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Low-rank Matrix Completion under Monotonic
Transformation

Two common hurdles for handling high-dimensional data:
Our observations are incomplete: missing data.

Our observations are indirect: we observe only some unknown
transformation of some true phenomenon of interest.

Can we recover the matrix of interest?

YES! We leverage low-rank structure in the true signal and the
transformation’s smoothness and monotonicity.
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Example 1. Recommender Systems
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Motivation

Example 2: Blind Sensor Calibration
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Background

Single Index Model

Suppose we have predictor variables x and response variables y,
and we seek a transformation g and vector w relating the two such
that

Ely|x] = g (x"w)

@ Generalized Linear Model: g is known, y|x are RVs from an
exponential family distribution parameterized by w.

o Includes linear regression, log-linear regression, and logistic
regression

@ Single Index Model: Both g and w are unknown.
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Background

Single Index Model Learning

We seek a transformation g and vector w such that

Ely|x] =g (x"w) .

Theorem ([Kalai and Sastry, 2009], [Kakade et al., 2011])

Suppose (x;,yi) € B, x [0,1], i=1,..., p are draws from a
distribution where E[y|x] = g(x"w) for monotonic G-Lipschitz g
and ||w|| < 1. There is a poly(1/e,log(1/d), n) time algorithm
that, given any 6,¢ > 0, with probability > 1 — § outputs

h(x) = g(WwTx) with

err(h) = Ey[(g(x" w) — h(x))*] < ¢
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Background

Single Index Model Learning

Algorithm 1 Lipshitz-lsotron Algorithm [Kakade et al., 2011]
Given T >0, (x;, )51
Set w(l) .= 1.
fort=1,2,..., T do
Update g using Lipschitz-PAV: g(t) = [ PAV ((x,-Tw(t),y,-)le).
Update w using gradient descent:

P
w1 = () 4 ;Z (Yi - g(t)(XiTW(t))) X;
i=1

end for
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Background

Lipschitz Pool Adjacent Violator

@ The Pool Adjacent Violator
(PAV) algorithm pools
points and averages to
minimize mean squared error

g(xi) = yi.
@ L-PAV adds the additional of/ % L ipschitz PAV
constraint of a given 02

K i -1 -0.5 0 0.5 1
Lipschitz constant.
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Background

Low-rank Matrix Completion

We have an n x m, rank r matrix X. However, we only observe a
subset of the entries, Q C {1,...,n} x {1,..., m}.

Users
- O . [ |
g . =
S("m m -
= | }
- o o

Laura Balzano University of Michigan

Monotonic Low-Rank Matrix Completion



Background

Low-rank Matrix Completion

We have an n x m, rank r matrix X. However, we only observe a
subset of the entries, Q@ C {1,...,n} x {1,...,m}.

We may find a solution by solving the following NP-hard
optimization:

minimize rank(M)
M

subject to Mg = Xq
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Background

Low-rank Matrix Completion

We have an n x m, rank r matrix X. However, we only observe a
subset of the entries, Q C {1,...,n} x {1,..., m}.

Or we may solve this convex problem:

nimize M. — M
minimize || M| ;0( )
subject to Mg = Xq

Exact recovery guarantees: X is exactly low-rank and incoherent.
MSE guarantees: X is nearly low-rank with bounded (r + 1)
singular value.
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Background

Low-rank Matrix Completion Algorithms

There are a plethora of algorithms to solve the nuclear norm
problem or reformulations.

Grassmannian

e LMaFit, APGL, FPCA Rank-One Update
@ Singular value thresholding: E&?&%ﬁf:n

iterated SVD, SVT, FRSVT

@ Grassmannian: OptSpace,
GROUSE
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Background

High-rank Matrices

For Z low-rank,

Y, =g(Zy) = m Y has full rank.

Yij = g(Zjj) = quantize_to_grid(Zj), Y has full rank.
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Background

High-rank Matrices: Effective rank

These matrices even have high effective rank.
For a rank-50, 1000x1000 matrix:

Logistic function Quantizing to a grid
1000 1000
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o <
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:’ 400 — 400
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© 200 ¢ 200
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gamma number of grid points
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Problem Formulation

Problem Formulation

Our model is as follows:

o Low-rank matrix Z* € R™™ with m < n and (for now,
known) rank r < m.

@ Lipschitz link function g* : R — R, monotonic, Lipschitz

e Noise matrix N € R™"™ with iid entries E[N] = 0.

e Samples of matrix entries Q € {1,...,n} x {1,...,m} is a
multiset, sampled independently with replacement.

We observe Yj; = g*(Z,-j) + Nj; for (i,j) € Q

and we wish to recover g*, Z*.
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Problem Formulation

Optimization Formulation

min Y (g(Zij) - Yij)
Q

g7z

subj. to g :R — R is Lipschitz and monotone
rank(Z) <r

Non-convex in each variable, but we can alternate the standard
approaches:

@ Use gradient descent and projection onto the low-rank cone
for Z.

@ Use LPAV for g.
We call this algorithm MMC-LS.
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Problem Formulation

MMC-LS Algorithm

Algorithm 2 MMC-LS
Given max iterations T > 0, step size 5 > 0, rank r, data Yg
Init O)(z) = &, 200 = Yo, where Yo zerofilled Y.
fort=1,2,..., T do
Update 4 using gradient descent:

29 = 255700 (&7 (2577) - vis) @26 M jpen

Project: Z(t) = P,(Z()
Update g: gV = LPAV ({(2,‘5), Yi,) for (i,j) € Q}).
end for
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Problem Formulation

Optimization of Calibrated Loss

Let @ : R — R be a differentiable function that satisfies ¢’ = g*.
Since g* is monotonic, ® is convex. Consider:

L, 2)= > ®(Z))-YijZj
(ij)eQ

Differentiating with respect to Z we get that a minimizer satisfies
Z(i,j)EQ g*(Zij) — Yij = 0; in other words, Z* is a minimizer in
expectation. So L(®, Z) is a calibrated loss for our problem.
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Our Algorithm

MMC-c Algorithm

Algorithm 3 MMC-calibrated
Given max iterations T > 0, step size 5 > 0, rank r, data Yg
Init ) (2) = 2, 200 = 1Yo, where Yo zerofilled Y.
fort=1,2,..., T do
Update 4 using gradient descent:

20 =257 = (& (257) - Yis) Lugen

Project: Z(t) = P,(Z()
Update g: g¥) = LPAV ({(2,(5), Yi,) for (i,j) € Q}).
end for
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Our Algorithm

Remarks

MMC consists of three steps: gradient descent, projection, and
LPAV.

@ The gradient descent step requires a step size parameter n; we
chose a small constant stepsize by cross validation.

@ The projection requires rank r. For our implementation, we
started with a small r and increased it, in the same vein as
[Wen et al., 2012].

@ LPAV is the solution of a QP. Ravi developed an ADMM
implementation as well.
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Our Algorithm

MSE Analysis of MMC-c

Let M = g(Z) and M* = g*(Z*).
Define the MSE as

o3 (41 )’

i=1 j=1

MSE(WI) = E | -
n
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Our Algorithm

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration [Ganti et al., 2015])

Let | Z*|| = O(v/n) and o,11(Y) = O(y/n) with high probability.
Let o = ||M* — Z*||. Furthermore, assume that elements of Z*
and Y are bounded in absolute value by 1.

Then the MSE of one step of MMC (T = 1) is bounded by

MSE(/\?I)§0<\/;+|S;T—3"/2+\/mr—\% (1+%)) :
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Our Algorithm

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration [Ganti et al., 2015])

In addition to the previous assumptions, let
a=||M*—Z*| = O0(vn) .

Then the MSE of one step of MMC is bounded by

A~ r mn
< — 4 —— .
MSE(KT) < O < . |Q|3/2>
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Experiments

Synthetic Data

Z* is 30 x 20 and rank 5.

N=0

Toy ISE calibration function: g*(z) = 1/(1 + exp™ %)
Vary v =1, 10, 40.

Vary probability of observation p = .2,.35,.5,.7.
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Experiments

Synthetic Data

RMSE on test data

LRMC

Laura Balzano
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Experiments

Synthetic Data
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Experiments

Synthetic Data
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Experiments

Real Data

Paper recommendation: 3426 features from 50 scholars’
research profiles.

Jester: 4.1 Million continuous ratings (-10.00 to +10.00) of
100 jokes from 73,421 users.

Movie lens: 100,000 ratings from 1000 users on 1700 movies.

Cameraman: Dictionary learning on patches of the image.

Dataset Dimension 1| r0.01(Y)
PaperReco | 3426 x 50 | 34294 (20%) 47

Jester-3 | 24938 x 100 | 124690 (5%) | 66
ML-100k | 1682 x 943 | 64000 (4%) | 391
Cameraman | 1536 x 512 | 157016 (20%) 393
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Experiments

Real Data Performance

RMSE on a held-out test set:

Dataset |Q/mn | LMaFit-A | MMC-c T =1 | MMC-c
PaperReco 20% 0.4026 0.4247 0.2965
Jester-3 5% 6.8728 5.327 5.2348
ML-100k 4% 3.3101 1.388 1.1533
Cameraman | 20% 0.0754 0.1656 0.06885
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Conclusion

Conclusion

@ Monotonicity of g* and low-rank structure on Z* are enough
to allow joint estimation.

@ A natural alternating minimization algorithm does well.

@ Next steps:
e Estimating different g* for different columns, e.g., users or
sensors.
e Understanding when it is possible to recover relative
differences or order information of entries of Z* instead of
values of M* = g*(Z*).
e Further algorithmic guarantees.
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Conclusion

Thank you! Questions?

@ Ganti, R. S., Balzano, L., and Willett, R. (2015).

Matrix completion under monotonic single index models.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural
Information Processing Systems 28, pages 1864-1872. Curran Associates, Inc

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011).
Efficient learning of generalized linear and single index models with isotonic regression.
In Advances in Neural Information Processing Systems, pages 927-935.

Kalai, A. T. and Sastry, R. (2009).

The isotron algorithm: High-dimensional isotonic regression.

In COLT.

Wen, Z., Yin, W., and Zhang, Y. (2012).

Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation

algorithm.
Mathematical Programming Computation, 4(4):333-361
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@ The Pool Adjacent Violator (PAV) "
algorithm pools points and
averages to solve

. 1 o/ % —Llp\s/chllz PAV
argmin [ = " (g(x) —vi)* | - o

monotone g \ P 4 05 0 05 1
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High-rank Matrices: Effective rank

Definition
The effective rank of an n x m matrix Y, m < n, with singular

values o is

re(Y)=min{ ke N:

Back to
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Synthetic Data
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