On *extremal* auxiliaries in network information theory

Chandra Nair

Dept. of Information Engineering
The Chinese University of Hong Kong

Mar 30, 2015
The mathematics of digital communication [Shannon ’48]

A sender X communicates to receiver Y over a noisy channel $q(y|x)$.

The maximum rate that can be reliably transmitted (using blocks)

$$C = \max_{p(x)} I(X; Y).$$
What if there are more than one sender/receiver?
Can we obtain a similar *capacity region*?
What if there are more than one sender/receiver?
Can we obtain a similar capacity region?

The answer is mostly *NO*, i.e. we do not know the capacity regions.

- **Notable Exception**: Multiple access channel
Goal: Compute *Capacity Region* or set of achievable rates \((R_1, R_2)\)?
Goal: compute *Capacity Region* or set of achievable rates (R_1, R_2)?
AN OBSERVATION (FOLK-LORE)

For these two problems

- there are achievable regions (one for each) whose optimality or sub-optimality had not been established for over 30 years!
- for both these regions, there is a way to test the optimality or sub-optimality
For these two problems
- there are achievable regions (one for each) whose optimality or sub-optimality had not been established for over 30 years!
- for both these regions, there is a way to test the optimality or sub-optimality
- the testing procedure: infinite computational resources
 - if suboptimal, the procedure terminates in finite time
For these two problems

- there are achievable regions (one for each) whose **optimality or sub-optimality** had not been established for over 30 years!
- for both these regions, there is a way to test the **optimality or sub-optimality**
- the testing procedure: **infinite computational resources**
 - if suboptimal, the procedure terminates in finite time

Testing strategy: Suppose **some one** gives you an achievable strategy

- for any channel \(q \), it yields a computable region \(A(q) \)
- as \(n \to \infty \), the normalized region \(\frac{1}{n} A(q \otimes \cdots \otimes q) \to C \)
AN OBSERVATION (FOLK-LORE)

For these two problems

- there are achievable regions (one for each) whose **optimality** or **sub-optimality** had not been established for over 30 years!
- for both these regions, there is a way to test the **optimality** or **sub-optimality**

- the testing procedure: **infinite computational resources**
 - if suboptimal, the procedure terminates in finite time

Testing strategy: Suppose some one gives you an achievable strategy

- for any channel q, it yields a computable region $A(q)$
- as $n \to \infty$, the normalized region $\frac{1}{n} A(q \otimes \cdots \otimes q) \to C$

then it is enough to test whether

\[
A(q) = \frac{1}{2} A(q \otimes q) \quad \forall q \quad \text{(optimal)}
\]

\[
A(q) \subsetneq \frac{1}{2} A(q \otimes q) \quad \text{for some } q \quad \text{(sub-optimal)}
\]
Marton’s region (Broadcast)

The set of rate pairs \((R_1, R_2)\) satisfying

\[
\begin{align*}
R_1 &\leq I(U, W; Y) \\
R_2 &\leq I(V, W; Z) \\
R_1 + R_2 &\leq \min\{I(W; Y), I(W; Z)\} + I(U; Y|W) + I(V; Z|W) - I(U; V|W)
\end{align*}
\]

for any \((U, V, W) \to X \xrightarrow{q} (Y, Z)\) is achievable

Remarks:

- An interesting (and natural generalization) of a strategy for deterministic broadcast channels [Marton ’79]
- No reason to believe that it may be optimal or its optimality was worth investigating
- Even for a single channel \(q(y, z|x)\) there were no bounds on \(|U|\) or \(|V|\), which made the region *incomputable*
A rate-pair \((R_1, R_2)\) is achievable for the interference channel if

\[
R_1 < I(X_1; Y_1|U_2, Q), \\
R_2 < I(X_2; Y_2|U_1, Q), \\
R_1 + R_2 < I(X_1, U_2; Y_1|Q) + I(X_2; Y_2|U_1, U_2, Q), \\
R_1 + R_2 < I(X_2, U_1; Y_2|Q) + I(X_1; Y_1|U_1, U_2, Q), \\
R_1 + R_2 < I(X_1, U_2; Y_1|U_1, Q) + I(X_2, U_1; Y_2|U_2, Q), \\
2R_1 + R_2 < I(X_1, U_2; Y_1|Q) + I(X_1; Y_1|U_1, U_2, Q) + I(X_2, U_1; Y_2|U_2, Q), \\
R_1 + 2R_2 < I(X_2, U_1; Y_2|Q) + I(X_2; Y_2'|U_1, U_2, Q) + I(X_1, U_2; Y_1|U_1, Q)
\]

for some pmf \(p(q)p(u_1, x_1|q)p(u_2, x_2|q)\), where \(|U_1| \leq |X_1| + 4\), \(|U_2| \leq |X_2| + 4\), and \(|Q| \leq 7\).

- Seems complicated to evaluate and use the 1-letter vs 2-letter strategy for testing optimality
Statutory Disclaimer

Know more about evaluation of Marton’s region than that of Han-Kobayashi

Han-Kobayashi region

Main: Strict sub-optimality of the Han-Kobayashi region
- Restrict to a class of channels where evaluation is easy
- Show that 2-letter (dependence over time) beats 1-letter (independent over time)

Marton’s region

- Cardinality bounds for evaluation of Marton’s region for broadcast channel
- Evaluation of Marton’s region for any \textit{binary} input broadcast channel
- Other results that help evaluate Marton’s region for broadcast channels
Statutory Disclaimer

Know more about evaluation of Marton’s region than that of Han-Kobayashi.

Han-Kobayashi region

Main: Strict sub-optimality of the Han-Kobayashi region

- Restrict to a class of channels where evaluation is easy
- Show that 2-letter (dependence over time) beats 1-letter (independent over time)

Marton’s region

- Cardinality bounds for evaluation of Marton’s region for broadcast channel
- Evaluation of Marton’s region for any binary input broadcast channel
- Other results that help evaluate Marton’s region for broadcast channels
SUMMARY OF TALK: ON EVALUATION OF REGIONS

Statutory Disclaimer
Know more about evaluation of Marton’s region than that of Han-Kobayashi

Han-Kobayashi region
Main: Strict sub-optimality of the Han-Kobayashi region
- Restrict to a class of channels where evaluation is easy
- Show that 2-letter (dependence over time) beats 1-letter (independent over time)

Marton’s region
- Cardinality bounds for evaluation of Marton’s region for broadcast channel
- Evaluation of Marton’s region for any binary input broadcast channel
- Other results that helps evaluate Marton’s region for broadcast channels
Proposition

The region of a CZI channel is the set of rate pairs \((R_1, R_2)\) that satisfy

\[
R_1 < I(X_1; Y_1 | U_2, Q), \\
R_2 < H(X_2 | Q), \\
R_1 + R_2 < I(X_1, U_2; Y_1 | Q) + H(X_2 | U_2, Q)
\]

for some pmf \(p(q)p(u_2|q)p(x_2|u_2)p(x_1|q)\), where \(|U_2| \leq |X_2|\) and \(|Q| \leq 2\).
Proposition

The HK region of a CZI channel is the set of rate pairs \((R_1, R_2)\) that satisfy

\[
R_1 < I(X_1; Y_1 | U_2, Q),
\]
\[
R_2 < H(X_2 | Q),
\]
\[
R_1 + R_2 < I(X_1, U_2; Y_1 | Q) + H(X_2 | U_2, Q)
\]

for some pmf \(p(q)p(u_2|q)p(x_2|u_2)p(x_1|q)\), where \(|U_2| \leq |X_2|\) and \(|Q| \leq 2\).
RESULTS ON CZI

Proposition

For a CZI channel, for any $\lambda \leq 1$

$$\max_{R_{ HK}} (\lambda R_1 + R_2) = \max C (\lambda R_1 + R_2) = \max_{p_1(x_1) p_2(x_2)} \lambda I(X_1; Y_1) + H(X_2).$$

Proof is rather straightforward and uses standard converse techniques

Lemma

For a CZI channel, for all $\lambda > 1 \max (\lambda R_1 + R_2)$ is

$$\max_{p_1(x_1) p_2(x_2)} \left\{ I(X_1, X_2; Y_1) + C \left[H(X_2) - I(X_2; Y_1 | X_1) + (\lambda - 1) I(X_1; Y_1) \right] \right\},$$

where $C[f(x)]$ of $f(x)$ denotes the upper concave envelope of $f(x)$ over x.
RESULTS ON CZI

Proposition

For a CZI channel, for any \(\lambda \leq 1 \)

\[
\max_{\mathcal{R}_{HK}} (\lambda R_1 + R_2) = \max_{\mathcal{C}} (\lambda R_1 + R_2) = \max_{p_1(x_1)p_2(x_2)} \lambda I(X_1; Y_1) + H(X_2).
\]

Proof is rather straightforward and uses standard converse techniques.

Lemma

For a CZI channel, for all \(\lambda > 1 \) \(\max_{\mathcal{R}_{HK}} (\lambda R_1 + R_2) \) is

\[
\max_{p_1(x_1)p_2(x_2)} \left\{ I(X_1, X_2; Y_1) + \mathcal{C} \left[H(X_2) - I(X_2; Y_1|X_1) + (\lambda - 1)I(X_1; Y_1) \right] \right\},
\]

where \(\mathcal{C}[f(x)] \) of \(f(x) \) denotes the upper concave envelope of \(f(x) \) over \(x \).
For $\lambda > 1$ it turns out that there are examples where

$$\max_{R_{HK}} (\lambda R_1 + R_2) < \max_{\mathcal{C}} (\lambda R_1 + R_2)$$

An example (CZI), i.e.

$$X_2 = 0$$

$$X_1$$

$$1$$

$$Y_1$$

$$0$$

$$\max_{R_{HK}} (2R_1 + R_2) = 1.1075163, < 1.108035632 \leq \max_{2R_{HK}} (2R_1 + R_2)$$
For $\lambda > 1$ it turns out that there are examples where

$$\max_{\mathcal{R}_{HK}} (\lambda R_1 + R_2) < \max_{\mathcal{C}} (\lambda R_1 + R_2)$$

An example (CZI), i.e. $Y_2 = X_2$

$$\max_{\mathcal{R}_{HK}} (2R_1 + R_2) = 1.1075163.. < 1.108035632 \leq \max_{2-\mathcal{R}_{HK}} (2R_1 + R_2)$$
Tab. 1: Table of counter-examples

<table>
<thead>
<tr>
<th>λ</th>
<th>channel</th>
<th>$\max_{\mathcal{R}_{h,\omega}}(\lambda R_1 + R_2)$</th>
<th>$\max_{\mathcal{R}_{2,0}}(\lambda R_1 + R_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 0.5</td>
<td>1.107516</td>
<td>1.108141</td>
</tr>
<tr>
<td>2.5</td>
<td>[0.204581 0.364813]</td>
<td>1.159383</td>
<td>1.169312</td>
</tr>
<tr>
<td>3</td>
<td>[0.591419 0.865901]</td>
<td>1.241521</td>
<td>1.255814</td>
</tr>
<tr>
<td></td>
<td>[0.004021 0.898113]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[0.356166 0.073253]</td>
<td>1.292172</td>
<td>1.311027</td>
</tr>
<tr>
<td></td>
<td>[0.985504 0.031707]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[0.287272 0.459966]</td>
<td>1.117253</td>
<td>1.123151</td>
</tr>
<tr>
<td></td>
<td>[0.113711 0.995405]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[0.429804 0.147712]</td>
<td>1.181392</td>
<td>1.196189</td>
</tr>
<tr>
<td></td>
<td>[0.948192 0.002848]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[0.068730 0.443630]</td>
<td>1.223400</td>
<td>1.243958</td>
</tr>
</tbody>
</table>
Evaluation of Marton’s region

Extremal auxiliaries

Mar 30, 2015
Evaluating Marton’s region

- Simple hard problem (unknown capacity region)

Figure: Binary skew-symmetric broadcast channel
Evaluating Marton’s region

- Simple hard problem (unknown capacity region)

\[
I(U; Y) + I(V; Z) - I(U; V) \leq \max\{I(X; Y), I(X; Z)\}
\]

Figure: Binary skew-symmetric broadcast channel

Conjecture: [Nair-Wang ITA ’08] For every \((U, V) \rightarrow X \rightarrow (Y, Z)\)
HISTORICAL REMARKS: PERTURBATION APPROACH

- The conjecture caught the attention of Amin Gohari and Venkat Anantharam
- Amin [2009] developed the *perturbation approach* to show that one can restrict one’s attention to $|U|, |V| \leq 2$
- More generally, they used the ideas to show that one can restrict ones attention to $|U| \leq |X|, |V| \leq |X|$ while computing Marton’s achievable region
- [Jog and Nair ITA 2010] extended the perturbation approach to show that the conjecture was true
- [Geng, Nair, and Wang 2010] showed that the information inequality is true for all broadcast channels when $|X| = 2$

Perturbation approach: A technique to reduce the search space (bounding cardinalities and more) of *extremal* auxiliary distributions
The conjecture caught the attention of Amin Gohari and Venkat Anantharam.

Amin [2009] developed the perturbation approach to show that one can restrict one’s attention to $|U|, |V| \leq 2$

More generally, they used the ideas to show that one can restrict ones attention to $|U| \leq |X|, |V| \leq |X|$ while computing Marton’s achievable region.

[Jog and Nair ITA 2010] extended the perturbation approach to show that the conjecture was true.

[Geng, Nair, and Wang 2010] showed that the information inequality is true for all broadcast channels when $|X| = 2$
The conjecture caught the attention of Amin Gohari and Venkat Anantharam

Amin [2009] developed the perturbation approach to show that one can restrict one’s attention to $|U|, |V| \leq 2$

More generally, they used the ideas to show that one can restrict ones attention to $|U| \leq |X|, |V| \leq |X|$ while computing Marton’s achievable region

[Jog and Nair ITA 2010] extended the perturbation approach to show that the conjecture was true

[Geng, Nair, and Wang 2010] showed that the information inequality is true for all broadcast channels when $|X| = 2$

Perturbation approach: A technique to reduce the search space (bounding cardinalities and more) of extremal auxiliary distributions
ASIDE: EXTREMAL DISTRIBUTIONS AND THEIR USES

Achievable regions (or outer bounds) are usually written as a union of regions - each corresponding to a distribution over random variables (including auxiliary random variables)

Distributions of random variables that give rise to points in the boundary (of the union) form *extremal distributions*

Uses of characterizing extremal distributions

- If we can show that extremal distributions $\subseteq S$ (a proper subset of all distributions), this makes computations of achievable regions (or outer bounds) simpler

 - If $A(q) = \frac{1}{2} A(q \otimes q)$

- We could utilize properties of extremal distributions to show that inner and outer bounds match for classes of channels

 - The (famous) MIMO Gaussian broadcast channel
 [Weingarten-Steinberg-Shamai 2007]
 - The capacity of BSC/BEC broadcast channel [Nair 2012]
 - Representation using concave envelopes
Aside: Extremal Distributions and Their Uses

Achievable regions (or outer bounds) are usually written as a union of regions - each corresponding to a distribution over random variables (including auxiliary random variables).

Distributions of random variables that give rise to points in the boundary (of the union) form extremal distributions.

Uses of characterizing extremal distributions:

- If we can show that extremal distributions \(\subseteq S \) (a proper subset of all distributions), this makes computations of achievable regions (or outer bounds) simpler.

 - Is \(A(q) \stackrel{?}{=} \frac{1}{2} A(q \otimes q) \)

- We could utilize properties of extremal distributions to show that inner and outer bounds match for classes of channels.
 - The (famous) MIMO Gaussian broadcast channel [Weingarten-Steinberg-Shamai 2007]
 - The capacity of BSC/BEC broadcast channel [Nair 2012]
 - Representation using concave envelopes.
Achievable regions (or outer bounds) are usually written as a union of regions - each corresponding to a distribution over random variables (including auxiliary random variables).

Distributions of random variables that give rise to points in the boundary (of the union) form *extremal distributions*.

Uses of characterizing extremal distributions

- If we can show that $\text{extremal distributions} \subseteq \mathcal{S}$ (*a proper subset of all distributions*), this makes computations of achievable regions (or outer bounds) simpler.
 - Is $\mathcal{A}(q) = \frac{1}{2} \mathcal{A}(q \otimes q)$?
- We could utilize properties of extremal distributions to show that *inner and outer bounds* match for classes of channels.
 - The (famous) MIMO Gaussian broadcast channel [Weingarten-Steinberg-Shamai 2007]
 - The capacity of BSC/BEC broadcast channel [Nair 2012]
 - representation using concave envelopes
Current tools - I
Perturbation based arguments

Mar 30, 2014
The perturbation argument (Gohari-Anantharam)

$$\max_{p(u,v|x)} I(U; Y) + I(V; Z) - I(U; V)$$

Theorem (Gohari-Anantharam)

Suffices to consider $|U|, |V| \leq |X|$

Observe: Bunt-Caratheodory does not work here.

Proof:

Suppose $p_\ast(u,v|x)$ is a maximizer.

$$p_\varepsilon(u,v|x) := p_\ast(u,v|x)(1 + \epsilon L(u)).$$

For $p_\varepsilon(u,v|x)$ to be a valid distribution it is necessary that

$$\sum_u p_\varepsilon(u|x)L(u) = 0 \quad \forall x.$$
The perturbation argument
(Gohari-Anantharam)

\[
\max_{p(u,v|x)} I(U; Y) + I(V; Z) - I(U; V)
\]

Theorem (Gohari-Anantharam)

Suffices to consider \(|U|, |V| \leq |X|

Observe: Bunt-Caratheodory does not work here

Proof:

Suppose \(p_\ast(u, v|x)\) is a maximizer.

\[
p_\varepsilon(u, v|x) := p_\ast(u, v|x)(1 + \varepsilon L(u)).
\]

For \(p_\varepsilon(u, v|x)\) to be a valid distribution it is necessary that

\[
\sum_{u} p_\ast(u|x)L(u) = 0 \quad \forall x.
\]

A non-zero \(L(u)\) exists when \(|U| > |X|\).
The perturbation argument
(Gohari-Anantharam)

\[
\max_{p(u,v|x)} I(U; Y) + I(V; Z) - I(U; V)
\]

Theorem (Gohari-Anantharam)

Suffices to consider \(|U|, |V| \leq |X|

Observe: Bunt-Caratheodory does not work here

Proof:
Suppose \(p^*(u, v|x)\) is a maximizer.

\[
p_\epsilon(u, v|x) := p^*(u, v|x)(1 + \epsilon L(u)).
\]

For \(p_\epsilon(u, v|x)\) to be a valid distribution it is necessary that

\[
\sum_u p^*(u|x)L(u) = 0 \quad \forall x.
\]

A non-zero \(L(u)\) exists when \(|U| > |X|\).
\[I(U; Y) + I(V; Z) - I(U; V) = H(Y) + H(Z) + H(U, V) - H(U, Y) - H(V, Z) \]

\[p_\epsilon(u, v|x) := p_*(u, v|x)(1 + \epsilon L(u)) \]

\[S(\epsilon) := H_{p_\epsilon}(U, V) - H_{p_\epsilon}(U, Y) - H_{p_\epsilon}(V, Z) \]

Since \(p_*(u, v|x) \) is a maximizer

\[\left. \frac{d}{d\epsilon} S(\epsilon) \right|_{\epsilon=0} = 0, \quad \left. \frac{d^2}{d\epsilon^2} S(\epsilon) \right|_{\epsilon=0} \leq 0 \]

These two conditions imply that \(S(\epsilon) \) has to be a constant.

Choose \(\epsilon \) large enough to reduce support of \(U \) by one

- Repeat till \(|U| \leq |X| \), and similarly \(|V| \leq |X| \)
- This perturbation argument has been generalized to
 - prove information inequalities
 - restrict space of extremal distributions
$I(U; Y) + I(V; Z) - I(U; V) = H(Y) + H(Z) + H(U, V) - H(U, Y) - H(V, Z)$

$p_\epsilon(u, v|x) := p_*(u, v|x)(1 + \epsilon L(u))$.

$S(\epsilon) := H_{p_\epsilon}(U, V) - H_{p_\epsilon}(U, Y) - H_{p_\epsilon}(V, Z)$

Since $p_*(u, v|x)$ is a maximizer

- $\frac{d}{d\epsilon} S(\epsilon) \bigg|_{\epsilon=0} = 0$, $\frac{d^2}{d\epsilon^2} S(\epsilon) \bigg|_{\epsilon=0} \leq 0$

These two conditions imply that $S(\epsilon)$ has to be a constant.

Choose ϵ large enough to reduce support of U by one

- Repeat till $|U| \leq |X|$, and similarly $|V| \leq |X|$
- This perturbation argument has been generalized to
 - prove information inequalities
 - restrict space of extremal distributions
Current tools - II
Concave envelopes and extremal distributions

Mar 30, 2015
Superposition coding region for degraded broadcast channels: the union of rate pairs satisfying:

\[R_2 \leq I(V; Z) \]
\[R_1 \leq I(X; Y|V) \]

for some pmf \(p(v, x) : V \rightarrow X \rightarrow (Y, Z) \)

Characterization of boundary: using supporting hyperplanes

For \(\lambda \geq 1 \), observe that

\[
\max_{(R_1, R_2) \in \mathcal{C}} \lambda R_2 + R_1 \leq \max_{p(v,x)} \lambda I(V; Z) + I(X; Y|V)
\]

\[
= \max_{p(v,x)} \lambda (I(X; Z) - I(X; Z|V)) + I(X; Y|V)
\]

\[
= \max_{p(x)} \left[\lambda I(X; Z) + \max_{p(v|y)} (I(X; Y|V) - \lambda I(X; Z|V)) \right]
\]

\[
= \max_{p(x)} \lambda I(X; Z) + \mathcal{C} \left[I(X; Y) - \lambda I(X; Z) \right]
\]
Superposition coding region for degraded broadcast channels: the union of rate pairs satisfying:

\[R_2 \leq I(V; Z) \]
\[R_1 \leq I(X; Y|V) \]

for some pmf \(p(v, x) : V \rightarrow X \rightarrow (Y, Z) \)

Characterization of boundary: using supporting hyperplanes

For \(\lambda \geq 1 \), observe that

\[
\max_{(R_1, R_2) \in \mathcal{C}} \lambda R_2 + R_1 \leq \max_{p(v, x)} \lambda I(V; Z) + I(X : Y|V)
\]

\[= \max_{p(v, x)} \lambda (I(X; Z) - I(X; Z|V)) + I(X : Y|V) \]

\[= \max_{p(x)} \left(\lambda I(X; Z) + \max_{p(v|x)} (I(X; Y|V) - \lambda I(X; Z|V)) \right) \]

\[= \max_{p(x)} \lambda I(X; Z) + C [I(X; Y) - \lambda I(X; Z)] \]
Application: Degraded BSC Broadcast Channel

Proposition: When $X \rightarrow Y \rightarrow Z$ is a degraded BSC broadcast channel, it suffices to consider $(V, X) \sim DSBS(s)$ to compute, for any $\lambda \geq 1$,

$$\max_{(R_1, R_2) \in C} \lambda R_2 + R_1.$$

- Conjectured by Cover and established by Wyner-Ziv (Mrs. Gerber’s Lemma)

From previous slide, we saw that we wish to compute

$$\max_{P(x)} \lambda I(X; Z) + C[I(X, Y) - \lambda I(X; Z)].$$

Claim: The maximum happens at $P(X = 0) = \frac{1}{2}$.
Application: degraded BSC broadcast channel

Proposition: When $X \rightarrow Y \rightarrow Z$ is a degraded BSC broadcast channel, it suffices to consider $(V, X) \sim DSBS(s)$ to compute, for any $\lambda \geq 1$,

$$\max_{(R_1, R_2) \in \mathcal{C}} \lambda R_2 + R_1.$$

- Conjectured by Cover and established by Wyner-Ziv (Mrs. Gerber’s Lemma)

From previous slide, we saw that we wish to compute

$$\max_{p(x)} \lambda I(X; Z) + \mathcal{C}[I(X; Y) - \lambda I(X; Z)]$$

Claim: The maximum happens at $P(X = 0) = \frac{1}{2}$.
Observe that: The plot of $I(X; Y) - \lambda I(X; Z)$ vs $P(X = 0)$ is symmetrical about $P(X = 0) = \frac{1}{2}$. Implies $U \rightarrow X \sim BSC$ (Q.E.D.)
RESULTS

Capacity results using extremal distributions
- MIMO Gaussian broadcast channel [Weingarten-Steinberg-Shamai ’2006]
- BSC-BEC broadcast channel [Nair ’10]

Capacity results using concave envelopes
- BSC-BEC broadcast channel [Nair ’10]
- Classes of product broadcast channels [Geng-Gohari-Nair-Yu ’2012]
- MIMO Gaussian BC with common message [Geng-Nair 2014]

Other results using concave envelopes
- Strict sub-optimality of UV outer bound
RESULTS

Capacity results using extremal distributions

- MIMO Gaussian broadcast channel [Weingarten-Steinberg-Shamai ’2006]
- BSC-BEC broadcast channel [Nair ’10]

Capacity results using concave envelopes

- BSC-BEC broadcast channel [Nair ’10]
- Classes of product broadcast channels [Geng-Gohari-Nair-Yu ’2012]
- MIMO Gaussian BC with common message [Geng-Nair 2014]

Other results using concave envelopes

- Strict sub-optimality of UV outer bound
RESULTS

Capacity results using extremal distributions
- MIMO Gaussian broadcast channel [Weingarten-Steinberg-Shamai ’2006]
- BSC-BEC broadcast channel [Nair ’10]

Capacity results using concave envelopes
- BSC-BEC broadcast channel [Nair ’10]
- Classes of product broadcast channels [Geng-Gohari-Nair-Yu ’2012]
- MIMO Gaussian BC with common message [Geng-Nair 2014]

Other results using concave envelopes
- Strict sub-optimality of UV outer bound
New cardinality bounds on Marton’s achievable region
[Anantharam-Gohari-Nair 2013]

- $|U| + |V| \leq |X| + 1$ suffices
- Further, can restrict to $X = f(U, V)$

Theorem

For a binary input broadcast channel, the maximum of $\lambda R_1 + R_2$ in Marton’s region, when $\lambda \geq 1$ is,

$$
\min_{\alpha \in [0, 1]} \max_{p(x)} \left(\lambda - \alpha \right) I(X; Y) + \alpha I(X; Z) + C_{p(x)} \left[- \left(\lambda - \alpha \right) I(X; Y) - \alpha I(X; Z) \
+ \max \{ \lambda I(X; Y), I(X : Z) \} \right]
$$
Idea of Proof

Suppose $p(u,v,x)$ is an extremal distribution such that

$$C \left[- (\alpha - \lambda)H(Y) - \lambda H(Z) + T_{q,\alpha}(X) \right]$$

$$= - (\alpha - \lambda)H(Y) - \lambda H(Z) + \alpha I(U;Y) + I(V;Z) - I(U;V),$$

then the right hand side is locally concave with respect to all perturbations of $p(u,v,x)$.

Rearrange the right hand side as

$$\lambda(H(Y) - H(Z)) - \alpha H(Y | U) + H(V | U) - H(Z | V)$$

Consider a perturbation of the form

$$p_\epsilon(u,v,x) = p(u,v,x)(1 + \epsilon f(u)), \quad (\sum_u p(u)f(u) = 0).$$

For the second derivative to be negative, we need

$$\frac{d^2}{d\epsilon^2} [H(Y) - H(Z)]_{\epsilon=0} \leq 0.$$
Suppose $p(u,v,x)$ is an extremal distribution such that
\[
C[-(\alpha - \lambda)H(Y) - \lambda H(Z) + T_{q,\alpha}(X)]
= -(\alpha - \lambda)H(Y) - \lambda H(Z) + \alpha I(U; Y) + I(V; Z) - I(U; V),
\]
then the right hand side is \textit{locally concave} with respect to all perturbations of $p(u,v,x)$.
Rearrange the right hand side as
\[
\lambda(H(Y) - H(Z)) - \alpha H(Y|U) + H(V|U) - H(Z|V)
\]
Consider a perturbation of the form
\[
p_\epsilon(u,v,x) = p(u,v,x)(1 + \epsilon f(u)), \quad \left(\sum_u p(u)f(u) = 0\right).
\]
For the second derivative to be negative, we need
\[
\frac{d^2}{d\epsilon^2} [H(Y) - H(Z)]_{\epsilon=0} \leq 0
\]
Idea of Proof (cntd...)

Alternately, rearrange the right hand side as

\[(1 - \lambda)(H(Z) - H(Y)) - H(Z|V) + H(U|V) - H(U|Y) - (\alpha - 1)H(Y|U)\]

Consider a perturbation of the form

\[\hat{p}_{\epsilon}(u, v, x) = p(u, v, x)(1 + \epsilon g(v)), \quad \left(\sum_v p(v)g(v) = 0\right).\]

For the second derivative to be negative, we need

\[\frac{d^2}{d\epsilon^2} [H(Z) - H(Y)]_{\epsilon=0} \leq 0\]
For a fixed channel $q(y, z|x)$ the term $H(Y) - H(Z)$ depends only on $p(x)$.

Hence, if there exists $f(u)$ and $g(v)$ such that $p_\epsilon(x) = \hat{p}_\epsilon(x)$ for all $x \in \mathcal{X}$, then one would need to have

$$\frac{d^2}{d\epsilon^2} [H(Y) - H(Z)]_{\epsilon=0} = 0.$$

This will in turn force the convex terms to have zero second derivative as well.

As a consequence, it will turn out that the expression

$$-(\alpha - \lambda)H(Y) - \lambda H(Z) + \alpha J(U; Y) + I(V; Z) - I(U; V)$$

will remain unchanged by either of these perturbations.

Set ϵ large enough so that the support of U or V reduces by one.
For a fixed channel \(q(y, z|x) \) the term \(H(Y) - H(Z) \) depends only on \(p(x) \).

Hence, if there exists \(f(u) \) and \(g(v) \) such that \(p_\epsilon(x) = \hat{p}_\epsilon(x) \) for all \(x \in X \), then one would need to have

\[
\frac{d^2}{d\epsilon^2} [H(Y) - H(Z)]_{\epsilon=0} = 0.
\]

This will in turn force the convex terms to have zero second derivative as well.

As a consequence, it will turn out that the expression

\[
-(\alpha - \lambda)H(Y) - \lambda H(Z) + \alpha I(U; Y) + I(V; Z) - I(U; V)
\]

will remain unchanged by either of these perturbations.

Set \(\epsilon \) large enough so that the support of \(U \) or \(V \) reduces by one.
Observation

For a fixed channel \(q(y, z|x) \) the term \(H(Y) - H(Z) \) depends only on \(p(x) \).

Hence, if there exists \(f(u) \) and \(g(v) \) such that \(p_\epsilon(x) = \hat{p_\epsilon}(x) \) for all \(x \in \mathcal{X} \), then one would need to have

\[
\frac{d^2}{d\epsilon^2} [H(Y) - H(Z)]_{\epsilon=0} = 0.
\]

This will in turn force the **convex** terms to have zero second derivative as well.

As a consequence, it will turn out that the expression

\[-(\alpha - \lambda)H(Y) - \lambda H(Z) + \alpha I(U; Y) + I(V; Z) - I(U; V)\]

will remain unchanged by either of these perturbations.

Set \(\epsilon \) large enough so that the **support** of \(U \) or \(V \) reduces by one.
Conditions for existence of $f(u), g(v)$

1. $\sum_{u,v} p(u, v, x)f(u) = \sum_{u,v} p(u, v, x)g(v) \ \forall x \in X.$
 - From the condition: $p_\epsilon(x) = \hat{p}_\epsilon(x)$ for all $x \in X$.

2. $\sum_{u,v,x} p(u, v, x)f(u) = 0.$
 - From the condition: $p_\epsilon(x)$ is a valid probability distribution.

3. $\sum_{u,v,x} p(u, v, x)g(v) = 0.$
 - From the condition: $\hat{p}_\epsilon(x)$ is a valid probability distribution.

So there are $|X| + 1$ linear constraints on a vector of size $|U| + |V|$.

A non-trivial solution exists when $|U| + |V| > |X| + 1$.
Other results for computing Marton’s region

From earlier slides we can restrict to:

- \(|U| + |V| \leq |X| + 1\) and \(X = f(U, V)\).

It turns out that we need not search over certain functions.

1. XOR pattern: there is a \(k \times k\) sub-matrix such that rows and columns are permutations in \(S_{|X|}\). For example, \(X = f(U, V)\) has

\[
\begin{array}{c|cc}
U/V & v_1 & v_2 \\
u_1 & 0 & 1 \\
u_2 & 1 & 0 \\
\end{array}
\]

2. AND pattern: All entries in a row and all in entries in a column map to same entry.

Using above results one can estimate Marton’s region for \(|X| = 4\).

Simulations are (as of yet) unable to find an example such that

\(A(q) \subset 1/2 A(q \otimes q)\).
Other results for computing Marton’s region

From earlier slides we can restrict to:

- $|U| + |V| \leq |X| + 1$ and $X = f(U, V)$.

It turns out that we need not search over certain functions.

1. **XOR pattern**: there is a $k \times k$ sub-matrix such that rows and columns are permutations in $S_{|X|}$. For example, $X = f(U, V)$ has

 \[
 \begin{array}{ccc}
 U/V & v_1 & v_2 \\
 u_1 & 0 & 1 \\
 u_2 & 1 & 0 \\
 \end{array}
 \]

2. **AND pattern**: All entries in a row and all in entries in a column map to the same entry.

Using above results one can estimate Marton’s region for $|X| = 4$.

Simulations are (as of yet) unable to find an example such that

\[\mathcal{A}(q) \subsetneq \frac{1}{2} \mathcal{A}(q \otimes q). \]
Computing regions in network information theory

- Understanding/restricting extremal distributions is the key
 - Going beyond the traditional representation [Cover] using auxiliary random variables
 - Perturbation ideas (calculus of variations)
 - Representation as concave envelopes

The above computations are useful

- To see if the current regions are optimal or not
- To establish capacity regions of some classes of channels

THANK YOU
Computing regions in network information theory

- Understanding/restricting extremal distributions is the key
 - Going beyond the traditional representation [Cover] using auxiliary random variables
 - Perturbation ideas (calculus of variations)
 - Representation as concave envelopes

The above computations are useful

- To see if the current regions are optimal or not
- To establish capacity regions of some classes of channels

Thank you