

A Coding Theoretic Framework for Query Learning

Clayton Scott

Electrical Engineering and Computer Science University of Michigan

Collaborators

Gowtham Bellala

Suresh Bhavnani

Max Yi Ren

Panos Papalambros

Toxic Chemical Emergency

Hundreds of toxic chemical incidents per year (Kleindorfer et al., 2003)

Chemical Identification

Decision Support for Chemical Identification

WISER Database

<u>Wireless</u> Information System for Emergency Responders

- Maintained by NLM, panel of chemists/toxicologists
- Lists which symptoms are caused by which chemicals
- Represented as bipartite network, or binary table

chemicals symptoms

Network Layout of WISER Database

- ~ 300 chemicals, 80 symptoms
- Edge density ~ 0.4, symptoms tend to be nonspecific

WISER

Query Learning

Objects: $\Theta = \{\theta_1, \ldots, \theta_M\}$

Queries:
$$Q = \{q_1, \ldots, q_N\}$$

	q_1	q_2	q_3	q_4	q_5	
θ_1	1	0	0	0	1	π_1
$ heta_2$	0	1	0	1	0	π_2
$ heta_3$	1	1	1	1	1	π_3
$ heta_4$	0	1	0	1	1	π_4
$ heta_5$	0	0	0	1	1	π_5
θ_6	1	1	0	0	0	π_6

M

i=1

 $\sum^{M} \pi_i = 1$

Problem statement

- object selected at random
- determine object with as few queries as possible

Other Applications of Query Learning

Objects

- chemicals
- network failures
- faults
- classifiers
- ...

<u>Queries</u>

- symptoms
- network measurements
- alarms

• ...

• labels at specific points (active learning)

Outline

- Connecting query learning to source coding
- Generalizations
 - □ Exponentially weighted costs
 - Group identification
- Application to
 - Query noise
 - □ Preference elicitation
- Not in this talk
 - □ Multiple objects present
 - Likelihoods, Bayesian networks
 - Network fault detection
 - □ Human factors, usability, etc.

Decision Trees

	$ q_1 $	q_2	q_3	q_4	q_5	
$\overline{\theta_1}$	1	0	0	0	1	π_1
$ heta_2$	0	1	0	1	0	π_2
$ heta_3$	1	1	1	1	1	π_3
$ heta_4$	0	1	0	1	1	π_4
$ heta_5$	0	0	0	1	1	π_5
θ_6	1	1	0	0	0	π_6

Generalized binary search:

- Greedy, top-down algorithm
- Select query that balances remaining objects

 $E[\# \text{ of queries}] = \pi_1 \cdot 2 + \pi_2 \cdot 4 + \pi_3 \cdot 2 + \pi_4 \cdot 4 + \pi_5 \cdot 3 + \pi_6 \cdot 2$

Source Coding

Fixed alphabet: $\{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6\}$ Prior probabilities: $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6$ **Goal**: efficient binary encoding

 $\theta_3 \theta_2 \theta_5 \theta_3 \theta_6 \theta_2 \theta_1 \theta_3 \theta_1 \theta_3 \theta_3 \dots \longrightarrow$ encoder 1110101001101101000... Instant decoding \implies **prefix** code 1 0 symbol codeword codelength ℓ_i $\mathbf{2}$ θ_1 00 θ_2 1010 4 0 0 θ_3 $\mathbf{2}$ 11 θ_3 θ_6 θ_1 $heta_4$ 1011 4 θ_5 3 100 θ_6 0120

$$E[\text{codelength}] = \sum_{i} \pi_i \ell_i$$

Source Coding

• $E[\text{codelength}] \ge -\sum_{i} \pi_{i} \log_{2} \pi_{i}$ $H_{1}(\{\pi_{i}\}), \text{Shannon entropy}$

0

 θ_6

0

 θ_5

0

0

- Huffman coding (Huffman, 1952)
 - Optimal
 - Bottom-up
 - Doesn't generalize to query learning
- Shannon-Fano coding (Shannon, 1948; Fano, 1961)
 - Suboptimal
 - Top-down
 - Generalizes to query learning \rightarrow GBS

Source Coding vs. Query Learning

• Same goal: minimize expected codelength / # of queries

 $\implies E[\# \text{ of queries}] \ge H_1(\{\pi_i\})$

• Query learning does not allow arbitrary trees

	q_1	q_2	q_3	q_4	q_5
$ heta_1$	1	0	0	0	1
$ heta_2$	0	1	0	1	0
$ heta_3$	1	1	1	1	1
$ heta_4$	0	1	0	1	1
$ heta_5$	0	0	0	1	1
$ heta_6$	1	1	0	0	0

 \implies only 5 possible splits (versus 31 for source coding)

• In query learning, finding optimal tree is NP-complete

 \implies need suboptimal algorithms

Exact formula for arbitrary tree/code

Theorem: For any decision tree T,

$$E[\# \text{ of queries}] = H_1(\{\pi_i\}) + \sum_{a \in \text{interior}(T)} \pi_a[1 - H(\rho_a)]$$

where

Query Learning as Greedy Optimization

$$E[\# \text{ of queries}] = H_1(\{\pi_i\}) + \sum_{a \in \text{interior}(T)} \pi_a[1 - H(\rho_a)]$$

Top-down, greedy optimization

 \implies maximize $H(\rho_a)$

- \implies minimize $|\rho_a \frac{1}{2}|$
- \implies generalized binary search

	$ q_1 $	q_2	q_3	q_4	q_5	$\mid \pi_i$	(
$\overline{\theta_1}$	1	0	0	0	1	.25	
$ heta_2$	0	1	0	1	0	.05	
$ heta_3$	1	1	1	1	1	.3	
$ heta_4$	0	1	0	1	1	.1	
$ heta_5$	0	0	0	1	1	.1	
$ heta_6$	1	1	0	0	0	.2	

Exponentially Weighted Costs

For $\lambda \geq 1$, minimize

$$\log_{\lambda} \left(\sum_{i=1}^{M} \pi_i \lambda^{d_i} \right)$$

where $d_i = \text{depth of } \theta_i$

- $\lambda \to 1 \Longrightarrow$ average depth
- $\lambda \to \infty \Longrightarrow$ maximum depth (worst case)
- Source coding (arbitrary trees allowed) \implies efficient optimal algorithm
- Query learning \implies no efficient optimal algorithm

Rényi Entropy

Lower bound (Campbell, 1956): For any $\lambda > 1$ and any tree

$$\log_{\lambda} \left(\sum_{i=1}^{M} \pi_i \lambda^{d_i} \right) \ge H_{\alpha}(\{\pi_i\})$$

where

$$H_{\alpha}(\{\pi_i\}) = \frac{1}{1-\alpha} \log_2\left(\sum_{i=1}^M \pi_i^{\alpha}\right)$$

and $\alpha = \frac{1}{1 + \log_2 \lambda}$

Exact Formula for Exponential Costs

Theorem: For any fixed $\lambda \geq 1$, and any tree T,

$$\sum_{i=1}^{M} \pi_i \lambda^{d_i} = \lambda^{H_\alpha(\{\pi_i\})}$$

+
$$\sum_{a \in \text{int}(T)} \pi_a \left[(\lambda - 1) \lambda^{d_a} - D_a^\alpha + \rho_a D_{\text{left}(a)}^\alpha + (1 - \rho_a) D_{\text{right}(a)}^\alpha \right]$$

where

$$D_a^{\alpha} := \left[\sum_{i: i \text{ reaches node } a} \left(\frac{\pi_i}{\pi_a}\right)^{\alpha}\right]^{1/\alpha}$$

Greedy, top-down algorithm: λ -GBS

Results: WISER Database

300 chemicals, 80 symptoms, $\pi_i \propto i^{-1}$

Group Identification

Example: Identify class to which chemical belongs (pesticide, poison, etc.)

Group Identification

labels $y_i \in \{1, 2, \dots, K\}$

Theorem: For any tree T,

$$E[\# \text{ of queries}] = H_1(\{\tilde{\pi}_k\}) + \sum_{a \in \text{interior}(T)} \pi_a \left[1 - H(\rho_a) + \sum_{k=1}^K \frac{\pi_a^k}{\pi_a} H(\rho_a^k) \right]$$

Group-GBS

Greedy algorithm: At each successive node, choose query to minimize

$$1 - H(\rho_a) + \sum_{k=1}^{K} \frac{\pi_a^k}{\pi_a} H(\rho_a^k)$$

This prefers queries such that

- $\rho_a \approx \frac{1}{2} \Longrightarrow$ balanced trees
- $\rho_a^k \approx 0$ or 1 for each $k \Longrightarrow$ preserve groups

Group Identification Results

- WISER database (300 chemicals, 80 symptoms)
- 16 chemical classes (pesticide, poison, corrosive acid, etc.)
- uniform prior on chemicals

Entropy lower bound	3.07
Group-GBS	7.79
GBS	7.95
Random Search	16.33

• WISER-like database with better "concordance" within classes

Entropy lower bound	3.07
Group-GBS	3.50
GBS	7.51
Random Search	16.12

Performance Guarantee

Alternate greedy algorithm: At each successive node, choose query to maximize

$$\pi_{l(a)}\pi_{r(a)} - \sum_{k=1}^{K} \frac{\pi_a^k}{\pi_a} \pi_{l(a)}^k \pi_{r(a)}^k$$

Similar intuition as previous criterion.

Theorem: Let \widehat{T} denote the tree based on the above splitting criterion, and let T^* be the tree with minimum expected depth. Then

$$\mathbb{E}[\operatorname{depth}(\widehat{T})] \le \left(2\ln\left(\frac{1}{\sqrt{3}\pi_{\min}}\right) + 1\right) \mathbb{E}[\operatorname{depth}(T^*)]$$

where $\pi_{\min in} = \min_i \pi_i$.

Query Noise

• Suppose θ_2 is the true object

	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
θ_1	1	0	1	1	0	1	1	1	0
$ heta_2$	0	1	1	0	1	0	0	1	0
$ heta_3$	0	1	0	1	0	0	1	1	1
$ heta_4$	1	1	0	0	1	1	1	0	1

• Ideal query responses:

$$\theta_2 \mid 0 \mid 1 \mid 1 \mid 0 \mid 1 \mid 0 \mid 0 \mid 1 \mid 0$$

• Noisy query responses:

Query Noise

Nearest neighbor decoding: If

$$\min_{i \neq j} \quad d_{\text{Hamming}}(\theta_i, \theta_j) \ge \epsilon$$

can recover

$$\delta = \left\lfloor \frac{\epsilon - 1}{2} \right\rfloor$$

query errors

	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9		
$\overline{\theta_1}$	1	0	1	1	0	1	1	1	0		
$ heta_2$	0	1	1	0	1	0	0	1	0		F
$ heta_3$	0	1	0	1	0	0	1	1	1	ϵ	= 0 =
$ heta_4$	1	1	0	0	1	1	1	0	1	J	

Now apply Group-GBS

Query Noise Results

• Modified WISER database ($\epsilon = 5, \delta = 2$)

Preference Elicitation

• Given several designs for a product

E.g., laptop computers: each design has different combinations of features: memory, weight, cost, size, battery life, etc.

- Choose the most preferred design for a population of users
- Survey the population; Each survey consists of a sequence of pairwise comparisons

□ "Do you prefer Design A or Design B?"

Goal: Construct survey to determine most preferred design using the minimal number of queries

Preference Elicitation as Group Identification

- Products $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_K \in \mathbb{R}^d$
- Each user has a ranking of products, e.g.,

$$heta = oldsymbol{x}_3 \prec oldsymbol{x}_7 \prec oldsymbol{x}_2 \prec \cdots$$

• Set of possible rankings

$$\Theta = \{\theta_1, \theta_2, \dots, \theta_M\}$$

• Group rankings by most preferred design

 $\Theta_i^k := \{ \theta \in \Theta \, | \, \boldsymbol{x}_k \text{ most preferred} \}$

Pairwise Comparisons are Queries

This ranking is not consistent with this query

Some Interesting Features

- Initial probability distribution π_i on rankings: uniform
- Users surveyed sequentially, so can update distribution on rankings after each survey
- Estimating probability π_a , where *a* is a node in the tree, is nontrivial
- Assume partworth model: Each user is represented by a vector $\boldsymbol{w} \in \mathbb{R}^D$, and pairwise comparison between \boldsymbol{x}_i and \boldsymbol{x}_j depends on the sign of

$$\boldsymbol{w}^T(\boldsymbol{x}_i - \boldsymbol{x}_j).$$

This enables geometric approximations of π_a quantities (details omitted but it's an SVM type algorithm)

Conclusion

- Query learning = constrained source coding
- Exact formulas for performance --> greedy algorithms

