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Introduction to Sparse Signal Models
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Synthesis Model (SM) for Sparse Representation

@ Given a signal y € R”, and dictionary D € R"*K we assume
y = Dx with ||x||, < K.

@ Real world signals modeled as y = Dx + e, e is deviation term.

@ Given D, sparsity level s, the synthesis sparse coding problem is
% =argmin|ly — Dx|f3 s.t. ||x[ly <'s

@ This problem is NP-hard.

@ Greedy and /¢;-relaxation algorithms can be computationally
expensive.
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Analysis Model (AM) for Sparse Representation

@ (Strict) AM : Given a signal y € R", and analysis dictionary
Qe R™" Qy|l, < m.

@ Noisy Signal Analysis Model (NSAM) : y = g+ e, Qg = z sparse.

@ Given Q, co-sparsity level t, the analysis sparse coding problem is
g =argminly - gl st [Qqly < m— ¢

@ This problem is NP-hard.

@ Greedy! and /;-relaxation? algorithms are computationally expensive.

1 [Rubinstein et al. 12 ], 2 [Yaghoobi et al. '12].
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Transform Model (TM) for Sparse Representation

@ Given a signal y € R”, and transform W € R™*" we model
Wy = x +n with ||x||, < m and 7 - error term.

@ Natural signals are approximately sparse in Wavelets, DCT.
@ Given W, and sparsity s, transform sparse coding is
% =argmin|Wy — x| s.t. [Ix]l, <s
X

@ X = Hs(Wy) computed by thresholding Wy to the s largest magnitude
elements. Sparse coding is cheap! Signal recovered as W'%.

@ Sparsifying transforms exploited for compression (JPEG2000), etc.
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Learning Synthesis and Analysis Dictionaries

©

Learning formulations - typically non-convex and NP-hard.

@ Approximate algorithms for Synthesis Learning: MOD3, K-SVD*,
online dictionary learning®, etc.

[

Heuristics for Analysis Learning:

o (Strict) Analysis: Sequential Minimal Eigenvalues®, AOL’.
o Noisy Analysis: Analysis K-SVD?, NAAOL®, GOAL™ .

©

Algorithms typically computationally expensive.

©

Algorithms may not converge.

3 [Engan et al. '99] , 4 [Aharon et al. '06], 5 [Mairal et al. '09], 6 [Ophir et al. '11], 7 [Yaghoobi et al. '11], 8 [Rubinstein et al. '12],
9 [Yaghoobi et al. '12], 10 [Hawe et al. '13].
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Key Topic of Talk: Sparsifying Transform Learning

@ Square Transform Models
o Unstructured transform learning [IEEE TSP, 2013 & 2015]

o Doubly sparse transform learning [IEEE TIP, 2013]
o Online learning for Big Data [IEEE JSTSP, 2015]

o Convex formulations for transform learning [ICASSP, 2014]

@ Overcomplete Transform Models

o Unstructured overcomplete transform learning [ICASSP, 2013]

@ Learning structured overcomplete transforms with block cosparsity
(OCTOBOS) [JCV, 2014]

@ Applications: Sparse representation, Image & Video denoising,
Classification, Blind compressed sensing (BCS) for imaging.
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Unstructured Square Transform
Learning
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Square Transform Learning Formulation

. A
Sparsification Error Regularizer = v(W)

2 2
(P1) min WY = X7+ (&1IW|} — log|det W)

sit. | Xillp <s Vi

QY =[Y1]|Yo]..... | Yn] € R™M : matrix of training signals.

O X =[Xi|Xz|...| X ] € R™N : matrix of sparse codes of Y;.

@ Sparsification error - measures deviation of data in transform domain
from perfect sparsity.

@ A, £ > 0. The log |det W] restricts solution to full rank transforms,
and avoids repeated rows.

e | W||,2E keeps objective function bounded from below.

@ (P1) is non-convex.
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Properties of Formulation

(P1) min [WY = X%+ X (£ [W[% — log|det W)
1Xillo < 5 Vi

@ (P1) attains lower bound of objective if and only if 3 (W, X) with X
sparse such that WY = X, and the condition number r(W) = 1.

@ (P1) favors both a low sparsification error and good conditioning.
@ Minimizing the A ({ I WH?_- — log|det W|) penalty encourages
reduction of condition number.

@ )\ enables complete control over k. The solution to (P1) is perfectly
conditioned (k = 1) as A — .

o If w; is the it row of W, then max;; ‘”7“1“ < kK(W)-1.

(Twi
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Algorithm with Iterative Transform Update

@ (P1) solved by alternating between updating X and W.
@ Sparse Coding Step solves for X with fixed W.
min WY — X|[Z s.t. [|Xillp<s Vi (1)
o Easy problem: Solution X computed exactly by zeroing out all but
the s largest magnitude coefficients in each column of WY.
@ Transform Update Step solves for W with fixed X.
. 2 2
min [WY = XII% + A (¢ [WIIE - logldet W) (2)
o Solved using Non-linear Conjugate Gradients (NLCG).

11 [Ravishankar & Bresler, IEEE TSP, 2013].
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Exact Transform Update

@ Transform Update Step:

min WY = X|[Z+ X (£ | W% ~ log|det W) (3)

@ Closed-form solution:
W =050 (X + (22 +2M,)7) Q7L (4)

where YYT 4+ Xél, = LLT, and L=1YXT has a full singular value
decomposition (SVD) of QX UT.

@ The solution is invariant to the specific choice of square root L.
@ It is unique if and only if YXT is non-singular.
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Algorithm Al for Square Transform Learning

Transform Update
N Outputs
Training Data Y Update W TTA
(W, X)
LoopJ
times
Initialization &

Parameters Sparse Coding

Update X
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Orthonormal Transform Learning Limit

Proposition 1

For £ = 0.5, as A\ — oo, the sparse coding and transform update
solutions in (P1) coincide with the solutions obtained by employing
alternating minimization on

min WY —X|2 s.t. WTW =1, |Xi|,<s Vi (5)

Specifically, the sparse coding step for Problem (5) involves

min WY — X||2 s.t. || Xillp <s Vi (6)

and the solution is X; = Hs(WY;) Y i. Transform update involves

max tr (WYXT) st. WTW =1 (7)
w

Let YXT = ULVT be a full SVD. Then, an optimal W in (7) is VUT .
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Convergence Guarantees - Notations

@ Define the barrier function

00 _{ 0, Xl <s, Vi

400, else
@ (P1) is equivalent to the problem of minimizing g(W, X).
(W, X) £ WY — X|[¢ + X[ W[ — Alog |det W] +%(X) (8)

@ For h € RP, ¢;(h) is the magnitude of the j'!' largest element
(magnitude-wise) of h.

@ For B e CP*9, ||B| £ max; ;| Bjj|.
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Convergence Guarantees

For the sequence { W*, X*} generated by Algorithm A1 with initial
(WP XO), we have
o {g(W*,X*)} converges to a finite value g* = g* (W?, X°).

o {Wk, XX} is bounded, and any specific accumulation point (W, X)
is a fixed point of Algorithm Al satisfying

g(W+dW, X + AX) > g(W,X) =g" (9)
The condition holds for all sufficiently small dW € R"*" satisfying
|dW|| g < € for some e = (W) >0, and all AX € R1U R2
R1. The half-space tr {(WY — X)AXT} <0.
R2. The local region defined by
|AX], < min; {s(WY;) : [WYi]|, > s}.
Furthermore, if we have ||WYil||, < sV i, then AX can be arbitrary.

>
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Global Convergence Guarantees

X3 | K2
5X Xa
7X Xe

For each initialization of Algorithm Al, the objective converges to a local
minimum, and the iterates converge to an equivalence class of local
minimizers.

Algorithm A1 is globally convergent (i.e., from any Initialization) to the
set of local minimizers of the non-convex objective g(W, X).
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Computational Advantages

—+NLCG
107 |==Closed Form|

10‘__‘___._/—/‘

Run Time (sec)

196

100 144
Patch Size (n)

Patches of image Run times

@ Cost per iteration of proposed algorithms: O(Nn?) for N training signals
and W € R™",

@ Synthesis/Analysis K-SVD cost per iteration : O(Nn®). Cost dominated
by sparse coding.

@ For images, this is a reduction of computations in the order by n,
corresponding to /n X y/n patches.

@ Closed-form solution for transform update also provides speedup of about
J over NLCG, where J is the number of NLCG steps.
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Convergence for (P1) with Various Initializations
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Learnt transforms are better than analytical transforms

@ Normalized Sparsification Error (NSE) measures the fraction of
energy lost in sparse fitting with sparse code X.

WY — X]||2
NSE = w , NSE(W) = 4.4% , NSE(DCT) = 6.8%.
WY
@ Recovery PSNR (rPSNR) measures the error in recovering image as

V= w-ix. p
255V P

rPSNR= ————

Y =W=iX]¢

P is # of image pixels.
@ rPSNRs for the learnt W about 1.7 dB better than for DCT.

@ Varying A allows trade-off between NSE and x(W). rPSNR best at
intermediate &.

20

S. Ravishankar Adaptive Sparse Models



Comparison of Algorithms in Image Representation
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@ Transform learning (TL) provides better sparsification & recovery than
DCT.

@ Adapted well-conditioned transforms perform better (up to 0.3 dB better
recovery) than adapted orthonormal transforms.

@ Adapted transforms outperform Independent Component Analysis (ICA).

4
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Application: Image Denoising

Data Fidelity
Regularizer M
——f
min u(XlaX2a --7Xn) +TZ ||RJ Yy = XJ”%
X} =

Estimate image x € R” from its noisy measurement y = x + h.

[

©

R; € R™P extracts patches. R;y = noiseless x;.

©

u(x1, %2, ..,Xs) is a regularizer = regularized inverse problem.
o 7 o L with o being the noise level.

@ Denoised x obtained by averaging x;'s at their 2D locations.
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Image Denoising with Transform Learning Regularizer

Sparsification Error Data Fidelity
M Regularizer
. 2 N 2
(P2) ~min > [[Wg —ajll;+x v(W) 47 ) IR y = xll;
W, {x},{a;} j=1 j=1

st lajllg <55 ¥

nxP ~ H . Ly
e RieR extracts patches. R; y = noiseless x;, Wx; ~ ;.
@ a; € R" is transform sparse code of x;.

@ (P2) is solved by an efficient alternating scheme that uses
closed-form updates, and s; are found adaptively.

@ Denoised x obtained by averaging x;'s at their 2D locations.
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Image Denoising Example

Noisy Image 64 x 64 W (k = 1.3) 64 x 256 Synthesis D
PSNR = 24.60 dB PSNR = 31.66 dB PSNR = 31.50 dB

@ Closed-form updates-based denoising is better and 17x faster than
overcomplete K-SVD denoising.

@ Square K-SVD (PSNR = 31.14 dB) denoises worse, and is slower.

@ Our denoising PSNR increases with patch size n, while still providing
speedups over K-SVD of lower n.
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9@ We proposed formulations for learning square sparsifying transforms.
@ Proposed alternating algorithms

@ involve efficient optimal updates
@ converge globally to the set of local minimizers of objective
@ low computational cost

@ encourage well-conditioning

@ Adapted transforms provide better representations than analytical
ones.

@ Adaptive transforms denoise comparably or better than learnt
overcomplete synthesis dictionaries, but are faster.
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Blind Compressed Sensing for
Imaging
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Compressed Sensing (CS)

@ CS enables accurate recovery of images from fewer measurements
than number of unknowns or Nyquist sampling

@ Sparsity in transform domain or dictionary
@ Acquisition incoherent with transform

@ Reconstruction problem is hard
@ Reconstruction problem (NP-hard) -
min [|Ax — y|3 + X Wl (10)
@ x € CP : signal/image as vector, y € C™ : measurements.
@ Ac Cm™*P . sensing matrix (m < P), W € CT*P : given transform.

@ /7 relaxation of sparsity penalty is used to generate convex problem.
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Application: Compressed Sensing MRI (CSMRI)

@ Data - samples in k-space of spatial Fourier k-space
transform of object, acquired sequentially.

@ Acquisition rate limited by MR physics,
physiological constraints on RF energy
deposition.

incoherent artifact:
@ CSMRI accelerates the data acquisition i

process in MRI.

@ CSMRI with non-adaptive transforms or
dictionaries limited to 2.5-3 fold
undersampling [Ma et al. '08].

@ Two directions to improve CSMRI -

o better or adaptive sparse modeling

@ better choice of sampling pattern (F,)
[EMBC, 2011]

sparse transform partial k-space

Fig. from Lustig et al. '07
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Synthesis-based Blind Compressed Sensing (BCS)

Sparse Fitting Regularizer
Data Fidelity
N

2 2
(P3) min 3 [|Rix — Dbl +v 1 Ax — v

st |ldell, =1V k, [lbjlly <s V¥ J.

@ B ¢ C™N : matrix that has the sparse codes b; as its columns.

@ (P3) learns D € C™¥, and reconstructs x, from only undersampled y =
dictionary adaptive to underlying image.

@ DLMRI*? solves (P3) for MRI and works better than non-adaptive CS
methods like Wavelets + TV based LDP [Lustig, Donoho & Pauly '07].

12 [Ravishankar & Bresler '11]
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2D Random Sampling - 6 fold undersampling

LDP error magnitude

0.3
0.25
0.2
0.15
0.1
0.05

DLMRI reconstruction (32 dB) ~ DLMRI error magnitude
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Drawbacks of Synthesis Dictionary-based BCS

Sparse Fitting Regularizer
—_——

Data Fidelity
N

—

. 2 2

(P3)  min > |IRix = Dbjll; +v|Ax -yl
Db

s.t. |ldill, =1V k, |bjlly <s V.

@ (P3) is NP-hard, non-convex even if {o-quasinorm relaxed to /;.

@ Synthesis BCS algorithms have no guarantees and are computationally
expensive.
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Transform-based Blind Compressed Sensing (BCS)

Sparsification Error

" Data Fidelity Regularizer

— —_—
. 2 2
(P1) min 3 [WRx — |+ ][ Ax— yB2 UW)
WoB

N
st Y lbilly <'s, lIxll, < C.
j=1

@ (P4) learns W € C"*", and reconstructs x, from only undersampled
y = transform adaptive to underlying image.

o v(W) £ —log |det W| +0.5 HW||,2E controls scaling and  of W.
@ We set A\ = AN, with \g > 0 a constant.

@ [|x||, < Cis an energy/range constraint. C > 0.
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Transform BCS Properties

Let x € CP, and let y = Ax with A € C™*P. Suppose

° [Ix]l, < C

@ W € C"*" is a unitary transform

N

0 > 1 IWRx|lpy<s
Further, let B denote the matrix that has WR;x as its columns.
Then, (x, W, B) is a global minimizer of Problem (P4), i.e., it is
identifiable by solving (P4).

@ Conditions for uniqueness of solution to (P4) an open question.

@ Given minimizer (x, W, B) of (P4), (x, ©W,©B) is another
equivalent minimizer VO s.t. 070 =/, Zj 1©b]|, < s.
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Alternative Transform BCS Formulations

N

. 2 2

(P5)  min > | WRx — byl; + v | Ax =yl
WB

N
st. WIW =1, |, <s, [x],<C.
j=1

@ (P5) is also a unitary synthesis dictionary-based BCS problem,
with W* the synthesis dictionary.

N N
. 2 2
(P6)  min > ||WRx — byl; + v | Ax =yl + Av(W) + 72 3 lIbyllg
T j=1 j=1
s.t. ||x]l, < C.
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Block Coordinate Descent (BCD) Algorithm for (P4)

@ (P4) solved by alternating between updating W, B, and x.

@ Alternate a few times between the W and B updates, before
performing an image update.

@ Sparse Coding Step solves (P4) for B with fixed x, W.

N N
. 2
min E 1 |WR;x — bjll5 s.t. E 1 billy < s. (11)
= =

o Cheap Solution: Let Z € C"™N be the matrix with WR;x as its
columns. Solution B = H;(Z) computed exactly by zeroing out all
but the s largest magnitude coefficients in Z.
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BCD Algorithm for (P4)

o Transform Update Step solves (P4) for W with fixed x, B.

N
min > [WRix — bil[5 + 05X | W[z — Alog |det W/ (12)
j=1
o Let X € C™N be the matrix with R;x as its columns.
¢ Closed-form solution:

1
W = 05R <z + (22 + 2)\1) 2) = (13)

where XX + 0.5\ = LL", and L=*XB" has a full SVD of VEZR".

o Solution is unique if and only if XB" is non-singular.
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BCD Algorithm for (P4)

@ Image Update Step solves (P4) for x with fixed W, B.

N
0 2 2
min 3" [WRix — b2+ v [|Ax — y[} st [xll, < C. (14)
J=1
@ Least squares problem with £2 norm constraint.
@ Solution is unique as long as the set of overlapping patches cover all
image pixels.
o Solve Least squares Lagrangian formulation:

N
min > [WRix — byl + v [ Ax = yl3+p (IKE—C)  (15)

J=1

@ The optimal multiplier i € RT is the smallest real such that
[[X]|, < C. i can be found cheaply.
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BCS Convergence Guarantees - Notations

@ Define the barrier function ¢ (B) as

W(B) = { 0. YN lblo<s

400, else
@ x(x) is the barrier function corresponding to ||x||, < C.

@ (P4) is equivalent to the problem of minimizing g(W, B, x) =
Sies IWRx = b5 + v | Ax = yll3 + A v(W) +4(B) + x(x).

@ For H € CP*9, p;(H) is the magnitude of the j' largest element
(magnitude-wise) of H.

@ X € C"*N denotes a matrix with Rix, 1 <j <N, as its columns.
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Transform BCS Convergence Guarantees

For the sequence {W*, B, x'} generated by the BCD Algorithm with
initial (W°, B, x°), we have
o {g(W¢t, Bt xt)} converges to a finite g* = g*(W?, BY, x°).
o {W* B x'} is bounded, and all its accumulation points are
equivalent, i.e., they achieve the same value g* of the objective.

o The sequence {a'} with a* £ ||x* — x*~1||,, converges to zero.

o
@ Every accumulation point (W, B, x) is a critical point of g satisfying
the following partial global optimality conditions

x €argmin g (W, B, X) (16)

W € arg min g(W, B,x), B € argmin g(W,B,x) (17)
7% B

-

39

S. Ravishankar Adaptive Sparse Models



Transform BCS Convergence Guarantees

Theorem 3

Each accumulation point (W, B, x) of {W* Bt x'} also satisfies the
following partial local optimality conditions
g(W +dW,B+ AB,x) >g(W,B,x) =g
g(W,B + AB,x + Ax) >g(W,B,x) = g*
The conditions each hold for all Ax € CP, and all dW € C" " satisfying
|[dW|| < € for some € = (W) > 0, and all AB € C"™*N jn RI U R2
R1. The half-space Re (tr {( WX — B)ABH}) <.

R2. The local region defined by ||AB||, < ps(WX).

Furthermore, if || WX||, < s, then AB can be arbitrary.

40
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Global Convergence Guarantees

For each initialization, the iterate sequence in the BCD algorithm
converges to an equivalence class of critical points, that are also partial
global/local minimizers.

Corollary 4

The BCD algorithm is globally convergent (i.e., from any Initialization)
to a subset of the set of critical points of the non-convex BCS objective
g (W, B, x), that includes all (W, B, x) that are at least partial global
minimizers of g with respect to each of W, B, and x, and partial local
minimizers of g with respect to (W, B), and (B, x).
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Computational Advantages of Transform BCS

@ Cost per iteration of transform BCS: O(n?*NL)

o N overlapping patches of size \/n x y/n, W € C"*".

o L : # inner alternations between transform update & sparse coding.
@ Cost per iteration of Synthesis BCS method DLMRI*3: O(n®NJ).

o D e C™K, K n, sparsity s o n.
@ J : # of inner iterations of dictionary learning using K-SVD.

@ Transform BCS much cheaper as n increases = 3D or 4D imaging.

4

13 [Ravishankar & Bresler '11]

42

S. Ravishankar Adaptive Sparse Models



Application: Transform Learning

Based CSMRI (TLMRI)




Reference 14 Sampling mask

o.7%10° 10"
5 9.65
S 9.6 -
3 T
g 9.55) lloﬂ
g 9.5

0455 : 10’120u ;

14Data from Miki Lustig.

Iteration Number

Objective

S. Ravishankar

Iteration Number (t)

th _Xt_1||2 vs. t
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Convergence & Learning - 4x Undersampling (s = 3.4%)

Zero-filling (28.94 dB)  TLMRI (32.66 dB)
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PSNR and HFEN 1° real (top), imaginary (bottom)
parts of learnt 36 x 36 W

15 [Ravishankar & Bresler '11] 5
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Comparison (PSNR & Runtime) to Recent Methods

Sampling Scheme Undersampling Zero-filling LDP PBDWS DLMRI TLMRI
2D Random 4x 253 30.32 32.64 3291 33.04
7x 253 27.34 31.31 31.46 31.81

Cartesian 4x 28.9 30.20 32.02 32.46 32.64

7x 27.9 25.53 30.09 30.72 31.04

Avg. Runtime (s) 251 794 2051 211

@ TLMRI is up to 5.5 dB better than LDP0, that uses Wavelets + TV.

@ TLMRI provides up to 1 dB improvement in PSNR over the PBDWS!” method,
that uses redundant Wavelets and trained patch-based geometric directions.

@ It is up to 0.35 dB better than DLMRI', that learns 4x overcomplete dictionary.

@ TLMRI is 10x faster than DLMRI, and 4x faster than the PBDWS method.

16 [Lustig et al. '07] 7 [Ning et al. "13] 18 [Ravishankar & Bresler '11]
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Reconstruction Errors - Cartesian 4x Undersampling

0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
o 0

LDP PBDWS
0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
o 0
DLMRI TLMRI
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Reconstruction Errors - Cartesian 7x Undersampling

0.25 0.25
0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
o 0
LDP
0.25
0.2
0.15
0.1
0.05
0

DLMRI TLMRI
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@ We introduced a transform-based BCS framework
@ Proposed BCS algorithms have a low computational cost.
@ We provided novel convergence guarantees for the algorithms.

@ For CSMRI, the proposed approach is better than leading image
reconstruction methods, while being much faster.

@ Future work: uniqueness of solution in BCS; Convergence to global
minimizer.
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Online Learning for Big Data
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Why Online Transform Learning?

@ Prior work: batch transform learning, where learning is done using
all the training data simultaneously.

@ Big data = training set is very large = batch learning
computationally expensive in time and memory.

@ In real-time applications, data arrives sequentially, and must be
processed sequentially to limit latency.

@ Online learning enables sequential adaptation of the transform (and
sparse codes or signal estimates)

@ amenable to big data, and real-time applications.

@ involves cheap computations and modest memory requirements.

51

S. Ravishankar Adaptive Sparse Models



[ Jmt [ o [ s | s ]
Yt

\

Online Transform
Learning

[ [zt [ e [

z; : Learnt Transform/Sparse Codes/Signal Estimates

52

S. Ravishankar Adaptive Sparse Models



Online Transform Learning Formulations

@ Fort=1,2 3,..., solve

t
(P7) {5} = argmin - 3 {155 — 13-+ v (W)}

st Ixellg <5, x =%, 1< j<t—1

o X = do [yl VJj, with Xo > 0. v(W) 2 |W|[% — log |det W/
@ )\ controls the condition number and scaling of learnt W,.
@ At time t, estimate of {y;} obtained as {VAVt_lfg} (decompression).

@ For non-stationary data, use forgetting factor p € [0, 1], to diminish the
influence of old data.

230 w4 ) (20)

j=1
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Mini-Batch Transform Learning

@ For J=1,2, 3, ..., solve

J
{ .50} = srgmin g LIwy; = X112 + Av(w) |

, Xy

s.t. ||XJM_M+,'||O <sVie {1, hor M} (PS)

e Y, = [yJM,MJrl |yJM,M+2| ..... |y_j[\/]], with M : mini-batch size.
"] XJ:[XJM,M+1|XJM,M+2| ..... |XJM]. /\j:)\()HYj”i-.

@ Mini-batch learning
@ can provide reductions in operation count over online learning.

@ increased latency and memory requirements.
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Online Adaptive Transform Denoising

t

1
(P9) min >~ {IIWy; = x5 + Mv(W) + 77 Il }

» Xt

J=1

9 Goal: Given {y:}, with y: = z; + h;, and h; € R" the noise, find z V t.
@ 7; < 0, with o - noise level.

@ Denoised signal is 2; = V\A/fl)?t — computed efficiently in our algorithm.

@ (P9) can be used for denoising images, or image sequences:
@ overlapping patches of the noisy image(s) denoised sequentially.

@ image estimated by averaging denoised patches at 2D locations.
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Image Denoising — PSNR (dB) and runtime (sec)

e A - A el B

: (M = 64)
5 | 34.16 F;fn':‘eR 31725233 32-233 372.33
Couple (512 x 512) | 10 | 28.11 Pt?n':'eR 32%511 336.862 331_962
20 | 2211 [PoNK 007 13002 3%)3
5 | 34.15 Flfn':'eR 31%;‘97 3266?36 3(1575
Man (768 x 768) | 10 | 28.13 Pt?n':'eR 3726711 312;())6 33; fo
20 | 2211 Flfn':'eR 2;’{-3‘30 298-057 2952

@ Overlapping 8 x 8 patches are denoised sequentially with a forgetting
factor. We observed better denoising with a forgetting factor.

@ Mini-batch denoising is better and provides average speedup of 26.0x and
3.4x over the batch K-SVD and batch transform denoising schemes.
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Big Image Denoising - Data

Man (1024 x 1024)

Railway (2048 x 2048) Campus (3264 x 3264 x 3)
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Big Image Denoising — PSNR (dB) and runtime (sec)

Images Methods o =20 o =50 o = 100 Run
(22.11) | (14.15) (8.13) Times

Airport DCT 28.79 24.65 21.00 23
TL 28.83 25.07 22.53 28

Man DCT 30.44 25.80 21.87 23
TL 30.64 26.62 23.88 27

Railway DCT 31.90 26.44 22.04 90
TL 32.42 27.58 24.35 111

Campus DCT 30.89 25.88 21.99 323
TL 33.10 27.47 23.24 451

@ Adaptive mini-batch denoising (TL) performs better than the DCT,
without much loss in runtime.

@ Results demonstrate the potential of our schemes for real-time denoising
of large-scale data.
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@ We introduced an online sparsifying transform learning framework.

@ Proposed methods are particularly useful for big data & real-time
applications.

@ lterates converge to the set of stationary points of the expected
transform learning cost [IEEE JSTSP, 2015].

@ The online schemes perform well and are highly efficient for sparse
representation & denoising.

@ Ongoing work: video denoising, online blind compressed sensing.

o Video denoising by online 3D transform learning provides 0.7 dB
better denoising PSNR compared to the popular VBM4D.
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Union of Transforms or OCTOBOS
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OCTOBOS Learning Formulation

Sparsification Error Regularizer 2 30 A, v(Wy)

(P12) min ZZHWkY X|\2+Z>\k (||Wk|\F log |det Wk|)
{Wi, Xi, G} 15 iee,

st [[Xillp <s Vi, {Ck}kzl €6

@ G is the set of all partitions of [1: N] into K disjoint subsets {Ck}szl'

@ (P12) jointly learns the union-of-transforms { Wi} and clusters the data Y.

@ M\ = Xo|| Ye, ||, with Yc, the matrix of all Y; € Ck, achieves scale
invariance of the solution in (P12).

e As N — oo, k(Wk) — 1, HWkH2 — % V k for the solution in (P12).

@ We have proposed a cheap globally convergent alternating algorithm
for (P12) [IJCV, 2014].
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Unsupervised Classification by OCTOBOS

@ Overlapping image patches are clustered by learnt OCTOBOS.

@ Each pixel is then classified by a vote among the patches that cover it.

OCTOBOS

Original Image K-means OCTOBOS
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Image Denoising

Noisy
Image o PSNR BM3D | K-SVD | GMM OCTOBOS
5 34.12 38.21 37.81 38.06 38.19
10 28.14 34.15 33.72 34.00 34.15
Cameraman 15 24.61 31.91 31.50 31.85 31.94
20 22.10 30.37 29.82 30.21 30.24
100 8.14 23.15 21.76 22.89 22.24
5 34.15 38.30 38.08 37.59 38.31
10 28.14 34.97 34.41 33.61 34.64
Barbara 15 24.59 33.05 32.33 31.28 32.53
20 22.13 31.74 30.83 29.74 31.05
100 8.11 23.61 21.87 22.13 22.41

@ OCTOBOS denoises 0.36 dB better than K-SVD'® on avg., and is faster.
@ OCTOBOS also denoises 0.43 dB better than GMM? on average here.

@ Its performance is comparable to BM3D?! in some cases.

19 [Elad & Aharon '06] 20 [Zoran & Weiss '11] 21 [Dabov et al. '07]
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Image Denoising - Effect of Overcompleteness (K)

34.9
—g
/,__‘.__../4/ e
o« 348 e = o 311 %
z 8 e | 7
o 34.7 o 31
el el
3 3
5 34.6 ‘5 30.9
c c
S. ] 8
345 30.8
L
34'412 4 6 81012141618202224 30'712 4 6 8 1012141618202224
Number of Clusters Number of Clusters
PSNR for Barbara at 0 = 10 PSNR for Barbara at 0 = 20

@ OCTOBOS denoises up to 0.4 dB better than the square transform here.

@ Best choice of K (number of clusters) lower at higher o.
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@ We proposed learning Union-of-Transforms or OCTOBOS.
@ Proposed algorithms have global convergence guarantees.
@ Algorithms are cheap and perform well in applications.

@ Future Work

@ Combination of OCTOBOS and non-local methods in denoising.
@ Online OCTOBOS learning.
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Overall Conclusions and Future Directions

@ We proposed several methods for learning square or overcomplete
sparsifying transforms.

@ Proposed algorithms typically
@ have low computational cost
@ have convergence guarantees
@ Adaptive transforms are useful for various applications

@ sparse representation, denoising

o compressed sensing, classification, big data processing.

@ Future Work: Analyze blind denoising or compressed sensing further.
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