
Background ADMM Parity Polytope & Projection Experiments

Efficient projection onto the parity polytope and
its application to linear programming decoding

Stark Draper
joint work with Siddharth Barman, Xishuo Liu and Ben Recht

000

101

110

011

Communications & Signal Processing Seminar
University of Michigan

17 October 2013

1 / 51

Background ADMM Parity Polytope & Projection Experiments

Setup: consider a length-d single parity-check code

A length-d binary vector x is a codeword,

x ∈ C if [1 1 . . . 1]︸ ︷︷ ︸
d ones

x = 0

or, equivalently, if
x ∈ Pd

where Pd = {all length-d binary vectors of even weight}

In other words: even-weight vertices of the d-dimension hypercube

2 / 51

Background ADMM Parity Polytope & Projection Experiments

Goal: efficient projection onto conv(Pd), “parity polytope”

The parity polytope PPd = conv(Pd), the convex hull of Pd

000

101

110

011

Number of vertices of PPd is 2d−1; if d = 31 about 1 billion

The algorithm we develop can project any vector v ∈ Rd onto
PPd in log-linear time, O(d log d), complexity of sort
We use the projection to develop a new LP decoding technique
via the Alternating Directions Method of Multipliers (ADMM)

3 / 51

Background ADMM Parity Polytope & Projection Experiments

Goal: efficient projection onto conv(Pd), “parity polytope”

The parity polytope PPd = conv(Pd), the convex hull of Pd

000

101

110

011

Number of vertices of PPd is 2d−1; if d = 31 about 1 billion
The algorithm we develop can project any vector v ∈ Rd onto
PPd in log-linear time, O(d log d), complexity of sort

We use the projection to develop a new LP decoding technique
via the Alternating Directions Method of Multipliers (ADMM)

4 / 51

Background ADMM Parity Polytope & Projection Experiments

Goal: efficient projection onto conv(Pd), “parity polytope”

The parity polytope PPd = conv(Pd), the convex hull of Pd

000

101

110

011

Number of vertices of PPd is 2d−1; if d = 31 about 1 billion
The algorithm we develop can project any vector v ∈ Rd onto
PPd in log-linear time, O(d log d), complexity of sort
We use the projection to develop a new LP decoding technique
via the Alternating Directions Method of Multipliers (ADMM)

5 / 51

Background ADMM Parity Polytope & Projection Experiments

Agenda

Background and Problem Setup

LP decoding formulation: a relaxation of ML

Optimization Framework

The alternating direction method of multipliers (ADMM)

Technical Core

Characterizing the parity polytope
Projecting onto the parity polytope

Experimental results

Various codes & parameter settings
Penalized decoder

6 / 51

Background ADMM Parity Polytope & Projection Experiments

Maximum likelihood (ML) decoding: memoryless channels

Given codebook C and received sequence y

ML decoding picks a codeword x ∈ C to:

maximize Pr(received y | sent x)

m

maximize
∏

i pY |X (yi | xi) subject to x ∈ C

m

maximize
∑

i log pY |X (yi | xi) subject to x ∈ C

7 / 51

Background ADMM Parity Polytope & Projection Experiments

Maximum likelihood (ML) decoding: binary inputs

Objective for binary input channel:∑
i

log pY |X (yi | xi)

=
∑

i

[
log

pY |X (yi |xi = 1)

pY |X (yi |xi = 0)
xi + log pY |X (yi |xi = 0)

]
γi is negative log-likelihood ratio of ith symbol, e.g., if BSC-p:

γi =


log p

1−p if yi = 1

log 1−p
p if yi = 0

ML decoding: linear objective, integer constraints

minimize
∑

i

γixi s.t. x ∈ C

8 / 51

Background ADMM Parity Polytope & Projection Experiments

Specialize to binary linear codes

x ∈ C iff all parity checks have even parity. Factor graph:
Parity Checks

Codeword Bits x1 x2 x3 x4 x5 x6

(x1, x2, x3) (x1, x3, x4) (x2, x5, x6) (x4, x5, x6)

Let d×n matrix Pj select variables neighboring jth parity check

Examples: P1x = (x1 x2 x3), P3x = (x2 x5 x6)

Example:

P3x =

 0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 x =

 x2

x5

x6


9 / 51

Background ADMM Parity Polytope & Projection Experiments

For simplicity: consider graphs of check degree d

Example: d = 3

Parity Checks

Codeword Bits x1 x2 x3 x4 x5 x6

(x1, x2, x3) (x1, x3, x4) (x2, x5, x6) (x4, x5, x6)

Let d×n matrix Pj select variables neighboring jth parity check

Examples: P1x = (x1 x2 x3), P3x = (x2 x5 x6)

Pd = {all length-d binary vectors of even weight}

Binary linear codes

x ∈ C if and only if Pjx ∈ Pd for all j .

10 / 51

Background ADMM Parity Polytope & Projection Experiments

Relax Pd to PPd to get a Linear Program (LP)

ML Decoding: an integer program with a linear objective

minimize
∑

i

γixi

subject to Pjx ∈ Pd ∀ j

(and x ∈ {0, 1}n)

LP Decoding: relax Pd to PPd = conv(Pd) for all j

minimize
∑

i

γixi

subject to Pjx ∈ PPd ∀ j

and x ∈ [0, 1]n

Relaxation due to Feldman, Wainwright, Karger 2005
11 / 51

Background ADMM Parity Polytope & Projection Experiments

Why care about LP decoding?

LP decoding vs. Belief Propagation (BP) decoding:

BP empirically successful,
inherently distributed,
takes full advantage of spare code structure

but, no convergence guarantees & BP suffers from error-floor

LP well understood theoretically,
has convergence guarantees,
not observed to suffer from error-floor,
ML certificate property,
able to tighten relaxation to approach ML performance

but, generic LP solvers don’t efficiently exploit code sparsity

12 / 51

Background ADMM Parity Polytope & Projection Experiments

Why care about projecting onto PPd?

Projecting onto PPd : crucial step in solving the LP using the
Alternating Direction Method of Multipliers (ADMM)

a classic algorithm (mid-70s), efficient, scalable, distributed,
convergence guarantees, numerically robust

decomposes global problem into local subproblems, recombine
iteratively (simple scheduling) to find global solution

simple form today as objective and constraints all linear

cf. Boyd et al. review in FnT in Machine Learning, 2010.

Prior work on low-complexity LP decoding:

earliest low-complexity LP decoding results (Vontobel &
Koetter ’06, ’08) coordinate ascent on “softened” dual

computational complexity linear in blocklength given good
choice of scheduling (Burshtein ’08, ’09)

13 / 51

Background ADMM Parity Polytope & Projection Experiments

Agenda

Background and Problem Setup

LP decoding formulation: a relaxation of ML

Optimization Framework

The alternating direction method of multipliers (ADMM)

Technical Core

Characterizing the parity polytope
Projecting onto the parity polytope

Experimental results

Various codes & parameter settings
Penalized decoder

14 / 51

Background ADMM Parity Polytope & Projection Experiments

Fitting LP Decoding into ADMM template

LP Decoding:
minimize

∑
i

γixi

subject to Pjx ∈ PPd ∀j
x ∈ [0, 1]n

To formulate as an ADMM associate “replicas” zjs with each edge:

minimize
∑

i

γixi

subject to zj = Pjx ∀j
zj ∈ PPd ∀j
x ∈ [0, 1]n

Replicas allow us to decompose into small subproblems
15 / 51

Background ADMM Parity Polytope & Projection Experiments

Lagrangian formulation

minimize
∑

i γixi subject to zj = Pjx ∀j
zj ∈ PPd ∀j
x ∈ [0, 1]n

Start with regular Lagrangian with multipliers λ = {λ1, λ2, . . .}

γTx +
∑

j

λT
j (Pjx− zj),

ADMM works with an augmented Lagrangian:

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

Effect is to smooth the dual problem, accelerating convergence

16 / 51

Background ADMM Parity Polytope & Projection Experiments

Lagrangian formulation

minimize
∑

i γixi subject to zj = Pjx ∀j
zj ∈ PPd ∀j
x ∈ [0, 1]n

Start with regular Lagrangian with multipliers λ = {λ1, λ2, . . .}

γTx +
∑

j

λT
j (Pjx− zj),

ADMM works with an augmented Lagrangian:

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

Effect is to smooth the dual problem, accelerating convergence
17 / 51

Background ADMM Parity Polytope & Projection Experiments

Alternating Direction Method of Multipliers

Round-robin update of x then z then λ until converge:

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

ADMM Update Steps:

xk+1 := argminx∈X Lµ(x, zk , λk)

zk+1 := argminz∈Z Lµ(xk+1, z, λk)

λk+1
j := λk

j + µ
(
Pjx

k+1 − zk+1
j

)
where

X = [0, 1]n

Z = PPd × . . .× PPd︸ ︷︷ ︸
number of checks

Updates: msg-passing on a “Forney-style” factor graph
18 / 51

Background ADMM Parity Polytope & Projection Experiments

ADMM x-Update: turns out to be (almost) averaging

With z and λ fixed the x-updates are:

minimize Lµ(x, zk , λk) subject to x ∈ [0, 1]n where

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

Partial derivatives of a quadratic form (and apply box constraints)

∂

∂xi
Lµ(x, zk , λk)= 0

Get component-wise (averaging) updates:

xi = Π[0,1]

 1

|Nv (i)|

 ∑
j∈Nv (i)

(
z
(i)
j − 1

µ
λ

(i)
j

)
− 1

µ
γi


Nv (i) : set of parity checks neighboring variable i .

z
(i)
j : component of the jth replica associated with xi .

19 / 51

Background ADMM Parity Polytope & Projection Experiments

ADMM x-Update: turns out to be (almost) averaging

With z and λ fixed the x-updates are:

minimize Lµ(x, zk , λk) subject to x ∈ [0, 1]n where

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

Partial derivatives of a quadratic form (and apply box constraints)

∂

∂xi
Lµ(x, zk , λk)= 0

Get component-wise (averaging) updates:

xi = Π[0,1]

 1

|Nv (i)|

 ∑
j∈Nv (i)

(
z
(i)
j − 1

µ
λ

(i)
j

)
− 1

µ
γi


Nv (i) : set of parity checks neighboring variable i .

z
(i)
j : component of the jth replica associated with xi .

20 / 51

Background ADMM Parity Polytope & Projection Experiments

ADMM x-Update: turns out to be (almost) averaging

With z and λ fixed the x-updates are:

minimize Lµ(x, zk , λk) subject to x ∈ [0, 1]n where

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

Partial derivatives of a quadratic form (and apply box constraints)

∂

∂xi
Lµ(x, zk , λk)= 0

Get component-wise (averaging) updates:

xi = Π[0,1]

 1

|Nv (i)|

 ∑
j∈Nv (i)

(
z
(i)
j − 1

µ
λ

(i)
j

)
− 1

µ
γi


Nv (i) : set of parity checks neighboring variable i .

z
(i)
j : component of the jth replica associated with xi .

21 / 51

Background ADMM Parity Polytope & Projection Experiments

ADMM z-Update

Recall:

Lµ(x, z, λ) := γTx +
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

z-update: with x and λ fixed we want to solve

minimize
∑

j

λT
j (Pjx− zj) +

µ

2

∑
j

‖Pjx− zj‖2
2

subject to zj ∈ PPd ∀j

The minimization is separable in j : for each j we need to solve

minimize λT
j (Pjx− zj) +

µ

2
‖Pjx− zj‖2

2

subject to zj ∈ PPd

22 / 51

Background ADMM Parity Polytope & Projection Experiments

ADMM zj -Update: project onto parity polytope

zj -update:

minimize λT
j (Pjx− zj) +

µ

2
‖Pjx− zj‖2

2

subject to zj ∈ PPd

Setting v = Pjx + λj/µ (completing the square) the problem is
equivalent to:

minimize ‖v − z̃‖2
2

subject to z̃ ∈ PPd

The primary challenge in ADMM

The z-update requires projecting onto the parity polytope.

23 / 51

Background ADMM Parity Polytope & Projection Experiments

Agenda

Background and Problem Setup

LP decoding formulation: a relaxation of ML

Optimization Framework

The alternating direction method of multipliers (ADMM)

Technical Core

Characterizing the parity polytope
Projecting onto the parity polytope

Experimental results

Various codes & parameter settings
Penalized decoder

24 / 51

Background ADMM Parity Polytope & Projection Experiments

Prior characterizations of parity polytope

Jeroslow (1975)

Yannakakis (1991) has a quadratic d2 characterization

Feldman et al. (2005) use Yannakakis

“Standard Polytope” in Feldman uses 2d−1 linear constraints
per parity-check, many not active as exploited in “Adaptive
LP Decoding” Taghavi and Siegel (2008)

000

101

110

011

25 / 51

Background ADMM Parity Polytope & Projection Experiments

Most points in PPd have multiple representations

By definition:

y ∈ PPd iff y =
∑

i αiei∑
i αi = 1, αi ≥ 0

ei are even-hamming-weight binary vectors of dimension d

Most y ∈ PPd have multiple representations

Example A (d = 6):

1
1

1/2
1/2
1/4
1/4

 =
1

2



1
1
0
0
0
0

 +
1

4



1
1
1
1
0
0

 +
1

4



1
1
1
1
1
1


26 / 51

Background ADMM Parity Polytope & Projection Experiments

Most points in PPd have multiple representations

By definition:

y ∈ PPd iff y =
∑

i αiei∑
i αi = 1, αi ≥ 0

ei are even-hamming-weight binary vectors of dimension d

Most y ∈ PPd have multiple representations

Example B (d = 6):

1
1

1/2
1/2
1/4
1/4

 =
1

4



1
1
0
0
0
0

 +
1

2



1
1
1
1
0
0

 +
1

4



1
1
0
0
1
1


27 / 51

Background ADMM Parity Polytope & Projection Experiments

There always exists a “two-slice” representation

Two-Slice Lemma:
For any y ∈ PPd there exists a representation y =

∑
i αiei where∑

i αi = 1, αi ≥ 0

ei are of only two weights: r or r + 2 for all i

r is the even integer r = b‖y‖1ceven
Example B is one such representation with d = 6 and r = 2:

1
1

1/2
1/2
1/4
1/4

 =
1

4



1
1
0
0
0
0


︸ ︷︷ ︸

wt=2

+
1

2



1
1
1
1
0
0


︸ ︷︷ ︸

wt=4

+
1

4



1
1
0
0
1
1


︸ ︷︷ ︸

wt=4

28 / 51

Background ADMM Parity Polytope & Projection Experiments

Visualizing properties of PPd : always between two slices

Example: d = 5

(
4
5 , 4

5 , 4
5 , 4

5 , 4
5

)
(11110)

(11101)

(11011)

(10111)(01111)

PP 4
5

(11111)

(00000)

(
2
5 , 2

5 , 2
5 , 2

5 , 2
5

)
(10100)

(11000)

PP 2
5

Let PPr
d = conv{ei | ‖ei‖1 = r}, a “permutohedron”

⇒ easy to characterize using majorization

Two-slice restated: Any y ∈ PPd is sandwiched between two
permutohedrons PPr

d and PPr+2
d where r = b‖y‖1ceven

29 / 51

Background ADMM Parity Polytope & Projection Experiments

Majorization: definition & application to PPr
d

Definition: Let u and w be d-vectors sorted in decreasing order.
The vector w is said to majorize u if

d∑
k=1

uk =
d∑

k=1

wk

q∑
k=1

uk ≤
q∑

k=1

wk ∀ q, 1 ≤ q < d

Specialize to PPr
d where w = [1 1 . . . 1︸ ︷︷ ︸

r

0 0 . . . 0︸ ︷︷ ︸
d−r

]

d∑
k=1

uk = r

q∑
k=1

uk ≤ min(q, r) ∀ q, 1 ≤ q < d

30 / 51

Background ADMM Parity Polytope & Projection Experiments

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of w (the
permutohedron defined by w) if and only if w majorizes u.

u =
∑

i

βiΣiw

where Σi are permutation matrices and βi are weightings

Proving two-slice lemma:

Use above to characterize each PPr
d , r even, r ≤ d .

Express y as a weighted combination of points in PPr
d ,

1 ≤ r ≤ d .

Show you can set all weightings to zeros except those on
r = b‖y‖1ceven and r = b‖y‖1ceven + 2.

Note that finding r is trivial.

Next: use two-slice lemma to develop projection operation

31 / 51

Background ADMM Parity Polytope & Projection Experiments

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of w (the
permutohedron defined by w) if and only if w majorizes u.

u =
∑

i

βiΣiw

where Σi are permutation matrices and βi are weightings

Proving two-slice lemma:

Use above to characterize each PPr
d , r even, r ≤ d .

Express y as a weighted combination of points in PPr
d ,

1 ≤ r ≤ d .

Show you can set all weightings to zeros except those on
r = b‖y‖1ceven and r = b‖y‖1ceven + 2.

Note that finding r is trivial.

Next: use two-slice lemma to develop projection operation

32 / 51

Background ADMM Parity Polytope & Projection Experiments

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of w (the
permutohedron defined by w) if and only if w majorizes u.

u =
∑

i

βiΣiw

where Σi are permutation matrices and βi are weightings

Proving two-slice lemma:

Use above to characterize each PPr
d , r even, r ≤ d .

Express y as a weighted combination of points in PPr
d ,

1 ≤ r ≤ d .

Show you can set all weightings to zeros except those on
r = b‖y‖1ceven and r = b‖y‖1ceven + 2.

Note that finding r is trivial.

Next: use two-slice lemma to develop projection operation
33 / 51

Background ADMM Parity Polytope & Projection Experiments

Projecting onto the parity polytope

Desired projection:

min ‖v − y‖2
2

s.t. y ∈ PPd

Use two-slice lemma to reformulate as:

min ‖v − αs− (1− α)t‖2
2

s.t. 0 ≤ α ≤ 1, s ∈ PPr
d , t ∈ PPr+2

d

We also show (where Π(·) is shorthand for projection):⌊
‖Π[0,1]d (v)‖1

⌋
even︸ ︷︷ ︸

r

≤ ‖ΠPPd
(v)‖1 ≤

⌊
‖Π[0,1]d (v)‖1

⌋
even

+ 2︸ ︷︷ ︸
r+2

in other words, it is trivial to identify the two slices

34 / 51

Background ADMM Parity Polytope & Projection Experiments

Projecting onto the parity polytope

Desired projection:

min ‖v − y‖2
2

s.t. y ∈ PPd

Use two-slice lemma to reformulate as:

min ‖v − αs− (1− α)t‖2
2

s.t. 0 ≤ α ≤ 1, s ∈ PPr
d , t ∈ PPr+2

d

We also show (where Π(·) is shorthand for projection):⌊
‖Π[0,1]d (v)‖1

⌋
even︸ ︷︷ ︸

r

≤ ‖ΠPPd
(v)‖1 ≤

⌊
‖Π[0,1]d (v)‖1

⌋
even

+ 2︸ ︷︷ ︸
r+2

in other words, it is trivial to identify the two slices

35 / 51

Background ADMM Parity Polytope & Projection Experiments

Projecting onto the parity polytope

Desired projection:

min ‖v − y‖2
2

s.t. y ∈ PPd

Use two-slice lemma to reformulate as:

min ‖v − αs− (1− α)t‖2
2

s.t. 0 ≤ α ≤ 1, s ∈ PPr
d , t ∈ PPr+2

d

We also show (where Π(·) is shorthand for projection):⌊
‖Π[0,1]d (v)‖1

⌋
even︸ ︷︷ ︸

r

≤ ‖ΠPPd
(v)‖1 ≤

⌊
‖Π[0,1]d (v)‖1

⌋
even

+ 2︸ ︷︷ ︸
r+2

in other words, it is trivial to identify the two slices
36 / 51

Background ADMM Parity Polytope & Projection Experiments

Use majorization to simplify problem further

Assume w.l.o.g that v is sorted and let

z = ΠPPd
(v) = arg min ‖v − αs− (1− α)t‖2

2

s.t. 0 ≤ α ≤ 1, s ∈ PPr
d , t ∈ PPr+2

d

Constraint set can be restated as

(i) 0 ≤ α ≤ 1

(ii)
d∑

k=1

zk = αr + (1− α)(r + 2)

(iii)

q∑
k=1

zk ≤ α min(q, r) + (1− α) min(q, r + 2) ∀ q, 1 ≤ q < d

(iv) z1 ≥ z2 ≥ . . . ≥ zd

37 / 51

Background ADMM Parity Polytope & Projection Experiments

Combine knowledge of r with first two constraints

From (ii) we have

d∑
k=1

zk = αr + (1− α)(r + 2) (∗)

Now we apply the bound from (i) on α, 0 ≤ α ≤ 1 to get

r ≤
d∑

k=1

zk ≤ r + 2

38 / 51

Background ADMM Parity Polytope & Projection Experiments

Deal with third constraint

Consider the partial sums of the sorted vectors

q∑
k=1

zk ≤ α min(q, r) + (1− α) min(q, r + 2) ∀ q, 1 ≤ q < d

For q ≤ r ineq. satisfied by box constraints: 0 ≤ zk ≤ 1 ∀k
For q ≥ r + 2 inequalities also satisfied since

q∑
k=1

zk ≤
d∑

k=1

zk = αr+(1−α)(r+2) (∗)

Hence only need to deal with q = r + 1, which specializes as

r+1∑
k=1

zk ≤ αr + (1− α)(r + 1) = r + (1− α) (∗∗)

39 / 51

Background ADMM Parity Polytope & Projection Experiments

Third constraint (continued...)

Solve (∗) for α to find

α = 1 +
r −

∑d
k=1 zk

2
.

Finally, substitute into (∗∗) to get

r+1∑
k=1

zk ≤ r + (1− α)

= r −
r −

∑d
k=1 zk

2

Which becomes

r+1∑
k=1

zk −
d∑

k=r+2

zk ≤ r

40 / 51

Background ADMM Parity Polytope & Projection Experiments

Reformulated projection as a quadratic program (QP)

min ‖v − αs− (1− α)t‖2
2

s.t. 0 ≤ α ≤ 1

s ∈ PPr
d ,

t ∈ PPr+2
d

min ‖v − z‖2
2

s.t. 1 ≥ zk ≥ 0 ∀ k

z1 ≥ z2 ≥ . . . ≥ zd

r + 2 ≥
∑
k

zk ≥ r

r ≥
r+1∑
k=1

zk −
d∑

k=r+2

zk

for the QP the KKT conditions are necessary and sufficient
we develop a linear-time water-filling type algorithm that
determines a solution satisfying the KKT conditions

z∗ = Π[0,1]d
(
v − β[1 . . . 1︸ ︷︷ ︸

r+1

−1 . . .− 1︸ ︷︷ ︸
d−r−1

]
)

some βopt ∈ [0, βmax]

41 / 51

Background ADMM Parity Polytope & Projection Experiments

Reformulated projection as a quadratic program (QP)

min ‖v − αs− (1− α)t‖2
2

s.t. 0 ≤ α ≤ 1

s ∈ PPr
d ,

t ∈ PPr+2
d

min ‖v − z‖2
2

s.t. 1 ≥ zk ≥ 0 ∀ k

z1 ≥ z2 ≥ . . . ≥ zd

r + 2 ≥
∑
k

zk ≥ r

r ≥
r+1∑
k=1

zk −
d∑

k=r+2

zk

for the QP the KKT conditions are necessary and sufficient
we develop a linear-time water-filling type algorithm that
determines a solution satisfying the KKT conditions

z∗ = Π[0,1]d
(
v − β[1 . . . 1︸ ︷︷ ︸

r+1

−1 . . .− 1︸ ︷︷ ︸
d−r−1

]
)

some βopt ∈ [0, βmax]

42 / 51

Background ADMM Parity Polytope & Projection Experiments

Agenda

Background and Problem Setup

LP decoding formulation: a relaxation of ML

Optimization Framework

The alternating direction method of multipliers (ADMM)

Technical Core

Characterizing the parity polytope
Projecting onto the parity polytope

Experimental results

Various codes & parameter settings
Penalized decoder

43 / 51

Background ADMM Parity Polytope & Projection Experiments

Performance results: two LDPC codes over AWGN
12

1 1.5 2 2.5 3
10−10

10−8

10−6

10−4

10−2

100

ADMM
BP decoding (Ryan and Lin)
BP decoding (Mackay)
Non-saturating BP

Eb/N0 (dB)

w
or
d-
er
ro
r-r
at
e
(W
ER
)

Fig. 3. Word error rate (WER) of the [2640, 1320] “Margulis” LDPC
code used on the AWGN channel plotted as a function of signal-to-noise
ratio (SNR). The WER performance of ADMM is compared to that of non-
saturating sum-product BP, as well as to results for (saturating) sum-product
BP from Ryan and Lin [48] and from MacKay and Postol [13].

objective function. Therefore, one should not expect identical
performance, as the simulations demonstrate.
The second aspect to note is that, as in the prior work, we do

not observe an error floor in ADMM decoding at WERs above
10−10. When decoding of this code using the non-saturating
version of sum-product, we observe a weak error floor at
WERs near 10−9, in which regime the waterfall of ADMM is
continuing to steepen. In this regime we found that the non-
saturating BP decoder is oscillating, as discussed in [54] [55].
We note that we have not simulated WERs at 10−10 or lower
due to the limitation of our computational resources. It would
be extremely interesting to see the performance of ADMM
decoding at WERs lower than 10−10.
Figure 4 presents simulation results for the rate-0.77 length-

1057 code. In this simulation, all data points are based on
more than 200 errors except for the ADMM data at SNR =
5 dB, where 29 errors are observed. In addition we plot an
estimated lower bound on maximum likelihood (ML) decoding
performances. The lower bound is estimated in the following
way. In the ADMM decoding simulations we round any non-
integer solution obtained from the ADMM decoder to produce
a codeword estimate. If the decoder produces a decoding error,
i.e., if the estimate does not match the transmitted codeword,
we check if the estimate is a valid codeword. If the estimate
satisfies all the parity checks (and is therefore a codeword)
we also compare the probability of the estimate given the
channel observations with the that of the transmitted codeword
given the channel observations. If the probability of estimate
is greater than that of the transmitted codeword we know that
an ML decoder would also be in error. All other events are
counted as ML successes (hence the estimated lower bound on
ML performance). Similar to the Margulis code, Fig. 4 shows
that for this code the ADMM decoder displays no signs of
an error floor, while the BP decoder does. Further, ADMM is

2.5 3 3.5 4 4.5 5
10−10

10−8

10−6

10−4

10−2

100

ADMM
Non-saturating BP
ML lower bound

Eb/N0 (dB)

w
or
d-
er
ro
r-r
at
e
(W
ER
)

Fig. 4. Word error rate (WER) of the [1057, 813] LDPC code used on the
AWGN channel plotted as a function of signal-to-noise ratio (SNR). The WER
performance of ADMM is compared to that of non-saturating sum-product BP,
as well as to an estimated lower-bound on ML decoding.

approaching the ML error lower bound at high SNRs.
In Fig. 5, 6 and 7, we present comparisons between ADMM

decoding and BP decoding using an ensemble of 100 randomly
generated (3, 6)-regular LDPC codes of length 1002. We
eliminated codes that have parallel edges, thus all codes have
girth of at least four. However, cycles of length four or greater
are not eliminated. We will use this ensemble to understand
the error performance and the computational performance of
LP and of BP decoding. For this study we simulate the BSC
in order to match the settings used in [24]. All data points
presented are averaged across the 100 codes in the ensemble.
For each code, we collect more than 5 word-errors.
In Fig. 5 we plot the average word-error-rate (WER) and bit-

error-rate (BER) observed for both BP and ADMM decoding.
We observe similar comparisons between ADMM and BP
decoding found in previous examples. In particular, note the
error floor flare observable in BP at cross-over probabilities of
about 0.045 and below. No such flare is evident in ADMM.
In Fig. 6 we plot a comparison of the iteration requirements

of ADMM and BP decoding for the same ensemble of codes.
We plot three curves for each decoder: the average number of
iterations required to decode, the average number of iterations
required to decode when decoding is correct, and the average
number required when decoding is erroneous. We observe
that ADMM decoding needs more iterations to decode than
BP does. However, the gap between the decoders is roughly
constant (on this log scale) meaning the ratio of iterations
required is roughly constant. Thus, the trend for increased
iterations at higher crossovers is the same for both decoders.
Further, both decoder reach the maximum number of allowable
iterations when errors occur. An important observations is that
although we allow up to 1000 iterations in our simulations, the
average number of iterations required by ADMM for correct
decoding events is quite small at all SNRs. This means that
ADMM converges quickly to a correct codeword, but more

length-2640, rate-0.5

(3, 6)-regular LDPC

non-saturating BP per
Butler & Siegel (Allerton ’11)

12

1 1.5 2 2.5 3
10−10

10−8

10−6

10−4

10−2

100

ADMM
BP decoding (Ryan and Lin)
BP decoding (Mackay)
Non-saturating BP

Eb/N0 (dB)

w
or
d-
er
ro
r-r
at
e
(W
ER
)

Fig. 3. Word error rate (WER) of the [2640, 1320] “Margulis” LDPC
code used on the AWGN channel plotted as a function of signal-to-noise
ratio (SNR). The WER performance of ADMM is compared to that of non-
saturating sum-product BP, as well as to results for (saturating) sum-product
BP from Ryan and Lin [48] and from MacKay and Postol [13].

objective function. Therefore, one should not expect identical
performance, as the simulations demonstrate.
The second aspect to note is that, as in the prior work, we do

not observe an error floor in ADMM decoding at WERs above
10−10. When decoding of this code using the non-saturating
version of sum-product, we observe a weak error floor at
WERs near 10−9, in which regime the waterfall of ADMM is
continuing to steepen. In this regime we found that the non-
saturating BP decoder is oscillating, as discussed in [54] [55].
We note that we have not simulated WERs at 10−10 or lower
due to the limitation of our computational resources. It would
be extremely interesting to see the performance of ADMM
decoding at WERs lower than 10−10.
Figure 4 presents simulation results for the rate-0.77 length-

1057 code. In this simulation, all data points are based on
more than 200 errors except for the ADMM data at SNR =
5 dB, where 29 errors are observed. In addition we plot an
estimated lower bound on maximum likelihood (ML) decoding
performances. The lower bound is estimated in the following
way. In the ADMM decoding simulations we round any non-
integer solution obtained from the ADMM decoder to produce
a codeword estimate. If the decoder produces a decoding error,
i.e., if the estimate does not match the transmitted codeword,
we check if the estimate is a valid codeword. If the estimate
satisfies all the parity checks (and is therefore a codeword)
we also compare the probability of the estimate given the
channel observations with the that of the transmitted codeword
given the channel observations. If the probability of estimate
is greater than that of the transmitted codeword we know that
an ML decoder would also be in error. All other events are
counted as ML successes (hence the estimated lower bound on
ML performance). Similar to the Margulis code, Fig. 4 shows
that for this code the ADMM decoder displays no signs of
an error floor, while the BP decoder does. Further, ADMM is

2.5 3 3.5 4 4.5 5
10−10

10−8

10−6

10−4

10−2

100

ADMM
Non-saturating BP
ML lower bound

Eb/N0 (dB)

w
or
d-
er
ro
r-r
at
e
(W
ER
)

Fig. 4. Word error rate (WER) of the [1057, 813] LDPC code used on the
AWGN channel plotted as a function of signal-to-noise ratio (SNR). The WER
performance of ADMM is compared to that of non-saturating sum-product BP,
as well as to an estimated lower-bound on ML decoding.

approaching the ML error lower bound at high SNRs.
In Fig. 5, 6 and 7, we present comparisons between ADMM

decoding and BP decoding using an ensemble of 100 randomly
generated (3, 6)-regular LDPC codes of length 1002. We
eliminated codes that have parallel edges, thus all codes have
girth of at least four. However, cycles of length four or greater
are not eliminated. We will use this ensemble to understand
the error performance and the computational performance of
LP and of BP decoding. For this study we simulate the BSC
in order to match the settings used in [24]. All data points
presented are averaged across the 100 codes in the ensemble.
For each code, we collect more than 5 word-errors.
In Fig. 5 we plot the average word-error-rate (WER) and bit-

error-rate (BER) observed for both BP and ADMM decoding.
We observe similar comparisons between ADMM and BP
decoding found in previous examples. In particular, note the
error floor flare observable in BP at cross-over probabilities of
about 0.045 and below. No such flare is evident in ADMM.
In Fig. 6 we plot a comparison of the iteration requirements

of ADMM and BP decoding for the same ensemble of codes.
We plot three curves for each decoder: the average number of
iterations required to decode, the average number of iterations
required to decode when decoding is correct, and the average
number required when decoding is erroneous. We observe
that ADMM decoding needs more iterations to decode than
BP does. However, the gap between the decoders is roughly
constant (on this log scale) meaning the ratio of iterations
required is roughly constant. Thus, the trend for increased
iterations at higher crossovers is the same for both decoders.
Further, both decoder reach the maximum number of allowable
iterations when errors occur. An important observations is that
although we allow up to 1000 iterations in our simulations, the
average number of iterations required by ADMM for correct
decoding events is quite small at all SNRs. This means that
ADMM converges quickly to a correct codeword, but more

length-1057, rate-0.77

(3, 13)-regular LDPC

observable error floor

44 / 51

Background ADMM Parity Polytope & Projection Experiments

Performance results: random LDPC ensemble over BSC
13

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10−10

10−8

10−6

10−4

10−2

100

ADMM, WER
BP, WER
ADMM, BER
BP, BER

crossover probability

er
ro
r
ra
te

Fig. 5. Word error rate (WER) and bit-error-rate (BER) of the (3, 6)-regular
random LDPC code used on the BSC plotted as a function of crossover
probability. The error rate performance of ADMM is compared to that of
saturating sum-product BP. Results are averaged over 100 randomly generated
codes.

slowly to a pseudocodeword. We discuss further the effect of
choice of the maximum number of iterations in Sec. V-B.
In Fig. 7 we plot the time comparisons between ADMM

and BP decoding using the same methodology. For this figure
we plot results for the saturating version of BP where we have
tried to optimized our implementations. This decoder executes
much more quickly than our implementation of non-saturating
BP. Both decoders are simulated on the same CPU config-
urations. We make two observations. First, when measured
in terms of execution time, the computational complexity of
ADMM and BP are similar. This observation holds for all
crossover probabilities simulated. Second, ADMM decoding
is faster than BP when decoding is correct. Combining these
results with those on iteration count from Fig. 6 we conclude
that the execution time for each iteration of ADMM is shorter
than for BP.
Given the importance of error floor effects in high reliability

applications, and the outcomes of our simulations, we now
make some observations. One point demonstrated by these
experiments, in particular by the simulation of the Margulis
code (and also argued in [50], [51]) is that numerical precision
effects can dramatically affect code performance in the high
SNR regime. From a practical point of view, a real-world
implementation would use fixed precision arithmetic. Thus,
understanding the behavior of ADMM decoding under finite
precision is extremely important.
A second point made by comparing these codes is that

the performance of an algorithm, e.g., non-saturating BP, can
vary dramatically from code to code (Margulis vs. 1057),
and the performance of a code can vary dramatically from
algorithm to algorithm (BP vs. ADMM). For each algorithm
we might think about three types of codes [56]. The first
(type-A) would consist of codes that do not have any trapping
sets, i.e., do not display an error floor, even for low-precision

0.02 0.03 0.04 0.05 0.06 0.07 0.08
100

101

102

103

crossover probability

#
of
ite
ra
tio
ns

ADMM, erroneous
BP, erroneous
ADMM, average
BP, average
ADMM, correct
BP, correct

Fig. 6. Number of iterations of the (3, 6)-regular random LDPC code used
on the BSC plotted as a function of crossover probability. The number of
iterations of ADMM is compared to that of saturating sum-product BP. Results
are averaged over 100 randomly generated codes.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10−3

10−2

10−1

100

crossover probability

ex
ec
ut
io
n
tim
e
(s
ec
)

ADMM, erroneous
BP, erroneous
ADMM, average
BP, average
ADMM, correct
BP, correct

Fig. 7. Execution time of the (3, 6)-regular random LDPC code used on
the BSC plotted as a function of crossover probability. The execution time
of ADMM is compared to that of saturating sum-product BP. Results are
averaged over 100 randomly generated codes.

implementations. The second (type-B) would consist of codes
whose behavior changes with precision (e.g., the Margulis
code). The final (type-C) would consist of codes that have
trapping sets even under infinite precision (the length-1057
code may belong to this set). Under this taxonomy there
are two natural strategies to pursue. The first is to design
codes that fall in the first class. This is the approach taken
in, e.g., [57] [58] [16] [59] [18], where codes of large-girth
are sought. The second is to design improved algorithms
that enlarge the set of codes that fall into the first class.
This is the approach taken in this paper. Some advantageous
numerical properties of ADMM are as follows: First, ADMM
has rigorous convergence guarantees [27]. Second, ADMM has

results averaged over ensemble of 100 codes

each a randomly generated length-1002 (3, 6)-regular LDPC

all codes had girth at least 4

45 / 51

Background ADMM Parity Polytope & Projection Experiments

Random ensemble: iteration count & execution time
13

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10−10

10−8

10−6

10−4

10−2

100

ADMM, WER
BP, WER
ADMM, BER
BP, BER

crossover probability

er
ro
r
ra
te

Fig. 5. Word error rate (WER) and bit-error-rate (BER) of the (3, 6)-regular
random LDPC code used on the BSC plotted as a function of crossover
probability. The error rate performance of ADMM is compared to that of
saturating sum-product BP. Results are averaged over 100 randomly generated
codes.

slowly to a pseudocodeword. We discuss further the effect of
choice of the maximum number of iterations in Sec. V-B.
In Fig. 7 we plot the time comparisons between ADMM

and BP decoding using the same methodology. For this figure
we plot results for the saturating version of BP where we have
tried to optimized our implementations. This decoder executes
much more quickly than our implementation of non-saturating
BP. Both decoders are simulated on the same CPU config-
urations. We make two observations. First, when measured
in terms of execution time, the computational complexity of
ADMM and BP are similar. This observation holds for all
crossover probabilities simulated. Second, ADMM decoding
is faster than BP when decoding is correct. Combining these
results with those on iteration count from Fig. 6 we conclude
that the execution time for each iteration of ADMM is shorter
than for BP.
Given the importance of error floor effects in high reliability

applications, and the outcomes of our simulations, we now
make some observations. One point demonstrated by these
experiments, in particular by the simulation of the Margulis
code (and also argued in [50], [51]) is that numerical precision
effects can dramatically affect code performance in the high
SNR regime. From a practical point of view, a real-world
implementation would use fixed precision arithmetic. Thus,
understanding the behavior of ADMM decoding under finite
precision is extremely important.
A second point made by comparing these codes is that

the performance of an algorithm, e.g., non-saturating BP, can
vary dramatically from code to code (Margulis vs. 1057),
and the performance of a code can vary dramatically from
algorithm to algorithm (BP vs. ADMM). For each algorithm
we might think about three types of codes [56]. The first
(type-A) would consist of codes that do not have any trapping
sets, i.e., do not display an error floor, even for low-precision

0.02 0.03 0.04 0.05 0.06 0.07 0.08
100

101

102

103

crossover probability

#
of
ite
ra
tio
ns

ADMM, erroneous
BP, erroneous
ADMM, average
BP, average
ADMM, correct
BP, correct

Fig. 6. Number of iterations of the (3, 6)-regular random LDPC code used
on the BSC plotted as a function of crossover probability. The number of
iterations of ADMM is compared to that of saturating sum-product BP. Results
are averaged over 100 randomly generated codes.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10−3

10−2

10−1

100

crossover probability

ex
ec
ut
io
n
tim
e
(s
ec
)

ADMM, erroneous
BP, erroneous
ADMM, average
BP, average
ADMM, correct
BP, correct

Fig. 7. Execution time of the (3, 6)-regular random LDPC code used on
the BSC plotted as a function of crossover probability. The execution time
of ADMM is compared to that of saturating sum-product BP. Results are
averaged over 100 randomly generated codes.

implementations. The second (type-B) would consist of codes
whose behavior changes with precision (e.g., the Margulis
code). The final (type-C) would consist of codes that have
trapping sets even under infinite precision (the length-1057
code may belong to this set). Under this taxonomy there
are two natural strategies to pursue. The first is to design
codes that fall in the first class. This is the approach taken
in, e.g., [57] [58] [16] [59] [18], where codes of large-girth
are sought. The second is to design improved algorithms
that enlarge the set of codes that fall into the first class.
This is the approach taken in this paper. Some advantageous
numerical properties of ADMM are as follows: First, ADMM
has rigorous convergence guarantees [27]. Second, ADMM has

13

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10−10

10−8

10−6

10−4

10−2

100

ADMM, WER
BP, WER
ADMM, BER
BP, BER

crossover probability
er
ro
r
ra
te

Fig. 5. Word error rate (WER) and bit-error-rate (BER) of the (3, 6)-regular
random LDPC code used on the BSC plotted as a function of crossover
probability. The error rate performance of ADMM is compared to that of
saturating sum-product BP. Results are averaged over 100 randomly generated
codes.

slowly to a pseudocodeword. We discuss further the effect of
choice of the maximum number of iterations in Sec. V-B.
In Fig. 7 we plot the time comparisons between ADMM

and BP decoding using the same methodology. For this figure
we plot results for the saturating version of BP where we have
tried to optimized our implementations. This decoder executes
much more quickly than our implementation of non-saturating
BP. Both decoders are simulated on the same CPU config-
urations. We make two observations. First, when measured
in terms of execution time, the computational complexity of
ADMM and BP are similar. This observation holds for all
crossover probabilities simulated. Second, ADMM decoding
is faster than BP when decoding is correct. Combining these
results with those on iteration count from Fig. 6 we conclude
that the execution time for each iteration of ADMM is shorter
than for BP.
Given the importance of error floor effects in high reliability

applications, and the outcomes of our simulations, we now
make some observations. One point demonstrated by these
experiments, in particular by the simulation of the Margulis
code (and also argued in [50], [51]) is that numerical precision
effects can dramatically affect code performance in the high
SNR regime. From a practical point of view, a real-world
implementation would use fixed precision arithmetic. Thus,
understanding the behavior of ADMM decoding under finite
precision is extremely important.
A second point made by comparing these codes is that

the performance of an algorithm, e.g., non-saturating BP, can
vary dramatically from code to code (Margulis vs. 1057),
and the performance of a code can vary dramatically from
algorithm to algorithm (BP vs. ADMM). For each algorithm
we might think about three types of codes [56]. The first
(type-A) would consist of codes that do not have any trapping
sets, i.e., do not display an error floor, even for low-precision

0.02 0.03 0.04 0.05 0.06 0.07 0.08
100

101

102

103

crossover probability

#
of
ite
ra
tio
ns

ADMM, erroneous
BP, erroneous
ADMM, average
BP, average
ADMM, correct
BP, correct

Fig. 6. Number of iterations of the (3, 6)-regular random LDPC code used
on the BSC plotted as a function of crossover probability. The number of
iterations of ADMM is compared to that of saturating sum-product BP. Results
are averaged over 100 randomly generated codes.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10−3

10−2

10−1

100

crossover probability
ex
ec
ut
io
n
tim
e
(s
ec
)

ADMM, erroneous
BP, erroneous
ADMM, average
BP, average
ADMM, correct
BP, correct

Fig. 7. Execution time of the (3, 6)-regular random LDPC code used on
the BSC plotted as a function of crossover probability. The execution time
of ADMM is compared to that of saturating sum-product BP. Results are
averaged over 100 randomly generated codes.

implementations. The second (type-B) would consist of codes
whose behavior changes with precision (e.g., the Margulis
code). The final (type-C) would consist of codes that have
trapping sets even under infinite precision (the length-1057
code may belong to this set). Under this taxonomy there
are two natural strategies to pursue. The first is to design
codes that fall in the first class. This is the approach taken
in, e.g., [57] [58] [16] [59] [18], where codes of large-girth
are sought. The second is to design improved algorithms
that enlarge the set of codes that fall into the first class.
This is the approach taken in this paper. Some advantageous
numerical properties of ADMM are as follows: First, ADMM
has rigorous convergence guarantees [27]. Second, ADMM has

iteration count

ADMM & BP for:
(i) errors, (ii) avg, (iii) correct

execution time

ADMM & BP for
(i) errors, (ii) avg, (iii) correct

46 / 51

Background ADMM Parity Polytope & Projection Experiments

Understanding LP decoding failures

LP decoding fails to a “pseudocodeword”, a non-integer vertex of
the fundamental polytope introduced when we relaxed each of the
various integer constraints Pd to PPd in

min γTx s.t. Pjx ∈ PPd ∀ j, x ∈ [0, 1]n

pseudo−codeword

lower cost

true codewords

47 / 51

Background ADMM Parity Polytope & Projection Experiments

`2-penalized ADMM

In order to eliminate pseudocodewords, introduce an `2-penalty to
push the solution towards an integral solution, now solve:

min γTx−c‖x− 0.5‖2 s.t. Pjx ∈ PPd ∀ j, x ∈ [0, 1]n

Add term to objective to penalize non-integer solutions

1 1.5 2 2.5 3

10−8

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized LP

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized BP

Result:

• Modified algorithm has msg-passing structure, runs as fast as BP
• Closes gap to BP
• We continue not to observe an error floor

Try it yourself! Documented code at
https://sites.google.com/site/xishuoliu/codes

13 / 13

[2640,1320] “Margulis” LDPC

Add term to objective to penalize non-integer solutions

1 1.5 2 2.5 3

10−8

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized LP

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized BP

Result:

• Modified algorithm has msg-passing structure, runs as fast as BP
• Closes gap to BP
• We continue not to observe an error floor

Try it yourself! Documented code at
https://sites.google.com/site/xishuoliu/codes

13 / 13

[13298, 3296] rate-0.25 LDPC

48 / 51

Background ADMM Parity Polytope & Projection Experiments

`2-penalized ADMM

In order to eliminate pseudocodewords, introduce an `2-penalty to
push the solution towards an integral solution, now solve:

min γTx−c‖x− 0.5‖2 s.t. Pjx ∈ PPd ∀ j, x ∈ [0, 1]nAdd term to objective to penalize non-integer solutions

1 1.5 2 2.5 3

10−8

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized LP

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized BP

Result:

• Modified algorithm has msg-passing structure, runs as fast as BP
• Closes gap to BP
• We continue not to observe an error floor

Try it yourself! Documented code at
https://sites.google.com/site/xishuoliu/codes

13 / 13

[2640,1320] “Margulis” LDPC

Add term to objective to penalize non-integer solutions

1 1.5 2 2.5 3

10−8

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized LP

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

10−6

10−4

10−2

100

E b/N 0

w
or

d−
er

ro
r−

ra
te

 (W
ER

)

LP decoding
sum−product BP
L2 penalized BP

Result:

• Modified algorithm has msg-passing structure, runs as fast as BP
• Closes gap to BP
• We continue not to observe an error floor

Try it yourself! Documented code at
https://sites.google.com/site/xishuoliu/codes

13 / 13

[13298, 3296] rate-0.25 LDPC
49 / 51

Background ADMM Parity Polytope & Projection Experiments

Recap & wrap-up

Recap:

LP decoding via ADMM
main hurdle: efficient projection onto the parity polytope,
complexity of sort
simple scheduling and complexity linear in the block-length
roughly same execution time as BP
further improvements via `2-penalty (alternately `1-penalty)
Try it yourself! Documented code available at

https://sites.google.com/site/xishuoliu/codes

Things to do:

error floor analysis (LP & penalized)
effects of finite precision
how to implement in hardware
understand BP/LP low-SNR gap (without penalty)
other codes: non-binary codes, permutation-based codes

50 / 51

Background ADMM Parity Polytope & Projection Experiments

2014 IEEE North American School on Information Theory

To be held at the Fields Institute at the University of Toronto
18-21 June 2014

THE FIELDS INSTITUTE

ANNUAL REPORT
2011–2012

51 / 51

