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Bayesian Observational Learning

e Model this as a problem of social learning or
Bayesian observational learning
e Studied in economics literature as a dynamic game with
incomplete information
e Bikhchandani, Hirshleifer and Welch 1992 [BHW], Banerjee
1992, Smith and Sorensen 2000, Acemoglu et al. 2011
e Connected to sequential detection/hypothesis testing
e Cover 1969, HellmanCover 1970
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BHW model

An item is available in a market at cost 1/2
e Item's value (V) equally likely Good (1) or Bad (0)
Agents sequentially decide to Buy or Not Buy the item
e Ai=Yor Ai=N

These decisions are recorded via a database
Agent i's payoff, m;:
] N: payoff 7; =0
Action Ai<Y- . payoff 7; = —% ifV=0
"~ payoff m; :+% ifvV=1
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Agent i (i =1,2,...) receives i.i.d. private signal, S;
Obtained from V via a BSC(1 — p)

0= ) >
1 P H

e Assume 0.5 < p < 1: Private signal is informative, but
non-revealing

Agent / >= 2 observes actions Aj, ..., A;_1 in addition to S;
Database provides this information

Denote the information set as /; = {S;, A1, ..., Ai—1}

Distribution of value and signals are common knowledge.
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Bayesian Rational Agents

e Suppose each agent seeks to maximize her expected pay-off.
e Given her infromation set
e Without any information:
o Expected payoff E[r;] = 0 since P[V = 1] =P[V =0] = §
o With only private signal:
e Update posterior probability:
Pr(V=G|Ss=H)=Pr(V=B|Ss=L)=p>05
e Optimal Action: Buy if and only if 5; = H.

* Pay-off: E[m] =3 (*3%) +3(0) = *7 >0
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Bayesian Rational Agents cont'd.

e With private signal S; and actions Ay, ..., Ai_1:
P[] v=1]

e Update posterior probability P[V = 1|/;] = B TV=11157 [V=0]

e Decision:
Yif P[V =1[l] > 3
Action A; /LN ifP[V =1|f] <1
follow own signal if P[V = 1|/;] = 1

e Can now iteratively calculate the actions of each agent for a
given realization of V' and {S;}.
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BHW'92 Analysis

e First agent always follows their own signal.

Consider second agent.
e Two possibilities:
e Observation and signal match.
e Observation and signal differ.

e In second case, agent is indifferent between following signal or
not.?

Third agent?
e Interesting cases: I3 = {H,N,N} or {L,Y,Y}.
e |n these cases, optimal action is to “follow the crowd"”

Subsequent agents?

2Here assume they always follow signal in this case.
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Herding

e Definition: Herding (informational cascade) occurs when it is
optimal for an agent to take a fixed action based on other
agents' actions, regardless of her own signal

e Consequences:
e Non-zero probability of herding in wrong decision
e Private signal information lost

o BHW'’92, Banerjee'92, Welch'92: Agents eventually exhibit
herding
e BHW'92: herding as soon as |#Y's — #N’s| = 2 in the
history.
Once herding starts, all agents follow suit.



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)
e Two urns with mix of red and blue balls.



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)
e Two urns with mix of red and blue balls.
e One has a majority of blue/one majority red.
e One Urn selected and identity kept secret.



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)
e Two urns with mix of red and blue balls.
e One has a majority of blue/one majority red.
e One Urn selected and identity kept secret.

e Students take turns drawing one ball from the selected urn,
then guessing which urn it is.



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)

e Two urns with mix of red and blue balls.
e One has a majority of blue/one majority red.
e One Urn selected and identity kept secret.
e Students take turns drawing one ball from the selected urn,
then guessing which urn it is.
e Only see the color of the drawn ball
o Students see all previous students’ guesses



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)

e Two urns with mix of red and blue balls.
e One has a majority of blue/one majority red.
e One Urn selected and identity kept secret.
e Students take turns drawing one ball from the selected urn,
then guessing which urn it is.
e Only see the color of the drawn ball
o Students see all previous students’ guesses

Experiment is repeated, each time the urn is chosen randomly.



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)

Two urns with mix of red and blue balls.
One has a majority of blue/one majority red.
One Urn selected and identity kept secret.
Students take turns drawing one ball from the selected urn,
then guessing which urn it is.

e Only see the color of the drawn ball

o Students see all previous students’ guesses
Experiment is repeated, each time the urn is chosen randomly.
Students with correct guess will be rewarded after the
experiment



Do real people herd?

e Ball-drawing experiment (Anderson & Holt 1997)

Two urns with mix of red and blue balls.
One has a majority of blue/one majority red.
One Urn selected and identity kept secret.
Students take turns drawing one ball from the selected urn,
then guessing which urn it is.

e Only see the color of the drawn ball

o Students see all previous students’ guesses
Experiment is repeated, each time the urn is chosen randomly.
Students with correct guess will be rewarded after the
experiment
Result: About 80% of the cases the students copy guesses.
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Discussion
Why does herding happen? OR When can learning occur?

e Discrete feedback from agents is not rich enough
e Coverl969, SmithSorensen2000: reporting posterior beliefs
better
e Coverl969, Hellman thesis: Can reduce to finite memory of
display
e Likelihood ratios of private signals bounded
e SmithSorensen2000, Sorensen2000 thesis: if unbounded, then
learning occurs
e Bayes update plus threshold rule may not be optimal
e Coverl969: different rule with finite memory display
e Zhang et al. 2013: different sequence of thresholds gives
learning
e Information structure reinforces actions
e Acemoglu et al. 2011: changing set of past agents sampled
gives learning even with bounded likelihoods

Why should strategic users follow any of these remedial schemes?



Noisy Observations

e Introduce i.i.d. observation errors



Noisy Observations

e Introduce i.i.d. observation errors

e Actions are recorded on common database via another BSC(¢),
0<e<05




Noisy Observations

e Introduce i.i.d. observation errors
e Actions are recorded on common database via another BSC(¢),

0<e<05
1—¢
A,‘ Oi
1£ 1
1—¢

e Information set is now l; = {S;, 01, ..., O;_1}



Noisy Observations

e Introduce i.i.d. observation errors
e Actions are recorded on common database via another BSC(¢),

0<e<05
1—¢
A; O;
1£ 1
1—¢

e Information set is now l; = {S;, 01, ..., O;_1}

e Objective: Study the effects of such errors on BHW model



Noisy Observations

e Introduce i.i.d. observation errors

e Actions are recorded on common database via another BSC(¢),

0<e<05
1—¢
A; O;
1£ 1
1—¢

e Information set is now l; = {S;, 01, ..., O;_1}
e Objective: Study the effects of such errors on BHW model
e Note with noisy, observations are less reliable



Noisy Observations

e Introduce i.i.d. observation errors

e Actions are recorded on common database via another BSC(¢),

0<e<05
1—¢
A; O;
1£ 1
1—¢

e Information set is now l; = {S;, 01, ..., O;_1}
e Objective: Study the effects of such errors on BHW model

e Note with noisy, observations are less reliable
e Does herding still occur?



Noisy Observations

e Introduce i.i.d. observation errors

e Actions are recorded on common database via another BSC(¢),

0<e<05
1—¢
A; O;
1£ 1
1—¢

e Information set is now l; = {S;, 01, ..., O;_1}
e Objective: Study the effects of such errors on BHW model

e Note with noisy, observations are less reliable
e Does herding still occur?

e How does probability of wrong herding change?



Noisy Observations

e Introduce i.i.d. observation errors

e Actions are recorded on common database via another BSC(¢),

0<e<05
1—¢
A; O;
15 1
1—¢

e Information set is now l; = {S;, 01, ..., O;_1}
e Objective: Study the effects of such errors on BHW model
e Note with noisy, observations are less reliable
e Does herding still occur?
e How does probability of wrong herding change?
e Can parameters be changed to improve things?
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Herding in noiseless and noisy models

Noiseless Model ¢ = 0

Noisy Model ¢ > 0

Available {ShAl,...,A,',l} {5,', Ol,...7O,-,1}
Information
Posterior P[V =1IS;, Ag, ..., Ai—q] PV =11S;, 04, ..., 0;_1]
Probability
Agent 1 Follows private signal S; Follows private signal S;
Agent 2 Follows private signal S, Follows private signal S»
Agent 3 herding iff A; = A herding iff O; = O,

and € < €*(3, p)
Agent n herding iff |#Y’s — #N's| > 2 | herding iff |#Y’s — #N's| > k

and e < €*(k+ 1, p)
for some integer k > 2

e We can obtain closed-form expression for €*(k + 1, p) (thresholds)




Noise thresholds

0.5

\.\A\ \\\\\I
.. \
_.N“ 4 [o] <>
! !
1 >
]
i i ;
b i
o4 ® g
! i @
i : o
_____ A_& O <>
i H
i i
P ...
! A“_ 6} <>
o n S
! | i e
IR ﬁ ° =he
i 1 H i
i ! PO ——
i ! ]
4
? I M N S o
P [ pokdw ]|
! | H
Hw_ A * O <>
P ."
o
b a6 &3

0.4

0.3

v 0.2
0.1



Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], ¢ = 0)



Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], ¢ = 0)

e Property 1 Until herding occurs, each agent’s Bayesian update
depends only on their private signal and the difference
(#Y's — #N's) in the observation history



Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], ¢ = 0)

e Property 1 Until herding occurs, each agent’s Bayesian update
depends only on their private signal and the difference
(#Y's — #N's) in the observation history

e Property 2 Once herding happens, it lasts forever



Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], ¢ = 0)

e Property 1 Until herding occurs, each agent’s Bayesian update
depends only on their private signal and the difference
(#Y’s — #N’s) in the observation history

e Property 2 Once herding happens, it lasts forever

e Property 3 Given ¢*(k,p) < e < e*(k + 1, p), if any time in the
history |[#Y’s — #N’s| > k, then herding will start



Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], ¢ = 0)

e Property 1 Until herding occurs, each agent’s Bayesian update
depends only on their private signal and the difference
(#Y's — #N's) in the observation history

e Property 2 Once herding happens, it lasts forever

e Property 3 Given ¢*(k,p) < e < e*(k + 1, p), if any time in the
history |[#Y’s — #N’s| > k, then herding will start

e Eventually herding happens (in finite time)
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e Assume V =1 and €*(k,p) < e < e*(k+1,p)
e State at time i is (#Y's — #N's) seen by an agent i

e Time index = agent's index
1-a - 1 a -
e Agent 1 starts at state 0

e a =P[One more Y added] = (1 —¢)p+¢(1 — p) > 0.5,
decreasing in €, increasing in p

e Absorbing state k: herd Y, Absorbing state —k: herd N
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Markov Chain viewpoint (continued)

l-a 1l-a 1 a 1- a
wrong
herding ﬁ‘e’iiﬁﬁ‘g
(N) (Y)

e Can exactly calculate expected payoff E[7r,] & probability of
wrong (correct) herding for any agent /

E[mi] (MC with rewards)

P[wrong;_1] = Zn ) Plagent n is the first to hit — K]

Plcorrecti_1] = >/ _ ]P’[agent n is the first to hit k|

First-time hitting probab|l|t|es Use probability generating

function method [Feller'68]
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wrong herding can be analyzed 2

o For e*(k,p) <e<e*(k+1,p) .
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e Probability of wrong herding

increases Limiting wrong herding probability
o T(e) decreases to F

e Probability of wrong herding jumps i o
when k changes .
e Limiting payoff also jumps at same

point
F=N(e"(k+1,p)7) < ™
H(E*(k+ 1,P)+) F o 0203 04 0Of

e There exists a range where increasing Limiting payoff M(e) = lim E [r;]
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Similar ordering holds for every user's payoff & probability of
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e For given level of noise, adding more noise may not improve
all agents pay-offs.
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Extension: Quasi-rational agents

e Real-world agents not always rational
e One simple model: agents make "action errors” with some
probability €1
e e.g., noisy best response, trembling hand, inconsistency in
preferences
¢ How to account for this (assuming €7 is known)?

e Nothing really new from view of other agents
e But pay-off calculation changes
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e Consider three “errors”
e ¢; €(0,0.5): probability agents choose sub-optimal action
e ¢; € (0,0.5): probability actions are recorded wrong
e e3 € (0,0.5): probability social planner flips the action record

o Similar result as before: equivalent total noise € used

e Each user's payoff is reduced by a factor (1 — 2¢;)

e There exist cases where adding more observation noise (€3)
always increases limiting payoff (even if e; = 0)
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Conclusions

e Analyzed simple Bayesian learning model with noise for
herding behavior
e Noise thresholds determine the onset of herding
o For e*(k,p) <e<e*(k+1,p), require |[#Y's — #N’s| > k to
trigger herding.
e Generalized BHW'92: k = 2 for noiseless model
e With noisy observations, sometimes it is better to increase the
noise
e Probability of wrong herding decreases
e Asymptotic individual expected welfare increases
e Average social welfare increases
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Future directions

Heterogeneous private signal qualities and noises
Possibility of more actions, richer responses
e Combination with Sgroi'02 (guinea pigs)
Force M initial agents to use private signals
e Investment in private signal when facing high wrong herding
probability

Different network structures
Strategic agents in endogenous time

Achieve learning with agents incentivized to participate
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