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Setup: consider a length-d single parity-check code

A length-d binary vector x is a codeword,
xeC if [11...1]x=0
N—_——
d ones

or, equivalently, if
x € Py

where Py = {all length-d binary vectors of even weight}

In other words: even-weight vertices of the d-dimension hypercube



Goal: efficient projection onto conv(PP,), “parity polytope”

The parity polytope PP, = conv(P,), the convex hull of Py

**********
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o Number of vertices of PP, is 29-1; if d = 31 about 1 billion



Goal: efficient projection onto conv(PP,), “parity polytope”

The parity polytope PP, = conv(P,), the convex hull of Py

o Number of vertices of PPy is 2971 if d = 31 about 1 billion
@ The algorithm we develop can project any vector v € R? onto
PPy in log-linear time, O(d log d), complexity of sort
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Goal: efficient projection onto conv(PP,), “parity polytope”

The parity polytope PP, = conv(P,), the convex hull of Py

o Number of vertices of PPy is 2¢71; if d = 31 about 1 billion

@ The algorithm we develop can project any vector v € R? onto
PPy in log-linear time, O(d log d), complexity of sort

@ We use the projection to develop a new LP decoding technique
via the Alternating Directions Method of Multipliers (ADMM)
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Background

Maximum likelihood (ML) decoding: memoryless channels

@ Given codebook C and received sequence y

@ ML decoding picks a codeword x € C to:

maximize Pr(received y | sent x)

0

maximize [[; py|x(yi | x;) subject tox e C

0

maximize ), logpy|x(y; | x;) subject to x € C



Background

Maximum likelihood (ML) decoding: binary inputs

@ Objective for binary input channel:

Z log py|x (vi | xi)

Py|x yI|XI - )
= E — =~ x; + log py|x(yilx; =0
: [ pyx (vilxi = 0)" vixi )

@ 7; is negative log-likelihood ratio of ith symbol, e.g., if BSC-p:
log lfpp ify; =1
Vi =
log 122 if y; = 0

@ ML decoding: linear objective, integer constraints

minimize Zy,-x,- st. xel

i




Background

Specialize to binary linear codes

x € C iff all parity checks have even parity. Factor graph:
Parity Checks

(x1, @0, 23) (w1,23,24) (vg,75,25) (4,25, 2g)

Codeword Bits Z1 x2 x3 T4 x5 T6

@ Let dxn matrix P; select variables neighboring jth parity check
e Examples: Pix = (x1 x2 x3), P3x = (x2 X5 Xg)

o Example:
01 00O0°TO0 X0
Psx=[0 00010 |x=|x
00 0O0O0T1 Xg



Background

For simplicity: consider graphs of check degree d

Example: d =3

Parity Checks (z1.z2.23) (x1,23,24) (20,25, 2¢6) (24,25, 26)

Codeword Bits Z1 X2 €3 Ty x5 Te

@ Let dxn matrix P; select variables neighboring jth parity check
e Examples: Pix = (x1 x2 x3), P3x = (x2 X5 Xp)
e Py = {all length-d binary vectors of even weight}

Binary linear codes
x € C if and only if Pjx € Py for all j.
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Background

Relax P, to PP, to get a Linear Program (LP)

ML Decoding: an integer program with a linear objective

minimize E YiXi
i

subject to Px e Py Vj
(and x € {0,1}")

LP Decoding: relax Py to PPy = conv(Py) for all j
minimize Z'y,-x,-
i

subject to Pix € PPy V
and x € [0,1]"

Relaxation due to Feldman, Wainwright, Karger 2005
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Background

Why care about LP decoding?

LP decoding vs. Belief Propagation (BP) decoding:

@ BP empirically successful,
inherently distributed,
takes full advantage of spare code structure

but, no convergence guarantees & BP suffers from error-floor

@ LP well understood theoretically,
has convergence guarantees,
not observed to suffer from error-floor,
ML certificate property,
able to tighten relaxation to approach ML performance

but, generic LP solvers don't efficiently exploit code sparsity
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Background

Why care about projecting onto PP47

Projecting onto PP,: crucial step in solving the LP using the
Alternating Direction Method of Multipliers (ADMM)
@ a classic algorithm (mid-70s), efficient, scalable, distributed,
convergence guarantees, numerically robust
@ decomposes global problem into local subproblems, recombine
iteratively (simple scheduling) to find global solution
@ simple form today as objective and constraints all linear
o cf. Boyd et al. review in FnT in Machine Learning, 2010.

Prior work on low-complexity LP decoding:
o earliest low-complexity LP decoding results (Vontobel &
Koetter '06, '08) coordinate ascent on “softened” dual

@ computational complexity linear in blocklength given good
choice of scheduling (Burshtein '08, '09)
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Agenda
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e Projecting onto the parity polytope

Experimental results
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Fitting LP Decoding into ADMM template

LP Decoding:
minimize Z YiXi
i
subject to Pjx € PPy V)
x € [0,1]"

To formulate as an ADMM associate “replicas” z;s with each edge:
minimize g YiXi
i

subject to z; = Pjx Vj
zj € PPy Vj
x € [0,1]"

@ Replicas allow us to decompose into small subproblems
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Lagrangian formulation

minimize ), yiX; subject to z; = Pjx Vj
zj c PPy Vj
x € [0,1]"

Start with regular Lagrangian with multipliers A = {A\1, A2, ...}

YIx+ > A (Px - z)),
F
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Lagrangian formulation

minimize ), yiX; subject to z; = Pjx Vj
zj c PPy Vj
x € [0,1]"

Start with regular Lagrangian with multipliers A = {A\1, A2, ...}
x4 Y N (Px—z)),
J
ADMM works with an augmented Lagrangian:
i
Lz, A) =7Tx+ D A (Px—2)+ 5> [Px—zl3
J J

Effect is to smooth the dual problem, accelerating convergence
17 /51



Alternating Direction Method of Multipliers

Round-robin update of x then z then A until converge:

I
Lu(x,z,A\) ==~ x+ Z /\J'T('Djx —zj)+ 5 Z 1Px — 23

J Jj
ADMM Update Steps:

k+1

XM= argminge v Lu(x, 25, \F)

Zk+1

N M (PyxIr = 24

= argmin,e z L, (x¥11, 2, \F)

where
X =[0,1]"

Z:PPdX...XPPd

number of checks

@ Updates: msg-passing on a “Forney-style” factor graph

18 /51



ADMM x-Update: turns out to be (almost) averaging

With z and X fixed the x-updates are:

minimize L,(x,z%,\¥) subject to x €[0,1]"” where

i
L.(x,z,\) = A Tx + Z )\JT(PJ-X —zj)+ ) Z | Pix — Zj||%
J J
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ADMM x-Update: turns out to be (almost) averaging

With z and X fixed the x-updates are:
minimize L,(x,z%,\¥) subject to x €[0,1]"” where
1
Lu(x,2,A) =y Tx+ Y A (Px —zj) + 5 > IPx —zl3
J J
Partial derivatives of a quadratic form (and apply box constraints)

)
%Lu(x, 5. A=0
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ADMM x-Update: turns out to be (almost) averaging

With z and X fixed the x-updates are:
minimize L,(x,z%,\¥) subject to x €[0,1]"” where
1
Lu(x,2,A) =y Tx+ Y A (Px —zj) + 5 > IPx —zl3
J J
Partial derivatives of a quadratic form (and apply box constraints)

9 k y\k
87XiL”(x’ z, A ): 0
Get component-wise (averaging) updates:

1 M _Lyo)_ 1
i =Mo | e | 2o (ZJ N T
vl 2 BT T
N, (i) : set of parity checks neighboring variable i.
zJ(-') : component of the jth replica associated with x;.
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ADMM z-Update

Recall:

7
L.(x,z,\) = yTx + Z /\J-T(ij —zj)+ 5 Z [IPjx — Zj”%
j J
z-update: with x and A fixed we want to solve
e .. T 12 2
minimize Z A (Pix —z) + 5 Z 1Pix — 2|12
J J
subject to z; € PPy V)

The minimization is separable in j: for each j we need to solve
minimize A (Pix — z;) + 2| Px — z;]2
J J J 2 J J 112

subject to z; € PPy



ADMM z;-Update: project onto parity polytope

zj-update:
minimize )\JT(PJ'X —zj)+ %HPJX - Zj||%
subject to z; € PPy

Setting v = Pjx + A/ (completing the square) the problem is
equivalent to:

minimize v — 2|3
subject to z € PPy

The primary challenge in ADMM
The z-update requires projecting onto the parity polytope.
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Parity Polytope & Projection

Background and Problem Setup

o LP decoding formulation: a relaxation of ML
Optimization Framework

o The alternating direction method of multipliers (ADMM)
Technical Core

o Characterizing the parity polytope
e Projecting onto the parity polytope

Experimental results

e Various codes & parameter settings
o Penalized decoder
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Parity Polytope & Projection

Prior characterizations of parity polytope

e Jeroslow (1975)
@ Yannakakis (1991) has a quadratic d? characterization
o Feldman et al. (2005) use Yannakakis

o “Standard Polytope” in Feldman uses 2971 linear constraints
per parity-check, many not active as exploited in “Adaptive
LP Decoding” Taghavi and Siegel (2008)
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Parity Polytope & Projection

Most points in PPy have multiple representations

By definition:
o ycPPyiffy=>";aje;
o) . ai=10;>0
@ e; are even-hamming-weight binary vectors of dimension d

@ Most y € PPy have multiple representations

Example A (d = 6):

1 1 1 1
1 1 1 1
12| 1o 1| 1]
12 |2l o |Tal 1 |Tal|
1/4 0 0 1
1/4 0 0 1
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Parity Polytope & Projection

Most points in PPy have multiple representations

By definition:
o ycPPyiffy=>";aje;
o) . ai=10;>0
@ e; are even-hamming-weight binary vectors of dimension d

@ Most y € PPy have multiple representations

Example B (d = 6):

1 1 1 1
1 1 1 1
12| 1o 1| 1] o
12 | "alo T2 1Tl o
1/4 0 0 1
1/4 0 0 1
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Parity Polytope & Projection

There always exists a “two-slice” representation

Two-Slice Lemma:

For any y € PP, there exists a representation y = >, «;e; where
o Zia,’:l,a,’ZO
@ e; are of only two weights: r or r 4+ 2 for all J
o r is the even integer r = |||y||1]even

Example B is one such representation with d =6 and r = 2:

1 1 1 1
1 1 1 1
12 | 1] o0 1 0
12 |[Talo|T2] 1 |%a] o
1/4 0 0 1
1/4 0 0 1
—— —— ——
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Parity Polytope & Projection

Visualizing properties of PPP,: always between two slices

Example: d =5

(01111) (10111)

11111
'j )

(11011)

(11101)

o Let PP, = conv{e; | |lej|1 = r}, a “permutohedron”
= easy to characterize using majorization

o Two-slice restated: Any y € PP, is sandwiched between two
permutohedrons PP and PP where r = [||y[|1 |even
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Parity Polytope & Projection

Majorization: definition & application to PPy,

Definition: Let u and w be d-vectors sorted in decreasing order.
The vector w is said to majorize u if

k=1 k=1
q q
ZUkSZWk V g, 1<qg<d
k=1 k=1

Specialize to PP}, wherew =[11...1 00...0]
e N —
d r d—r

>

k=1

q
> ue<min(q,r) ¥V g 1<q<d
k=1
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Parity Polytope & Projection

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of w (the
permutohedron defined by w) if and only if w majorizes u.
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Parity Polytope & Projection

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of w (the
permutohedron defined by w) if and only if w majorizes u.

u= Z ﬁ,-Ziw

1
where X; are permutation matrices and 3; are weightings

32 /51



Parity Polytope & Projection

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of w (the
permutohedron defined by w) if and only if w majorizes u.

u=> BTiw
i
where X; are permutation matrices and 3; are weightings

Proving two-slice lemma:
@ Use above to characterize each PP/, r even, r < d.
@ Express y as a weighted combination of points in PP7,
1<r<d.
@ Show you can set all weightings to zeros except those on

r = [llyll)even and r = [[ly[l1 Jeven + 2.
@ Note that finding r is trivial.

Next: use two-slice lemma to develop projection operation
33/51



Parity Polytope & Projection

Projecting onto the parity polytope

Desired projection:

min [[v — |3
s.t. y € PPy
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Parity Polytope & Projection

Projecting onto the parity polytope

Desired projection:

min [[v — |3
s.t. y € PPy

Use two-slice lemma to reformulate as:

min |lv —as — (1 — a)t||3
st. 0<a<1, sePPy, tePP,
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Parity Polytope & Projection

Projecting onto the parity polytope

Desired projection:

min [[v — |3
s.t. y € PPy

Use two-slice lemma to reformulate as:

min |lv —as — (1 — a)t||3
st. 0<a<1, sePPy, tePP,

We also show (where T1(-) is shorthand for projection):

Mool | < M, (W) < [ IMpoago W)l | +2

ven

-~

r r+2

in other words, it is trivial to identify the two slices
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Parity Polytope & Projection

Use majorization to simplify problem further

Assume w.l.o.g that v is sorted and let
z = TMpp,(v) = argmin |lv — as — (1 — a)t||3

st. 0<a<1, sePPy, tePPt?
Constraint set can be restated as

(i) 0<a<1

d
(i) > zx=ar+(1-a)(r+2)

k=1

q
(iir) sz <amin(g,r)+ (1 —a)min(q,r+2) Vv q, 1<g<d
k=1

(V) z>z>...>2z4
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Parity Polytope & Projection

Combine knowledge of r with first two constraints

From (ii) we have

d

sz:ar+(1—a)(r+2) (%)

k=1
Now we apply the bound from (i) on «, 0 < @ < 1 to get

d

r§22k§r+2
k=1
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Parity Polytope & Projection

Deal with third constraint

Consider the partial sums of the sorted vectors

q
sz <amin(g,r)+ (1 —a)min(q,r+2) V ¢,1<g<d
k=1

@ For g < r ineq. satisfied by box constraints: 0 < z, <1 Vk
@ For g > r + 2 inequalities also satisfied since

q d
sz < sz = ar+(1—a)(r+2) (*)
k=1 k=1

Hence only need to deal with ¢ = r 4 1, which specializes as

r+1
sz§ar—|—(1—a)(r—|—1):r—|—(1—a) (k)
k=1
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Parity Polytope & Projection

Third constraint (continued...)

Solve (x) for a to find

a= 1+7r_zzzlzk.
2
Finally, substitute into (xx) to get
r+1
sz <r+(l—-aw)
k=1
_,_ = Z‘k’:1 Zk
2
Which becomes
r+1 d
sz — Z zi <r
k=1 k=r+2
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Parity Polytope & Projection

Reformulated projection as a quadratic program (QP)

min |[v —as — (1 — a)t||3 min |lv — z||3
st. 0<a<l1 st. 1>z, >0V k
SEPPQ, 212202 ...>2 24
t € PP, r+2>Y ze>r
k
r+1 d

I’ZZZk— Z Z)

k=1 k=r+2
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Parity Polytope & Projection

Reformulated projection as a quadratic program (QP)

min |[v —as — (1 — a)t||3 min |lv — z||3
st. 0<a<l1 st. 1>z, >0V k
SEPPQ, 212202 ...>2 24
t € PP, r+2>Y ze>r
k
r+1 d
>3 a- Y
k=1 k=r42

o for the QP the KKT conditions are necessary and sufficient
@ we develop a linear-time water-filling type algorithm that
determines a solution satisfying the KKT conditions

z' = n[oal]d (V o ﬁ[L,_lz \_1 L 1,]) some /BOpt € [Oaﬁmax]

r+1 d—r—1
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Experiments

Background and Problem Setup

o LP decoding formulation: a relaxation of ML
Optimization Framework

o The alternating direction method of multipliers (ADMM)
Technical Core

o Characterizing the parity polytope
e Projecting onto the parity polytope

Experimental results

e Various codes & parameter settings
o Penalized decoder
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Experiments

Performance results: two LDPC codes over AWGN

10
—e— ADMM
N — & - Non-saturating BP
RN —A- ML lower bound
107 107 ~ 4
2 g
2 g
Z 10 Z 10
2 2
g L
5 £
3 10° ~: 5 10°
2 2
H g
o -
10 H—e— ADMM 10
- & - BP decoding (Ryan and Lin)
+— BP decoding (Mackay)
—=4A— Non-saturating BP
10"“ T T i i 10'"’ i i i
1 15 2 25 3 25 3 3. 45 5
Ey/No (dB)

5Eb/NU (dg)
o length-2640, rate-0.5 | h.1057 0.7
th- , rate-0.
@ (3,6)-regular LDPC ¢ eng rate
) e (3,13)-regular LDPC
@ non-saturating BP per
Butler & Siegel (Allerton '11) @ observable error floor

44 /51



Experiments

Performance results: random LDPC ensemble over BSC

10°
107
2
g
10
10° - , —o— ADMM, WER[
& —5— BP, WER
- © - ADMM, BER
. ~ = ~BP,BER
100 i i i ; :
0.02 0.03 0.04 0.05 0.06 0.07 008

crossover probability

@ results averaged over ensemble of 100 codes
@ each a randomly generated length-1002 (3, 6)-regular LDPC
@ all codes had girth at least 4
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Experiments

Random ensemble: iteration count & execution time

3 10° T
10 F=e S Te e Te 0 = T
L = R o e St
g BT S
g»o~ LR e O S SR EE Sl )
10° Frot
2
2 £
] =
g g
s £ —Oo— - ADMM, erroneous
s 8 —0O— BP, erroneous 8
2 _ =
= g2l —e— ADMM, average . L&
- aver : 3
~0— ADMM, erroncous| BP. average 57
e “o- B, erroncous — © — ADMM, correct oA ?
o —o— ADMM, average — 8 - BP, correct s
' —&— BP, average - Shel
— © - ADMM, correct gl
— & - BP, comrect ,
10° ; i i : : 10"
0.02 0.03 0.04 0.05 0.06 007 0.08 0.02 0.03 0.04 005 0.06 0.07 0.08
crossover probability

crossover probability

@ iteration count

e ADMM & BP for:
(i) errors, (ii) avg, (iii) correct

@ execution time

o ADMM & BP for
(i) errors, (ii) avg, (iii) correct
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Experiments

Understanding LP decoding failures

LP decoding fails to a “pseudocodeword”, a non-integer vertex of
the fundamental polytope introduced when we relaxed each of the
various integer constraints Py to PPy in

miny x st. Pix € PPy Vj, x<[0,1]"

true codewords

%ios

pseudo—codeword
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Experiments

ly-penalized ADMM

In order to eliminate pseudocodewords, introduce an {»-penalty to
push the solution towards an integral solution, now solve:

min v x—c|jx — 0.5]> s.t. Pjx € PPy Vj, x € [0,1]"
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Experiments

ly-penalized ADMM

In order to eliminate pseudocodewords, introduce an {»-penalty to
push the solution towards an integral solution, now solve:

min v x—c|jx — 0.5]> s.t. Pjx € PPy Vj, x € [0,1]"

10! 10°
—e—LP decoding —e— LP decoding
—+— sum-product BP —— sum-product BP
—+— L2 penalized LP —— L2 penalized BP
107
z _ 107k 1
3 [
w w
E =
-
oL L
<] s
5 310 ]
g0 H
H H
10 107 1
1 I.‘S é 2.‘5 3 1‘ 112 114 116 118 é 2.‘2 214 2.‘6
Ey/No Ey/No
[2640,1320] “Margulis” LDPC [13298, 3296] rate-0.25 LDPC
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Experiments

Recap & wrap-up

Recap:

@ LP decoding via ADMM

@ main hurdle: efficient projection onto the parity polytope,

complexity of sort

simple scheduling and complexity linear in the block-length

roughly same execution time as BP

further improvements via /»-penalty (alternately ¢1-penalty)

Try it yourself! Documented code available at
https://sites.google.com/site/xishuoliu/codes

Things to do:

e error floor analysis (LP & penalized)

effects of finite precision

how to implement in hardware

understand BP/LP low-SNR gap (without penalty)
other codes: non-binary codes, permutation-based codes
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Experiments
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