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Motivation

• Head motion reduces the sensitivity of functional magnetic
resonance imaging (fMRI) experiments.

• I propose a motion compensation method that uses just
the data collected during a conventional fMRI.

→

True correlations (red) After head motion
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What is MRI?

MRI Scanner Axial brain images show different soft tissue contrast.

• Magnetic resonance imaging (MRI) provides excellent soft
tissue contrast.

• Densities and magnetic properties of particles tell us a lot
about organ structure and composition.

• Dynamic/functional MRI time series capture organ function.
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What does MRI measure?

• Certain particles have magnetic moments (spins), which
tend to align with a strong external magnetic field B0.

• When excited by a radiofrequency (RF) pulse, these spins
tip away from the main field.

• They precess at the Larmor frequency γB0, proportional to
the main field, as they return to equilibrium (relax).

• These spins induce an emf in a nearby receiver loop coil.
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Generating an MR image

• The received signal superimposes contributions from all
the precessing spins in the excited slice S:

s(t) = e−jγB0t

∫∫
S
m(x, y) dx dy.

• Gradient coils control additional spatially varying magnetic
fields Gx, Gy to acquire images: Bz = B0 +Gxx+Gyy.

• The received signal is called k-space:

ejγB0ts(t) =

∫∫
S
m(x, y)e−jγ(

∫ t
0 Gx(τ)x+Gy(τ)y dτ) dx dy.

• By adjusting the gradients, we effectively sample k-space.
• Applying z-gradient Gz during excitation selects a slice.
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Accelerating MR imaging

• The sampling process is sequential, relatively slow.
• We must wait between excitations for the signal to relax.
• To accelerate imaging:

• increase sample spacing, causing aliasing,
• reduce the sampling extent, decreasing resolution,
• sample half of k-space, assuming a real-valued image, or
• traverse more of k-space during each shot
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Contrast and relaxation

• The signal model assumed m(x, y) is constant over time.
• However, the spin magnitude varies over time due to

relaxation:
• longitudinal component recovers (∝ 1− e−t/T1 ), and
• transverse component decays (∝ e−t/T2 )

• Signal dephasing due to local field inhomogeneity also
manifests as transverse relaxation (time constant T ′2):

• total transverse relaxation rate 1/T ∗2 = 1/T2 + 1/T ′2

• Repetition time TR is time between excitations; shorter TR
⇒ greater T1 contrast.

• Echo time TE is time between excitation and sampling
center of k-space; longer TE ⇒ greater T ∗2 contrast.
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The BOLD effect for fMRI

• Neuronal impulses are too short, weak to register using
conventional MRI.

• Instead, indirectly measure activity by tracking blood
oxygen metabolism.

• Hemoglobin has two states:
• with bound oxygen is diamagnetic, and
• without bound oxygen is paramagnetic (↑ 1/T ∗2 )

• BOLD contrast results from increased blood flow, and
increased metabolism:

• ↑ blood flow⇒ ↓ deoxygenated blood⇒ ↓ 1/T ∗2 , and
• ↑ metabolism⇒ ↑ deoxygenated blood⇒ ↑ 1/T ∗2
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Modeling the BOLD signal
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Activations from block design convolved with canonical hrf from SPM81

• The functional MRI process is modeled as an LTI system
with an impulse response known as the hemodynamic
response function (hrf).

• In reality, the hrf varies spatially and over time.
• It changes from subject-to-subject and scan-to-scan.
• Software like SPM81 use basis functions for the hrf.

1 http://www.fil.ion.ucl.ac.uk/spm/
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Functional MRI analysis

• To identify activated brain regions, we correlate the ideal
time series activations against the time series for each
voxel in the brain.

• This analysis yields the general linear model (GLM):

Y︸︷︷︸
data

=
[
G 1

]︸ ︷︷ ︸
regressors

β︸︷︷︸
weights

+ ε︸︷︷︸
error

.

• Software packages like SPM8 implement this analysis and
provide visualization tools.
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Pre-processing fMRI data

Conventionally, data are pre-processed in the following ways:
1. Slice-by-slice acquisitions are time-shifted to account for

different slice timings.
2. Head motion is estimated and used to register volumes to

the first/middle volume of the time series.
3. Time series can be realigned to a separate reference

volume for visualization purposes.
4. Volumes are normalized to a fixed coordinate system (e.g.,

Tailarach) in group studies.
5. Data can be smoothed/blurred using a Gaussian kernel to

reduce noise, cross-subject variance.

Our single-subject simulations require only step #2.
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Head motion in fMRI

• Head motion causes several problems in brain imaging:
• Misaligned time series have inconsistent brain coordinates.
• Motion distorts the main field and alters the dephasing rate.
• Nonuniform excitation from inter-slice motion introduces

“spin history” effects.

Simulated brain with motion.

1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.
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• Head motion causes several problems in brain imaging:
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Figure 9 in 1

URL: http://dx.doi.org/10.1002/mrm.24314

Head motion causes field map distortions1.

1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.
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Head motion correction

Retrospective image registration/interpolation.

• Retrospective correction (post-scan):
• registration: spatial interpolation of reconstructed images
• motion estimates as nuisance regressors in the GLM

• Prospective correction (during the scan):
• slice prescription, k-space trajectory adjusted between

frames or slices
• corrupted data re-scanned (rare in fMRI)
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Head motion correction

Y =
[
G 1

]
β +

 −α̂0−
...

−α̂NF−1−

βmotion + ε.

Nuisance regressors in the GLM.

• Retrospective correction (post-scan):
• registration: spatial interpolation of reconstructed images
• motion estimates as nuisance regressors in the GLM
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Head motion correction

Frame t Frame t+1
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Head motion correction

Gx

Gz

Gx

Gz

Frame t Frame t+1
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Prospective correction methods

• Retrospective methods are suboptimal.
• registration: interpolation smears activations across voxels
• regression: activations mistaken for task-correlated motion

• Prospective motion estimation methods include:
• external tracking: markers, cameras, etc.
• navigational techniques using MRI data

Figure 2b in 1

URL: http://dx.doi.org/10.1002/mrm.24314

Methods for prospective motion estimation1.
1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.

CSP Seminar – Fall 2013 17

http://dx.doi.org/10.1002/mrm.24314


Prospective correction methods

• Retrospective methods are suboptimal.
• registration: interpolation smears activations across voxels
• regression: activations mistaken for task-correlated motion

• Prospective motion estimation methods include:
• external tracking: markers, cameras, etc.
• navigational techniques using MRI data

Figure 2b in 1

URL: http://dx.doi.org/10.1002/mrm.24314

Methods for prospective motion estimation1.
1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.

CSP Seminar – Fall 2013 17

http://dx.doi.org/10.1002/mrm.24314


Prospective correction methods

• Retrospective methods are suboptimal.
• registration: interpolation smears activations across voxels
• regression: activations mistaken for task-correlated motion

• Prospective motion estimation methods include:
• external tracking: markers, cameras, etc.
• navigational techniques using MRI data

Figure 2b in 1

URL: http://dx.doi.org/10.1002/mrm.24314

Methods for prospective motion estimation1.
1 J Maclaren et al., Mag. Res. Med., 69(3), 2013.

CSP Seminar – Fall 2013 17

http://dx.doi.org/10.1002/mrm.24314


Navigation

• Image-based navigators align the MR time series images.
• Fast k-space navigators have static contrast, versus

time-varying BOLD contrast found in fMRI data.
• With multi-channel receivers, relative intensity changes in
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Related work

• Image-space navigators were used with a linear motion
model1.

• Two-dimensional k-space navigators were used with an
extended Kalman filter2.

• Sparse residual models were employed in retrospective
joint reconstruction/registration methods3,4.

• I propose using image-space navigators and combining a
sparse residual model with Kalman-like filtering5.

1 S Thesen et al., Mag. Res. Med., 44(3), 2000.

2 N White et al., Mag. Res. Med., 63(1), 2010.
3 H Jung et al., Mag. Res. Med., 61(1), 2009.
4 MS Asif et al., Mag. Res. Med., in press.
5 DSW et al., Proc. SPIE Wavelets and Sparsity XV, in press.
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Coordinate systems

Consider images xt|t=0,...,NF−1 in 3 coordinate systems:
1. xt0 has the same physical coordinate system for all t.

• true motion αt: rigid head motion from frame 0 to t

2. xtreg = T ((α̂t)(−1))xt0 is registered to x0 with estimate α̂t.

• α(−1) is the inverse motion of α
• T (αn, . . . ,α1)x transforms x by motions α1, . . . ,αn

3. Measure xtmeas = T ((α̂t−1)(−1))xt0 prospectively corrected
using the previous frame’s motion.

t = 0 Fixed Registered Measured

t = 1

t = 2
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Measurement model

• Sample k-space in measurement coordinates:
dt = Fxtmeas + nt,

where F is the Discrete Fourier Transform (DFT), and
nt is iid zero-mean complex Gaussian

with variance σ2.
• To estimate αt, relate xtmeas to registered coordinates:

dt = F T ((α̂t−1)(−1),αt)xtreg + nt.

• Define the residual image st in measurement coordinates:

st = xtmeas − T ((α̂t−1)(−1),αt)xt−1reg .

• Model st as sparse, which is equivalent to using the SAD
registration cost function:

C(α) = ‖xtmeas − T ((α̂t−1)(−1),α)xt−1reg ‖1.
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Kalman-like motion filtering

• To enforce smoothness, we model motion {αt} as a
first-order random walk:

αt = αt−1 + at,

where innovations at are iid (over time) Normal(0,Q).
• Subtracting the sparse residual image component of the

data yield Kalman filter-like measurements of the motion:

dt −Fst = F T ((α̂t−1)(−1),αt)xt−1reg + nt.

• Knowing st yields an extended Kalman filter:

α̂t = arg min
α

1
2σ2 ‖F T ((α̂t−1)(−1),α)xt−1reg − (dt −Fst)‖22

+ 1
2‖α− α̂

t−1‖2
(P

t|t−1
α )−1

,

where P t|t−1
α is the filter’s prediction error covariance.
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Joint registration and reconstruction

Jointly minimize f(xtmeas,α
t) to estimate motion α̂t:

f(xtmeas,α
t) = 1

2σ2 ‖Fxtmeas − dt‖22
+ λ‖xtmeas − T ((α̂t−1)(−1),αt)xt−1reg ‖1
+ 1

2‖α
t − α̂t−1‖2

(P
t|t−1
α )−1

The objective function has three parts:

1. the data fidelity term,
• equivalent to 1

2σ2 ‖xtmeas −F−1dt‖22 (with unitary DFT);

2. the registration cost function, which also regularizes xtmeas;
3. the Kalman consistency term, promoting smoothness.
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Variable splitting

• The residual image is a natural split variable:
st = xtmeas − T (xt−1reg ; (α̂t−1)(−1),αt).

• The augmented Lagrangian has scaled dual u, penalty µ:

AL(xtmeas,α
t, st;u) = 1

2σ2 ‖xtmeas −F−1dt‖22 + λ‖st‖1
+ µ

2‖x
t
meas − T ((α̂t−1)(−1),αt)xt−1reg − st + u‖22

+ 1
2‖α

t − α̂t−1‖2
(P

t|t−1
α )−1

.

• The choice of penalty µ > 0 controls the overall
convergence rate, by trading off minimizing the objective
function and satisfying the variable-split constraint.
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Linearizing the motion transform

• The transform T ((α̂t−1)(−1),αt) is nonlinear and
nonconvex in αt.

• Assuming smooth motion, αt is close to αt−1, so
initializing with α̂t−1 likely yields a global minimum.

• Linearize the transform T ((α̂t−1)(−1),αt) around
αt = α̂t−1, and define ât = αt − α̂t−1:

T ((α̂t−1)(−1),αt)xt−1reg ≈ xt−1reg + JT â
t,

where JT is the Jacobian matrix of T ((α̂t−1)(−1),αt)xt−1reg

evaluated at αt = α̂t−1.

• The resulting approximation to the augmented Lagrangian
is convex.
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Alternating minimization

Use alternating directions method of multipliers (ADMM)1,2.
Each iteration consists of three steps:

1. Update xtmeas, â
t together (least-squares problem):

{xtmeas, â
t} ← arg min

x,â

1
2σ2 ‖x−F−1dt‖22 + 1

2‖â‖
2

(P
t|t−1
α )−1

+ µ
2‖x− JT â− (xt−1reg + st − u)‖22.

2. Update st using shrinkage:

st ← arg min
s

λ‖s‖1 + µ
2‖s− (xtmeas − JT â

t − xt−1reg + u)‖22.

3. Update scaled dual variable:

u← u+ (xtmeas − JT â
t − xt−1reg − st).

1 R Glowinski and A Marrocco, Inf. Rech. Oper., R-2, 1975.
2 D Gabay and B Mercier, Comput. Math. Appl., 2(1), 1976.
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Experimental design

• T ∗2 -weighted Brainweb1 phantom (1× 1× 3 mm resolution)
• Simulated activations, head motion on high-resolution

phantom for 200 frames (TR = 1 s)
• Sampled k-space for 16 + 4 slices at 4× 4× 3 mm

resolution (64× 64 samples/slice) with 40 dB SNR

16 + 4 high-resolution slices
1 RKS Kwan et al., IEEE Trans. Med. Imag., 18(11), 1999.
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Simulated motion

• Rigid-body motion is described using six parameters:
1. ∆x: right-to-left translation (mm)
2. ∆y: anterior-to-posterior translation (mm)
3. ∆z: superior-to-inferior translation (mm)
4. α: axial (xy-)plane rotation (degrees)
5. β: coronal (xz-)plane rotation (degrees)
6. γ: sagittal (yz-)plane rotation (degrees)
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Prospective motion correction
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Residual motion after prospective correction

• Residual motion is substantially reduced:
Uncorrected: tx = 1.6± 0.53 mm, rot = 1.4± 0.68 deg.

Residual: tx = 0.25± 0.10 mm, rot = 0.45± 0.11 deg.
• Retrospective registration can mitigate this residual motion.
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• Retrospective registration can mitigate this residual motion.
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Time-series correlation maps – no correction
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Time-series correlation maps – retrospective
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Time-series correlation maps – prospective
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Time-series correlation maps – both corrections
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Performance analysis of activation maps
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Receiver operating characteristic (ROC) curves for correlation analysis

• Prospective correction improves sensitivity and specificity
• Spatial interpolation may be responsible for reduced

sensitivity with just retrospective correction
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Simulation with unknown parameters

• Estimate σ2 using sample variance of noise-only data.
• Calibrate for 2-D EPI Nyquist ghost correction1:

• use 2-D reference scans (forwards & backwards)
• transform linear terms for prospective correction

• Estimate the innovation covariance Q:

• initialize to a large value
• update the sample covariance using estimated â’s
• since Q is time-varying, update using just last ten frames

1 N Chen and AM Wyrwicz, Mag. Res. Med., 51(6), 2004.
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Simulation with unknown parameters
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Residual motion after prospective correction

• Residual motion is nearly the same as before:
Uncorrected: tx = 1.6± 0.53 mm, rot = 1.4± 0.68 deg.

Residual: tx = 0.28± 0.11 mm, rot = 0.47± 0.26 deg.
• Prospective correction remains effective at improving

sensitivity, specificity.
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Correcting for impulsive motion

• Impulsive motion is significant over a short duration.
• I generated 1 s impulses of ±1.5 mm/degrees per second

occurring every 100 s, on average.
• The residual motion effects are mainly short-lived.
• The improvement in sensitivity of prospective correction

remains significant.

0 50 100 150 200
−5

−4

−3

−2

−1

0

1

2

3

Time (s)

M
o

ti
o

n
 P

a
ra

m
e

te
r

 

 ∆
x

∆
y

∆
z

α

β

γ

True motion including simulated impulses

CSP Seminar – Fall 2013 40



Correcting for impulsive motion

• Impulsive motion is significant over a short duration.
• I generated 1 s impulses of ±1.5 mm/degrees per second

occurring every 100 s, on average.
• The residual motion effects are mainly short-lived.
• The improvement in sensitivity of prospective correction

remains significant.

0 20 40 60 80 100 120 140 160 180 200

−2

−1

0

1

2

Time (s)

M
o

ti
o

n
 P

a
ra

m
e

te
r

 

 
∆

x

∆
y

∆
z

α

β

γ

Residual motion after prospective correction

CSP Seminar – Fall 2013 40



Correcting for impulsive motion

• Impulsive motion is significant over a short duration.
• I generated 1 s impulses of ±1.5 mm/degrees per second

occurring every 100 s, on average.
• The residual motion effects are mainly short-lived.
• The improvement in sensitivity of prospective correction

remains significant.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.8

0.85

0.9

0.95

1

False alarm rate (1 − specificity)

S
e

n
s
it
iv

it
y
 r

a
te

 

 

Prospective + Retrospective (SPM8)

Prospective only

Retrospective (SPM8) only

No correction

Receiver operating characteristic (ROC) curves for correlation analysis

CSP Seminar – Fall 2013 40



Outline

Magnetic Resonance Imaging

Functional MRI

Head Motion in fMRI

Proposed Method for Prospective Correction

Real Time Implementation

Simulation Results

Conclusions and Future Work

Summary

CSP Seminar – Fall 2013 41



Conclusions

• The residual motion is much smaller than absolute motion.
• Correlation maps show fewer errors and

mis-classifications.
• The proposed method is more statistically robust than

standard retrospective registration.
• The algorithm remains effective when noise/innovation

statistics are unknown or impulsive motion is added.
• Limitations include:

• motion assumed constant over a TR
• ignored other time-varying effects such as scanner (B0)

drift, susceptibility variations, and physiological signals
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Slice-by-slice motion correction

• Motion will be different for each slice in a slice-by-slice
acquisition.

• Prospective correction reduces residual per-slice motion:

Uncorrected: tx = 1.1± 0.27 mm, rot = 1.5± 0.64 deg.
Residual: tx = 0.30± 0.11 mm, rot = 0.47± 0.20 deg.
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Slice-by-slice motion correction
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Estimates of innovation sample variances (diagonal of Q)

• Estimates of Q are less stable with slice-by-slice motion.
• Innovation variances for out-of-plane rotations β, γ ↓ 0.

• In turn, (P
t|t−1
α )−1 becomes arbitrarily large, yielding

motion estimates mostly ignoring the data.
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Slice-by-slice motion correction
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Slice-by-slice motion correction

• Enforcing a minimum threshold on the innovation sample
variances would mitigate the effect of poor estimates of Q
on future motion estimates.

• Alternatively, we can extend our Kalman filter model to
account for slice-by-slice motion: α1

...
αNS


t

=

 α1
...

αNS


t−1

+

 a1...
aNS


t

, where

 a1...
aNS


t

∼ Normal

0,

NS · · · 1
...

. . .
...

1 · · · NS

⊗Q
 .
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Accounting for other time-varying signals

• Other time-varying components of the BOLD signal
include:

• scanner drift, which has a global effect on T ∗2 ,
• breathing-induced global modulation of the main field, T ∗2 ,
• and cardiac pulsatility, which varies blood flow, especially

near the cerebral arteries and ventricles.

• The global effects are spatially smooth.
• Introducing a wavelet transform can isolate drift and

respiratory changes to the approximation coefficients.
• We propose performing registration using just the detail

coefficients.
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Summary

• Functional MRI tracks brain function during tasks by using
the signal variation generated by metabolizing hemoglobin.

• Prospective correction can improve statistical sensitivity of
fMRI time series acquired in the presence of head motion.

• The proposed method outperforms retrospective
registration in simulated data, even with impulsive motion
and unknown model parameters.

• Future work will make the proposed method robust to
inter-slice motion and global image time variations.

• I am also preparing to evaluate my proposed method in
real fMRI studies.
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Questions?

Thank you for your attention.
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