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A Geometric Approach for Learning Latent Mixture Models

Outline

Latent Mixture Models

= Text Documents, User Preferences, Community Networks, ...
= Overall Goal/Objective: Algorithm with provable guarantees

Topic Models & Estimation Problem

Geometric Structure of Topic Models

Algorithm & Guarantees: Exploiting Geometry

Rank Aggregation Problem
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Geometric Approach for LLMMVMs

Mixed membership latent variable model

= Text Docs < (noisy) mixture of latent topics
= Connections in network < mixture of latent communities
= User preferences < mixtures of latent ranking factors
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Mixed membership latent variable model
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Mixed membership latent variable model

counts Influencing
| factors
1 “actor”
0
1 “special effect”

document = mixture of latent influencing factors



Geometric Approach for LLMMVMs

Overall Goal

= Learn/Estimate Latent Factors from Observations(docs)

= (Goal: develop algorithms with
= Provable guarantees = Model Fidelity

= How many Docs to estimate Latent Factors within a tolerance?

= Computational Cost: How does Algorithm scale with #params?

= Good empirical performance
= Real-world datasets > Web Scale applications
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Outline

= | atent Mixture Models
= Text Documents, User Preferences, Community Networks, ...

= Topic Models & Estimation Problem
= QObservation Model & Related Work
= Geometric Structure of Topic Models
= Algorithm & Guarantees: Exploiting Geometry

= Extensions to User Preference Model Estimation

= Empirical Results on Real-World Datasets
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‘Bag of words” model: a text corpus example
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word W /))Wl /J)WK

et 1 By, Pix
word2 | f5. Dok

topic 1 topic K

Topic Matrix - g

column = topic
W = vocabulary size
K = # topics
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word 1
word 1| A 4, Ay ﬁn
word 2 A21 A22 AZM word 2 /))21
word W Apm AWZ AWM word W /))Wl
doc. doc. doc. topic 1
1 2 M

Document Distribution matrix - 4
= column = distb. of a doc.
= M =#docs.

/3 1K 911 912 (91M
P

. i eKl ‘91(2 ‘9KM

doc doc. doc.

1 2 M

Pk

topic K

Weight matrix -
= column = mixing weights
= M =# docs.
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word 1

word 2

word W

word 1

word 2

word W

Al 1 AIZ
A21 A22

i AWI AWZ

doc. doc.
2

AN

1M

AN

2M

AWM

doc.
M

word 1

word 2

word W

ﬁll /311( 811 912
/))21 /52[{

L 61{ 1 ‘91( 2
doc doc.
1 2

/))Wl /J)WK_

topic 1 topic K

l N iid samples + empirical words count

Xll 12
X21 X22

XIM
XZZ

Observation matrix X

column = word-freq. of a doc.

N = # word/doc.
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word 1

word 2

word W

Al 1 AIZ
A21 A22

word 1

word 2

word W

i AWI AWZ

doc. doc.

Xll X12
X21 X22

word ! ﬁll /31K
word2 | 5. D
word W _/))Wl /J)WK_
topic 1 topic K
Problem

811 912

L 61{ 1 ‘91( 2
doc. doc.

1 2

Given : Xand K
Goal : estimate g

K # topics ~100
/4 vocab. size | ~10k
N #word/doc. | ~100
M # doc. ~100k
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Related work

Topic matrix Weight matrix

Method p 0 Approach Issues
Nonnegative Matrix Regularized msnljfgg\fgo&ael?
Factorization (NMF), Deterministic | Deterministic | joint o

. . ) o approximations and
e.g., [Cichocki et al.,’09] optimization .

heuristics.

“Bayesian Methods” Deterministic Non-convex. Need
e.g., LDA, CTM [Blei et or Prior Prior MAP or ML approximations like
al.,’03], MCMC.
Method of Moments N No empirical

Deterministic : Tensor
[Anandkumar et and sparse Prior decomposition performance
al.,’12,"13] P P reported
Topic-separability based | Approximate Prior Geometric

[Several references]

Separability
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Outline

= | atent Mixture Models
= Text Documents, User Preferences, Community Networks, ...

= Topic Models & Estimation Problem
= Related Work

= Geometric Structure of Topic Models
= [nevitability of Separability in high-dimensions

= Algorithm & Guarantees: Exploiting Geometry
= Extensions to User Preference Model Estimation

= Empirical Results on Real-World Datasets
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Approximately Separable Topic Matrix ([Ding-Ishwar-S'14])

Genetics
Data

—
@]
.
o

topic  topic topic topic topic

1 2 3 1 2 3

DNA w1 @ 0 O il e 1”;173,:‘;1~@"

w2 0 0 A-approximately separable if w\ B, By AB;
Computerws | ( 0 one word for each topic is w3 (5’273—3_ Jol -;1733
wi | 0 0 predominantly unique wd ,1}}4.-"/;’4"_—}:/;’4
ws | 0 0 ws (G <ABs B

we | 0 0 A = 0 Case: Novel Word(s) w6 | A3, --)73:_ B

B B B unique to each topic B B B

[Boardman’93, Donoho’04],

Arora’13, Ding et. al.’13
Separable [ J ! Approximately

Topic Matrix Separable
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Is Approximately Separable Fundamental?

Dataset )} K
In | Iq ol Wikipedia 109,611 20
| -
reg world probiems Twitter 122,035 50
= Size of vocab. W >> #. Topics K
New York 102,660 100
Times ’

PubMed 141,043 150
= Main result: Separability is an Generative Model
inevitable consequence of high- 5
dimensionality! 8O- Q K

= Satisfied in estimates produced by NMF, LDA, A
and other algorithms (Bayesian Models) O___Q__O__b
a, H < w

M
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Why is Separability inevitable for W>> K?

= Theorem: Suppose W > tK ePoK log(K+1/A)
Prob{3 not A — sep} = O(W 1)

Generative Model

Dataset W K

Wikipedia 109,671 50 /J‘oO—_Qﬂ .
Twitter 122,035 50 S

New York 102,660 100 Q_ OO "Q_b
PubMed 141,043 150 M -
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Separability in Practice

Dataset Vocab. size W # Topics K Prob. 0.01-separable
NIPS 12,419 50 100£0%
Wikipedia 109,611 50 99.9+0.3% 6, =001,
Twitter 122,035 50 100+0% 1000 MC runs
New York Times 102,660 100 99.6+£0.6%
PubMed 141,043 150 99.94+0.3%
Generative Model
B, moderately small positive value in practice. /%Q——Qﬂ
- B, =0.01for K € [50, 200] \K

Some packages suggest 3, = ¢c/W to get : t
satisfactory empirical results. O_ ()

W > tKePol log(K+1/A) a 0

M

Analysis explains reasoning for this choice!
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Outline

Latent Mixture Models
= Text Documents, User Preferences, Community Networks, ...

Topic Models & Estimation Problem
= Related Work

Geometric Structure of Topic Models
= |nevitability of Separability in high-dimensions

Algorithm & Guarantees: Exploiting Geometry
= Efficiently Identifying Extreme Points
= Empirical Results on Real-World Datasets

Extensions to User Preference Model Estimation



Key Idea (A = 0 case)

wl

w2

w3

w4

w5

w6

A Geometric Approach for Learning Latent Mixture Models

topic topic topic
1 2 3 i
B 0 0

B 0 0

0 B 0

0 B, 0

0 0 4

0

0 A
/371 ﬁ72 /3)73

Separable

Topic Matrix g

doc. ce doc.
1 M

— @ . —

<~ @ , —

Weight Matrix

BWXKOKXM = AWxM

dolc. dj;
~ p6, -
~ B0 —
~ B0, —
~ p6, -
~ BO, —
~ pBO, —
B0, + 5,0, + £.,0,
Distribution
Matrix A
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wl

w2

w3

w4

w5

w6

A Geometric Approach for Learning Latent Mixture Models

to?ic top2>ic top3>ic — dolc. d?\/c[:.
B0 0|~ 6 -
pH 0 0 ~— 0, —
0 5 0 | [ 0, ]
0 B, 0 Weight Matrix
0 0 B,
0 0 pB

/371 ﬁ72 /3)73

Separable

Topic Matrix g

BWXKOKXM = AWxM

dolc. dj;
~ p6, -
~ B0 —
~ B0, —
~ p6, -
~ BO, —
~ pBO, —
B0, + 5,0, + £.,0,
Distribution
Matrix A
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<

<

ﬁ7101 + ﬁ7202 + /37333

b0,
0,

—

Key Idea

Novel Word =
Extreme Point

n~~/

ﬂ WxKHKxM = AWxM

doc. .. doc.

1 ’ M _

601 —

601 —

Novel word detection + Topic matrix estimation —

.0,
ps0;
P0;

—

—

—

Distribution
Matrix 4

!

< 02 —
< 53 —
< 5 —

3

~~ ~ o~

/}7151 + /3;7202 + 5,50,

Row Normalized
Distribution
Matrix A4
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doc. doc,
— B0, —
— B0 —
~ B0, —
— B0, -
— B0, —
~ pBO, -

550, + 5,0, + 5.0,

Distribution
Matrix A

Finite words/doc.

row normalization

~~
Q@
\
/, \
. \
4 \
\
\
\
\
- \
S~ao \
~ S-a<o \
S~ao \
S~a. \
2 \
\
\
~~~~~ \
. ~~

Probability simplex

doc doc.
1 M
— 0 —

< 6 —
2

< 02 —>

— 0 —

Row Normalized
Distribution
Matrix 4
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Finite words/dogc. Brcu = Ava =X

doc. v doc. doc. doc.

~ 1 M _ . ~ 1 M _
~ Key issue: ~
— 0 - : : — X, -
- N fixed =»perturbation N
< 6 = does not vanish < & =
< 62 — < ~3 —
- ’62 s K # topics ~100 - )?4 s
- 63 . w vocab. size | ~10k - )?5 .
~ N #word/doc. | ~100 -
< 0 - M |#doc. ~100k < X
10, + 67,0, + 5,30, , / ® \ N 7
. .o ¢ |
Row Normalized & Row Normalized
Distribution I S, ® Observation
Matrix 4 Matrix: X

Probability simplex
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Nonnegative

,—Aﬁ e 1= Al = Az
ﬂWxKHKxM = AWXM ° Probability
®.. | . simplex
—r K # topics ~100 0,=A,=A4, e
' 0; = A; = Aq
Separable w vocab. size | ~10k
Nonnegative | v #word/doc. | ~100
M # doc. ~100k
Nonnegative
E =E
! A \ 11\4\\2
vl as __Qciasm al\al L e Ry
MXX" —=—>B(M0 0")B" =E,, e
M —© \ e
\_Y_/ E3 =E4\./// ES = E6

Separable
Nonnegative

Novel word detection + Topic matrix estimation
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Detect Novel Words via Projections

= Max/Min of projection d

- extreme points of
convex hull

= \Which directions to use

- Generate P iid
Isotropy directions
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“Robustness” of extreme points

= Max/Min of projection
- extreme points of

u
convex hull e
.............. ¢ “i=f
= Which directions to use /
. .
- Generate a few iid " \

Isotropy directions i
= Freq. of maximum = E-E, @

Solid Angle of an
Extreme Point
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Extension to Approximately Separable (A > 0)

= Approx. novel words <
larger solid angles

= Solution
- Sort solid angles

- Take the top — K
extreme points
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= Computational complexity :

Main result [Ding et al, ‘13,’14]

# topics ~100

vocab. size | ~10k

#word/doc. | ~100

O(MNK + WK + WK”)

IR e

# doc. ~100k

= Sample complexity :

Under the Simplicial Condition on R’, with u ~ N(0,1,,), the
proposed Random Projection algorithm can detect all novel
words of K topics with probability 1-0 if
1 1 1
M = Poly| W,log| — |, K,— |, P = Poly| logW , log| — |, K
(il oy praro{ e 5

Moreover, if R is full-rank, can recover g with ¢ element-wise
error with probability 1-0.
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Distributed Implementation

Server 2
Server 1 Server L
Memory 2
Memory 1 | X(z) Memory L
7 ,, \
X
0 \ - / X1
A L T
Fusion Center Edr = 2 X(I)X(l) dr
=1

= Modern web-scale database are distributed
= M document archived on L servers

= Goal: low communication cost O(WK)
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EXperimentaI Results (semi-synthetic data)

Generate synthetic

Real-world corpus Topic matrix learnt docs. with Dirichlet
New York Times articles by Gibbs sampling prior
M 300,000 Add artificial novel
N 300 words;
w 14943 Generate synthetic
K 100 docs.
L 200

= Semi-synthetic data can resemble the dimensionality
and sparsity of real-world data
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EXperimentaI Results (semi-synthetic data)

RP RecoverlL2 Gibbs
/ [Arora et al, 13’]
0.5

Semi-synthetic+tNovel NYT

50k 200k 300k 500k 1000k 2000k
#docs. M

Semi-synthetic NYT

50k 200k 300k 500k 1000k 2000k
# docs. M
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EXperimentaI Results (semi-synthetic data)

0.5
S 7 RP
emi-syn _
+novel NYT Semi-syn NYT =
' R L2
Variable Variable T ecover
N 300 300 DDP
03 [Ding et al.,13’]
15043 words, 14943 i
100 novel
~ 100 100 Semi-synthetic +Novel NYT
L 200 200

| * T (Gibbs) ~ 6918 sec

100 200 300 400 500 600 700 800 900
Comp. Time, in sec.



A Geometric Approach for Learning Latent Mixture Models

EXperimental Results (Real-World Text Corpus)

Decreasing Prob.

<€

New York Times dataset |# | 300,000 =240k train + 60k test
N | 300 words/doc. (avg.)
W | 14,943
K | 50/100/150 topics
“Weather” “Emotion” “Politics” “Football”
Weather Feeling Election Yard
Wind Sense Florida Game
Air Love Ballot Team
Storm Character Vote Season
Rain Heart Al _gore Play
Cold Emotion Recount NFL

(See Ding et al., '13 for more example topics)
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Outline

= | atent Mixture Models
= Text Documents, User Preferences, Community Networks, ...

= Topic Models & Estimation Problem
= Related Work

= Geometric Structure of Topic Models
= |nevitability of Separability in high-dimensions

= Algorithm & Guarantees: Exploiting Geometry
= Efficiently Identifying Extreme Points
= Empirical Results on Real-World Datasets

= Rank Aggregation Problem
= Heterogenous Population ~ Mixture of Mallows Model
= Reduction to Topic Modeling Problem
= Empirical Results on Real-World Datasets
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Mixed membership latent variable model

counts Influencing
User preferences | factors
1 “actor”

Seinfeld: The Complete Series 2012 g

Breaking Bad: The Complete Series 2013 Unrated

The Big Bang Theory: Season 7 2014 \R

1 “special effect”

document = mixture of latent influence factors
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actor
musical

Prob. Prefer movie 1 ey 31 Pk ' _
over 2 in 1st latent 0 | B 8 Ranking matrix - g
21 2K

factor = column = “topic”

= W =# ordered pairs
=0(@-1)

= K = # topics

(Q-1.Q) /))Wl [)’WK_

topic 1 topic K

= Generative Model for Latent factor

= Mallows model
= Baseline permutation o,
= Prob. of permutation o:  Prob{c | o9} x pdist(e.00) — B
= Heterogeneous population
= Dispersion factor ¢
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Mixed Membership Rank Aggregation Problem

“‘Plate” representation

Q :

u

Pr(8)

w: comparisons (i, j)

O’l,..

Key parameters

0 # items
W=0Q(0-1) |# ordered pairs
K # latent rankings
M # users
N # comps./user
5 P
Oy

=>Words
=> Topics

=>»Documents
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Related Work

Hetero- User-
Category Models Issues . : )
geneity | inconsistency
Only via
Single Mallows[Mallows, ’57], Only one deviation Via noisy
ranking global from base observation
models BTL [Bradley & Terry,’52], etc. ranking ranking model
scheme
Mixture of Mallows model [Lu &
Boutilier ICML11, Awasthi et al.
. NIPS14], . . .
Mixture of Each useris Multiple Via noisy
ranking Mixture of single rankings dominated mixture observation
models [Farias et al. NIPS09], by one type | components model
Mixture of BTLs [Oh & Shah
NIPS14]
“Topic” [Ding et al. NIPS14], Multiple Via probabilistic
ranking Mixed membership Mallows, shared mixture + noisy
models etc. rankings observation
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Approximate Separability

= Most ranking matrix are A-Approximate

separable, # items O >> # factors K

Pr(c6 is A -separable) = 1 — K exp(—-OL(A;¢) ")

¢ Prob. of 0.05-separable
0.0 93.3%
0.1 87.0%
0.2 79.3%
0.5 42.6%

Rank Rank Rank

Pair5 [0.10 0.09 0.90

Approximately
Separable
ranking matrix

0O =100
K =10
1000 Monte Carlo runs
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Main result

= Computational complexity :

# items

# ordered pairs

# latent ranking

# users

# comp. / user

O(MNP + O°K")

= Sample complexity :

NMEIHEIEIE

# projections

If
« Correlation matrix of weight prior has full-rank and
* The ranking matrix o is i-separable and
* A=cK”
Then
 Proposed Random Projection algorithm can estimate the
ranking matrix correctly with probability at least 1-¢0 for all

1 1 1
M =Poly| W,K,—,log| — | |, P = Poly| logh,log| — |, K
ok oo 5 ) = v et 5
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Semi-synthetic data

O | 100 most rated movies
K | 10 latent rankings
M | 5940 users

~200K ratings

= To resemble the dimensionality and characteristics of real-world data

Mtx. Factorization
[ Salakhutdinov & Minh,
ICML08]

MovielLens
Dataset

OxKmovie __ | Sorteach
factors matrix column/factor

l

Semi-synthetic __
observations

Proposed
generative
model

- XK rar_mking
matrix
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Semi-synthetic data

Kendall’'s tau distance —

0.7

0.6

0.5

0.4

0.3

0.2

0.1

100 most rated movies

10 latent rankings

300 comparisons/user

# user, variable

6000 10000 20000

= Dirichlet Prior for 6

= Uniform distribution for u

" P=P ==
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Movielens dataset — new comparison

= Data: generate comparisons from ratings

User 1: Movie A, 4 star Movie C, 2 star=» w = (A, C) for user 1
= Task: predict new comparisons for users in the training set

= Measure: predictive log-probability [Wallach et al. ICML09]

1
~lo i th test pair | 6, Training pairs of user m
Total # test pairs E b g{p( pair| sP )}
=
S
O | 100 most rated =
movies %”0
~
K | variable 3
&l
M | 5940 users =
S
S2 FJS
Z RP [Farias et al. NIPS09]




A Geometric Approach for Learning Latent Mixture Models

Movielens dataset — new user

= Data: generate comparisons from ratings
User 1: Movie A, 4 star Movie C, 2 star=» w = (A, C) for user 1
= Task: predict comparison of new users

= Measure: predictive log-probability [Wallach et al. ICML09]

Total 2 tlest Dairs Ei’m log{p(i th test pair of user m| )}
O | 100 most rated S Full+lgnore Partial+Random
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A Geometric Approach for Learning Latent Mixture Models

Movielens dataset — predicting stars

= Predict star ratings via ranking models

= Generate comparisons from training ratings

= Learn mixed membership Mallows model with Dirichlet prior

= For each testing movie review:

= Measure: RMSE of estimated star ratings

K PMF BPMF | BPMF-int TM;E 2"4% et Mmmm
10 | 1.0491 0.8254 0.8723 0.8840 0.8509
15 | 0.9127 0.8236 0.8734 0.8780 0.8296
20 | 0.9250 0.8213 0.8678 0.8721 0.8241

Rating based models




A Geometric Approach for Learning Latent Mixture Models

Summary

High-D Latent Factor Models
Geometry ~ Approx Sep.

Simple geometric picture

Efficient randomized algorithm
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Consistency, efficiency, state-of-the-art performance





