The Impact of Observation and Action Errors on Informational Cascades

Vijay G Subramanian

Joint work with Tho Le & Randall Berry, Northwestern University

Supported by NSF via grant IIS-1219071

CSP Seminar
November 6, 2014
Anecdote

Anecdote

- Despite average reviews
 - 15 weeks on *NYTimes* bestseller list
 - *Bloomberg Businessweek* bestseller list
 - ~250K copies sold by 2012

Anecdote

• In 1995 M. Treacy & F. Wiersema published book
• Despite average reviews
 • 15 weeks on *NYTimes* bestseller list
 • *Bloomberg Businessweek* bestseller list
 • ~250K copies sold by 2012
• W. Stern of *Bloomberg Businessweek* in Aug’95:
 Authors bought ~10K initial copies to make *NYTimes* list
 Increased speaking contracts & fees!

Anecdote

- Despite average reviews
 - 15 weeks on *NYTimes* bestseller list
 - *Bloomberg Businessweek* bestseller list
 - \(\sim 250K \) copies sold by 2012
- W. Stern of *Bloomberg Businessweek* in Aug’95:
 Authors bought \(\sim 10K \) initial copies to make *NYTimes* list
 Increased speaking contracts & fees!
- *NYTimes* changed best-seller list policies in response

Anecdote

- Despite average reviews
 - 15 weeks on *NYTimes* bestseller list
 - *Bloomberg Businessweek* bestseller list
 - $\sim 250K$ copies sold by 2012
- W. Stern of *Bloomberg Businessweek* in Aug’95:
 Authors bought $\sim 10K$ initial copies to make *NYTimes* list
 Increased speaking contracts & fees!
- *NYTimes* changed best-seller list policies in response

Audience greatly influenced by NYTimes’ ratings of book

Motivation

E-commerce, online reviews, collaborative filtering
Motivation

E-commerce, online reviews, collaborative filtering

- E-commerce sites make it easy to find out the actions/opinions of others.
- Future customers can use this information to make their decisions/purchases.
Motivation

E-commerce, online reviews, collaborative filtering

- E-commerce sites make it easy to find out the actions/opinions of others.
- Future customers can use this information to make their decisions/purchases
Motivation

E-commerce, online reviews, collaborative filtering

- E-commerce sites make it easy to find out the actions/opinions of others.
- Future customers can use this information to make their decisions/purchases.
Design Questions

- What is the best information to display?
Design Questions

- What is the best information to display?
- How should one optimally use this information?
Design Questions

• What is the best information to display?
• How should one optimally use this information?
• Can pathological phenomena emerge?
Design Questions

- What is the best information to display?
- How should one optimally use this information?
- Can pathological phenomena emerge?
- What if information is noisy?
Design Questions

• What is the best information to display?
• How should one optimally use this information?
• Can pathological phenomena emerge?
• What if information is noisy?
Bayesian Observational Learning

- Model this as a problem of *social learning* or *Bayesian observational learning*
Bayesian Observational Learning

• Model this as a problem of *social learning* or *Bayesian observational learning*

• Studied in economics literature as a *dynamic game with incomplete information*

• Connected to *sequential detection/hypothesis testing*
 • Cover 1969, Hellman 1970
Bayesian Observational Learning

- Model this as a problem of *social learning* or *Bayesian observational learning*
- Studied in economics literature as a *dynamic game with incomplete information*
- Connected to *sequential detection/hypothesis testing*
 - Cover 1969, HellmanCover 1970
BHW model

- An item is available in a market at cost 1/2
BHW model

- An item is available in a market at cost 1/2
 - Item’s value (V) equally likely Good (1) or Bad (0)
BHW model

- An item is available in a market at cost 1/2
 - Item’s value (V) equally likely Good (1) or Bad (0)
- Agents sequentially decide to Buy or Not Buy the item
 - $A_i = Y$ or $A_i = N$
BHW model

- An item is available in a market at cost $1/2$
 - Item’s value (V) equally likely Good (1) or Bad (0)
- Agents sequentially decide to Buy or Not Buy the item
 - $A_i = Y$ or $A_i = N$
- These decisions are recorded via a database
BHW model

- An item is available in a market at cost $1/2$
 - Item’s value (V) equally likely Good (1) or Bad (0)
- Agents sequentially decide to Buy or Not Buy the item
 - $A_i = Y$ or $A_i = N$
- These decisions are recorded via a database

- Agent i’s payoff, π_i:
 - Action A_i
 - N: payoff $\pi_i = 0$
 - Y: payoff
 - $\pi_i = -\frac{1}{2}$ if $V = 0$
 - $\pi_i = +\frac{1}{2}$ if $V = 1$
Information Structure

• Agent \(i \ (i = 1, 2, \ldots) \) receives i.i.d. *private signal*, \(S_i \)
• Agent i ($i = 1, 2, ...$) receives i.i.d. *private signal*, S_i
• Obtained from V via a BSC$(1 - p)$

Diagram:

![Binary Symmetric Channel (BSC) Diagram]
Information Structure

- Agent i ($i = 1, 2, ...$) receives i.i.d. private signal, S_i
- Obtained from V via a BSC($1 - p$)

$$V \xrightarrow{0, 1-p} L \xrightarrow{p} S_i \xleftarrow{1-p, p} H$$

- Assume $0.5 < p < 1$: Private signal is informative, but non-revealing
Information Structure

- Agent \(i\) (\(i = 1, 2, \ldots\)) receives i.i.d. private signal, \(S_i\)
- Obtained from \(V\) via a BSC\((1 - p)\)

![Binary Symmetric Channel (BSC) Diagram]

- Assume \(0.5 < p < 1\): Private signal is informative, but non-revealing
- Agent \(i \geq 2\) observes actions \(A_1, \ldots, A_{i-1}\) in addition to \(S_i\)

 Database provides this information
Information Structure

- Agent i ($i = 1, 2, ...$) receives i.i.d. private signal, S_i
- Obtained from V via a BSC$(1 - p)$

$$
\begin{array}{c}
V \\
\begin{array}{c}
0 \quad 1-p \\
1-p \quad p
\end{array}
\end{array}
\rightarrow
L \quad S_i
\rightarrow
H
$$

- Assume $0.5 < p < 1$: Private signal is informative, but non-revealing
- Agent $i \geq 2$ observes actions $A_1, ..., A_{i-1}$ in addition to S_i

 Database provides this information

- Denote the information set as $I_i = \{S_i, A_1, ..., A_{i-1}\}$
Information Structure

- Agent i ($i = 1, 2, ...$) receives i.i.d. *private signal*, S_i
- Obtained from V via a BSC($1 - p$)
 \[
 \begin{array}{ccc}
 V & \rightarrow & S_i \\
 0 & \overset{1-p}{\longrightarrow} & L \\
 1 & \overset{1-p}{\longrightarrow} & H \\
 & \overset{p}{\longrightarrow} & \\
 \end{array}
 \]
- Assume $0.5 < p < 1$: Private signal is *informative*, but *non-revealing*
- Agent $i \geq 2$ observes actions $A_1, ..., A_{i-1}$ in addition to S_i
 Database provides this information
- Denote the information set as $l_i = \{S_i, A_1, ..., A_{i-1}\}$
- Distribution of value and signals are *common knowledge*.
Bayesian Rational Agents

• Suppose each agent seeks to maximize her expected pay-off.
 • Given her information set
Bayesian Rational Agents

• Suppose each agent seeks to maximize her expected pay-off.
 • Given her information set
• Without any information:
 • Expected payoff $E[\pi_i] = 0$ since $P[V=1] = P[V=0] = \frac{1}{2}$
 • With only private signal:
 • Update posterior probability: $\Pr(V=G|S_i=H) = \Pr(V=B|S_i=L) = p > 0$.5
 • Optimal Action: Buy if and only if $S_i = H$.
 • Pay-off: $E[\pi_i] = \frac{1}{2}(2p - \frac{1}{2}) + \frac{1}{2}(0) = \frac{2}{4}p > 0$
Bayesian Rational Agents

• Suppose each agent seeks to maximize her expected pay-off.
 • Given her information set
• Without any information:
 • Expected payoff $E[\pi_i] = 0$ since $\mathbb{P}[V = 1] = \mathbb{P}[V = 0] = \frac{1}{2}$
Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
 - Given her information set
- Without any information:
 - Expected payoff $E[\pi_i] = 0$ since $\mathbb{P}[V = 1] = \mathbb{P}[V = 0] = \frac{1}{2}$
- With only private signal:
 - Optimal Action: Buy if and only if $S_i = H$.

Pay-off:
$E[\pi_i] = \frac{1}{2} \left(2p - \frac{1}{2} \right) + \frac{1}{2} (0) = \frac{2}{2} p - \frac{1}{4} > 0$
Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
 - Given her information set
- Without any information:
 - Expected payoff \(E[\pi_i] = 0 \) since \(P[V = 1] = P[V = 0] = \frac{1}{2} \)
- With *only* private signal:
 - Update posterior probability:
 \[
 Pr(V = G|S_i = H) = Pr(V = B|S_i = L) = p > 0.5
 \]
Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
 - Given her information set
- Without any information:
 - Expected payoff $E[\pi_i] = 0$ since $P[V = 1] = P[V = 0] = \frac{1}{2}$
- With only private signal:
 - Update posterior probability:
 $Pr(V = G|S_i = H) = Pr(V = B|S_i = L) = p > 0.5$
 - Optimal Action: Buy if and only if $S_i = H$.

\[E[\pi_i] = \frac{1}{2}(2p - 1) + \frac{1}{2}(0) = 2p - \frac{1}{2} > 0 \]
Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
 - Given her information set
- Without any information:
 - Expected payoff $E[\pi_i] = 0$ since $P[V = 1] = P[V = 0] = \frac{1}{2}$
- With *only* private signal:
 - Update posterior probability:
 \[Pr(V = G|S_i = H) = Pr(V = B|S_i = L) = p > 0.5 \]
 - Optimal Action: Buy if and only if $S_i = H$.
 - Pay-off: $E[\pi_i] = \frac{1}{2} \left(\frac{2p-1}{2} \right) + \frac{1}{2}(0) = \frac{2p-1}{4} > 0$
Bayesian Rational Agents cont’d.

• With private signal S_i and actions A_1, \ldots, A_{i-1}:
Bayesian Rational Agents cont’d.

- With private signal S_i and actions $A_1, ..., A_{i-1}$:
 - Update posterior probability $P[V = 1|l_i] = \frac{P[l_i|V=1]}{P[l_i|V=1]+P[l_i|V=0]}$
Bayesian Rational Agents cont’d.

- With private signal S_i and actions A_1, \ldots, A_{i-1}:
 - Update posterior probability $\Pr[V = 1|I_i] = \frac{\Pr[l_i|V=1]}{\Pr[l_i|V=1] + \Pr[l_i|V=0]}$
 - Decision:
 - Y if $\Pr[V = 1|I_i] > \frac{1}{2}$
 - N if $\Pr[V = 1|I_i] < \frac{1}{2}$
 - Follow own signal if $\Pr[V = 1|I_i] = \frac{1}{2}$

Can now iteratively calculate the actions of each agent for a given realization of V and $\{S_i\}$.

Bayesian Rational Agents cont’d.

- With private signal S_i and actions A_1, \ldots, A_{i-1}:
 - Update posterior probability $P[V=1|I_i] = \frac{P[I_i|V=1]}{P[I_i|V=1]+P[I_i|V=0]}$
 - Decision:
 - Y if $P[V=1|I_i] > \frac{1}{2}$
 - N if $P[V=1|I_i] < \frac{1}{2}$
 - follow own signal if $P[V=1|I_i] = \frac{1}{2}$

- Can now iteratively calculate the actions of each agent for a given realization of V and $\{S_i\}$.
BHW’92 Analysis

• First agent always follows their own signal.

\footnote{Here assume they always follow signal in this case.}
BHW’92 Analysis

- First agent always follows their own signal.
- Consider second agent.

\[I_3 = \{H, N, N\} \text{ or } \{L, Y, Y\}.\]

In these cases, optimal action is to “follow the crowd.”

Subsequent agents? \(^2\) Here assume they always follow signal in this case.
BHW’92 Analysis

- First agent always follows their own signal.
- Consider second agent.
 - Two possibilities:
 - Observation and signal match.
 - Observation and signal differ.
- Third agent?
 - Interesting cases:
 - $I_3 = \{H, N, N\}$ or $\{L, Y, Y\}$.
 - In these cases, optimal action is to “follow the crowd”
- Subsequent agents?
 - Here assume they always follow signal in this case.

\[2\] Here assume they always follow signal in this case.
• First agent always follows their own signal.
• Consider second agent.
 • Two possibilities:
 • Observation and signal match.
 • Observation and signal differ.
 • In second case, agent is indifferent between following signal or not.\(^2\)

\(^2\)Here assume they always follow signal in this case.
• First agent always follows their own signal.
• Consider second agent.
 • Two possibilities:
 • Observation and signal match.
 • Observation and signal differ.
 • In second case, agent is indifferent between following signal or not.²
• Third agent?

²Here assume they always follow signal in this case.
First agent always follows their own signal.
Consider second agent.
- Two possibilities:
 - Observation and signal match.
 - Observation and signal differ.
- In second case, agent is indifferent between following signal or not.\(^2\)

Third agent?
- Interesting cases: \(I_3 = \{H, N, N\}\) or \(\{L, Y, Y\}\).

\(^2\)Here assume they always follow signal in this case.
BHW’92 Analysis

• First agent always follows their own signal.
• Consider second agent.
 • Two possibilities:
 • Observation and signal match.
 • Observation and signal differ.
 • In second case, agent is indifferent between following signal or not.\(^2\)
• Third agent?
 • Interesting cases: \(I_3 = \{H, N, N\}\) or \(\{L, Y, Y\}\).
 • In these cases, optimal action is to “follow the crowd”

\(^2\)Here assume they always follow signal in this case.
First agent always follows their own signal.

Consider second agent.

Two possibilities:

- Observation and signal match.
- Observation and signal differ.

In second case, agent is indifferent between following signal or not.²

Third agent?

Interesting cases: $I_3 = \{H, N, N\}$ or $\{L, Y, Y\}$.

In these cases, optimal action is to “follow the crowd”

Subsequent agents?

²Here assume they always follow signal in this case.
Herding

- **Definition**: Herding (informational cascade) occurs when it is *optimal* for an agent to *take a fixed action* based on other agents’ actions, *regardless* of her own signal.
• **Definition:** *Herding* (informational cascade) occurs when it is *optimal* for an agent to *take a fixed action* based on other agents’ actions, *regardless* of her own signal

 • Consequences:
Herding

• Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents’ actions, regardless of her own signal.

• Consequences:
 • Non-zero probability of herding in wrong decision
Herding

- **Definition:** Herding (informational cascade) occurs when it is *optimal* for an agent to *take a fixed action* based on other agents’ actions, *regardless* of her own signal.

 - **Consequences:**
 - Non-zero probability of herding in wrong decision
 - Private signal information lost
Herding

- **Definition:** *Herding* (informational cascade) occurs when it is *optimal* for an agent to *take a fixed action* based on other agents’ actions, *regardless* of her own signal
 - **Consequences:**
 - Non-zero probability of herding in wrong decision
 - Private signal information lost

- BHW’92, Banerjee’92, Welch’92: Agents eventually exhibit herding
Herding

- **Definition:** *Herding* (informational cascade) occurs when it is *optimal* for an agent to *take a fixed action* based on other agents’ actions, *regardless* of her own signal.

- **Consequences:**
 - Non-zero probability of herding in wrong decision
 - Private signal information lost

- BHW’92, Banerjee’92, Welch’92: Agents eventually exhibit herding
- BHW’92: *herding* as soon as $|\# Y’s - \# N’s| = 2$ in the history.

 Once herding starts, all agents follow suit.
Do real people herd?

- Ball-drawing experiment (Anderson & Holt 1997)
 - Two urns with mix of red and blue balls.
Do real people herd?

- Ball-drawing experiment (Anderson & Holt 1997)
 - Two urns with mix of red and blue balls.
 - One has a majority of blue/one majority red.
 - One Urn selected and identity kept secret.
Do real people herd?

- Ball-drawing experiment (Anderson & Holt 1997)
 - Two urns with mix of red and blue balls.
 - One has a majority of blue/one majority red.
 - One Urn selected and identity kept secret.
 - Students take turns drawing one ball from the selected urn, then guessing which urn it is.
Ball-drawing experiment (Anderson & Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.
- Students take turns drawing one ball from the selected urn, then guessing which urn it is.
 - Only see the color of the drawn ball
 - Students see all previous students’ guesses
Do real people herd?

- Ball-drawing experiment (Anderson & Holt 1997)
 - Two urns with mix of red and blue balls.
 - One has a majority of blue/one majority red.
 - One Urn selected and identity kept secret.
 - Students take turns drawing one ball from the selected urn, then guessing which urn it is.
 - Only see the color of the drawn ball
 - Students see all previous students’ guesses
 - Experiment is repeated, each time the urn is chosen randomly.
Do real people herd?

- Ball-drawing experiment (Anderson & Holt 1997)
 - Two urns with mix of red and blue balls.
 - One has a majority of blue/one majority red.
 - One Urn selected and identity kept secret.
 - Students take turns drawing one ball from the selected urn, then guessing which urn it is.
 - Only see the color of the drawn ball
 - Students see all previous students’ guesses
 - Experiment is repeated, each time the urn is chosen randomly.
 - Students with correct guess will be rewarded after the experiment
Do real people herd?

- Ball-drawing experiment (Anderson & Holt 1997)
 - Two urns with mix of red and blue balls.
 - One has a majority of blue/one majority red.
 - One Urn selected and identity kept secret.
 - Students take turns drawing one ball from the selected urn, then guessing which urn it is.
 - Only see the color of the drawn ball
 - Students see all previous students’ guesses
 - Experiment is repeated, each time the urn is chosen randomly.
 - Students with correct guess will be rewarded after the experiment
 - Result: About 80% of the cases the students copy guesses.
Discussion

Why does herding happen? OR When can learning occur?

• Discrete feedback from agents is not rich enough
 • Cover1969, SmithSorensen2000: reporting posterior beliefs better
 • Cover1969, Hellman thesis: Can reduce to finite memory of display

• Likelihood ratios of private signals bounded
 • SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
 • Bayes update plus threshold rule may not be optimal
 • Cover1969: different rule with finite memory display

• Zhang et al. 2013: different sequence of thresholds gives learning

• Information structure reinforces actions
 • Acemoglu et al. 2011: changing set of past agents sampled gives learning even with bounded likelihoods

Why should strategic users follow any of these remedial schemes?
Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
 - Cover1969, SmithSorensen2000: reporting posterior beliefs better
 - Cover1969, Hellman thesis: Can reduce to finite memory of display

- Likelihood ratios of private signals bounded
 - SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
 - Cover1969, SmithSorensen2000: reporting posterior beliefs better
 - Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
 - SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
- Bayes update plus threshold rule may not be optimal
 - Cover1969: different rule with finite memory display
 - Zhang et al. 2013: different sequence of thresholds gives learning
Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
 - Cover1969, SmithSorensen2000: reporting posterior beliefs better
 - Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
 - SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
- Bayes update plus threshold rule may not be optimal
 - Cover1969: different rule with finite memory display
 - Zhang et al. 2013: different sequence of thresholds gives learning
- Information structure reinforces actions
 - Acemoglu et al. 2011: changing set of past agents sampled gives learning even with bounded likelihoods
Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
 - Cover1969, SmithSorensen2000: reporting posterior beliefs better
 - Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
 - SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
- Bayes update plus threshold rule may not be optimal
 - Cover1969: different rule with finite memory display
 - Zhang et al. 2013: different sequence of thresholds gives learning
- Information structure reinforces actions
 - Acemoglu et al. 2011: changing set of past agents sampled gives learning even with bounded likelihoods

Why should strategic users follow any of these remedial schemes?
Noisy Observations

• Introduce i.i.d. observation errors
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on *common database* via another $\text{BSC}(\epsilon)$, $0 < \epsilon < 0.5$

\[A_i \quad \xrightarrow{\begin{array}{c} \epsilon \\ 1 - \epsilon \end{array}} \quad O_i \]

- Information set is now $I_i = \{S_i, O_1, \ldots, O_{i-1}\}$
- Objective: Study the effects of such errors on BHW model
- Note: With noisy observations are less reliable
- Does herding still occur?
- How does probability of wrong herding change?
- Can parameters be changed to improve things?
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on *common database* via another BSC(ϵ), $0 < \epsilon < 0.5$

 \[
 \begin{array}{c}
 0 \\
 1 \\
 \end{array}
 \xrightarrow{\epsilon} \begin{array}{c}
 0 \\
 1 \\
 \end{array}
 \xrightarrow{1 - \epsilon} \begin{array}{c}
 0 \\
 1 \\
 \end{array}
 \]

- Information set is now $I_i = \{S_i, O_1, ..., O_{i-1}\}$
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on *common database* via another BSC(ϵ), $0 < \epsilon < 0.5$

 \[A_i \begin{array}{c}
 0 \\
 \frac{\epsilon}{1-\epsilon} \\
 1 \\
 \end{array} \begin{array}{c}
 0 \\
 \frac{\epsilon}{1-\epsilon} \\
 1 \\
 \end{array} \begin{array}{c}
 0 \\
 \end{array} \begin{array}{c}
 0 \\
 \frac{\epsilon}{1-\epsilon} \\
 1 \\
 \end{array} \]

- Information set is now $I_i = \{S_i, O_1, ..., O_{i-1}\}$

- **Objective:** Study the effects of such errors on BHW model
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on *common database* via another BSC(\(\epsilon\)), \(0 < \epsilon < 0.5\)

\[
\begin{array}{c}
A_i \\
\begin{array}{c}
0 \\
\epsilon \\
1 \\
1 - \epsilon
\end{array} \\
\begin{array}{c}
0 \\
\epsilon \\
1 \\
1 - \epsilon
\end{array}
\end{array}
\]

- Information set is now \(I_i = \{S_i, O_1, ..., O_{i-1}\}\)
- **Objective**: Study the effects of such errors on BHW model
 - Note with noisy, observations are less reliable
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on *common database* via another BSC(\(\epsilon\)), \(0 < \epsilon < 0.5\)

\[
\begin{array}{ccc}
0 & \epsilon & 1 - \epsilon \\
\epsilon & 0 & 1 - \epsilon \\
1 - \epsilon & 1 & 0 \\
\end{array}
\]

- Information set is now \(I_i = \{S_i, O_1, ..., O_{i-1}\}\)

Objective: Study the effects of such errors on BHW model
- Note with noisy, observations are less reliable
- Does herding still occur?
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on *common database* via another BSC(ϵ), $0 < \epsilon < 0.5$

```
```

- Information set is now $I_i = \{S_i, O_1, ..., O_{i-1}\}$
- **Objective**: Study the effects of such errors on BHW model
 - Note with noisy, observations are less reliable
 - Does herding still occur?
 - How does probability of wrong herding change?
Noisy Observations

- Introduce i.i.d. observation errors
 - Actions are recorded on common database via another BSC(\(\epsilon\)), \(0 < \epsilon < 0.5\)

- Information set is now \(I_i = \{S_i, O_1, \ldots, O_{i-1}\}\)

- **Objective**: Study the effects of such errors on BHW model
 - Note with noisy, observations are less reliable
 - Does herding still occur?
 - How does probability of wrong herding change?
 - Can parameters be changed to improve things?
<table>
<thead>
<tr>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- We can obtain closed-form expression for ϵ^* ($k+1$, p) (thresholds)
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
</tbody>
</table>

- We can obtain closed-form expression for $\epsilon^* (k+1, p)$ (thresholds)
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${S_i, A_1, \ldots, A_{i-1}}$</td>
<td>${S_i, O_1, \ldots, O_{i-1}}$</td>
<td></td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, \ldots, A_{i-1}]$</td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{(S_i, A_1, ..., A_{i-1})}</td>
<td>{(S_i, O_1, ..., O_{i-1})}</td>
<td></td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>(\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}])</td>
</tr>
<tr>
<td>Agent 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
<td></td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agent n herding iff $|\# Y' - \# N'| \geq k$ and $\epsilon < \epsilon^*(k+1, p)$ for some integer $k \geq 2$
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td></td>
<td>Noiseless Model $\epsilon = 0$</td>
<td>Noisy Model $\epsilon > 0$</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, \ldots, A_{i-1}}$</td>
<td>${S_i, O_1, \ldots, O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, \ldots, A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>Agent 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herding in noiseless and noisy models

- We can obtain closed-form expression for $\epsilon^* (k+1, p)$ (thresholds).
<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>Agent 3</td>
<td>herding iff $A_1 = A_2$</td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>${S_i, A_1, \ldots, A_{i-1}}$</td>
<td>${S_i, O_1, \ldots, O_{i-1}}$</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, \ldots, A_{i-1}]$</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>Agent 3</td>
<td>herding iff $A_1 = A_2$</td>
<td>herding iff $O_1 = O_2$ and $\epsilon < \epsilon^*(3, p)$</td>
</tr>
</tbody>
</table>

Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
<td></td>
</tr>
</tbody>
</table>

| Posterior Probability | $P[V = 1|S_i, A_1, ..., A_{i-1}]$ | $P[V = 1|S_i, O_1, ..., O_{i-1}]$ |
|-----------------------------|---------------------------------|---------------------------------|

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Follows private signal S_1</th>
<th>Follows private signal S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Agent 3</td>
<td>herding iff $A_1 = A_2$</td>
<td>herding iff $O_1 = O_2$ and $\epsilon < \epsilon^*(3, p)$</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Agent n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td>$P[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>Agent 3</td>
<td>herding iff $A_1 = A_2$</td>
<td>herding iff $O_1 = O_2$ and $\epsilon < \epsilon^*(3, p)$</td>
</tr>
<tr>
<td>Agent n</td>
<td>herding iff $</td>
<td>#Y's - #N's</td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>Agent 3</td>
<td>herding iff $A_1 = A_2$</td>
<td>herding iff $O_1 = O_2$ and $\epsilon < \epsilon^*(3, p)$</td>
</tr>
<tr>
<td>Agent n</td>
<td>herding iff $</td>
<td>#Y's - #N's</td>
</tr>
</tbody>
</table>
Herding in noiseless and noisy models

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Model $\epsilon = 0$</th>
<th>Noisy Model $\epsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Information</td>
<td>${S_i, A_1, ..., A_{i-1}}$</td>
<td>${S_i, O_1, ..., O_{i-1}}$</td>
</tr>
<tr>
<td>Posterior Probability</td>
<td>$\mathbb{P}[V = 1</td>
<td>S_i, A_1, ..., A_{i-1}]$</td>
</tr>
<tr>
<td>Agent 1</td>
<td>Follows private signal S_1</td>
<td>Follows private signal S_1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Follows private signal S_2</td>
<td>Follows private signal S_2</td>
</tr>
<tr>
<td>Agent 3</td>
<td>herding iff $A_1 = A_2$</td>
<td>herding iff $O_1 = O_2$ and $\epsilon < \epsilon^*(3, p)$</td>
</tr>
<tr>
<td>Agent n</td>
<td>herding iff $</td>
<td>#Y's - #N's</td>
</tr>
</tbody>
</table>

- We can obtain closed-form expression for $\epsilon^*(k + 1, p)$ (thresholds)
Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon = 0$)
Summary of herding property

Model inherits many behaviors of noiseless model ([BHW’92], $\epsilon = 0$)

- **Property 1** Until herding occurs, each agent’s Bayesian update depends only on their private signal and the difference ($#Y’s - #N’s$) in the observation history
Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon = 0$)

- **Property 1** Until herding occurs, each agent’s Bayesian update depends only on their private signal and the difference ($\#Y's - \#N's$) in the observation history

- **Property 2** Once herding happens, it lasts forever
Summary of herding property

Model inherits many behaviors of noiseless model ([BHW’92], $\epsilon = 0$)

- **Property 1** Until herding occurs, each agent’s Bayesian update depends only on their private signal and the difference ($\#Y's - \#N's$) in the observation history
- **Property 2** Once herding happens, it lasts forever
- **Property 3** Given $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$, if any time in the history $|\#Y's - \#N's| \geq k$, then herding will start
Summary of herding property

Model inherits many behaviors of noiseless model ([BHW’92], $\epsilon = 0$)

- **Property 1** Until herding occurs, each agent’s Bayesian update depends only on their private signal and the difference ($\#Y’s - \#N’s$) in the observation history

- **Property 2** Once herding happens, it lasts forever

- **Property 3** Given $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$, if any time in the history $|\#Y’s - \#N’s| \geq k$, then herding will start
 - Eventually herding happens (in finite time)
Markov chain viewpoint

• Assume $V = 1$ and $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
Markov chain viewpoint

- Assume $V = 1$ and $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
- State at time i is $(\#Y's - \#N's)$ seen by an agent i
Markov chain viewpoint

- Assume $V = 1$ and $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
- State at time i is $(\# Y's - \# N's)$ seen by an agent i
- Time index = agent’s index

![Diagram showing transitions between states]

- Agent 1 starts at state 0
- $a = P[One more Y added] = (1 - \epsilon)p + \epsilon(1 - p) > 0.5$, decreasing in ϵ, increasing in p
Markov chain viewpoint

- Assume $V = 1$ and $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
- State at time i is $(\# Y's - \# N's)$ seen by an agent i
- Time index = agent’s index

```
1  1-a  1-a
-k  -k+1  \cdots
```

```
1-a  1-a  1-a
-1  0  1  \cdots
```

```
1-a
k-1  k
```

- Agent 1 starts at state 0
- $a = \mathbb{P}[One \ more \ Y \ added] = (1 - \epsilon)p + \epsilon(1 - p) > 0.5, $
decreasing in ϵ, increasing in p
Markov chain viewpoint

- Assume $V = 1$ and $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
- State at time i is $(\#Y's - \#N's)$ seen by an agent i
- Time index = agent’s index

Agent 1 starts at state 0

$a = \mathbb{P}[One \ more \ Y \ added] = (1 - \epsilon)p + \epsilon(1 - p) > 0.5$, decreasing in ϵ, increasing in p

Absorbing state k: herd Y, Absorbing state $-k$: herd N
Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff $E[\pi_i]$ & probability of wrong (correct) herding for any agent i
Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff $E[\pi_i]$ & probability of wrong (correct) herding for any agent i
 - $E[\pi_i]$ (MC with rewards)
Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff \(E[\pi_i] \) & probability of wrong (correct) herding for any agent \(i \)
 - \(E[\pi_i] \) (MC with rewards)
 - \(\mathbb{P}[\text{wrong}_{i-1}] = \sum_{n=1}^{i-1} \mathbb{P}[\text{agent } n \text{ is the first to hit } - k] \)
Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff $E[\pi_i]$ & probability of wrong (correct) herding for any agent i
 - $E[\pi_i]$ (MC with rewards)
 - $\mathbb{P}[\text{wrong}_{i-1}] = \sum_{n=1}^{i-1} \mathbb{P}[\text{agent } n \text{ is the first to hit } -k]$
 - $\mathbb{P}[\text{correct}_{i-1}] = \sum_{n=1}^{i-1} \mathbb{P}[\text{agent } n \text{ is the first to hit } k]$
Can exactly calculate expected payoff $E[\pi_i]$ & probability of wrong (correct) herding for any agent i

- $E[\pi_i]$ (MC with rewards)
- $\mathbb{P}[\text{wrong}_{i-1}] = \sum_{n=1}^{i-1} \mathbb{P}[\text{agent n is the first to hit } - k]$
- $\mathbb{P}[\text{correct}_{i-1}] = \sum_{n=1}^{i-1} \mathbb{P}[\text{agent n is the first to hit } k]$
- First-time hitting probabilities: Use probability generating function method [Feller’68]
Results

- Payoff for agents is non-decreasing in i & at least $F = \frac{2p-1}{4} > 0$

![Graph of limiting wrong herding probability]

![Graph of limiting payoff $\Pi(\epsilon)$]

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon) = \lim_{i \to \infty} E[\pi_i]$
Results

- Payoff for agents is non-decreasing in i & at least $F = \frac{2p - 1}{4} > 0$
- Limiting payoff $\Pi(\epsilon)$ & probability of wrong herding can be analyzed

\[F = \lim_{i \to \infty} E[\pi_i] \]
Results

- Payoff for agents is non-decreasing in i & at least $F = \frac{2p-1}{4} > 0$
- Limiting payoff $\Pi(\epsilon)$ & probability of wrong herding can be analyzed
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$

Limiting payoff $\Pi(\epsilon) = \lim_{i \to \infty} E \left[\pi_i \right]$

Limiting wrong herding probability
Results

- Payoff for agents is non-decreasing in i & at least $F = \frac{2p-1}{4} > 0$
- Limiting payoff $\Pi(\epsilon)$ & probability of wrong herding can be analyzed
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
 - Probability of wrong herding increases

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon) = \lim_{i \to \infty} E[\pi_i]$
Results

- Payoff for agents is non-decreasing in i & at least $F = \frac{2p-1}{4} > 0$
- Limiting payoff $\Pi(\epsilon)$ & probability of wrong herding can be analyzed
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
 - Probability of wrong herding increases
 - $\Pi(\epsilon)$ decreases to F

\[
\text{Limiting wrong herding probability}
\]

\[
\text{Limiting payoff } \Pi(\epsilon) = \lim_{i \to \infty} E[\pi_i]
\]
Results

• Payoff for agents is non-decreasing in \(i \) & at least \(F = \frac{2p-1}{4} > 0 \)

• Limiting payoff \(\Pi(\epsilon) \) & probability of wrong herding can be analyzed
 • For \(\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p) \)
 • Probability of wrong herding increases
 • \(\Pi(\epsilon) \) decreases to \(F \)
 • Probability of wrong herding jumps when \(k \) changes

\[\Pi(\epsilon) = \lim_{i \to \infty} E[\pi_i] \]
Results

• Payoff for agents is non-decreasing in i & at least $F = \frac{2p-1}{4} > 0$

• Limiting payoff $\Pi(\epsilon)$ & probability of wrong herding can be analyzed
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
 - Probability of wrong herding increases
 - $\Pi(\epsilon)$ decreases to F
 - Probability of wrong herding jumps when k changes
 - Limiting payoff also jumps at same point

\[F = \Pi(\epsilon^*(k + 1, p)^-) < \Pi(\epsilon^*(k + 1, p)^+) \]

\[\text{Limiting payoff } \Pi(\epsilon) = \lim_{i \to \infty} E[\pi_i] \]
Results

- Payoff for agents is non-decreasing in i & at least $F = \frac{2p-1}{4} > 0$
- Limiting payoff $\Pi(\epsilon)$ & probability of wrong herding can be analyzed
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$
 - Probability of wrong herding increases
 - $\Pi(\epsilon)$ decreases to F
 - Probability of wrong herding jumps when k changes
 - Limiting payoff also jumps at same point
 $F = \Pi(\epsilon^*(k + 1, p)^-) \leq \Pi(\epsilon^*(k + 1, p)^+)$
- There exists a range where increasing noise improves performance!!!
Results for an arbitrary agent i

Similar ordering holds for every user’s payoff & probability of wrong herding

- Discontinuities and jumps at the same thresholds
- For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$: $E[\pi_i]$ decreases in ϵ

Individual payoff for signal quality $p=0.70$
Results for an arbitrary agent i

Similar ordering holds for every user’s payoff & probability of wrong herding

- Discontinuities and jumps at the same thresholds
- For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$: $E[\pi_i]$ decreases in ϵ
 - Proof using stochastic ordering of Markov Chains & coupling

Individual payoff for signal quality $p=0.70$
Results for an arbitrary agent i

Similar ordering holds for every user’s payoff & probability of wrong herding

- Discontinuities and jumps at the same thresholds
- For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$: $E[\pi_i]$ decreases in ϵ
 - Proof using stochastic ordering of Markov Chains & coupling

![Graph showing individual payoff for signal quality $p=0.70$]

- For given level of noise, adding more noise may not improve all agents pay-offs.
Extension: Quasi-rational agents

• Real-world agents not always rational
Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make "action errors" with some probability ϵ_1
Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make "action errors" with some probability ϵ_1
 - e.g., noisy best response, trembling hand, inconsistency in preferences

- Nothing really new from view of other agents
- But pay-off calculation changes
Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make ”action errors” with some probability ϵ_1
 - e.g., noisy best response, trembling hand, inconsistency in preferences
- How to account for this (assuming ϵ_1 is known)?
Extension: Quasi-rational agents

• Real-world agents not always rational
• One simple model: agents make ”action errors” with some probability ϵ_1
 • e.g., noisy best response, trembling hand, inconsistency in preferences
• How to account for this (assuming ϵ_1 is known)?
 • Nothing really new from view of other agents
 • But pay-off calculation changes
Results: Quasi-rational agents and Noise

- Consider three “errors”
Results: Quasi-rational agents and Noise

• Consider three “errors”
 • \(\epsilon_1 \in (0, 0.5) \): probability agents choose sub-optimal action
Results: Quasi-rational agents and Noise

- Consider three “errors”
 - $\epsilon_1 \in (0, 0.5)$: probability agents choose sub-optimal action
 - $\epsilon_2 \in (0, 0.5)$: probability actions are recorded wrong
Results: Quasi-rational agents and Noise

- Consider three “errors”
 - $\epsilon_1 \in (0, 0.5)$: probability agents choose sub-optimal action
 - $\epsilon_2 \in (0, 0.5)$: probability actions are recorded wrong
 - $\epsilon_3 \in (0, 0.5)$: probability social planner flips the action record
Results: Quasi-rational agents and Noise

- Consider three “errors”
 - \(\epsilon_1 \in (0, 0.5) \): probability agents choose sub-optimal action
 - \(\epsilon_2 \in (0, 0.5) \): probability actions are recorded wrong
 - \(\epsilon_3 \in (0, 0.5) \): probability social planner flips the action record

- Similar result as before: equivalent total noise \(\epsilon \) used
Results: Quasi-rational agents and Noise

- Consider three “errors”
 - $\epsilon_1 \in (0, 0.5)$: probability agents choose sub-optimal action
 - $\epsilon_2 \in (0, 0.5)$: probability actions are recorded wrong
 - $\epsilon_3 \in (0, 0.5)$: probability social planner flips the action record

- Similar result as before: equivalent total noise ϵ used
- Each user’s payoff is reduced by a factor $(1 - 2\epsilon_1)$
Results: Quasi-rational agents and Noise

- Consider three “errors”
 - $\epsilon_1 \in (0, 0.5)$: probability agents choose sub-optimal action
 - $\epsilon_2 \in (0, 0.5)$: probability actions are recorded wrong
 - $\epsilon_3 \in (0, 0.5)$: probability social planner flips the action record

- Similar result as before: equivalent total noise ϵ used
- Each user’s payoff is reduced by a factor $(1 - 2\epsilon_1)$
- There exist cases where adding more observation noise (ϵ_3) always increases limiting payoff (even if $\epsilon_2 = 0$)
Results: Quasi-rational agents and Noise

- Consider three “errors”
 - $\epsilon_1 \in (0, 0.5)$: probability agents choose sub-optimal action
 - $\epsilon_2 \in (0, 0.5)$: probability actions are recorded wrong
 - $\epsilon_3 \in (0, 0.5)$: probability social planner flips the action record
- Similar result as before: equivalent total noise ϵ used
- Each user’s payoff is reduced by a factor $(1 - 2\epsilon_1)$
- There exist cases where adding more observation noise (ϵ_3) always increases limiting payoff (even if $\epsilon_2 = 0$)

Limiting payoff, $p = 0.70$

Limiting payoff, $p = 0.80$
Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior
Conclusions

• Analyzed simple Bayesian learning model with noise for herding behavior
• Noise thresholds determine the onset of herding
 • For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$, require $|\#Y's - \#N's| \geq k$ to trigger herding.
 • Generalized BHW'92: $k = 2$ for noiseless model
Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior
- Noise thresholds determine the onset of herding
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$, require $|\#Y's - \#N's| \geq k$ to trigger herding.
 - Generalized BHW'92: $k = 2$ for noiseless model
- With noisy observations, sometimes it is better to increase the noise
Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior
- Noise thresholds determine the onset of herding
 - For $\epsilon^*(k, p) \leq \epsilon < \epsilon^*(k + 1, p)$, require $|\#Y's - \#N's| \geq k$ to trigger herding.
 - Generalized BHW'92: $k = 2$ for noiseless model
- With noisy observations, sometimes it is better to increase the noise
 - Probability of wrong herding decreases
 - Asymptotic individual expected welfare increases
 - Average social welfare increases
Future directions

• Heterogeneous private signal qualities and noises
Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
 - Combination with Sgroi’02 (guinea pigs)
 Force M initial agents to use private signals
 - Investment in private signal when facing high wrong herding probability
Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
 - Combination with Sgroi’02 (guinea pigs)
 - Force M initial agents to use private signals
 - Investment in private signal when facing high wrong herding probability
- Different network structures
Future directions

• Heterogeneous private signal qualities and noises
• Possibility of more actions, richer responses
 • Combination with Sgroi’02 (guinea pigs)
 Force M initial agents to use private signals
 • Investment in private signal when facing high wrong herding probability
• Different network structures
• Strategic agents in endogenous time
Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
 - Combination with Sgroi’02 (guinea pigs)
 - Force M initial agents to use private signals
 - Investment in private signal when facing high wrong herding probability
- Different network structures
- Strategic agents in endogenous time
- Achieve learning with agents incentivized to participate
References

T. Le, V. Subramanian, R. Berry, *The Value of Noises for Informational Cascades*, ISIT 2014.

T. Le, V. Subramanian, R. Berry, *The Impact of Observation and Action Errors on Informational Cascades*, to appear *CDC 2014*.
Thank you!