Adaptive Sparse Representations and their Applications

Saiprasad Ravishankar

Department of Electrical and Computer Engineering and Coordinated Science Laborarory University of Illinois at Urbana-Champaign

January 29, 2015

< 47 ▶

4 3 5 4

Introduction to Sparse Signal Models

Synthesis Model (SM) for Sparse Representation

• Given a signal $y \in \mathbb{R}^n$, and dictionary $D \in \mathbb{R}^{n \times K}$, we assume y = Dx with $||x||_0 \ll K$.

- Real world signals modeled as y = Dx + e, e is deviation term.
- Given D, sparsity level s, the synthesis sparse coding problem is

$$\hat{x} = \arg\min_{x} \|y - Dx\|_{2}^{2} \ s.t. \ \|x\|_{0} \le s.$$

- This problem is NP-hard.
- \bullet Greedy and $\ell_1\text{-relaxation}$ algorithms can be computationally expensive.

Analysis Model (AM) for Sparse Representation

• (Strict) AM : Given a signal $y \in \mathbb{R}^n$, and analysis dictionary $\Omega \in \mathbb{R}^{m \times n}$, $\|\Omega y\|_0 \ll m$.

- Noisy Signal Analysis Model (NSAM) : y = q + e, $\Omega q = z$ sparse.
- Given Ω , co-sparsity level t, the analysis sparse coding problem is

$$\hat{q} = rg\min_{q} \|y - q\|_2^2 \ s.t. \ \|\Omega q\|_0 \leq m - t$$

- This problem is NP-hard.
- $\bullet~\mbox{Greedy}^1$ and $\ell_1\mbox{-relaxation}^2$ algorithms are computationally expensive.

 1 [Rubinstein et al. '12] , 2 [Yaghoobi et al. '12].

(4) E > (4) E > (3)

Transform Model (TM) for Sparse Representation

• Given a signal $y \in \mathbb{R}^n$, and transform $W \in \mathbb{R}^{m \times n}$, we model $Wy = x + \eta$ with $||x||_0 \ll m$ and η - error term.

- Natural signals are approximately sparse in Wavelets, DCT.
- Given W, and sparsity s, transform sparse coding is

$$\hat{x} = \arg\min_{x} \|Wy - x\|_{2}^{2} \ s.t. \ \|x\|_{0} \le s$$

- \$\hat{x} = H_s(Wy)\$ computed by thresholding Wy to the s largest magnitude elements. Sparse coding is cheap! Signal recovered as W[†]\$.
- Sparsifying transforms exploited for compression (JPEG2000), etc.

・ロット (雪) ((日) (日) (日)

Learning Synthesis and Analysis Dictionaries

- Learning formulations typically non-convex and NP-hard.
- Approximate algorithms for Synthesis Learning: MOD³, K-SVD⁴, online dictionary learning⁵, etc.
- Heuristics for Analysis Learning:
 - (Strict) Analysis: Sequential Minimal Eigenvalues⁶, AOL⁷.
 - Noisy Analysis: Analysis K-SVD⁸, NAAOL⁹, GOAL¹⁰.
- Algorithms typically computationally expensive.
- Algorithms may not converge.

³ [Engan et al. '99], ⁴ [Aharon et al. '06], ⁵ [Mairal et al. '09], ⁶ [Ophir et al. '11], ⁷ [Yaghoobi et al. '11], ⁸ [Rubinstein et al. '12], ⁹ [Yaghoobi et al. '12], ¹⁰ [Hawe et al. '13].

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Key Topic of Talk: Sparsifying Transform Learning

• Square Transform Models

- Unstructured transform learning [IEEE TSP, 2013 & 2015]
- Doubly sparse transform learning [IEEE TIP, 2013]
- Online learning for Big Data [IEEE JSTSP, 2015]
- Convex formulations for transform learning [ICASSP, 2014]
- Overcomplete Transform Models
 - Unstructured overcomplete transform learning [ICASSP, 2013]
 - Learning structured overcomplete transforms with block cosparsity (OCTOBOS) [IJCV, 2014]
- Applications: Sparse representation, Image & Video denoising, Classification, Blind compressed sensing (BCS) for imaging.

・ロ・ ・ 雪 ・ ・ ヨ ・ ・ 日 ・

Unstructured Square Transform Learning

э

Square Transform Learning Formulation

(P1)
$$\min_{W,X} \underbrace{\|WY - X\|_F^2}_{s.t.} + \lambda \underbrace{\left(\xi \|W\|_F^2 - \log |\det W|\right)}_{s.t.}$$

•
$$Y = [Y_1 | Y_2 | \dots | Y_N] \in \mathbb{R}^{n \times N}$$
: matrix of training signals.

•
$$X = [X_1 | X_2 | \dots | X_N] \in \mathbb{R}^{n \times N}$$
: matrix of sparse codes of Y_i .

- Sparsification error measures deviation of data in transform domain from perfect sparsity.
- λ, ξ > 0. The log |det W| restricts solution to full rank transforms, and avoids repeated rows.
- $||W||_F^2$ keeps objective function bounded from below.
- (P1) is non-convex.

Properties of Formulation

(P1)
$$\min_{W,X} \|WY - X\|_F^2 + \lambda \left(\xi \|W\|_F^2 - \log |\det W|\right)$$

s.t. $\|X_i\|_0 \leq s \ \forall \ i$

- (P1) attains lower bound of objective if and only if ∃ (Ŵ, X̂) with X̂ sparse such that ŴY = X̂, and the condition number κ(Ŵ) = 1.
- (P1) favors both a low sparsification error and good conditioning.
- Minimizing the $\lambda \left(\xi \|W\|_F^2 \log |\det W| \right)$ penalty encourages reduction of condition number.
- λ enables complete control over κ . The solution to (P1) is perfectly conditioned ($\kappa = 1$) as $\lambda \to \infty$.
- If w_i is the i^{th} row of W, then $\max_{i \neq j} \left| \frac{\|w_i\| \|w_j\|}{\|w_i\|} \right| \leq \kappa(W) 1$.

・ロット 4回ット 4回ット 4日 >

Algorithm with Iterative Transform Update

- (P1) solved by alternating between updating X and W.
- **Sparse Coding Step** solves for *X* with fixed *W*.

$$\min_{X} \|WY - X\|_{F}^{2} \ s.t. \ \|X_{i}\|_{0} \leq s \ \forall \ i$$
 (1)

- Easy problem: Solution \hat{X} computed exactly by zeroing out all but the *s* largest magnitude coefficients in each column of *WY*.
- **Transform Update Step** solves for *W* with fixed *X*.

$$\min_{W} \|WY - X\|_F^2 + \lambda \left(\xi \|W\|_F^2 - \log |\det W|\right)$$
(2)

A B + A B +

11

• Solved using Non-linear Conjugate Gradients (NLCG)¹¹.

¹¹ [Ravishankar & Bresler, IEEE TSP, 2013].

• Transform Update Step:

$$\min_{W} \|WY - X\|_{F}^{2} + \lambda \left(\xi \|W\|_{F}^{2} - \log |\det W|\right)$$
(3)

• Closed-form solution:

$$\hat{W} = 0.5 U \left(\Sigma + \left(\Sigma^2 + 2\lambda I_n \right)^{\frac{1}{2}} \right) Q^T L^{-1}$$
(4)

12

where $YY^T + \lambda \xi I_n = LL^T$, and $L^{-1}YX^T$ has a full singular value decomposition (SVD) of $Q\Sigma U^T$.

- The solution is invariant to the specific choice of square root *L*.
- It is unique if and only if YX^T is non-singular.

Algorithm A1 for Square Transform Learning

イロト (得) (ア・・ マン・

э.

Proposition 1

For $\xi = 0.5$, as $\lambda \to \infty$, the sparse coding and transform update solutions in (P1) coincide with the solutions obtained by employing alternating minimization on

$$\min_{W,X} \|WY - X\|_F^2 \quad s.t. \quad W^T W = I, \ \|X_i\|_0 \le s \ \forall \ i.$$
 (5)

Specifically, the sparse coding step for Problem (5) involves

$$\min_{X} \|WY - X\|_{F}^{2} \ s.t. \ \|X_{i}\|_{0} \le s \ \forall \ i$$
(6)

and the solution is $\hat{X}_i = H_s(WY_i) \forall i$. Transform update involves

$$\max_{W} tr(WYX^{T}) s.t. W^{T}W = I$$
(7)

Let $YX^T = U\Sigma V^T$ be a full SVD. Then, an optimal \hat{W} in (7) is VU^T .

ロト (日本) (日本) (日本) 日本 (日本)

Convergence Guarantees - Notations

• Define the barrier function

$$\psi(X) = \left\{ egin{array}{cc} 0, & \|X_i\|_0 \leq s, \ orall i \ +\infty, & ext{else} \end{array}
ight.$$

• (P1) is equivalent to the problem of minimizing g(W, X).

$$g(W,X) \triangleq \|WY - X\|_F^2 + \lambda \xi \|W\|_F^2 - \lambda \log |\det W| + \psi(X)$$
(8)

• For $h \in \mathbb{R}^p$, $\phi_j(h)$ is the magnitude of the j^{th} largest element (magnitude-wise) of h.

• For
$$B \in \mathbb{C}^{p \times q}$$
, $\|B\|_{\infty} \triangleq \max_{i,j} |B_{ij}|$.

→ ∃ → → ∃ →

Theorem 1

For the sequence $\{W^k, X^k\}$ generated by Algorithm A1 with initial (W^0, X^0) , we have

- $\{g(W^k, X^k)\}$ converges to a finite value $g^* = g^*(W^0, X^0)$.
- {*W^k*, *X^k*} is bounded, and any specific accumulation point (*W*, *X*) is a fixed point of Algorithm A1 satisfying

$$g(W + dW, X + \Delta X) \ge g(W, X) = g^*$$
(9)

・ロト ・御 ト ・注 ト ・注 ト 三 正

The condition holds for all sufficiently small $dW \in \mathbb{R}^{n \times n}$ satisfying $\|dW\|_F \leq \epsilon$ for some $\epsilon = \epsilon(W) > 0$, and all $\Delta X \in R1 \cup R2$

- R1. The half-space tr $\{(WY X)\Delta X^T\} \leq 0.$
- R2. The local region defined by $\|\Delta X\|_{\infty} < \min_{i} \left\{ \phi_{s}(WY_{i}) : \|WY_{i}\|_{0} > s \right\}.$

Furthermore, if we have $||WY_i||_0 \le s \forall i$, then ΔX can be arbitrary.

Global Convergence Guarantees

Corollary 1

For each initialization of Algorithm A1, the objective converges to a local minimum, and the iterates converge to an equivalence class of local minimizers.

Corollary 2

Algorithm A1 is globally convergent (i.e., from any Initialization) to the set of local minimizers of the non-convex objective g(W, X).

Computational Advantages

- Cost per iteration of proposed algorithms: O(Nn²) for N training signals and W ∈ ℝ^{n×n}.
- Synthesis/Analysis K-SVD cost per iteration : $O(Nn^3)$. Cost dominated by sparse coding.
- For images, this is a reduction of computations in the order by *n*, corresponding to $\sqrt{n} \times \sqrt{n}$ patches.
- Closed-form solution for transform update also provides speedup of about *J* over NLCG, where *J* is the number of NLCG steps.

ъ

Convergence for (P1) with Various Initializations

Learnt transforms are better than analytical transforms

• Normalized Sparsification Error (NSE) measures the fraction of energy lost in sparse fitting with sparse code X.

NSE =
$$\frac{\|WY - X\|_{F}^{2}}{\|WY\|_{F}^{2}}$$
, NSE(W) $\approx 4.4\%$, NSE(DCT) = 6.8%.

• Recovery PSNR (rPSNR) measures the error in recovering image as $\hat{Y} = W^{-1}X$.

$$\mathrm{rPSNR} = \frac{255\sqrt{P}}{\|Y - W^{-1}X\|_{F}}$$

P is # of image pixels.

- rPSNRs for the learnt W about 1.7 dB better than for DCT.
- Varying λ allows trade-off between NSE and $\kappa(W)$. rPSNR best at intermediate κ .

(本部) (本語) (本語) (語)

Comparison of Algorithms in Image Representation

- Transform learning (TL) provides better sparsification & recovery than DCT.
- Adapted well-conditioned transforms perform better (up to 0.3 dB better recovery) than adapted orthonormal transforms.
- Adapted transforms outperform Independent Component Analysis (ICA).

э

$$\min_{\{x_j\}} \underbrace{\overline{u(x_1, x_2, ..., x_n)}}_{\{x_j\}} + \tau \underbrace{\sum_{j=1}^{\text{Data Fidelity}}}_{j=1} \|R_j y - x_j\|_2^2$$

- Estimate image $x \in \mathbb{R}^{P}$ from its noisy measurement y = x + h.
- $R_j \in \mathbb{R}^{n \times P}$ extracts patches. $R_j y \approx$ noiseless x_j .
- $u(x_1, x_2, ..., x_n)$ is a regularizer \Rightarrow regularized inverse problem.
- $\tau \propto \frac{1}{\sigma}$ with σ being the noise level.
- Denoised x obtained by averaging x_i's at their 2D locations.

Image Denoising with Transform Learning Regularizer

(P2)
$$\min_{W, \{x_j\}, \{\alpha_j\}} \underbrace{\sum_{j=1}^{M} \|Wx_j - \alpha_j\|_2^2}_{s.t. \|\alpha_j\|_0} + \lambda \underbrace{\sum_{j=1}^{M} \|R_j y - x_j\|_2^2}_{s.t. \|\alpha_j\|_0}$$

- $R_j \in \mathbb{R}^{n \times P}$ extracts patches. $R_j y \approx$ noiseless x_j , $Wx_j \approx \alpha_j$.
- $\alpha_j \in \mathbb{R}^n$ is transform sparse code of x_j .
- (P2) is solved by an efficient alternating scheme that uses **closed-form updates**, and *s_j* are found adaptively.
- Denoised x obtained by averaging x_j 's at their 2D locations.

《曰》《聞》《臣》《臣》 [臣]

Image Denoising Example

Noisy Image PSNR = 24.60 dB

 $\begin{array}{l} \mathsf{64}\times\mathsf{64}\,\,\mathcal{W}\,\,(\kappa=1.3)\\ \mathsf{PSNR}=\mathsf{31.66}\,\,\mathsf{dB} \end{array}$

 64×256 Synthesis D PSNR = 31.50 dB

- Closed-form updates-based denoising is better and 17x faster than overcomplete K-SVD denoising.
- Square K-SVD (PSNR = 31.14 dB) denoises worse, and is slower.
- Our denoising PSNR increases with patch size *n*, while still providing speedups over K-SVD of lower *n*.

- We proposed formulations for learning square sparsifying transforms.
- Proposed alternating algorithms
 - involve efficient optimal updates
 - converge globally to the set of local minimizers of objective
 - low computational cost
 - encourage well-conditioning
- Adapted transforms provide better representations than analytical ones.
- Adaptive transforms denoise comparably or better than learnt overcomplete synthesis dictionaries, but are faster.

→ Ξ → → Ξ →

Blind Compressed Sensing for Imaging

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ …

э

Compressed Sensing (CS)

- CS enables accurate recovery of images from fewer measurements than number of unknowns or Nyquist sampling
 - Sparsity in transform domain or dictionary
 - Acquisition incoherent with transform
 - Reconstruction problem is hard
- Reconstruction problem (NP-hard) -

$$\min_{x} \|Ax - y\|_{2}^{2} + \lambda \|\Psi x\|_{0}$$
(10)

- $x \in \mathbb{C}^P$: signal/image as vector, $y \in \mathbb{C}^m$: measurements.
- $A \in \mathbb{C}^{m \times P}$: sensing matrix (m < P), $\Psi \in \mathbb{C}^{T \times P}$: given transform.
- ℓ_1 relaxation of sparsity penalty is used to generate convex problem.

Application: Compressed Sensing MRI (CSMRI)

- Data samples in k-space of spatial Fourier transform of object, acquired sequentially.
- Acquisition rate limited by MR physics, physiological constraints on RF energy deposition.
- CSMRI accelerates the data acquisition process in MRI.
- CSMRI with non-adaptive transforms or dictionaries limited to 2.5-3 fold undersampling [Ma et al. '08].
- Two directions to improve CSMRI -
 - better or adaptive sparse modeling
 - better choice of sampling pattern (*F_u*) [EMBC, 2011]

コト 4 得 ト 4 ヨト 4 ヨト

Synthesis-based Blind Compressed Sensing (BCS)

(P3)
$$\min_{x,D,B} \sum_{j=1}^{N} \|R_j x - Db_j\|_2^2 + \nu \underbrace{\|Ax - y\|_2^2}_{\text{Data Fidelity}}$$

s.t. $\|d_k\|_2 = 1 \forall k, \|b_j\|_0 \leq s \forall j.$

- $B \in \mathbb{C}^{n \times N}$: matrix that has the sparse codes b_j as its columns.
- (P3) learns D ∈ C^{n×K}, and reconstructs x, from only undersampled y ⇒ dictionary adaptive to underlying image.
- DLMRI¹² solves (P3) for MRI and works better than non-adaptive CS methods like Wavelets + TV based LDP [Lustig, Donoho & Pauly '07].

¹² [Ravishankar & Bresler '11]

2D Random Sampling - 6 fold undersampling

LDP reconstruction (22 dB)

DLMRI reconstruction (32 dB)

LDP error magnitude

DLMRI error magnitude

э

Drawbacks of Synthesis Dictionary-based BCS

(P3)
$$\min_{x,D,B} \sum_{j=1}^{N} \|R_j x - Db_j\|_2^2 + \nu \underbrace{\|Ax - y\|_2^2}_{\text{IAX} - y\|_2^2}$$

s.t. $\|d_k\|_2 = 1 \forall k, \|b_j\|_0 \leq s \forall j.$

- (P3) is NP-hard, non-convex even if ℓ_0 -quasinorm relaxed to ℓ_1 .
- Synthesis BCS algorithms have no guarantees and are computationally expensive.

伺 ト イヨ ト イヨ ト

Transform-based Blind Compressed Sensing (BCS)

(P4)
$$\min_{x,W,B} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} + \nu \underbrace{\|Ax - y\|_{2}^{2}}_{\text{Data Fidelity}} + \lambda \underbrace{v(W)}_{v(W)}$$

s.t.
$$\sum_{j=1}^{N} \|b_{j}\|_{0} \leq s, \ \|x\|_{2} \leq C.$$

- (P4) learns $W \in \mathbb{C}^{n \times n}$, and reconstructs x, from only undersampled $y \Rightarrow$ transform adaptive to underlying image.
- $v(W) \triangleq -\log |\det W| + 0.5 ||W||_F^2$ controls scaling and κ of W.
- We set $\lambda = \lambda_0 N$, with $\lambda_0 > 0$ a constant.
- $||x||_2 \leq C$ is an energy/range constraint. C > 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへぐ

Proposition 2

Let $x \in \mathbb{C}^p$, and let y = Ax with $A \in \mathbb{C}^{m \times p}$. Suppose

- $\|x\|_2 \leq C$
- $W \in \mathbb{C}^{n \times n}$ is a unitary transform
- $\sum_{j=1}^{N} \|WR_j x\|_0 \leq s$

Further, let B denote the matrix that has WR_jx as its columns. Then, (x, W, B) is a global minimizer of Problem (P4), i.e., it is identifiable by solving (P4).

- Conditions for uniqueness of solution to (P4) an open question.
- Given minimizer (x, W, B) of (P4), $(x, \Theta W, \Theta B)$ is another equivalent minimizer $\forall \Theta$ s.t. $\Theta^H \Theta = I$, $\sum_i \|\Theta b_j\|_0 \le s$.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

Alternative Transform BCS Formulations

(P5)
$$\min_{x,W,B} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} + \nu \|Ax - y\|_{2}^{2}$$

s.t. $W^{H}W = I, \sum_{j=1}^{N} \|b_{j}\|_{0} \leq s, \|x\|_{2} \leq C.$

• (P5) is also a unitary synthesis dictionary-based BCS problem, with W^H the synthesis dictionary.

(P6)
$$\min_{x,W,B} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} + \nu \|Ax - y\|_{2}^{2} + \lambda v(W) + \eta^{2} \sum_{j=1}^{N} \|b_{j}\|_{0}$$

s.t. $\|x\|_{2} \leq C$.

伺 ト イヨト イヨト

э

Block Coordinate Descent (BCD) Algorithm for (P4)

- (P4) solved by alternating between updating W, B, and x.
- Alternate a few times between the W and B updates, before performing an image update.

• **Sparse Coding Step** solves (P4) for *B* with fixed *x*, *W*.

$$\min_{B} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} \quad s.t. \quad \sum_{j=1}^{N} \|b_{j}\|_{0} \leq s.$$
(11)

Cheap Solution: Let Z ∈ C^{n×N} be the matrix with WR_jx as its columns. Solution B̂ = H_s(Z) computed exactly by zeroing out all but the s largest magnitude coefficients in Z.

BCD Algorithm for (P4)

• Transform Update Step solves (P4) for W with fixed x, B.

$$\min_{W} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} + 0.5\lambda \|W\|_{F}^{2} - \lambda \log |\det W|$$
(12)

- Let $X \in \mathbb{C}^{n \times N}$ be the matrix with $R_j x$ as its columns.
- Closed-form solution:

$$\hat{W} = 0.5R \left(\Sigma + \left(\Sigma^2 + 2\lambda I \right)^{\frac{1}{2}} \right) V^H L^{-1}$$
(13)

(4 何) トイヨト イヨト

where $XX^{H} + 0.5\lambda I = LL^{H}$, and $L^{-1}XB^{H}$ has a full SVD of $V\Sigma R^{H}$.

• Solution is unique if and only if XB^H is non-singular.
• Image Update Step solves (P4) for x with fixed W, B.

$$\min_{x} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} + \nu \|Ax - y\|_{2}^{2} \quad s.t. \quad \|x\|_{2} \leq C.$$
(14)

- Least squares problem with ℓ_2 norm constraint.
- Solution is unique as long as the set of overlapping patches cover all image pixels.
- Solve Least squares Lagrangian formulation:

$$\min_{x} \sum_{j=1}^{N} \|WR_{j}x - b_{j}\|_{2}^{2} + \nu \|Ax - y\|_{2}^{2} + \mu \left(\|x\|_{2}^{2} - C\right)$$
(15)

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

• The optimal multiplier $\hat{\mu} \in \mathbb{R}^+$ is the smallest real such that $\|\hat{x}\|_2 \leq C$. $\hat{\mu}$ can be found cheaply.

BCS Convergence Guarantees - Notations

• Define the barrier function $\psi(B)$ as

$$\psi(B) = \left\{egin{array}{ll} 0, & \sum_{j=1}^{N} \left\|b_{j}
ight\|_{0} \leq s \ +\infty, & ext{else} \end{array}
ight.$$

• $\chi(x)$ is the barrier function corresponding to $||x||_2 \leq C$.

- (P4) is equivalent to the problem of minimizing $g(W, B, x) = \sum_{j=1}^{N} ||WR_j x b_j||_2^2 + \nu ||Ax y||_2^2 + \lambda v(W) + \psi(B) + \chi(x).$
- For H ∈ C^{p×q}, ρ_j(H) is the magnitude of the jth largest element (magnitude-wise) of H.
- $X \in \mathbb{C}^{n \times N}$ denotes a matrix with $R_j x$, $1 \le j \le N$, as its columns.

▶ ★課 ▶ ★ 理 ▶ ★ 理 ▶ → 理 →

Theorem 2

For the sequence $\{W^t, B^t, x^t\}$ generated by the BCD Algorithm with initial (W^0, B^0, x^0) , we have

- { $g(W^t, B^t, x^t)$ } converges to a finite $g^* = g^*(W^0, B^0, x^0)$.
- {*W*^t, *B*^t, *x*^t} is bounded, and all its accumulation points are equivalent, i.e., they achieve the same value g^{*} of the objective.
- The sequence $\{a^t\}$ with $a^t \triangleq \|x^t x^{t-1}\|_2$, converges to zero.
- Every accumulation point (W, B, x) is a critical point of g satisfying the following partial global optimality conditions

$$x \in \operatorname*{arg\,min}_{\tilde{z}} g\left(W, B, \tilde{x}\right)$$
 (16)

・ロト ・御 ト ・ ヨ ト ・ ヨ ト … ヨ

$$W \in \underset{\tilde{W}}{\arg\min} g\left(\tilde{W}, B, x\right), B \in \underset{\tilde{B}}{\arg\min} g\left(W, \tilde{B}, x\right)$$
(17)

Theorem 3

Each accumulation point (W, B, x) of $\{W^t, B^t, x^t\}$ also satisfies the following partial local optimality conditions

$$g(W + dW, B + \Delta B, x) \ge g(W, B, x) = g^*$$
(18)

$$g(W, B + \Delta B, x + \tilde{\Delta}x) \ge g(W, B, x) = g^*$$
(19)

The conditions each hold for all $\tilde{\Delta} x \in \mathbb{C}^p$, and all $dW \in \mathbb{C}^{n \times n}$ satisfying $\|dW\|_F \leq \epsilon$ for some $\epsilon = \epsilon(W) > 0$, and all $\Delta B \in \mathbb{C}^{n \times N}$ in $R1 \cup R2$

- R1. The half-space $Re(tr\{(WX B)\Delta B^H\}) \leq 0$.
- R2. The local region defined by $\|\Delta B\|_{\infty} < \rho_s(WX)$.

Furthermore, if $\|WX\|_0 \leq s$, then ΔB can be arbitrary.

ロトス探トメミトメミト・ミ

Corollary 3

For each initialization, the iterate sequence in the BCD algorithm converges to an equivalence class of critical points, that are also partial global/local minimizers.

Corollary 4

The BCD algorithm is globally convergent (i.e., from any Initialization) to a subset of the set of critical points of the non-convex BCS objective g(W, B, x), that includes all (W, B, x) that are at least partial global minimizers of g with respect to each of W, B, and x, and partial local minimizers of g with respect to (W, B), and (B, x).

- ロ ト - 4 同 ト - 4 回 ト

Computational Advantages of Transform BCS

- Cost per iteration of transform BCS: $O(n^2 NL)$
 - *N* overlapping patches of size $\sqrt{n} \times \sqrt{n}$, $W \in \mathbb{C}^{n \times n}$.
 - L : # inner alternations between transform update & sparse coding.
- Cost per iteration of Synthesis BCS method DLMRI¹³: $O(n^3NJ)$.
 - $D \in \mathbb{C}^{n \times K}$, $K \propto n$, sparsity $s \propto n$.
 - J: # of inner iterations of dictionary learning using K-SVD.
- Transform BCS much cheaper as *n* increases \Rightarrow 3D or 4D imaging.

¹³ [Ravishankar & Bresler '11]

A B > A B >

Application: Transform Learning Based CSMRI (TLMRI)

TLMRI Convergence - 4x Undersampling (s = 3.4%)

¹⁴Data from Miki Lustig.

44

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Convergence & Learning - 4x Undersampling (s = 3.4%)

32.5 32 21.5 NSL 31

31

30.5

30 29.5<mark>L</mark>

Comparison (PSNR & Runtime) to Recent Methods

Sampling Scheme	Undersampling	Zero-filling	LDP	PBDWS	DLMRI	TLMRI
2D Random	4x	25.3	30.32	32.64	32.91	33.04
	7x	25.3	27.34	31.31	31.46	31.81
Cartesian	4x	28.9	30.20	32.02	32.46	32.64
	7x	27.9	25.53	30.09	30.72	31.04
Avg. Runtime (s)			251	794	2051	211

- TLMRI is up to 5.5 dB better than LDP¹⁶, that uses Wavelets + TV.
- TLMRI provides up to 1 dB improvement in PSNR over the PBDWS¹⁷ method, that uses redundant Wavelets and trained patch-based geometric directions.
- It is up to 0.35 dB better than DLMRI¹⁸, that learns 4x overcomplete dictionary.
- TLMRI is 10x faster than DLMRI, and 4x faster than the PBDWS method.

Reconstruction Errors - Cartesian 4x Undersampling

Reconstruction Errors - Cartesian 7x Undersampling

- We introduced a transform-based BCS framework
- Proposed BCS algorithms have a low computational cost.
- We provided novel convergence guarantees for the algorithms.
- For CSMRI, the proposed approach is better than leading image reconstruction methods, while being much faster.
- Future work: uniqueness of solution in BCS; Convergence to global minimizer.

3 1 4 3 1

Online Learning for Big Data

伺 ト イヨト イヨト

Why Online Transform Learning?

- **Prior work:** batch transform learning, where learning is done using all the training data simultaneously.
- Big data ⇒ training set is very large ⇒ batch learning computationally expensive in time and memory.
- In real-time applications, data arrives sequentially, and must be processed sequentially to limit latency.
- Online learning enables sequential adaptation of the transform (and sparse codes or signal estimates)
 - amenable to big data, and real-time applications.
 - involves cheap computations and modest memory requirements.

4 B 6 4 B 6

Online Transform Learning

zt : Learnt Transform/Sparse Codes/Signal Estimates

< A >

3

Online Transform Learning Formulations

• For *t* = 1, 2, 3, ..., solve

(P7)
$$\left\{ \hat{W}_{t}, \hat{x}_{t} \right\} = \arg\min_{W, x_{t}} \frac{1}{t} \sum_{j=1}^{t} \left\{ \|Wy_{j} - x_{j}\|_{2}^{2} + \lambda_{j}v(W) \right\}$$

s.t. $\|x_{t}\|_{0} \leq s, \ x_{j} = \hat{x}_{j}, \ 1 \leq j \leq t-1.$

•
$$\lambda_j = \lambda_0 \|y_j\|_2^2 \ \forall j$$
, with $\lambda_0 > 0$. $v(W) \triangleq \|W\|_F^2 - \log |\det W|$.

- λ_0 controls the condition number and scaling of learnt \hat{W}_t .
- At time *t*, estimate of $\{y_j\}$ obtained as $\{\hat{W}_t^{-1}\hat{x}_j\}$ (decompression).
- For non-stationary data, use forgetting factor $\rho \in [0,1]$, to diminish the influence of old data.

$$\frac{1}{t} \sum_{j=1}^{t} \rho^{t-j} \left\{ \|Wy_j - x_j\|_2^2 + \lambda_j v(W) \right\}$$
(20)

・ロン ・聞と ・ヨン・

Mini-Batch Transform Learning

$$\left\{ \hat{W}_{J}, \hat{X}_{J} \right\} = \arg\min_{W, X_{J}} \frac{1}{JM} \sum_{j=1}^{J} \left\{ \|WY_{j} - X_{j}\|_{F}^{2} + \Lambda_{j} v(W) \right\}$$

s.t. $\|X_{JM-M+i}\|_{0} \leq s \ \forall i \in \{1, ..., M\} \ (P8)$

•
$$Y_J = [y_{JM-M+1} | y_{JM-M+2} | | y_{JM}]$$
, with M : mini-batch size.

•
$$X_J = [x_{JM-M+1} | x_{JM-M+2} | | x_{JM}]. \Lambda_j = \lambda_0 ||Y_j||_F^2.$$

• Mini-batch learning

- can provide reductions in operation count over online learning.
- increased latency and memory requirements.

ロト (同) (ヨ) (ヨ) (ヨ)

Online Adaptive Transform Denoising

(P9)
$$\min_{W, x_t} \frac{1}{t} \sum_{j=1}^{t} \left\{ \|Wy_j - x_j\|_2^2 + \lambda_j v(W) + \tau_j^2 \|x_j\|_0 \right\}$$

- Goal: Given $\{y_t\}$, with $y_t = z_t + h_t$, and $h_t \in \mathbb{R}^n$ the noise, find $z_t \forall t$.
- $\tau_j \propto \sigma$, with σ noise level.
- Denoised signal is $\hat{z}_t = \hat{W}_t^{-1} \hat{x}_t$ computed efficiently in our algorithm.
- (P9) can be used for denoising images, or image sequences:
 - overlapping patches of the noisy image(s) denoised sequentially.
 - image estimated by averaging denoised patches at 2D locations.

・ロト ・聞 ト ・ヨト ・ヨト … ヨ

Image Denoising – PSNR (dB) and runtime (sec)

Images	σ	Noisy PSNR		Batch K-SVD	Batch TL	$\begin{array}{l} Mini-batch \\ TL \ (M=64) \end{array}$
	5	34.16	PSNR	37.28	37.33	37.33
Couple (512 $ imes$ 512)			time	1250	92	20
	10	28.11	PSNR	33.51	33.62	33.62
			time	671	68	19
	20	22.11	PSNR	30.02	30.02	30.03
			time	190	61	20
	5	34.15	PSNR	36.47	36.66	36.75
			time	1279	205	45
Map (768×768)	10	28.13	PSNR	32.71	32.96	33.00
Mail (700 × 700)			time	701	130	44
	20	22.11	PSNR	29.40	29.57	29.52
			time	189	80	41

- Overlapping 8 × 8 patches are denoised sequentially with a forgetting factor. We observed better denoising with a forgetting factor.
- Mini-batch denoising is better and provides average speedup of $26.0 \times$ and $3.4 \times$ over the batch K-SVD and batch transform denoising schemes.

(長) (日) (日) 日

Big Image Denoising - Data

Railway (2048 \times 2048)

Man (1024 imes 1024)

Campus (3264 \times 3264 \times 3)

▲御 ▶ ▲ 注 ▶ ▲ 注 ▶ …

୬ < ି 57

э

Images	Methods	$\sigma = 20$	$\sigma = 50$	$\sigma = 100$	Run
		(22.11)	(14.15)	(8.13)	Times
Airport	DCT	28.79	24.65	21.00	23
	TL	28.83	25.07	22.53	28
Man	DCT	30.44	25.80	21.87	23
	TL	30.64	26.62	23.88	27
Railway	DCT	31.90	26.44	22.04	90
	TL	32.42	27.58	24.35	111
Campus	DCT	30.89	25.88	21.99	323
	TL	33.10	27.47	23.24	451

- Adaptive mini-batch denoising (TL) performs better than the DCT, without much loss in runtime.
- Results demonstrate the potential of our schemes for real-time denoising of large-scale data.

◆□▶ ◆課▶ ◆理▶ ◆理▶ 「理」

- We introduced an online sparsifying transform learning framework.
- Proposed methods are particularly useful for big data & real-time applications.
- Iterates converge to the set of stationary points of the expected transform learning cost [IEEE JSTSP, 2015].
- The online schemes perform well and are highly efficient for sparse representation & denoising.
- Ongoing work: video denoising, online blind compressed sensing.
 - Video denoising by online 3D transform learning provides 0.7 dB better denoising PSNR compared to the popular VBM4D.

→ Ξ → → Ξ →

Union of Transforms or OCTOBOS

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Why Union of Transforms (UOT)?

• Natural images typically have diverse textures.

/⊒ ▶ < ≡ ▶ <

Why Union of Transforms (UOT)?

• Union of transforms: one for each class of textures or features.

・ 何 ト ・ ヨ ト ・ ヨ ト

OCTOBOS Learning Formulation

(P12)
$$\min_{\left\{W_{k}, X_{i}, C_{k}\right\}} \underbrace{\sum_{k=1}^{k} \sum_{i \in C_{k}} \|W_{k} Y_{i} - X_{i}\|_{2}^{2}}_{s.t.} + \underbrace{\sum_{k=1}^{k} \lambda_{k} \left(\|W_{k}\|_{F}^{2} - \log |\det W_{k}|\right)}_{s.t.}$$

- G is the set of all partitions of [1 : N] into K disjoint subsets $\{C_k\}_{k=1}^{K}$.
- (P12) jointly learns the union-of-transforms $\{W_k\}$ and clusters the data Y.
- λ_k = λ₀ || Y_{Ck} ||²_F, with Y_{Ck} the matrix of all Y_i ∈ C_k, achieves scale invariance of the solution in (P12).

• As $\lambda_0 \to \infty$, $\kappa(W_k) \to 1$, $\|W_k\|_2 \to \frac{1}{\sqrt{2}} \forall k$ for the solution in (P12).

• We have proposed a cheap globally convergent alternating algorithm for (P12) [IJCV, 2014].

Unsupervised Classification by OCTOBOS

- Overlapping image patches are clustered by learnt OCTOBOS.
- Each pixel is then classified by a vote among the patches that cover it.

4 E b

Image	σ	Noisy PSNR	BM3D	K-SVD	GMM	OCTOBOS
Cameraman	5	34.12	38.21	37.81	38.06	38.19
	10	28.14	34.15	33.72	34.00	34.15
	15	24.61	31.91	31.50	31.85	31.94
	20	22.10	30.37	29.82	30.21	30.24
	100	8.14	23.15	21.76	22.89	22.24
Barbara	5	34.15	38.30	38.08	37.59	38.31
	10	28.14	34.97	34.41	33.61	34.64
	15	24.59	33.05	32.33	31.28	32.53
	20	22.13	31.74	30.83	29.74	31.05
	100	8.11	23.61	21.87	22.13	22.41

- OCTOBOS denoises 0.36 dB better than K-SVD¹⁹ on avg., and is faster.
- OCTOBOS also denoises 0.43 dB better than GMM²⁰ on average here.
- Its performance is comparable to BM3D²¹ in some cases.

¹⁹ [Elad & Aharon '06] ²⁰ [Zoran & Weiss '11] ²¹ [Dabov et al. '07]

Image Denoising - Effect of Overcompleteness (K)

- OCTOBOS denoises up to 0.4 dB better than the square transform here.
- Best choice of K (number of clusters) lower at higher σ .

∃ >

- We proposed learning Union-of-Transforms or OCTOBOS.
- Proposed algorithms have global convergence guarantees.
- Algorithms are cheap and perform well in applications.
- Future Work
 - Combination of OCTOBOS and non-local methods in denoising.
 - Online OCTOBOS learning.

Overall Conclusions and Future Directions

- We proposed several methods for learning square or overcomplete sparsifying transforms.
- Proposed algorithms typically
 - have low computational cost
 - have convergence guarantees
- Adaptive transforms are useful for various applications
 - sparse representation, denoising
 - compressed sensing, classification, big data processing.
- Future Work: Analyze blind denoising or compressed sensing further.

3 K 4 3 K

- Advisor: Yoram Bresler
- Collaborators: Bihan Wen
- Current & Former Colleagues: Kiryung & Soomin Lee, Luke Pfister, Yanjun Li, Elad Yarkony
- UIUC Staff: Peggy Wells
- Funding: National Science Foundation (NSF)

References - Journals

- S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning," IEEE TMI, vol. 30, no. 5, pp. 1028–1041, 2011.
- S. Ravishankar and Y. Bresler, "Learning sparsifying transforms," IEEE TSP, vol. 61, no. 5, pp. 1072–1086, 2013.
- S. Ravishankar and Y. Bresler, "Learning doubly sparse transforms for images," IEEE TIP, vol. 22, no. 12, pp. 4598-4612, 2013.
- B. Wen*, S. Ravishankar*, and Y. Bresler, "Structured overcomplete sparsifying transform learning with convergence guarantees and applications," IJCV, 2014, pp. 1-31. (*Equal contributors).
- S. Ravishankar*, B. Wen*, and Y. Bresler, "Online Sparsifying Transform Learning – Part I: Algorithms," IEEE JSTSP, 2014, accepted for publication. (*Equal contributors).
- S. Ravishankar and Y. Bresler, "Online Sparsifying Transform Learning Part II: Convergence Analysis," IEEE JSTSP, 2014, accepted for publication.

- S. Ravishankar and Y. Bresler, " ℓ_0 sparsifying transform learning with efficient optimal updates and convergence guarantees," IEEE TSP, 2015, to appear.
- S. Ravishankar and Y. Bresler, "Efficient Blind Compressed Sensing using Sparsifying transforms with convergence guarantees and Application to MRI," SIIMS, 2014, submitted.
- S. Ravishankar and Y. Bresler, "Fast doubly sparse transform learning with convergence guarantees," 2014, manuscript to be submitted.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

References - Conferences

- S. Ravishankar and Y. Bresler, "Highly undersampled MRI using adaptive sparse representations," in IEEE ISBI, pp. 1585–1588, 2011.
- S. Ravishankar and Y. Bresler, "Multiscale dictionary learning for MRI," in Proc. ISMRM, page 2830, 2011.
- S. Ravishankar and Y. Bresler, "Adaptive sampling design for compressed sensing MRI," in Conf. Proc. IEEE EMBS, pp. 3751–3755, 2011.
- S. Ravishankar and Y.Bresler, "Learning Sparsifying Transforms for Signal and Image Processing," in SIAM Conference on Imaging Science, May 2012, p. 51.
- S. Ravishankar and Y. Bresler, "Learning sparsifying transforms for image processing," in IEEE ICIP, 2012, pp. 681–684.
- S. Ravishankar and Y. Bresler, "Learning doubly sparse transforms for image representation," in IEEE ICIP, 2012, pp. 685-688.

・ロト ・ 行下・ ・ ヨト ・ ヨー
References - Conferences

- S. Ravishankar and Y. Bresler, "Sparsifying transform learning for compressed sensing MRI," in Proc. IEEE ISBI, 2013, pp. 17-20.
- S. Ravishankar and Y. Bresler, "Closed-form solutions within sparsifying transform learning," in Proc. IEEE ICASSP, 2013, pp. 5378-5382.
- S. Ravishankar and Y. Bresler, "Learning overcomplete sparsifying transforms for signal processing," in Proc. IEEE ICASSP, 2013, pp. 3088-3092.
- S. Ravishankar and Y. Bresler, "Doubly sparse transform learning with convergence guarantees," in Proc. IEEE ICASSP, 2014, pp. 5262-5266.
- S. Ravishankar and Y. Bresler, "Closed-Form Optimal Updates In Transform Learning," in SPARS workshop, July 2013.
- S. Ravishankar and Y. Bresler, "Learning Overcomplete Signal Sparsifying Transforms," in SPARS workshop, July 2013.

・ロト ・ 行 ト ・ ヨ ト ・ ヨ ト

References - Conferences

- S. Ravishankar and Y. Bresler, "Efficient Sparsifying Transform Learning and its Applications," in GRC Image Science, June 2014, Presented as Poster.
- B. Wen, S. Ravishankar, and Y. Bresler, "Online Sparsifying Transform Learning and Applications," in GRC Image Science, June 2014, Presented as Poster.
- B. Wen*, S. Ravishankar*, and Y. Bresler, "Learning overcomplete sparsifying transforms with block cosparsity," in IEEE ICIP, October, 2014, to appear. (*Equal contributors).
- S. Ravishankar*, B. Wen*, and Y. Bresler, "Online Sparsifying Transform Learning for Signal Processing," in IEEE GlobalSIP, 2014, to appear. (*Equal contributors).
- B. Wen, S. Ravishankar, and Y. Bresler, "Video Denoising by Online 3D Sparsifying Transform Learning," in IEEE ICIP, 2015, submitted.
- S. Ravishankar and Y. Bresler, "Blind Compressed Sensing using Sparsifying Transforms," in SAMPTA, 2015, submitted.

・ロト ・ 行 ト ・ ヨ ト ・ ヨ ト

Thank you! Questions??

伺 とう マラ とう とう

э.