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! Active Learning 

! We have a big lake (the Great Lakes specifically) 
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Active Classifier Learning 

We seek a two class 
linear classifier. 

Suppose we are 
given a small 
number of labels, 
and we can consider 
the remaining 
possible classifiers. 

Where would we 
request a label? 



Guess Who? 

“Is the person male 
or female?” 

“Is she wearing a 
hat?” 

 

 

We try as best as we 
can to cut the 
remaining possibilities 
in half. 

 

 



Active Classifier Learning 

The same principle 
applies here: We 
may choose the 
query that throws 
away half of the 
remaining possible 
linear classifiers. 



Active Threshold Estimation 
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Figure 2: A toy example of estimating a 1-d solar in-
tensity map containing a single changepoint at 70m
using a NIMS type mobile sensor. The sample loca-
tions and observations are shown in (a) for adaptive
survey and (b) for passive survey.

NIMS [2] like sensor suspended on cableways that measures
solar radiation intensity within the forest transect with the
shadow cast by an object constituting a changepoint. We
model a toy example (Figure 2) for estimating this 1-d func-
tion under two scenarios:

I. Measurement noise - Typically the sensor measure-
ments are noisy due to environmental fluctuations and
slight uncertainties in sensor readings. Such noise can
be modelled as a Gaussian random variable. Figure 2
shows the sampling locations and the corresponding
noisy observations made by the mobile sensor with (a)
adaptive sampling using probabilistic bisection and (b)
passive sampling. In the adaptive case, though the
sensor takes longer excursions for the initial samples,
it quickly “homes-in” on the more interesting feature
of the field concentrating most of its measurements
around the changepoint with only a few samples where
the field is constant. For a 100 m transect containing
a changepoint at 70m that needs to be mapped to
a resolution of 0.1 m and assuming noise variance of
0.1, the number of samples required in the adaptive
scheme are exponentially less - only about 10 as op-
posed to 700 samples for passive case. A NIMS sensor
typically moves at 1m/s and takes 1 sec to record a
sample of the solar intensity, which implies that an
adaptive mobile sensor would take 2mins instead of
13 mins to accomplish the task.

II. Sensor fault - We model this case by assuming the
noise Wi is a Bernoulli(p) random variable with p de-
noting the probability that either the sensor fails to
record a reading or the reading is corrupted and has
to be discarded. We simulate the same example as be-
fore for Bernoulli noise with p = 0.2. It was observed

that 20 samples were required with the adaptive path
to achieve the desired resolution of 0.1 m, as opposed
to nearly 700 for non-adaptive path.

For a 2-d transect, the multiscale adaptive sampling tech-
nique developed by Castro et al. [6] can be used for designing
adaptive paths for a mobile sensor. We start with the case of
a single mobile sensor and later extend the result to multiple
mobile sensing network and a network system comprised of
heterogeneous sensors with and without mobility.

The design of the sensing path for a single mobile sensor
can be described as follows. For simplicity, we assume that
the coordinates are scaled so that the area to be monitored
can be described as a unit square or hypercube [0, 1]d. Also,
we only describe the case where the field is piecewise con-
stant, i.e. the variable of interest exhibits a level transition
taking on constant values on either side of the boundary.
If the field is not constant, but say Hölder-α smooth on
either side of the boundary, the path planning is same as
described for the piecewise constant case, except that the
estimator involves a least square degree-⌊α⌋ polynomial fit
to the observations rather than simple averaging [6].

1. Coarse survey - With no prior knowledge of the field,
the mobile sensor starts by doing a coarse passive sur-
vey of the field in a raster scan fashion. The sen-
sor collects n/2 samples at regular intervals along the
coarse survey path of length ℓ. A complexity penal-
ized estimate f̂c is constructed using the n/2 samples
over recursive dyadic partitions of the field accord-
ing to equations (1) and (2), with penalty λ(|π|) =
Cσ2log(n/2)|π|, that is proportional to the number of
leaves |π| and sensor measurement noise σ2. C > 0 is a
constant that depends on the dimension d and smooth-
ness of the field. Notice that this penalizes RDPs with
fine partitions and leaves at maximum depth are re-
tained only if pruning by averaging the observations
would lead to large data fitting errors. The estimator
averages out the noise where the field is smooth (re-
duces the variance where bias is low), while perform-
ing no averaging on the samples around the boundary
(where bias is high). This yields an RDP estimate of
the field with leaves at the greatest depth J providing
a rough location of the boundary.

B = {Regions of [0, 1]d where the coarse estimate

contains leaves at maximum depth}

Since at each depth in the tree, the sidelength of cells
is halved, at maximum depth J the leaves have side-
length 2−J , which is equal to the finest resolution of
1/ℓ provided by a pathlength of ℓ. The volume at this
maximum depth is ℓ−d, which implies that the maxi-
mum possible number of leaves at this depth is ℓd. Of
these, only O(ℓd−1) intersect the boundary since the
boundary occupies a d-1 dimensional subspace in the
monitored region. Thus, |B| = O(ℓd−1).

2. Refinement pass - The mobile sensor is now guided
along the regions identified as containing the boundary
in the coarse survey (set B) to collect an additional n/2
samples in these regions, again traversing a pathlength
ℓ. A complexity penalized estimator f̂r is generated on
each region in the set B, similar to the estimator built
on the entire area in the coarse survey. This confines

(a) (b)

Figure 5: (a) Illustration of a boundary fragment function for d = 2. (b)
Adaptive sampling for boundary fragments. In each vertical stripe one uses
the BZ algorithm to estimate a step function. The final estimate is a piecewise
constant function whose boundary is a stair function.

We now attempt to answer question (Q2), by proposing an active learning
scheme for the piecewise constant class. The scheme is a two-step approach mo-
tivated by the tree-structured estimators for passive learning described above.
Although the ideas and intuition behind the approach are quite simple, the for-
mal analysis of the method is significantly di�cult and cumbersome, therefore
the focus of the presentation is on the algorithm and sketch of the proofs, de-
ferring the details to the references. The main idea is to devise a strategy that
uses the first sampling step to find advantageous locations for new samples, to
be collected at the second step. More precisely in the first step, called the pre-

view step, a rough estimator of f is constructed using n/2 samples (assume for
simplicity that n is even), distributed uniformly over [0, 1]d. In the second step,
called the refinement step, we select n/2 samples near the perceived location
of the boundaries (estimated in the preview step) separating constant regions.
At the end of this process we will have half the samples concentrated in the
perceived vicinity of the boundary set B(f). Since accurately estimating f near
B(f) is key to obtaining faster rates, the strategy described seems quite sensible.
However, it is critical that the preview step is able to detect the boundary with
very high probability. If part of the boundary is missed, then the error incurred
is going to propagate into the final estimate, ultimately degrading the perfor-
mance. Conversely, if too many regions are (incorrectly) detected as boundary
locations in the preview step, then the second step will distribute samples too
liberally and no gains will be achieved. Therefore extreme care must be taken
to accurately detect the boundary in the preview step, as described below.

Preview: The goal of this stage is to provide a coarse estimate of the
location of B(f). Specifically, collect n0 ⌘ n/2 samples at points distributed
uniformly over [0, 1]d. Next proceed by using the passive learning algorithm
described before, but restrict the estimator to RDPs with leafs at a maximum
depth of J = d�1

(d�1)2+d

log(n0/ log(n0)). This ensures that, on average, every
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Learn a 1D transition.  

Figure from “Active Learning for Adaptive 
Mobile Sensing Networks” by Singh, 
Nowak, and Ramanathan. IPSN 2006 

 

Learn a 2D boundary fragment.  

Figure from “Active Learning and Sampling” by 
Castro and Nowak in Foundations and 
Applications of Sensor Management, 2008. 

 



Active Function Estimation 
Estimate a function.  

Figure from “Backcasting: Adaptive 
Sampling for Sensor Networks” by Willett, 
Martin, and Nowak. IPSN 2004 

 

size. Repeat this process again on each sub-square. Repeat
this 1/2 log

2

n times. This gives rise to a complete RDP of
resolution 1/

p
n (the square partition of the sensing domain

shown in Figure 1(a)). The RDP process can be represented
with a quadtree structure. The quadtree can be pruned back
to produce an RDP with non-uniform resolution, as shown
in Figure 1(b).

Fusion 
Center

Fusion 
Center
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Figure 1: Recursive dyadic partitions. (a) A wire-
less sensor network sampling a two-dimensional field
and a complete recursive dyadic partition of the
field. Dots indicate sensor locations and squares in-
dicate the extent of each sensor’s measurement. (b)
A pruned recursive dyadic partition of the field in
(a).

For each RDP, there is an associated quadtree structure
(generally of non-uniform depth corresponding to the non-
uniform resolution of most RDPs). The leafs of each quadtree
represent dyadic (sidelength equal to a power of two) square
regions of the associated partition. For a given RDP and
quadtree, each sensor node belongs to a certain dyadic square.
We consider these squares “clusters” and assume that one of
the sensors in each square serves as a “clusterhead,” which
will assimilate information from the other sensors in the
square, as shown in Figure 2.

Let P denote a certain RDP and define the estimator of
the field on each square of the partition to be the least-
squares fit of a planar model (e.g., platelet) to the mea-
surements in the square. With this in mind, a complexity

penalized estimator is defined as follows. Let ef(P ) denote
a model of the field (based on the least-squares platelet fits
on each square of P ). The empirical measure of perfor-

mance is the sum-of-squared errors between ef(P ) and the
data x = {xi,j}:

R( ef(P ), x) =

p
nX

i,j=1

“
efi,j(P )� xi,j

”
2

(2)

where i, j denotes the location in the field. This measure
is proportional to the negative log likelihood given our as-
sumption of zero-mean Gaussian measurement error in each
sensor; i.e.,

xi,j ⇠ N (fi,j , �
2),

where f is the true field and �2 is the noise variance of each
sensor measurement.

For fixed partition P , the choice of ef(P ) that minimizes

R( ef(P ), x) is simply given by the least-squares fits on each

Figure 2: Hierarchical communication in a wireless
sensor network. On the top, the first level of com-
munication involves clusters of four individual sen-
sors transmitting their measurements to their clus-
terhead. In the center, the next level of communi-
cation is depicted, in which each clusterhead from
the previous level communicates with its clusterhead
(using a multihop protocol). On the bottom, the fi-
nal level of communication is depicted, in which the
clusterheads from the previous level send their es-
timates to a fusion center (upper left-hand corner).
To the right of each field, the corresponding tree is
depicted.
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only a few parameters must be communicated from
the clusterheads to the fusion center.

The following theorem summarizes the performance of the
proposed method.
Theorem: Assume there is a wireless sensor network of n
sensors arranged on a uniform grid over a field composed of

smooth (twice continuously di↵erentiable) regions separated

by (twice continuously di↵erentiable) boundaries. Then,

using the hierarchical adaptive sampling method described

above, the field can be estimated with an MSE of D(n) =
O((log2 n/n)1/2) using an average of E(n) = O(e(n) · n3/4)
units of energy.

This result is derived in the Appendix.
The MSE above is the same as that which we achieved for

a piecewise smooth field using all n sensors and O(e(n) · n)
units of energy [2]. Thus, using adaptive sampling we reduce
the amount of energy required by a factor of n1/4.

This has important implications for the deployment of
a practical system. Using the proposed method, a system
developer should be able to determine how many sensors to
engage in order to achieve a desired accuracy. It is known in
advance that the presence of a boundary will dominate the
error, but the location of the boundary is unknown. Thus
the sensors should be distributed evenly across the field. If
no boundary is present, then the subset of sensors activated
in the preview stage is su�cient to achieve the target error.
If a boundary is present, then the preview stage will deter-
mine the approximate location of the boundary and adap-
tively activate more sensors in order to achieve the target
error. To illustrate the significance of this gain, we consider
estimating a field with n = 10, 000 sensors. Then the total
energy expenditure with adaptive sampling is O(e(n) · 103)
energy units instead of the O(e(n)·104) energy units required
without adaptive sampling. Similar gains are seen in terms
of activation energy. Thus, a system of 10, 000 sensors, each
equipped with batteries to provide one year of continuous
operation, could remain operational up to 10 years using
adaptive sampling.

5. EXPERIMENTAL RESULTS
We simulated the proposed method in four di↵erent sit-

uations presented below (Figure 5 through Figure 8). In
each case, we show the preview partition superimposed over
the noisy field, the preview estimate, and the final refined
estimate. Also, for comparison we show the field estimate
obtained using all n sensors. The cases depicted in Figures 5
and 6 involve fields with a boundary. Notice that the visual
quality and the MSEs of the adaptive sampling estimate are
comparable to those obtained using all n sensors. In Fig-
ures 7 and 8, the field does not contain a boundary and the
preview and refined estimates are identical (no additional
nodes are activated after the preview stage, as expected).

The MSEs for each case are presented Table 1. The MSE
of the preview estimate is denoted MSEp, the final refined
estimate’s MSE is denoted MSEr, and the MSE of the es-
timator based on all n sensors is denoted MSEn. In the
cases containing boundaries, we see that MSEr is reduced
by roughly a factor of O(n1/4) compared to MSEp, as the-
oretically predicted in the appendix. This is due to the
increase in spatial resolution near the boundary after the
refinement step. An empirical calculation of the energy re-
duction, compared to activating all n sensors, is also listed

in Table 1. The energy reduction is simply the fraction of
the number of activated sensors relative to the total number
n.

(a) (b)

(c) (d)

Figure 5: Estimation of a piecewise smooth field
with �2 = 1/10 and 256 ⇥ 256 sensors. (a) Preview
partition superimposed over noisy field. (b) Esti-
mate using all n sensors without adaptive sampling
(MSE = 6.26 ⇥ 10�4). (c) Preview estimate (MSE =
6.06⇥ 10�3). (d) Final estimate (MSE = 1.32⇥ 10�3).

6. CONCLUSIONS
This paper proposes an adaptive approach to energy con-

servation in sensor networks. This method operates by first
having a small subset of the wireless sensors communicate
their information to a fusion center. This provides an initial
estimate of the environment being sensed, and guides the
allocation of additional network resources. The basic idea is
potentially applicable to a wide variety of sensor network-
ing problems, but to demonstrate its potential we focused
on one particular case.

We analyzed the potential of adaptive sampling in the con-
text of field estimation. We assume the field being sensed
is supported on one square meter, and that a total of n
wireless sensors were deployed uniformly over the square.
Adaptive sampling, in this case, involves a two step process:
1. n3/4 sensors are activated to produce a coarse estimate
of the field at the fusion center; 2. based on the coarse esti-
mate, the fusion center determines which regions of the field
may contain boundaries or sharply varying behavior, and
activates up to O(n3/4) additional sensors in those regions;
the additional sensors provide a finer resolution estimates in
those regions and the refined estimates are communicated
to the fusion center. Theoretical analysis demonstrates that
the final estimate has an MSE of D(n) = O(n�1/2), and
each stage requires O(n3/4) communication hops. The MSE
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Hypoxia in Lake Erie 

Figure from “Spatial and Temporal Trends in Lake Erie Hypoxia, 1987−2007”. Zhou, Obenour, 
Scavia, Johengen, Michalak. ACS Journal of Environmental Science and Technology, 2012. 

Substantial deepening of the thermocline between August and
September, as indicated by a decrease in hypolimnion thickness
of more than 2 m, is associated with early reoxygenation of the
basin, and a corresponding decrease in the hypoxic extent. This
decrease in hypoxic extent is statistically significant for four of
the six such years for which DO data were available in both
August and September (p ≅ 0 for 1990, 2001, 2002; p = 0.05
for 1988; p = 0.06 for 1998; p = 0.18 for 1993). Conversely, a
smaller change in the hypolimnion thickness is consistent with
more stable stratification and an expansion of hypoxic extent
between August and September. This expansion is significant
for six of the seven such years (p ≅ 0 for 1987, 1989, 2007;
p = 0.01 for 1997, 2005; p = 0.02 for 2003; p = 0.13 for 1999).
This finding illustrates the importance of timing and thermal
structure on the size of the hypoxic zone; and these factors
should be considered (along with biological drivers, e.g.,
nutrient stimulated productivity) when exploring the inter-
annual variability of hypoxia in Lake Erie.
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Figure 3. Comparison of (a) estimates from this study to (b) estimates from Burns et al.8 In panel (a), white contours represent the 2 mg/L
boundary, while areas with estimated concentrations below 1 mg/L are presented in black for consistency with Burns et al.8 Subplots in (a) are based
on the largest observed hypoxic zone for a given year (Figure S2).

Figure 4. Predicted hypoxic extent based on average DO
concentration from the ten index sampling locations and eq 16
(R2 = 0.97). GLNPO, NWRI, and GLERL data are those from
Figure S2, Tables S1 and S2, together with 95% confidence intervals.

Environmental Science & Technology Article

dx.doi.org/10.1021/es303401b | Environ. Sci. Technol. 2013, 47, 899−905904

The hypoxic region is at the lake 
bottom, where oxygen is scarce. 
We seek to estimate the spatial 
extent. 

In black we see the largest 
observed hypoxic zone of Erie 
for a given year.  

Estimates based on ~4 sampling 
cruises per year, each giving 
~360 samples. Estimated ~2500 
pixel values. 

 



The sampling system 
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The Great Outdoors!
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Our function comes from the class of step functions:

F = {f : [0, 1] ! R|f(x) = 1[0,✓)(x) =: f✓(x)} .

We wish to recover ✓ from n noisy measurements Yi, i = 1, . . . , n where

Yi =

⇢
f✓(Xi) with probability 1� p

1� f✓(Xi) with probability p

and the Xi can be chosen based on previous pairs (Xj , Yj), j = 1, . . . , i� 1.

Denote our estimate of ✓ after n samples as b✓n. We consider either the worst-case
or expected error,

sup
✓2[0,1]

���b✓n � ✓

��� or E
h���b✓n � ✓

���
i
.

The best non-adaptive sample placement is on a grid

{Xi}ni=1 =

⇢
1

n+ 1
,

2

n+ 1
, . . . ,

n

n+ 1

�

and the worst case error will be

sup
✓2[0,1]

���b✓n � ✓

��� 
1

2(n+ 1)
.

The expected error given a uniform distribution on ✓ will be

E
h���b✓n � ✓

���
i
=

1

4(n+ 1)
.

1



Sample Complexity p=0 



Optimal Sample Complexity 

The best adaptive sample placement uses binary bisection (see Castro and
Nowak 2008), and the worst case error is bounded by

sup
✓2[0,1]

���b✓n � ✓

��� 
1

2n+1
.

The expected error given a uniform distribution on ✓ will be

E
h���b✓n � ✓

���
i
=

1

2n+2
.

Sampling Time (s) Speed (m/s) m Total Time (hrs)

60 4 2 62
60 4 6.64 43

60 2 2 123
60 2 8.92 81

10 4 2 61
10 4 14.63 35

10 2 2 122
10 2 20.26 64

worst case expected
(with uniform prior on ✓)

adaptive

(binary bisection sup✓2[0,1]

���b✓n � ✓

���  1
2n+1 E

h���b✓n � ✓

���
i
= 1

2n+2

optimal)
non-adaptive

(uniform grid sup✓2[0,1]

���b✓n � ✓

���  1
2

1
(n+1) E

h���b✓n � ✓

���
i
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… but worst case distance 

The best adaptive sample placement uses binary bisection (see Castro and
Nowak 2008), and the worst case error is bounded by

sup
✓2[0,1]

���b✓n � ✓

��� 
1

2n+1
.

The expected error given a uniform distribution on ✓ will be

E
h���b✓n � ✓

���
i
=

1

2n+2
.

Sampling Time (s) Speed (m/s) m Total Time (hrs)

60 4 2 62
60 4 6.64 43

60 2 2 123
60 2 8.92 81

10 4 2 61
10 4 14.63 35

10 2 2 122
10 2 20.26 64

worst case expected
(with uniform prior on ✓)

adaptive

(binary bisection sup✓2[0,1]
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(n+1)

optimal)

worst case expected
(with uniform prior on ✓)

sup✓2[0,1]

���b✓n � ✓

��� E
h���b✓n � ✓

���
i

adaptive sample complexity
(binary bisection optimal)  1

2n+1 = 1
2n+2

adaptive distance traveled
(fix desired error ✏, = 1� ✏ = 1� 2✏
start at Xi = 0)
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Quantile Search 

Binary search is nothing other than taking a sample at 
the 2-quantile of the posterior distribution for θ. 

Quantile search generalizes this by instead taking a sample 
at the first m-quantile of the posterior distribution for θ. 

  



Quantile Search 

Quantile search generalizes this by instead taking a sample 
at the first m-quantile of the posterior distribution for θ. 

E.g. m=3: 

  

Choosing m allows for a tradeoff between number of samples 
and distance traveled. 

  



Quantile Search Cost Binary search is nothing other than taking a sample at the 2-quantile of the
current posterior.

worst case expected
(with uniform prior on ✓)

sup✓2[0,1]
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��� E
h���b✓n � ✓

���
i

bisection
sample complexity  1
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sample complexity  1
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4
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2 + (1� ⇢)2
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⇢ = m�1
m

bisection distance traveled
(as desired error ✏ ! 0) = 1 = 1

m-quantile search
distance traveled = 1 = m

2m�2
(as desired error ✏ ! 0)
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Sample-Distance Tradeoff 

Algorithm 1 Probabilistic Quantile Search (PQS)

1: initialize prior density ⇡0(✓) = 1 for ✓ 2 [0, 1]
2: while not converged do

3: choose Xn such that
RXn

0 ⇡n(x)dx = 1/m
4: Yn  f(Xn)
5: Perform Bayesian update to obtain ⇡n+1(x):
6: if Yn = 0 then

7:

⇡n+1(x) =

8
<

:
(1� p)

⇣
m

1+(m�2)p

⌘
⇡n(x) x  1/m

p

⇣
m

1+(m�2)p

⌘
⇡n(x) x > 1/m

8: else

9:

⇡n+1(x) =

8
<

:
p

⇣
m

1+(m�2)p

⌘
⇡n(x) x  1/m

(1� p)
⇣

m
1+(m�2)p

⌘
⇡n(x) x > 1/m

10: end if

11: end while

12: return ✓̂n such that
R ✓̂n
0 ⇡n+1(x)dx = 1/2

The discretized PQS algorithm for m � 2 satisfies

sup
✓2[0,1]

E
h
|b✓n � ✓|

i
 2

 
m� 1

m

+
2
p

p(1� p)

m

!n/2

.

Goal: Minimize the total sampling time subject to a given reconstruction error.

min T = �N + ⌘D

subject to
���✓ � ✓̂n

���  ✏

� = time/sample

N = number of samples

⌘ = time/distance

D = distance traveled

Let N be a random variable denoting the samples required to achieve an error
", and D the distance. Rearranging the expected sample complexity, we have

E[N ] =
log(4")

log
⇣�

m�1
m

�2
+ 1

m2

⌘ ⌘ n

0
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Sample-Distance Tradeoff 

Algorithm 1 Probabilistic Quantile Search (PQS)

1: initialize prior density ⇡0(✓) = 1 for ✓ 2 [0, 1]
2: while not converged do
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4: Yn  f(Xn)
5: perform Bayesian update to obtain ⇡n+1(x)
6: end while

7: return ✓̂n such that
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Goal: Minimize the total sampling time subject to a given reconstruction error.

min T = �N + ⌘D

subject to kf � f̂nk  ✏

� = time/sample

N = number of samples

⌘ = time/distance

D = distance traveled

Let N be a random variable denoting the samples required to achieve an error
", and D the distance. Rearranging the expected sample complexity, we have
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Denote the sampling time T . Then
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Sample-Distance Tradeoff 
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To simulate sampling all of Lake Erie, we split 
it first in half and then into 16 strips and 

perform DQS. In most cases we can sample 
the entire boundary in 2-3 days; fast enough 

to assume a stationary hypoxic zone. 
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perform DQS. In most cases we can sample 
the entire boundary in 2-3 days; fast enough 

to assume a stationary hypoxic zone. 



Outline 

! Active Learning 

! We have a big lake (the Great Lakes specifically) 

!  Inter-sample spacing matters 

! Problem formulation 

! Deterministic Quantile Search 

! Probabilistic Quantile Search  

 



Problem Formulation 

TCS April 2015

Laura Balzano

University of Michigan

April 24, 2015

Our function comes from the class of step functions:

F = {f : [0, 1] ! R|f(x) = 1[0,✓)(x) =: f✓(x)} .

We wish to recover ✓ from n noisy measurements Yi, i = 1, . . . , n where

Yi =

⇢
f✓(Xi) with probability 1� p

1� f✓(Xi) with probability p

and the Xi can be chosen based on previous pairs (Xj , Yj), j = 1, . . . , i� 1.

Our function comes from the class of step functions:

F = {f : [0, 1] ! R|f(x) = 1[0,✓)(x) =: f✓(x)} .

We wish to recover ✓ from n noisy measurements Yi, i = 1, . . . , n where

Yi =

⇢
f✓(Xi) with probability 1� p

1� f✓(Xi) with probability p

and the Xi can be chosen based on previous pairs (Xj , Yj), j = 1, . . . , i� 1.

You may think of this noise model as modeling a detector where the probability
of false alarm or false detection are the same, e.g. detection after additive
Gaussian noise.

Denote our estimate of ✓ after n samples as b✓n. We consider either the worst-case
or expected error,

sup
✓2[0,1]

���b✓n � ✓

��� or E
h���b✓n � ✓

���
i
.

1



Noisy case p>0 

If we were to update our posterior according to the 
measurements without taking the noise probability into 
consideration, we’d get lost: 

  



Probabilistic Quantile Search 

Rather than sampling at 1/m into the feasible interval, we 
sample 1/m into the posterior distribution on θ (See Burnashev and 
Zigangirov, “An interval estimation problem for controlled observations,” Problems in 
Information Transmission, 1974 for special case bisection algorithm). 

Algorithm 1 Probabilistic Quantile Search (PQS)

1: initialize prior density ⇡0(✓) = 1 for ✓ 2 [0, 1]
2: while not converged do

3: choose Xn such that
RXn

0 ⇡n(x)dx = 1/m
4: Yn  f(Xn)
5: perform Bayesian update to obtain ⇡n+1(x)
6: end while

7: return ✓̂n such that
R ✓̂n
0 ⇡n+1(x)dx = 1/2

4



Probabilistic Quantile Search 
Algorithm 1 Probabilistic Quantile Search (PQS)

1: initialize prior density ⇡0(✓) = 1 for ✓ 2 [0, 1]
2: while not converged do

3: choose Xn such that
RXn

0 ⇡n(x)dx = 1/m
4: Yn  f(Xn)
5: Perform Bayesian update to obtain ⇡n+1(x):
6: if Yn = 0 then

7:

⇡n+1(x) =

8
<

:
(1� p)

⇣
m

1+(m�2)p

⌘
⇡n(x) x  1/m

p

⇣
m

1+(m�2)p

⌘
⇡n(x) x > 1/m

8: else

9:

⇡n+1(x) =

8
<

:
p

⇣
m

1+(m�2)p

⌘
⇡n(x) x  1/m

(1� p)
⇣

m
1+(m�2)p

⌘
⇡n(x) x > 1/m

10: end if

11: end while

12: return ✓̂n such that
R ✓̂n
0 ⇡n+1(x)dx = 1/2

The discretized PQS algorithm for m � 2 satisfies

sup
✓2[0,1]

E
h
|b✓n � ✓|

i
 2

 
m� 1

m

+
2
p

p(1� p)

m

!n/2

.

Goal: Minimize the total sampling time subject to a given reconstruction error.

min T = �N + ⌘D

subject to kf � f̂nk  ✏

� = time/sample

N = number of samples

⌘ = time/distance

D = distance traveled

Let N be a random variable denoting the samples required to achieve an error
", and D the distance. Rearranging the expected sample complexity, we have

E[N ] =
log(4")

log
⇣�

m�1
m

�2
+ 1

m2

⌘ ⌘ n

0
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Probabilistic Quantile Search 

Rather than sampling at 1/m into the feasible interval, we 
sample 1/m into the posterior distribution on θ.  

For m=3 , p=0.2: 



Sample complexity 

Algorithm 1 Probabilistic Quantile Search (PQS)

1: initialize prior density ⇡0(✓) = 1 for ✓ 2 [0, 1]
2: while not converged do

3: choose Xn such that
RXn

0 ⇡n(x)dx = 1/m
4: Yn  f(Xn)
5: perform Bayesian update to obtain ⇡n+1(x)
6: end while

7: return ✓̂n such that
R ✓̂n
0 ⇡n+1(x)dx = 1/2

The discretized PQS algorithm for m � 2 satisfies
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Goal: Minimize the total sampling time subject to a given reconstruction error.

min T = �N + ⌘D

subject to kf � f̂nk  ✏

� = time/sample

N = number of samples

⌘ = time/distance

D = distance traveled

Let N be a random variable denoting the samples required to achieve an error
", and D the distance. Rearranging the expected sample complexity, we have

E[N ] =
log(4")

log
⇣�

m�1
m

�2
+ 1

m2

⌘ ⌘ n

0

Denote the sampling time T . Then

E[T ] = �E[N ] + ⌘E[D]

= �n

0 + ⌘

✓
m

2m� 2
� 1

(2m� 2)(2m� 1)n0

◆

⇡ �n

0 + ⌘

m

2m� 2
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This bound matches Castro and Nowak for m=2. In this case, 
comparing to O(1/n) error bound given by grid sampling, we 
have a (½)n/2 bound. 

It’s loose in practice, but finding the expected number of 
samples and any distance bounds or expectations is 
significantly more technical, because of the less obvious 
interaction of sample locations with the posterior in PQS. 



Future: Hölder smooth 

Results on sample complexity only are known in the case 
of binary bisection and for d-dimensional signals that have 
the additional assumption of smooth level sets.  

A Simple one-dimensional Problem 

Denote the sampling time T . Then

E[T ] = �E[N ] + ⌘E[D]

= �n

0 + ⌘

✓
m

2m� 2
� 1

(2m� 2)(2m� 1)n0

◆

⇡ �n

0 + ⌘

m

2m� 2

To generalize we could consider a more general class of functions, Hölder smooth
functions, and estimate the level set at �. A function is ↵-Hölder smooth for
↵ � 0 if there exist constants c, � > 0 so that 8x : |f(x)� �|  � we have:

|f(x)� �| � c|x� ✓

⇤|↵ .
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Figures courtesy Rui Castro 

This is wrong: the idea is that 
we have something that is 
unsmooth at the transition. 



Thank you!  
 
Questions? 


