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Introduction Recommender system Labeler selection Conclusion

The power of crowdsourcing

Tapping into enormous resources in sensing and processing:

• Data collection: participatory sensing, user-generated map

• Data processing: image labeling, annotation

• Recommendation: rating of movies, news, restaurants, services

• Social studies: opinion survey, the science of opinion survey
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Scenario I: recommender systems

E.g., Yelp, movie reviews, news feed

• A user shares experience and opinion

• Measure of quality subjective: not all ratings should be valued
equally
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Scenario II: crowdsourcing markets

E.g., using AMTs

Labeling Time 

Aggregation 

Assignment 

Labelers 

0,0,1 1,0,1 0,1,0 

0 1 0 

• Paid workers perform computational tasks.

• Measure of quality objective but hard to evaluate: competence,
bias, irresponsible behavior, etc.
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Our objective

To make the most effective use of the crowdsourcing system

• Cost in having large amount of data labeled is non-trivial

• There may also be time constraint

A sequential/online learning framework

• Over time learn which labelers are more competent, or whose
reviews/opinion should be valued more.

• Closed-loop, causal.
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Multiarmed bandit (MAB) problems

A sequential decision and learning framework:

• Objective: select the best of a set of choices (“arms”)

• Principle: repeated sampling of different choices (“exploration”),
while controlling how often each choice is used based on their
empirical quality (“exploitation”).

• Performance measure: “regret” – difference between an algorithm
and a benchmark.

Challenge in crowdsourcing: ground truth

• True label of data remains unknown

• If view each labeler as a choice/arm: unknown quality of outcome
(“reward”).
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Key ideas and features

Dealing with lack of ground truth:

• Recommender system: input from others is calibrated against
one’s own experience

• Labeler selection: mild assumption on the collective quality of the
crowd; quality of an individual is estimated against the crowd.

Online and offline uses:

• Learning occurs as data/labeling tasks arrive.

• Can be equally used offline by processing data sequentially.

Performance measure

• Weak regret: comparing against optimal static selections.

• Will also compare with offline methods.
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Outline of the talk

The recommender system problem

• Formulation and main results

• Experiments using MovieLens data

The labeler section problem

• Formulation and main results

• Experiments using a set of AMT data

Discussion and conclusion
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Model

Users/Reviewers and options:

• M users/reviewers: i , j ∈ {1, 2, ...,M}.

• Each has access to N options k , l ∈ {1, 2, ...,N}.

• At each time step a user can choose up to K options: ai (t).

Rewards:

• An IID random reward r il (t), both user and option dependent.

• Mean reward (unknown to the user): µi
l 6= µi

k , l 6= k,∀i , i.e.,
different options present distinct values to a user.
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Performance measure

Weak regret:

R i,a(T ) = T ·
∑
k∈N i

K

µi
k − E[

T∑
t=1

∑
k∈ai (t)

r ik(t)]

A user’s optimal selection (reward-maximization): top-K set N i
K .

• General goal is to achieve R i,a(T ) = o(T ).

• Existing approach can achieve log regret uniform in time.
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Example: UCB1 [Auer et all 2002]

Single-play version; extendable to multiple-play

Initialization: for t ≤ N, play arm/choice t, t = t + 1

While t > N

• for each choice k, calculate its sample mean:

r̄ ik(t) =
r ik(1) + r ik(2) + ...+ r ik(ni

k(t))

ni
k(t)

• its index:

g i
k,t,ni

k
(t) = r̄ ik(t) +

√
L log t

ni
k(t)

, ∀k

• play the arm with the highest index; t = t + 1
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Key observation

A user sees and utilizes its own samples in learning.

• Can we improve this by leveraging other users’ experience?

• Second-hand learning in addition to first-hand learning.

Basic idea:

• Estimate the difference between two users.

• Use this to calibrate others’ observations or decisions so that they
could be used as one’s own.
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How to model information exchange

Full information exchange:

• Users share their decisions and subsequent rewards (k, r ik(t)).

Partial information exchange:

• Only share decisions on which options were used without
revealing evaluation (k).

Liu (Michigan) Crowd-Learning March 2015 13 / 42



Introduction Recommender system Labeler selection Conclusion

Full information exchange
how to measure pairwise difference

Estimated distortion:

δ̃i,jk (t) =

∑
s≤t log r ik(s)/nik(t)∑
s≤t log r jk(s)/njk(t)

.

Converted average reward from j :

πi,j(r̄ jk(t)) =
∑
s≤t

(r jk(s))δ̃
i,j
k (t)/njk(t)
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An index algorithm

Original UCB1 index: r̄ ik(t) +
√

2 log t
nik (t)

Modified index: choose K highest in this value

(U full):

r̄ ik(t) · nik(t) +

converted rewards︷ ︸︸ ︷∑
j 6=i

πi,j(r̄ jk(t)) · njk(t)

∑
j n

j
k(t)

+

√
2 log t∑
j n

j
k(t)

,

• Converted average reward from j :

πi,j(r̄ jk(t)) =
∑
s≤t

(r jk(s))δ̃
i,j
k (t)/njk(t)
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Regret bound

Theorem

The weak regret of user i under U full is upper bounded by

R i
U full(T ) ≤

∑
k∈N i

K

⌈
4(
√

2 + κMγ)2 logT

M ·∆i
k

⌉
+ const.

where ∆i
k = µi

K − µi
k , assuming minj{E [log r jk ]− δi,jk } > 0, and

r ik = (r jk)δ
i,j
k .

Compared with UCB1: Rucb1(T ) ≤
∑

k∈NK
d 8 log T

∆k
e+ const.

• When M large roughly
√
M-fold improvement.
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Partial information exchange

Only sees others’ choices, not rewards

• Will further distinguish users by their preference groups.

• Within the same preference group users have the same preference
ordering among all choices: µi

1 > µi
2 > · · · > µi

N for all i in the
group.
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Uniform group preference

Keep track of sample frequency:

• Track nk(t) =
∑

i n
i
k(t); compute frequency

βk(t) :=
nk(t)∑
l nl(t)

Modified index:

(U part): r̄ ik(t)− α(1− βk(t))

√
log t

nik(t)︸ ︷︷ ︸
Group recommendation

+

√
2 log t

nik(t)

• α: the weight given to others’ choices.
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Non-uniform group preferences

Additional technical hurdles:

• Assume known set of preferences but unknown group affiliation.

• Need to perform group identification

• Keep track of the number of times user j chooses option k.

• Estimate j ’s preference by ordering the sample frequency.

• Place j in the group with best match in preference ordering.

• Discount choices made by members of a different group.

• Similar results can be obtained.
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Experiment I: M = 10,N = 5,K = 3

Uniform preference; rewards exp rv; distortion Gaussian
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(L) comparing full information exchange with UCB1 applied individually,
and applied centrally with known distortion.

(R) comparing partial information exchange with UCB1 applied individually.
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Experiment II: MovieLens data

A good dataset though not ideal for our intended use

• Collected via a movie recommendation system

• We will use MovieLens-1M dataset: containing 1M rating records
provided by 6040 users on 3952 movies from 18 genres, from
April 25, 2000 to February 28, 2003.

• Each rating on a scale of 1-5.

• In general, each reviewer contributes to multiple reviews: ∼70%
have more than 50 reviews.

Can we provide better recommendation?

• Predict how a user is going to rate movies given his and other
users’ reviews in the past.

• The decision aspect of the learning algorithm is not captured.
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MovieLens: methodology

• Discrete time steps clocked by the review arrivals.

• Bundle movies into 18 genres (action, adventure, comedy, etc),
each representing an option/arm:

• ensure that each option remains available for each reviewer

• lose the finer distinction between movies of the same genre

• prediction is thus for a whole genre, used as a proxy for a specific
movie within that genre.

• Use full information exchange index

• we will only utilize users estimated to be in the same group (same
preference ordering).

• Prediction performance measured by error and squared error
averaged over the total number of reviews received by time t.
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The recommendation algorithm

At time t, given i ’s review r ik(t) for movie k :

• update i ’s preference ranking over options/genres;

• update i ’s similarity group: reviewers that share the same set of
top K preferred options as i ;

• estimate the distortion between i and those in its similarity group;

• update i ’s rating for each option by including rating from those in
its similarity group corrected by the estimated distortion;

• repeat for all reviews arriving at time t.

At the end of step t, obtain estimated rating for all reviewers and all
genres.
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Algorithm used online

Prediction at each time step
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Individual
Crowd learning

• Prediction becomes more accurate with more past samples.

• Group learning outperforms individual learning.

• Downward trend not monotonic due to arrivals of new movies.
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Algorithm used offline

Offline estimation result; comparison with the following

• SoCo, a social network and contextual information aided
recommendation system. A random decision tree is adopted to
partition the original user-item-rating matrix (user-movie-rating matrix
in our context) so that items with similar contexts are grouped.

• RPMF, Random Partition Matrix Factorization, a contextual
collaborative filtering method based on a tree constructed by using
random partition techniques.

• MF, basic matrix factorization technique over the user-item matrix.

Algorithm Crowd Ind. SoCo RPMF MF

Avg. Error 0.6880 0.8145 0.7066 0.7223 0.7668
RMSE 0.9054 1.0279 0.8722 0.8956 0.9374
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Discussion

Combination of learning from direct and indirect experience

• Estimation of similarity groups and pairwise distortion effectively
allows us to utilize a larger set of samples.

Our algorithm does not rely on exogenous social or contextual
information

• However, the estimation of similarity groups introduces a type of
social connectivity among users.

In settings where it’s unclear whether preferences are uniform or
non-uniform:

• can simply assume it to be the latter and do as we did in the
MovieLens experiment.
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Outline of the talk

The recommender system problem

• Formulation and main results

• Experiments using MovieLens data

The labeler section problem

• Formulation and main results

• Experiments using a set of AMT data

Discussion and conclusion
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Labeler selection

Labeling Time 

Aggregation 

Assignment 

Labelers 

0,0,1 1,0,1 0,1,0 

0 1 0 

• M labelers; labelers i has accuracy pi (can be task-dependent).

• No two exactly the same: pi 6= pj for i 6= j , and 0 < pi < 1, ∀i .
• Collective quality: p̄ :=

∑
i pi/M > 1/2.

• Unlabeled tasks arrive at t = 1, 2, · · · .
• User selects a subset St of labelers for task at t.

• Labeling payment of ci for each task performed by labeler i .
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Labeling outcome/Information aggregation

Aggregating results from multiple labelers:

• A task receives a set of labels: {Li (t)}i∈St .

• Use simple majority voting or weighted majority voting to
compute the label output: L∗(t).

• Probability of correct labeling outcome: π(St); well defined
function of pi s.

• Optimal set of labelers: S∗ that maximizes π(S).

Accuracy of labeling outcome:

• Probability that a simple majority vote over all M labelers is
correct: amin := P(

∑
i Xi/M > 1/2).

• If p̄ > 1/2 and M > log 2
p̄−1/2

, then amin > 1/2.
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Obtaining S∗

Assuming we know {pi}, S∗ can be obtained using a simple linear
search

Theorem

Under the simple majority voting rule, |S∗| is an odd number.
Furthermore, S∗ is monotonic: if i ∈ S∗ and j 6∈ S∗, then we must
have pi > pj .
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An online learning algorithm

Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

There is a set of tasks E (t) (∼ log t) used for testing purposes.

• These or their independent and identical variants are repeatedly
assigned to the labelers (∼ log t).
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Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Two types of time steps:

• Exploration: all M labelers are used. Exploration is entered if (1)
the number of testers falls below a threshold (∼ log t), or if (2)
the number of times a tester has been tested falls below a
threshold (∼ log t).

• Exploitation: the estimated S̃∗ is used to label the arriving task
based on the current estimated {p̃i}.

Liu (Michigan) Crowd-Learning March 2015 32 / 42



Introduction Recommender system Labeler selection Conclusion

Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Three types of tasks:

• Testers: those arriving to find (1) true and (2) false. These are
added to E (t) and are repeatedly used to collect independent
labels whenever (2) is true subsequently.

• Throw-aways: those arriving to find (2) true. These are given a
random label.

• Keepers: those arriving to find both (1) and (2) false. These are
given a label outcome using the best estimated set of labelers.
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Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Accuracy update

• Estimated label on tester k at time t: majority label over all test
outcomes up to time t.

• p̃i at time t: the % of times i ’s label matches the majority vote
known at t out of all tests on all testers.
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Regret

Comparing with the optimal selection (static):

R(T ) = Tπ(S∗)− E [
T∑
t=1

π(St)]

Main result:

R(T ) ≤ Const(S∗,∆max,∆min, δmax, δmin, amin) log2(T ) + Const

• ∆max = maxS 6=S∗ π(S∗)− π(S), δmax = maxi 6=j |pi − pj |.

• First term due to exploration; second due to exploitation.

• Can obtain similar result on the cost C (T ).
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Discussion

Relaxing some assumptions

• Re-assignment of the testers after random delay

• Improve the bound by improving amin: weed out bad labelers.

Weighted majority voting rule

• Each labeler i ’s decision is weighed by log pi
1−pi .

• Have to account for additional error in estimating the weights
when determining label outcome.

• A larger constant: slower convergence to a better target.
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Experiment I: simulation with M = 5

Performance comparison: labeler selection v.s. full crowd-sourcing
(simple majority vote)
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Comparing weighted and simple majority vote
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Experiment II: on a real AMT dataset

• Contains 1,000 images each labeled by the same set of 5 AMTs.

• Labels are on a scale from 0 to 5, indicating how many scenes are
seen from each image.

• A second dataset summarizing keywords for scenes of each image:
use this count as the ground truth.

AMT1 AMT2 AMT3 AMT4 AMT5

# of disagree 348 353 376 338 441

Table : Total number of disagreement each AMT has
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Performance comparison
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(L) AMT 5 was quickly weeded out; eventually settled on the optimal
set of AMTs 1, 2, and 4.

(R) CDF of all images’ labeling error at the end of this process.
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Conclusion

We discussed two problems

• How to make better recommendation for a user by considering
more heavily opinions of other like-minded users.

• UCB1-like group learning algorithms.

• Outperforms individual learning.

• How to select the best set of labelers over a sequence of tasks.

• An algorithm that estimates labeler’s quality by comparing against
(weighted) majority vote.

• New regret bound.

Currently under investigation

• Lower bound on the regret in the labeler selection problem.

• Generalization to sequential classifier design.
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