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Motivation

e Head motion reduces the sensitivity of functional magnetic
resonance imaging (fMRI) experiments.

e | propose a motion compensation method that uses just
the data collected during a conventional fMRI.
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& Magnetic Resonance Imaging
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What is MRI?

MRI Scanner Axial brain images show different soft tissue contrast.

¢ Magnetic resonance imaging (MRI) provides excellent soft
tissue contrast.

¢ Densities and magnetic properties of particles tell us a lot
about organ structure and composition.

e Dynamic/functional MRI time series capture organ function.
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What does MRI measure?

Certain particles have magnetic moments (spins), which
tend to align with a strong external magnetic field By.

When excited by a radiofrequency (RF) pulse, these spins
tip away from the main field.

They precess at the Larmor frequency ~ By, proportional to
the main field, as they return to equilibrium (relax).

These spins induce an emf in a nearby receiver loop coil.

[
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Generating an MR image

The received signal superimposes contributions from all
the precessing spins in the excited slice S:

s(t) = e~I7Bot / /S m(z, y) d dy.

Gradient coils control additional spatially varying magnetic
fields G, G, to acquire images: B, = By + G,z + Gyy.
The received signal is called k-space:

eIBotg(4) — // m(z, y)e=i1Us GeatGy(@ydr) g g0,
s

By adjusting the gradients, we effectively sample k-space.

Applying z-gradient G, during excitation selects a slice.
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Accelerating MR imaging

e The sampling process is sequential, relatively slow.
e We must wait between excitations for the signal to relax.

e To accelerate imaging:

increase sample spacing, causing aliasing,

reduce the sampling extent, decreasing resolution,
sample half of k-space, assuming a real-valued image, or
traverse more of k-space during each shot
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Contrast and relaxation

e The signal model assumed m(z,y) is constant over time.

e However, the spin magnitude varies over time due to
relaxation:

e longitudinal component recovers (x 1 — e~*/71), and
e transverse component decays (x e~t/72)
¢ Signal dephasing due to local field inhomogeneity also
manifests as transverse relaxation (time constant 73):
o total transverse relaxation rate 1/75 = 1/T5 + 1/T

¢ Repetition time Tp is time between excitations; shorter T
= greater T; contrast.

e Echo time T is time between excitation and sampling
center of k-space; longer Tr = greater 7'y contrast.
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® Functional MRI

CSP Seminar — Fall 2013



The BOLD effect for fMRI

e Neuronal impulses are too short, weak to register using
conventional MRI.

e Instead, indirectly measure activity by tracking blood
oxygen metabolism.
¢ Hemoglobin has two states:
¢ with bound oxygen is diamagnetic, and
o without bound oxygen is paramagnetic (1 1/75)
e BOLD contrast results from increased blood flow, and
increased metabolism:

¢ 1 blood flow = | deoxygenated blood = | 1/T%, and
¢ 1 metabolism = 1 deoxygenated blood = 1 1/T%
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Modeling the BOLD signal
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Activations from block design convolved with canonical hrf from SPM8?!

e The functional MRI process is modeled as an LTI system
with an impulse response known as the hemodynamic
response function (hrf).

e In reality, the hrf varies spatially and over time.
¢ |t changes from subject-to-subject and scan-to-scan.
e Software like SPM8! use basis functions for the hrf.

I http://www.fil.ion.ucl.ac.uk/spm/
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Functional MRI analysis

¢ To identify activated brain regions, we correlate the ideal
time series activations against the time series for each
voxel in the brain.

e This analysis yields the general linear model (GLM):

X =61 8 re

data error

SN—— )
regressors weights

e Software packages like SPM8 implement this analysis and
provide visualization tools.
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Pre-processing fMRI data

Conventionally, data are pre-processed in the following ways:

1. Slice-by-slice acquisitions are time-shifted to account for
different slice timings.

2. Head motion is estimated and used to register volumes to
the first/middle volume of the time series.

3. Time series can be realigned to a separate reference
volume for visualization purposes.

4. Volumes are normalized to a fixed coordinate system (e.g.,
Tailarach) in group studies.

5. Data can be smoothed/blurred using a Gaussian kernel to
reduce noise, cross-subject variance.
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® Head Motion in fMRI
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Head motion in fMRI

e Head motion causes several problems in brain imaging:

¢ Misaligned time series have inconsistent brain coordinates.
¢ Motion distorts the main field and alters the dephasing rate.

¢ Nonuniform excitation from inter-slice motion introduces
“spin history” effects.

Simulated brain with motion.
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Head motion in fMRI

e Head motion causes several problems in brain imaging:

¢ Misaligned time series have inconsistent brain coordinates.
¢ Motion distorts the main field and alters the dephasing rate.

¢ Nonuniform excitation from inter-slice motion introduces
“spin history” effects.

Figure 9in !
URL: http://dx.doi.org/10.1002/mrm.24314

Head motion causes field map distortions™.

1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.

CSP Seminar — Fall 2013

15


http://dx.doi.org/10.1002/mrm.24314

Head motion in fMRI

e Head motion causes several problems in brain imaging:

¢ Misaligned time series have inconsistent brain coordinates.
¢ Motion distorts the main field and alters the dephasing rate.

¢ Nonuniform excitation from inter-slice motion introduces
“spin history” effects.

Slice selection without (left) and with (right) motion.
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Head motion correction

Retrospective image registration/interpolation.

¢ Retrospective correction (post-scan):
e registration: spatial interpolation of reconstructed images
¢ motion estimates as nuisance regressors in the GLM

e Prospective correction (during the scan):

o slice prescription, k-space trajectory adjusted between
frames or slices
e corrupted data re-scanned (rare in fMRI)
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Prospective correction methods

¢ Retrospective methods are suboptimal.
e registration: interpolation smears activations across voxels
e regression: activations mistaken for task-correlated motion
¢ Prospective motion estimation methods include:

o external tracking: markers, cameras, etc.
e navigational techniques using MRI data
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o external tracking: markers, cameras, etc.
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Figure 2bin *
URL: http://dx.doi.org/10.1002/mrm.24314

Methods for prospective motion estimation®.
1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.
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Navigation

¢ Image-based navigators align the MR time series images.

¢ Fast k-space navigators have static contrast, versus
time-varying BOLD contrast found in fMRI data.

o With multi-channel receivers, relative intensity changes in
received signals (called FID signals) can signify motion.

Figure 2ain *
URL: http://dx.doi.org/10.1002/mrm.24314

K-space, image-space, and FID navigator methods?.

1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.
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Outline

® Proposed Method for Prospective Correction
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Related work

e Image-space navigators were used with a linear motion
model®.

¢ Two-dimensional k-space navigators were used with an
extended Kalman filter?.

e Sparse residual models were employed in retrospective
joint reconstruction/registration methods3.

1 S Thesen et al., Mag. Res. Med., 44(3), 2000.
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Related work

Image-space navigators were used with a linear motion
model'.

Two-dimensional k-space navigators were used with an
extended Kalman filter?.

Sparse residual models were employed in retrospective
joint reconstruction/registration methods?*.

| propose using image-space navigators and combining a
sparse residual model with Kalman-like filtering®.

1 S Thesen et al., Mag. Res. Med., 44(3), 2000.

2 N White et al., Mag. Res. Med., 63(1), 2010.

3 H Jung et al., Mag. Res. Med., 61(1), 2009.

4 MS Asif et al., Mag. Res. Med., in press.

5 DSW et al., Proc. SPIE Wavelets and Sparsity XV, in press.
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Coordinate systems

Consider images xt\tzo,._,,NF_l in 3 coordinate systems:
1. z! has the same physical coordinate system for all ¢.

2. aley = T((a@")=V)a} is registered to «° with estimate &".

3. Measure zt.,c = T((a')~V)x} prospectively corrected
using the previous frame’s motion.

t=0 Fixed Registered Measured
I/\I
Y !
R t=1
t=2
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Coordinate systems

Consider images xt\tzo,._,,NF_l in 3 coordinate systems:
1. z! has the same physical coordinate system for all ¢.
e true motion a!: rigid head motion from frame 0 to ¢
2. xley = T((a@")=V)a} is registered to «° with estimate &".
e a1 is the inverse motion of «
e T(ap,...,a1)x transforms a by motions ay, ..., a;,

3. Measure zt.,c = T((a')~V)x} prospectively corrected
using the previous frame’s motion.

t=0 Fixed Registered Measured
b / ! b \ /
A =1 R
:’/ﬁ\j I |
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Coordinate systems

Consider images xt\tzo,._,,NF_l in 3 coordinate systems:
1. z! has the same physical coordinate system for all ¢.
e true motion a!: rigid head motion from frame 0 to ¢
2. aley = T((a@")V)a} is registered to «° with estimate &".
e a1 is the inverse motion of «
e T(ap,...,a1)x transforms a by motions ay, ..., a;,

3. Measure zt.,c = T((a')~V)x} prospectively corrected
using the previous frame’s motion.

t=0 Fixed Registered Measured
" 1 wW R .4
‘J/ﬂ“\} Iml li/—\l
b ! / !
t—9 A -
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Measurement model

Sample k-space in measurement coordinates:
d' = .’Fm?neas +nt,
where F is the Discrete Fourier Transform (DFT), and

n' is iid zero-mean complex Gaussian
with variance o2.

To estimate o, relate x!,., to registered coordinates:

Model s? as sparse, which is equivalent to using the SAD
registration cost function:

Define the residual image s! in measurement coordinates:
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n' is iid zero-mean complex Gaussian
with variance o2.

To estimate o, relate x!,., to registered coordinates:
d' = FT((@ "), o)zl + n'.

e T((atil)(_l)a at)wge_gl-

Model s? as sparse, which is equivalent to using the SAD
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Measurement model

Sample k-space in measurement coordinates:
d' = .’Fm?neas +nt,
where F is the Discrete Fourier Transform (DFT), and

n' is iid zero-mean complex Gaussian
with variance o2.

To estimate o, relate x!,., to registered coordinates:
d' = j:T((At 1)( 1)7at)aclrteg +n'.
Define the residual image s! in measurement coordinates:

e T((At 1)( Y » & )wlgeg1

Model s’ as sparse, which is equivalent to using the SAD
registration cost function:

Cla) = Hxlrtneas - T((atil)(_l) a)wregl”l
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Kalman-like motion filtering

e To enforce smoothness, we model motion {a!} as a

first-order random walk:
at — atfl 4 (.lt,
where innovations a' are iid (over time) Normal(0, Q).

e Subtracting the sparse residual image component of the

data yield Kalman filter-like measurements of the motion:

e Knowing s' yields an extended Kalman filter:
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Kalman-like motion filtering

e To enforce smoothness, we model motion {a!} as a

first-order random walk:
t

ol =o't +al,
where innovations a'® are iid (over time) Normal(0, Q).
e Subtracting the sparse residual image component of the
data yield Kalman filter-like measurements of the motion:
d'— Fs' = FT((@ "), o )aleg +n'.
e Knowing s’ yields an extended Kalman filter:

&' = argmin ;5 || FT((& )Y, a)aley — (d — Fs)|3
(o2

1 ~t—12
+§”a_a ||(P2|Lt—1)71?
where Pf;)lf_1 is the filter’s prediction error covariance.
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Joint registration and reconstruction

Jointly minimize f(xkq,s, ') to estimate motion a':

f(wlrtneasv at) = #”-’Fw?fkneas - dt”%
il
+ AHm?neas - T((at )( 2 & )mreglul
a'” 1”

+%Hat t|t 1) 1

The objective function has three parts.
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Joint registration and reconstruction

Jointly minimize f(x!.s, ') to estimate motion &'

f(wzrtneasvat) = #H-’Fmﬁneas - dtH%

+ AHm?neas - T((a‘t_l)( 2 , & )mreglul

t at—l”Z

+ %Ha (Ptolltfl)—l

The objective function has three parts:
1. the data fidelity term,

o equivalent to 51z ||@feas — F 'd’[|3 (with unitary DFT);
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Joint registration and reconstruction

Jointly minimize f(x!.s, ') to estimate motion &'

f(wzrtneasv at) = ﬁ”j:wlrsneas - dt”%

+ M| @heas = T((@ )Y, @) zleg |1
?Pﬁl“l)—l
The objective function has three parts:
1. the data fidelity term,
o equivalent to 51z ||@feas — F 'd’[|3 (with unitary DFT);
2. the registration cost function, which also regularizes x},q.;

+3lla’ — a7
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Joint registration and reconstruction

Jointly minimize f(x!.s, ') to estimate motion &'

f(wzrtneasv at) = ﬁ”j:wlrsneas - dt”%
+ AHmﬁneas - T((at_l)(_ ), )mregIHl

t at—lHQ

+ %Ha (P2t71)71

The objective function has three parts:
1. the data fidelity term,
o equivalent to 51z ||@feas — F 'd’[|3 (with unitary DFT);
2. the registration cost function, which also regularizes x},q.;
3. the Kalman consistency term, promoting smoothness.
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Outline

® Real Time Implementation
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Variable splitting

e The residual image is a natural split variable:

8 = Thoas — T(wlrseigh (@ Hhah).

e The augmented Lagrangian has scaled dual u, penalty pu:

¢ The choice of penalty i > 0 controls the overall
convergence rate, by trading off minimizing the objective
function and satisfying the variable-split constraint.
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Variable splitting

e The residual image is a natural split variable:
8 = Thoas — T(w$e917 (@ Hhah).
e The augmented Lagrangian has scaled dual u, penalty p:
AL(xf‘neasaat s"; su) = 202||mmeas _ldt||%+)‘”3t||1
+53 meeas - T((At 1)( D O‘t)wﬁeg1 —s'+ UH%
~t—1

2||a -« H(Pt\t 1

¢ The choice of penalty i > 0 controls the overall
convergence rate, by trading off minimizing the objective
function and satisfying the variable-split constraint.
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Linearizing the motion transform

e The transform T((At H(=D at) is nonlinear and
nonconvex in o,

e Assuming smooth motion, a! is close to a1, so
initializing with &'~ likely yields a global minimum.

e Linearize the transform T((At HED, at) around

a! = &'~ !, and define @’ = ot — &'~

e The resulting approximation to the augmented Lagrangian
is convex.
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Linearizing the motion transform

e The transform T((At H=D at) is nonlinear and
nonconvex in o,

e Assuming smooth motion, a! is close to a1, so
initializing with &'~ likely yields a global minimum.

e Linearize the transform T((At HED, at) around

a! = &'~ !, and define @’ = ot — &'~

T((atil)( 1) )wreg & xreg + Jra'
where Jr is the Jacobian matrix of T((&' "), a)z{eq

evaluated at o = &' L.

e The resulting approximation to the augmented Lagrangian
is convex.
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Alternating minimization

Use alternating directions method of multipliers (ADMM)!2.
Each iteration consists of three steps:

1. Update z/,,s, @' together (least-squares problem):
P~ : —1 2 ~112
{neas, @'} argmin 53z |l — F 1 + 3l
2

+ bl — Jra — (zleg + 5" — u)|l3.

2. Update s’ using shrinkage:

3. Update scaled dual variable:

1 R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.
2 D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.
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Alternating minimization

Use alternating directions method of multipliers (ADMM)!2.
Each iteration consists of three steps:

1. Update z/,,s, @' together (least-squares problem):

{@heas: @'}  argmin gyl — F1d3 + §l2p0
x,a a
i~ -1 2
+ %”m —Jra— (m’;eg +s' - u)l|3.
2. Update s’ using shrinkage:
t

s+ argmin Al|s||; + %HS — (e — JTat - m?e_gl + u)||%
S

3. Update scaled dual variable:

1 R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.
2 D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.

CSP Seminar — Fall 2013

28



Alternating minimization

Use alternating directions method of multipliers (ADMM)!2.
Each iteration consists of three steps:

1. Update z/,,s, @' together (least-squares problem):
P~ : —1 2 ~112
{heas: @'} ¢ argmin glzlle — F~d' I + Fl1al7 s,
x,a a
+§lle — Jra — (zr5g + 5" —w)|3.

2. Update s’ using shrinkage:
t

s+ argmin Al|s||; + %HS — (e — JTat - mﬁe_gl + u)||%
S

3. Update scaled dual variable:

t ~t t—1 t
U U+ (Teas — JTC — Treg —s").

1 R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.
2 D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.
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Outline

o Simulation Results
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Experimental design

e T;-weighted Brainweb! phantom (1 x 1 x 3 mm resolution)

e Simulated activations, head motion on high-resolution
phantom for 200 frames (TR =1 s)

e Sampled k-space for 16 + 4 slices at 4 x 4 x 3 mm
resolution (64 x 64 samples/slice) with 40 dB SNR

060000
006000
0006066
06666

16 + 4 high-resolution slices
1 RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.
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Experimental design

e T;-weighted Brainweb® phantom (1 x 1 x 3 mm resolution)

e Simulated activations, head motion on high-resolution
phantom for 200 frames (TR =1 s)

e Sampled k-space for 16 + 4 slices at 4 x 4 x 3 mm
resolution (64 x 64 samples/slice) with 40 dB SNR

50000
006066
©C6696
6escee

High-resolution slices + activations (red)
1 RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.
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Experimental design

e T;-weighted Brainweb® phantom (1 x 1 x 3 mm resolution)

e Simulated activations, head motion on high-resolution
phantom for 200 frames (TR =1 s)

e Sampled k-space for 16 + 4 slices at 4 x 4 x 3 mm
resolution (64 x 64 samples/slice) with 40 dB SNR

00000
00666
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High-resolution slices + motion
1 RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.
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Experimental design

e T;-weighted Brainweb® phantom (1 x 1 x 3 mm resolution)

e Simulated activations, head motion on high-resolution
phantom for 200 frames (TR =1 s)

e Sampled k-space for 16 + 4 slices at 4 x 4 x 3 mm
resolution (64 x 64 samples/slice) with 40 dB SNR

0000

@00
@ese
L L X
9o
00

4 X 4 x 3 mm slices + motion
1 RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.
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Simulated motion

¢ Rigid-body motion is described using six parameters:
A, right-to-left translation (mm)

2. A,: anterior-to-posterior translation (mm)

3. A.: superior-to-inferior translation (mm)

4. «: axial (xy-)plane rotation (degrees)
5
6

—_

. p: coronal (xz-)plane rotation (degrees)
. ~: sagittal (yz-)plane rotation (degrees)

Motion Parameter

60 80 100 120 140 160
Time (s)

Simulated rigid-body motion
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Prospective motion correction

o
©
£
g
©
[
S
3
=

Time (s)

Residual motion after prospective correction

¢ Residual motion is substantially reduced:
Uncorrected: tx = 1.6 + 0.53 mm, rot = 1.4 £+ 0.68 deg.
Residual: tx = 0.25 £ 0.10 mm, rot = 0.45 + 0.11 deg.

¢ Retrospective registration can mitigate this residual motion.

CSP Seminar — Fall 2013

32



Prospective motion correction

o
©
£
g
©
[
S
3
=

Time (s)

Residual motion after prospective correction

¢ Residual motion is substantially reduced:
Uncorrected: tx = 1.6 + 0.53 mm, rot = 1.4 £+ 0.68 deg.
Residual: tx = 0.25 4+ 0.10 mm, rot = 0.45 £+ 0.11 deg.

e Retrospective registration can mitigate this residual motion.
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Time-series correlation maps — no correction

@006

00 e
@00 e
000

Correlation Map Differences (10x)
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Time-series correlation maps — retrospective
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Time-series correlation maps — prospective

000
oocofll -
coosflf - - .
se8es-

CSP Seminar — Fall 2013 35



Time-series correlation maps — both corrections

seoo
occcl -
cooslf -
L

CSP Seminar — Fall 2013 36



Performance analysis of activation maps

Prospective + Retrospective (SPM8)

2
o
2
z
2
3
(2]

Prospective only
Retrospective (SPM8) only
No correction

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14
False alarm rate (1 - specificity)

Receiver operating characteristic (ROC) curves for correlation analysis

e Prospective correction improves sensitivity and specificity

¢ Spatial interpolation may be responsible for reduced
sensitivity with just retrospective correction
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Simulation with unknown parameters

e Estimate o2 using sample variance of noise-only data.
e Calibrate for 2-D EPI Nyquist ghost correction!:

¢ Estimate the innovation covariance Q:
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Simulation with unknown parameters

e Estimate o2 using sample variance of noise-only data.
e Calibrate for 2-D EPI Nyquist ghost correction!:

¢ use 2-D reference scans (forwards & backwards)
¢ transform linear terms for prospective correction

¢ Estimate the innovation covariance Q:

1 N Chen and AM Wyrwicz, Mag. Res. Med., 51(6), 2004.
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Simulation with unknown parameters

e Estimate o2 using sample variance of noise-only data.
e Calibrate for 2-D EPI Nyquist ghost correction!:

¢ use 2-D reference scans (forwards & backwards)
¢ transform linear terms for prospective correction

¢ Estimate the innovation covariance Q:

e initialize to a large value
e update the sample covariance using estimated a’s
e since Q is time-varying, update using just last ten frames

1 N Chen and AM Wyrwicz, Mag. Res. Med., 51(6), 2004.
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Simulation with unknown parameters
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Residual motion after prospective correction

¢ Residual motion is nearly the same as before:
Uncorrected: tx = 1.6 + 0.53 mm, rot = 1.4 £+ 0.68 deg.
Residual: tx = 0.28 & 0.11 mm, rot = 0.47 £ 0.26 deg.
e Prospective correction remains effective at improving
sensitivity, specificity.
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Simulation with unknown parameters

Prospective + Retrospective (SPM8)
Prospective only
Retrospective (SPM8) only
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0.8
0 0.02 0.04 006 0.08 0.1 012 014 016 018 0.2
False alarm rate (1 — specificity)

Receiver operating characteristic (ROC) curves for correlation analysis

¢ Residual motion is nearly the same as before:
Uncorrected: tx = 1.6 & 0.53 mm, rot = 1.4 & 0.68 deg.
Residual: tx = 0.28 & 0.11 mm, rot = 0.47 £+ 0.26 deg.

e Prospective correction remains effective at improving
sensitivity, specificity.
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Correcting for impulsive motion

¢ Impulsive motion is significant over a short duration.

¢ | generated 1 s impulses of +1.5 mm/degrees per second
occurring every 100 s, on average.

¢ The residual motion effects are mainly short-lived.

e The improvement in sensitivity of prospective correction
remains significant.

3
3
£
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©
'8
c
s
5
s

100
Time (s)

True motion including simulated impulses
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Correcting for impulsive motion

e Impulsive motion is significant over a short duration.

e | generated 1 s impulses of +1.5 mm/degrees per second
occurring every 100 s, on average.

e The residual motion effects are mainly short-lived.

e The improvement in sensitivity of prospective correction
remains significant.
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Residual motion after prospective correction
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Correcting for impulsive motion

¢ Impulsive motion is significant over a short duration.

¢ | generated 1 s impulses of +1.5 mm/degrees per second
occurring every 100 s, on average.

¢ The residual motion effects are mainly short-lived.

e The improvement in sensitivity of prospective correction
remains significant.

Prospective + Retrospective (SPM8)
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=
]
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Prospective only
Retrospective (SPM8) only
No correction
0.8
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
False alarm rate (1 - specificity)

Receiver operating characteristic (ROC) curves for correlation analysis
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Outline

® Conclusions and Future Work
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Conclusions

e The residual motion is much smaller than absolute motion.

e Correlation maps show fewer errors and
mis-classifications.

e The proposed method is more statistically robust than
standard retrospective registration.

e The algorithm remains effective when noise/innovation
statistics are unknown or impulsive motion is added.

e Limitations include:
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Conclusions

e The residual motion is much smaller than absolute motion.

e Correlation maps show fewer errors and
mis-classifications.

e The proposed method is more statistically robust than
standard retrospective registration.

e The algorithm remains effective when noise/innovation
statistics are unknown or impulsive motion is added.
e Limitations include:

e motion assumed constant over a TR
e ignored other time-varying effects such as scanner (By)
drift, susceptibility variations, and physiological signals
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Slice-by-slice motion correction

e Motion will be different for each slice in a slice-by-slice
acquisition.
¢ Prospective correction reduces residual per-slice motion:

Uncorrected: tx = 1.1 +0.27 mm, rot = 1.5 £ 0.64 deg.

Residual: tx = 0.30 4+ 0.11 mm, rot = 0.47 £+ 0.20 deg.

Time (s)

True slice-by-slice motion
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Slice-by-slice motion correction

¢ Motion will be different for each slice in a slice-by-slice
acquisition.
¢ Prospective correction reduces residual per-slice motion:

Uncorrected: tx = 1.1 +0.27 mm, rot = 1.5 £ 0.64 deg.

Residual: tx = 0.30 = 0.11 mm, rot = 0.47 + 0.20 deg.

100 120 140 160

Time (s)

Residual motion after prospective correction (known Q)
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Slice-by-slice motion correction

@
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Estimates of innovation sample variances (diagonal of Q)

e Estimates of Q are less stable with slice-by-slice motion.

¢ Innovation variances for out-of-plane rotations 3, ~v | 0.

e Inturn, (Pﬂf‘l)‘l becomes arbitrarily large, yielding

motion estimates mostly ignoring the data.

CSP Seminar — Fall 2013

44



Slice-by-slice motion correction

@
S
e
o}
3
>
2
a
15
53
1%}

. . 3
100 120 140 160 180 200
Time (s)

Estimates of innovation sample variances (diagonal of Q)

e Estimates of Q are less stable with slice-by-slice motion.

¢ Innovation variances for out-of-plane rotations g, ~v | 0.

e Inturn, (Pﬂf‘l)‘l becomes arbitrarily large, yielding

motion estimates mostly ignoring the data.
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Slice-by-slice motion correction

%; ! \ Wﬂ ‘/’kw "VM*
nd MM Sl

Time (s)

Residual motion after prospective correction (estimated Q)

e Estimates of Q are less stable with slice-by-slice motion.

¢ Innovation variances for out-of-plane rotations 3, ~v | 0.

e Inturn, (Pt‘t 1) 1 becomes arbitrarily large, yielding
motion estimates mostly ignoring the data.
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Slice-by-slice motion correction

e Enforcing a minimum threshold on the innovation sample
variances would mitigate the effect of poor estimates of Q
on future motion estimates.

¢ Alternatively, we can extend our Kalman filter model to
account for slice-by-slice motion:

t fi=1l t

aq aq ai
= | + | , Where
QNg A Ng aNg
al K Ns cee 1
~Normal|0,| : .. :|[®Q
anNg 1 cee NS
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Slice-by-slice motion correction

e Enforcing a minimum threshold on the innovation sample
variances would mitigate the effect of poor estimates of Q
on future motion estimates.

¢ Alternatively, we can extend our Kalman filter model to
account for slice-by-slice motion:

t fi=1l t

aq aq ai
= | + | , Where
QNg A Ng aNg
al K Ns cee 1
~Normal|0,| : .. :|[®Q
anNg 1 cee NS
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Accounting for other time-varying signals

e Other time-varying components of the BOLD signal
include:

e scanner drift, which has a global effect on T,

¢ breathing-induced global modulation of the main field, 75,

¢ and cardiac pulsatility, which varies blood flow, especially
near the cerebral arteries and ventricles.

e The global effects are spatially smooth.

e Introducing a wavelet transform can isolate drift and
respiratory changes to the approximation coefficients.

e We propose performing registration using just the detail
coefficients.

CSP Seminar — Fall 2013

46



Accounting for other time-varying signals

e Other time-varying components of the BOLD signal
include:

e scanner drift, which has a global effect on T,

¢ breathing-induced global modulation of the main field, 75,

¢ and cardiac pulsatility, which varies blood flow, especially
near the cerebral arteries and ventricles.

e The global effects are spatially smooth.

e Introducing a wavelet transform can isolate drift and
respiratory changes to the approximation coefficients.

e We propose performing registration using just the detail
coefficients.

CSP Seminar — Fall 2013

46



Accounting for other time-varying signals

e Other time-varying components of the BOLD signal
include:

e scanner drift, which has a global effect on T,

¢ breathing-induced global modulation of the main field, 75,

¢ and cardiac pulsatility, which varies blood flow, especially
near the cerebral arteries and ventricles.

e The global effects are spatially smooth.

e Introducing a wavelet transform can isolate drift and
respiratory changes to the approximation coefficients.

e We propose performing registration using just the detail
coefficients.

CSP Seminar — Fall 2013

46



Accounting for other time-varying signals

e Other time-varying components of the BOLD signal
include:

e scanner drift, which has a global effect on T,

¢ breathing-induced global modulation of the main field, 75,

¢ and cardiac pulsatility, which varies blood flow, especially
near the cerebral arteries and ventricles.

e The global effects are spatially smooth.

e Introducing a wavelet transform can isolate drift and
respiratory changes to the approximation coefficients.

e We propose performing registration using just the detail
coefficients.

CSP Seminar — Fall 2013

46



Accounting for other time-varying signals

e Other time-varying components of the BOLD signal
include:

e scanner drift, which has a global effect on T,

¢ breathing-induced global modulation of the main field, 75,

¢ and cardiac pulsatility, which varies blood flow, especially
near the cerebral arteries and ventricles.

e The global effects are spatially smooth.

¢ Introducing a wavelet transform can isolate drift and
respiratory changes to the approximation coefficients.

e We propose performing registration using just the detail
coefficients.

CSP Seminar — Fall 2013

46



Accounting for other time-varying signals

e Other time-varying components of the BOLD signal
include:

e scanner drift, which has a global effect on T,

¢ breathing-induced global modulation of the main field, 75,

¢ and cardiac pulsatility, which varies blood flow, especially
near the cerebral arteries and ventricles.

e The global effects are spatially smooth.

e Introducing a wavelet transform can isolate drift and
respiratory changes to the approximation coefficients.

e We propose performing registration using just the detail
coefficients.

CSP Seminar — Fall 2013

46



Outline

& Summary

CSP Seminar — Fall 2013

47



Summary

e Functional MRI tracks brain function during tasks by using

the signal variation generated by metabolizing hemoglobin.

e Prospective correction can improve statistical sensitivity of
fMRI time series acquired in the presence of head motion.

e The proposed method outperforms retrospective
registration in simulated data, even with impulsive motion
and unknown model parameters.

o Future work will make the proposed method robust to
inter-slice motion and global image time variations.

¢ | am also preparing to evaluate my proposed method in
real fMRI studies.
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Questions?

Thank you for your attention.
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