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Introduction to Sparse Signal Models
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Synthesis Model (SM) for Sparse Representation

Given a signal y ∈ Rn, and dictionary D ∈ Rn×K , we assume
y = Dx with ‖x‖0 ≪ K .

Real world signals modeled as y = Dx + e, e is deviation term.

Given D, sparsity level s, the synthesis sparse coding problem is

x̂ = argmin
x

‖y − Dx‖22 s.t. ‖x‖0 ≤ s

This problem is NP-hard.

Greedy and ℓ1-relaxation algorithms can be computationally
expensive.
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Analysis Model (AM) for Sparse Representation

(Strict) AM : Given a signal y ∈ Rn, and analysis dictionary
Ω ∈ Rm×n, ‖Ωy‖0 ≪ m.

Noisy Signal Analysis Model (NSAM) : y = q + e, Ωq = z sparse.

Given Ω, co-sparsity level t, the analysis sparse coding problem is

q̂ = argmin
q

‖y − q‖22 s.t. ‖Ωq‖0 ≤ m − t

This problem is NP-hard.

Greedy1 and ℓ1-relaxation
2 algorithms are computationally expensive.

1 [Rubinstein et al. ’12 ] , 2 [Yaghoobi et al. ’12].
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Transform Model (TM) for Sparse Representation

Given a signal y ∈ Rn, and transform W ∈ Rm×n, we model
Wy = x + η with ‖x‖0 ≪ m and η - error term.

Natural signals are approximately sparse in Wavelets, DCT.

Given W , and sparsity s, transform sparse coding is

x̂ = argmin
x

‖Wy − x‖22 s.t. ‖x‖0 ≤ s

x̂ = Hs(Wy) computed by thresholding Wy to the s largest magnitude

elements. Sparse coding is cheap! Signal recovered as W †x̂ .

Sparsifying transforms exploited for compression (JPEG2000), etc.
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Learning Synthesis and Analysis Dictionaries

Learning formulations - typically non-convex and NP-hard.

Approximate algorithms for Synthesis Learning: MOD3, K-SVD4,
online dictionary learning5, etc.

Heuristics for Analysis Learning:

(Strict) Analysis: Sequential Minimal Eigenvalues6, AOL7.
Noisy Analysis: Analysis K-SVD8, NAAOL9, GOAL10 .

Algorithms typically computationally expensive.

Algorithms may not converge.

3 [Engan et al. ’99] , 4 [Aharon et al. ’06], 5 [Mairal et al. ’09], 6 [Ophir et al. ’11], 7 [Yaghoobi et al. ’11], 8 [Rubinstein et al. ’12],
9 [Yaghoobi et al. ’12], 10 [Hawe et al. ’13].
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Key Topic of Talk: Sparsifying Transform Learning

Square Transform Models

Unstructured transform learning [IEEE TSP, 2013 & 2015]

Doubly sparse transform learning [IEEE TIP, 2013]

Online learning for Big Data [IEEE JSTSP, 2015]

Convex formulations for transform learning [ICASSP, 2014]

Overcomplete Transform Models

Unstructured overcomplete transform learning [ICASSP, 2013]

Learning structured overcomplete transforms with block cosparsity
(OCTOBOS) [IJCV, 2014]

Applications: Sparse representation, Image & Video denoising,
Classification, Blind compressed sensing (BCS) for imaging.
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Unstructured Square Transform
Learning
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Square Transform Learning Formulation

(P1) min
W ,X

Sparsification Error
︷ ︸︸ ︷

‖WY − X‖2F +λ

Regularizer , v(W )
︷ ︸︸ ︷
(

ξ ‖W ‖2F − log |detW |
)

s.t. ‖Xi‖0 ≤ s ∀ i

Y = [Y1 |Y2 | ..... |YN ] ∈ R
n×N : matrix of training signals.

X = [X1 |X2 | ..... |XN ] ∈ R
n×N : matrix of sparse codes of Yi .

Sparsification error - measures deviation of data in transform domain
from perfect sparsity.

λ, ξ > 0. The log |detW | restricts solution to full rank transforms,
and avoids repeated rows.

‖W ‖2F keeps objective function bounded from below.

(P1) is non-convex.
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Properties of Formulation

(P1) min
W ,X

‖WY − X‖2F + λ
(

ξ ‖W ‖2F − log |detW |
)

s.t. ‖Xi‖0 ≤ s ∀ i

(P1) attains lower bound of objective if and only if ∃ (Ŵ , X̂ ) with X̂
sparse such that ŴY = X̂ , and the condition number κ(Ŵ ) = 1.

(P1) favors both a low sparsification error and good conditioning.

Minimizing the λ
(

ξ ‖W ‖2F − log |detW |
)

penalty encourages

reduction of condition number.

λ enables complete control over κ. The solution to (P1) is perfectly
conditioned (κ = 1) as λ→ ∞.

If wi is the i th row of W , then maxi 6=j

∣
∣
∣
‖wi‖−‖wj‖

‖wi‖

∣
∣
∣ ≤ κ(W )− 1.
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Algorithm with Iterative Transform Update

(P1) solved by alternating between updating X and W .

Sparse Coding Step solves for X with fixed W .

min
X

‖WY − X‖2F s.t. ‖Xi‖0 ≤ s ∀ i (1)

Easy problem: Solution X̂ computed exactly by zeroing out all but
the s largest magnitude coefficients in each column of WY .

Transform Update Step solves for W with fixed X .

min
W

‖WY − X‖2F + λ
(

ξ ‖W ‖2F − log |detW |
)

(2)

Solved using Non-linear Conjugate Gradients (NLCG)11.

11 [Ravishankar & Bresler, IEEE TSP, 2013].
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Exact Transform Update

Transform Update Step:

min
W

‖WY − X‖2F + λ
(

ξ ‖W ‖2F − log |detW |
)

(3)

Closed-form solution:

Ŵ = 0.5U
(

Σ +
(
Σ2 + 2λIn

) 1
2

)

QTL−1 (4)

where YY T + λξIn = LLT , and L−1YXT has a full singular value
decomposition (SVD) of QΣUT .

The solution is invariant to the specific choice of square root L.

It is unique if and only if YXT is non-singular.
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Algorithm A1 for Square Transform Learning
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Orthonormal Transform Learning Limit

Proposition 1

For ξ = 0.5, as λ→ ∞, the sparse coding and transform update
solutions in (P1) coincide with the solutions obtained by employing
alternating minimization on

min
W ,X

‖WY − X‖2F s.t. WTW = I , ‖Xi‖0 ≤ s ∀ i . (5)

Specifically, the sparse coding step for Problem (5) involves

min
X

‖WY − X‖2F s.t. ‖Xi‖0 ≤ s ∀ i (6)

and the solution is X̂i = Hs(WYi ) ∀ i . Transform update involves

max
W

tr
(
WYXT

)
s.t. WTW = I (7)

Let YXT = UΣV T be a full SVD. Then, an optimal Ŵ in (7) is VUT .
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Convergence Guarantees - Notations

Define the barrier function

ψ(X ) =

{

0,

+∞,

‖Xi‖0 ≤ s, ∀ i
else

(P1) is equivalent to the problem of minimizing g(W ,X ).

g(W ,X ) , ‖WY − X‖2F + λξ ‖W ‖2F − λ log |detW |+ ψ(X ) (8)

For h ∈ R
p, φj(h) is the magnitude of the j th largest element

(magnitude-wise) of h.

For B ∈ Cp×q, ‖B‖∞ , maxi ,j |Bij |.
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Convergence Guarantees

Theorem 1

For the sequence
{
W k ,X k

}
generated by Algorithm A1 with initial

(W 0,X 0), we have
{
g(W k ,X k )

}
converges to a finite value g∗ = g∗

(
W 0,X 0

)
.

{
W k ,X k

}
is bounded, and any specific accumulation point (W ,X )

is a fixed point of Algorithm A1 satisfying

g(W + dW ,X +∆X ) ≥ g(W ,X ) = g∗ (9)

The condition holds for all sufficiently small dW ∈ Rn×n satisfying
‖dW ‖F ≤ ǫ for some ǫ = ǫ(W ) > 0, and all ∆X ∈ R1 ∪ R2

R1. The half-space tr
{
(WY − X )∆XT

}
≤ 0.

R2. The local region defined by

‖∆X‖∞ < mini
{
φs(WYi) : ‖WYi‖0 > s

}
.

Furthermore, if we have ‖WYi‖0 ≤ s ∀ i , then ∆X can be arbitrary.
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Global Convergence Guarantees

Corollary 1

For each initialization of Algorithm A1, the objective converges to a local
minimum, and the iterates converge to an equivalence class of local
minimizers.

Corollary 2

Algorithm A1 is globally convergent (i.e., from any Initialization) to the
set of local minimizers of the non-convex objective g(W ,X ).
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Computational Advantages
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Cost per iteration of proposed algorithms: O(Nn2) for N training signals
and W ∈ R

n×n.

Synthesis/Analysis K-SVD cost per iteration : O(Nn3). Cost dominated
by sparse coding.

For images, this is a reduction of computations in the order by n,
corresponding to

√
n ×√

n patches.

Closed-form solution for transform update also provides speedup of about
J over NLCG, where J is the number of NLCG steps.
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Convergence for (P1) with Various Initializations
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Learnt transforms are better than analytical transforms

Normalized Sparsification Error (NSE) measures the fraction of
energy lost in sparse fitting with sparse code X .

NSE =
‖WY −X‖2

F

‖WY‖2
F

, NSE(W) ≈ 4.4% , NSE(DCT) = 6.8%.

Recovery PSNR (rPSNR) measures the error in recovering image as
Ŷ = W−1X .

rPSNR =
255

√
P

‖Y −W−1X‖F
P is # of image pixels.

rPSNRs for the learnt W about 1.7 dB better than for DCT.

Varying λ allows trade-off between NSE and κ(W ). rPSNR best at
intermediate κ.
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Comparison of Algorithms in Image Representation
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Transform learning (TL) provides better sparsification & recovery than
DCT.

Adapted well-conditioned transforms perform better (up to 0.3 dB better
recovery) than adapted orthonormal transforms.

Adapted transforms outperform Independent Component Analysis (ICA).
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Application: Image Denoising

min
{xj}

Regularizer
︷ ︸︸ ︷

u(x1, x2, .., xn) + τ

Data Fidelity
︷ ︸︸ ︷

M∑

j=1

‖Rj y − xj‖22

Estimate image x ∈ RP from its noisy measurement y = x + h.

Rj ∈ Rn×P extracts patches. Rj y ≈ noiseless xj .

u(x1, x2, .., xn) is a regularizer ⇒ regularized inverse problem.

τ ∝ 1
σ
with σ being the noise level.

Denoised x obtained by averaging xj ’s at their 2D locations.
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Image Denoising with Transform Learning Regularizer

(P2) min
W ,{xj},{αj}

Sparsification Error
︷ ︸︸ ︷

M∑

j=1

‖Wxj − αj‖22 +λ
Regularizer
︷ ︸︸ ︷

v(W ) +τ

Data Fidelity
︷ ︸︸ ︷

M∑

j=1

‖Rj y − xj‖22

s.t. ‖αj‖0 ≤ sj ∀ j

Rj ∈ Rn×P extracts patches. Rj y ≈ noiseless xj , Wxj ≈ αj .

αj ∈ Rn is transform sparse code of xj .

(P2) is solved by an efficient alternating scheme that uses
closed-form updates, and sj are found adaptively.

Denoised x obtained by averaging xj ’s at their 2D locations.
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Image Denoising Example

Noisy Image 64× 64 W (κ = 1.3) 64× 256 Synthesis D
PSNR = 24.60 dB PSNR = 31.66 dB PSNR = 31.50 dB

Closed-form updates-based denoising is better and 17x faster than
overcomplete K-SVD denoising.

Square K-SVD (PSNR = 31.14 dB) denoises worse, and is slower.

Our denoising PSNR increases with patch size n, while still providing
speedups over K-SVD of lower n.
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Summary

We proposed formulations for learning square sparsifying transforms.

Proposed alternating algorithms

involve efficient optimal updates

converge globally to the set of local minimizers of objective

low computational cost

encourage well-conditioning

Adapted transforms provide better representations than analytical
ones.

Adaptive transforms denoise comparably or better than learnt
overcomplete synthesis dictionaries, but are faster.
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Blind Compressed Sensing for
Imaging
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Compressed Sensing (CS)

CS enables accurate recovery of images from fewer measurements
than number of unknowns or Nyquist sampling

Sparsity in transform domain or dictionary

Acquisition incoherent with transform

Reconstruction problem is hard

Reconstruction problem (NP-hard) -

min
x

‖Ax − y‖22 + λ ‖Ψx‖0 (10)

x ∈ CP : signal/image as vector, y ∈ Cm : measurements.

A ∈ Cm×P : sensing matrix (m < P), Ψ ∈ CT×P : given transform.

ℓ1 relaxation of sparsity penalty is used to generate convex problem.
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Application: Compressed Sensing MRI (CSMRI)

Data - samples in k-space of spatial Fourier
transform of object, acquired sequentially.

Acquisition rate limited by MR physics,
physiological constraints on RF energy
deposition.

CSMRI accelerates the data acquisition
process in MRI.

CSMRI with non-adaptive transforms or
dictionaries limited to 2.5-3 fold
undersampling [Ma et al. ’08].

Two directions to improve CSMRI -

better or adaptive sparse modeling

better choice of sampling pattern (Fu)
[EMBC, 2011]

Fig. from Lustig et al. ’07
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Synthesis-based Blind Compressed Sensing (BCS)

(P3) min
x,D,B

Sparse Fitting Regularizer
︷ ︸︸ ︷

N∑

j=1

‖Rjx − Dbj‖22 + ν

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖22

s.t. ‖dk‖2 = 1 ∀ k , ‖bj‖0 ≤ s ∀ j .

B ∈ C
n×N : matrix that has the sparse codes bj as its columns.

(P3) learns D ∈ C
n×K , and reconstructs x , from only undersampled y ⇒

dictionary adaptive to underlying image.

DLMRI12 solves (P3) for MRI and works better than non-adaptive CS

methods like Wavelets + TV based LDP [Lustig, Donoho & Pauly ’07].

12 [Ravishankar & Bresler ’11]
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2D Random Sampling - 6 fold undersampling
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Drawbacks of Synthesis Dictionary-based BCS

(P3) min
x,D,B

Sparse Fitting Regularizer
︷ ︸︸ ︷

N∑

j=1

‖Rjx − Dbj‖22 + ν

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖22

s.t. ‖dk‖2 = 1 ∀ k , ‖bj‖0 ≤ s ∀ j .

(P3) is NP-hard, non-convex even if ℓ0-quasinorm relaxed to ℓ1.

Synthesis BCS algorithms have no guarantees and are computationally

expensive.
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Transform-based Blind Compressed Sensing (BCS)

(P4) min
x,W ,B

Sparsification Error
︷ ︸︸ ︷

N∑

j=1

‖WRjx − bj‖22+ν

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖22 +λ
Regularizer
︷ ︸︸ ︷

v(W )

s.t.

N∑

j=1

‖bj‖0 ≤ s, ‖x‖2 ≤ C .

(P4) learns W ∈ Cn×n, and reconstructs x , from only undersampled
y ⇒ transform adaptive to underlying image.

v(W ) , − log |detW | + 0.5 ‖W ‖2F controls scaling and κ of W .

We set λ = λ0N , with λ0 > 0 a constant.

‖x‖2 ≤ C is an energy/range constraint. C > 0.
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Transform BCS Properties

Proposition 2

Let x ∈ C
p, and let y = Ax with A ∈ C

m×p. Suppose

‖x‖2 ≤ C

W ∈ Cn×n is a unitary transform
∑N

j=1 ‖WRjx‖0 ≤ s

Further, let B denote the matrix that has WRjx as its columns.
Then, (x ,W ,B) is a global minimizer of Problem (P4), i.e., it is
identifiable by solving (P4).

Conditions for uniqueness of solution to (P4) an open question.

Given minimizer (x ,W ,B) of (P4), (x ,ΘW ,ΘB) is another
equivalent minimizer ∀Θ s.t. ΘHΘ = I ,

∑

j ‖Θbj‖0 ≤ s.
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Alternative Transform BCS Formulations

(P5) min
x,W ,B

N∑

j=1

‖WRjx − bj‖22 + ν ‖Ax − y‖22

s.t. WHW = I ,

N∑

j=1

‖bj‖0 ≤ s, ‖x‖2 ≤ C .

(P5) is also a unitary synthesis dictionary-based BCS problem,
with WH the synthesis dictionary.

(P6) min
x,W ,B

N∑

j=1

‖WRjx − bj‖22 + ν ‖Ax − y‖22 + λ v(W ) + η2
N∑

j=1

‖bj‖0

s.t. ‖x‖2 ≤ C .
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Block Coordinate Descent (BCD) Algorithm for (P4)

(P4) solved by alternating between updating W , B, and x .

Alternate a few times between the W and B updates, before
performing an image update.

Sparse Coding Step solves (P4) for B with fixed x , W .

min
B

N∑

j=1

‖WRjx − bj‖22 s.t.
N∑

j=1

‖bj‖0 ≤ s. (11)

Cheap Solution: Let Z ∈ C
n×N be the matrix with WRjx as its

columns. Solution B̂ = Hs(Z ) computed exactly by zeroing out all
but the s largest magnitude coefficients in Z .
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BCD Algorithm for (P4)

Transform Update Step solves (P4) for W with fixed x , B.

min
W

N∑

j=1

‖WRjx − bj‖22 + 0.5λ ‖W ‖2F − λ log |detW | (12)

Let X ∈ C
n×N be the matrix with Rjx as its columns.

Closed-form solution:

Ŵ = 0.5R

(

Σ+
(

Σ2 + 2λI
) 1

2

)

V
H
L
−1 (13)

where XXH + 0.5λI = LLH , and L−1XBH has a full SVD of VΣRH .

Solution is unique if and only if XBH is non-singular.
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BCD Algorithm for (P4)

Image Update Step solves (P4) for x with fixed W , B.

min
x

N∑

j=1

‖WRjx − bj‖22 + ν ‖Ax − y‖22 s.t. ‖x‖2 ≤ C . (14)

Least squares problem with ℓ2 norm constraint.

Solution is unique as long as the set of overlapping patches cover all
image pixels.

Solve Least squares Lagrangian formulation:

min
x

N∑

j=1

‖WRjx − bj‖22 + ν ‖Ax − y‖22 + µ
(

‖x‖22 − C
)

(15)

The optimal multiplier µ̂ ∈ R+ is the smallest real such that
‖x̂‖2 ≤ C . µ̂ can be found cheaply.
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BCS Convergence Guarantees - Notations

Define the barrier function ψ(B) as

ψ(B) =

{

0,

+∞,

∑N
j=1 ‖bj‖0 ≤ s

else

χ(x) is the barrier function corresponding to ‖x‖2 ≤ C .

(P4) is equivalent to the problem of minimizing g(W ,B, x) =
∑N

j=1 ‖WRjx − bj‖22 + ν ‖Ax − y‖22 + λ v(W ) + ψ(B) + χ(x).

For H ∈ Cp×q , ρj(H) is the magnitude of the j th largest element
(magnitude-wise) of H .

X ∈ Cn×N denotes a matrix with Rjx , 1 ≤ j ≤ N , as its columns.
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Transform BCS Convergence Guarantees

Theorem 2

For the sequence {W t ,B t , x t} generated by the BCD Algorithm with
initial (W 0,B0, x0), we have

{g (W t ,B t , x t)} converges to a finite g∗ = g∗(W 0,B0, x0).

{W t ,B t , x t} is bounded, and all its accumulation points are
equivalent, i.e., they achieve the same value g∗ of the objective.

The sequence {at} with at ,
∥
∥x t − x t−1

∥
∥
2
, converges to zero.

Every accumulation point (W ,B, x) is a critical point of g satisfying
the following partial global optimality conditions

x ∈ argmin
x̃

g (W ,B, x̃) (16)

W ∈ argmin
W̃

g
(

W̃ ,B, x
)

, B ∈ argmin
B̃

g
(

W , B̃ , x
)

(17)
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Transform BCS Convergence Guarantees

Theorem 3

Each accumulation point (W ,B, x) of {W t ,B t , x t} also satisfies the
following partial local optimality conditions

g(W + dW ,B +∆B, x) ≥g(W ,B, x) = g∗ (18)

g(W ,B +∆B, x + ∆̃x) ≥g(W ,B, x) = g∗ (19)

The conditions each hold for all ∆̃x ∈ Cp, and all dW ∈ Cn×n satisfying
‖dW ‖F ≤ ǫ for some ǫ = ǫ(W ) > 0, and all ∆B ∈ Cn×N in R1 ∪ R2

R1. The half-space Re
(
tr
{
(WX − B)∆BH

})
≤ 0.

R2. The local region defined by ‖∆B‖∞ < ρs(WX ).

Furthermore, if ‖WX‖0 ≤ s, then ∆B can be arbitrary.
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Global Convergence Guarantees

Corollary 3

For each initialization, the iterate sequence in the BCD algorithm
converges to an equivalence class of critical points, that are also partial
global/local minimizers.

Corollary 4

The BCD algorithm is globally convergent (i.e., from any Initialization)
to a subset of the set of critical points of the non-convex BCS objective
g (W ,B, x), that includes all (W ,B, x) that are at least partial global
minimizers of g with respect to each of W , B, and x, and partial local
minimizers of g with respect to (W ,B), and (B, x).
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Computational Advantages of Transform BCS

Cost per iteration of transform BCS: O(n2NL)

N overlapping patches of size
√
n ×√

n, W ∈ C
n×n.

L : # inner alternations between transform update & sparse coding.

Cost per iteration of Synthesis BCS method DLMRI13: O(n3NJ).

D ∈ C
n×K , K ∝ n, sparsity s ∝ n.

J : # of inner iterations of dictionary learning using K-SVD.

Transform BCS much cheaper as n increases ⇒ 3D or 4D imaging.

13 [Ravishankar & Bresler ’11]
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Application: Transform Learning
Based CSMRI (TLMRI)
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TLMRI Convergence - 4x Undersampling (s = 3.4%)

Reference 14 Sampling mask
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14Data from Miki Lustig.
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Convergence & Learning - 4x Undersampling (s = 3.4%)

Zero-filling (28.94 dB) TLMRI (32.66 dB)
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15 [Ravishankar & Bresler ’11]
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Comparison (PSNR & Runtime) to Recent Methods

Sampling Scheme Undersampling Zero-filling LDP PBDWS DLMRI TLMRI

2D Random
4x 25.3 30.32 32.64 32.91 33.04

7x 25.3 27.34 31.31 31.46 31.81

Cartesian
4x 28.9 30.20 32.02 32.46 32.64

7x 27.9 25.53 30.09 30.72 31.04

Avg. Runtime (s) 251 794 2051 211

TLMRI is up to 5.5 dB better than LDP16, that uses Wavelets + TV.

TLMRI provides up to 1 dB improvement in PSNR over the PBDWS17 method,
that uses redundant Wavelets and trained patch-based geometric directions.

It is up to 0.35 dB better than DLMRI18, that learns 4x overcomplete dictionary.

TLMRI is 10x faster than DLMRI, and 4x faster than the PBDWS method.

16 [Lustig et al. ’07] 17 [Ning et al. ’13] 18 [Ravishankar & Bresler ’11]
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Reconstruction Errors - Cartesian 4x Undersampling
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Reconstruction Errors - Cartesian 7x Undersampling
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Summary

We introduced a transform-based BCS framework

Proposed BCS algorithms have a low computational cost.

We provided novel convergence guarantees for the algorithms.

For CSMRI, the proposed approach is better than leading image
reconstruction methods, while being much faster.

Future work: uniqueness of solution in BCS; Convergence to global
minimizer.
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Online Learning for Big Data
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Why Online Transform Learning?

Prior work: batch transform learning, where learning is done using
all the training data simultaneously.

Big data ⇒ training set is very large ⇒ batch learning
computationally expensive in time and memory.

In real-time applications, data arrives sequentially, and must be
processed sequentially to limit latency.

Online learning enables sequential adaptation of the transform (and
sparse codes or signal estimates)

amenable to big data, and real-time applications.

involves cheap computations and modest memory requirements.
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Online Transform Learning
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Online Transform Learning Formulations

For t = 1, 2, 3, ..., solve

(P7)
{

Ŵt , x̂t

}

= argmin
W , xt

1

t

t∑

j=1

{

‖Wyj − xj‖22 + λjv(W )
}

s.t. ‖xt‖0 ≤ s, xj = x̂j , 1 ≤ j ≤ t − 1.

λj = λ0 ‖yj‖22 ∀ j , with λ0 > 0. v(W ) , ‖W ‖2F − log |detW |.
λ0 controls the condition number and scaling of learnt Ŵt .

At time t, estimate of {yj} obtained as
{

Ŵ−1
t x̂j

}

(decompression).

For non-stationary data, use forgetting factor ρ ∈ [0, 1], to diminish the

influence of old data.

1

t

t∑

j=1

ρt−j
{

‖Wyj − xj‖22 + λjv(W )
}

(20)
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Mini-Batch Transform Learning

For J = 1, 2, 3, ..., solve

{

ŴJ , X̂J

}

= argmin
W ,XJ

1

JM

J∑

j=1

{

‖WYj − Xj‖2F + Λjv(W )
}

s.t. ‖xJM−M+i‖0 ≤ s ∀ i ∈ {1, ..,M} (P8)

YJ = [ yJM−M+1 | yJM−M+2 | ..... | yJM ], with M : mini-batch size.

XJ = [ xJM−M+1 | xJM−M+2 | ..... | xJM ]. Λj = λ0 ‖Yj‖2F .

Mini-batch learning

can provide reductions in operation count over online learning.

increased latency and memory requirements.
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Online Adaptive Transform Denoising

(P9) min
W , xt

1

t

t∑

j=1

{

‖Wyj − xj‖22 + λjv(W ) + τ2j ‖xj‖0
}

Goal: Given {yt}, with yt = zt + ht , and ht ∈ R
n the noise, find zt ∀ t.

τj ∝ σ, with σ - noise level.

Denoised signal is ẑt = Ŵ−1
t x̂t – computed efficiently in our algorithm.

(P9) can be used for denoising images, or image sequences:

overlapping patches of the noisy image(s) denoised sequentially.

image estimated by averaging denoised patches at 2D locations.
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Image Denoising – PSNR (dB) and runtime (sec)

Images
σ Noisy Batch Batch Mini-batch

PSNR K-SVD TL TL (M = 64)

Couple (512× 512)

5 34.16
PSNR 37.28 37.33 37.33
time 1250 92 20

10 28.11
PSNR 33.51 33.62 33.62
time 671 68 19

20 22.11
PSNR 30.02 30.02 30.03
time 190 61 20

Man (768 × 768)

5 34.15
PSNR 36.47 36.66 36.75
time 1279 205 45

10 28.13
PSNR 32.71 32.96 33.00
time 701 130 44

20 22.11
PSNR 29.40 29.57 29.52
time 189 80 41

Overlapping 8× 8 patches are denoised sequentially with a forgetting
factor. We observed better denoising with a forgetting factor.

Mini-batch denoising is better and provides average speedup of 26.0× and
3.4× over the batch K-SVD and batch transform denoising schemes.
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Big Image Denoising - Data

Airport (1024× 1024) Man (1024× 1024)

Railway (2048× 2048) Campus (3264× 3264× 3)
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Big Image Denoising – PSNR (dB) and runtime (sec)

Images Methods
σ = 20 σ = 50 σ = 100 Run
( 22.11 ) ( 14.15 ) ( 8.13 ) Times

Airport
DCT 28.79 24.65 21.00 23
TL 28.83 25.07 22.53 28

Man
DCT 30.44 25.80 21.87 23
TL 30.64 26.62 23.88 27

Railway
DCT 31.90 26.44 22.04 90
TL 32.42 27.58 24.35 111

Campus
DCT 30.89 25.88 21.99 323
TL 33.10 27.47 23.24 451

Adaptive mini-batch denoising (TL) performs better than the DCT,
without much loss in runtime.

Results demonstrate the potential of our schemes for real-time denoising
of large-scale data.
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Summary

We introduced an online sparsifying transform learning framework.

Proposed methods are particularly useful for big data & real-time
applications.

Iterates converge to the set of stationary points of the expected
transform learning cost [IEEE JSTSP, 2015].

The online schemes perform well and are highly efficient for sparse
representation & denoising.

Ongoing work: video denoising, online blind compressed sensing.

Video denoising by online 3D transform learning provides 0.7 dB
better denoising PSNR compared to the popular VBM4D.
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Union of Transforms or OCTOBOS
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Why Union of Transforms (UOT)?

Natural images typically have diverse textures.
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Why Union of Transforms (UOT)?

Union of transforms: one for each class of textures or features.
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OCTOBOS Learning Formulation

(P12) min
{

Wk ,Xi ,Ck

}

Sparsification Error
︷ ︸︸ ︷

k∑

k=1

∑

i∈Ck

‖WkYi − Xi‖22 +

Regularizer ,
∑

λk v(Wk )
︷ ︸︸ ︷

k∑

k=1

λk

(

‖Wk‖2F − log |detWk |
)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck}Kk=1 ∈ G

G is the set of all partitions of [1 : N] into K disjoint subsets {Ck}Kk=1.

(P12) jointly learns the union-of-transforms {Wk} and clusters the data Y .

λk = λ0‖YCk
‖2F , with YCk

the matrix of all Yi ∈ Ck , achieves scale
invariance of the solution in (P12).

As λ0 → ∞, κ(Wk) → 1,
∥
∥Wk

∥
∥
2
→ 1√

2
∀ k for the solution in (P12).

We have proposed a cheap globally convergent alternating algorithm
for (P12) [IJCV, 2014].
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Unsupervised Classification by OCTOBOS

Overlapping image patches are clustered by learnt OCTOBOS.

Each pixel is then classified by a vote among the patches that cover it.

Original Image K-means OCTOBOS

Original Image K-means OCTOBOS
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Image Denoising

Image σ
Noisy

BM3D K-SVD GMM OCTOBOS
PSNR

Cameraman

5 34.12 38.21 37.81 38.06 38.19

10 28.14 34.15 33.72 34.00 34.15

15 24.61 31.91 31.50 31.85 31.94

20 22.10 30.37 29.82 30.21 30.24

100 8.14 23.15 21.76 22.89 22.24

Barbara

5 34.15 38.30 38.08 37.59 38.31

10 28.14 34.97 34.41 33.61 34.64

15 24.59 33.05 32.33 31.28 32.53

20 22.13 31.74 30.83 29.74 31.05

100 8.11 23.61 21.87 22.13 22.41

OCTOBOS denoises 0.36 dB better than K-SVD19 on avg., and is faster.

OCTOBOS also denoises 0.43 dB better than GMM20 on average here.

Its performance is comparable to BM3D21 in some cases.

19 [Elad & Aharon ’06] 20 [Zoran & Weiss ’11] 21 [Dabov et al. ’07]
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Image Denoising - Effect of Overcompleteness (K )
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PSNR for Barbara at σ = 10 PSNR for Barbara at σ = 20

OCTOBOS denoises up to 0.4 dB better than the square transform here.

Best choice of K (number of clusters) lower at higher σ.
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Summary

We proposed learning Union-of-Transforms or OCTOBOS.

Proposed algorithms have global convergence guarantees.

Algorithms are cheap and perform well in applications.

Future Work

Combination of OCTOBOS and non-local methods in denoising.

Online OCTOBOS learning.
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Overall Conclusions and Future Directions

We proposed several methods for learning square or overcomplete
sparsifying transforms.

Proposed algorithms typically

have low computational cost

have convergence guarantees

Adaptive transforms are useful for various applications

sparse representation, denoising

compressed sensing, classification, big data processing.

Future Work: Analyze blind denoising or compressed sensing further.
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Thank you! Questions??
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