Data Compression at High Sampling Rates

David L. Neuhoff

CSP Seminar
ECE, University of Michigan

Nov. 7, 2013
Collaborators

Mingyan Liu

Daniel Marco

Sandeep Pradhan
Field gathering:
Sampling, Encoding, Transporting, Reconstructing
Field-Gathering Wireless Sensor Network

- Sensors sample a field in two-dim’l region at discrete sequence of times.
- Each sensor source encodes its time-sequence of samples. This requires distributed lossy source coding.
- Communication network conveys bits to collector.
- Decoder at collector reconstructs snapshots of field (not just at sensor locations).
- We focus here on performance of source coding, not communication network.
- Competing Goals: minimize
 - rate = avg. number of bits per unit area per snapshot
 - MSE distortion, integrated over entire region
Centralized Coding

\[X_{1,1}, \ldots, X_{1,L} \rightarrow \text{bits} \rightarrow Y_{1,1}, \ldots, Y_{1,L}\]
\[X_{2,1}, \ldots, X_{2,L} \rightarrow \text{bits} \rightarrow Y_{2,1}, \ldots, Y_{2,L}\]
\[
\cdots \closedcaption{}
Principal Goals and Questions

Goal: design encoders and decoder to minimize coding rate subject to MSE distortion being at most target value d.

\[
\text{coding rate} = \text{bits/unit-area/time step} = \text{sampling rate} \times \text{coding rate per sample} = \text{(sensors/unit area)} \times \text{(bits/sensor/time step)}
\]

For a given random field model X, class of coding schemes C, sampling rate S, and target distortion d, the coding rate per sample can be as small as the operational rate-distortion function $R_{X,C,S}(d)$.

Hence, given X, C, S, d, coding rate can be as small as

\[
S \times R_{X,C,S}(d)
\]

Goal: For different code classes C, find limit of $S \times R_{X,C,S}(d)$ for large S.

Question: Like which of the following does $S \times R_{X,C,S}(d)$ behave?

\[
\begin{align*}
\text{S} & \quad \text{S} & \quad \text{S}
\end{align*}
\]
Simplify to 1-dimensional, continuous-time signals

Not so much theory is known for source coding for continuous-time sources, even in 1-dimension
Four Classes of Lossy Source Codes to be Used with High-Rate Sampling

We’ll analyze the following classes for stationary, Gaussian, continuous-time sources

- Transform + VQ
 (centralized & optimal)

- Scalar quantization + entropy-rate coding:
 (centralized or distributed, no transform, suboptimal)

- Distributed VQ:
 (no transform, suboptimal)

- Transform + scalar quantization:
 (centralized, suboptimal)
Ideas Leading to a Conjecture

For continuous-time source
- Best performance of lossy source codes is given by Shannon rate-distortion function $R_{sh}(d)$.
- For Gaussian source, a parametric expression for $R_{sh}(d)$ is known (Kolmogorov).
- Performance as good as $R_{sh}(d)$ can be attained (to within ε) by sampling at very high rate, coding samples, and reconstructing cont.-time signal.

For discrete-time (sampled) source
- Best rate-distortion performance with distributed coding is not known, except for two Gaussian sources.
- Uniform scalar quantization plus entropy-rate coding has performance close to $R_{sh}(d)$ for any discrete-time source.
- Entropy-rate coding can be done in distributed fashion with as small rate as centralized coding. (Slepian-Wolf coding)

Conjecture: uniform scalar quantization + distributed entropy-rate coding is distributed coding system that works well for cont-time source with high sampling rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependences to mitigate large sampling rate.)
Ideas Leading to a Conjecture

For continuous-time source

– Best performance of lossy source codes is given by Shannon rate-distortion function $R_{sh}(d)$.
– For Gaussian source, a parametric expression for $R_{sh}(d)$ is known (Kolmogorov).
– Performance as good as $R_{sh}(d)$ can be attained (to within ε) by sampling at very high rate, coding samples, and reconstructing cont.-time signal.

For discrete-time (sampled) source

– Best rate-distortion performance with distributed coding is not known, except for two Gaussian sources.
– Uniform scalar quantization plus entropy-rate coding has performance close to $R_{sh}(d)$ for any discrete-time source.
– Entropy-rate coding can be done in distributed fashion with as small rate as centralized coding. (Slepian-Wolf coding)

Conjecture: uniform scalar quantization + distributed entropy-rate coding is distributed coding system that works well for cont-time source with high sampling rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependences to mitigate large sampling rate.)
Four Strategies For Lossy Source Coding Based on High-Rate Sampling

We’ll analyze the following for stationary, Gaussian, continuous-time sources:

- **Transform + VQ**
 (centralized & optimal)

- **Scalar quantization + entropy-rate coding:**
 (centralized or distributed, no transform, suboptimal)

- **Distributed VQ:**
 (no transform, suboptimal)

- **Transform + scalar quantization:**
 (centralized, suboptimal)
Review: Lossy Source Coding in Discrete-Time

- **Code:** $c = \text{encoder} \& \text{decoder}$ (e.g. block code)
- **Performance** = rate & MSE distortion
 - $R(c) = \# \text{bits/sample}$
 - $D(c) = \frac{1}{M} \sum_{i=1}^{M} E(X_i - Y_i)^2$
- **Operational rate-distortion function ORDF** for class of codes C
 - $R_C(d) = \text{least rate of any } c \text{ in } C \text{ with } D(c) \leq d$
- **Shannon rate-distortion theory:** if C includes all block codes with all blocklengths
 - $R_C(d) = R_{sh}(d) \triangleq \lim_{N \to \infty} \inf_{p(y|x)} \frac{1}{N} I(X;Y) \triangleq \text{Shannon rate-dist'n func.}$
- **Example:** IID Gaussian $R_{sh}(d) = \max \left\{ \frac{1}{2} \log \frac{\sigma^2}{d}, 0 \right\}$
- **High resolution theory:** when d small $R_C(d) \approx \frac{1}{2} \log \frac{\sigma^2}{d} + \eta_{C,X}$
 - where $\eta_{C,X}$ depends on class of codes and source statistics [Bennett, Zador].
ORDF: Block Codes & DT Gaussian Source

- With orthogonal transform
 \[R(c) = \frac{1}{M} \sum_{i=1}^{M} R(c_i), \quad D(c) = \frac{1}{M} \sum_{i=1}^{M} D(c_i) \]

- Using optimal codes with distortions \(d_i \)
 \[R(c) = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log \frac{\lambda_i}{d_i}, 0 \right\} \]
 where \(\lambda_i = \text{e. val. of cov. matrix } K_M \) of \(X \)

- Minimize over \(d_1, \ldots, d_M \geq 0 \) s.t. \(\frac{1}{M} \sum_{i=1}^{M} d_i \leq d \) to find there exists \(d' \) s.t.
 \[d_i = \min \{ d', \lambda_i \}, \text{ all } i, \]
 \[R(d) = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log \frac{\lambda_i}{d'}, 0 \right\} \]
ORDF: Block Codes & DT Gaussian Source

- With orthogonal transform
 \[R(c) = \frac{1}{M} \sum_{i=1}^{M} R(c_i), \quad D(c) = \frac{1}{M} \sum_{i=1}^{M} D(c_i) \]

- Using optimal codes with distortions \(d_i \)
 \[R(c) = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log \frac{\lambda_i}{d_i}, 0 \right\} \]

 where \(\lambda_i \) = e. val. of cov. matrix \(K_M \) of \(X \)

- Minimize over \(d_1, \ldots, d_M \geq 0 \) s.t. \(\frac{1}{M} \sum_{i=1}^{M} d_i \leq d \)
 to find there exists \(d' \) s.t.

 \[d_i = \min \left\{ d', \lambda_i \right\}, \text{ all } i, \]

 \[R(d) = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log \frac{\lambda_i}{d'}, 0 \right\} \]

- Convenient parametric form: \(\theta \geq 0 \)
 \[\hat{d}_M(\theta) = \frac{1}{M} \sum_{i=1}^{M} \min \left\{ \lambda_i, \theta \right\} \]
 \[\hat{R}_M(\theta) = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log \frac{\lambda_i}{\theta}, 0 \right\} \]

- Take \(M \to \infty \), using asympt. e. val. dist’n thm:
 \[\hat{d}(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \min \left\{ \Phi(\Omega), \theta \right\} d\Omega \]
 \[\hat{r}(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \max \left\{ \frac{1}{2} \log \frac{\Phi(\Omega)}{\theta}, 0 \right\} d\Omega \]

 where \(\Phi(\Omega) \) is power spect. density of discrete-time process \(X \).

 [Kolmogorov `56]
Review: Lossy Source Coding in Continuous-Time

- Code: \(c = \text{encoder} \& \text{decoder} \) (e.g. block code)
- Performance = rate & MSE distortion
 - \(R(c) = \# \text{bits/second} \)
 - \(D(c) = \frac{1}{T} \int_0^T E(X(t) - Y(t))^2 \)
- Operational rate-distortion function ORDF for class of codes \(C \)
 - \(R_C(d) = \text{least rate of any } c \text{ in } C \text{ with } D(c) \leq d \)
ORDF: CT Gaussian Source

- Sample at N samples/sec
- When N large,

 $D \approx$ distortion in decoded samples

 $R = R(c) \times N$ bits/sec
- Take limit as $N \to \infty$ of

 $\bar{d}(\theta, N) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \min \left\{ \Phi_N(\Omega), \theta \right\} d\Omega$

 $\bar{r}(\theta, N) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \max \left\{ \frac{1}{2} \log \frac{\Phi_N(\Omega)}{\theta}, 0 \right\} d\Omega$

- Change variables and use

 $N\Phi_N(N\omega) \to S(\omega)$ as $N \to \infty$

 where $S(\omega)$ is power spectral density of $X(t)$.
- To get inverse water pouring formulas:

 $\mathcal{D}(\theta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \min \left\{ S(\omega), \theta \right\} d\omega$

 $\mathcal{R}(\theta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \max \left\{ \frac{1}{2} \log \frac{S(\omega)}{\theta}, 0 \right\} d\omega$

[Kolmogorov `56, Berger `71]
Summary and Interpretation

\[D(\theta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \min \left\{ S(\omega), \theta \right\} d\omega \]

\[R(\theta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \max \left\{ \frac{1}{2} \log \frac{S(\omega)}{\theta}, 0 \right\} d\omega \]
Examples

<table>
<thead>
<tr>
<th>Spectrum Type</th>
<th>Formula</th>
<th>(R(d))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandlimited</td>
<td>(S(\omega))</td>
<td>(\frac{1}{2} \log_2 \frac{1}{d} + c)</td>
</tr>
<tr>
<td>Exponential Spectrum</td>
<td>(e^{-</td>
<td>\omega</td>
</tr>
<tr>
<td>Gauss-Markov</td>
<td>(\frac{2}{\omega^2 + 1})</td>
<td>(\frac{c}{d})</td>
</tr>
</tbody>
</table>

- Heavier tailed spectrum \(\Rightarrow \) larger \(R(d) \) at small \(d \).
Summary

- For coding with transform and vector quantization.

- Probably the middle one.
Ideas Leading to a Conjecture

For continuous-time source
- Best performance of lossy source codes is given by Shannon rate-distortion function $R_{sh}(d)$.
- For Gaussian source, a parametric expression for $R_{sh}(d)$ is known (Kolmogorov).
- Performance as good as $R_{sh}(d)$ can be attained (to within ε) by sampling at very high rate, coding samples, and reconstructing cont.-time signal.

For discrete-time (sampled) source
- Best rate-distortion performance with distributed coding is not known, except for two Gaussian sources.
- Uniform scalar quantization plus entropy-rate coding has performance close to $R_{sh}(d)$ for any discrete-time source.
- Entropy-rate coding can be done in distributed fashion with as small rate as centralized coding. (Slepian-Wolf coding)

Conjecture: uniform scalar quantization + distributed entropy-rate coding is distributed coding system that works well for cont-time source with large sampling rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependence to mitigate large sampling rate.)
Four Strategies For Lossy Source Coding Based on High-Rate Sampling

We’ll analyze the following for stationary, Gaussian, continuous-time sources:

- Transform + VQ
 (centralized & optimal)

- Scalar quantization + entropy-rate coding:
 (centralized or distributed, no transform, suboptimal)

- Distributed VQ:
 (no transform, suboptimal)

- Transform + scalar quantization:
 (centralized, suboptimal)
Review: Centralized and Distributed Entropy-Rate Coding for Discrete-Time Source

- Entropy-Rate Coding (ERC)
 - The lowest rate with which a discrete-stationary source can be lossless encoded (for example with block-to-variable-length codes or conditional codes) its entropy-rate

\[H_\infty \triangleq \lim_{L \to \infty} \frac{1}{L} H(X_1, \ldots, X_L) = \lim_{L \to \infty} H(X_L | X_1, \ldots, X_{L-1}) \text{ bits/sample} \]

- Example: stationary Markov source \(H_\infty = H(X_2 | X_1) \)

- ERC can be done in a distributed fashion at the same rate! [Slepian-Wolf `73]
Uniform Scalar Quantization (USQ) with ERC

- Assume small step size Δ
- Distortion: $D(c) \approx \frac{\Delta^2}{12}$
- Rate: $R(c) = H_\infty(Y) = H_\infty(I) \approx H_\infty(X) - \log_2 \Delta$
- For a stationary, discrete-time source, the ORDF of USQ with ERC is $R_C(d) \approx R_{sh}(d) + 0.255$
- With distributed ERC, USQ + ERC becomes distributed coding system.

For a stationary, discrete-time source, the ORDF of USQ with ERC is $R_C(d) \approx R_{sh}(d) + 0.255$.

With distributed ERC, USQ + ERC becomes distributed coding system.
Ideas Leading to a Conjecture

For continuous-time source
- Best performance of lossy source codes is given by Shannon rate-distortion function $R_{sh}(d)$.
- For Gaussian source, a parametric expression for $R_{sh}(d)$ is known (Kolmogorov).
- Performance as good as $R_{sh}(d)$ can be attained (to within ε) by sampling at very high rate, coding samples, and reconstructing cont.-time signal.

For discrete-time (sampled) source
- Best rate-distortion performance with distributed coding is not known, except for two Gaussian sources.
- Uniform scalar quantization plus entropy-rate coding has performance close to $R_{sh}(d)$ for any discrete-time source.
- Entropy-rate coding can be done in distributed fashion with as small rate as centralized coding. (Slepian-Wolf coding)

Conjecture: uniform scalar quantization + distributed entropy-rate coding is distributed coding system that works well for cont-time source with large sampling rate (performance might be close to optimal).
(Idea: entropy-rate coding will exploit strong sample dependence to mitigate large sampling rate.)
The Good News

- Suppose we sample with rate N, quantize, entropy-rate code, and reconstruct cont-time signal.
 - $D \equiv$ MSE of quantizer on samples; not affected by sampling rate
 - $R = N \times R(c)$ bits/sec
 $\equiv N \times H_\infty(N)$ (entropy-rate is a function of sampling rate)

Theorem 1: [Marco-DN 2009]

For any stationary source and quantizer

$$H_\infty(N) \rightarrow 0 \text{ as } N \rightarrow \infty$$

Proof sketch: (recall l_i is index produced by quantizer in response to X_i)

for any L,

$$H_\infty(N) \leq L H(l_1,\ldots,l_L) = \frac{1}{L} \sum_{n=1}^{L} H(l_1 | l_1,\ldots,l_{n-1})$$

$$\leq \frac{1}{L} H(l_1) + \frac{L-1}{L} H(l_2 | l_1) \quad \text{by stationarity}$$

$\rightarrow 0 \text{ as } N \rightarrow \infty \quad \text{because } \Pr(l_2 = l_1) \rightarrow 1$
The Bad News … Conjecture is False

Theorem 2: [Marco-DN 2009]
For virtually any stationary source and quantizer

\[NH_\infty(N) \to \infty \quad \text{as} \quad N \to \infty \]
Key Observation

- $S = \text{location of 1st threshold crossing in } [0,1]$; $S = 2$ if no crossing.

- $H(S) = \infty$, since S is random variable with a continuous component.

- From quantizer indices I_1, \ldots, I_N, can make estimate S_N of S s.t.

 $$|S - S_N| \leq \frac{1}{N} \quad \text{with high probability}$$

- This implies $H(S_N) \to \infty$.

- Also $H(I_1, \ldots, I_N) \geq H(S_N)$, since S_N is a function of I_1, \ldots, I_N

- Thus

 $$\lim_{N \to \infty} NH_\infty(N) = \lim_{N \to \infty} N \frac{H(I_1, \ldots, I_N)}{N} = \lim_{N \to \infty} H(I_1, \ldots, I_N) = \infty$$

1Courtesy of Bruce Hajek
Another Explanation

\[R = N \times R(c) \]

\[\equiv N \times (R_{sh,N}(d) + 0.255) \]

\[= N \times R_{sh,N}(d) + N \times 0.255 \]

\[\Rightarrow R_{sh}(d) + \infty \]

The weakness of this argument is that \(R(c) \) is small when \(N \) is large, whereas the high resolution approximation used is generally valid only when rate is large.
Summary

Bad news from Theorem 2: For scalar quantization and S-W distributed lossless coding,

\[N R_N(d) \to \infty \]

With identical scalar quantizers, when sensors are dense, entropy coding cannot sufficiently exploit increased correlation to mitigate increased number of sensors.

N.B.: It is not that field gathering with identical scalar quantizers is infeasible. But with such, there is a finite best sampling density.
At What Rate Does $NH_\infty(N) \to \infty$?

- **Theorem**: [Marco-DN 2010] For unif. scalar quant. with step size Δ, infinitely many levels and stat’ry Gaussian $\mathcal{N}(0,\sigma^2)$ source with autocorr. func. $\rho(\tau)$,

$$NH_\infty(N) \leq H(l_1,\ldots,l_N) \leq NH(l_2 | l_1) \equiv -N m \sqrt{1 - \rho(1/N)} \log_2 \sqrt{1 - \rho(1/N)}$$

where

$$m = -\frac{2\sqrt{2}}{\pi} \sum_{k=0}^{\infty} \frac{(k+1/2)^2 \Delta^2}{2\sigma^2}$$

- **Examples**: When N is large,

$$\rho(\tau) = e^{-\|l\|} \quad \Rightarrow \quad NH(l_2 | l_1) \equiv \frac{m}{2} \sqrt{N} \log_2 N$$

$$\rho(\tau) = e^{-\tau^2} \quad \Rightarrow \quad NH(l_2 | l_1) \equiv \frac{m}{2} \log_2 N$$
Why Does Scalar Quantization Perform So Poorly With Dense Sensors?

Is it a flaw of all distributed source coding schemes?
Or just a flaw of scalar quantization based schemes?

Consider Distributed Vector Quantization (VQ)

Kashyap et al. [2005]
- Showed that for a stationary, Gaussian source and ideal distributed lossy coding, \(N R_N(d) \) remains finite as \(N \) increases.

Pradhan & DN [2006,2013]
- Made a similar analysis.

Note: VQ dimension must increase with sampling rate \(N \).
Four Strategies For Lossy Source Coding Based on High-Rate Sampling

We’ll analyze the following for stationary, Gaussian, continuous-time sources:

- Transform + VQ
 (centralized & optimal)

- Scalar quantization + entropy-rate coding:
 (centralized or distributed, no transform, suboptimal)

- Distributed VQ:
 (no transform, suboptimal)

- Transform + scalar quantization:
 (centralized, suboptimal)
Distributed Vector Quantization

- M sensors, $1/N$ apart in spatial interval $[0, M/N]$
- Spatial sampling rate $= N$
- For sampled source, $R_{DVQ}(M,d)$ known only for $M=2$ Gaussian sources [Wagner, et al. 2007]
- Kashyap et al. [05] and Pradhan-DN [06,10] applied Berger-Tung bound [77] to obtain upper bounds to $R_{DVQ}(M,d)$.
Berger-Tung Bound for Distributed VQ

Lower bound to least rate of distributed encoding of M sources with MSE d:

$$R_{DVQ}(M,d) \geq R_{BT}(M,d) = \inf_{p} \frac{1}{M} I(p;X_1...X_M;Y_1...Y_M)$$

where “inf” is over test channels with MSE $\leq D$.

Has same form as M-th-order Shannon rate-distortion function, except

- Components of test channel are conditionally independent given source inputs
 $$p(y_1,...,y_M \mid x_1,...x_M) = \prod_{i=1}^{M} p(y_i \mid x_i)$$

- In determining MSE, the test channel output $Y_1...Y_M$ is followed by an optimal estimator for inputs $X_1...X_M$ from source.
Applying Berger-Tung and Kuhn-Tucker

Choose test channel:

\[y_i = \frac{1}{1+\theta}(X_i + Z_i), \quad i = 1,\ldots,M \]

with \(Z_i \)'s IID, \(\mathcal{N}(0,\theta) \)

Use Kuhn-Tucker:

\[
R_{BT,\theta} = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{2} \log_2 \left(\frac{\lambda_i}{\theta} + 1 \right) \]

\[
D_{BT,\theta} = \frac{1}{M} \sum_{i=1}^{M} \frac{\lambda_i \theta}{\lambda_i + \theta} \]

where \(\lambda_1,\ldots,\lambda_M \) are the eigenvalues of covariance matrix of \(X_1 \ldots X_M \)

in comparison

for centralized VQ

\[
R_{Sh,\theta} = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log_2 \frac{\lambda_i}{\theta},0 \right\} \]

\[
D_{Sh,\theta} = \frac{1}{M} \sum_{i=1}^{M} \min \{\lambda_i,\theta\} \]
Take limit as $M \to \infty$

- **Begin with**

 \[R_{BT,\theta} = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{2} \log_2 \left(\frac{\lambda_i}{\theta} + 1 \right) \]

 \[D_{BT,\theta} = \frac{1}{M} \sum_{i=1}^{M} \frac{\lambda_i \theta}{\lambda_i + \theta} \]

- **Let $M \to \infty$**

 \[R_{BT,\theta} \to \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} \log_2 \left(\frac{\Phi(\Omega)}{\theta} + 1 \right) d\Omega \]

 \[D_{BT,\theta} \to \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\Phi(\Omega)\theta}{\Phi(\Omega) + \theta} d\Omega \]

For centralized VQ

\[R_{Sh,\theta} = \frac{1}{M} \sum_{i=1}^{M} \max \left\{ \frac{1}{2} \log_2 \frac{\lambda_i}{\theta}, 0 \right\} \]

\[D_{Sh,\theta} = \frac{1}{M} \sum_{i=1}^{M} \min \{ \lambda_i, \theta \} \]
Let Sampling Rate $N \to \infty$

- Change variables -- let $\omega = \Omega N$

$$R_{BT, \theta} \to \frac{1}{2\pi} \int_{-\pi N}^{\pi N} \frac{1}{2} \log_2 \left(\frac{\Phi(\omega/N)/N}{\theta/N} + 1 \right) \frac{1}{N} d\omega$$

$$D_{BT, \theta} \to \frac{1}{2\pi} \int_{-\pi N}^{\pi N} \Phi(\omega/N) \theta + \frac{1}{N} d\omega$$

- Let sampling rate $N \to \infty$; let $\phi = \theta N$; then $\Phi(\omega/N)/N \to S(\omega)$ as $N \to \infty$

$$NR_{BT, \theta} \to R_{BT, \theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2} \log_2 \left(\frac{S(\omega)}{\theta} + 1 \right) d\omega$$

$$D_{BT, \theta} \to D_{BT, \theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{S(\omega) \theta}{S(\omega)} + \theta d\omega$$

- This upper bound to optimal performance of distributed coding coding might be tight.
Comparison

Distributed Coding
(attainable rate)

\[
R_{BT,\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2} \log_2 \left(\frac{S(\omega)}{\theta} + 1 \right) d\omega \\
D_{BT,\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{S(\omega)\theta}{S(\omega) + \theta} d\omega
\]

Centralized Coding
(optimal rate)

\[
R_{Sh,\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \max \left\{ \frac{1}{2} \log_2 \frac{S(\omega)}{\theta}, 0 \right\} d\omega \\
D_{Sh,\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \min \{ S(\omega), \phi \} d\omega
\]

Distortion Profiles:

distributed coding cannot use transform,
and so cannot have sharp cutoff bandlimiting.
Example

Source -- stationary, Gauss-Markov,

\[\rho(\tau) = e^{-|\tau|}, \quad S(\omega) = \frac{2}{1 + \omega^2}. \]

Distributed Coding
(attainable rate)

\[R_{BT}(d) = \frac{1}{2\ln2} \left(\frac{1}{d} - 1 \right) \]

\[= 6.5 \text{ bits/m} \quad d = 0.1 \quad = 5.1 \text{ bits/m} \]

Centralized Coding
(optimal rate)

\[R_{Sh}(d) \approx \frac{1}{2\ln2} \left(\frac{0.81}{d} - 1 \right) \text{ for small } d \]
Source -- stationary, flat bandlimited

\[S(\omega) = \begin{cases} \frac{\pi}{\omega_0}, & |\omega| \leq \omega_0 \\ 0, & \text{else} \end{cases} \]

Distributed Coding (attainable rate)

\[R_{BT}(d) = \frac{\omega_0}{2\pi} \log_2 \frac{1}{d} \]

\[= 1.7 \text{ bits/m} \quad \text{d} = 0.1 \]

Centralized Coding (optimal rate)

\[R_{Sh}(d) = \frac{\omega_0}{2\pi} \log_2 \frac{1}{d} \]

\[= 1.7 \text{ bits/m} \]
Summary

For coding with distributed vector quantization.

- Probably the middle one.
Are Scalar Quantizers Always Bad with Dense Samples?

Not always!
Four Strategies For Lossy Source Coding Based on High-Rate Sampling

We’ll analyze the following for stationary, Gaussian, continuous-time sources:

- Transform + VQ
 (centralized & optimal)

- Scalar quantization + entropy-rate coding:
 (centralized or distributed, no transform, suboptimal)

- Distributed VQ:
 (no transform, suboptimal)

- Transform + scalar quantization:
 (centralized, suboptimal)
Transform, scalar quantization, entropy coding

- Proceed as before ...
- Sampling rate N rate over $[0, \infty)$
- M-dimensional KLT produces M indep. Gaussian coef’s with variances equal to eigenval’s of covar. matrix of X_1, X_2, \ldots, X_M: $\lambda_1^{(M)}, \ldots, \lambda_M^{(M)}$
- Independently scalar quantize and entropy code each type of transform coefficient, instead of optimally VQ encoding.
- Optimize the rate allocation for coefficients r_1, r_2, \ldots, r_M
- Take M to infinity.
- Take N to infinity.
Transform, scalar quantization, entropy coding

Rate: \[R = \frac{1}{M} \sum_{i=1}^{M} r_i \]

Distortion: \[D = \frac{1}{M} \sum_{i=1}^{M} d_i \]

Let \(R(d) \) denote ORDF for scalar quantizing with entropy coding a unit variance Gaussian variable, assume \(R(d) \) is convex.

Then for \(i \) th coef. \[r_i = R \left(\frac{d_i}{\lambda_i^{(M)}} \right) \]

Use Kuhn-Tucker theory to optimize \(d_i \)'s.
Transform, scalar quantization, entropy coding

Given $\phi < 0$, Kuhn-Tucker gives

$$d_i = \lambda_i D'(\phi \lambda_i)$$

where $D'(\cdot)$ is the inverse of the derivative of $R(\cdot)$.

Substituting this gives optimal rate-distortion pairs, parameterized by ϕ

$$R_{Tr,\phi} = \frac{1}{M} \sum_{i=1}^{M} R(D'(\phi \lambda_i^{(M)}))$$

$$D_{Tr,\phi} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i^{(M)} \min\{1, D'(\phi \lambda_i^{(M)})\}$$

Dimension $M \to \infty$

$$R_{Tr,\phi} \to \frac{1}{2\pi} \int_{-\pi}^{\pi} R(D'(\phi \Phi(\Omega))) d\Omega$$

$$D_{Tr,\phi} \to \frac{1}{2\pi} \int_{-\pi}^{\pi} \min\{1, D'(\phi \Phi(\Omega))\} d\Omega$$
Transform, scalar quantization, entropy coding

- Change variables -- let $\omega = \Omega N$

 $$R_{Tr,\phi} \rightarrow \frac{1}{2\pi} \frac{\pi N}{\pi N} \int_{-\pi N}^{\pi N} R(D'(\phi \Phi(\omega/N))) \frac{1}{N} d\omega$$

 $$D_{Tr,\phi} \rightarrow \frac{1}{2\pi} \frac{\pi N}{\pi N} \int_{-\pi N}^{\pi N} \min\{1, D'(\phi \Phi(\omega/N))\} \frac{1}{N} d\omega$$

- Sampling rate $N \to \infty$, let $\phi = \theta N$, $\Phi(\omega /N)/N \to S(\omega)$ as $N \to \infty$

 $$NR \to R_{Tr,\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} R\left(D'\left(\frac{S(\omega)}{\theta}\right)\right) d\omega$$

 $$D \to D_{Tr,\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) \min\left\{1, D'\left(\frac{S(\omega)}{\theta}\right)\right\} d\omega$$
Transform, scalar quantization, entropy coding

To repeat

\[R_{Tr, \theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} R(D' \left(\frac{S(\omega)}{\theta} \right)) d\omega \]

\[D_{Tr, \theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) \min \left\{ 1, D' \left(\frac{S(\omega)}{\theta} \right) \right\} d\omega \]

Since these are finite, scalar quantization does not lead to catastrophic performance, provided it is preceded by a transform.

Note: If \(R(.) \) is replaced by Shannon rate-distortion function for Gaussian samples, the above reduces to Shannon rate-distortion function for continuous-time Gaussian source.

[Pradhan-DN, 2007,13]
Why Does Transform Coding With Scalar Quantization Not Suffer Catastrophically Bad Performance?

Without transform, scalar quant. + ent. coding has rate

\[R_N(d) \approx R_{sh,N}(d) + O(1) \]

\[R = N R_N(d) + NO(1) \rightarrow R_{sh,N}(d) + \infty \]

However: \(O(1) \) “loss” goes to zero as \(d \) approaches variance.

With KLT, variances are eigenvalues.

Lemma: For any \(\delta > 0 \), fraction of eigenvalues \(> \delta \) goes to zero.

With transform coding

\[R \approx N \sum_{i=1}^{M} r_i = N \sum_{i=1}^{M} R \left(\frac{d_i}{\lambda_i(M)} \right) \]

For most \(i \), \(d_i \approx \lambda_i \), so there is virtually no loss \(\Rightarrow \) overall loss is small.
Summary

- For coding with transform and quantization.
- Probably the middle one.
Overall Summary

- Can attain **optimal rate-distortion performance** with high-rate sampling and **transform coding**
- Can attain **good rate-distortion performance** with high-rate sampling and
 - Transform coding with scalar quantization
 - Distributed coding
- **Cannot attain good rate-distortion performance** with high-rate sampling and **direct scalar quantization**, even with entropy-rate coding.
- To attain good performance, the dimension of the quantizer (in time) must grow as sampling rate grows.
- If one wishes to use scalar quantization plus ERC, one should not use too large a sampling rate, because entropy-rate does not decrease fast enough to mitigate the effect of high sampling rate.
- In centralized transform coding, scalar quantization does not cause a problem because most coefficients are scalar quantized at very low rates at which there is very little loss relative to high-dimensional VQ.
Ongoing Work

- High-resolution, high-sampling-rate analysis:
 - We are finding closed form expressions for ORDF \(R_C(d) \) for distributed and transform coding when sampling rate is large and distortion \(d \) is constrained to be small.

- Convergence of discrete-time power spectral density to continuous-time power spectral density:
 - We are identifying conditions under which one can rigorously prove
 \[
 N\Phi_N(N\omega) \to S(\omega) \quad \text{as} \quad N \to \infty
 \]
 and finding counterexamples, where conditions do not hold.