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Outline 
§  Latent Mixture Models 
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§  Overall Goal/Objective: Algorithm with provable guarantees 

§  Topic Models & Estimation Problem 

§  Geometric Structure of Topic Models 

§  Algorithm & Guarantees: Exploiting Geometry 
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Mixed membership latent variable model 
§  Text Docs ß (noisy) mixture of latent topics 
§  Connections in network ß mixture of latent communities 
§  User preferences ß mixtures of latent ranking factors 
 

Geometric Approach for LLMMVMs 
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Geometric Approach for LLMMVMs 
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Geometric Approach for LLMMVMs 

User preferences 
words counts Influencing  

factors 

document = mixture of latent influencing factors 

Mixed membership latent variable model 
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§  Learn/Estimate Latent Factors from Observations(docs) 

§  Goal: develop algorithms with 

§  Provable guarantees  
§  How many Docs to estimate Latent Factors within a tolerance? 
§  Computational Cost: How does Algorithm scale with #params? 

§  Good empirical performance 
§  Real-world datasets 

Geometric Approach for LLMMVMs 

Overall Goal 

è  Model Fidelity 

è  Web Scale applications 
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Outline 
§  Latent Mixture Models 

§  Text Documents, User Preferences, Community Networks, … 

§  Topic Models & Estimation Problem 
§  Observation Model & Related Work 

§  Geometric Structure of Topic Models 

§  Algorithm & Guarantees: Exploiting Geometry 

§  Extensions to User Preference Model Estimation  

§  Empirical Results on Real-World Datasets 
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“Bag of words” model: a text corpus example 
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Topic Matrix - β 
§  column = topic 
§  W = vocabulary size 
§  K = # topics 
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Problem  
§  Given : X and K 
§  Goal :  estimate β 
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K # topics  ~100 
W vocab. size ~10k 
N #word/doc. ~100 
M # doc. ~100k 
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Related work 
Method β θ Approach Issues 

Nonnegative Matrix 
Factorization (NMF), 
e.g., [Cichocki et al.,’09] 

Deterministic Deterministic 
Regularized 
joint 
optimization 

NP Hard (Arora’12) 
Non-convex. Need 
approximations and 
heuristics. 

“Bayesian Methods” 
e.g., LDA, CTM [Blei et 
al.,’03],  

Deterministic 
or Prior Prior MAP or ML 

Non-convex. Need 
approximations like 
MCMC. 

Method of Moments 
[Anandkumar et 
al.,’12,’13] 

Deterministic 
and sparse Prior Tensor 

decomposition 

No empirical 
performance 
reported 

Topic-separability based  
[Several references] 

Approximate 
Separability Prior Geometric 

Topic matrix Weight matrix

A Geometric Approach for Learning Latent Mixture Models 
 



Boston University Slideshow Title Goes Here 

Outline 
§  Latent Mixture Models 

§  Text Documents, User Preferences, Community Networks, … 

§  Topic Models & Estimation Problem 
§  Related Work 

§  Geometric Structure of Topic Models 
§  Inevitability of Separability in high-dimensions 

§  Algorithm & Guarantees: Exploiting Geometry 

§  Extensions to User Preference Model Estimation  

§  Empirical Results on Real-World Datasets 
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λ-approximately separable if 
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λ = 0 Case: Novel Word(s) 
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[Boardman’93, Donoho’04], 

[Arora’13, Ding et. al.’13]  
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Is Approximately Separable Fundamental? 

 

§  In real-world problems 
§  Size of vocab. W >> #. Topics K 

§  Main result: Separability is an 
inevitable consequence of high-
dimensionality! 
§  Satisfied in estimates produced by NMF, LDA, 

and other algorithms (Bayesian Models) 

Geometric Approach for LLMMVMs 

Dataset W K 
Wikipedia 109,611 50 

Twitter 122,035 50 
New York 

Times 102,660 100 

PubMed 141,043 150 

16

Generative Model
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Why is Separability inevitable for W>> K? 

§  Theorem: Suppose 

Geometric Approach for LLMMVMs 

W � tKe�0K log(K+1/�)

Prob{� not �� sep} = O(W�t
)

Generative Model
Dataset W K 

Wikipedia 109,611 50 
Twitter 122,035 50 

New York 
Times 102,660 100 

PubMed 141,043 150 



Boston University Slideshow Title Goes Here Dataset Vocab. size W # Topics K Prob. 0.01-separable 
NIPS 12,419 50 100±0% 

Wikipedia 109,611 50 99.9±0.3% 
Twitter 122,035 50 100±0% 

New York Times 102,660 100 99.6±0.6% 
PubMed 141,043 150 99.9±0.3% 

Separability in Practice   

§  β0 moderately small positive value in practice. 
§  β0 = 0.01 for K ∈ [50, 200] 

§  Some packages suggest β0 = c/W to get 
satisfactory empirical results. 

§  Analysis explains reasoning for this choice!             

18

β0 = 0.01,   
1000 MC runs

Generative Model

W � tKe�0K log(K+1/�)

A Geometric Approach for Learning Latent Mixture Models 
 



Boston University Slideshow Title Goes Here 

Outline 
§  Latent Mixture Models 

§  Text Documents, User Preferences, Community Networks, … 

§  Topic Models & Estimation Problem 
§  Related Work 

§  Geometric Structure of Topic Models 
§  Inevitability of Separability in high-dimensions 

§  Algorithm & Guarantees: Exploiting Geometry 
§  Efficiently Identifying Extreme Points 
§  Empirical Results on Real-World Datasets 

§  Extensions to User Preference Model Estimation  
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Key Idea (λ = 0 case) 
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Detect Novel Words via Projections 

21 EE =

43 EE =
65 EE =

1d§  Max/Min of projection 
à  extreme points of 
convex hull 

§  Which directions to use 
àGenerate P iid 
Isotropy directions 
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1u

2u

§  Max/Min of projection 
à  extreme points of 
convex hull 

§  Which directions to use 
àGenerate a few iid 
Isotropy directions 
 

§  Freq. of maximum ≈ 
Solid Angle of an 
Extreme Point 
 

“Robustness” of extreme points 

21 EE =

43 EE =
65 EE =
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Extension to Approximately Separable (λ > 0) 

21 EE =

43 EE =
65 EE =

§  Approx. novel words ó 
larger solid angles 

§  Solution 
à Sort solid angles 
à Take the top – K 

extreme points 

A Geometric Approach for Learning Latent Mixture Models 
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Main result [Ding et al, ‘13,’14] 
§  Computational complexity : 
 

§  Sample complexity : 

 )( 3WKWKMNKO ++

Under the Simplicial Condition on R’, with                      , the 
proposed Random Projection algorithm can detect all novel 
words of K topics with probability 1-δ if    
 
 
 
Moreover, if R is full-rank, can recover β with ε element-wise 
error with probability 1-δ. 
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Distributed Implementation 

§  Modern web-scale database are distributed 
§  M document archived on L servers  
§  Goal: low communication cost O(WK)  
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Experimental Results (semi-synthetic data) 

§  Semi-synthetic data can resemble the dimensionality 
and sparsity of real-world data 

Real-world corpus 
New York Times articles 

Topic matrix learnt 
by Gibbs sampling 

Generate synthetic 
docs. with Dirichlet 
prior  

Add artificial novel 
words; 
Generate synthetic 
docs.  

M 300,000 

N 300  

W 14943 

K 100 

L 200 

A Geometric Approach for Learning Latent Mixture Models 
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Experimental Results (semi-synthetic data) 
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Experimental Results (semi-synthetic data) 
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Experimental Results (Real-World Text Corpus) 

“Weather”� “Emotion” � “Politics” � “Football” �
Weather � Feeling � Election � Yard �
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�

New York Times dataset  M 300,000 = 240k  train + 60k  test 

N 300 words/doc. (avg.) 

W 14,943 

K 50/100/150 topics 

(See Ding et al., ’13 for more example topics) 
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Outline 
§  Latent Mixture Models 

§  Text Documents, User Preferences, Community Networks, … 

§  Topic Models & Estimation Problem 
§  Related Work 

§  Geometric Structure of Topic Models 
§  Inevitability of Separability in high-dimensions 

§  Algorithm & Guarantees: Exploiting Geometry 
§  Efficiently Identifying Extreme Points 
§  Empirical Results on Real-World Datasets 

§  Rank Aggregation Problem 
§  Heterogenous Population ~ Mixture of Mallows Model 
§  Reduction to Topic Modeling Problem 
§  Empirical Results on Real-World Datasets 
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User preferences 
words counts Influencing  

factors 

document = mixture of latent influence factors 

Mixed membership latent variable model 
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Ranking matrix - β 
§  column = “topic” 
§  W = # ordered pairs 
         = Q (Q - 1) 
§  K = # topics 

§  Generative Model for Latent factor  
§  Mallows model 

§  Baseline permutation σ0
§  Prob. of permutation σ: 
§  Heterogeneous population  

§  Dispersion factor φ

A Geometric Approach to Learning Mixture Models 
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Q # items 
W=Q(Q-1) # ordered pairs 
K # latent rankings 
M # users 
N # comps./user 

Key parameters “Plate” representation 

Mixed Membership Rank Aggregation Problem 
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èDocuments 

w: comparisons (i, j) 
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Related Work 
Category Models Issues Hetero-

geneity 
User-

inconsistency 

Single 
ranking 
models 

Mallows[Mallows,’57],   
 

BTL [Bradley & Terry,’52], etc. 

Only one 
global 

ranking 

Only via 
deviation 
from base 

ranking 
scheme 

Via noisy 
observation 

model 

Mixture of 
ranking 
models 

Mixture of Mallows model [Lu & 
Boutilier ICML11, Awasthi et al. 

NIPS14],  
 

Mixture of single rankings 
[Farias et al. NIPS09], 

 

Mixture of BTLs [Oh & Shah 
NIPS14] 

Each user is 
dominated 
by one type 

Multiple 
mixture 

components 

Via noisy 
observation 

model 

“Topic” 
ranking 
models 

[Ding et al. NIPS14],  
Mixed membership Mallows, 

etc. 

Multiple 
shared 

rankings 

Via probabilistic 
mixture + noisy 

observation 
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Approximate Separability 

§  Most ranking matrix are λ-Approximate 
separable, # items Q >> # factors K  
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ranking matrix Prob. of  0.05-separable 
0.0 93.3% 
0.1 87.0% 
0.2 79.3% 
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Main result  

§  Computational complexity : 
 
 

§  Sample complexity : 
 )( 32KQMNPO +

•  If 
•  Correlation matrix of weight prior has full-rank and  
•  The ranking matrix σ is λ-separable and 
•    

•  Then 
•  Proposed Random Projection algorithm can estimate the 

ranking matrix correctly with probability at least 1-δ for all    
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Semi-synthetic data 

§  To resemble the dimensionality and characteristics of real-world data 

Q 100 most rated movies 
K 10 latent rankings 
M 5940 users 

~200K ratings 

MovieLens 
Dataset 

Mtx. Factorization 
[Salakhutdinov & Minh, 

ICML08] 

Q x K movie 
factors matrix 

Sort each 
column/factor 

W x K ranking 
matrix 

Semi-synthetic 
observations 

Proposed 
generative 

model 
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Semi-synthetic data 

§  Dirichlet Prior for θ 

§  Uniform distribution for µ 

§    

Q 100 most rated movies 
K 10 latent rankings 
N 300 comparisons/user 
M # user, variable 
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Movielens dataset – new comparison 

Q 100 most rated 
movies 

K variable 
M 5940 users 

§  Data: generate comparisons from ratings 

 User 1: Movie A, 4 star Movie C, 2 starè w = (A, C)  for user 1 

§  Task: predict new comparisons for users in the training set  

§  Measure: predictive log-probability [Wallach et al. ICML09] 
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Movielens dataset – new user 
§  Data: generate comparisons from ratings 

 User 1: Movie A, 4 star Movie C, 2 starè w = (A, C)  for user 1 

§  Task: predict comparison of new users 

§  Measure: predictive log-probability [Wallach et al. ICML09] 

∑ mi
mip

,
)}ˆ|user  ofpair  th test (log{

pairs test # Total
1 σ

Q 100 most rated 
movies 

K 10 latent rankings 
M 4000 training user 
M 2040 testing user 
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Movielens dataset – predicting stars 

§  Predict star ratings via ranking models 
§  Generate comparisons from training ratings 
§  Learn mixed membership Mallows model with Dirichlet prior 
§  For each testing movie review:  

§  Measure: RMSE of estimated star ratings 

K � PMF� BPMF� BPMF-int � TM(Ding et 
al.,14)� MMMM �

 10 � 1.0491� 0.8254� 0.8723� 0.8840� 0.8509�
 15 � 0.9127� 0.8236� 0.8734� 0.8780� 0.8296�
 20 � 0.9250� 0.8213� 0.8678� 0.8721� 0.8241�

Rating based models 
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Summary 

High-D Latent Factor Models 
Geometry ~ Approx Sep. 

Consistency, efficiency, state-of-the-art performance 

Simple geometric picture 

21 EE =

W
+ℜ

43 EE = 65 EE =

Efficient randomized algorithm 

1d
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