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<-Active Learning

<We have a big lake (the Great Lakes specifically)

< Inter-sample spacing matters
<>Problem formulation
<-Deterministic Quantile Search

<>Probabilistic Quantile Search
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We seek a two class
linear classifier.
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We seek a two class
linear classifier.

Suppose we are
given a small °
number of labels,

and we can consider®
the remaining
possible classifiers.

Where would we
request a label?
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“Is the person male
or female?”

“Is she wearing a
hat?”

We try as best as we
can to cut the
remaining possibilities
in half.




Active Classifier Learning

The same principle
applies here: We
may choose the
query that throws
away half of the
remaining possible
linear classifiers.
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Learn a 1D transition.

Figure from “Active Learning for Adaptive
Mobile Sensing Networks” by Singh,
Nowak, and Ramanathan. IPSN 2006
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Learn a 2D boundary fragment.

Figure from “Active Learning and Sampling” by
Castro and Nowak in Foundations and
Applications of Sensor Management, 2008.



m MICHIGAN ENGINEERING

Active Function Estimation

Estimate a function. e =)

Figure from “Backcasting: Adaptive
Sampling for Sensor Networks” by Willett,
Martin, and Nowak. IPSN 2004

Preview subset of All sensors used Only 20% sensors used
256x256 sensors
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<We have a big lake (the Great Lakes specifically)

< Inter-sample spacing matters
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Source: NYTimes 2012
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Hypoxia in Lake Erie N

1987 1988

The hypoxic region is at the lake
bottom, where oxygen is scarce.
We seek to estimate the spatial
extent.
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for a given year. 1998

812729 ’

1999

Estimates based on ~4 sampling
cruises per year, each giving
~360 samples. Estimated ~2500
pixel values.

Figure from “Spatial and Temporal Trends in Lake Erie Hypoxia, 1987-2007". Zhou, Obenour,
Scavia, Johengen, Michalak. ACS Journal of Environmental Science and Technology, 2012.

8/29-30

In black we see the largest % g Ny
observed hypoxic zone of Erie ‘% o—

= (mg/l)
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The Grove

amazon
webservices™

Images courtesy Branko Kerkez, senseplatypus.com, sontek.com,
arduino.cc, forbes.com, amazon.com, arc-ts.umich.edu
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<-Problem formulation
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Problem Formulation M

Our function comes from the class of step functions:

F={f:10,1] = R|f(x) = Ly, () =: fo(x)} .

We wish to recover 6 from n noisy measurements Y;, ¢ = 1,...,n where
v Je(Xi) with probability 1 — p
Y = fe(X) with probability p

and the X; can be chosen based on previous pairs (X;,Y;), j=1,...,¢— 1.

Denote our estimate of 6 after n samples as é\n We consider either the worst-case
or expected error,

AN

en—9| or E{

sup
0€[0,1]

@,,-9” |
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Optimal Sample Complexity

optimal)

worst case expected
(with uniform prior on 6)
adaptive
(binary bisection | supgepg ] 0, — 0) < Qn% E [ 0,, — HH = 2,1%
optimal)
non-adaptive
(uniform grid | suppepo 1y [fn — (9’ < %(nil) E { 0, — QH = i(n-lu)




but worst case distance
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worst case expected
(with uniform prior on @)
suDge 0,1} B — 0| E |6, — 0|
adaptive sample complexity
(binary bisection optimal) < or = o

adaptive distance traveled

(fix desired error e, =1—c¢ =1 —2¢

start at X; = 0)
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Binary search is nothing other than taking a sample at
the 2-quantile of the posterior distribution for 6.

Quantile search generalizes this by instead taking a sample
at the first m-quantile of the posterior distribution for 0.



Quantile Search MSEREEN

Quantile search generalizes this by instead taking a sample
at the first m-quantile of the posterior distribution for 0.

E.g. m=3:

T
| | | | | | |

Choosing m allows for a tradeoff between number of samples
and distance traveled.



Quantile Search Cost
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worst case expected
(with uniform prior on 6)
SUPge (0,11 |On — 0 E |6, — 0|
bisection
sample complexity < 2n1+1 = Qn%
m-quantile search
sample complexity < Zpn =1 (p2+(1-p)?)"
_ m—1
P=
bisection distance traveled
(as desired error € — 0) =1 =1
m-quantile search
distance traveled =1 = 5"

(as desired error € — 0)
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Goal: Minimize the total sampling time subject to a given reconstruction error.
min T =~N +nD

subject to ‘(9 —0,| <e

= time/sample
number of samples

= time/distance

O s =2 o
I

= distance traveled
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Let N be a random variable denoting the samples required to achieve an error
e, and D the distance. Rearranging the expected sample complexity, we have

log(4
E[N] = o8 ? =’
log ((72)” + &)
Denote the sampling time 7'. Then
E[T] = ~E[N]+nE[D]
_ oo+ m._ 1
- T e T T 2m —2)2m — 1)
, m
Xm0

2m — 2



Sample-Distance Tradeoff
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— theoretical
e o simulated

average distance

20

(Top left) Simulated and theoretical expected
error after 20 samples as we vary m,

(Top right) Simulated and theoretical distance
traveled as we vary m, and

(Bottom left) optimal m for v = 60,2
and n = ;2.
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expected sampling time (s)
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To simulate sampling all of Lake Erie, we split
it first in half and then into 16 strips and

perform DQS. In most cases we can sample
the entire boundary in 2-3 days; fast enough
to assume a stationary hypoxic zone.

10000
0

(Bottom left) optimal m for v = 602

samp
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Sampling Time (s) | Speed (m/s) m | Total Time (hrs)
60 4 2 62
60 4 6.64 43
60 2 2 123
60 2 8.92 81
10 4 2 61
10 4 14.63 35
10 2 2 122
10 2 20.26 64

S — To simulate sampling all of Lake Erie, we split
it first in half and then into 16 strips and
perform DQS. In most cases we can sample
the entire boundary in 2-3 days; fast enough
to assume a stationary hypoxic zone.

16000 |-

15000 |

14000 |

13000 |
S

samp

(Bottom left) optimal m for v = 60

12000 |

expected sampling time (s)

11000 -
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<>Probabilistic Quantile Search



Problem Formulation M

Our function comes from the class of step functions:

F={f:10,1] = R|f(x) = 199 (x) =: fo(x)} .

We wish to recover 6 from n noisy measurements Y;, 1 = 1,...,n where
v _ fo(X5) with probability 1 — p
1= fo(Xh) with probability p

and the X; can be chosen based on previous pairs (X;,Y;), j=1,...,i— 1.

You may think of this noise model as modeling a detector where the probability
of false alarm or false detection are the same, e.g. detection after additive
(Gaussian noise.



Noisy case p>0 M s

If we were to update our posterior according to the
measurements without taking the noise probability into
consideration, we'd get lost:

3¢

| | | | | | |

T T T T




Probabilistic Quantile Search | Ehiensase

Rather than sampling at 1/m into the feasible interval, we

sample 1/m into the posterior distribution on 0 (see Burnashev and

Zigangirov, “An interval estimation problem for controlled observations,” Problems in
Information Transmission, 1974 for special case bisection algorithm).

Algorithm 1 Probabilistic Quantile Search (PQS)

1: initialize prior density mo(0) = 1 for 6 € [0, 1]
2: while not converged do

3:  choose X, such that fOX” T (x)dr =1/m

4: Y, + f(Xn)

5. perform Bayesian update to obtain 7,1 (x)
6: end while

7

return 6, such that foen Tna1(x)dr =1/2
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Algorithm 1 Probabilistic Quantile Search (PQS)
1: initialize prior density m(0) = 1 for 0 € [0, 1]
2: while not converged do
3:  choose X,, such that fOX” T (x)dr = 1/m

4: Y, f(Xn)
5. Perform Bayesian update to obtain m,41(x):
6: if Y,, =0 then
7
ST L () mle) @< 1/m
n+1 — m
8: else
9:
p(ﬁ) T () r<1/m
Tn+1(T) m
(1= p) (o) @) @ >1/m
10: end if

11: end while )
12: return 6, such that foen Tna1(x)de =1/2
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Rather than sampling at 1/m into the feasible interval, we
sample 1/m into the posterior distribution on 0.

For m=3, p=0.2:




Sample complexity MO

The discretized PQS algorithm for m > 2 satisfies

n/2
~ -1 2 1 -
sup E Dﬁn — 9[} <2 (m + o p)) .

6c[0,1] m m

This bound matches Castro and Nowak for m=2. In this case,
comparing to O(1/n) error bound given by grid sampling, we
have a (12)"? bound.

It's loose in practice, but finding the expected number of
samples and any distance bounds or expectations is

significantly more technical, because of the less obvious
interaction of sample locations with the posterior in PQS.



Future: Holder smooth Lo e enneene

To generalize we could consider a more general class of functions, Holder smooth
 This is wrong: the idea is that el set at v. A function is a-Holder smooth for

( we have Something that is d > 0 so that Vz : |f(£13) — ’}/| S 0 we have:

unsmooth at the transition. ‘i
J\z) — 5| > clz — 6% .

f(a)t

_
0* X

a=1
Figures courtesy Rui Castro

Results on sample complexity only are known in the case
of binary bisection and for d-dimensional signals that have
the additional assumption of smooth level sets.
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Thank you!

Questions?



