spatially varying magnetic fields G_x , G_y to acquire images: $B_z = B_0 + G_x x + G_y y$.
- The received signal is called k-space:

$$e^{j\gamma B_0 t} s(t) = \iint_S m(x, y) e^{-j\gamma (\int_0^t G_x(\tau)x + G_y(\tau)y \, d\tau)} \, dx \, dy.$$

- By adjusting the gradients, we effectively sample k-space.
- Applying z-gradient G_z during excitation selects a slice.

$$s(t) = e^{-j\gamma B_0 t} \iint_S m(x, y) \, dx \, dy.$$

- Gradient coils control additional spatially varying magnetic fields G_x , G_y to acquire images: $B_z = B_0 + G_x x + G_y y$.
- The received signal is called k-space:

$$e^{j\gamma B_0 t} s(t) = \iint_S m(x, y) e^{-j\gamma (\int_0^t G_x(\tau)x + G_y(\tau)y \, d\tau)} \, dx \, dy.$$

- By adjusting the gradients, we effectively sample k-space.
- Applying z-gradient G_z during excitation selects a slice.

$$s(t) = e^{-j\gamma B_0 t} \iint_S m(x, y) \, dx \, dy.$$

- Gradient coils control additional spatially varying magnetic fields G_x , G_y to acquire images: $B_z = B_0 + G_x x + G_y y$.
- The received signal is called k-space:

$$e^{j\gamma B_0 t} s(t) = \iint_S m(x, y) e^{-j\gamma (\int_0^t G_x(\tau)x + G_y(\tau)y \, d\tau)} \, dx \, dy.$$

- By adjusting the gradients, we effectively sample k-space.
- Applying z-gradient G_z during excitation selects a slice.

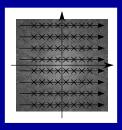
$$s(t) = e^{-j\gamma B_0 t} \iint_S m(x, y) \, dx \, dy.$$

- Gradient coils control additional spatially varying magnetic fields G_x , G_y to acquire images: $B_z = B_0 + G_x x + G_y y$.
- The received signal is called k-space:

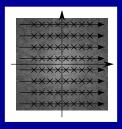
$$e^{j\gamma B_0 t} s(t) = \iint_S m(x, y) e^{-j\gamma (\int_0^t G_x(\tau)x + G_y(\tau)y \, d\tau)} \, dx \, dy.$$

- By adjusting the gradients, we effectively sample k-space.
- Applying z-gradient G_z during excitation selects a slice.

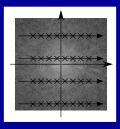
- The sampling process is sequential, relatively slow.
- We must wait between excitations for the signal to relax.
- To accelerate imaging:
 - increase sample spacing, causing aliasing,
 - reduce the sampling extent, decreasing resolution,
 - sample half of k-space, assuming a real-valued image, or
 - traverse more of k-space during each shot



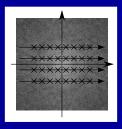
- The sampling process is sequential, relatively slow.
- We must wait between excitations for the signal to relax.
- To accelerate imaging:
 - increase sample spacing, causing aliasing,
 - reduce the sampling extent, decreasing resolution,
 - sample half of k-space, assuming a real-valued image, or
 - traverse more of k-space during each shot



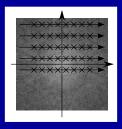
- The sampling process is sequential, relatively slow.
- We must wait between excitations for the signal to relax.
- To accelerate imaging:
 - increase sample spacing, causing aliasing,
 - reduce the sampling extent, decreasing resolution,
 - sample half of k-space, assuming a real-valued image, or
 - traverse more of k-space during each shot



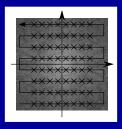
- The sampling process is sequential, relatively slow.
- We must wait between excitations for the signal to relax.
- To accelerate imaging:
 - increase sample spacing, causing aliasing,
 - reduce the sampling extent, decreasing resolution,
 - sample half of k-space, assuming a real-valued image, or
 - traverse more of k-space during each shot



- The sampling process is sequential, relatively slow.
- We must wait between excitations for the signal to relax.
- To accelerate imaging:
 - increase sample spacing, causing aliasing,
 - reduce the sampling extent, decreasing resolution,
 - sample half of k-space, assuming a real-valued image, or
 - traverse more of k-space during each shot



- The sampling process is sequential, relatively slow.
- We must wait between excitations for the signal to relax.
- To accelerate imaging:
 - increase sample spacing, causing aliasing,
 - reduce the sampling extent, decreasing resolution,
 - sample half of k-space, assuming a real-valued image, or
 - traverse more of k-space during each shot



- The signal model assumed $\overline{m(x,y)}$ is constant over time.
- However, the spin magnitude varies over time due to relaxation:
 - longitudinal component recovers ($\propto 1 e^{-t/T_1}$), and
 - transverse component decays ($\propto e^{-t/T_2}$)
- Signal dephasing due to local field inhomogeneity also manifests as transverse relaxation (time constant T₂'):
 - total transverse relaxation rate $1/T_2^* = 1/T_2 + 1/T_2'$
- Repetition time T_R is time between excitations; shorter T_R \Rightarrow greater T_1 contrast.
- Echo time T_E is time between excitation and sampling center of k-space; longer $T_E \Rightarrow$ greater T_2^* contrast.

- The signal model assumed m(x,y) is constant over time.
- However, the spin magnitude varies over time due to relaxation:
 - longitudinal component recovers ($\propto 1 e^{-t/T_1}$), and
 - transverse component decays ($\propto e^{-t/T_2}$)
- Signal dephasing due to local field inhomogeneity also manifests as transverse relaxation (time constant T₂'):
 - total transverse relaxation rate $1/T_2^* = 1/T_2 + 1/T_2'$
- Repetition time T_R is time between excitations; shorter T_R
 ⇒ greater T₁ contrast.
- Echo time T_E is time between excitation and sampling center of k-space; longer $T_E \Rightarrow$ greater T_2^* contrast.

- The signal model assumed $\overline{m(x,y)}$ is constant over time.
- However, the spin magnitude varies over time due to relaxation:
 - longitudinal component recovers ($\propto 1 e^{-t/T_1}$), and
 - transverse component decays ($\propto e^{-t/T_2}$)
- Signal dephasing due to local field inhomogeneity also manifests as transverse relaxation (time constant T₂'):
 - total transverse relaxation rate $1/T_2^* = 1/T_2 + 1/T_2'$
- Repetition time T_R is time between excitations; shorter T_R
 ⇒ greater T₁ contrast.
- Echo time T_E is time between excitation and sampling center of k-space; longer $T_E \Rightarrow$ greater T_2^* contrast.

- The signal model assumed $\overline{m(x,y)}$ is constant over time.
- However, the spin magnitude varies over time due to relaxation:
 - longitudinal component recovers ($\propto 1 e^{-t/T_1}$), and
 - transverse component decays ($\propto e^{-t/T_2}$)
- Signal dephasing due to local field inhomogeneity also manifests as transverse relaxation (time constant T₂'):
 - total transverse relaxation rate $1/T_2^* = 1/T_2 + 1/T_2'$
- Repetition time T_R is time between excitations; shorter T_R
 ⇒ greater T₁ contrast.
- Echo time T_E is time between excitation and sampling center of k-space; longer $T_E \Rightarrow$ greater T_2^* contrast.

- The signal model assumed $\overline{m(x,y)}$ is constant over time.
- However, the spin magnitude varies over time due to relaxation:
 - longitudinal component recovers ($\propto 1 e^{-t/T_1}$), and
 - transverse component decays ($\propto e^{-t/T_2}$)
- Signal dephasing due to local field inhomogeneity also manifests as transverse relaxation (time constant T₂'):
 - total transverse relaxation rate $1/T_2^* = 1/T_2 + 1/T_2'$
- Repetition time T_R is time between excitations; shorter T_R
 ⇒ greater T₁ contrast.
- Echo time T_E is time between excitation and sampling center of k-space; longer $T_E \Rightarrow$ greater T_2^* contrast.

Outline

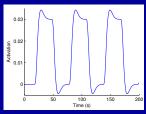
- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

- Neuronal impulses are too short, weak to register using conventional MRI.
- Instead, indirectly measure activity by tracking blood oxygen metabolism.
- Hemoglobin has two states:
 - · with bound oxygen is diamagnetic, and
 - without bound oxygen is paramagnetic († $1/T_2^*$)
- BOLD contrast results from increased blood flow, and increased metabolism:
 - \uparrow blood flow $\Rightarrow \downarrow$ deoxygenated blood $\Rightarrow \downarrow 1/T_2^*$, and
 - \uparrow metabolism \Rightarrow \uparrow deoxygenated blood \Rightarrow \uparrow $1/T_2^*$

- Neuronal impulses are too short, weak to register using conventional MRI.
- Instead, indirectly measure activity by tracking blood oxygen metabolism.
- Hemoglobin has two states:
 - · with bound oxygen is diamagnetic, and
 - without bound oxygen is paramagnetic († $1/T_2^*$)
- BOLD contrast results from increased blood flow, and increased metabolism:
 - \uparrow blood flow $\Rightarrow \downarrow$ deoxygenated blood $\Rightarrow \downarrow 1/T_2^*$, and
 - \uparrow metabolism \Rightarrow \uparrow deoxygenated blood \Rightarrow \uparrow $1/T_2^*$

- Neuronal impulses are too short, weak to register using conventional MRI.
- Instead, indirectly measure activity by tracking blood oxygen metabolism.
- Hemoglobin has two states:
 - with bound oxygen is diamagnetic, and
 - without bound oxygen is paramagnetic ($\uparrow 1/T_2^*$)
- BOLD contrast results from increased blood flow, and increased metabolism:
 - \uparrow blood flow $\Rightarrow \downarrow$ deoxygenated blood $\Rightarrow \downarrow 1/T_2^*$, and
 - \uparrow metabolism \Rightarrow \uparrow deoxygenated blood \Rightarrow \uparrow $1/T_2^*$

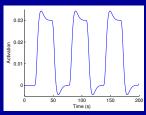
- Neuronal impulses are too short, weak to register using conventional MRI.
- Instead, indirectly measure activity by tracking blood oxygen metabolism.
- Hemoglobin has two states:
 - · with bound oxygen is diamagnetic, and
 - without bound oxygen is paramagnetic († $1/T_2^*$)
- BOLD contrast results from increased blood flow, and increased metabolism:
 - \uparrow blood flow $\Rightarrow \downarrow$ deoxygenated blood $\Rightarrow \downarrow 1/T_2^*$, and
 - \uparrow metabolism \Rightarrow \uparrow deoxygenated blood \Rightarrow \uparrow $1/T_2^*$



Activations from block design convolved with canonical hrf from SPM8¹

- The functional MRI process is modeled as an LTI system with an impulse response known as the hemodynamic response function (hrf).
- In reality, the hrf varies spatially and over time.
- It changes from subject-to-subject and scan-to-scan.
- Software like SPM8¹ use basis functions for the hrf.

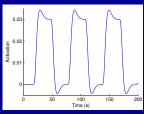
¹ http://www.fil.ion.ucl.ac.uk/spm/



Activations from block design convolved with canonical hrf from SPM8¹

- The functional MRI process is modeled as an LTI system with an impulse response known as the hemodynamic response function (hrf).
- In reality, the hrf varies spatially and over time.
- It changes from subject-to-subject and scan-to-scan.
- Software like SPM8¹ use basis functions for the hrf.

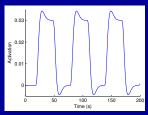
¹ http://www.fil.ion.ucl.ac.uk/spm/



Activations from block design convolved with canonical hrf from SPM8¹

- The functional MRI process is modeled as an LTI system with an impulse response known as the hemodynamic response function (hrf).
- In reality, the hrf varies spatially and over time.
- It changes from subject-to-subject and scan-to-scan.
- Software like SPM8¹ use basis functions for the hrf.

¹ http://www.fil.ion.ucl.ac.uk/spm/



Activations from block design convolved with canonical hrf from SPM8¹

- The functional MRI process is modeled as an LTI system with an impulse response known as the hemodynamic response function (hrf).
- In reality, the hrf varies spatially and over time.
- It changes from subject-to-subject and scan-to-scan.
- Software like SPM8¹ use basis functions for the hrf.

¹ http://www.fil.ion.ucl.ac.uk/spm/

Functional MRI analysis

- To identify activated brain regions, we correlate the ideal time series activations against the time series for each voxel in the brain.
- This analysis yields the general linear model (GLM):

$$Y = [G \ 1] \quad \underbrace{\beta}_{\text{regressors}} + \underbrace{\varepsilon}_{\text{error}}.$$

 Software packages like SPM8 implement this analysis and provide visualization tools.

Functional MRI analysis

- To identify activated brain regions, we correlate the ideal time series activations against the time series for each voxel in the brain.
- This analysis yields the general linear model (GLM):

$$\underbrace{Y}_{ ext{data}} = \underbrace{\begin{bmatrix} G & 1 \end{bmatrix}}_{ ext{regressors}} \underbrace{eta}_{ ext{weights}} + \underbrace{arepsilon}_{ ext{error}}.$$

 Software packages like SPM8 implement this analysis and provide visualization tools.

Functional MRI analysis

- To identify activated brain regions, we correlate the ideal time series activations against the time series for each voxel in the brain.
- This analysis yields the general linear model (GLM):

$$Y = [G \ 1] \quad \underbrace{\beta}_{\text{regressors}} + \underbrace{\varepsilon}_{\text{error}}.$$

 Software packages like SPM8 implement this analysis and provide visualization tools.

- 1. Slice-by-slice acquisitions are time-shifted to account for different slice timings.
- 2. Head motion is estimated and used to register volumes to the first/middle volume of the time series.
- 3. Time series can be realigned to a separate reference volume for visualization purposes.
- 4. Volumes are normalized to a fixed coordinate system (e.g., Tailarach) in group studies.
- 5. Data can be smoothed/blurred using a Gaussian kernel to reduce noise, cross-subject variance.

- 1. Slice-by-slice acquisitions are time-shifted to account for different slice timings.
- 2. Head motion is estimated and used to register volumes to the first/middle volume of the time series.
- 3. Time series can be realigned to a separate reference volume for visualization purposes.
- 4. Volumes are normalized to a fixed coordinate system (e.g., Tailarach) in group studies.
- 5. Data can be smoothed/blurred using a Gaussian kernel to reduce noise, cross-subject variance.

- 1. Slice-by-slice acquisitions are time-shifted to account for different slice timings.
- 2. Head motion is estimated and used to register volumes to the first/middle volume of the time series.
- 3. Time series can be realigned to a separate reference volume for visualization purposes.
- 4. Volumes are normalized to a fixed coordinate system (e.g., Tailarach) in group studies.
- 5. Data can be smoothed/blurred using a Gaussian kernel to reduce noise, cross-subject variance.

- 1. Slice-by-slice acquisitions are time-shifted to account for different slice timings.
- 2. Head motion is estimated and used to register volumes to the first/middle volume of the time series.
- 3. Time series can be realigned to a separate reference volume for visualization purposes.
- 4. Volumes are normalized to a fixed coordinate system (e.g., Tailarach) in group studies.
- 5. Data can be smoothed/blurred using a Gaussian kernel to reduce noise, cross-subject variance.

- 1. Slice-by-slice acquisitions are time-shifted to account for different slice timings.
- 2. Head motion is estimated and used to register volumes to the first/middle volume of the time series.
- 3. Time series can be realigned to a separate reference volume for visualization purposes.
- 4. Volumes are normalized to a fixed coordinate system (e.g., Tailarach) in group studies.
- 5. Data can be smoothed/blurred using a Gaussian kernel to reduce noise, cross-subject variance.

Conventionally, data are pre-processed in the following ways:

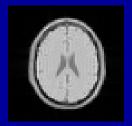
- 1. Slice-by-slice acquisitions are time-shifted to account for different slice timings.
- 2. Head motion is estimated and used to register volumes to the first/middle volume of the time series.
- 3. Time series can be realigned to a separate reference volume for visualization purposes.
- 4. Volumes are normalized to a fixed coordinate system (e.g., Tailarach) in group studies.
- 5. Data can be smoothed/blurred using a Gaussian kernel to reduce noise, cross-subject variance.

Our single-subject simulations require only step #2.

Outline

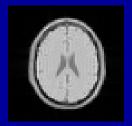
- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

- Head motion causes several problems in brain imaging:
 - Misaligned time series have inconsistent brain coordinates.
 - Motion distorts the main field and alters the dephasing rate.
 - Nonuniform excitation from inter-slice motion introduces "spin history" effects.



Simulated brain with motion.

- Head motion causes several problems in brain imaging:
 - Misaligned time series have inconsistent brain coordinates.
 - Motion distorts the main field and alters the dephasing rate.
 - Nonuniform excitation from inter-slice motion introduces "spin history" effects.



Simulated brain with motion.

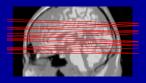
- Head motion causes several problems in brain imaging:
 - Misaligned time series have inconsistent brain coordinates.
 - Motion distorts the main field and alters the dephasing rate.
 - Nonuniform excitation from inter-slice motion introduces "spin history" effects.

```
Figure 9 in <sup>1</sup>
URL: http://dx.doi.org/10.1002/mrm.24314
```

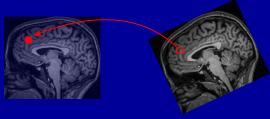
Head motion causes field map distortions¹.

¹ J Maclaren et al., Mag. Res. Med., 69(3), 2013.

- Head motion causes several problems in brain imaging:
 - Misaligned time series have inconsistent brain coordinates.
 - Motion distorts the main field and alters the dephasing rate.
 - Nonuniform excitation from inter-slice motion introduces "spin history" effects.



Slice selection without (left) and with (right) motion.



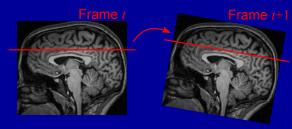
Retrospective image registration/interpolation.

- Retrospective correction (post-scan):
 - registration: spatial interpolation of reconstructed images
 - motion estimates as nuisance regressors in the GLM
- Prospective correction (during the scan):
 - slice prescription, k-space trajectory adjusted between frames or slices
 - corrupted data re-scanned (rare in fMRI)

$$oldsymbol{Y} = egin{bmatrix} oldsymbol{G} & oldsymbol{1}\end{bmatrix}oldsymbol{eta} + egin{bmatrix} -\widehat{oldsymbol{lpha}}^0-\ dots\ -\widehat{oldsymbol{lpha}}^{N_F-1}- \end{bmatrix}oldsymbol{eta}_{\mathsf{motion}} + oldsymbol{arepsilon}.$$

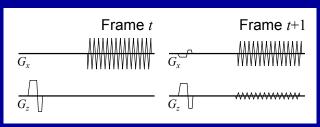
Nuisance regressors in the GLM.

- Retrospective correction (post-scan):
 - registration: spatial interpolation of reconstructed images
 - motion estimates as nuisance regressors in the GLM
- Prospective correction (during the scan):
 - slice prescription, k-space trajectory adjusted between frames or slices
 - corrupted data re-scanned (rare in fMRI)



Gradients, slice prescriptions adjusted.

- Retrospective correction (post-scan):
 - registration: spatial interpolation of reconstructed images
 - motion estimates as nuisance regressors in the GLM
- Prospective correction (during the scan):
 - slice prescription, k-space trajectory adjusted between frames or slices
 - corrupted data re-scanned (rare in fMRI)



Gradients, slice prescriptions adjusted.

- Retrospective correction (post-scan):
 - registration: spatial interpolation of reconstructed images
 - motion estimates as nuisance regressors in the GLM
- Prospective correction (during the scan):
 - slice prescription, k-space trajectory adjusted between frames or slices
 - corrupted data re-scanned (rare in fMRI)

Prospective correction methods

- Retrospective methods are suboptimal.
 - registration: interpolation smears activations across voxels
 - regression: activations mistaken for task-correlated motion
- Prospective motion estimation methods include:
 - external tracking: markers, cameras, etc.
 - navigational techniques using MRI data

Prospective correction methods

- Retrospective methods are suboptimal.
 - registration: interpolation smears activations across voxels
 - regression: activations mistaken for task-correlated motion
- Prospective motion estimation methods include:
 - external tracking: markers, cameras, etc.
 - navigational techniques using MRI data

Prospective correction methods

- Retrospective methods are suboptimal.
 - registration: interpolation smears activations across voxels
 - regression: activations mistaken for task-correlated motion
- Prospective motion estimation methods include:
 - external tracking: markers, cameras, etc.
 - navigational techniques using MRI data

Figure 2b in ¹ URL: http://dx.doi.org/10.1002/mrm.24314

Methods for prospective motion estimation¹.

¹ J Maclaren et al., Mag. Res. Med., 69(3), 2013.

Navigation

- Image-based navigators align the MR time series images.
- Fast k-space navigators have static contrast, versus time-varying BOLD contrast found in fMRI data.
- With multi-channel receivers, relative intensity changes in received signals (called FID signals) can signify motion.

Figure 2a in ¹ URL: http://dx.doi.org/10.1002/mrm.24314

K-space, image-space, and FID navigator methods¹.

¹ J Maclaren et al., Mag. Res. Med., 69(3), 2013.

Navigation

- Image-based navigators align the MR time series images.
- Fast k-space navigators have static contrast, versus time-varying BOLD contrast found in fMRI data.
- With multi-channel receivers, relative intensity changes in received signals (called FID signals) can signify motion.

Figure 2a in ¹ URL: http://dx.doi.org/10.1002/mrm.24314

K-space, image-space, and FID navigator methods¹.

¹ J Maclaren et al., Mag. Res. Med., 69(3), 2013.

Navigation

- Image-based navigators align the MR time series images.
- Fast k-space navigators have static contrast, versus time-varying BOLD contrast found in fMRI data.
- With multi-channel receivers, relative intensity changes in received signals (called FID signals) can signify motion.

Figure 2a in ¹ URL: http://dx.doi.org/10.1002/mrm.24314

K-space, image-space, and FID navigator methods¹.

¹ J Maclaren et al., Mag. Res. Med., 69(3), 2013.

Outline

- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

- Image-space navigators were used with a linear motion model¹.
- Two-dimensional k-space navigators were used with an extended Kalman filter².
- Sparse residual models were employed in retrospective joint reconstruction/registration methods^{3,4}.

¹ S Thesen et al., Mag. Res. Med., 44(3), 2000.

- Image-space navigators were used with a linear motion model¹.
- Two-dimensional k-space navigators were used with an extended Kalman filter².
- Sparse residual models were employed in retrospective joint reconstruction/registration methods^{3,4}.

¹ S Thesen et al., Mag. Res. Med., 44(3), 2000.

² N White et al., Mag. Res. Med., 63(1), 2010.

- Image-space navigators were used with a linear motion model¹.
- Two-dimensional k-space navigators were used with an extended Kalman filter².
- Sparse residual models were employed in retrospective joint reconstruction/registration methods^{3,4}.

¹ S Thesen et al., Mag. Res. Med., 44(3), 2000.

² N White et al., Mag. Res. Med., 63(1), 2010.

³ H Jung et al., Mag. Res. Med., 61(1), 2009.

⁴ MS Asif et al., Mag. Res. Med., in press.

- Image-space navigators were used with a linear motion model¹.
- Two-dimensional k-space navigators were used with an extended Kalman filter².
- Sparse residual models were employed in retrospective joint reconstruction/registration methods^{3,4}.
- I propose using image-space navigators and combining a sparse residual model with Kalman-like filtering⁵.

¹ S Thesen et al., Mag. Res. Med., 44(3), 2000.

² N White et al., Mag. Res. Med., 63(1), 2010.

³ H Jung et al., Mag. Res. Med., 61(1), 2009.

⁴ MS Asif et al., Mag. Res. Med., in press.

⁵ DSW et al., Proc. SPIE Wavelets and Sparsity XV, in press.

Consider images $x^t|_{t=0,...,N_F-1}$ in 3 coordinate systems:

- 1. x_0^t has the same physical coordinate system for all t.
- 2. $x_{\text{reg}}^t = T((\widehat{m{lpha}}^t)^{(-1)}) x_0^t$ is registered to x^0 with estimate $\widehat{m{lpha}}^t$.

3. Measure $x_{\text{meas}}^t = T((\widehat{\alpha}^{t-1})^{(-1)})x_0^t$ prospectively corrected using the previous frame's motion.

$$t = 0$$

Registered Measured

$$t = 1$$

$$t = 2$$

Consider images $x^t|_{t=0,...,N_F-1}$ in 3 coordinate systems:

- 1. x_0^t has the same physical coordinate system for all t.
 - true motion α^t : rigid head motion from frame 0 to t
- 2. $m{x}_{\text{reg}}^t = m{T}((\widehat{m{lpha}}^t)^{(-1)}) m{x}_0^t$ is registered to $m{x}^0$ with estimate $\widehat{m{lpha}}^t$.

3. Measure $x_{\text{meas}}^t = T((\widehat{\alpha}^{t-1})^{(-1)})x_0^t$ prospectively corrected using the previous frame's motion.

t = 0

Fixed

Registered Measured

t =

Consider images $x^t|_{t=0,...,N_F-1}$ in 3 coordinate systems:

- 1. x_0^t has the same physical coordinate system for all t.
 - true motion α^t : rigid head motion from frame 0 to t
- 2. $x_{\text{reg}}^t = T((\widehat{\alpha}^t)^{(-1)}) x_0^t$ is registered to x^0 with estimate $\widehat{\alpha}^t$.
 - $\alpha^{(-1)}$ is the inverse motion of α
 - ullet $T(oldsymbol{lpha}_n,\ldots,oldsymbol{lpha}_1)oldsymbol{x}$ transforms $oldsymbol{x}$ by motions $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_n$
- 3. Measure $x_{\text{meas}}^t = T((\widehat{\alpha}^{t-1})^{(-1)})x_0^t$ prospectively corrected using the previous frame's motion.

t = 0

t=1 t=2

Consider images $x^t|_{t=0,...,N_F-1}$ in 3 coordinate systems:

- 1. x_0^t has the same physical coordinate system for all t.
 - true motion α^t : rigid head motion from frame 0 to t
- 2. $m{x}_{\mathsf{reg}}^t = m{T}((\widehat{m{lpha}}^t)^{(-1)}) m{x}_0^t$ is registered to $m{x}^0$ with estimate $\widehat{m{lpha}}^t$.
 - $\alpha^{(-1)}$ is the inverse motion of α
 - $T(\alpha_n,\ldots,\alpha_1)x$ transforms x by motions α_1,\ldots,α_n
- 3. Measure $x_{\text{meas}}^t = T((\widehat{\alpha}^{t-1})^{(-1)})x_0^t$ prospectively corrected using the previous frame's motion.



Measurement model

Sample k-space in measurement coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} oldsymbol{x}_{\mathsf{meas}}^t + oldsymbol{n}^t,$$

where \mathcal{F} is the Discrete Fourier Transform (DFT), and n^t is iid zero-mean complex Gaussian with variance σ^2 .

- ullet To estimate $lpha^t$, relate $x_{
 m meas}^t$ to registered coordinates:
- ullet Define the residual image s^t in measurement coordinates:
- Model s^t as sparse, which is equivalent to using the SAD registration cost function:

Measurement model

• Sample k-space in measurement coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} oldsymbol{x}_{\mathsf{meas}}^t + oldsymbol{n}^t,$$

where \mathcal{F} is the Discrete Fourier Transform (DFT), and n^t is iid zero-mean complex Gaussian with variance σ^2 .

ullet To estimate $lpha^t$, relate $x^t_{
m meas}$ to registered coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} oldsymbol{T}((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) oldsymbol{x}_{\mathsf{reg}}^t + oldsymbol{n}^t.$$

- ullet Define the residual image s^t in measurement coordinates:
- Model s^t as sparse, which is equivalent to using the SAD registration cost function:

Measurement model

• Sample k-space in measurement coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} oldsymbol{x}_{\mathsf{meas}}^t + oldsymbol{n}^t,$$

where \mathcal{F} is the Discrete Fourier Transform (DFT), and n^t is iid zero-mean complex Gaussian with variance σ^2 .

ullet To estimate $lpha^t$, relate $x_{
m meas}^t$ to registered coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} oldsymbol{T}((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) oldsymbol{x}_{\mathsf{reg}}^t + oldsymbol{n}^t.$$

• Define the residual image s^t in measurement coordinates:

$$oldsymbol{s}^t = oldsymbol{x}_{\mathsf{meas}}^t - oldsymbol{T}((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) oldsymbol{x}_{\mathsf{reg}}^{t-1}.$$

 Model s^t as sparse, which is equivalent to using the SAD registration cost function:

Measurement model

Sample k-space in measurement coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} oldsymbol{x}_{\mathsf{meas}}^t + oldsymbol{n}^t,$$

where \mathcal{F} is the Discrete Fourier Transform (DFT), and n^t is iid zero-mean complex Gaussian with variance σ^2 .

ullet To estimate $lpha^t$, relate $x^t_{
m meas}$ to registered coordinates:

$$oldsymbol{d}^t = oldsymbol{\mathcal{F}} \, oldsymbol{T}((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) oldsymbol{x}_{\mathsf{reg}}^t + oldsymbol{n}^t.$$

• Define the residual image s^t in measurement coordinates:

$$oldsymbol{s}^t = oldsymbol{x}_{\mathsf{meas}}^t - oldsymbol{T}((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) oldsymbol{x}_{\mathsf{reg}}^{t-1}.$$

 Model s^t as sparse, which is equivalent to using the SAD registration cost function:

$$C(oldsymbol{lpha}) = \|oldsymbol{x}_{\mathsf{meas}}^t - oldsymbol{T}((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}) oldsymbol{x}_{\mathsf{reg}}^{t-1}\|_1.$$

Kalman-like motion filtering

 To enforce smoothness, we model motion {α^t} as a first-order random walk:

$$\alpha^t = \alpha^{t-1} + a^t.$$

where innovations a^t are iid (over time) Normal(0, Q).

- Subtracting the sparse residual image component of the data yield Kalman filter-like measurements of the motion:
- Knowing s^t yields an extended Kalman filter:

Kalman-like motion filtering

• To enforce smoothness, we model motion $\{\alpha^t\}$ as a first-order random walk:

$$\alpha^t = \alpha^{t-1} + a^t.$$

where innovations a^t are iid (over time) Normal(0, Q).

 Subtracting the sparse residual image component of the data yield Kalman filter-like measurements of the motion:

$$oldsymbol{d}^t - \mathcal{F} s^t = \mathcal{F} \, T((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) x_{\mathsf{reg}}^{t-1} + oldsymbol{n}^t.$$

• Knowing s^t yields an extended Kalman filter:

Kalman-like motion filtering

• To enforce smoothness, we model motion $\{\alpha^t\}$ as a first-order random walk:

$$\alpha^t = \alpha^{t-1} + a^t.$$

where innovations a^t are iid (over time) Normal(0, Q).

 Subtracting the sparse residual image component of the data yield Kalman filter-like measurements of the motion:

$$oldsymbol{d}^t - \mathcal{F} s^t = \mathcal{F} \, T((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t) x_{\mathsf{reg}}^{t-1} + oldsymbol{n}^t.$$

• Knowing s^t yields an extended Kalman filter:

$$egin{aligned} \widehat{oldsymbol{lpha}}^t &= rg\min_{oldsymbol{lpha}} rac{1}{2\sigma^2} \| \mathcal{F} \, T((\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}) x_{\mathsf{reg}}^{t-1} - (oldsymbol{d}^t - \mathcal{F} oldsymbol{s}^t) \|_2^2 \ &+ rac{1}{2} \| oldsymbol{lpha} - \widehat{oldsymbol{lpha}}^{t-1} \|_{(oldsymbol{P}^{t|t-1}_{oldsymbol{lpha}}^{t-1})^{-1}}^2, \end{aligned}$$

where $P_{\alpha}^{t|t-1}$ is the filter's prediction error covariance.

Jointly minimize $f(x_{\text{meas}}^t, \alpha^t)$ to estimate motion $\widehat{\alpha}^t$:

$$\begin{split} f(\boldsymbol{x}_{\mathsf{meas}}^t, \boldsymbol{\alpha}^t) &= \frac{1}{2\sigma^2} \| \mathcal{F} \boldsymbol{x}_{\mathsf{meas}}^t - \boldsymbol{d}^t \|_2^2 \\ &+ \lambda \| \boldsymbol{x}_{\mathsf{meas}}^t - \boldsymbol{T}((\widehat{\boldsymbol{\alpha}}^{t-1})^{(-1)}, \boldsymbol{\alpha}^t) \boldsymbol{x}_{\mathsf{reg}}^{t-1} \|_1 \\ &+ \frac{1}{2} \| \boldsymbol{\alpha}^t - \widehat{\boldsymbol{\alpha}}^{t-1} \|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \end{split}$$

Jointly minimize $f(\boldsymbol{x}_{\text{meas}}^t, \boldsymbol{\alpha}^t)$ to estimate motion $\widehat{\boldsymbol{\alpha}}^t$:

$$\begin{split} f(\boldsymbol{x}_{\text{meas}}^t, \boldsymbol{\alpha}^t) &= \frac{1}{2\sigma^2} \| \boldsymbol{\mathcal{F}} \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{d}^t \|_2^2 \\ &+ \lambda \| \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{T}((\widehat{\boldsymbol{\alpha}}^{t-1})^{(-1)}, \boldsymbol{\alpha}^t) \boldsymbol{x}_{\text{reg}}^{t-1} \|_1 \\ &+ \frac{1}{2} \| \boldsymbol{\alpha}^t - \widehat{\boldsymbol{\alpha}}^{t-1} \|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \end{split}$$

- 1. the data fidelity term,
 - ullet equivalent to $rac{1}{2\sigma^2}\|x_{\mathsf{meas}}^t \mathcal{F}^{-1}d^t\|_2^2$ (with unitary DFT);

Jointly minimize $f(\boldsymbol{x}_{\text{meas}}^t, \boldsymbol{\alpha}^t)$ to estimate motion $\widehat{\boldsymbol{\alpha}}^t$:

$$\begin{split} f(\boldsymbol{x}_{\text{meas}}^t, \boldsymbol{\alpha}^t) &= \frac{1}{2\sigma^2} \| \mathcal{F} \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{d}^t \|_2^2 \\ &+ \lambda \| \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{T}((\widehat{\boldsymbol{\alpha}}^{t-1})^{(-1)}, \boldsymbol{\alpha}^t) \boldsymbol{x}_{\text{reg}}^{t-1} \|_1 \\ &+ \frac{1}{2} \| \boldsymbol{\alpha}^t - \widehat{\boldsymbol{\alpha}}^{t-1} \|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \end{split}$$

- 1. the data fidelity term,
 - ullet equivalent to $rac{1}{2\sigma^2}\|m{x}_{\mathsf{meas}}^t m{\mathcal{F}}^{-1}m{d}^t\|_2^2$ (with unitary DFT);
- 2. the registration cost function, which also regularizes $oldsymbol{x}_{\mathsf{meas}}^t;$

Jointly minimize $f(\boldsymbol{x}_{\text{meas}}^t, \boldsymbol{\alpha}^t)$ to estimate motion $\widehat{\boldsymbol{\alpha}}^t$:

$$\begin{split} f(\boldsymbol{x}_{\text{meas}}^t, \boldsymbol{\alpha}^t) &= \frac{1}{2\sigma^2} \| \mathcal{F} \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{d}^t \|_2^2 \\ &+ \lambda \| \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{T}((\widehat{\boldsymbol{\alpha}}^{t-1})^{(-1)}, \boldsymbol{\alpha}^t) \boldsymbol{x}_{\text{reg}}^{t-1} \|_1 \\ &+ \frac{1}{2} \| \boldsymbol{\alpha}^t - \widehat{\boldsymbol{\alpha}}^{t-1} \|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \end{split}$$

- 1. the data fidelity term,
 - ullet equivalent to $rac{1}{2\sigma^2}\|m{x}_{\mathsf{meas}}^t m{\mathcal{F}}^{-1}m{d}^t\|_2^2$ (with unitary DFT);
- 2. the registration cost function, which also regularizes $oldsymbol{x}_{\mathsf{meas}}^t;$
- 3. the Kalman consistency term, promoting smoothness.

Outline

- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

Variable splitting

• The residual image is a natural split variable:

$$oldsymbol{s}^t = oldsymbol{x}_{\mathsf{meas}}^t - oldsymbol{T}(oldsymbol{x}_{\mathsf{reg}}^{t-1}; (\widehat{oldsymbol{lpha}}^{t-1})^{(-1)}, oldsymbol{lpha}^t).$$

• The augmented Lagrangian has scaled dual u, penalty μ :

• The choice of penalty $\mu>0$ controls the overall convergence rate, by trading off minimizing the objective function and satisfying the variable-split constraint.

Variable splitting

• The residual image is a natural split variable:

$$s^t = \boldsymbol{x}_{\text{meas}}^t - \boldsymbol{T}(\boldsymbol{x}_{\text{req}}^{t-1}; (\widehat{\boldsymbol{\alpha}}^{t-1})^{(-1)}, \boldsymbol{\alpha}^t).$$

• The augmented Lagrangian has scaled dual u, penalty μ :

$$\begin{split} AL(\boldsymbol{x}_{\mathsf{meas}}^t, \boldsymbol{\alpha}^t, \boldsymbol{s}^t; \boldsymbol{u}) &= \frac{1}{2\sigma^2} \| \boldsymbol{x}_{\mathsf{meas}}^t - \boldsymbol{\mathcal{F}}^{-1} \boldsymbol{d}^t \|_2^2 + \lambda \| \boldsymbol{s}^t \|_1 \\ &+ \frac{\mu}{2} \| \boldsymbol{x}_{\mathsf{meas}}^t - \boldsymbol{T}((\widehat{\boldsymbol{\alpha}}^{t-1})^{(-1)}, \boldsymbol{\alpha}^t) \boldsymbol{x}_{\mathsf{reg}}^{t-1} - \boldsymbol{s}^t + \boldsymbol{u} \|_2^2 \\ &+ \frac{1}{2} \| \boldsymbol{\alpha}^t - \widehat{\boldsymbol{\alpha}}^{t-1} \|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2. \end{split}$$

• The choice of penalty $\mu>0$ controls the overall convergence rate, by trading off minimizing the objective function and satisfying the variable-split constraint.

- The transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ is nonlinear and nonconvex in α^t .
- Assuming smooth motion, α^t is close to α^{t-1} , so initializing with $\widehat{\alpha}^{t-1}$ likely yields a global minimum.
- Linearize the transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ around $\alpha^t = \widehat{\alpha}^{t-1}$, and define $\widehat{a}^t = \alpha^t \widehat{\alpha}^{t-1}$:

 The resulting approximation to the augmented Lagrangian is convex.

- The transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ is nonlinear and nonconvex in α^t .
- Assuming smooth motion, α^t is close to α^{t-1} , so initializing with $\hat{\alpha}^{t-1}$ likely yields a global minimum.
- Linearize the transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ around $\alpha^t = \widehat{\alpha}^{t-1}$, and define $\widehat{a}^t = \alpha^t \widehat{\alpha}^{t-1}$:

 The resulting approximation to the augmented Lagrangian is convex.

- The transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ is nonlinear and nonconvex in α^t .
- Assuming smooth motion, α^t is close to α^{t-1} , so initializing with $\widehat{\alpha}^{t-1}$ likely yields a global minimum.
- Linearize the transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ around $\alpha^t = \widehat{\alpha}^{t-1}$, and define $\widehat{a}^t = \alpha^t \widehat{\alpha}^{t-1}$:

$$m{T}((\widehat{m{lpha}}^{t-1})^{(-1)}, m{lpha}^t) m{x}_{\mathsf{reg}}^{t-1} pprox m{x}_{\mathsf{reg}}^{t-1} + m{J}_{m{T}} \widehat{m{a}}^t,$$

where J_T is the Jacobian matrix of $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)x_{\text{reg}}^{t-1}$ evaluated at $\alpha^t = \widehat{\alpha}^{t-1}$.

• The resulting approximation to the augmented Lagrangian is convex.

- The transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ is nonlinear and nonconvex in α^t .
- Assuming smooth motion, α^t is close to α^{t-1} , so initializing with $\widehat{\alpha}^{t-1}$ likely yields a global minimum.
- Linearize the transform $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)$ around $\alpha^t = \widehat{\alpha}^{t-1}$, and define $\widehat{a}^t = \alpha^t \widehat{\alpha}^{t-1}$:

$$m{T}((\widehat{m{lpha}}^{t-1})^{(-1)}, m{lpha}^t) m{x}_{\mathsf{reg}}^{t-1} pprox m{x}_{\mathsf{reg}}^{t-1} + m{J}_{m{T}} \widehat{m{a}}^t,$$

where J_T is the Jacobian matrix of $T((\widehat{\alpha}^{t-1})^{(-1)}, \alpha^t)x_{\text{reg}}^{t-1}$ evaluated at $\alpha^t = \widehat{\alpha}^{t-1}$.

• The resulting approximation to the augmented Lagrangian is convex.

Alternating minimization

Use alternating directions method of multipliers $(ADMM)^{1,2}$. Each iteration consists of three steps:

1. Update x_{meas}^t , \hat{a}^t together (least-squares problem):

$$\begin{split} \{\boldsymbol{x}_{\mathsf{meas}}^t, \widehat{\boldsymbol{a}}^t\} \leftarrow & \arg\min_{\boldsymbol{x}, \widehat{\boldsymbol{a}}} \frac{1}{2\sigma^2} \|\boldsymbol{x} - \boldsymbol{\mathcal{F}}^{-1} \boldsymbol{d}^t\|_2^2 + \frac{1}{2} \|\widehat{\boldsymbol{a}}\|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \\ & + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{J}_T \widehat{\boldsymbol{a}} - (\boldsymbol{x}_{\mathsf{reg}}^{t-1} + \boldsymbol{s}^t - \boldsymbol{u})\|_2^2. \end{split}$$

2. Update s^t using shrinkage:

3. Update scaled dual variable:

¹ R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.

² D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.

Alternating minimization

Use alternating directions method of multipliers $(ADMM)^{1,2}$. Each iteration consists of three steps:

1. Update x_{meas}^t , \hat{a}^t together (least-squares problem):

$$\begin{split} \{\boldsymbol{x}_{\mathsf{meas}}^t, \widehat{\boldsymbol{a}}^t\} \leftarrow \arg\min_{\boldsymbol{x}, \widehat{\boldsymbol{a}}} \frac{1}{2\sigma^2} \|\boldsymbol{x} - \boldsymbol{\mathcal{F}}^{-1} \boldsymbol{d}^t\|_2^2 + \frac{1}{2} \|\widehat{\boldsymbol{a}}\|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \\ + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{J}_T \widehat{\boldsymbol{a}} - (\boldsymbol{x}_{\mathsf{reg}}^{t-1} + \boldsymbol{s}^t - \boldsymbol{u})\|_2^2. \end{split}$$

2. Update s^t using shrinkage:

$$\boldsymbol{s}^t \leftarrow \arg\min_{\boldsymbol{s}} \lambda \|\boldsymbol{s}\|_1 + \tfrac{\mu}{2} \|\boldsymbol{s} - (\boldsymbol{x}_{\mathsf{meas}}^t - \boldsymbol{J_T} \widehat{\boldsymbol{a}}^t - \boldsymbol{x}_{\mathsf{reg}}^{t-1} + \boldsymbol{u})\|_2^2.$$

3. Update scaled dual variable:

¹ R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.

² D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.

Alternating minimization

Use alternating directions method of multipliers $(ADMM)^{1,2}$. Each iteration consists of three steps:

1. Update x_{meas}^t , \hat{a}^t together (least-squares problem):

$$\begin{split} \{\boldsymbol{x}_{\mathsf{meas}}^t, \widehat{\boldsymbol{a}}^t\} \leftarrow \arg\min_{\boldsymbol{x}, \widehat{\boldsymbol{a}}} \frac{1}{2\sigma^2} \|\boldsymbol{x} - \boldsymbol{\mathcal{F}}^{-1} \boldsymbol{d}^t\|_2^2 + \frac{1}{2} \|\widehat{\boldsymbol{a}}\|_{(\boldsymbol{P}_{\boldsymbol{\alpha}}^{t|t-1})^{-1}}^2 \\ + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{J}_T \widehat{\boldsymbol{a}} - (\boldsymbol{x}_{\mathsf{reg}}^{t-1} + \boldsymbol{s}^t - \boldsymbol{u})\|_2^2. \end{split}$$

2. Update s^t using shrinkage:

$$oldsymbol{s}^t \leftarrow rg\min_{oldsymbol{s}} \lambda \|oldsymbol{s}\|_1 + rac{\mu}{2} \|oldsymbol{s} - (oldsymbol{x}_{\mathsf{meas}}^t - oldsymbol{J}_T \widehat{oldsymbol{a}}^t - oldsymbol{x}_{\mathsf{reg}}^{t-1} + oldsymbol{u})\|_2^2.$$

3. Update scaled dual variable:

$$oldsymbol{u} \leftarrow oldsymbol{u} + (oldsymbol{x}_{\mathsf{meas}}^t - oldsymbol{J_T} \widehat{oldsymbol{a}}^t - oldsymbol{x}_{\mathsf{reg}}^{t-1} - oldsymbol{s}^t).$$

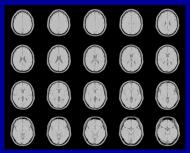
¹ R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.

² D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.

Outline

- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

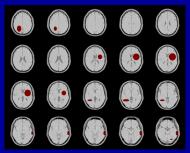
- T_2^* -weighted Brainweb¹ phantom (1 × 1 × 3 mm resolution)
- Simulated activations, head motion on high-resolution phantom for 200 frames (TR = 1 s)
- Sampled k-space for 16+4 slices at $4\times4\times3$ mm resolution (64×64 samples/slice) with 40 dB SNR



16 + 4 high-resolution slices

¹ RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.

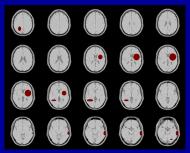
- T_2^* -weighted Brainweb¹ phantom (1 × 1 × 3 mm resolution)
- Simulated activations, head motion on high-resolution phantom for 200 frames (TR = 1 s)
- Sampled k-space for 16+4 slices at $4\times4\times3$ mm resolution (64×64 samples/slice) with 40 dB SNR



High-resolution slices + activations (red)

¹ RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.

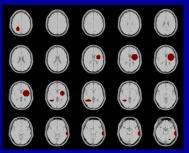
- T_2^* -weighted Brainweb¹ phantom (1 × 1 × 3 mm resolution)
- Simulated activations, head motion on high-resolution phantom for 200 frames (TR = 1 s)
- Sampled k-space for 16+4 slices at $4\times4\times3$ mm resolution (64×64 samples/slice) with 40 dB SNR



High-resolution slices + motion

¹ RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.

- T_2^* -weighted Brainweb¹ phantom (1 × 1 × 3 mm resolution)
- Simulated activations, head motion on high-resolution phantom for 200 frames (TR = 1 s)
- Sampled k-space for 16+4 slices at $4\times4\times3$ mm resolution (64×64 samples/slice) with 40 dB SNR

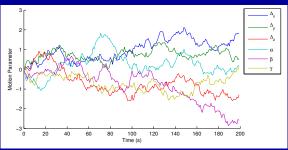


 $4 \times 4 \times 3$ mm slices + motion

¹ RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.

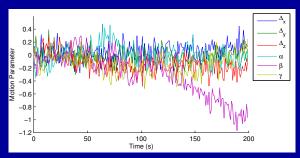
Simulated motion

- Rigid-body motion is described using six parameters:
 - 1. Δ_x : right-to-left translation (mm)
 - 2. Δ_n : anterior-to-posterior translation (mm)
 - 3. Δ_z : superior-to-inferior translation (mm)
 - 4. α : axial (xy-)plane rotation (degrees)
 - 5. β : coronal (xz-)plane rotation (degrees)
 - 6. γ : sagittal (yz-)plane rotation (degrees)



Simulated rigid-body motion

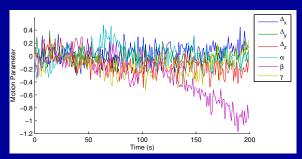
Prospective motion correction



Residual motion after prospective correction

- Residual motion is substantially reduced: Uncorrected: tx = 1.6 ± 0.53 mm, rot = 1.4 ± 0.68 deg. Residual: tx = 0.25 ± 0.10 mm, rot = 0.45 ± 0.11 deg.
- Retrospective registration can mitigate this residual motion.

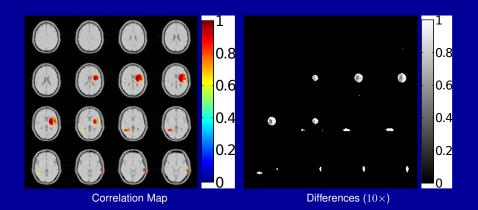
Prospective motion correction



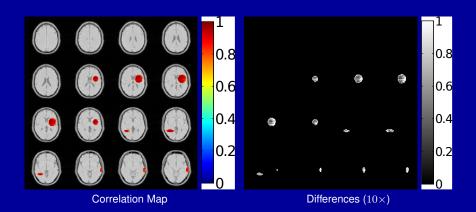
Residual motion after prospective correction

- Residual motion is substantially reduced: Uncorrected: tx = 1.6 ± 0.53 mm, rot = 1.4 ± 0.68 deg. Residual: tx = 0.25 ± 0.10 mm, rot = 0.45 ± 0.11 deg.
- Retrospective registration can mitigate this residual motion.

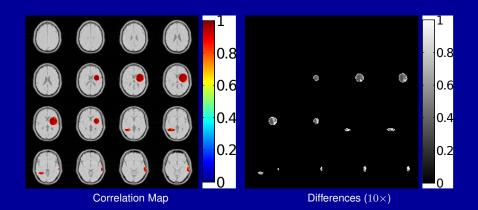
Time-series correlation maps – no correction



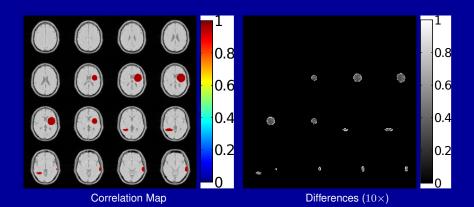
Time-series correlation maps – retrospective



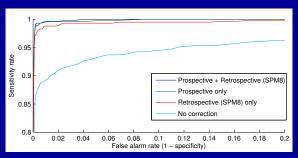
Time-series correlation maps – prospective



Time-series correlation maps – both corrections



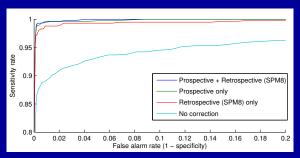
Performance analysis of activation maps



Receiver operating characteristic (ROC) curves for correlation analysis

- Prospective correction improves sensitivity and specificity
- Spatial interpolation may be responsible for reduced sensitivity with just retrospective correction

Performance analysis of activation maps



Receiver operating characteristic (ROC) curves for correlation analysis

- Prospective correction improves sensitivity and specificity
- Spatial interpolation may be responsible for reduced sensitivity with just retrospective correction

- Estimate σ^2 using sample variance of noise-only data.
- Calibrate for 2-D EPI Nyquist ghost correction¹:

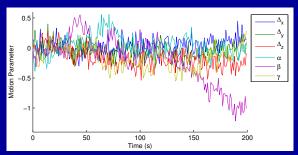
• Estimate the innovation covariance *Q*:

- Estimate σ^2 using sample variance of noise-only data.
- Calibrate for 2-D EPI Nyquist ghost correction¹:
 - use 2-D reference scans (forwards & backwards)
 - transform linear terms for prospective correction
- Estimate the innovation covariance Q:

¹ N Chen and AM Wyrwicz, Mag. Res. Med., 51(6), 2004.

- Estimate σ^2 using sample variance of noise-only data.
- Calibrate for 2-D EPI Nyquist ghost correction¹:
 - use 2-D reference scans (forwards & backwards)
 - transform linear terms for prospective correction
- Estimate the innovation covariance Q:
 - initialize to a large value
 - update the sample covariance using estimated \hat{a} 's
 - since Q is time-varying, update using just last ten frames

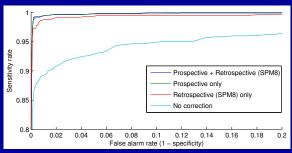
¹ N Chen and AM Wyrwicz, Mag. Res. Med., 51(6), 2004.



Residual motion after prospective correction

- Residual motion is nearly the same as before: Uncorrected: tx = 1.6 ± 0.53 mm, rot = 1.4 ± 0.68 deg. Residual: tx = 0.28 ± 0.11 mm, rot = 0.47 ± 0.26 deg.
- Prospective correction remains effective at improving sensitivity, specificity.

Simulation with unknown parameters

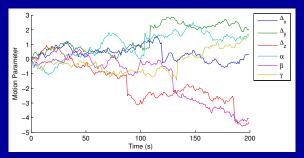


Receiver operating characteristic (ROC) curves for correlation analysis

- Residual motion is nearly the same as before: Uncorrected: tx = 1.6 ± 0.53 mm, rot = 1.4 ± 0.68 deg. Residual: tx = 0.28 ± 0.11 mm, rot = 0.47 ± 0.26 deg.
- Prospective correction remains effective at improving sensitivity, specificity.

Correcting for impulsive motion

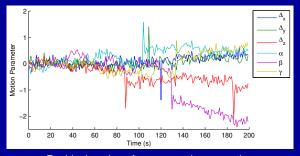
- Impulsive motion is significant over a short duration.
- I generated 1 s impulses of ± 1.5 mm/degrees per second occurring every 100 s, on average.
- The residual motion effects are mainly short-lived.
- The improvement in sensitivity of prospective correction remains significant.



True motion including simulated impulses

Correcting for impulsive motion

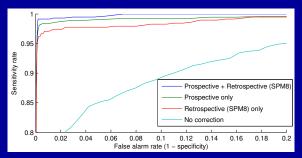
- Impulsive motion is significant over a short duration.
- I generated 1 s impulses of ± 1.5 mm/degrees per second occurring every 100 s, on average.
- The residual motion effects are mainly short-lived.
- The improvement in sensitivity of prospective correction remains significant.



Residual motion after prospective correction

Correcting for impulsive motion

- Impulsive motion is significant over a short duration.
- I generated 1 s impulses of ± 1.5 mm/degrees per second occurring every 100 s, on average.
- The residual motion effects are mainly short-lived.
- The improvement in sensitivity of prospective correction remains significant.



Receiver operating characteristic (ROC) curves for correlation analysis

Outline

- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

- The residual motion is much smaller than absolute motion.
- Correlation maps show fewer errors and mis-classifications.
- The proposed method is more statistically robust than standard retrospective registration.
- The algorithm remains effective when noise/innovation statistics are unknown or impulsive motion is added.
- · Limitations include:

- The residual motion is much smaller than absolute motion.
- Correlation maps show fewer errors and mis-classifications.
- The proposed method is more statistically robust than standard retrospective registration.
- The algorithm remains effective when noise/innovation statistics are unknown or impulsive motion is added.
- · Limitations include:

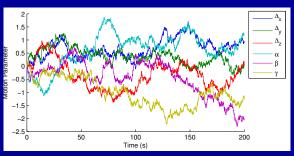
- The residual motion is much smaller than absolute motion.
- Correlation maps show fewer errors and mis-classifications.
- The proposed method is more statistically robust than standard retrospective registration.
- The algorithm remains effective when noise/innovation statistics are unknown or impulsive motion is added.
- · Limitations include:

- The residual motion is much smaller than absolute motion.
- Correlation maps show fewer errors and mis-classifications.
- The proposed method is more statistically robust than standard retrospective registration.
- The algorithm remains effective when noise/innovation statistics are unknown or impulsive motion is added.
- · Limitations include:

- The residual motion is much smaller than absolute motion.
- Correlation maps show fewer errors and mis-classifications.
- The proposed method is more statistically robust than standard retrospective registration.
- The algorithm remains effective when noise/innovation statistics are unknown or impulsive motion is added.
- Limitations include:
 - motion assumed constant over a TR
 - ignored other time-varying effects such as scanner (B₀)
 drift, susceptibility variations, and physiological signals

- Motion will be different for each slice in a slice-by-slice acquisition.
- Prospective correction reduces residual per-slice motion:

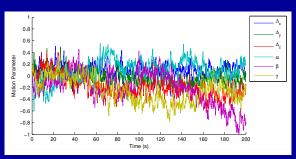
```
Uncorrected: tx = 1.1 \pm 0.27 mm, rot = 1.5 \pm 0.64 deg. Residual: tx = 0.30 \pm 0.11 mm, rot = 0.47 \pm 0.20 deg.
```



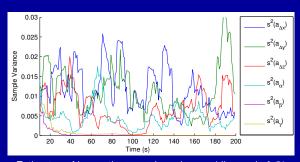
True slice-by-slice motion

- Motion will be different for each slice in a slice-by-slice acquisition.
- Prospective correction reduces residual per-slice motion:

Uncorrected: tx = 1.1 ± 0.27 mm, rot = 1.5 ± 0.64 deg. Residual: tx = 0.30 ± 0.11 mm, rot = 0.47 ± 0.20 deg.

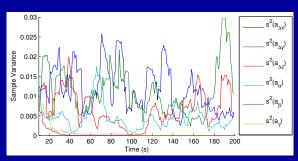


Residual motion after prospective correction (known Q)



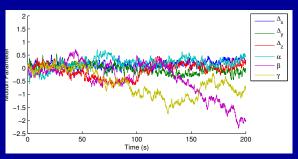
Estimates of innovation sample variances (diagonal of Q)

- Estimates of Q are less stable with slice-by-slice motion.
- Innovation variances for out-of-plane rotations β , $\gamma \downarrow 0$.
- In turn, $(P_{\alpha}^{t|t-1})^{-1}$ becomes arbitrarily large, yielding motion estimates mostly ignoring the data.



Estimates of innovation sample variances (diagonal of Q)

- Estimates of Q are less stable with slice-by-slice motion.
- Innovation variances for out-of-plane rotations β , $\gamma \downarrow 0$.
- In turn, $(P_{\alpha}^{t|t-1})^{-1}$ becomes arbitrarily large, yielding motion estimates mostly ignoring the data.



Residual motion after prospective correction (estimated Q)

- Estimates of Q are less stable with slice-by-slice motion.
- Innovation variances for out-of-plane rotations β , $\gamma \downarrow 0$.
- In turn, $(P_{\alpha}^{t|t-1})^{-1}$ becomes arbitrarily large, yielding motion estimates mostly ignoring the data.

- Enforcing a minimum threshold on the innovation sample variances would mitigate the effect of poor estimates of Q on future motion estimates.
- Alternatively, we can extend our Kalman filter model to account for slice-by-slice motion:

$$egin{bmatrix} egin{aligned} egi$$

- Enforcing a minimum threshold on the innovation sample variances would mitigate the effect of poor estimates of Q on future motion estimates.
- Alternatively, we can extend our Kalman filter model to account for slice-by-slice motion:

$$egin{bmatrix} egin{aligned} egi$$

- Other time-varying components of the BOLD signal include:
 - scanner drift, which has a global effect on T_2^* ,
 - breathing-induced global modulation of the main field, T_2^* ,
 - and cardiac pulsatility, which varies blood flow, especially near the cerebral arteries and ventricles.
- The global effects are spatially smooth.
- Introducing a wavelet transform can isolate drift and respiratory changes to the approximation coefficients.
- We propose performing registration using just the detail coefficients.

- Other time-varying components of the BOLD signal include:
 - scanner drift, which has a global effect on T_2^* ,
 - breathing-induced global modulation of the main field, T_2^* ,
 - and cardiac pulsatility, which varies blood flow, especially near the cerebral arteries and ventricles.
- The global effects are spatially smooth.
- Introducing a wavelet transform can isolate drift and respiratory changes to the approximation coefficients.
- We propose performing registration using just the detail coefficients.

- Other time-varying components of the BOLD signal include:
 - scanner drift, which has a global effect on T_2^* ,
 - ullet breathing-induced global modulation of the main field, T_2^* ,
 - and cardiac pulsatility, which varies blood flow, especially near the cerebral arteries and ventricles.
- The global effects are spatially smooth.
- Introducing a wavelet transform can isolate drift and respiratory changes to the approximation coefficients.
- We propose performing registration using just the detail coefficients.

- Other time-varying components of the BOLD signal include:
 - scanner drift, which has a global effect on T_2^* ,
 - breathing-induced global modulation of the main field, T_2^* ,
 - and cardiac pulsatility, which varies blood flow, especially near the cerebral arteries and ventricles.
- The global effects are spatially smooth.
- Introducing a wavelet transform can isolate drift and respiratory changes to the approximation coefficients.
- We propose performing registration using just the detail coefficients.

- Other time-varying components of the BOLD signal include:
 - scanner drift, which has a global effect on T_2^* ,
 - ullet breathing-induced global modulation of the main field, T_2^* ,
 - and cardiac pulsatility, which varies blood flow, especially near the cerebral arteries and ventricles.
- The global effects are spatially smooth.
- Introducing a wavelet transform can isolate drift and respiratory changes to the approximation coefficients.
- We propose performing registration using just the detail coefficients.

- Other time-varying components of the BOLD signal include:
 - scanner drift, which has a global effect on T_2^* ,
 - breathing-induced global modulation of the main field, T_2^* ,
 - and cardiac pulsatility, which varies blood flow, especially near the cerebral arteries and ventricles.
- The global effects are spatially smooth.
- Introducing a wavelet transform can isolate drift and respiratory changes to the approximation coefficients.
- We propose performing registration using just the detail coefficients.

Outline

- Magnetic Resonance Imaging
- Functional MRI
- Head Motion in fMRI
- Proposed Method for Prospective Correction
- Real Time Implementation
- Simulation Results
- Conclusions and Future Work
- Summary

- Functional MRI tracks brain function during tasks by using the signal variation generated by metabolizing hemoglobin.
- Prospective correction can improve statistical sensitivity of fMRI time series acquired in the presence of head motion.
- The proposed method outperforms retrospective registration in simulated data, even with impulsive motion and unknown model parameters.
- Future work will make the proposed method robust to inter-slice motion and global image time variations.
- I am also preparing to evaluate my proposed method in real fMRI studies.

- Functional MRI tracks brain function during tasks by using the signal variation generated by metabolizing hemoglobin.
- Prospective correction can improve statistical sensitivity of fMRI time series acquired in the presence of head motion.
- The proposed method outperforms retrospective registration in simulated data, even with impulsive motion and unknown model parameters.
- Future work will make the proposed method robust to inter-slice motion and global image time variations.
- I am also preparing to evaluate my proposed method in real fMRI studies.

- Functional MRI tracks brain function during tasks by using the signal variation generated by metabolizing hemoglobin.
- Prospective correction can improve statistical sensitivity of fMRI time series acquired in the presence of head motion.
- The proposed method outperforms retrospective registration in simulated data, even with impulsive motion and unknown model parameters.
- Future work will make the proposed method robust to inter-slice motion and global image time variations.
- I am also preparing to evaluate my proposed method in real fMRI studies.

- Functional MRI tracks brain function during tasks by using the signal variation generated by metabolizing hemoglobin.
- Prospective correction can improve statistical sensitivity of fMRI time series acquired in the presence of head motion.
- The proposed method outperforms retrospective registration in simulated data, even with impulsive motion and unknown model parameters.
- Future work will make the proposed method robust to inter-slice motion and global image time variations.
- I am also preparing to evaluate my proposed method in real fMRI studies.

- Functional MRI tracks brain function during tasks by using the signal variation generated by metabolizing hemoglobin.
- Prospective correction can improve statistical sensitivity of fMRI time series acquired in the presence of head motion.
- The proposed method outperforms retrospective registration in simulated data, even with impulsive motion and unknown model parameters.
- Future work will make the proposed method robust to inter-slice motion and global image time variations.
- I am also preparing to evaluate my proposed method in real fMRI studies.

Questions?

Thank you for your attention.

Acknowledgments:

- Jeff Fessler and Doug Noll
- NIH F32 EB015914 and P01 CA087634