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Value of storage technologies for wind and
solar energy
William A. Bra�1†, Joshua M. Mueller2† and Jessika E. Trancik2,3*
Wind and solar industries have grown rapidly in recent years but they still supply only a small fraction of global electricity. The
continued growth of these industries to levels that significantly contribute to climate changemitigation will depend onwhether
they can compete against alternatives that provide high-value energy on demand. Energy storage can transform intermittent
renewables for this purpose but cost improvement is needed. Evaluating diverse storage technologies on a common scale has
proved a major challenge, however, owing to their widely varying performance along the two dimensions of energy and power
costs. Herewe devise amethod to compare storage technologies, and set cost improvement targets. Some storage technologies
today are shown to add value to solar and wind energy, but cost reduction is needed to reach widespread profitability. The
optimal cost improvement trajectories, balancing energy and power costs to maximize value, are found to be relatively location
invariant, and thus can inform broad industry and government technology development strategies.

W ind and solar energy technologies have attractive
attributes including their zero direct carbon and other
air-pollutant emissions (during operation)1,2, their low

water withdrawal and consumption requirements3, the speed with
which they can be installed4, and the flexibility in the scale of their
installations5,6. Innovation in these technologies has taken o� in the
past two decades7. Levelized electricity costs for both technologies
have been dropping over the past few decades, with photovoltaics
costs falling exceptionally quickly, by two orders of magnitude over
the past 40 years8,9. The installed bases of solar andwind have grown
markedly in recent decades, each at approximately 30% per year on
average over the past 30 years, but together still supply only a few per
cent of global electricity9. Although the global solar andwind energy
resources are large, these technologies do notmeasurably contribute
to climate change mitigation at current installations levels.

A variety of government policy-based incentives have supported
the growth in solar and wind energy technologies in recent
decades10,11, but continued, rapid growth to levels that can help
meet climate change mitigation goals will depend on whether the
adoption of wind and solar can be made self-sustaining. Low-cost
storage can play a pivotal role by converting intermittent wind and
solar energy resources, which fluctuate over time with changes in
weather, the diurnal cycle, and seasons12, to electricity on demand
that can be sold when most profitable, thereby increasing the value
and attractiveness of these technologies to investors13,14. However,
storage costs need to improve to achieve sizable adoption15,16.
Quantifying the cost reduction needed has proved challenging and
is the topic of this paper.

A range of stationary, large-scale energy storage technologies
are in development17. These technologies have widely varying
power and energy costs. Some storage technologies have more
expensive power-related component costs (for example, pumped
hydro power generation equipment) and cheaper energy-related
costs (for example, pumped hydro natural reservoirs), and vice
versa18. This paper aims to understand the value of storage for wind
and solar energy at today’s costs, and how technology costs need to

improve, trading o� energy and power costs, to reach profitability.
This question can be answered only by examining the context in
which storage technologies will be used, in particular the temporal
variations in the energy price and intermittent energy resource.Here
we investigate the potential for energy storage to increase the value
of solar and wind energy in several US locations—inMassachusetts,
Texas and California—with varying electricity price dynamics and
solar and wind capacity factors.

As pointed out in earlier papers, comparing the costs of di�erent
storage technologies on a common scale is challenging because no
single technology dominates the others along the two dimensions
of energy and power costs (for example, refs 17,18). Studies have
quantified the benefits of particular storage technologies for given
locations and contexts of use, including for frequency regulation,
energy arbitrage, converting intermittent renewables into baseload
power, and increasing the profits of intermittent renewable energy
(for example, refs 6,16,19–24), but past research has not shown how
the benefit depends on the costs of di�erent storage technologies.
In this paper we address this gap and present a comparison of a
spectrum of storage technologies (current and future hypothetical),
showing quantitatively and across locations how the benefits of
storage depend on storage technology costs. This approach allows
for the quantification of technology cost performance targets for
each given level of benefit. Specifically we focus on how the energy
and power costs of storage a�ect the value added to wind and solar
energy. This ex ante evaluation of storage options, on the basis
of salient features of the technologies and contexts in which they
will be used, can inform and accelerate their development through
directed innovation14,25.

The article is organized as follows. We first present the results
of optimizing the discharge behaviour of a solar or wind plant
combined with storage, for a fixed storage size, to maximize the
revenue of the plant. We then optimize the storage size to maximize
the value of the plant, where value is defined as the ratio of the
plant revenue to the plant cost. The analysis is performed for a wide
spectrum of storage energy and power costs. Finally, we assess the
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Figure 1 | Electricity output to maximize revenue from hypothetical hybrid renewable energy and storage plants. Results are shown for plants located in
McCamey, Texas with a storage power Ėmax of 1 MW per MWgen, and a duration h of 4 h (Supplementary Table 1). Data are shown here for a sample of
three days in each season of the year, although the analysis considers all days of the year. Storage allows plant output to shift from the natural generation
profile (middle row) to periods of high prices (bottom row: electricity price; top row: optimized output). Results for Palm Springs, California and Plymouth,
Massachusetts are shown in Supplementary Figs 3 and 4, respectively.

value of current storage technologies, on the basis of their energy
and power costs, and discuss optimal cost improvement trajectories
across locations.

Optimizing electricity output to maximize revenue
Here we optimize the discharging behaviour of a hybrid plant,
combining wind or solar generation with energy storage, to shift
output from periods of low demand and low prices to periods of
high demand and high prices (equation (2) in Methods). Both the
energy resource and the electricity price, which vary over time and
whose distribution over time is location dependent, determine the
optimal charging and discharging behaviour of the system.

This e�ect is illustrated for the representative case of a storage
system with a fixed size defined by a normalized power rating Ėmax
of one MW per MWgen (storage power per unit rated power of solar
or wind generation) and a duration h of 4 h, coupled with a solar
or wind plant in Texas and operated over the course of three days in
the spring, summer, autumn and winter (Fig. 1). Across both energy
resources (wind and solar) and across locations (Texas, California
and Massachusetts), incorporating storage results in a reduction
of output during periods of low prices, and an increase in output
during periods of high prices. The ability to output energy to the
grid at peak power during periods of high price is limited, however,
by the availability of su�cient renewable generation to charge the
storage system in advance. Although the pricing in each of the three
locations examined di�ers, the e�ect of storage in each case is to
output electricity during periods of high pricing.

For a given plant, increasing the storage system size in terms of
power and duration raises its average electricity selling price. The
average selling price without storage is lower for wind than solar,
but as the energy storage increases in size (per unit rated power of
solar or wind generation), the pricing distribution and mean selling
price become increasingly similar across the two energy resources
(Supplementary Figs 6–8). However, the addition of storage power
and duration comes at a cost, as explored in the next section.

Balancing revenue against cost to optimize storage size
Storage can increase the revenue generated by a solar or wind plant,
but it also increases the capital costs of the plant. Here we optimize
both the discharging behaviour, as done above, and the storage
system size, to maximize the value of the electricity generation.

We quantify value using the dimensionless ratio � , the ratio of
the annual revenue to the annualized cost of the hybrid plant.

� = Rtotal

CRF(Cgen + Ėmax(Cpower
storage +hC energy

storage))
(1)

� is determined by the revenueRtotal, which ismaximized through
optimal discharging (equation (2)) at each storage size, and the
costs of the hybrid plant. The plant cost is determined by the
power capacity-related overnight construction cost of storageCpower

storage,
the energy capacity-related overnight construction cost of storage
C energy

storage, the solar or wind generation cost Cgen, the capital recovery
factor CRF (to annualize costs), and the storage size defined by
peak power Ėmax and duration h (which are given per unit rated
power of solar or wind generation). (See Supplementary Table 1 for
a description of the parameter space considered.)

Figure 2 shows how � varies as a function of the storage
system power and duration, and the power- and energy-related
costs, for the case of a hybrid wind plant sited in Texas with a
generation cost of US$1W�1. The contour plots in Fig. 2 illustrate
that if a su�ciently inexpensive storage technology is used (for
example, Cpower

storage  US$130 kW�1 and C energy
storage  US$130 kWh�1 for

US$1W�1 Texas wind), the additional revenue generated by the
storage system can outweigh its cost, thereby increasing the value,
� , of the system. The plots also show how the optimal system size
(to achieve �max) depends on the energy and power-specific storage
costs. As might be expected, storage systems with higher power-
related costs performed better when specified with lower power,
and storage systems with higher energy-related costs perform better
when specified with lower energy (power Ėmax times duration h).

Figure 3 summarizes the change in � with optimally sized
storage across the three locations examined. Storage is more
valuable for wind than solar in two out of the three locations
studied (Texas and Massachusetts), but across all locations the
benefit from storage is roughly similar across the two energy
resources, in terms of the percentage increase in value due to
the incorporation of optimally sized storage. However, the benefit
of storage di�ers more significantly across locations, with a
much higher percentage increase in value from storage occurring
(across both energy resources) in Texas and California than in
Massachusetts (Supplementary Table 5).
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Figure 2 | � values of a wind plant in Texas versus storage size. � is shown
for a range of storage sizes defined by power Ėmax (MW storage per MW
generation) and duration h, for a wind Cgen of US$1 W�1 and Cpower

storage and
Cenergy

storage ranging from US$50 kWh�1–US$150 kWh�1

and US$50 kW�1–US$150 kW�1 respectively. The optimal storage system
size is found for each storage energy- and power-related cost pair to
maximize the value of the hybrid plant (�max). Similar plots for solar in
Texas, and for wind and solar in Massachusetts and California, and for
varying generation costs, are shown in Supplementary Figs 9–17.

Assessing the cost performance of storage technologies
The value of diverse storage technology options depends on their
energy-related costs C energy

storage and power-related costs Cpower
storage. Here

we compare storage technologies that have been optimally sized
to maximize � for a given set of storage and generation costs,
and energy resource and price dynamics in each location. The
relationship between the dimensionless performance parameter �
and the energy and power costs of storage is shown in Fig. 4 across
the three locations studied.

The results obtained can be compared with existing and future
hypothetical energy storage technologies. Several papers have
estimated the power- and energy-related costs of a number of
energy storage technologies17,18,26–30, finding that these costs can be
treated as roughly modular because adding to power generation
requires one set of components whereas adding to energy capacity
requires another set of components (with caveats for batteries for
which this distinction does not fully apply, see ‘Discussion’). Widely
ranging cost estimates have been reported in the literature17,18,26–30
and are compared with our results in Fig. 5. We observe that some
technologies available today31, on the lower end of the range of
reported cost estimates (Fig. 5), would add value to wind and solar
energy. Included in this group of technologies are compressed air
energy storage and pumped hydro storage for Texas wind or solar
generation at US$1.5W�1 (or greater) (Fig. 5 and Supplementary
Figs 41 and 42). This analysis allows for a quantitative comparison
of disparate technologies. For example, despite power cost estimates
that are several times larger for pumped hydro storage than lead–
acid batteries, we find that pumped hydro storage technologies can
significantly outperform lead–acid batteries for this application.

The results are further illuminated through specific examples.
For the case of US$3W�1 solar generation and US$450 kW�1 and
US$10 kWh�1 storage, roughly comparable to recently reported
photovoltaics system costs32,33 and the lower end of estimated costs
of compressed air energy storage not utilizing natural gas (Fig. 5),
the addition of optimally sized storage provides an approximately
25% increase in the plant value in Texas. (For lower photovoltaics
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Figure 3 | Comparison of solar and wind plant � values with and without
storage. �values are shown for plants without storage (generation only)
and with storage for: a fixed storage size of Ėmax = 1 MW per MWgen and
h=4 h of storage (fixed hybrid), and a storage system whose power and
hours of storage (Ėmax, h) have been optimized to match the energy
resource and the location (optimal hybrid). Results are shown for a wind or
solar generation cost of US$1 W�1 and Cpower

storage and Cenergy
storage of US$50 kW�1

and US$50 kWh�1, respectively. Results show the benefits of
size-optimized storage across energy resources (solar and wind) and
locations (Massachusetts, Texas and California), where storage systems
are sized to maximize the ratio of annual revenue to cost, � (and therefore
can lead to sub-optimally sized storage in a particular season). The
percentage increase in value due to optimally sized storage is given in
Supplementary Table 5 for a range of storage and generation costs.

systems costs of US$2W�1, comparable to several recent utility-
scale cost estimates33,34, compressed air energy storage also adds
value.) However, at these generation and storage costs the system
does not reach a � value of 1, where revenue equals cost and
the system becomes profitable (Supplementary Fig. 19). At these
costs, it is advantageous to incorporate storage but subsidies are
still required for the overall system to be profitable. For the case
of US$450 kW�1 and US$10 kWh�1 storage and US$1.5W�1 wind
generation (roughly comparable to recently reported costs34,35)
storage adds approximately 11% additional value in Texas and �
just reaches 1, the profitability threshold (Supplementary Fig. 18).
In comparison, for the case of US$50 kW�1 and US$50 kWh�1 and
US$1W�1 solar or wind generation, which are aspirational costs, �
significantly exceeds 1, the profitability threshold, and storage adds
roughly 20% to the value of the system � as shown in Fig. 3.
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Figure 4 | Value of a hybrid wind and storage plant as a function of location, renewable generation costs, and storage costs. A range of generation costs
(top row labels), and Cpower

storage and Cenergy
storage are shown. The size of storage (Ėmax, h) has been optimized at all points on the plot to maximize � . (The top left

panel shows the �max data from Fig. 2.) For each contour of constant �max, the slopes were found to be roughly consistent across locations and to be
determined by the duration of electricity price spikes (Supplementary Figs 43 and 44). A corresponding plot for solar is available in Supplementary Fig. 25.

As the cost of the solar and wind generation technology drops,
the cost of storage must also drop to continue to add value (Fig. 5).
This is because if generation costs are low enough relative to
storage costs, it is more valuable to add generation capacity than
storage capacity, even though this means that discharging cannot
be optimized to increase revenue. As storage costs decrease relative
to generation costs, the ability to increase revenue more than
compensates for the additional cost of storage (equation (1)).

Although � values change across locations, the slopes of the
contour lines of constant � (iso-� lines) are relatively location
independent, suggesting a power to energy cost trade-o� that
is roughly consistent across locations (Fig. 4). The power to
energy cost trade-o� of storage technologies is also similar
across the two energy resources. This means that the direction
of optimal improvement in energy and power costs is similar
across the three locations and two energy resources for any
given storage technology. This is important because it means
that the results reported here can be used to inform industry
and government technology development strategies, including
investment in research and development of storage technologies for
both intermittent energy resources and diverse locations. Further
study is required to determine how widely this applies across
locations (see ‘Discussion’).

The similarity across locations and energy resources in the
slopes of the iso-� lines can be attributed to commonalities in the
electricity price dynamics across locations. The distribution of the
duration of price spikes was found to be similar across the locations
studied (Supplementary Fig. 44) and to define the slopes of the iso-�
lines (Supplementary Fig. 43).

Discussion
Our results suggest that storage technologies can substantially
increase the value of wind and solar energy. For example, we find

that storage at costs comparable to several published estimates for
compressed air energy storage and pumped hydro storage can add
value to wind and solar energy in Texas and California at current
costs. However, to reach profitability without subsidies across the
locations studied, further cost improvement is needed in wind and
solar generation costs and storage costs. Furthermore, as renewable
generation costs decrease over time, storage costsmust also decrease
to add value.

Importantly, the results presented here point to cost performance
targets for storage technologies to add value and for the renewable
energy and storage hybrid plant to reach profitability. For example,
researchers and research and development managers in the public
and private sectors might use the results to assess the potential
benefit of pursuing one technology design over another, or one class
of storage technology over another, according to its distance from
a cost threshold and potential for cost improvement along energy
and power cost dimensions. Despite di�erences across the locations
studied in the benefits of adding storage, the direction of optimal
storage cost improvement, balancing decreases in the energy- and
power-related costs of storage, is similar across locations. Thus, the
results can inform a roadmap for cost improvement to guide broad
government and industry technology development strategies.

Additional research is needed to assess the costs of storage
technologies today, as current estimates span a large range (Fig. 5).
The assumption of modular power and energy costs17,18,26–30 may be
more appropriate for some technologies (for example, compressed
air energy storage) and less for others (for example, batteries)
and deserves further investigation. For batteries, many studies
nonetheless used the approximation of modular costs17,18,27,28 and
assign shared component costs to the energy cost estimate. As
energy is often the limiting factor for a given total investment in a
stationary battery36, this treatment is a reasonable approximation.
Additionally, the cycling behaviour of storage will a�ect the
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Figure 5 | Energy storage technology costs compared with value-adding cost thresholds. Cost intensities of a range of energy storage
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valuable to incorporate storage into a Texas wind plant. CAES: compressed air energy storage; PHS: pumped hydro storage; lead–acid, Ni/Cd, Na/S,
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lifetime capacities of technologies di�erently37,38. This e�ect is
not represented in our model but will have a significantly
smaller e�ect on storage capacity costs than the span of costs
reported in the literature. These refinements can be incorporated
in the future as cost estimates for storage technologies are
further resolved.

We have focused here on increasing revenue from the sale of
renewable energy but note that storage technologies installed for
this purpose might generate additional revenue streams from other
services that we do not consider, including frequency regulation,
meeting installed power capacity requirements, and arbitrage that is
not constrained by the renewable energy resource. This additional
revenue could increase the added value of storage relative to the
results presented in this paper. Assessing the scale of this added
value, and the degree to which it is predictable and can be used to
distinguish between candidate storage technologies, is a subject for
future investigation.

Furthermore, the analysis performed here is for a low-
penetration case in which the solar and wind plants are price takers,
and do not measurably influence the electricity price over time.
If renewables grow su�ciently to significantly influence the price
time series of electricity in the locations studied, the results would
change. The changing cost of electricity from other sources with
which renewables are competing, or changing demand patterns and
market structure, could also a�ect the results presented. Further
study of the changes in electricity price dynamics over time and
space is a subject for future research.

Deploying hybrid systems today could support the near-term
growth in solar and wind, in contexts where storage technologies
add value, as well as the investment and improvement in storage
technologies that are needed to eventually allow greater intermittent
renewables market share without long-distance electricity transmis-
sion or carbon-emitting back-up generation. Understanding and
maximizing the value of storage in today’s small market share
context is therefore critical to eventually achieving the large-scale
adoption of very-low carbon-intensity intermittent renewables.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
The analysis involved three steps. First, hourly electricity pricing data and wind and
solar energy resource availability data were compiled for each of the three US
locations studied. Results are presented for the year 2004, a conservative year in
which the value of storage is lower than it is in the other years studied. The analysis
of other years for which data are available is given in the Supplementary
Information. All dollar values in the paper and Supplementary Information are
presented in 2004 currency. Second, the charging and discharging behaviour of a
set of hypothetical hybrid renewable energy and storage plants with a range of fixed
storage sizes was optimized to maximize revenue. Third, an optimal storage system
size for each location and energy resource was determined to maximize the value
(annual revenue divided by annualized cost) of the wind and solar energy with
storage plant, for a range of energy- and power-related costs of storage.

Site selection. Three geographic sites were examined as locations for hypothetical
wind and solar plants with storage: McCamey, Texas, Palm Springs, California, and
Plymouth, Massachusetts. The Texas site was chosen as an example of a
high-performing wind site, with an average capacity factor of 32% over the period
examined (where capacity factor is defined as the annual output of a hypothetical
plant divided by the output if operated continuously at the rated power capacity).
The California site was selected as a high-performing solar site, with an average
capacity factor of 23%. The Massachusetts site was chosen as a case where neither
wind nor solar was particularly high performing, with capacity factors of 26% and
16%, respectively. Supplementary Fig. 2 illustrates the distribution of generation
and pricing for these three sites. Data for zonal real-time (hourly) pricing were
obtained from ISO New England (http://www.iso-ne.com), ERCOT
(http://www.ercot.com) and CAISO (http://www.caiso.com). To simulate the
performance of a hypothetical wind turbine or solar array, local windspeed and
solar insolation data were obtained from the Eastern and Western National Wind
Integration Datasets and the National Solar Radiation Database39, and then
transformed to time-dependent output per megawatt installed using published
performance data for a Vestas V90 3MWwind turbine that aligns to face the wind
(http://www.vestas.com) and a static photovoltaic system that reaches its maximum
output when exposed to an insolation of 1 kWm�2 (corresponding to standard
test conditions).

Optimization of charging and discharging to maximize revenue. Per-hour
charging and discharging of the storage system, and the direct sale of solar- and
wind-generated electricity were optimized to achieve maximum revenue for a
hypothetical hybrid storage and generation plant at each site, given the electricity
price and energy resource availability over time and subject to system power and
energy constraints. The optimization was performed in three-week intervals over
the course of a year, with a one-week overlap between each interval to prevent
discontinuities. The charge rate was capped at the real-time output of the
generation resource, and the energy available for discharge was adjusted by a
round-trip e�ciency of 90%. To reduce the computational expense of the
optimization, the simulation considered charging and discharging separately so
that a linear solution technique could be employed. The ability of the simulation to
find the global optimum was confirmed by comparison with an analytical solution
in the case of arbitrage that is not constrained by the renewable energy resource.

The optimization routine for each three-week segment (N =504h) can be
expressed in terms of the real-time price P(t), the generation profile xgeneration(t),
storage round-trip e�ciency ⌘, peak power Ėmax, and duration h as:

Rtotal =max

 
NX

t=0

P(t)(xgeneration(t)+xdischarge(t)�xcharge(t)/⌘)

!

subject to:

0xdischarge  Ėmax

0xcharge min(⌘xgeneration(t),⌘Ėmax)

0
NX

t=0

�
xcharge(t)�xdischarge(t)

�
hĖmax (2)

An o�set is included in the energy constraint for each optimization period to
account for the amount of energy stored in the system at the beginning of the
optimization period. The optimization protocol serves to temporally shift the
output of the system to periods of high market pricing (often coinciding with times
of peak demand), subject to the constraint that any energy to pass through the
storage system pays an e�ciency penalty.

We studied the case where hybrid renewables and storage systems are price
takers in the spot market, which is an adequate approximation for small
penetration levels. It is also assumed that the system operator has perfect
information about future three-week prices and resource availability. This
approach employs the assumption supported by earlier work that the overestimate
in revenue as a result of complete future knowledge is small40–43.

Value of optimally sized storage. A dimensionless performance metric � was used
to quantify the value of the energy generated, which is the ratio of the optimized
annual revenue generated (equation (2)) and the annualized plant cost
(equation (1)). Plant overnight construction costs are given as the sum of the
storage and generation costs per unit rated power of installed solar or wind
generation (Cgen + Ėmax(Cpower

storage +hC energy
storage)). To determine the annualized plant

capital costs, the overnight construction costs are multiplied by a capital recovery
factor, CRF(i,n), defined as CRF(i,n)= i(1+ i)n/((1+ i)n �1), with n=20 years
and i=5% (ref. 15). The capital recovery factor is the fraction of a loan that must be
paid back annually, assuming a stream of equal payments over n years and an
annual interest rate i. The plant costs are approximated in this framework by plant
capital costs (for example, for hypothetical storage technologies at various cost
points in Fig. 4). This approximation is reasonable given the dominance of the
capital cost portion of total plant costs for most storage technologies, although we
discuss below the e�ect of including estimated operations and maintenance costs
for several storage technologies available at present. Plant performance � was
calculated using equation (1) over a wide range of system configurations,
technology costs and locations, as summarized in Supplementary Table 1.

The storage size, defined by the storage power and storage duration, was chosen
to maximize � given the storage cost, where storage cost is defined by the
power-related cost per kilowatt and energy-related cost per kilowatt-hour. Storage
sizes were simulated in increments of 1/4 h and 1/2 Wstorage per Wgeneration.

To compare the model results to the cost of candidate storage technologies
today, the costs of energy and power of various storage technologies were taken
from the literature, drawing inclusively on recent e�orts to identify the modular
power- and energy-related cost components of a storage system17,18,26–30. These
wide-ranging costs are reported in the literature as rough estimates, mixing cost
data and engineering estimates (as is common for technologies that have limited or
no market adoption). These cost estimates are treated as 2004 real dollars (owing to
a lack of information otherwise) for the comparison to revenue in 2004 (an
assumption that has a minor e�ect on the storage technology evaluation as
compared to the wide range of reported storage costs for each technology).
Technologies are modelled with a round-trip e�ciency of 90% as
technology-specific refinements to this estimate (which are themselves uncertain)
have little e�ect compared to the wide range of storage costs reported. Replacement
costs for storage technologies with estimated lifetimes of less than 20 years
(according to the following references:17,18,26–30) are included in the storage
overnight construction costs, assuming a constant power-related cost per kilowatt
and energy-related cost per kilowatt-hour (in nominal dollars) in future years and
discounting (with a 5% nominal discount rate, although the conclusions are robust
to a reasonable range of assumed rates) the cost of future replacement to determine
its present value at the start of plant operation.

In the Supplementary Information (Supplementary Figs 35–42) we explore the
sensitivity of the storage technology costs shown in Fig. 5 to estimated operations
and maintenance costs, extended construction lead times, and fuel costs for
compressed air energy storage. Despite uncertainty in estimates of these additional
costs30, the sensitivity analysis provides some insight. The general technology
comparisons (that is, the relative positions of ellipses shown in Fig. 5) are found to
be robust to the inclusion of these additional costs. Furthermore, the uncertainty in
storage technology cost estimates arises mainly from uncertainty in the
capital costs.

References
39. National Solar Radiation Database (National Renewable Energy Laboratory,

accessed May 17 2015); http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010
40. Graves, F., Jenkin, T. & Murphy, D. Opportunities for electricity storage in

deregulating markets. Electricity J. 12, 46–56 (1999).
41. Figueiredo, F., Flynn, P. C. & Cabral, E. The economics of energy storage in 14

deregulated power markets. Energy Stud. Rev. 14, 131–152 (2006).
42. EPRI EPRI-DOE Handbook of Energy Storage for Transmission and Distribution

Applications Technical Report 1001834 (Electric Power Research Institute, US
Department of Energy, 2003).

43. Eyer, J., Iannucci, J. & Corey, G. Energy Storage Benefits and Market Analysis
Handbook: A Study for the DOE Energy Storage Systems Program (Sandia
National Laboratories, 2004).

© Macmillan Publishers Limited . All rights reserved

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3045
http://www.iso-ne.com
http://www.ercot.com
http://www.caiso.com
http://www.vestas.com
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010
www.nature.com/natureclimatechange


ARTICLES
PUBLISHED: 15 AUGUST 2016 | ARTICLE NUMBER: 16112 | DOI: 10.1038/NENERGY.2016.112

Potential for widespread electrification of
personal vehicle travel in the United States
Zachary A. Needell1,2, James McNerney1, Michael T. Chang1 and Jessika E. Trancik1,3*
Electric vehicles can contribute to climate change mitigation if coupled with decarbonized electricity, but only if vehicle range
matches travellers’ needs. Evaluating electric vehicle range against a population’s needs is challenging because detailed driving
behaviour must be taken into account. Here we develop a model to combine information from coarse-grained but expansive
travel surveys with high-resolution GPS data to estimate the energy requirements of personal vehicle trips across the US.
We find that the energy requirements of 87% of vehicle-days could be met by an existing, a�ordable electric vehicle. This
percentage is markedly similar across diverse cities, even when per capita gasoline consumption di�ers significantly. We also
find that for the highest-energy days, other vehicle technologies are likely to be needed even as batteries improve and charging
infrastructure expands. Car sharing or other means to serve this small number of high-energy days could play an important
role in the electrification and decarbonization of transportation.

Transportation accounts for 28% of US energy use and 34% of
US greenhouse gas emissions, themajority coming from light-
duty vehicles making personal trips—people commuting to

work, driving to social events, and performing errands in cars and
light trucks1,2. The United States has committed to reducing carbon
emissions by 26% to 28% from 2005 levels by 20253, even while total
vehicle miles travelled are expected to stay constant or increase1,4,5.
Battery electric vehicles (BEVs) could contribute to reducing
transportation-related greenhouse gas emissions, o�ering some
emissions savings evenwith today’s fossil-fuel-dominated electricity
supply mix6–8. If coupled with a decarbonized electricity supply mix,
BEVs could dramatically cut transportation emissions9–11. Indeed,
the extent and pace of the transition to BEVs may determine
whether the US meets its emissions reduction goals12.

There are several potential barriers to achieving the widespread
electrification of transportation, however, including infrastructure
integration challenges and various factors limiting consumer pur-
chases of electric vehicles13,14. Transportation electrification would
expand the demand for electricity and could significantly change the
temporal and spatial patterns of demand15, potentially producing
stress on existing infrastructure16. Supporting these changes may
require an expansion of electricity supply infrastructure and in-
novation in how the electrical grid is managed. Relying primarily
on night-time charging would alleviate some of these integration
concerns because vehicles could plug in at home when some power
plants sit idle6, and would avoid the need for ubiquitous charging
infrastructure or battery swap stations17.Where available, workplace
charging using on-site solar generation could o�er an alternative,
non-invasive charging option during the week, which may be par-
ticularly helpful if vehicles cannot charge at home18,19. Once-daily
charging would, however, require BEVs that cover the energy needs
of an entire day’s travel.

The limited range of BEVs is perhaps the most significant barrier
to the large-scale adoption of BEVs11, even with daytime charging
available. Both real and imagined range constraints—defined by
the vehicle range, available charging infrastructure, and the range
requirements of drivers—can lead to ‘range anxiety’ that limits the

adoption of BEVs20. Quantifying range constraints, which is the
subject of this paper, may help alleviate this anxiety21. Addressing
range anxiety is a necessary though not su�cient condition for
the widespread growth in adoption of BEVs. Satisfying consumer
preferences for vehicle performance and aesthetics will also be
important, as will financing options to o�set the purchase price
of BEVs22.

Several previous studies examine the range requirements of
personal vehicle travel. For example, a study following 255 Seattle
households found that a vehicle with 100-mile range would meet
the needs ofmost single-car households while requiring behavioural
modification on nomore than 5% of days23. These studies and other
research on aggregate travel behaviour in the US24,25 provide insight
into vehicle range requirements. However, a question remains: how
do these requirements compare with the range achievable by BEVs?
BEV range has been shown to depend sensitively on the second-
by-second velocity profile followed by the vehicle26, and other
factors such as ambient temperature and associated climate control
auxiliary energy consumption27.

Past studies of travel demand uncovered significant geographic
variation in the energy requirements of transportation28, with per
capita energy consumption di�ering up to 50% across US cities,
in inverse correlation with factors such as population density and
per capita spending on public transit29,30. These conclusions might
suggest, at first glance, that BEV adoption potential would also vary
considerably across cities and that high-energy-consuming cities
would have lower BEV adoption potential because of a dependence
on long-distance trips in personal vehicles.

Here, we evaluate BEV range and adoption potential against
driving patterns across the United States, drawing on information
in various data sets to cover millions of trips across the US and to
incorporate the e�ects of second-by-second velocity profiles and
hourly ambient temperature. This paper thus presents a compre-
hensive yet high-fidelity analysis of vehicle range constraints to BEV
adoption. We find that a large percentage of daily personal vehicle
energy requirements across the US as a whole, and within major
cities, can be met by a relatively inexpensive BEV on the market

1Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 2Department of Civil and
Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 3Santa Fe Institute, Santa Fe,
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Figure 1 | Energy intensities and velocity histories of trips with similar
distances and durations. Trips shown are similar to the EPA highway
(HWFET) drive cycle in terms of distance and duration but have di�ering
energy intensities, demonstrating the importance of considering velocity
histories in determining trip energy requirements. a, Fuel economy
distribution (kWh per mile) for the 2013 Nissan Leaf, for trips in the GPS
database that have a distance and duration similar to the EPA HWFET.
b, Velocity profiles of the three trips marked on the above plot.

today. Our cross-city comparison shows that the constraint imposed
on BEV adoption potential by vehicle range is, in fact, remarkably
similar across di�erent cities. The Nissan Leaf, our representative
vehicle, falls below the average and median lifetime cost of the 94
most popular vehicles on the US market today31. We estimate that
this vehicle canmeet the energy requirements of 87%of vehicle-days
across the US, and 84–93% in 12 of the most populous metropolitan
areas, even if relying only on night-time charging. This 87% of
vehicle-days accounts for 61% of personal vehicle gasoline con-
sumption in the US. Improvements to the energy density, specific
energy, and cost per unit energy capacity of batteries would increase
these daily vehicle and gasoline substitution percentages. However,
a small number of very-high-energy days, as evidenced by a heavy-
tailed distribution of daily vehicle energy requirements, translates to
diminishing returns to battery improvement.

Probabilistic model of BEV range
The model presented here provides a probabilistic view of BEV
range. This model, ‘TripEnergy’, draws on: information from
the National Household Travel Survey (NHTS)2 database on the
distance and duration of trips taken by a representative sample of
drivers across the US; data on regional temperature at an hourly
timescale32 (Supplementary Fig. 2); GPS data sets giving second-
by-second velocity profile information across a diverse set of trips
(for example, ref. 33, Supplementary Note 1, Supplementary Fig. 1
and Supplementary Table 1); and the results of vehicle fuel economy
tests34 (Supplementary Table 2). Using a conditional bootstrap
procedure, we match NHTS trips to a set of possible drive cycles
(Fig. 1 and Supplementary Fig. 3) and use information on the time
and location of trips to estimate climate control auxiliary energy
use (Methods and Supplementary Note 2). The model has been
calibrated and validated through extensive testing (Supplementary
Note 3 and Supplementary Figs 10–12).

The results demonstrate the importance of considering driving
behaviour in estimating BEV range (Fig. 2). While the US
Environmental ProtectionAgency (EPA) publishes estimated ranges
for particular vehicles (Supplementary Table 3), the realized range—
the distance that can be driven on one charge—is influenced by
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Figure 2 | Probabilistic model of BEV range given observed nationwide
travel behaviour. The probability that a vehicle travelling a given daily
distance exceeds a battery energy threshold is shown for a current and
future improved battery technology. Blue line: current usable battery
capacity of 19.2 kWh in a vehicle modelled after the 2013 Nissan Leaf. Red
line: identical vehicle with the same battery mass but 55.0 kWh usable
battery capacity, based on an ARPA-E battery specific energy target.
Dotted lines: ranges for the current battery capacity (19.2 kWh) and the
ARPA-E target capacity (55.0 kWh) based on the EPA-estimated average
vehicle fuel economy. Grey bars: histogram of nationwide vehicle-day
driving distance.

several factors and can vary from trip to trip. These factors include
the use of auxiliary power for heating or cooling and the velocity
profile of the trips taken. These factors can have a large impact on
vehicle range (Figs 1 and 2 and Supplementary Fig. 6). Given EPA-
estimated average fuel economy of 116 MPGe, battery capacity of
24 kWh, allowed depth of discharge of 80% (in keeping with the
Leaf ’s ‘long lifemode’35, SupplementaryNote 1), and charging losses
of 10%, we would predict the 2013 Nissan Leaf to have a range
of 73 miles. Our model predicts 74 miles as the median range—
the distance for which half of all vehicle-days could be covered on
one charge. However, variation in trip velocity profiles and auxiliary
power use produces a distribution of ranges (Fig. 2), and our model
predicts that 1 out of 20 of 58-mile vehicle-days could not be covered
by existing batteries, and 1 out of 20 of 90-mile vehicle-days could.

Furthermore, application of the model reveals that the BEV’s
median range changes nonlinearly with battery capacity, because
velocity profiles tend to di�er between short- and long-distance
travel days. As an example, increasing the battery’s specific energy
to an Advanced Research Projects Agency-Energy (ARPA-E)
target value36 of 200 kWhkg�1 while keeping its mass constant
would increase usable battery capacity by 186% to 55 kWh.
Doing so would increase the Leaf ’s median range to 173 miles,
an increase of only 131%. The sub-linear relationship between
range and battery capacity is due to the longer vehicle-days
containing more long-distance highway driving—trips for which
BEVs have a lower fuel economy than for inner-city trips26,37,38
(Supplementary Fig. 9). This finding—the quantification of this
sub-linear relationship—illustrates the value of a model that
captures changing vehicle e�ciency with the velocity profile and a
comprehensive characterization of real-world travel behaviour.

Daily energy requirements and BEV adoption potential
We apply the model to personal vehicle travel across the US. Two
metrics are presented here. The first is the daily vehicle adoption
potential (DAP), which is defined as the percentage of vehicles per
day that could be covered on one charge. The second metric is
the gasoline substitution potential (GSP), which is the percentage
of gasoline consumption that could be replaced by BEVs that
charge once a day (see Supplementary Note 4). These metrics
quantify a technical potential that is limited by range constraints
for utilizing a BEV on a representative day, with only once-daily
charging available. Individual days may diverge from these results,
particularly those when many people are travelling long distances
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vehicle adoption potential (DAP). d, Average fuel economy (in miles per gallon equivalent, MPGe). e, Average vehicle-day driving distance (in miles).
f, Gasoline substitution potential (GSP). Horizontal dashed lines represent US averages.
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Figure 4 | Vehicle-day energy distributions in various cities and the di�erentiating e�ect of their heavy tails. a, Estimated vehicle-day probability
distribution on a log–linear (inset: log–log) scale. The vertical lines represent usable battery capacity for the 2013 Leaf with current battery technology
(19.2 kWh) and the ARPA-E target battery specific energy but the same battery mass (55 kWh). b, Average daily energy consumption (in personal
vehicles) per capita and average daily energy consumption per vehicle driven. The y axis shows city-wide average energy consumption per capita, for the
range of cities studied, assuming a BEV is used for all trips. The x axis shows mean BEV energy consumption per vehicle-day given di�erent battery
constraints: filled circles are based on a vehicle with current battery capacity (19.2 kWh); triangles on the ARPA-E target battery specific energy and the
same battery mass (55 kWh); and squares on no capacity limit. The mean BEV energy consumption in each city shifts to the right as the battery capacity
increases and more high-energy vehicle-days are included in the sample. The variability across cities also increases, from a factor of 1.3 for the current Leaf
to 1.5 for a BEV with no range constraints. For illustration, New York and Houston are highlighted with open circles. Colours in both panels denote di�erent
cities, as indicated by the key.

(for example, Thanksgiving39). For BEV ownership to rise to these
levels, convenient options should be available to meet travellers’
needs on all days.

Figure 3 shows the energy distribution for personal vehicle-days
in the US, as well as the DAP and GSP for the US in aggregate.

Results are also shown for the 12 metropolitan areas with the largest
number of NHTS-respondent households. We find a DAP of 87.0%
for theUS in aggregate. The correspondingGSP is 60.9%, lower than
the DAP because the 13.0% of trips not covered by the BEV account
for a disproportionate amount of energy consumption.
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Rural areas in aggregate have a DAP and GSP that is below the
US average, while urban areas have an above-average DAP and GSP.
The aggregate rural DAP is 80.8% and GSP is 52.2%. The average
urban DAP across the US is 89.1%, varying from 84–93% in the 12
cities examined in detail (Fig. 3). The average urban GSP is 64.5%,
ranging from 58–78% in individual cities. These results support the
idea of cities as natural initial markets for BEVs10,26.

In addition to the DAP and GSP, the average distance and fuel
economy of trips is revealing. The rank ordering of cities in terms of
DAP and GSP does not individually match that of either distance or
fuel economy, as shown in Fig. 3, again illustrating the importance
of considering variations in fuel economy in addition to distance in
characterizing trip energy requirements.

Variation across cities
The comparison of BEV range constraints applied to individual
cities reveals a remarkable degree of similarity in the BEV daily
adoption potential across diverse locations, varying from 84% to
93% (Fig. 3 and Supplementary Table 4). This is in contrast to per
capita travel energy consumption, which varies by a factor of 1.6
across cities (Fig. 4). These results can be understood by examining
the shapes of the energy distributions in individual cities (Fig. 4) and
several factors a�ecting per-capita energy consumption (Fig. 5).

Probability distributions for vehicle-day energy for 12 cities
are shown in Fig. 4a. We observe that these functions diverge
across cities as vehicle-day energy increases. In other words, the
distribution of BEV vehicle-day energy requirements becomes
increasingly di�erent across cities as we increase the upper
threshold on allowed vehicle-day energy requirements. For an
energy threshold defined by the Nissan Leaf ’s battery capacity,
cities appear more similar than they do for a threshold defined

by the ARPA-E target36. This suggests that while a representative
a�ordable BEV today can be expected to face relatively similar
energy requirements across cities, the di�erences in tail behaviour
will cause the mean per-vehicle-day energy use to diverge as battery
improvements increase overall DAP towards 100% (Fig. 4a,b).

The factor of 1.6 variation across cities in per-capita energy
consumption, shown in Fig. 4b, is explained by several factors.
One determinant is the factor of 1.3 variation in daily energy
requirements per vehicle (calculated for a BEV). Another important
determinant, however, is the di�erence in the tendency of the
population to own and use personal vehicles. Figure 5 shows several
statistics capturing this factor. Cities di�er considerably in terms
of the tendency to use di�erent modes of transport29, and in the
propensity to use personal vehicles on any given day.

Taken together the factors discussed above explain an apparent
inconsistency: the significant di�erence in the per-capita trans-
portation energy consumption and the much more limited di�er-
ence in the BEV adoption potential across diverse cities. The large
variation in energy consumption per capita is explained by some
cities relying much less on personal vehicles for travel than others,
while the smaller variation in BEV adoption potential is explained
by similar energy requirements across cities for those vehicles that
are driven. Furthermore, the small number of high-energy trips in
the tail a�ect the mean of the vehicle-day energy distribution but do
not greatly a�ect DAP.

The comparison between New York and Houston provides a
striking example of this phenomenon (Fig. 5). By most measures of
travel behaviour, New York and Houston are very di�erent cities.
Figure 5 shows di�erences in city layout, transportation mode
choice, vehicle ownership, and vehicle use. New York City contains
an extensive dense central area, whereas Houston sprawls over a
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similar area at more moderate densities. New York has the highest
transit ridership and lowest personal vehicle ridership of all cities
in the NHTS, whereas Houston is among the most car-dependent
of major US cities. Despite these di�erences, however, the DAP and
GSP for these two cities are remarkably similar, with DAP di�ering
by 1% and GSP by 6%. When vehicles are driven in these two cities,
the percentages of vehicle-days served by current BEV technology
are strikingly similar. This means that both cities, despite their
di�erences, show substantial BEV adoption potential.

Benefits of battery improvement
Howmight DAP and GSP increase with improvements to batteries?
The vehicle-day energy distributions presented here allow for a
quantification of the marginal benefits of improving BEV battery
capacity (Fig. 6). Improvements in battery capacity (at constant
mass and volume) increase the number of vehicle-days that could
be replaced by BEVs, but the results show important nonlinearities.
A factor of 2.3 increase in the Leaf ’s battery specific energy, from
its 2013 value of 88Whkg�1 to the US ARPA-E specific energy
target of 200Whkg�1, would increase DSP to 98% and GSP to 88%.
Further improvements in GSP would require still greater increases
in specific energy, with aGSP of 95% requiring an increase in battery
specific energy by a factor of six to approximately 420Whkg�1.
To maintain vehicle a�ordability and thereby enable widespread
BEV adoption, the cost per battery capacity should stay constant
or even decrease while battery energy density and specific energy
increase. Commercial progress is being made towards this end. For
example, the 2017 Chevrolet Bolt BEV is intended to be widely
a�ordable and o�ers a 60 kWh battery with a specific energy of

138Whkg�1 (Supplementary Note 1). The 2018 Tesla Model 3
promises comparable range to the Bolt at a similar price point,
although with di�erent aesthetics and performance features.

The distinction between urban and rural areas is revealing in this
context. While urban areas show a significantly higher GSP than
rural areas (52.2% in rural and 64.5% in urban areas on average),
the returns to further improvement in batteries are greater in rural
areas than urban ones. Increasing battery specific energy and energy
density to meet the ARPA-E target would almost eliminate the
di�erence in GSP between urban and rural areas. Batteries with this
capacity would allowBEVs to replace approximately 80%of gasoline
consumption if fully adopted in both locations.

The relationship between DAP and battery capacity is important
to consider in assessing potential long-term limits to BEV adoption.
The sub-linearity of DAP versus battery capacity suggests that
a complete daily electrification of personal vehicles presents
a significant technical challenge, and that other powertrain
technologies will be needed for some time even as batteries and
charging infrastructure advance.

Discussion
Our results show that current, a�ordable BEV technology is able to
replace 87% of vehicles driven on a given day without recharging.
This would allow for a reduction of gasoline consumption by
approximately 60%. These findings support the concept that cities
are especially suited for early BEV adoption10,26, given that nearly
all cities studied rated as well or better than the national average
in two metrics of BEV performance (DAP and GSP). However, we
show quantitatively that a substantial portion of vehicle-days, and
a larger portion of gasoline consumption, could not be replaced
by the modelled BEV. These vehicle-days tend to involve longer
travel distances and higher-speed driving, and they tend to be more
common for residents of rural rather than urban areas.

These results provide fundamental insight into travel behaviour
in cities, adding to regularities that have previously been identified
in behaviour and energy consumption in cities40,41. We find that
daily energy consumption is distributed remarkably similarly across
cities for the majority of vehicles and, as a result, diverse cities have
similar BEV adoption potential. A small portion of vehicle-days that
have particularly high energy requirements do vary in frequency
and intensity across cities, and these days cause a disproportionate
amount of the variation between individual cities when all vehicle-
days are considered. Further, a major factor in the di�erences
between cities is how likely someone is to drive on any given day.
These factors together give rise to di�erences in the per-capita
energy consumption across cities.

Increasing BEV battery capacity will allow for greater DAP and
GSP, and our results enable the assessment of this potential against
climate policy targets, under current and future improved battery
performance. For example, meeting existing policy targets would
require a reduction of transportation sector emissions of 26–28%
from 2005 levels by 20251,3. Even considering the current electric
grid mix42, today’s BEV technology is capable of meeting this target.
Achieving the GSP for current BEV technology by 2025 would
yield an estimated 29% reduction (Fig. 3) from 2005 emissions
levels (based on an average US electricity carbon intensity and
0.92%yearly increase in vehiclemiles travelled43, see Supplementary
Note 4 and Supplementary Table 5).

Transportation emissions reduction targets for later years may
be more ambitious, for example reaching 56% and 80% below
1990 emissions levels by 2040 and 205044–46. Given current battery
capacity, modelled after the 2013 Nissan Leaf, carbon emissions
from the remaining gasoline vehicles would be enough to exceed the
2040 target, meaning current technology could not provide enough
reductions even with entirely carbon-free electricity. However, the
Leaf with 55 kWh usable battery capacity (meeting the ARPA-E
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target battery specific energy of 200Whkg�1; ref. 36) could enable
nearly full BEV adoption without confronting range constraints
(DAP = 98.3%) and could meet the 2040 target in tandem with
a 44% reduction in the average carbon intensity of electricity. By
2050, even with complete electrification of transportation, meeting
the 80% emissions reduction target would require a reduction
of 65% in grid emissions intensity. These examples of rough
calculations demonstrate the power of the model for assessing
battery technology and electricity CO2eq emissions intensity against
climate policy targets.

The results presented here represent theoretically achievable
values of DAP and GSP given BEV range constraints. Realizing
these levels of BEV adoption would require that prospective BEV
owners have access to personally-operated or other vehicles with
longer range that can meet their needs on all days, including high-
energy ones24. Even with substantial battery improvements, other
powertrain technologiesmay be needed to cover those days with the
highest energy consumption. This need may persist for some time,
even with expanded (and improved17,47,48) charging infrastructure.
Predicting high-energy days and providing convenient solutions—
such as commercial programmes for sharing internal combustion
engine vehicles to complement within-household car sharing and
alternative transportation modes—may therefore be critical for
increasing BEV ownership.

Many other considerations will also a�ect realized adoption
levels, including consumer preferences for vehicles, and financing
options to o�set the higher purchase price of BEVs21,31, as well
changes to travel demand over time. These factors will also
be important to consider in evaluating BEV technology and
transportation policy to achieve emissions reductions.

Methods
General approach. The TripEnergy model draws on information contained in
travel data with varying resolution and coverage, as well as data on ambient
temperatures. This information is used in a travel demand component and then a
vehicle energy component to determine the trip-by-trip energy requirements of
travel across the United States. We describe TripEnergy and the methods used in
this paper here, and provide further information in Supplementary Note 2.

Data. Data inputs include information on travel behaviour and ambient
temperature. We use two sources of data to estimate trip velocity profiles: the
National Household and Transportation Survey (NHTS) and GPS data sets from
several US cities. The 2009 NHTS2 contains approximately 1.1 million trips from
150,000 households. The GPS data (Supplementary Note 1) contain speed
histories of approximately 120,000 trips from nine cities across the US.
Considering both of these data sets provides information on both the travel
behaviour of drivers across the US and on representative high-resolution velocity
profiles. The representative nature of the GPS drive cycles has been validated as
described in Supplementary Note 3.

Vehicle model. To produce the energy distributions used in this paper, we model
both vehicle performance and driving demand to determine personal vehicle
energy consumption. For the vehicle performance aspect of our model, we
estimate tractive energy requirements and the internal e�ciency of a given
velocity profile, the former using EPA test dynamometer coe�cients and the
latter using CAFE test results and a method based on ref. 49 (see Supplementary
Note 2 and Supplementary Figs 7 and 8 for further discussion). To estimate the
amount of auxiliary energy used, we use the National Solar Radiation Database’s
Typical Meteorological Year database32 to produce a distribution of possible
ambient temperatures for the trip based on its time of day, month and location,
which is converted to climate control auxiliary energy consumption via a simple
energy balance model. The model uses factory-rated battery capacity estimates,
and does not consider consumer-reported deviations from these values due to
battery degradation over time.

Demand model. We base overall travel demand in our model on the NHTS,
using a de-rounding algorithm (see Supplementary Note 2 and Supplementary
Figs 4 and 5) to remove rounding biases from the self-reported data. As the
NHTS does not contain high-resolution vehicle speed data, we use a conditional
bootstrap procedure to probabilistically match each NHTS trip with a
representative set of possible GPS velocity histories. A sample application of this
process is shown in Fig. 1. The tractive energy from the vehicle model and the

auxiliary energy from the climate model are combined to produce a probability
distribution of the energy needs of the NHTS trips.
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