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Mutual Information

Mutual information is a measure of mutual dependence between two rvs.

Let X1 and X2 be R-valued rvs with joint probability distribution PX1X2
.

The mutual information between X1 and X2 is

I (X1 ∧X2) =

{
EPX1X2

[
log

dPX1X2

dPX1
×PX2

(X1, X2)
]
, if PX1X2

≺ PX1
× PX2

∞, if PX1X2
6≺ PX1

× PX2

= D
(
PX1X2

|| PX1
× PX2

)
.
(
Kullback− Leibler divergence

)

When X1 and X2 are finite-valued,

I (X1 ∧X2) = H (X1) +H (X2)−H (X1, X2)

= H (X1)−H (X1 | X2) = H (X2)−H (X2 | X1)

= H (X1, X2)−
[
H (X1 | X2) +H (X2 | X1)

]
.
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Channel Coding

Let X1 and X2 be finite alphabets, and W : X1 → X2 be a stochastic matrix.

message

m ∈ {1, . . . ,M}
encoder f DMC decoder φ

m̂f(m)

(x21, . . . , x2n)(x11, . . . , x1n)

Discrete memoryless channel (DMC):

W (n) (x21, . . . , x2n | x11, . . . , x1n) =

n∏

i=1

W (x2i | x1i) .
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Channel Capacity

message

m ∈ {1, . . . ,M}
encoder f DMC decoder φ

m̂f(m)

(x21, . . . , x2n)(x11, . . . , x1n)

Goal: Make code rate 1
n logM as large as possible while keeping

max
m

P
(
φ (X21, . . . , X2n) 6= m | f(m)

)

to be small, in the asymptotic sense as n→∞.

[C.E. Shannon, 1948]

Channel capacity C = max
PX1

:PX2|X1
=W

I (X1 ∧X2) .
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Lossy Source Coding

Let {X1t}∞t=1 be an X1-valued i.i.d. source.

encoder f decoder φ
φ(j)f(x11, . . . , x1n)

(x11, . . . , x1n) (x21, . . . , x2n)j ∈ {1, . . . , J}

source

Distortion measure:

d
(
(x11, . . . , x1n), (x21, . . . , x2n)

)
=

1

n

n∑

i=1

d
(
x1i, x2i

)
.
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Rate Distortion Function

encoder f decoder φ
φ(j)f(x11, . . . , x1n)

(x11, . . . , x1n) (x21, . . . , x2n)j ∈ {1, . . . , J}

source

Goal: Make (compression) code rate 1
n log J as small as possible while keeping

P

(
1

n

n∑

i=1

d (X1i, X2i) ≤ ∆

)

to be large, in the asymptotic sense as n→∞.

[Shannon, 1948, 1959]

Rate distortion function R (∆) = min
PX2|X1

: E[d(X1,X2)]≤∆
I (X1 ∧X2) .
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Simple Binary Hypothesis Testing

Let {(X1t, X2t)}∞t=1 be an X1 ×X2-valued i.i.d. process generated according to

H0 : PX1X2 or H1 : PX1 × PX2 .

Test:

Decides H0 w.p. T (0 | x11, . . . , x1n, x21, . . . , x2n) ,

H1 w.p. T (1 | x11, . . . , x1n, x21, . . . , x2n) = 1− T (0 | . . .) .

Stein’s lemma [H. Chernoff, 1956]: For every 0 < ε < 1,

lim
n
− 1

n
log inf

T : PH0
(T says H0)≥1−ε

PH1 (T says H0)

= D (PX1X2
|| PX1

× PX2
) = I (X1 ∧X2) .
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Multiterminal Model

COMMUNICATION NETWORK

X1 X2 Xm

F

I Set of terminals =M = {1, . . . ,m}.

I X1, . . . , Xm are finite-valued rvs with known joint distribution PX1...Xm

on X1 × · · · × Xm.

I Terminal i ∈M observes data Xi.

I Multiple rounds of interactive communication on a noiseless channel
of unlimited capacity; all terminals hear all communication.
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Interactive Communication
Interactive communication

I Assume: Communication occurs in consecutive time slots in r rounds.

I The corresponding rvs representing the communication are

F = F
(
X1, . . . , Xm

)
=
(
F11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frm

)

– F11 = f11
(
X1

)
, F12 = f12

(
X2, F11

)
, . . .

– Fji = fji
(
Xi; all previous communication

)
.

Simple communication: F =
(
F1, . . . , Fm

)
, Fi = fi

(
Xi

)
, 1 ≤ i ≤ m.

A. Yao, “Some complexity questions related to distributive computing,” Proc. Annual Symposium on Theory

of Computing, 1979.
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Applications

COMMUNICATION NETWORK

X1 X2 Xm

F

I Data exchange: Omniscience

I Signal recovery: Data compression

I Function computation

I Cryptography: Secret key generation
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WatanExample: Function Computation

X2 =

(
X21

X22

)
F1

F2
X1 =

(
X11

X12

)

[S. Watanabe]

I X11, X12, X21, X22 are mutually independent (0.5, 0.5) bits.

I Terminals 1 and 2 wish to compute:

G = g(X1, X2) = 1

(
(X11, X12) = (X21, X22)

)
.

I Simple communication: F =
(
F1 = (X11, X12), F2 = (X21, X22)

)
.

– Communication complexity: H(F) = 4 bits.

– No privacy: Terminal 1 or 2, or an observer of F, learns all the data X1, X2.
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WatanExample: Function Computation

X2 =

(
X21

X22

)
F11

F12
X1 =

(
X11

X12

)

I An interactive communication protocol:

– F =
(
F11 = (X11, X12), F12 = G

)
.

– Complexity: H(F) = 2.81 bits.

– Some privacy: Terminal 2, or an observer of F, learns X1;
Terminal 1, or an observer of F, either learns X2 w.p. 0.25
or w.p. 0.75 that X2 differs from X1.

¿ Can a communication complexity of 2.81 bits be bettered ?
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Mathematical Economics: Mechanism Design

– Thomas Marschak and Stefan Reichelstein,
“Communication requirements for individual agents in networks and
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Courtesy: Demos Teneketzis
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Common Randomness

L1

X1 X2 Xm

L2 Lm

COMMUNICATION NETWORK

∼= L

F

For 0 ≤ ε < 1, given interactive communication F, a rv L = L(X1, . . . , Xm) is
ε-CR for the terminals in M using F, if there exist local estimates

Li = Li
(
Xi, F

)
, i ∈M,

of L satisfying

P
(
Li = L, i ∈M

)
≥ 1− ε.
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Common Randomness

L1

X1 X2 Xm

L2 Lm

COMMUNICATION NETWORK

∼= L

F

Examples:

I Data exchange: Omniscience: L =
(
X1, . . . , Xm

)
.

I Signal recovery: Data compression: L ⊇ Xi∗ , for some fixed i∗ ∈M.

I Function computation: L ⊇ g
(
X1, . . . , Xm

)
for a given g.

I Cryptography: Secret CR, i.e., secret key: L with I(L ∧ F) ∼= 0.
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A Basic Operational Question

L1

X1 X2 Xm

L2 Lm

COMMUNICATION NETWORK

∼= L

F

¿ What is the maximal CR, as measured by H
(
L|F

)
, that can be generated

by a given interactive communication F for a distributed processing task ?

Answer in two steps:

I Fundamental structural property of interactive communication

I Upper bound on amount of CR achievable with interactive communication.

Shall start with the case of m = 2 terminals.
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Fundamental Property of Interactive Communication

COMMUNICATION NETWORK

F

X1 X2

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]

For interactive communication F of the Terminals 1 and 2 observing
data X1 and X2, respectively,

I
(
X1 ∧X2

∣∣F) ≤ I
(
X1 ∧X2

)
.

In particular, independent rvs X1, X2 remain so upon conditioning on an
interactive communication.
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Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]

For interactive communication F of the Terminals 1 and 2 observing
data X1 and X2, respectively,

I
(
X1 ∧X2

∣∣F) ≤ I
(
X1 ∧X2

)
.

In particular, independent rvs X1, X2 remain so upon conditioning on an
interactive communication.

Proof: For interactive communication F =
(
F11, F12, . . . , Fr1, Fr2

)
,

I
(
X1 ∧X2

)
= I
(
X1, F11 ∧X2

)

≥ I
(
X1 ∧X2|F11

)

= I
(
X1 ∧X2, F12|F11

)

≥ I
(
X1 ∧X2|F11, F12

)
,

followed by iteration.
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An Equivalent Form

For interactive communication F of Terminals 1 and 2:

I
(
X1 ∧X2

∣∣F) ≤ I
(
X1 ∧X2

)

m

H(F) ≥ H(F|X1) +H(F|X2).
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Upper Bound on CR for Two Terminals

X2

COMMUNICATION NETWORK

F

L2

X1

∼= LL1

Using

– L is ε-CR for Terminals 1 and 2 with interactive communication F; and

– H(F) ≥ H(F|X1) +H(F|X2),

we get

H
(
L|F

)
≤ H

(
X1, X2

)
−
[
H
(
X1|X2

)
+H

(
X2|X1

)]
+ 2ν(ε),

where limε→0 ν(ε) = 0.
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Maximum CR for Two Terminals: Mutual Information

X2

COMMUNICATION NETWORK

F

L2

X1

∼= LL1

Lemma: [I. Csiszár - P. Narayan] Let L be any ε-CR for Terminals 1 and 2
observing data X1 and X2, respectively, achievable with interactive F. Then

H
(
L|F

)
/ I

(
X1 ∧X2

)
= D

(
PX1X2 ||PX1 × PX2

)
.

Remark: When {(X1t, X2t)}∞t=1 is an X1 ×X2-valued i.i.d. process, the upper
bound is attained.
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Interactive Communication for m ≥ 2 Terminals

Theorem 1: [I. Csiszár-P. Narayan]

For interactive communication F of the terminals i ∈M = {1, . . . ,m},
with Terminal i oberving data Xi,

H (F) ≥
∑

B∈B
λBH (F|XBc)

for every family B = {B (M, B 6= ∅} and set of weights (“fractional partition”)

λ ,

{
0 ≤ λB ≤ 1, B ∈ B, satisfying

∑

B∈B:B3i
λB = 1 ∀ i ∈M

}
.

Equality holds if X1, . . . , Xm are mutually independent.

Special case of:

M. Madiman and P. Tetali, “Information inequalities for joint distributions, with interpretations and

applications,” IEEE Trans. Inform. Theory, June 2010.
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CR for m ≥ 2 Terminals: A Suggestive Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication F of the terminals i ∈M = {1, . . . ,m},
with Terminal i observing data Xi,

(
m = 2 : H(F) ≥ H(F|X1) +H(F|X2) ⇔ I

(
X1 ∧X2

∣∣F) ≤ I
(
X1 ∧X2

)
)

H (F) ≥
∑

B∈B
λBH (F|XBc)

m

H
(
X1, . . . , Xm|F

)
−
∑

B∈B
λB H

(
XB |XBc ,F

)

≤ H
(
X1, . . . , Xm

)
−
∑

B∈B
λB H

(
XB |XBc

)
.
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An Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication F of the terminals i ∈M = {1, . . . ,m},
with Terminal i observing data Xi,

H (F) ≥
∑

B∈B
λBH (F|XBc)

m

H
(
X1, . . . , Xm|F

)
−
∑

B∈B
λB H

(
XB |XBc ,F

)

≤ H
(
X1, . . . , Xm

)
−
∑

B∈B
λB H

(
XB |XBc

)
.

¿ Does the RHS suggest a measure of mutual dependence

among the rvs X1, . . . , Xm ?
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Maximum CR for m ≥ 2 Terminals: Shared Information

Theorem 2: [I. Csiszár-P. Narayan]

Given 0 ≤ ε < 1, for an ε-CR L forM achieved with interactive communication F,

H
(
L|F

)
≤ H

(
X1, . . . , Xm

)
−
∑

B∈B
λBH (XB |XBc) +mν

for every fractional partition λ of M, with ν = ν(ε) = ε log
∣∣L
∣∣+ h(ε).

Remarks:

– The proof of Theorem 2 relies on Theorem 1.

– When {(X1t, . . . , Xmt)}∞t=1 is an i.i.d. process, the upper bound is attained.
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Shared Information

Theorem 2: [I. Csiszár-P. Narayan]

H
(
L|F

)
/ H

(
X1, . . . , Xm

)
− max

λ

∑

B∈B
λBH (XB |XBc)

∆
= SI

(
X1, . . . , Xm

)
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Extensions

Theorems 1 and 2 extend to:

I random variables with densities [S. Nitinawarat-P. Narayan]

I a larger class of probability measures [H.Tyagi-P. Narayan].

31/41



Shared Information and Kullback-Leibler Divergence
[I. Csiszár-P. Narayan, C. Chan-L. Zheng]

SI
(
X1, . . . , Xm

)
= H

(
X1, . . . , Xm

)
− max

λ

∑

B∈B
λBH (XB |XBc)

(m = 2) = H
(
X1, X2

)
−
[
H
(
X1|X2

)
+H

(
X2|X1

)]
= I
(
X1 ∧X2

)

(m = 2) = D
(
PX1X2 ||PX1 × PX2

)

(m ≥ 2) = min
2≤k≤m

min
Ak=(A1,...,Ak)

1

k − 1
D
(
PX1...Xm

∣∣∣∣
k∏

i=1

PXAi

)

and equals 0 iff PX1...Xm
= PXA

PXAc for some A (M.

¿ Does shared information have an operational significance as a
measure of the mutual dependence among the rvs X1, . . . , Xm ?

32/41



Shared Information and Kullback-Leibler Divergence
[I. Csiszár-P. Narayan, C. Chan-L. Zheng]

SI
(
X1, . . . , Xm

)
= H

(
X1, . . . , Xm

)
− max

λ

∑

B∈B
λBH (XB |XBc)

(m = 2) = H
(
X1, X2

)
−
[
H
(
X1|X2

)
+H

(
X2|X1

)]
= I
(
X1 ∧X2

)

(m = 2) = D
(
PX1X2 ||PX1 × PX2

)

(m ≥ 2) = min
2≤k≤m

min
Ak=(A1,...,Ak)

1

k − 1
D
(
PX1...Xm

∣∣∣∣
k∏

i=1

PXAi

)

and equals 0 iff PX1...Xm
= PXA

PXAc for some A (M.

¿ Does shared information have an operational significance as a
measure of the mutual dependence among the rvs X1, . . . , Xm ?

32/41



Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

Applications

33/41



Omniscience

L1

X1 X2 Xm

L2 Lm

COMMUNICATION NETWORK

∼= L

F

[I. Csiszár-P. Narayan]

For L =
(
X1, . . . , Xm

)
, Theorem 2 gives

H
(
F
)

' H (X1, . . . , Xm) − SI (X1, . . . , Xm) ,

which, for m = 2, is

H
(
F
)

' H
(
X1|X2

)
+H

(
X2|X1

)
. [Slepian−Wolf]
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Signal Recovery: Data Compression

L1

X1 X2 Xm

L2 Lm

COMMUNICATION NETWORK

∼= L

F

[S. Nitinawarat-P. Narayan]

With L = X1, by Theorem 2

H
(
F
)

' H (X1) − SI (X1, . . . , Xm) ,

which, for m = 2, gives

H
(
F
)

' H
(
X1|X2

)
.

[Slepian-Wolf]
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Secret Common Randomness

L1

X1 X2 Xm

L2 Lm

COMMUNICATION NETWORK

∼= L

F

Terminals 1, . . . ,m generate CR L satisfying the secrecy condition

I
(
L ∧ F

) ∼= 0.

By Theorem 2,

H
(
L
) ∼= H

(
L|F

)
/ SI

(
X1, . . . , Xm

)
.

I Secret key generation [I. Csiszár-P. Narayan]

I Secure function computation [H. Tyagi-P. Narayan]
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Querying Common Randomness

L1

Xn
1 Xn

2 Xn
m

L2 Lm

COMMUNICATION NETWORK

∼= L

F

[H. Tyagi-P. Narayan]

I A querier observes communication F and seeks to resolve the value
of CR L by asking questions: “Is L = l?” with yes-no answers.

I The terminals in M seek to generate L using F so as to make
the querier’s burden as onerous as possible.

¿ What is the largest query exponent ?
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Largest Query Exponent

L1

Xn
1 Xn

2 Xn
m

L2 Lm

COMMUNICATION NETWORK

∼= L

F

E∗ , arg sup
E

[
inf
q

P
(
q (L | F) ≥ 2nE

)
→ 1 as n→∞

]

E∗ = SI (X1, . . . , Xm)

38/41



Shared information and a Hypothesis Testing Problem

SI
(
X1, . . . , Xm

)
= min

2≤k≤m
min

Ak=(A1,...,Ak)

1

k − 1
D
(
PX1...Xm

∣∣∣∣
k∏

i=1

PXAi

)

I Related to exponent of “Pe-second kind” for an appropriate binary composite
hypothesis testing problem, involving restricted CR L and communication F.

H. Tyagi and S. Watanabe, “Converses for secret key agreement and secure computing,” IEEE Trans.

Information Theory, September 2015.
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In Closing ...

¿ How useful is the concept of shared information ?

A: Operational meaning in specific cases of distributed processing ...

For instance

I Consider n i.i.d. repetitions (say, in time) of the rvs X1, . . . , Xm.

I Data at time instant t is X1t, . . . , Xmt, t = 1, . . . , n.

I Terminal i observes the i.i.d. data
(
Xi1, . . . , Xin

)
, i ∈M.

I Shared information-based results are asymptotically tight (in n):

– Minimum rate of communication for omniscience

– Maximum rate of a secret key

– Largest query exponent

– Necessary condition for secure function computation

– Several problems in information theoretic cryptography.
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Shared Information: Many Open Questions ...

– Significance in network source and channel coding ?

– Interactive communication over noisy channels ?

– Data-clustering applications ?
[C. Chan-A. Al-Bashabsheh-Q. Zhou-T. Kaced-T.Liu, 2016]

...

...
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