

#### John Lipor and Laura Balzano, University of Michigan lipor@umich.edu and girasole@umich.edu

# Quantile Search for Minimum-Time Sampling

# **Active Learning**





Images courtesy nih.gov, ras.org.uk, Center for Embedded Networked Sensing, wikipedia

# **Passive Learning**

MICHIGAN ENGINEERING



# Active Learning





# Active Learning





# Outline



## ♦Active Learning

### ♦We have a big lake (the Great Lakes specifically)

 $\diamond$  Inter-sample spacing matters

♦Problem formulation

Oeterministic Quantile Search

♦Probabilistic Quantile Search



We seek a two class linear classifier.

MICHIGAN ENGINEERING

We seek a two class linear classifier.

Suppose we are given a small number of labels.

The idea of active learning is that we may request further labels.

We seek a two class linear classifier.

Suppose we are given a small • number of labels, and we can consider• the remaining possible classifiers.

Where would we request a label?



# Guess Who?



"Is the person male or female?"

"Is she wearing a hat?"

We try as best as we can to cut the remaining possibilities *in half*.



MICHIGAN ENGINEERING

The same principle applies here: We may choose the query that *throws away half* of the remaining possible linear classifiers.



# Active Threshold Estimation





MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN 🔳 COLLEGE of ENGINEERING

#### Learn a 1D transition.

Figure from "Active Learning for Adaptive Mobile Sensing Networks" by Singh, Nowak, and Ramanathan. IPSN 2006

#### Learn a 2D boundary fragment.

Figure from "Active Learning and Sampling" by Castro and Nowak in *Foundations and Applications of Sensor Management*, 2008.

# Active Function Estimation

#### Estimate a function.

Figure from "Backcasting: Adaptive Sampling for Sensor Networks" by Willett, Martin, and Nowak. IPSN 2004







Preview subset of 256x256 sensors



All sensors used



Only 20% sensors used

#### Michigan Engineering

UNIVERSITY of MICHIGAN 
COLLEGE of ENGINEERING

# Outline



## ♦Active Learning

## ♦We have a big lake (the Great Lakes specifically)

- $\diamond$  Inter-sample spacing matters
- ♦Problem formulation
- ♦ Deterministic Quantile Search
- ♦Probabilistic Quantile Search

# Sampling the Great Lakes





# Sampling the Great Lakes















# Hypoxia in Lake Erie

MICHIGAN ENGINEERING

The hypoxic region is at the lake bottom, where oxygen is scarce. We seek to estimate the spatial extent.

In black we see the largest observed hypoxic zone of Erie for a given year.

Estimates based on ~4 sampling cruises per year, each giving ~360 samples. Estimated ~2500 pixel values.



Figure from "Spatial and Temporal Trends in Lake Erie Hypoxia, 1987–2007". Zhou, Obenour, Scavia, Johengen, Michalak. ACS Journal of Environmental Science and Technology, 2012.

# The sampling system





Lurie Fountain

The Grove



# Outline



♦Active Learning

♦We have a big lake (the Great Lakes specifically)

♦ Inter-sample spacing matters

♦Problem formulation

Oeterministic Quantile Search

♦Probabilistic Quantile Search

MICHIGAN ENGINEERING

Our function comes from the class of step functions:

$$\mathcal{F} = \{ f : [0,1] \to \mathbb{R} | f(x) = \mathbf{1}_{[0,\theta)}(x) =: f_{\theta}(x) \} .$$

We wish to recover  $\theta$  from n noisy measurements  $Y_i$ , i = 1, ..., n where

| $Y_i = \left\{ \right.$ | $\int f_{\theta}(X_i)$  | with probability $1-p$ |
|-------------------------|-------------------------|------------------------|
|                         | $(1 - f_{\theta}(X_i))$ | with probability $p$   |

and the  $X_i$  can be chosen based on previous pairs  $(X_j, Y_j), j = 1, \ldots, i - 1$ .

Denote our estimate of  $\theta$  after *n* samples as  $\hat{\theta}_n$ . We consider either the worst-case or expected error,

$$\sup_{\theta \in [0,1]} \left| \widehat{\theta}_n - \theta \right| \quad \text{or} \quad \mathbb{E} \left[ \left| \widehat{\theta}_n - \theta \right| \right] \,.$$

# Sample Complexity p=0







# **Optimal Sample Complexity**



|                   | worst case                                                                                           | expected                                                                                        |  |
|-------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
|                   |                                                                                                      | (with uniform prior on $\theta$ )                                                               |  |
| adaptive          |                                                                                                      |                                                                                                 |  |
| (binary bisection | $\sup_{\theta \in [0,1]} \left  \widehat{\theta}_n - \theta \right  \le \frac{1}{2^{n+1}}$           | $\mathbb{E}\left[\left \widehat{\theta}_n - \theta\right \right] = \frac{1}{2^{n+2}}$           |  |
| optimal)          |                                                                                                      |                                                                                                 |  |
| non-adaptive      |                                                                                                      |                                                                                                 |  |
| (uniform grid     | $\sup_{\theta \in [0,1]} \left  \widehat{\theta}_n - \theta \right  \le \frac{1}{2} \frac{1}{(n+1)}$ | $\mathbb{E}\left[\left \widehat{\theta}_n - \theta\right \right] = \frac{1}{4} \frac{1}{(n+1)}$ |  |
| optimal)          |                                                                                                      |                                                                                                 |  |

## ... but worst case distance



|                                 | worst case                                                           | expected                                                    |
|---------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
|                                 |                                                                      | (with uniform prior on $\theta$ )                           |
|                                 | $\sup_{\theta \in [0,1]} \left  \widehat{\theta}_n - \theta \right $ | $\mathbb{E}\left[\left \widehat{	heta}_n-	heta ight  ight]$ |
| adaptive sample complexity      |                                                                      |                                                             |
| (binary bisection optimal)      | $\leq \frac{1}{2^{n+1}}$                                             | $=rac{1}{2^{n+2}}$                                         |
|                                 |                                                                      |                                                             |
| adaptive distance traveled      |                                                                      |                                                             |
| (fix desired error $\epsilon$ , | $= 1 - \epsilon$                                                     | $= 1 - 2\epsilon$                                           |
| start at $X_i = 0$ )            |                                                                      |                                                             |

Binary search is nothing other than taking a sample at the 2-quantile of the posterior distribution for  $\theta$ .



Quantile search generalizes this by instead taking a sample at the first m-quantile of the posterior distribution for  $\theta$ .

MICHIGAN ENGINEERING

Quantile search generalizes this by instead taking a sample at the first m-quantile of the posterior distribution for  $\theta$ .

E.g. m=3:



Choosing m allows for a tradeoff between number of samples and distance traveled.

# **Quantile Search Cost**



|                                      | worst case                                                           | expected                                                          |
|--------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|
|                                      |                                                                      | (with uniform prior on $\theta$ )                                 |
|                                      | $\sup_{\theta \in [0,1]} \left  \widehat{\theta}_n - \theta \right $ | $\mathbb{E}\left[\left \widehat{\theta}_n - \theta\right \right]$ |
| bisection                            |                                                                      |                                                                   |
| sample complexity                    | $\leq \frac{1}{2^{n+1}}$                                             | $=\frac{1}{2^{n+2}}$                                              |
|                                      |                                                                      |                                                                   |
| m-quantile search                    | -                                                                    |                                                                   |
| sample complexity                    | $\leq \frac{1}{2}\rho^n$                                             | $= \frac{1}{4} \left( \rho^2 + (1 - \rho)^2 \right)^n$            |
| $\rho = \frac{m-1}{m}$               |                                                                      |                                                                   |
| bisection distance traveled          |                                                                      |                                                                   |
| (as desired error $\epsilon \to 0$ ) | = 1                                                                  | = 1                                                               |
|                                      |                                                                      |                                                                   |
| <i>m</i> -quantile search            |                                                                      |                                                                   |
| distance traveled                    | = 1                                                                  | $=\frac{m}{2m-2}$                                                 |
| (as desired error $\epsilon \to 0$ ) |                                                                      |                                                                   |

Goal: Minimize the total sampling time subject to a given reconstruction error.

min 
$$T = \gamma N + \eta D$$
  
subject to  $\left| \theta - \hat{\theta}_n \right| \le \epsilon$ 

- $\gamma = \text{time/sample}$
- N = number of samples
- $\eta = \text{time/distance}$
- D = distance traveled

Let N be a random variable denoting the samples required to achieve an error  $\varepsilon$ , and D the distance. Rearranging the expected sample complexity, we have

$$\mathbb{E}[N] = \frac{\log(4\varepsilon)}{\log\left(\left(\frac{m-1}{m}\right)^2 + \frac{1}{m^2}\right)} \equiv n'$$

Denote the sampling time T. Then

$$\mathbb{E}[T] = \gamma \mathbb{E}[N] + \eta \mathbb{E}[D]$$
  
=  $\gamma n' + \eta \left(\frac{m}{2m-2} - \frac{1}{(2m-2)(2m-1)^{n'}}\right)$   
 $\approx \gamma n' + \eta \frac{m}{2m-2}$ 

# Sample-Distance Tradeoff







(Top left) Simulated and theoretical expected error after 20 samples as we vary m,

(Top right) Simulated and theoretical distance traveled as we vary m, and

(Bottom left) optimal m for  $\gamma = 60 \frac{s}{samp}$ and  $\eta = \frac{1}{4} \frac{s}{m}$ .

## Sample-Distance Tradeoff









To simulate sampling all of Lake Erie, we split it first in half and then into 16 strips and perform DQS. In most cases we can sample the entire boundary in 2-3 days; fast enough to assume a stationary hypoxic zone.

(Bottom left) optimal 
$$m$$
 for  $\gamma = 60 \frac{s}{samp}$   
and  $\eta = \frac{1}{4} \frac{s}{m}$ .

# Sample-Distance Tradeoff



| Sampling Time (s) | Speed (m/s) | m     | Total Time (hrs) |
|-------------------|-------------|-------|------------------|
| 60                | 4           | 2     | 62               |
| 60                | 4           | 6.64  | 43               |
| 60                | 2           | 2     | 123              |
| 60                | 2           | 8.92  | 81               |
| 10                | 4           | 2     | 61               |
| 10                | 4           | 14.63 | 35               |
| 10                | 2           | 2     | 122              |
| 10                | 2           | 20.26 | 64               |



To simulate sampling all of Lake Erie, we split it first in half and then into 16 strips and perform DQS. In most cases we can sample the entire boundary in 2-3 days; fast enough to assume a stationary hypoxic zone.

(Bottom left) optimal 
$$m$$
 for  $\gamma = 60 \frac{s}{samp}$   
and  $\eta = \frac{1}{4} \frac{s}{m}$ .

# Outline



♦Active Learning

♦We have a big lake (the Great Lakes specifically)

 $\diamond$  Inter-sample spacing matters

♦Problem formulation

♦ Deterministic Quantile Search

♦Probabilistic Quantile Search

Our function comes from the class of step functions:

$$\mathcal{F} = \{ f : [0,1] \to \mathbb{R} | f(x) = \mathbf{1}_{[0,\theta)}(x) =: f_{\theta}(x) \} .$$

We wish to recover  $\theta$  from n noisy measurements  $Y_i$ , i = 1, ..., n where

$$Y_i = \begin{cases} f_{\theta}(X_i) & \text{with probability } 1-p \\ 1 - f_{\theta}(X_i) & \text{with probability } p \end{cases}$$

and the  $X_i$  can be chosen based on previous pairs  $(X_j, Y_j), j = 1, \ldots, i - 1$ .

You may think of this noise model as modeling a detector where the probability of false alarm or false detection are the same, e.g. detection after additive Gaussian noise.



If we were to update our posterior according to the measurements without taking the noise probability into consideration, we'd get lost:



Rather than sampling at 1/m into the feasible interval, we sample 1/m into the posterior distribution on  $\theta$  (See Burnashev and Zigangirov, "An interval estimation problem for controlled observations," Problems in Information Transmission, 1974 for special case bisection algorithm).

Algorithm 1 Probabilistic Quantile Search (PQS)

- 1: initialize prior density  $\pi_0(\theta) = 1$  for  $\theta \in [0, 1]$
- 2: while not converged do
- 3: choose  $X_n$  such that  $\int_0^{X_n} \pi_n(x) dx = 1/m$
- $4: \quad Y_n \leftarrow f(X_n)$
- 5: perform Bayesian update to obtain  $\pi_{n+1}(x)$
- 6: end while
- 7: return  $\hat{\theta}_n$  such that  $\int_0^{\hat{\theta}_n} \pi_{n+1}(x) dx = 1/2$

# Probabilistic Quantile Search

Algorithm 1 Probabilistic Quantile Search (PQS)

- 1: initialize prior density  $\pi_0(\theta) = 1$  for  $\theta \in [0, 1]$
- 2: while not converged do
- 3: choose  $X_n$  such that  $\int_0^{X_n} \pi_n(x) dx = 1/m$
- $4: \quad Y_n \leftarrow f(X_n)$
- 5: Perform Bayesian update to obtain  $\pi_{n+1}(x)$ :

6: **if** 
$$Y_n = 0$$
 **then**

7:

$$\pi_{n+1}(x) = \begin{cases} (1-p) \left(\frac{m}{1+(m-2)p}\right) \pi_n(x) & x \le 1/m \\ p \left(\frac{m}{1+(m-2)p}\right) \pi_n(x) & x > 1/m \end{cases}$$

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN 
COLLEGE of ENGINEERING

- 8: **else**
- 9:

$$\pi_{n+1}(x) = \begin{cases} p\left(\frac{m}{1+(m-2)p}\right)\pi_n(x) & x \le 1/m\\ (1-p)\left(\frac{m}{1+(m-2)p}\right)\pi_n(x) & x > 1/m \end{cases}$$

10: end if 11: end while 12: return  $\hat{\theta}_n$  such that  $\int_0^{\hat{\theta}_n} \pi_{n+1}(x) dx = 1/2$  Rather than sampling at 1/m into the feasible interval, we sample 1/m into the posterior distribution on  $\theta$ .

For m=3 , p=0.2:



The discretized PQS algorithm for  $m \ge 2$  satisfies

$$\sup_{\theta \in [0,1]} \mathbb{E}\left[ \left| \widehat{\theta}_n - \theta \right| \right] \le 2 \left( \frac{m-1}{m} + \frac{2\sqrt{p(1-p)}}{m} \right)^{n/2}$$

This bound matches Castro and Nowak for m=2. In this case, comparing to O(1/n) error bound given by grid sampling, we have a  $(\frac{1}{2})^{n/2}$  bound.

It's loose in practice, but finding the expected number of samples and any distance bounds or expectations is significantly more technical, because of the less obvious interaction of sample locations with the posterior in PQS.

# Future: Hölder smooth

To generalize we could consider a more general class of functions, Hölder smooth

<sup>1</sup> This is wrong: the idea is that
 <sup>c</sup> we have something that is unsmooth at the transition.

el set at 
$$\gamma$$
. A function is  $\alpha$ -Hölder smooth for  $\delta > 0$  so that  $\forall x : |f(x) - \gamma| \le \delta$  we have:

Michigan Engineering

$$|T(x) - \gamma| \ge c|x - \theta^*|^{\alpha}$$



Results on sample complexity only are known in the case of binary bisection and for d-dimensional signals that have the additional assumption of smooth level sets.



# Thank you!

Questions?