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What this talk will not cover
• “Signal processing on graphs” – graph topology is SP substrate

– Graphs as a finite field for SP algorithms like FFT, wavelets, clustering, spectral 
decomposition [Shuman, Narang, Frossard, Ortega, Vandergheynst 2013]

– Distributed SP over graph [Dimakis, Kar, Moura, Rabbat, Scaglione 2010]
– Distributed graphical models [Wiesel, H 2009], [Meng, Wei, Wiesel, H 2013]

• ”Signal processing with graphs”- graph used to estimate something else
– Entropic graph estimators of entropy [H, Ma, Michel, Gorman 2001]
– Chain and anti-chain graphs for information retrieval [Calder, Esedoglu, H, 2013]  

• “Signal processing in graphs” – in situ probing of a physical network 
– Network tomography [Coates, H, Nowak, Yu 2002], [Shih, H, 2006]
– Network probing for resiliency [Chen, H 2013, 2014]

Nor will we cover in any detail:
• Rendering of graphs or graph visualization [Xu, Kliger, H 2013]
• Multigraph models [Oselio, Kulesza, H 2013, 2014]
• Directed graph models [Wainright&Jordan 2008], [Rao, States, Engel, H 2007]
• Dynamic graph models [Westveld, Hoff 2011], [Xu, Kliger, H 2014]
• Phase transitions [Nadakuditi&Newman 2012], [Firouzi,  H 2014], [Chen, H 2013] 
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I. Network representations of data
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Graphs and adjacency/weight matrices

• A graph with n nodes is denoted 𝐺𝐺 =
𝑉𝑉,𝐸𝐸 ∈ Ω𝑛𝑛, Ω𝑛𝑛 = 2

𝑛𝑛
2 ≈ 22𝑛𝑛

– 𝑉𝑉 are vertices (nodes) 
– 𝐸𝐸 are edges (links)

• In example on left:  
– 𝑉𝑉 = {𝑣𝑣1, … , 𝑣𝑣6}
– 𝐸𝐸 = {𝑒𝑒12, 𝑒𝑒13, 𝑒𝑒16, 𝑒𝑒24, 𝑒𝑒25, 𝑒𝑒36, 𝑒𝑒45}

• Vertices and edges can have attributes 
and weights, resp.

• The location/weight of edges in a graph 
are given by the adjacency matrix 𝑨𝑨

• Relational graphs: edges (𝑨𝑨) are directly 
observed. 

• Associational (Behavioral) graphs: edges 
are derived from node attributes

0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0

𝑨𝑨 =

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)



Attributional vs Relational data

• Two broad categories of data for developing a model [Oselio, 
K, H 2013] 
– Attributional: node adjacencies estimated from node measurements

• Node attributes are observed random variables. Edges reflects behavioral 
similarity of node attributes (similarity models, behavioral models)

– Markov random fields, boolean networks: edges are latent variables 
– Examples: similar email semantics, Twitter #hashtag use, Facebook postings, 

tech content in publications, tastes in music

– Relational: node adjacencies estimated from edge measurements
• Edges or edge weights are observed random variables. An edge reflects a 

relation between node pair (familiarity models, coordination models)
– Erdos-Renyi, exponential graphs: edge realizations observed
– Examples: email exchange, Twitter follower, Facebook friend, co-authorship, 

biological relations

• In either case, the edges can be weighted or unweighted.
– Weighted: edge strength encoded as edge length, color, thickness.
– Unweighted: edge is binary - either present or absent



Example: Twitter hashtag multigraph

Oselio, Kulesza, H SBP 2014



Example: Social collaborative retrieval

Hsiao, Kulesza, H 2014

(Attributional)                     (Relational)



The graph inference model
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Focus here is modeling – summarization vs generative models
• Summarization  (statistical) model

– Graph summarized by a few statistics (on degree, centrality, paths)
– Highly scalable for high dimensional graphs (many nodes, edges, states)

• Generative (probabilistic) model
– Full probability distribution of graph is modeled (jpdf of nodes/edges)
– Can suffer from poor scalability for high dimensional graphs



II. Summarization: Path statistics

• Π = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖, 𝑗𝑗 𝑖𝑖>𝑗𝑗: set of n(n-1)/2 shortest paths between 
all pairs of nodes in graph

• Diameter of graph: max(length(Π))
• Mean path length: average(length(Π))
• “Small-world” behavior [Strogatz and Watts 1998] 

– Smaller mean path length than would be found in a random graph
– Lots more clustering than in a random graph: many triads (triangles)
– “Nodes densely connected with few intermediaries” [Cho&Fowler

2010]
• Example: HEP co-authorship network [Newman 2001]

– 8361 authors: 19,085 connections: mean path length=6.9
– Compare with Poisson graph of same size: mean path length=24.4



Summarization: degree distribution
• Degree sequence: 𝑑𝑑1, … ,𝑑𝑑𝑛𝑛 ,

𝑑𝑑𝑖𝑖 = ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑗𝑗
• Degree histogram: 𝜌𝜌𝑘𝑘 =

∑𝑖𝑖=1𝑛𝑛 𝐼𝐼(𝑑𝑑𝑖𝑖 = 𝑘𝑘)
• Power law model often proposed 

for real-world network data 
[Strogatz 1999, Newman 2001]

Power law degree distribution

Arcolano 2011

[Kang 2011]

(a) Power law is good fit   (low d)
(b) Log-normal is good fit  (except high d)
(e) Log-normal mixture is good fit
(f) Power law is good fit  



Summarization: p-value waterfall plot 

• Introduced for attributional 
(correlation and partial 
correlation) graphs [H 
Rajaratnam 2012]

• Plot of p-values of each 
connected node as function of 
sample correlation or partial 
correlation.

• p-value=P(degree≥d|block
sparse)

• Summing the number of nodes 
over each degree branch gives 
the degree histogram.

• Can be used to detect highly 
significant nodes in a large 
correlation graph

Waterfall plot for NKI Breast cancer data
• 24,481 nodes (Affy HU133 genes)
• 295 gene chips (used for sample corr)

Sample correlation
Lo
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d=57 d=1
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[Hero 2012]



Summarization: network centrality measures
• Network centrality captures the relative importance of a node to the global topology 

of the graph. 
– A node with high centrality is a “key player” in the network [Ortiz-Arroyo 2010]
– Removal of a highly central node could severely disrupt the network

• Social network examples of high centrality nodes: 
– A popular individual - lots of friends in the  network (degree centrality)
– An individual with lowest average hop-distance from others (closeness centrality) 
– An individual who is sole liaison between two communities (betweenness centrality)  
– An individual who is popular among popular people (eigenvector centrality)

Source: [Ortiz-Arroyo 2010] 



Degree centrality
• Degree centrality is a locally computable measure of centrality 

(C=O(n) computations).  
• Number of direct connections to the node (vertex degree)

• Examples: 
– Social network: social popularity of person i in a friendship network
– Citation network: number of documents that cite i-th document

𝜈𝜈𝑖𝑖 = �
𝑗𝑗=1

𝑛𝑛

𝑝𝑝𝑖𝑖𝑗𝑗 ⟺ 𝝂𝝂 = 𝑨𝑨𝑨𝑨

0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0

𝑨𝑨 =

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)



Closeness centrality
• Let H be the matrix of hop-distances (shortest path distance) 

between pairs of nodes (C=O(𝑛𝑛2log 𝑛𝑛 ) computations).  
• Closeness centrality measures avg closeness to other nodes

• Examples: 
– Social network: highly central person has  low avg degree-of-separation
– Citation network: Paul Erdos and Mark Newman have high centrality in 

mathematics and network science, respectively. 

𝜈𝜈𝑖𝑖 =
1
𝑛𝑛
�
𝑗𝑗=1

𝑛𝑛

𝑝𝑖𝑖𝑗𝑗

−1

0 1 1 2 2 1
1 0 2 1 1 2
1 2 0 3 3 1
2 1 3 0 1 3
2 1 3 1 0 3
1 2 1 3 3 0

𝑯𝑯 =

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)



Betweenness centrality
• Average number of shortest-paths that pass through node i

• Important nodes connect many other nodes (C=O((𝑛𝑛2log 𝑛𝑛 ))
• Examples: 

– Social network: person who is critical link between large communities
– Citation network: Author who publishes across very different disciplines

𝜈𝜈𝑖𝑖 = 𝑛𝑛 𝑛𝑛 − 1 −1�
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1

𝑛𝑛

𝐼𝐼(𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑘𝑘)

0 1 1 2 2 1
1 0 2 1 1 2
1 2 0 3 3 1
2 1 3 0 1 3
2 1 3 1 0 3
1 2 1 3 3 0

𝑯𝑯 =

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)



Eigenvector centrality
• A weighted measure of adjacency where centrality of i-th

node is proportional to that of its neighbors

• Solutions are eigenvectors and eigenvalues of of A (C=O(𝑛𝑛2))
• Centrality vector is 𝝂𝝂1 = eigenvector associated with max(𝜆𝜆𝑗𝑗)
• Examples: 

– Social network: popular individual among a popular group of friends
– Citation network: paper that is highly cited by highly cited peers

𝜈𝜈𝑖𝑖 ∝�
𝑗𝑗=1

𝑛𝑛

𝑝𝑝𝑖𝑖𝑗𝑗𝜈𝜈𝑗𝑗 ⟺ 𝜆𝜆𝝂𝝂 = 𝑨𝑨𝝂𝝂

0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0

𝑨𝑨 =

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)



A centrality measure for finding polyglots
• Local Fiedler Vector Centrality [Chen, H 2013]:  degree to which removal of a node 

from graph reduces algebraic connectivity
– Algebraic connectivity: smallest number of node removals that disconnect graph
– Fiedler vector y is 2nd smallest eigenvector of L=A-diag(sum(A)) [Fiedler 1973]
– y’Ly is a lower bound on the algebraic connectivity

– LFVC of node i is: LFVC(i) = ∑𝑗𝑗≠𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗
2

Yamir Moreno has top LFVC since connects two large
communities in the network science co-author net.

Mark Newman has 2nd largest LFVC after
Moreno is removed from network



III. Generative random graph models
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Random graph models for attributional data
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Random graph models for relational data
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Generative random graph models

• Assume a prior distribution 𝑝𝑝𝐺𝐺 𝐺𝐺 on 𝐺𝐺 ∈ Ω𝑝𝑝
• Define conditional distribution 𝑝𝑝

• Induces posterior distribution on 𝐺𝐺
𝑝𝑝𝐺𝐺|𝑋𝑋 𝐺𝐺 𝑋𝑋 = 𝑝𝑝𝑋𝑋|𝐺𝐺 𝑋𝑋 𝐺𝐺 𝑝𝑝𝐺𝐺 𝐺𝐺 /𝑝𝑝𝑋𝑋 𝑋𝑋

• Random graph model: 𝑝𝑝𝑋𝑋|𝐺𝐺 and 𝑝𝑝𝐺𝐺 depend on a fixed 
number of non-random parameters 𝜃𝜃

• Latent random graph model:  𝜃𝜃 is random with pdf 
depending on additional parameter 𝛼𝛼

– Markov property=conditional independence
𝑝𝑝𝑍𝑍|𝐺𝐺,𝜃𝜃 = 𝑝𝑝𝑍𝑍|𝐺𝐺

• Bayesian inference of G is performed by fitting 
posterior to data

– MAP or minMSE estimates of 𝐺𝐺, e.g., by  MCMC, Belief 
Propagation (BP), or Laplace-Bernstein

– Likelihood ratio test (LRT) of hypotheses on 𝐺𝐺

X

𝐺𝐺

𝜃𝜃

X

𝐺𝐺

𝜃𝜃

Random 
Graph
Model

Latent
Random 
Graph
Model

𝛼𝛼

Refs: Kolaczyk 2009, Koller 2009, Wainright 2008.



Factor graph representations
• Let 𝜋𝜋𝑗𝑗 be N subsets of node indices ranging over 1, … ,𝑛𝑛

• Let {𝜂𝜂𝑗𝑗} be N subsets of edge indices ranging over 1, … , 𝑛𝑛 𝑛𝑛−1
2

= 𝑃𝑃

• Attributional data: factor graph model for joint distribution of node attributes 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑗𝑗=1

𝑁𝑁

𝑓𝑓𝑗𝑗(𝑥𝑥π𝑗𝑗)

• Relational data: factor graph model for joint distribution of edge attributes 

𝑝𝑝 𝑒𝑒1, … , 𝑒𝑒𝑃𝑃 = �
𝑗𝑗=1

𝑁𝑁

𝑓𝑓𝑗𝑗(𝑒𝑒𝜂𝜂𝑗𝑗)

• Ex: 0th order (independent) factorization: 𝜋𝜋𝑖𝑖= 𝑥𝑥𝑖𝑖 or 𝜂𝜂𝑖𝑖= 𝑒𝑒𝑖𝑖 (singletons)

𝑝𝑝 𝑥𝑥𝑛𝑛 ⋯𝑝𝑝 𝑥𝑥2)𝑝𝑝(𝑥𝑥1 = ∏𝑗𝑗=1
𝑛𝑛 𝑓𝑓𝑗𝑗(𝑥𝑥𝑗𝑗), (Attributional factor graph)

𝑝𝑝 𝑒𝑒𝑃𝑃 ⋯𝑝𝑝 𝑒𝑒2)𝑝𝑝(𝑒𝑒1 = ∏𝑗𝑗=1
𝑃𝑃 𝑓𝑓𝑗𝑗 𝑒𝑒𝑗𝑗 , (Relational factor graph)

Ref: Loeliger 2007, Lauritzen 1996 
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Gilbert-Erdős-Rényi (ER) random graphs
• A special case of a Bernoulli graph

– Every edge e has two states {0, 1}
– 𝑃𝑃 𝑝𝑝𝑖𝑖𝑗𝑗 = 1 = 𝜃𝜃𝑖𝑖𝑗𝑗 = 𝜃𝜃 (all edges equally likely)

• Introduced by R. Solomonoff and A. Rapoport
(1951), E. N. Gilbert (1959)

• P. Erdős and A. Rényi(1959) model: m edges 
randomly and uniformly distributed among n
nodes (𝜃𝜃 = 𝑛𝑛

𝑚𝑚
−1

as n,m→ ∞)
• Summary statistics

– Mean # of edges = 𝑛𝑛
2 𝜃𝜃

– Mean degree = 𝑛𝑛 − 1 𝜃𝜃
– Binomial degree distribution: 

𝑃𝑃 𝑑𝑑𝑖𝑖 = 𝑘𝑘 = 𝑛𝑛−1
𝑘𝑘 𝜃𝜃𝑘𝑘 1 − 𝜃𝜃 𝑛𝑛−1−𝑘𝑘

– Degree converges to Poisson as 𝑛𝑛 → ∞, 𝜃𝜃 →
0,𝑛𝑛𝜃𝜃 =λ

𝑃𝑃 𝑑𝑑𝑖𝑖 = 𝑘𝑘 →
λ𝑘𝑘

𝑘𝑘!
exp −λ

• ML estimator of 𝜃𝜃 is closed form
– �𝜃𝜃 = 2𝑚𝑚

𝑛𝑛 𝑛𝑛−1
⇒ normal distributed as 𝑝𝑝 → ∞

𝑝𝑝 𝑒𝑒𝑛𝑛,𝑛𝑛−1 ⋯𝑝𝑝 𝑒𝑒1,3)𝑝𝑝(𝑒𝑒1,2 = �
𝑖𝑖>𝑗𝑗

𝑓𝑓𝑖𝑖𝑗𝑗(𝑒𝑒𝑖𝑖,𝑗𝑗)

𝑓𝑓𝑖𝑖𝑗𝑗 𝑒𝑒𝑖𝑖𝑗𝑗 = 𝜃𝜃𝑒𝑒𝑖𝑖𝑗𝑗 1 − 𝜃𝜃 1−𝑒𝑒𝑖𝑖𝑗𝑗 , 𝜃𝜃 ∈ [0,1]

𝜃𝜃 = 0.0645, 𝑛𝑛𝜃𝜃 = 2.06

Kolaczyk 2009

Arcolano 2011
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Chung-Lu random graphs
• [Chung-Lu 2002] edges  are Bernoulli with 

– 𝑃𝑃(𝑝𝑝𝑖𝑖𝑗𝑗 = 1) = 𝜃𝜃𝑖𝑖𝑗𝑗 = 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗
– 𝝎𝝎 = 𝜔𝜔1, … ,𝜔𝜔𝑛𝑛 𝑇𝑇 ∈ 0,1 𝑛𝑛 is a weight vector
– 𝐸𝐸 𝑨𝑨 = 𝝎𝝎𝝎𝝎𝑇𝑇 ⇒ mean adjacencies 𝐸𝐸[𝑝𝑝𝑖𝑖𝑗𝑗] = 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗

• Each node 𝑖𝑖 has mean degree
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖) = 𝐸𝐸 𝑑𝑑𝑖𝑖 = 𝜔𝜔𝑖𝑖| 𝝎𝝎| 1, i = 1, … , 𝑝𝑝

• Overcomes some Erdős-Rényi deficiencies
– Probability of an edge varies over network
– Degree distribution approximates power law
– Induces small world properties

• Parameter estimation:
– ML estimator not closed form
– MoM estimators are often used instead

• Some SP applications of Chung-Lu
– Anomaly detection in social networks [Miller 2013]
– Modeling biological networks [Chung 2003]

𝑝𝑝 𝑒𝑒𝑛𝑛,𝑛𝑛−1 ⋯𝑝𝑝 𝑒𝑒1,3)𝑝𝑝(𝑒𝑒1,2 = �
𝑖𝑖>𝑗𝑗

𝑓𝑓𝑖𝑖𝑗𝑗(𝑒𝑒𝑖𝑖,𝑗𝑗)

𝑓𝑓𝑖𝑖𝑗𝑗 𝑒𝑒𝑖𝑖𝑗𝑗 = 𝜃𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑗𝑗 1 − 𝜃𝜃𝑖𝑖𝑗𝑗
1−𝑒𝑒𝑖𝑖𝑗𝑗 , 𝜃𝜃𝑖𝑖𝑗𝑗 = 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗

Kolaczyk 2009

Arcolano 2011
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Exponential random graph model (ERGM)
• Erdős-Rényi and Chung-Lu models are both completely specified by 

their mean degrees 𝐸𝐸 𝑑𝑑𝑖𝑖 = 𝑛𝑛 − 1 𝜃𝜃 and 𝐸𝐸 𝑑𝑑𝑖𝑖 = 𝜔𝜔𝑖𝑖| 𝝎𝝎| 1, resp.
• What if wanted a model that matched M specified moments?
• Moment constraints on model 𝑃𝑃 𝐺𝐺 :

𝐸𝐸 𝑔𝑔𝑖𝑖 𝐺𝐺 = ∑𝐺𝐺∈Ω𝑛𝑛 𝑔𝑔𝑖𝑖 𝐺𝐺 𝑃𝑃 𝐺𝐺 = 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑀𝑀
• Philosophy behind exponential random graphs: select solution 𝑃𝑃∗ 𝐺𝐺

that maximizes entropy while satisfying constraints
• Maximum entropy solution has well known form [Kolaczyk 2009]

• For M=1, 𝑔𝑔1(𝐺𝐺)= number of edges obtain Erdős-Rényi model
• For M=p, 𝑔𝑔𝑖𝑖(𝐺𝐺)=degree of i-th node obtain Chung-Lu model

𝑃𝑃 𝐺𝐺 ∝ exp �
𝑖𝑖=1

𝑀𝑀

𝛽𝛽𝑖𝑖 𝑦𝑦𝑖𝑖 𝑔𝑔𝑖𝑖(𝐺𝐺)

Kolaczyk 2009
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• Proposed by [Leskovec 2005] as a way to better 
control degree distribution

• Edge probability matrix Θ = ((𝜃𝜃𝑖𝑖𝑗𝑗)) generated 
recursively by Kronecker mult.

• Can so generate very large stochastic Kronecker
graphs [Chakrabarti 2004]

• Can infer generator generator A from Θ using 
MCMC [Leskovec 2010]

• Global degree distribution is multinomial
• For large graphs diameter of graph is constant 

with high probability
• Good fit to real data [Leskovec 2010]
• Kronecker vs. Chung-Lu? [Pinar 2011] 

Stochastic Kronecker random graphs
Example

𝑛𝑛 = 32,𝑘𝑘 = 5,𝛼𝛼 = 0.95,
𝛽𝛽 = 0.60, 𝛾𝛾 = 0.20

Arcolano 2011
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Stochastic block model (SBM)
• SBM is a multiclass extension of Erdős-Rényi

[Wang 1987] 
• A community detection and clustering method
• SBM is a LSM where latent variables  𝑍𝑍𝑖𝑖 ∈

1, … , 𝑞𝑞 are hidden class attributes of the 
nodes

• Divides adjacency matrix into blocks according 
to node classes and induces  stochastic 
equivalence between nodes in the same class

• Probability model: define 𝜌𝜌𝑘𝑘𝑘𝑘=probability of 
connection between classes k and l

𝑃𝑃 𝑝𝑝𝑖𝑖𝑗𝑗 = 1 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 = 𝑃𝑃 𝑝𝑝𝑖𝑖𝑗𝑗 = 1 𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗 = 𝜌𝜌𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗

• Fitting model: EM, logistic lasso, MC , etc
– A priori model: estimate all  {𝜌𝜌𝑘𝑘𝑘𝑘}
– A posteriori model: estimate  {𝜌𝜌𝑘𝑘𝑘𝑘}, {𝑍𝑍𝑖𝑖}

• Applications include 
– Biological/socialnetworks [Ahmed 2009]
– Geopolitical networks [Westveld 2011]
– Dynamical social networks [Xu 2014], 

Example:

𝑛𝑛 = 32, 𝑞𝑞 = 3, 𝑛𝑛1 = 16,𝑛𝑛2 = 𝑛𝑛3 = 8
𝜌𝜌11 = 0.2, 𝜌𝜌22 = 0.3, 𝑜𝑜.𝑤𝑤. 𝜌𝜌𝑖𝑖𝑗𝑗= 0.01

Arcolano 2011



Dynamic SBM [Xu, Kliger, H 2014]

1. Enron issues Code of Ethics
2. Enron’s stock closes below $60
3. CEO Skilling resigns

Probabilities of emails from CEOs estimated by SSBM

Probabilities of emails from CEOs estimated by DSBM

Θ𝑡𝑡

Ψ𝑡𝑡 = logit Θ𝑡𝑡 = log Θ𝑡𝑡 − log 1 − Θ𝑡𝑡
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Go back to factor graphs: nodal examples

• Universal factorization  (“saturated model”): 𝜋𝜋𝑖𝑖+1 =
𝑥𝑥𝑖𝑖+1,𝜋𝜋𝑖𝑖
– 𝜋𝜋1 = 𝑥𝑥1 ,𝜋𝜋2 = 𝑥𝑥2, 𝑥𝑥1 , … ,𝜋𝜋𝑛𝑛 = 𝑥𝑥𝑛𝑛, … , 𝑥𝑥1

𝑝𝑝 𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, … , 𝑥𝑥1 ⋯𝑝𝑝 𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥1 = �
𝑗𝑗=1

𝑁𝑁

𝑓𝑓𝑗𝑗(𝑥𝑥π𝑗𝑗)

• 1st order (Markov) factorization: 𝜋𝜋𝑖𝑖+1= 𝑥𝑥𝑖𝑖+1, 𝑥𝑥𝑖𝑖
– 𝜋𝜋1 = 𝑥𝑥1 ,𝜋𝜋2 = 𝑥𝑥2, 𝑥𝑥1 , … ,𝜋𝜋𝑝𝑝 = 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛−1

𝑝𝑝 𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1 ⋯𝑝𝑝 𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥1 = �
𝑗𝑗=1

𝑁𝑁

𝑓𝑓𝑗𝑗(𝑥𝑥π𝑗𝑗)



Nodal factor graphs and Markov graphs
• A factor graph can be converted into a Markov graph by hiding the boxes 

Markov graphFactor graph

Saturated model

1st order Markov 
model

Complete graph

1st order Markov 
model



What is Markovian about a Markov graph?
• A Markov graph, also called a Markov 

random field (MRF), represents the 
conditional dependencies of the jpdf

• Let C = 𝜋𝜋𝑗𝑗 𝑗𝑗=1
𝑁𝑁

denote set of cliques of G

• G-compatible factorization of jpdf:

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 = �
𝑐𝑐∈𝐶𝐶

𝑓𝑓𝑐𝑐(𝑥𝑥𝑐𝑐)

• Pairwise Markov property: for any pair a,b
of non-adjacent nodes of G

𝑝𝑝 𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑏𝑏|𝑥𝑥𝑉𝑉 \𝑎𝑎𝑏𝑏 = 𝑝𝑝(𝑥𝑥𝑎𝑎|𝑥𝑥𝑉𝑉 \𝑎𝑎𝑏𝑏) 𝑝𝑝(𝑥𝑥𝑏𝑏|𝑥𝑥𝑉𝑉 \𝑎𝑎𝑏𝑏)

• Hammersley-Clifford theorem [Speed 
1979]: a positive jpdf satisfies the pairwise 
Markov property wrt G iff it has a G-
compatible factorization.  

Ref: Lauritzen 1996 

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• N=3 cliques:  1,3,6 , 1,2 , {2,4,5}

• Pairwise Markov property

𝑝𝑝 𝑥𝑥4, 𝑥𝑥6 𝑥𝑥𝑉𝑉 \4,6 = 𝑝𝑝 𝑥𝑥4 𝑥𝑥𝑉𝑉 \4,6 𝑝𝑝 𝑥𝑥6 𝑥𝑥𝑉𝑉 \4,6

• G-compatible factorization 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥6 = 𝑝𝑝 𝑥𝑥3, 𝑥𝑥6 𝑥𝑥1 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2)𝑝𝑝 𝑥𝑥4, 𝑥𝑥5 𝑥𝑥2

Example:



Markov Random Fields
• Several special cases of MRFs studied

– Gaussian Markov random fields
– Binary Markov random fields
– Multinomial Markov random fields
– Poisson Markov random fields
– Generalized linear model MRFs

• Other names for MRFs:
– Gibbs field (when probability > 0)
– (Undirected) probabilistic graphical model

• Latent MRF: jpdf is described as integral over 
latent variables  (hidden states) of a 
conditional jpdf given those variables. 

• General model often difficult to apply directly
– No general closed form representation exists for 

marginal distributions
– Inference methods: MC, VB, EM, Gibbs, BP
– Much work  on tractable special cases [Koller

2009, Yang 2012]

Lauritzen (1976). Graphical Models
Rue, Håvard; Held, Leonhard (2005). Gaussian Markov random fields: theory and applications.  

For any positive G-compatible jpdf

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 = exp �
𝑐𝑐∈C

𝜃𝜃𝑐𝑐𝑈𝑈(𝑥𝑥𝑐𝑐) − 𝐷𝐷(𝜃𝜃)

𝑈𝑈 𝑥𝑥𝑐𝑐 are clique-wise sufficient statistics

Special case: pairwise interaction MRF

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 ∝ exp �
𝑖𝑖,𝑗𝑗∈𝐸𝐸

𝜃𝜃𝑖𝑖𝑗𝑗𝑈𝑈(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

Sudderth 2010



Selected MRFs and their adjacency matrices

Source: Wiesel et al 2010 

Block MRF Multiscale MRF

Markov Chain MRFOverlapping block MRF
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Gauss Markov Random Fields
• A MRF where the jpdf is Gaussian 

– All  conditional and marginal distributions are Gaussian
• Edges in the graph are specified by non-zero entries 

in the inverse covariance (precision) matrix 𝑲𝑲 = 𝚺𝚺−𝑨𝑨
• Estimation of GGM: N>n i.i.d. samples of [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]

– ML estimator of K is 𝑺𝑺𝑵𝑵−𝑨𝑨, sample covariance
• Estimation of GGM: n<p i.i.d. samples of [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]

– Lasso nodewise regression [Meinshausen 2006]
– Glasso [Friedman 2007] sparse MLE  of K
– Thresholded Moore-Penrose Z-score [Hero 2011, 

2012]
• Structure on K is often imposed to handle n<p

– Toeplitz [Bach 2004] stationary
– Sparse+Kronecker [Tsiligkaridis 2013] spatio-temporal
– Sparse+Toeplitz+Kronecker [Greenewald, H 2014]

• Latent variable extension - use conjugate prior for K:  
inverse Gamma distribution [Rajaratnam 2008]

• Applications: 
– image segmentation [Willsky 2002]
– Computer vision [Li 2007]
– Biological networks [Friedman 2004]
– Spatio-temporal  [Greenewald 2013, Firouzi 2014]

• Joint pdf:   𝑝𝑝 𝒙𝒙 = exp −𝒙𝒙𝑇𝑇 𝑲𝑲 𝒙𝒙/𝟐𝟐
𝜅𝜅(𝑲𝑲)

−𝒙𝒙𝑇𝑇𝑲𝑲 𝒙𝒙 = �
𝒊𝒊∈V

𝜔𝜔𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2 + �
𝑖𝑖,𝑗𝑗∈𝐸𝐸

𝜔𝜔𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

• 𝜔𝜔𝑖𝑖𝑗𝑗 related to partial correlation

𝜌𝜌𝑖𝑖𝑗𝑗 | 𝑉𝑉\𝑖𝑖𝑗𝑗 = −
𝜔𝜔𝑖𝑖𝑗𝑗

𝜔𝜔𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗𝑗𝑗
• 𝜔𝜔𝑖𝑖𝑗𝑗 and conditional independence

𝜌𝜌𝑖𝑖𝑗𝑗 | 𝑉𝑉\𝑖𝑖𝑗𝑗 = 0 ⟺ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ⊥ 𝑥𝑥𝑉𝑉\𝑖𝑖𝑗𝑗

• 𝜔𝜔𝑖𝑖𝑗𝑗 and node-wise regression

𝑥𝑥𝑖𝑖 = �
𝑗𝑗≠𝑖𝑖

𝛽𝛽𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 + 𝜖𝜖𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗 =
𝜔𝜔𝑖𝑖𝑗𝑗

𝜔𝜔𝑖𝑖𝑖𝑖

⇒ Suggests estimating MRF using lasso

𝑝𝑝𝑎𝑎𝑖𝑖𝑛𝑛_𝜷𝜷𝑖𝑖∗ �
𝑗𝑗

(𝑥𝑥𝑖𝑖 − 𝜷𝜷𝑖𝑖∗𝑇𝑇 𝒙𝒙−𝑖𝑖 )2 + 𝜆𝜆||𝜷𝜷𝑖𝑖∗||1

[Meinshausen&Buhlmann 2006]
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Generalized linear models for MRFs
• In principle iterative algorithms, e.g., MC, 

VB, message passing, can be applied to 
infer any MRF but are  generally slow in 
high dimensions

• Some other approaches to non-Gaussian 
MRFs  
– Pre-transformations to Gaussian: 

log 𝑥𝑥 ,√x
– Copula transformations on observations: 

[Liu 2009]    
• Popular alternative: turn MRF inference 

into a prediction problem and use 
generalized  linear model (GLM) to 
construct predictor [Nelder 1972]

• GLM principle: a certain transformed 
linear predictor is accurate

• GLM applied to MRFs of following types
– Multinomial, Poisson, Exp [Yang 2013]

Elements of GLMs
Given  response/predictor variables Y and X

1. 𝑃𝑃 𝑌𝑌 𝑿𝑿,𝜃𝜃 conditional dsn of a response 
variable Y  from exponential family with mean 

𝜇𝜇 = 𝐸𝐸 𝑌𝑌|𝑿𝑿, 𝜃𝜃
2. A linear predictor 

𝜂𝜂 = 𝜷𝜷𝑇𝑇𝑿𝑿
3. A link function g such that 

g(𝜇𝜇) = 𝜂𝜂

Combining 2 and 3, GLM for (Y, X)  is

𝑔𝑔 𝐸𝐸 𝑌𝑌 𝑿𝑿, 𝜃𝜃 = 𝜷𝜷𝑇𝑇𝑿𝑿 + 𝜖𝜖

Examples:
*Gaussian Y, X:  𝜇𝜇 = 𝜃𝜃, 𝑔𝑔 𝜇𝜇 = 𝜇𝜇
*Bernoulli Y, X: 𝜇𝜇 = 𝜃𝜃, 𝑔𝑔 𝜇𝜇 = log 𝜇𝜇/(1 − 𝜇𝜇)
*Poisson Y, X:    𝜇𝜇 = 𝜃𝜃, 𝑔𝑔 𝜇𝜇 = log 𝜇𝜇
*Exponential Y, X: 𝜇𝜇 = 1

𝜃𝜃
, 𝑔𝑔 𝜇𝜇 = −𝜇𝜇−1
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Binary Markov Random Fields
• A MRF where node attributes 𝑥𝑥𝑖𝑖 are binary
• Introduced by Ising [Ising 1925]

– Originally intended to model spin coupling in 
ferromagnetic materials 

– Basic neighborhood was local (1NN) in 1D
– Generalizes to q-ary state Potts Model [Potts 

1952]
• General form of jpdf

• Inference of cliques C and parameter 𝛾𝛾
– MCMC and Gibbs sampling [Newman 1999] 
– Message passing [Wainright 2008]
– L1 penalization (Glasso) [Ravikumar 2006]
– Nodewise regression [Ravikumar 2010]

• Hierarchical Bayesian extensions
– Topic models [Blei&Ng&Jordan 2003] 
– Dynamic Bayesian nets [Koller&Freidman

2009]
• SP examples

– Image restoration [Besag 1991]
– Image segmentation [Wainright 2008]

Pairwise Ising model joint pdf: 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = exp �
𝑖𝑖,𝑗𝑗=1

𝛾𝛾𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 − 𝐷𝐷(𝛾𝛾)

𝛾𝛾𝑖𝑖𝑗𝑗 is related to conditional independence

𝛾𝛾𝑖𝑖𝑗𝑗 = 𝛾𝛾𝑗𝑗𝑖𝑖 = 0 ⟺ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ⊥ 𝑥𝑥𝑉𝑉\𝑖𝑖𝑗𝑗

𝛾𝛾𝑖𝑖𝑗𝑗 is related to nodewise regression

logit(𝑃𝑃(𝑥𝑥𝑖𝑖 = 1|𝑥𝑥𝑉𝑉\i)) = 2∑𝑗𝑗≠𝑖𝑖 𝛾𝛾𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 + 𝜖𝜖𝑖𝑖

Logit function :    logit 𝑝𝑝 = log( 𝑝𝑝
1−𝑝𝑝

)

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = exp �
𝑐𝑐∈𝐶𝐶

𝛾𝛾𝑐𝑐𝑈𝑈(𝑥𝑥𝑐𝑐) − 𝐷𝐷(𝛾𝛾)

⇒ logistic lasso for estimating MRF 
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Probabilistic boolean networks (PBN)
• Algebraic model introduced 45 years ago 

[Kauffman 1969] for rule-based dynamical 
systems described by Boolean state transition 
functions.

• Probabilistic Bayes nets (PBN) [Shmulevich
2002] to model uncertainty in data and in 
functional rules – posterior distribution over 
Boolean functions. 

• Algebraic properties can be studied using 
Petri Nets [Steggles 2007, Karleback 2008]

• PBN = binary MRF [Murphy 1999] when 
synchronous, spatially Markov and acyclic.

• Inference: Markov Chains and MC
– Petri net methods: detecting active pathways, 

reachability, state cycles, fixed points 
– Issues: scalability (2𝑝𝑝 states), quantization

• Used extensively to model interacting binary 
systems in social science, statistical 
mechanics, network biology, automatic 
control, and signal processing communities.

Source: http://adam.plantsimlab.org/userGuide.pl

Source: Steggles 2007

General reference:
De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. Journal of computational biology, 9(1), 67-103



Wrapup

• “Signal processing for graphs:” modeling data using graphs
• Graph modeling is a rich area of practice and research 

– Summary statistics are useful for mining graphs and simple inference
– Generative models are useful for simulation and complex inference 

• There is an extensive toolbox of SP and statistical models
• Lots of emerging challenges for signal processing

– Models that incorporate temporal dynamics and real-time updating
– Models that include prior constraints reflecting patterns of adjacency
– Models that combine different data types (relational, attributional)
– Graph inference algorithms that are scalable to high dimensions

• Randomness can be in the eye of the beholder: layout is 
important!



Randomness can be in the eye of the beholder: 
layout is important!

Source: Tim Davis’ webpage. http://www.cise.ufl.edu/research/sparse/matrices/

Unweighted graph with nodes 
positioned randomly

Same graph with minimum 
energy layout (Davis 2009)



Some software packages

• Bioinformatics toolbox. Matlab. 
http://www.mathworks.com/products/bioinfo/: graph functions and 
graph visualization.

• bnt (Bayes Net). Matlab – Murphy group, Google 
https://code.google.com/p/bnt/: static and dynamic Bayes nets, graph 
layout tools

• Statnet. Open source  R package. http://csde.washington.edu/statnet/. 
ERGM models.

• HUGE. Open source R – Lafferty group, U. Chicago. Graph inference 
methods for Gaussian and related MRFs. On CRAN. 

• BoolNet. Open source R. Package for generation, reconstruction and 
analysis of PBNs.

• Cytoscape. Open source with API.  http://www.cytoscape.org/:  data 
integration, analysis, and visualization

• ADAM (Analysis of Dynamic Algebraic Models) 
http://adam.plantsimlab.org – Laubenbacher Research Group at Virginia 
Tech: computational algebra for PBNs.

http://www.mathworks.com/products/bioinfo/
https://code.google.com/p/bnt/
http://csde.washington.edu/statnet/
http://www.cytoscape.org/
http://adam.plantsimlab.org/


Selected References (1)
• [Ahmed 2009] A. Ahmed and E. P. Xing (2009). Recovering time-varying networks of dependencies in social and biological 

studies. PNAS, 106(29):11878–11883, 
• [Bach 2004] Bach, F. R., & Jordan, M. I. (2004). Learning graphical models for stationary time series. Signal Processing, IEEE 

Transactions on, 52(8), 2189-2199.
• [Besag 1991] Besag, J., York, J., & Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. 

Annals of the Institute of Statistical Mathematics, 43(1), 1-20
• [Blei 2003] D. M. Blei, A. Y. Ng, and M. I. Jordan, (2003). Latent Dirichlet allocation,”Journal of Machine Learning Research, 

vol. 3, pp. 993–1022,.
• [Chen, H 2013] P.-Y. Chen and A.O. Hero, "Local Fiedler Vector Centrality for Detection of Deep and Overlapping 

Communities in Networks," Proc. of IEEE Conf. on Acoustics, Speech and Signal Processing (ICASSP), Florence, May 2014.
• [Chen, etal 2014] H. Chen, N. Comment, J. Chen, S. Ronquist, T  Ried, A. Hero, I Rajapakse, “Chromosome Conformation of 

Human Fibroblasts Grown in 3-Dimensional Spheroids,” submitted 2014.
• Chung, F. R. K. Spectral Graph Theory. Providence, RI: Amer. Math. Soc., 1997. 
• [Coates, H, Nowak, Yu 2002] M Coates, AO Hero, R Nowak, B Yu, Internet Tomography, IEEE Signal Processing Magazine, Vol. 

19, No. 3, pp. 47-65, May 2002. 
• [Chung 2002] Chung, F., & Lu, L. (2002). The average distances in random graphs with given expected degrees. Proceedings 

of the National Academy of Sciences, 99(25), 15879-15882.
• [Chung 2003] Chung, F., Lu, L., Dewey, T. G., & Galas, D. J. (2003). Duplication models for biological networks. Journal of 

computational biology, 10(5), 677-687.
• [Cross 1983] Cross, G. R., & Jain, A. K. (1983). Markov random field texture models. Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, (1), 25-39.
• [De Jong 2002] De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. Journal of 

computational biology, 9(1), 67-103.
• [Dimakis 2010]  Dimakis, A. G., Kar, S., Moura, J. M., Rabbat, M. G., & Scaglione, A. (2010). Gossip algorithms for distributed signal 

processing. Proceedings of the IEEE, 98(11), 1847-1864.
• [Firouzi 2014] Firouzi, H., Wei, D., & Hero III, A. O. (2014). Spectral Correlation Hub Screening of Multivariate Time 

Series.Excursions in Harmonic Analysis., 2014 Also available as  arXiv preprint arXiv:1403.3371.
• M. Fiedler. Algebraic connectivity of Graphs, Czechoslovak Mathematical Journal: 23 (98), 1973. 
• [Friedman 2004] Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303(5659), 

799-805.
• [Friedman 2007] Friedman, J., Hastie, T. (2007).Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 1-

10.



Selected references (2)
• [Hero 2011] Hero, A., & Rajaratnam, B. (2011). Large-scale correlation screening. Journal of the 

American Statistical Association, 106(496), 1540-1552.
• [Hero 2012] Hero, A., & Rajaratnam, B. (2012). Hub discovery in partial correlation graphs. 

Information Theory, IEEE Transactions on, 58(9), 6064-6078.
• [Hero, Ma, Michel, Gorman 2002]. Applications of entropic graphs. IEEE Signal Processing 

Magazine, 19 (5), 85-95
• [Jordan 2004] Jordan, M. I. (2004). Graphical models. Statistical Science, 19(1), 140-155.
• [Kang 2011] Kang, U., Chau, D. H., & Faloutsos, C. (2011, April). Mining large graphs: Algorithms, 

inference, and discoveries. In Data Engineering (ICDE), 2011 IEEE 27th International Conference on
(pp. 243-254). 

• [Karlebach 2008] Karlebach, G., & Shamir, R. (2008). Modelling and analysis of gene regulatory 
networks. Nature Reviews Molecular Cell Biology, 9(10), 770-780.

• Kindermann, R., & Snell, J. L. (1980). Markov random fields and their applications (Vol. 1). 
Providence, RI: American Mathematical Society.

• [Kolaczyk 2009] Kolaczyk, Eric D. Statistical analysis of network data: methods and models. Springer, 
2009.

• [Koller 2009] Koller, Daphne, and Friedman, N. (2009). Probabilistic graphical models: principles 
and techniques. MIT press.

• [Lauritzen 1996] Lauritzen, Steffen L. Graphical models. Oxford University Press, 1996.
• [Li 2007] Fei-Fei, L., Fergus, R., & Perona, P. (2007). Learning generative visual models from few 

training examples: An incremental bayesian approach tested on 101 object categories. Computer 
Vision and Image Understanding, 106(1), 59-70.

• [Loeliger 2007] Loeliger, H-A., Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R. 
Kschischang. "The factor graph approach to model-based signal processing." Proceedings of the 
IEEE 95, no. 6 (2007): 1295-1322.

• [Liu 2009] Liu, H., Lafferty, J., & Wasserman, L. (2009). The nonparanormal: Semiparametric
estimation of high dimensional undirected graphs. The Journal of Machine Learning Research, 10, 
2295-2328.

• [Leskovec 2010] Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Ghahramani, Z. (2010). 
Kronecker graphs: An approach to modeling networks. The Journal of Machine Learning Research, 
11, 985-1042.



Selected references (3)
• [Meng, Wei, Wiesel, H 2014]. Z Meng, D Wei A Wiesel, AO Hero,  Distributed Learning of Gaussian Graphical 

Models via Marginal Likelihoods. To appear in IEEE Trans. On Signal Processing, 2014.
• [Miller 2013] Miller, Benjamin A., Nicholas Arcolano, and Nadya T. Bliss. "Efficient anomaly detection in dynamic, 

attributed graphs: Emerging phenomena and big data." Intelligence and Security Informatics (ISI), 2013 IEEE 
International Conference on. IEEE, 2013.

• [Nadakuditi,Newman 2012] Nadakuditi, Raj Rao, and Mark EJ Newman. "Graph spectra and the detectability of 
community structure in networks." Physical review letters 108, no. 18 (2012): 188701.

• [Nelder 1972] Nelder, J. A., & Baker, R. J. (1972). Generalized linear models. John Wiley & Sons.
• [Newman 2001] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001). 
• [Newman 1999] Newman, M. E., Barkema, G. T., & Newman, M. E. J. (1999). Monte Carlo methods in statistical 

physics (Vol. 13). Oxford: Clarendon Press.
• [Ortiz-Arroyo 2010] Ortiz-Arroyo, D. (2010). Discovering sets of key players in social networks. In Computational 

Social Network Analysis (pp. 27-47). Springer London.
• [Oselio 2014] Oselio, Brandon, Alex Kulesza, and Alfred O. Hero III. "Multi-layer graph analysis for dynamic social 

networks.“ IEEE JSTP 2014. Availlable as arXiv preprint arXiv:1309.5124 (2013).
• [Oselio, Kulesza, H SBP 2014] B. Oselio, J. Kulesza and A.O. Hero, "Multi-objective optimization for multi-level 

networks", Proc. of Workshop on Social Computing, Behavioral-Cultural Modeling and Prediction, pp. 129-136. 
Washington DC, April 2014.

• [Pinar 2011] Pinar, A., Seshadhri, C., & Kolda, T. G. (2011). The similarity between stochastic kronecker and chung-
lu graph models. CoRR, vol. abs/1110.4925.

• [Rajaratnam 2008] Rajaratnam, B., Massam, H., Carvalho, C. M. (2008). Flexible covariance estimation in graphical 
Gaussian models. The Annals of statistics, 36(6), 2818-2849.

• [Rao, Hero, States, Engel 2008] A. Rao, A. O. Hero III, D.J. States, and J.D. Engel, "Using Directed Information to 
Build Biologically Relevant Influence Networks," in Journal on Bioinformatics and Computational Biology, vol. 6, 
no.3, pp. 493-519, June 2008

• [Ravikumar 2010] Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional Ising model selection 
using ℓ1-regularized logistic regression. The Annals of Statistics, 38(3), 1287-1319.

• [Shih, H, 2003] MF Shih ands AO Hero, Unicast-based inference of network link delay distributions using mixed 
finite mixture models, IEEE Trans. on Signal Processing,  vol. 51, No. 9, pp. 2219-2228, Aug. 2003.

• [Shmulevich 2002] Shmulevich, Ilya, et al. "Probabilistic Boolean networks: a rule-based uncertainty model for 
gene regulatory networks." Bioinformatics 18.2 (2002): 261-274.



Selected references (4)
• [Shuman, Narang, Frossard, Ortega, Vanderghenst 2013]Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & 

Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data 
analysis to networks and other irregular domains. Signal Processing Magazine, IEEE, 30(3), 83-98.

• [Sudderth 2010] Sudderth, E. B., Ihler, A. T., Isard, M., Freeman, W. T., & Willsky, A. S. (2010). Nonparametric belief 
propagation. Communications of the ACM, 53(10), 95-103.

• [Steggles 2007] Steggles, L. J., Banks, R., Shaw, O., & Wipat, A. (2007). Qualitatively modelling and analysing
genetic regulatory networks: a Petri net approach. Bioinformatics, 23(3), 336-343.

• [Strogatz 1998] Watts, D. J.; Strogatz, S. H. (1998). "Collective dynamics of 'small-world' networks". Nature 393
(6684): 440–442

• [Tsilgkaridis 2013] Tsiligkaridis, T., Hero, A. O.,  & Zhou, S. (2013). On convergence of kronecker graphical lasso 
algorithms. IEEE transactions on signal processing, 61(5-8), 1743-1755.

• [Wainright 2008] Wainwright, Martin J., and Michael I. Jordan. "Graphical models, exponential families, and 
variational inference." Foundations and Trends® in Machine Learning 1.1-2 (2008): 1-305.

• [Westveld 2011] A. H. Westveld and P. D. Hoff (2011). A mixed effects model for longitudinal relational and 
network data, with applications to international trade and conflict. Ann. Appl. Statist., 5(2A):843–872.

• [Wiesel 2010] A Wiesel, YC. Eldar, and O. Hero. "Covariance estimation in decomposable Gaussian graphical 
models." Signal Processing, IEEE Transactions on 58.3 (2010): 1482-1492.

• [Wiesel, H 2009]. A Wiesel  and AO Hero, Decomposable Principal Components Analysis, IEEE Trans. on Signal 
Processing, vol. 57, no. 11, pp. 4369-4378, 2009.

• [Watts 1999] Watts, D. Networks, Dynamics, and the Small-World Phenomenon, American Journal of Sociology, 
Vol. 105, No. 2 (September 1999), pp. 493-527

• [Willsky 2002] Willsky, Alan S. Multiresolution Markov models for signal and image processing. Proceedings of the 
IEEE 90.8 (2002): 1396-1458.

• [Wang, Wong 1987] Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the 
American Statistical Association, 82(397), 8-19.

• [Yang 2012] Yang, E., Ravikumar, P. D., Allen, G. I., & Liu, Z. (2012, December). Graphical Models via Generalized 
Linear Models. In NIPS (Vol. 25, pp. 1367-1375).

• [Xu 2014] Xu, Kevin S., Mark Kliger, and Alfred O. Hero III. Adaptive evolutionary clustering. Data Mining and 
Knowledge Discovery 28.2 (2014): 304-336.

• [Xu, Kliger, H 2013] K.S. Xu, M. Kliger, AO Hero, A regularized graph layout framework for dynamic network 
visualization, J. Data Mining and Knowledge Discovery, Volume 27, Issue 1, pp 84-116, July 2013, 


	 Signal processing for graphs
	What this talk will not cover
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Graphs and adjacency/weight matrices
	Attributional vs Relational data�
	Example: Twitter hashtag multigraph 
	Example: Social collaborative retrieval
	The graph inference model
	II. Summarization: Path statistics
	Summarization: degree distribution
	Summarization: p-value waterfall plot 
	Summarization: network centrality measures
	Degree centrality
	Closeness centrality
	Betweenness centrality
	Eigenvector centrality
	A centrality measure for finding polyglots
	III. Generative random graph models
	Random graph models for attributional data
	Random graph models for relational data
	Generative random graph models
	Factor graph representations
	Generative random graph models
	Gilbert-Erdős-Rényi (ER) random graphs
	Generative random graph models
	Chung-Lu random graphs
	Generative random graph models
	Exponential random graph model (ERGM)
	Generative random graph models
	Stochastic Kronecker random graphs
	Generative random graph models
	Stochastic block model (SBM)
	Dynamic SBM [Xu, Kliger, H 2014]
	Generative random graph models
	Subclasses of MRF random graph models
	Go back to factor graphs: nodal examples
	Nodal factor graphs and Markov graphs
	What is Markovian about a Markov graph?
	Markov Random Fields
	Selected MRFs and their adjacency matrices
	Subclasses of MRF random graph models
	Gauss Markov Random Fields
	Subclasses of MRF random graph models
	Generalized linear models for MRFs
	Subclasses of MRF random graph models
	Binary Markov Random Fields
	Attributional random graph models
	Probabilistic boolean networks (PBN)
	Wrapup
	Randomness can be in the eye of the beholder: layout is important!
	Some software packages
	Selected References (1)
	Selected references (2)
	Selected references (3)
	Selected references (4)

