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My Interests in Perceptual Similarity 
Measures 

•  Going way back 
–  Lossy source coding (data compression) 

–  Audio coding for digital jukebox 
–  Image coding for FAX transmission 

–  Halftoning 

•  Recent 
–  Compressing images containing texture 

–  Textured image retrieval 

–  Texture classification 
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Research Spectrum:   
Analytical to Qualitative 
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analytical qualitative 

Precise mathematical formulations 
Idealized, tractable models  
Idealized, tractable performance measures 
Definitions, derivations, theorems, proofs 
Provably good methods/algorithms. 
Clear understanding of how/why things work 
Limited practical relevance 

much	
  of	
  
my	
  work	
  

this	
  
work	
  

Rough formulations  
Vague, qualitative models 

Actual real-world data 
Vague definitions 

Intractable performance measures 
Ad Hoc algorithms 

Proof is in the pudding; success  
    is in the eye of the beholder 

Basis of success/failure not so clear 
Direct practical relevance 



Uses of Image Metrics 
•  Assess performance of image processing methods/systems. 

–  Eliminate burden of human subjective assessments. 

•  Enable optimization (rare outside of MSE based metrics)  

•  Serve as a component of an image processing system 
–  Restoration 
–  Content based image retrieval 
–  Classification 
–  Lossy compression/coding 

–  Question:  If a metric is used as a system component, can it also be 
used to judge the performance of the system? 

•  Some metrics symmetrically assess similarity, i.e.,  S(X,Y) = S(Y,X). 

•  Some (asymmetric) metrics assess quality of Y as reproduction of X. 

•  “No reference metrics” assess quality of  Y  all by itself. 

•  Almost none are “metrics” in the mathematical sense. 
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Goals of Image Similarity Metrics 
•  Reflect human perception/judgments 

–  produce values monotonically related to human scoring 

•  Low computational and/or conceptual complexity 

•  Analytical tractability to permit analytical optimization (rare) 

•  Make system that uses it as a component work well 

•  Specialize to individual applications 

•  Possible invariance properties to have or not  
–  rotation 
–  spatial scaling 
–  amplitude scaling (contrast) 
–  amplitude shifting 
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Testing/Assessing Image Metrics 
•  Correlate metric values with subjective assessments by people  

•  Assess the performance of a system that uses the metric 
–  Retrieval 
–  Compression 
–  Classification 
–  Restoration 
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Our Goal:  Similarity Metrics for Texture 
•  What is texture? 

“Loosely speaking, texture images are spatially homogeneous and consist 
of repeated elements, often subject to some randomization in their location, 
size, color, orientation, etc.”    
[Portilla, Simoncelli, Int. J. Comput. Vis., Oct. 2000] 

•  Textures are images for which point-by-point metrics like MSE are least 
relevant.  (MSE can be very large for “identical” textures.) 
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Examples of “Similar Textures”  
that are not similar in MSE 
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Examples of “Similar Textures”  
that are not similar in MSE 
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Image Metric Themes 
•  Much recent interest in metrics of the following types 

–  Structural Similarity Image Metrics  
•  SSIM:  [Wang, Bovik, Sheikh, Simoncelli, IEEE Tr. Im. Proc., 2004] 

–  Local Pattern Metrics for texture similarity  (my term)  
•  Local  Binary Patterns (LBP):  [Ojala, Pietikainen,Maenpaa, IEEE Tr.  

PAMI, 2002] 

–  Both of these are, largely, sliding statistic/feature based, instead of 
point-by-point comparison based 

–  Both are applicable to textures 

•  This talk:  Two new metrics of texture similarity, one of each type 

–  STSIM:  Structural Texture Similarity Metric 

–  LRI:  Local Radius Index 
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Outline 
•  Review  

–  Point-by-point metrics 
–  SSIM (Structural Similarity Metric) 

•  STSIM (Structural Texture Similarity Metric):  new SSIM type metric:   
–  Performance in identical texture retrieval and image compression 

•  Review  
–  LBP (Local Binary Patterns) 

•  LRI (Local Radius Index):  new local-pattern metric  
–  Performance in identical texture retrieval and image coding 

•  RI-LRI (Rotation invariant LRI):   
–  Performance in texture classification 

•  Concluding remarks 

11	
  



Review:  Point-by-Point Metrics 
•  Given N x N  image X and reproduction Y 

•  MSE: 

•  Frequency weighted MSE: 

              are coefficients in a transform or subband decomposition   

Weight  wj  can depend on sensitivity of visual perception to 
changes in coef.        and the value of       and neighboring         , 
i.e.  wj  can reflect masking effects.   

12	
  

      

€ 

MSE(X,Y) =
1

N 2 Xi −Yi( )2
i
∑

      

€ 

FW-MSE(X,Y) = 1

N 2 w j X j −Y j( )
2

j
∑

    

€ 

X  andY 

  

€ 

X j   

€ 

X j     

€ 

X j 's



Some Frequency Decompositions 

8x8 DCT 4x4 Subband" Wavelet"

Cortex (Dalyʼ92)" Lubinʼ91"Cortex (Watsonʼ87)"
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•  Given images X and Y, to compute SSIM(X,Y): 
–  Slide NxN  window across each in steps of  s,  e.g. N = 8 to 32, s = N/2 
–  For n-th window position, compute: 

§  luminances  (means)   

§  contrasts (variances) 

§  statistic similarities:    

§  structure  (crosscorrelation): 

§  window similarity:          

–  Pool window similarities over all positions:   

–  0 ≤ SSIM ≤ 1.    1 = highest quality,  0 = lowest 

1Wang, Bovik, Sheikh, Simoncelli, IEEE Tr. Im. Proc., 2004 

Review:  The Original SSIM1 
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Review:  The Original SSIM1 

•  Given images X and Y, to compute SSIM(X,Y): 
–  Slide NxN  window across each in steps of  s,  e.g. N = 8 to 32, s = N/2 
–  For n-th window position, compute: 

§  luminances  (means)   

§  contrasts (variances) 

§  statistic similarities:    

§  structure  (crosscorrelation): 

§  window similarity:          

–  Pool window similarities over all positions:   

–  0 ≤ SSIM ≤ 1.    1 = highest quality,  0 = lowest 

1Wang, Bovik, Sheikh, Simoncelli, IEEE Tr. Im. Proc., 2004 15	
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SSIM Improvements 
•  CW-SSIM (Complex Wavelet SSIM)1   

–  Apply SSIM (without luminance) to 7x7 windows of each subband of  
steerable pyramid  wavelet/subband decomposition,  

–  For example, 12 bands, 3 scales, 4 orientations, no lowpass or 
highpass bands. 

–  Magnitude of the structure/crosscorrelation terms 

–  Pool over subbands. 

–  Advantage:  Does not penalize small spatial shifts, rotations, scalings. 

•  Many other improved versions of SSIM 

1Sampat, Wang, Gupta,. Bovik & Markey, IEEE Tr. Im. Proc., Nov. 2009 
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Outline 
•  Review  

–  Point-by-point metrics 
–  SSIM (Structural Similarity Metric) 

•  STSIM (Structural Texture Similarity Metric):  new SSIM type metric:   
–  Performance in identical texture retrieval and image compression 

•  Review  
–  LBP (Local Binary Patterns) 

•  LRI (Local Radius Index):  new local-pattern metric  
–  Performance in identical texture retrieval and image coding 

•  RI-LRI (Rotation invariant LRI):   
–  Performance in texture classification 

•  Concluding remarks 
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STSIM for Textured Images 
•  Structural Texture Similarity Metric (STSIM)1 

–  Start with CW-SSIM (based on steerable pyramid decomposition)  

–  Discard “structure” terms –-- they are not even “statistics” 

–  Add lag 1 autocorrelations as statistics  

horizontal       vertical 

–  Autocorrelation similarity: 

–  56 statistics total 

–  Geometric mean pooling of statistic similarity for each window position 

–  Arithmetic average pooling over window positions 

–  Or, for homogeneous textures, treat entire image as one window 

1Zhao, Reyes, Pappas, Neuhoff, ICIP,  Oct. 2008 19	
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STSIM21 for Textured Images 
•  To STSIM, add 

–  Add interband crosscorrelations (of magnitudes) between bands of 
pyramid decomposition of image X.  Same for  Y.      
    

–  Between  
•  all pairs of bands within each scale 
•  bands at adjacent scales with same orientation 

–  Same similarity scoring as for autocorrelations 
–  82 statistics total  

–  Geometric mean pooling of statistic similarity for each window position 

–  Arithmetic average pooling over window positions 
–  Or, for homogeneous textures, treat entire image as one window 

1Zujovic, Pappas, Neuhoff, IEEE Tr. Im. Proc., 2013. 
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Metric Test:  Identical Texture Retrieval1
 

•  Test metric as component of a retrieval system. 
–  Given database of textures partitioned into classes of “identical textures”, 

find closest texture in database to query image. 

•  Goodness of metric: 
–  “Precision@1” = %  of queries for which closest image is in same class.   

•  No subjective evaluations needed!  

•    
1Zujovic, Pappas, Neuhoff, IEEE Tr. Im. Proc., 2013 
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Identical Texture Retrieval: 
Find Closest Image to Query in Database 
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Order Database by Metric Similarity 



Precision @ One 

•  Measures how many times the first retrieved texture 
was the correct one 



Metric Test:  Identical Texture Retrieval1
 

•  Test metric as component of a retrieval system. 
–  Given database of textures partitioned into classes of “identical textures”, 

find closest texture in database to query image. 

•  Goodness of metric: 
–  “Precision@1” = %  of queries for which closest image is in same class.   

•  No subjective evaluations needed!   
•  Corbis-based database:  1181 textures in 425 “identical” classes. 

Each class formed by extracting several 128x128 textures from one 
homogeneous larger texture image. 

1Zujovic, Pappas, Neuhoff, IEEE Tr. Im. Proc., 2013 25	
  



Building the Database 



Sample Images in Corbis Database 
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Metric Test:  Identical Texture Retrieval1
 

•  Test metric as component of a retrieval system. 
–  Given database of textures partitioned into classes of “identical textures”, 

find closest texture in database to query image. 

•  Goodness of metric: 
–  “Precision@1” = %  of queries for which closest image is in same class.   

•  No subjective evaluations needed!   
•  Corbis-based database:  1181 textures in 425 “identical” classes. 

Each class formed by extracting several 128x128 textures from one 
homogeneous larger texture image. 

•  Results 

•  Similar results for other performance measures that take into account location of other 
siblings in the ordering of textures according to distance from query. 

1Zujovic, Pappas, Neuhoff, IEEE Tr. Im. Proc., 2013 28	
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Another Test: Matched Texture Coding (MTC)1 
•  Consider encoding current block, e.g., 32x32,  

by pointing to a previously encoded block.   

•  If no sufficiently good previous block,  
encode with JPEG. 

•  Key to success is a texture similarity metric 
for judging if a candidate previous block  
is sufficiently good. 

•  Other issues:   
–  Search strategy 
–  Blending around blocks to avoid blocking artifacts. 

•  Notes: 
–  Textured blocks require the most bits when coded with a pixel-accurate criteria.  

–  Whereas the eye is maximally forgiving to changes in a textured block. 

–  Goal of MTC is “structurally lossless”, rather than “perceptually lossless”:   

Decoded image might look different viewed next to original, but has “equal quality”. 

•  1Jin, Zhai, Pappas, Neuhoff, ICIP, 2012. 29	
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Encoding at 0.34 bits/pixel 

MTC        JPEG 
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Structurally Lossless? 

     original         MTC 
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MTC @ 0.37 bpp 

blending	
  seams	
  of	
  
matched-­‐texture	
  
blocks	
  

•  red	
  –	
  matched-­‐
texture	
  block	
  to	
  
right	
  or	
  below	
  

•  green	
  -­‐	
  	
  blending	
  
seam	
  between	
  
texture	
  block	
  and	
  
JPEG	
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MTC @ 0.37 BPP 

•  Recall key ideas:   
–  Matched-texture coding saves bits,  
–  And saved bits can be used to improve JPEG coding 
–  Which in turn leads to better matched-texture coding,  

by improving quality of available candidates 
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Outline 
•  Review  

–  Point-by-point metrics 
–  SSIM (Structural Similarity Metric) 

•  STSIM (Structural Texture Similarity Metric):  new SSIM type metric:   
–  Performance in identical texture retrieval and image compression 

•  Review  
–  LBP (Local Binary Patterns) 

•  LRI (Local Radius Index):  new local-pattern metric  
–  Performance in identical texture retrieval and image coding 

•  RI-LRI (Rotation invariant LRI):   
–  Performance in texture classification 

•  Concluding remarks 
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LBP (Local Binary Patterns)1 
•  Another approach to computing sliding-window statistics 
•  Intended for texture classification, where rotation invariance is 

required.  (In contrast for identical texture retrieval and MTC 
coding, rotations should be penalized monotonically.) 

•  For each image, compute LBP Index at each pixel,  

•  LBP Feature  =  histogram   H  of LBP Indices.    

•  LBP Metric  

LBP(X,Y)  =  similarity of histograms  HX  and HY 

as measured by divergence of  HX  wrt  HY   

1Ojala, Pietikainen,Maenpaa, IEEE Tr.  PAMI, 2002 35	
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LBP Indices and Feature for Image X 
•  Parameters r, P. 
–  For pixel xi , let  y1,…,yP  denote image values             

at P  equally spaced points on circle of radius r  
centered at i-th pixel.  Interpolate as needed. 

–  Form P-dimen’l binary pattern  
vector    b1,…,bP      with   

–  Circularly shift  b1,…,bP  to maximize # leading 0’s. 
–  Assign integers 0,…,P  to uniform patterns:   

00000000  00000001  00000011 … 11111111   
   0    1        2       P   

–  Assign P+1 to all other patterns.  

–  LBP index at pixel  i  =  assigned integer 
–  LBP index provides circular pattern information 

–  Rotation invariant, and gray-scale invariant 
–  LBP Feature   =  histogram of LBP indices for all pixels, 

which provides frequencies of circular patterns. 
36	
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Outline 
•  Review  

–  Point-by-point metrics 
–  SSIM (Structural Similarity Metric) 

•  STSIM (Structural Texture Similarity Metric):  new SSIM type metric:   
–  Performance in identical texture retrieval and image compression 

•  Review  
–  LBP (Local Binary Patterns) 

•  LRI (Local Radius Index):  new local-pattern metric  
–  Performance in identical texture retrieval and image coding 

•  RI-LRI (Rotation invariant LRI):   
–  Performance in texture classification 

•  Concluding remarks 
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New Feature:  Local Radius Index (LRI)1 

38	
  

•  Basic ideas: 
–  Generally speaking, a texture contains repetitive smooth elements delineated 

by edges.  
–  One meaningful characteristic of a homogeneous texture is the distribution of 

distances between adjacent edges at some particular angle.  
–  LRI produces 8 such histograms  --  one for each neighboring direction. 

•  Two types of LRI: 

–  LRI-A: measures widths of Adjacent 
smooth regions, i.e. inter-edge 
distances, in each given direction. 

–  LRI-D: measures Distances from 
pixels to nearest edge, i.e., to 
boundary of next smooth region, in 
each given direction. 

1Zhai, Neuhoff, Pappas, ICASSP, 2013.   



LRI-A 
•  LRI-A Indices 

For i-th pixel  xi  and directions  d = 1,…,8,  
let  a1,a2,a3,,… denote successive Adjacent pixels in direction  d. 

Ld  =   0 ,   if  |xi – a1|  ≤  threshold T 

      =  k ,    if  ai > xj + T  for  j = 1,…,k,  but not  k+1  

      =  -k ,   if  ai < xi - T  for  j = 1,…,k,  but not  k+1 

Limit max value of  L  to  K  and  –K, respectively. 

•  LRI-A Feature for image  X: 
Histograms:  H1,…, H8  for indices L1,…,L8, 
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•  Threshold T:  Determines what is an edge, and 
controls noise sensitivity.  Typically,  T = σ/2. 

•  Size limit K:  Limits size of texture elements 
detected by LRI, and reduces computation.  
Typically,  K = 4.  



LRI-D 
•  LRI-D Indices 

For i-th pixel  xi  and directions  d = 1,…,8,  
let  a1,a2,a3,,… denote successive adjacent pixels in direction  d 

Ld  =  0 ,    if  |xi – a1|  > T,  

 =   k ,   if  |xi – aj|  ≤ T,  for  j = 1,…,k-1  and  ak > xk + T   

       =  -k ,   if  |xi – aj|  ≤ T,  for  j = 1,…,k-1   and  ak < xk - T   

Limit max value of  L  to  K  and  –K, respectively. 

•  LRI-D Feature for image  X: 
Histograms:  H1,…, H8  for indices L1,…,L8, 

40	
  

-­‐1	
  

-­‐1	
  

-­‐5	
  

-­‐1	
  

-­‐1	
  
-­‐1	
  

-­‐1	
   -­‐1	
  -­‐1	
  
0	
   0	
   0	
  

-­‐1	
  

-­‐2	
  -­‐2	
  

-­‐4	
  
•  Threshold T:  Determines what is an edge, and 

controls noise sensitivity.  Typically,  T = σ/2. 

•  Size limit K:  Limits size of texture elements 
detected by LRI, and reduces computation.  
Typically,  K = 4.  



Comments 
•  LRI-A vs. LRI-D:  

–  LRI-A index  Li,d measures size of adjacent texture element, if there is one.  

It is zero at  i  unless there is edge adjacent to  i  in direction  d.  

–  LRI-D index  Li,d  measures dist. from  i  to nearest edge in direction  d.   
It usually decreases by 1 one when moving in direction  d  from i. 

–  Hence,  LRI-A values are sparser.  LRI-D values are more correlated/
redundant.  

•  LRI and LBP are complementary: 
–  LBP provides angular pattern info;  no direction or element size info. 
–  LRI provides direction and size info;  no angular pattern info. 
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Why Do LRI Indices Have “±” Signs? 
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•  Without signs, the following have same horizontal LRI histograms: 
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Computation of LRI Indices 
•  Fast algorithm: 
–  Precalculate & store pairwise differences between all pairs of pixels sepa-

rated by k =1, …, K in unsigned directions d  (horiz, vert, diag, anti-diag) 

–  Pairwise differences are then used to compute LRI indices. 

–   ~4K operations per pixel. 

–  Pairwise differencing in direction  d  of pixels separated by  k  can be 
viewed as a filtering,  

e.g.,    h = [1 0 0 0 -1]   is impulse response of horizontal filter for  k = 4.   

–  Filtering can be done in simple recursive fashion:  
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Pixel Differencing Filters Create De Facto 
Subband Decomposition 

•  Pairwise differencing in direction  d  of pixels separated by  k  can 
be viewed as a filtering. 

•  The  4K  filters comprise a simple multiscale, multiorientation 
subband decomposition, with 4 orientations and  K  scales.   

•  Example:   Frequency response for 3 scales in horizontal direction: 

•  Might use this decomposition instead of steerable pyramid;   
requires much less computation  
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Texture Similarity Metrics Based on LRI 
1.  Purely LRI-based similarity metric: 

–  LRI feature:  Combine 8 histograms into vector of dim.  8 x (2K+1)  

–  Compare similarity of the vectors obtained for images  X, Y  with 
divergence. 
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Texture Similarity Metrics Based on LRI 
2.  Combine/pool LRI with other features: 

a.  LBP 
–  Use 8 nearest neighbor pixels, without interpolating values on circle. 

b.  Luminance (mean)  µ	


–  Comparison term:  

–  Penalizes only mean differences larger than 10.  

c.  Subband Contrast Distrib’n (SCD)                       from steerable filter. 

–  Comparison term:  

c’.  Subband Contrast Distrib’n (SCDf)                       from pairwise differencing 
filters,  which are much simpler to compute since filtering is already done. 
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Texture Similarity Metric Based on LRI 
•  New LRI-based texture similarity metric: 

LRI
+
  =  LRI  x  LBP1.1  x  M  x  (tan ( (1-SCD) π/2 ))1.2 

–  Metric is nonnegative with zero meaning identical, and a small value 
meaning similar. 

–  LBP computed from pixel differences with few add’l computations. 

•  Complexity: 

–  Leaving aside subband costs, STSIM2 (with a global window, which is the 
simplest version), requires approximately 500 operations per pixel.  

–  LRI and SCD requires 16 and 36 operations per pixel, respectively. 

–  Steerable filter pyramid needs 14 FFTs, each with  5 log N  op’s per pixel. 

–  With SCDf, no transform needed for LRI+, beyond that needed for LRI. 

–  Conclusion:  LRI+ with SCDf is at least 10 times faster than STSIM2. 
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Metric Test 1:  Identical Texture Retrieval 

Notes:    
•  LRI-A > LBP  by themselves. 

•  LRI-A > LRI-D  by themselves.   

•  LRI-A ≈ LRI-D  when combined with other features. 

•  LRI+
b  is simplest of LRI+ methods 

•  Combining features exploits complementarities 

LRI-­‐A,	
  LBP,	
  M,	
  SCD	
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LRI-­‐A,	
  LBP,	
  M,	
  SCDf	
  	
  	
  

LRI-­‐D,	
  LBP,	
  M,	
  SCD	
  	
  	
  

CW-­‐
SSIM	
  

STSIM
2	
  

STSIM	
  
2	
  

global	
  

STSIM	
  
M	
  

global	
  

LPB	
  
(8,1)	
  

LRI-­‐A	
   LRI-­‐D	
   SCD	
   LRI+-­‐a	
   LRI+-­‐b	
   LRI+-­‐b	
  

39	
   74	
   93	
   96	
   90.0	
   91.8	
   83.2	
   83.7	
   98.7	
   98.1	
   99.0	
  

Corbis-­‐derived	
  database	
  



Metric Test 2:   MTC 
•  Consider encoding current block, e.g., 32x32,  

by pointing to a previously encoded block.   

•  If no sufficiently good previous block,  
encode with JPEG. 

•  Key to success is a texture similarity metric 
for judging if a candidate previous block  
is sufficiently good. 

•  Use  LRI+
b  instead of  STSIM2 
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already	
  coded	
  

uncoded	
  



all	
  encodings	
  	
  
at	
  0.18	
  bpp	
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original:	
  1024x1024	
   JPEG	
  coded	
  

MTC	
  coded	
  with	
  STSIM2	
   MTC	
  coded	
  with	
  LRIb	
  

•  STSIM2	
  &	
  LRI+b  
give	
  similar	
  
performance.	
  

•  LRI-­‐based	
  
coder	
  runs	
  ~6	
  
Imes	
  faster.	
  



Outline 
•  Review  

–  Point-by-point metrics 
–  SSIM (Structural Similarity Metric) 

•  STSIM (Structural Texture Similarity Metric):  new SSIM type metric:   
–  Performance in identical texture retrieval and image compression 

•  Review  
–  LBP (Local Binary Patterns) 

•  LRI (Local Radius Index):  new local-pattern metric  
–  Performance in identical texture retrieval and image coding 

•  RI-LRI (Rotation invariant LRI):   
–  Performance in texture classification 

•  Concluding remarks 
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Metric Test 3:  Texture Classification  
•  Problem:  Given examples of K texture classes and a query from an 

unknown one of these classes, identify the class of the query.   

•  Common approach:  M nearest neighbors (M-NN) 
–  Measure the “distance” of query to each example in each class. 

–  Decide the class that occurs the most among the M closest examples.  

•  Use a texture similarity metric to determine “distance” 

•  The goodness of a similarity metric is judged by the classification 
accuracy that results, expressed as a percent.  

•  OUTEX and CUReT databases are de facto “standards” for testing 
texture metrics in classification.  

•  Texture classification cannot presume texture has known 
orientation.  So metric must be rotation invariant. 

•  LBP is rotation invariant.  LRI is not. 

•  Gray-scale invariance might also be desired. 
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Samples of OUTEX Database 
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Samples of CURet Database 
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RI-LRI (Rotation Invariant LRI)1 
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  1Zhai, Neuhoff, Pappas, ICIP, 2014.   
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RI-LRI (Rotation Invariant LRI)1 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

RI-LRI (Rotation Invariant LRI)1 
•  To make LRI rotation invariant, for each pixel  i,  

–  For each pixel  i  estimate dominant direction: 
where  [φ1,…,φ8]  =  [1, 1+j, j, -1+j, -1, -1-j, -j, 1-j] 

–  Circularly shift pixel  i’ s  LRI indices, Ii,1,…,Ii,8,  forming  RIi,1,…,RIi,8,  such 
that  RIi,1  is the index in direction closest to the dominant direction  Di  : 

where       is  Di    rounded to nearest multiple of  π/4. 

–  Now, H1  is histogram of indices in dominant directions.   

–  H2  is histogram of indices adjacent to dominant directions, etc.     
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RI-LRI Feature Vector 
•  Observations: 

–  Most distinctive information is in dominant direction (d=1),        
opposite direction (d=5), & orthogonal directions (d=3,7). 

–  Orthogonal directions (1 & 3), (5 & 7) contain correlated information. 

•  LRI Feature Vector is 2-D histogram 
–  For each  m,n  between –K and K 

H(m,n)  =  [#pixels s.t.  (RIi,1,RIi,3)  = (m,n)] 
+ [#pixels s.t.  (RIi,5,RIi,7)  = (m,n)] 

–  Feature Vector length = (2K+1)2.   (Typically,  K = 4) 
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Feature Complexity Feature Complexity 

LBP(8,1) w/o interp. 30 LBP(8,1) 90 

LRI (K = 4) 36 LBP(16,2) 242 

RI-LRI (K = 4) 47 LBP(24,3) 394 

1	
  

2	
  3	
  
4	
  

5	
  

6	
  
7	
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RI-LRI+ Metric Based on RI-LRI 

•  Combine RI-LRI with 
–  LBP    ( (8,1) no interpolation ) 
–  RI Subband Contrast Distribution (RI-SCD) 

•  Motivated by LEBC1, measure variances                 from subband 
decomposition generated by “edge” (first deriv.) and “bar” (second 
deriv.) filters with 3 scales and 8 orientations. 

•  To attain rotation invariance, for each scale and choice of “edge” or 
“bar” arrange the 8 variances in decreasing order. 

•  RI-SCD similarity of images: 

•  RI-LRI+: 

RI-LRI
+
  =  (RI-LRI)0.7

  x  LBP
0.4

  x  (1-(RI-SCD))1.3 
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•  OUTEX database:  percent accuracy averaged over 3 test scenarios 

•  CUReT database:  percent accuracy 

•  RI-LRI+ (with 139-dim’l feature vector) is nearly as good as LEBC     
(with 1280-dim’l feature vector). 

•  RI-LRI+ uses 1-NN, i.e., Nearest Neighbor classification 

Metric Test:  Texture Classification 

LBP	
  
(8,1)	
  

RI-­‐LRI	
  
(K=4)	
  

VZ-­‐
Joint	
  

VZ-­‐
MR8	
  

DLPB
+NGF	
  

CLBP	
   DNS
+LBP	
  

LEBC	
   RI-­‐LRI+	
  

71.8	
   84.9	
   91.8	
   93.0	
   94.1	
   96.7	
   95.5	
   98.7	
   98.4	
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RI-­‐LRI	
  
(K=4)	
  

VZ-­‐
Joint	
  

VZ-­‐
MR8	
  

CLBP	
   DNS
+LBP	
  

LEBC	
   RI-­‐LRI+	
  

80.8	
   91.9	
   97.7	
   97.8	
   97.0	
   95.0	
   98.5	
   98.1	
  



Concluding Remarks 
•  New texture features:  LRI, RI-LRI 

•  New texture similarity metrics: 
–  STSIM, STSIM2 –-- SSIM-type 
–  LRI, LRI+ ---- local pattern type 
–  RI-LRI, RI-LRI+ ---- local pattern type, rotation invariant 

•  State-of-the-art performance in 
–  Identical texture retrieval 
–  Texture classification 
–  MTC compression 

•  Order of magnitude lower dimensionality of feature vector than 
similarly performing feature vectors. 
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Current Work 
•  LRI based on “genuine” edge detectors, e.g., Canny 

•  Analytically predict LRI histograms on periodic texture patterns 

•  Study sensitivity of LRI to noise 

•  New pooling methods 
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