A Geometric Approach for Learning Latent Mixed Membership Models

Venkatesh Saligrama Boston University, Boston, MA (joint work with Weicong Ding & Prakash Ishwar)

BOSTON

Outline

- Latent Mixture Models
 - Text Documents, User Preferences, Community Networks, ...
 - Overall Goal/Objective: Algorithm with provable guarantees
- Topic Models & Estimation Problem
- Geometric Structure of Topic Models
- Algorithm & Guarantees: Exploiting Geometry
- Rank Aggregation Problem
- Real-World Expts.

Ding, Ishwar, Saligrama, ICML'13 Ding, Ishwar, Saligrama, NIPS'14 Ding, Ishwar, Saligrama, ITA'15 Ding, Ishwar, Saligrama, AISTATS'14 Ding, Ishwar, Saligrama, AISTATS'15

- Text Docs ← (noisy) mixture of latent topics
- Connections in network ← mixture of latent communities
- User preferences ← mixtures of latent ranking factors

Tweets	4.4 out of 5 stars	4.5 out of 5 stars		449) 3.9 out of 5 stars	
	5 star 198	5 star	44	5 star	90
BostonUniversity ECE @BU_ece	4 star 54	4 star	12	4 star	9
Participate in the 2nd Annual #magineering Competition and have a	3 star 17	3 star	5	3 star	20
Expand	2 star 10	2 star	2	2 star	10
Good News From Iraq	1 star 12	1 star	1	1 star	20
BostonUniversity ECE Pierre Goldschmidt, Toby Dalton	1 5001	r dur	2040	1 5101	20
Scientists at @toshiba & @ ensure infernet security at Good news from the Middle East is rare these days. But					
View summary	No SIM 🗢 5:45 PN	A 🚽 58 % 🚍			
Is certainly something to celebrate.	Nearby Soaro	b		.1	
BostonUniversity ECE	Searc	<u></u>			
danger (via @ScienceDail	Filter O Check-In Offers	Map			
Expand David Rothkopt Foreign Policy, October 6, 2012					A A A A A A A A A A A A A A A A A A A
The Romey campaign has argued that Obama has not	1. Americas Florist	0.1 miles			
Welcome back! We hope v	1020 Ave of the Americas, Mil	dtown West 55 >			
the last 3 weeks of the ser	Check-in Offer: 5% off One	e Dozen Roses			
Expand	2. Onvx & Jade Salon	0.2 miles			
Avoiding the Iraq Experience in Syria	41 W 38 St, Midtown West	\$\$			
Katherine Wilkens	R Reviews	Hair Salons >			
National Interest, August 2, 2012 The U.S. experience in Iraq suggests that foreign military	Check-in Offer: 10% off Ye	our Next Salon		P 0 000	
involvement could not have prevented the scenario we now see unfolding in Syria.	Service	20-25-07-1-000			
	3. M&J Trimming	0.1 miles		• • •	
	COSCIO 54 Beviews	Fabric Stores			
	Check-in Offer: 1 free M&.	J Measuring Tape			
	4. Pulse Karaoke	0.2 miles			
	135 W 41st St Theater Distric	. 22 tr			
	\bigcirc Q				

Text document:

Seeking Life's Bare (Genetic) Necessities

Haemophilus

genome

COLD SPRING HARBOR, NEW YORK— How many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms

required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12. "are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

document = mixture of latent topics

document = mixture of latent influencing factors

Overall Goal

- Learn/Estimate Latent Factors from Observations(docs)
- Goal: develop algorithms with
 - Provable guarantees
 - How many Docs to estimate Latent Factors within a tolerance?
 - Computational Cost: How does Algorithm scale with #params?
 - Good empirical performance
 - Real-world datasets

Web Scale applications

Model Fidelity

BOSTON

Outline

- Latent Mixture Models
 - Text Documents, User Preferences, Community Networks, ...
- Topic Models & Estimation Problem
 - Observation Model & Related Work
- Geometric Structure of Topic Models
- Algorithm & Guarantees: Exploiting Geometry
- Extensions to User Preference Model Estimation
- Empirical Results on Real-World Datasets

"Bag of words" model: a text corpus example

One document in the collection:

Seeking Life's Bare (Genetic) Necessities

Haemophilus

genome 1703 genes

COLD SPRING HARBOR, NEW YORK— How many genes does an organism need to survive! Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes

in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12. "are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an Redundant and Related and modern genes removed parasite-specific Genes

BOSTON

UNIVERSITY

A Geometric Approach for Learning Latent Mixture Models

Document Distribution matrix - A
column = distb. of a doc.

M = # docs.

Weight matrix - θ
column = mixing weights
M = # docs.

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

A Geometric Approach for Learning Latent Mixture Models

A Geometric Approach for Learning Latent Mixture Models

Related work

Topic matrix Weight matrix

Method	β	θ	Approach	Issues
Nonnegative Matrix Factorization (NMF), e.g., [<i>Cichocki et al.,'09</i>]	Deterministic	Deterministic	Regularized joint optimization	NP Hard (Arora'12) Non-convex. Need approximations and heuristics.
"Bayesian Methods" e.g., LDA, CTM [<i>Blei et</i> <i>al.,'03</i>],	Deterministic or Prior	Prior	MAP or ML	Non-convex. Need approximations like MCMC.
Method of Moments [<i>Anandkumar et</i> <i>al.,'12,'13</i>]	Deterministic and <mark>sparse</mark>	Prior	Tensor decomposition	No empirical performance reported
Topic-separability based [Several references]	Approximate Separability	Prior	Geometric	

BOSTON

Outline

- Latent Mixture Models
 - Text Documents, User Preferences, Community Networks, ...
- Topic Models & Estimation Problem
 - Related Work
- Geometric Structure of Topic Models
 - Inevitability of Separability in high-dimensions
- Algorithm & Guarantees: Exploiting Geometry
- Extensions to User Preference Model Estimation
- Empirical Results on Real-World Datasets

Approximately Separable Topic Matrix ([Ding-Ishwar-S'14])

Separable Topic Matrix λ-approximately separable ifone word for each topic ispredominantly unique

λ = 0 Case: Novel Word(s)
unique to each topic
[Boardman'93, Donoho'04],
[Arora'13, Ding et. al.'13]

topic topic topic $\leq \lambda \beta_1$ $\leq I$ **w**1 $\lambda\beta_2$ β_{21} **w**2 β_3 $\leq \lambda \beta$ **w**3 β_4 $\lambda \beta_{\Lambda}$ **w**4 $\leq \lambda \beta_5$ **w**5 $\lambda \beta_6$ $\lambda \beta_6$ β_6 **w**6 β_{71}

> Approximately Separable

Is Approximately Separable Fundamental?

In	rea	l-wor	ld	prol	bler	ns
				P · • ·	••••	

Size of vocab. W >> #. Topics K

Dataset	W	K
Wikipedia	109,611	50
Twitter	122,035	50
New York Times	102,660	100
PubMed	141,043	150

- Main result: Separability is an inevitable consequence of highdimensionality!
 - Satisfied in estimates produced by NMF, LDA, and other algorithms (Bayesian Models)

Generative Model

Why is Separability inevitable for W>> K?

- Theorem: Suppose $W \geq t K e^{\beta_0 K \log(K+1/\lambda)}$

$$\operatorname{Prob}\{\beta \text{ not } \lambda - sep\} = O(W^{-t})$$

Dataset	W	K
Wikipedia	109,611	50
Twitter	122,035	50
New York Times	102,660	100
PubMed	141,043	150

Separability in Practice

Dataset	Vocab. size W	# Topics K	Prob. 0.01-separable	-
NIPS	12,419	50	100±0%	
Wikipedia	109,611	50	99.9±0.3% β_0 =	= 0.01,
Twitter	122,035	50	100±0% 100	0 MC
New York Times	102,660	100	99.6±0.6%	
PubMed	141,043	150	99.9±0.3%	

• β_0 moderately small positive value in practice.

 $\beta_0 = 0.01$ for K \in [50, 200]

• Some packages suggest $\beta_0 = c/W$ to get satisfactory empirical results.

 $W \ge t K e^{\beta_0 K \log(K + 1/\lambda)}$

Analysis explains reasoning for this choice!

BOSTON

Outline

- Latent Mixture Models
 - Text Documents, User Preferences, Community Networks,
- Topic Models & Estimation Problem
 - Related Work
- Geometric Structure of Topic Models
 - Inevitability of Separability in high-dimensions
- Algorithm & Guarantees: Exploiting Geometry
 - Efficiently Identifying Extreme Points
 - Empirical Results on Real-World Datasets
- Extensions to User Preference Model Estimation

A Geometric Approach for Learning Latent Mixture Models

doc.

М

 $\mathbf{a} \ \boldsymbol{\theta}_3$

 \mathfrak{R}^{M}_{\perp}

Distribution Matrix A

A Geometric Approach for Learning Latent Mixture Models

BOSTON

Finite words/doc.

Row Normalized Distribution Matrix A

Key issue: N fixed \rightarrow perturbation does not vanish

Row Normalized Observation Matrix: X

Novel word detection + Topic matrix estimation

BOSTON

Detect Novel Words via Projections

- Max/Min of projection
 → extreme points of convex hull
- Which directions to use
 →Generate *P* iid
 Isotropy directions

BOSTON UNIVERSITY

"Robustness" of extreme points

- Max/Min of projection
 → extreme points of convex hull
- Which directions to use
 →Generate a few iid Isotropy directions
- Freq. of maximum ≈ Solid Angle of an Extreme Point

Extension to Approximately Separable ($\lambda > 0$)

- Approx. novel words larger solid angles
- Solution
 - \rightarrow Sort solid angles
 - Take the top K extreme points

Main result [Ding et al, '13,'14]

Computational complexity :

 $O(MNK + WK + WK^3)$

K	# topics	~100
W	vocab. size	~10k
N	#word/doc.	~100
M	# doc.	~100k

Sample complexity :

Under the **Simplicial Condition** on \mathbf{R} ', with $\mathbf{u} \sim N(\mathbf{0}, \mathbf{I}_W)$, the proposed Random Projection algorithm can detect all novel words of K topics with probability $1-\delta$ if

$$M \ge \operatorname{Poly}\left(W, \log\left(\frac{1}{\delta}\right), K, \frac{1}{N}\right), P \ge \operatorname{Poly}\left(\log W, \log\left(\frac{1}{\delta}\right), K\right)$$

Moreover, if R is **full-rank**, can recover β with ε element-wise error with probability 1- δ .

Distributed Implementation

- Modern web-scale database are distributed
- M document archived on L servers
- Goal: low communication cost O(WK)

Experimental Results (semi-synthetic data)

 Semi-synthetic data can resemble the dimensionality and sparsity of real-world data

Experimental Results (semi-synthetic data)

Experimental Results (semi-synthetic data)

Experimental Results (Real-World Text Corpus)

New York Times dataset

Μ	300,000 = 240k train + 60k test
Ν	300 words/doc. (avg.)
W	14,943
K	50/100/150 topics

	"Weather"	"Emotion"	"Politics"	"Football"
	Weather	Feeling	Election	Yard
	Wind	Sense	Florida	Game
	Air	Love	Ballot	Team
	Storm	Character	Vote	Season
	Rain	Heart	Al_gore	Play
•	Cold	Emotion	Recount	NFL

(See Ding et al., '13 for more example topics)

Decreasing Prob.

BOSTON

Outline

- Latent Mixture Models
 - Text Documents, User Preferences, Community Networks, ...
- Topic Models & Estimation Problem
 - Related Work
- Geometric Structure of Topic Models
 - Inevitability of Separability in high-dimensions
- Algorithm & Guarantees: Exploiting Geometry
 - Efficiently Identifying Extreme Points
 - Empirical Results on Real-World Datasets
- Rank Aggregation Problem
 - Heterogenous Population ~ Mixture of Mallows Model
 - Reduction to Topic Modeling Problem
 - Empirical Results on Real-World Datasets

document = mixture of latent influence factors

Ranking matrix -
$$\beta$$

column = "topic"
 $W = \#$ ordered pairs
 $= Q (Q - 1)$
 $K = \#$ topics

- Generative Model for Latent factor
- Mallows model
 - Baseline permutation σ₀
 - Prob. of permutation σ : $Prob\{\sigma \mid \sigma_0\} \propto \phi^{dist(\sigma,\sigma_0)} \implies$
 - Heterogeneous population
 - Dispersion factor ϕ

BOSTON

Mixed Membership Rank Aggregation Problem

"Plate" representation

Key parameters

Q	# items	
W=Q(Q-1)	# ordered pairs	→Words
K	# latent rankings	
M	# users	→Documents
N	# comps./user	

Related Work

Category	Models	Issues	Hetero- geneity	User- inconsistency
Single ranking models	Mallows[<i>Mallows,'57</i>], BTL [<i>Bradley & Terry,'52</i>], etc.	Only one global ranking	Only via deviation from base ranking scheme	Via noisy observation model
Mixture of ranking models	Mixture of Mallows model [<i>Lu</i> & <i>Boutilier ICML11, Awasthi et al. NIPS14</i>], Mixture of single rankings [<i>Farias et al. NIPS09</i>], Mixture of BTLs [<i>Oh</i> & <i>Shah NIPS14</i>]	Each user is dominated by one type	Multiple mixture components	Via noisy observation model
"Topic" ranking models	[<i>Ding et al. NIPS14</i>], Mixed membership Mallows, etc.		Multiple shared rankings	Via probabilistic mixture + noisy observation

Approximate Separability

Most ranking matrix are λ-Approximate separable, # items Q >> # factors K

 $\Pr(\sigma \text{ is } \lambda \text{ - separable}) \ge 1 - K \exp(-QL(\lambda; \phi)^{-2K+1})$

Approximately Separable ranking matrix

ϕ	Prob. of 0.05-separable
0.0	93.3%
0.1	87.0%
0.2	79.3%
0.5	42.6%

Q = 100K = 10

1000 Monte Carlo runs

Main result

- Computational complexity : $O(MNP + Q^2K^3)$
- Sample complexity :
 - If
 - Correlation matrix of weight prior has full-rank and
 - The ranking matrix σ is λ -separable and
 - $\lambda \leq cK^{-2}$
 - Then
 - Proposed Random Projection algorithm can estimate the ranking matrix correctly with probability at least $1-\delta$ for all

$$M \ge \operatorname{Poly}\left(W, K, \frac{1}{N}, \log\left(\frac{1}{\delta}\right)\right), P \ge \operatorname{Poly}\left(\log W, \log\left(\frac{1}{\delta}\right), K\right)$$

Q	# items				
W	# ordered pairs				
K	# latent ranking				
M	# users				
N	# comp. / user				
P	# projections				

Semi-synthetic data

Q	100 most rated movies
K	10 latent rankings
M	5940 users
	~200K ratings

To resemble the dimensionality and characteristics of real-world data

Semi-synthetic data

Q	100 most rated movies
K	10 latent rankings
N	300 comparisons/user
M	# user, variable

- Dirichlet Prior for θ
- Uniform distribution for μ

$$\phi = \phi_1 = \ldots = \phi_K$$

BOSTON UNIVERSITY

Movielens dataset - new comparison

• **Data:** generate comparisons from ratings

User 1: Movie A, 4 star Movie C, 2 star $\rightarrow w = (A, C)$ for user 1

- **Task**: predict new comparisons for users in the training set
- Measure: predictive log-probability [Wallach et al. ICML09]

 $\frac{1}{\text{Total }\# \text{ test pairs}} \sum_{i,m} \log \{ p(i \text{ th test pair} | \hat{\sigma}, \text{Training pairs of user } m) \}$

Movielens dataset – new user

• **Data:** generate comparisons from ratings

User 1: Movie A, 4 star Movie C, 2 star $\rightarrow w = (A, C)$ for user 1

- **Task**: predict comparison of new users
- Measure: predictive log-probability [Wallach et al. ICML09]

$$\frac{1}{\text{Total }\# \text{ test pairs}} \sum_{i,m} \log\{p(i \text{ th test pair of user } m \,|\, \hat{\boldsymbol{\sigma}})\}$$

Movielens dataset – predicting stars

- Predict star ratings via ranking models
 - Generate comparisons from training ratings
 - Learn mixed membership Mallows model with Dirichlet prior
 - For each testing movie review:
- Measure: RMSE of estimated star ratings

K	PMF	BPMF	BPMF-int	TM(Ding et al.,14)	мммм
10	1.0491	0.8254	0.8723	0.8840	0.8509
15	0.9127	0.8236	0.8734	0.8780	0.8296
20	0.9250	0.8213	0.8678	0.8721	0.8241

Rating based models

Summary

BOSTON

Rank

Rank

Rank