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Mutual Information

Mutual information is a measure of mutual dependence between two rvs.
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Mutual Information

Mutual information is a measure of mutual dependence between two rvs.
Let X; and X, be R-valued rvs with joint probability distribution Px, x,.
The mutual information between X; and X5 is

Epy, x, | 108 e (X1,X2) |, if Px,x, < Px, % Px,

PXl ><PX2

I(X1AXs) =
oo, if PXle %JDX1 XPX2

- D(PXlXZ | Px, x PXQ). (Kullback — Leibler divergence)

When X and X5 are finite-valued,

I(X1 AXy) = H (X)) +H (Xo) — H (X1, X,)

= H(X1) - H(X1|X2) = H(Xz) - H(X2|Xy)
= H(X1,X2)— [H(X1|X2)+H(X2\X1)]
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Channel Coding

Let X} and X5 be finite alphabets, and W : X1 — X5 be a stochastic matrix.

message f(m) m
———>—— encoder f DMC decoder ¢ |——=
me{l,...,M} (11, -+, T1n) (a1, .- Ton)

Discrete memoryless channel (DMC):

n

W (o1, Ton | T11, -+, T1n) = HW(lzz | £15) .

i=1
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Channel Capacity

decoder ¢

message f(m)
——>1 encoder f DMC
me{l,...,] M} ('L‘H ..... 11”) (l‘g],...,ﬂ?gn)

Goal: Make code rate %logM as large as possible while keeping

mnz%xP(gZ) (Xo1,..., Xon) #m | f(m))
to be small, in the asymptotic sense as n — oo.

[C.E. Shannon, 1948]

Channel capacity C' = max I(X1NXs).

Pxy:Px,x,=

m
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Lossy Source Coding

Let {X1:},-, be an X;-valued i.i.d. source.

source floi,. . 2m)
——>{ encoder f
(T115+ -+, T10) jefl,....J}
Distortion measure:
d((I117 e 1), (T21, ,1’2n

decoder ¢

3

#(f)
s
(@21, ..., Tan)

7/41



Rate Distortion Function

source f(l'lh cee 7I1n) @(j)
———> 1 encoder f decoder ¢ t—--->
(T11,- -+, 1) jefl,...,J} (@a1, ..., Tan)

Goal: Make (compression) code rate %logJ as small as possible while keeping
1 n
P - d (X1, X2i) < A
(s <
to be large, in the asymptotic sense as n — oo.
[Shannon, 1948, 1959]
Rate distortion function R (A) = min I(X1NXo).

Pxyix,: E[d(X1,X2)]<A
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Simple Binary Hypothesis Testing

Let {(Xlt,th)}fil be an X} x Xs-valued i.i.d. process generated according to

HO: PX1X2 or H1: PX1XPX2-

Test:

Decides HO W.p. T(O | 1311,...,261”71'21,...7562n),
H1 W.p. T(l | xll,...,mln,xgl,...,xgn) = 1—T(0 | )

Stein's lemma [H. Chernoff, 1956]: For every 0 < e < 1,

1
lim ——log inf Py, (T says Hp)
n n T: Puy (T says Ho)>1—e

= D(PX1X2 || PX1 XPXQ) = I(Xl /\XQ).
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Multiterminal Model

COMMUNICATION NETWORK

F
X1 X X
Set of terminals = M = {1,...,m}.
X1,..., X, are finite-valued rvs with known joint distribution Px,  x,

on X7 X - X Xp,.
Terminal ¢ € M observes data X;.

Multiple rounds of interactive communication on a noiseless channel
of unlimited capacity, all terminals hear all communication.
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Interactive Communication

Interactive communication
» Assume: Communication occurs in consecutive time slots in 7 rounds.

» The corresponding rvs representing the communication are

F:F(Xla-”aXm): <F117"'7F177L7 F217~-~7F2m7 EERE Frla-”aFrm)

- In =f11(X1), F12=f12(X2,F11),

- Fj = fji(Xi; all previous communication).

Simple communication: F = (F17 - ,Fm), F=f (Xi), 1<t<m.

A. Yao, “Some complexity questions related to distributive computing,” Proc. Annual Symposium on Theory

of Computing, 1979.
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Applications

COMMUNICATION NETWORK

X1

Xs

Data exchange: Omniscience

Signal recovery: Data compression

Function computation

Cryptography: Secret key generation
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WatanExample: Function Computation

[S. Watanabe]
> X11,X12,X21,X22 are mutually independent (05,05) bits.
» Terminals 1 and 2 wish to compute:

G =g(X1,X2) = ]l((Xn,Xlz) = (X217X22)>-

» Simple communication: F = (Fl = (X117X12)7 Fy = (X21,X22)).

—  Communication complexity: H(F) = 4 bits.
—  No privacy: Terminal 1 or 2, or an observer of F, learns all the data X3, X5.
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WatanExample: Function Computation

Fu
[ X || ——— [ X
1 = <X12> Fiy Xa = <X22>

» An interactive communication protocol:
- F= (P =(Xu,Xn), F=G).
— Complexity: H(F) = 2.81 bits.
— Some privacy: Terminal 2, or an observer of F, learns X7;

Terminal 1, or an observer of F, either learns X2 w.p. 0.25
or w.p. 0.75 that X5 differs from X;.
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WatanExample: Function Computation

Fu
[ X || ——— [ X
1 = <X12> Fiy Xa = <X22>

» An interactive communication protocol:
- F= (P =(Xu,Xn), F=G).
— Complexity: H(F) = 2.81 bits.
— Some privacy: Terminal 2, or an observer of F, learns X7;

Terminal 1, or an observer of F, either learns X2 w.p. 0.25
or w.p. 0.75 that X5 differs from X;.

¢ Can a communication complexity of 2.81 bits be bettered ?
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Related Work

» Exact function computation

— Yao '79: Communication complexity.
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— Schulman '92: Coding for interactive communication.
— Braverman-Rao '10: Information complexity of communication.
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Mathematical Economics: Mechanism Design

— Thomas Marschak and Stefan Reichelstein,
“Communication requirements for individual agents in networks and
hierarchies,”
in The Economics of Informational Decentralization: Complexity, Efficiency
and Stability: Essays in Honor of Stanley Reiter, John O. Ledyard, Ed.,
Springer, 1994.

— Kenneth R. Mount and Stanley Reiter,

Computation and Complexity in Economic Behavior and Organization,
Cambridge U. Press, 2002.

Courtesy: Demos Teneketzis
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Common Randomness

COMMUNICATION NETWORK

F
X, Xy Xm
] v v
Ly Ly L, =L

For 0 <€ < 1, given interactive communication F, a rv L = L(X},

e-CR for the terminals in M using F, if there exist local estimates

L, = Li(Xi, F), ie M,
of L satisfying

P(Li:L, ie/\/l) > 11—

oy X)) s
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Common Randomness

COMMUNICATION NETWORK

F
X, X, Xom
| ] I
Ly Lo L, =L
Examples:
» Data exchange: Omniscience: L = (X1,...,Xm).

» Signal recovery: Data compression: L O X;«, for some fixed i* € M.

» Function computation: L O g(X17 . ,Xm) for a given g.

» Cryptography: Secret CR, i.e., secret key: L with I(L N F) 0.
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A Basic Operational Question

>

X1 Xa Xm

] ! I
Ly Ly Ly,

14
h

i What is the maximal CR, as measured by H(L\F), that can be generated
by a given interactive communication F for a distributed processing task ?
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A Basic Operational Question

>

X1 Xa Xm

] ! I
Ly Ly Ly,

14
h

i What is the maximal CR, as measured by H(L\F), that can be generated
by a given interactive communication F for a distributed processing task ?

Answer in two steps:

» Fundamental structural property of interactive communication

» Upper bound on amount of CR achievable with interactive communication.

Shall start with the case of m = 2 terminals.
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Fundamental Property of Interactive Communication

COMMUNICATION NETWORK

X1 Xy

Lemma: [U. Maurer], [R. Ahlswede - |. Csiszar]
For interactive communication F of the Terminals 1 and 2 observing
data X7 and X5, respectively,

I(X1 A Xo|F) < I(X1AXs).

In particular, independent rvs X7, X5 remain so upon conditioning on an
interactive communication.

21/41



Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - |. Csiszar]
For interactive communication F of the Terminals 1 and 2 observing
data X7 and X5, respectively,

I(X1 A Xo|F) < I(X1AX2).
In particular, independent rvs X7, X5 remain so upon conditioning on an
interactive communication.

Proof: For interactive communication F = (Fi1, Fia, ..., F1, F2),

I(X1 A Xo) =1(Xy, Fii A Xa)

> I(X1 A Xo|Fiy)
= I(X1 A Xo, Fio|F11)
> I(X1 A Xo|Fiu, Fi),

followed by iteration.
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An Equivalent Form

For interactive communication F of Terminals 1 and 2:

I(X1 A X2|F) < I(X1AXo)

)

H(F) > H(F|X;)+ H(F|X>3).
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Upper Bound on CR for Two Terminals

COMMUNICATION NETWORK

F
X, X,
| |
L L, =L

Using
— L is ¢-CR for Terminals 1 and 2 with interactive communication F'; and
- H(F) > H(F|X,)+ H(F|X»),

we get
H(LIF) < H(X1,X2) - [H(X1|X2) +H(X2|X1)} + 2v(e),

where lim,_,qv(€) = 0.
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Maximum CR for Two Terminals: Mutual Information

COMMUNICATION NETWORK

Lemma: [I. Csiszar - P. Narayan] Let L be any e-CR for Terminals 1 and 2
observing data X7 and Xj, respectively, achievable with interactive F. Then

H(L|F) é I(Xl /\X2> = D(PX1X2||PX1 XPX2).

Remark: When {(X1, Xo)},2, is an Xy x Xs-valued i.i.d. process, the upper
bound is attained.
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Interactive Communication for m > 2 Terminals

Theorem 1: [I. Csiszar-P. Narayan]
For interactive communication F of the terminals i € M = {1,...,m},
with Terminal ¢ oberving data X,

H(F) > 3 ApH (FIXp)
BeB

for every family B = {B C M, B # (0} and set of weights (“fractional partition”)
Aé{ogABgl, B € B, satisfying Y )\B:1Vi€/\/l}.
BeB:B>i

Equality holds if X1,..., X}, are mutually independent.

Special case of:
M. Madiman and P. Tetali, “Information inequalities for joint distributions, with interpretations and

applications,” IEEE Trans. Inform. Theory, June 2010.
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CR for m > 2 Terminals: A Suggestive Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication F of the terminals i € M = {1,...,m},
with Terminal 7 observing data X,

<m:2;H(F) > H(F|X1) + H(F|X2) & I(X) A Xo|F) < I(Xl/\Xg)>

H(F) > 3 ApH (F|Xp)
BeB

)

H(X1,...,Xm|F) - Z Ap H(Xp|Xpe,F)
BeB

< H(X1,...,Xm) = Y Ap H(Xp|Xpe).
BeB

27/41



An Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication F of the terminals : € M = {1,...,m},
with Terminal ¢ observing data X,

H(F) > Y ApH (F|Xp)
BeB

)

H(Xy,...,Xn|F) = > Ap H(Xp|Xp-,F)
BeB
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Maximum CR for m > 2 Terminals: Shared Information

Theorem 2: [I. Csiszar-P. Narayan]

Given 0 < e < 1, for an e-CR L for M achieved with interactive communication F,

H(LIF) < H(X1,...,Xm) — > ApH (Xp|Xpe) +my
BeB

for every fractional partition A of M, with v = v(e) =€ logyﬁ‘ + h(e).
Remarks:

— The proof of Theorem 2 relies on Theorem 1.

— When {(X1, ..., Xmt)} 4oy is an i.i.d. process, the upper bound is attained.
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Theorem 2: [I. Csiszar-P. Narayan]

H(L[F)

=

Shared Information

H(X1,...

Xm) — max > ApH (Xp|Xp:)

BeB
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Extensions

Theorems 1 and 2 extend to:

> random variables with densities [S. Nitinawarat-P. Narayan]

> a larger class of probability measures [H.Tyagi-P. Narayan].
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Shared Information and Kullback-Leibler Divergence
[I. Csiszar-P. Narayan, C. Chan-L. Zheng]

SI(X1,.... Xm) = H(X1,...,Xpn) — m)z\jLX];:B)\BH(XMXBC)

H(X0, X) = | H(X1|X2) + H (X[ X1) | = 1(X0 A X)
D (}j)fl)f2||}j)(1 X }))(2)

s

I

[N} [\

RS
(I

s
I
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Shared Information and Kullback-Leibler Divergence
[I. Csiszar-P. Narayan, C. Chan-L. Zheng]

SI(X1,.... Xm) = H(X1,...,Xpn) — m)z\jLX];:B)\BH(XMXBC)

(m=2) = H(X1,Xz) - [H(X:]Xz) + H(Xe|X1)| = I(X1 A X2)
<7TL = 2) =D (}j)fl)f2||}j)(1 X }))(2)

. . 1
(m=2) = 2SkSm  Ap=(ArrAg) k1 (PXI "‘HHPXA)

and equals 0 iff Px, x, = Px,Px,. for some A C M.

i Does shared information have an operational significance as a
measure of the mutual dependence among the rvs Xq,..., X, ?
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Omniscience

COMMUNICATION NETWORK

F
X, X, Xon
! ! J
Ll L2 Ly, =L

[I. Csiszar-P. Narayan]

For L = (Xl, .. ,Xm), Theorem 2 gives

H(F) % H(Xl""’Xm) _SI(X17"'7X’HL)7

which, for m = 2, is

H(F) Z H(Xl\Xg) + H(X2|X1). [Slepian — Wolf]
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Signal Recovery: Data Compression

COMMUNICATION NETWORK

F
X1 X Xm
) ) 7
Ly Lo L, =L

[S. Nitinawarat-P. Narayan]

With L = X, by Theorem 2
H(F) 2 H(X1) — SI(X1,....Xm),
which, for m = 2, gives
H(F) 2 H(X1|X2).

[Slepian-Wolf]
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Secret Common Randomness

F
X, X, Xm
} ! J
Ly Lo L, =L
Terminals 1,...,m generate CR L satisfying the secrecy condition
I(LAF) = 0.

By Theorem 2,
H(L) = H(L|F) = SI(Xl,...,Xm).

> Secret key generation [l. Csiszar-P. Narayan]
» Secure function computation [H. Tyagi-P. Narayan]
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Querying Common Randomness

COMMUNICATION NETWORK

XI} Xé] X n

m

Sy
&
~
IR
h

m

[H. Tyagi-P. Narayan]

» A querier observes communication F and seeks to resolve the value
of CR L by asking questions: “Is L = [7?" with yes-no answers.

> The terminals in M seek to generate L using F so as to make
the querier’s burden as onerous as possible.

i What is the largest query exponent ?
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Largest Query Exponent

F
X7 X5 X
| | |
L, Ly L, =L

E* £ argsup |inf P(¢(L|F)>2"") 5 1lasn — o
E 4q

E* = SI(X1,...,Xn)

38/41



Shared information and a Hypothesis Testing Problem

k

SI(X1..... Xp) = min. P Tt D(PXI,,,XMHEPXM)

» Related to exponent of “P,.-second kind" for an appropriate binary composite
hypothesis testing problem, involving restricted CR L and communication F.

H. Tyagi and S. Watanabe, “Converses for secret key agreement and secure computing,” IEEE Trans.

Information Theory, September 2015.
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In Closing ...

i How useful is the concept of shared information ?

A: Operational meaning in specific cases of distributed processing ...
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In Closing ...

i How useful is the concept of shared information ?

A: Operational meaning in specific cases of distributed processing ...

For instance

v

v

v

v

Consider n i.i.d. repetitions (say, in time) of the rvs X1,..., X,,.

Data at time instant ¢ is Xq14,..., X, t=1,...,n.

Terminal i observes the i.i.d. data (X;1,...,Xin), i€ M.

Shared information-based results are asymptotically tight (in n):

Minimum rate of communication for omniscience
Maximum rate of a secret key

Largest query exponent

Necessary condition for secure function computation

Several problems in information theoretic cryptography.
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Shared Information: Many Open Questions ...

— Significance in network source and channel coding ?
— Interactive communication over noisy channels 7

— Data-clustering applications ?
[C. Chan-A. Al-Bashabsheh-Q. Zhou-T. Kaced-T.Liu, 2016]
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