From Shannon to 5G: Theory and Practice of Cooperative Wireless Networking

Elza Erkip

New York University

November 21, 2016

1/81

Figure curtesy of Nokia

The New York Times

• What 5G will mean for you

- Downloading movies in seconds.
- Networks that connect millions of new devices.
- Driverless cars with extremely fast response times.

5G in the popular press

- Get ready 5G will create waves of innovation that disrupt every industry
 - 5G connectivity and the Internet of things create a platform for services, partnerships and businesses to be built on.

• Why the FCC unanimously voted to advance 5G networks

- Nearly 11 gigahertz of high-frequency spectrum for mobile, flexible, and fixed-use wireless broadband.
- Process led by the private sector for producing technical standards.

But what exactly is 5G?

- $\bullet\,$ Higher data rates: 1000 $\times\,$
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).

But what exactly is 5G?

- $\bullet\,$ Higher data rates: 1000 $\times\,$
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).
- Lower delay: $10 \times$
 - Integrated design of the protocol stack/core network (SDN).
 - Moving intelligence to the edge of the network (Fog RAN).

But what exactly is 5G?

- $\bullet\,$ Higher data rates: 1000 $\times\,$
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).
- Lower delay: $10 \times$
 - Integrated design of the protocol stack/core network (SDN).
 - Moving intelligence to the edge of the network (Fog RAN).
- Heterogenous devices and applications
 - Mobile broadband.
 - Machine-type communications (IoT).
 - Ultra-reliable communications (vehicular networks).

Everywhere!

Wideband channels

- Higher data rates: 1000 imes
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).
- Lower delay: $10 \times$
 - Integrated design of the protocol stack/core network (SDN).
 - Moving intelligence to the edge of the network (Fog RAN).
- Heterogenous devices and applications
 - Mobile broadband.
 - Machine-type communications (IoT).
 - Ultra-reliable communications (vehicular networks).

MIMO/massive MIMO

- Higher data rates: 1000 imes
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).
- Lower delay: $10 \times$
 - Integrated design of the protocol stack/core network (SDN).
 - Moving intelligence to the edge of the network (Fog RAN).
- Heterogenous devices and applications
 - Mobile broadband.
 - Machine-type communications (IoT).
 - Ultra-reliable communications (vehicular networks).

10/81

Multiuser IT

- Higher data rates: $1000 \times$
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).
- Lower delay: $10 \times$
 - Integrated design of the protocol stack/core network (SDN).
 - Moving intelligence to the edge of the network (Fog RAN).
- Heterogenous devices and applications
 - Mobile broadband.
 - Machine-type communications (IoT).
 - Ultra-reliable communications (vehicular networks).

Joint source-channel coding

- Higher data rates: 1000 imes
 - More spectrum (licensed+unlicensed, mmWave).
 - More infrastructure density (small cells).
 - More antennas (massive MIMO).
 - Higher spectral efficiency (full-duplex).
- Lower delay: $10 \times$
 - Integrated design of the protocol stack/core network (SDN).
 - Moving intelligence to the edge of the network (Fog RAN).
- Heterogenous devices and applications
 - Mobile broadband.
 - Machine-type communications (IoT).
 - Ultra-reliable communications (vehicular networks).

- Develop new results.
- Advanced technologies \Rightarrow Old ideas can be practical.
 - Computational power, cheap storage, higher degrees of freedom.
- Today: Cooperative networks.
 - Terminals helping one another communicate.

13/81

- Theoretical foundations of cooperation
 - 70's-80's: Gen X and Y, "oldies but goldies"
- Extensions to the theory
 - Late 90's-21st century: Gen Z, driven by wireless
- Applications in 5G
 - Gen α ?

- Theoretical foundations of cooperation
 - 70's-80's: Gen X and Y, "oldies but goldies"

- Extensions to the theory
 - Late 90's-21st century
- Applications in 5G

It al started with...

• E.C. van der Meulen, "Three terminal communication channels," 1971.

- T1 communicates with T3 with help of T2.
- Examples, bounds.

Then came the relay channel..

• T.M. Cover and A.A. El Gamal, "Capacity theorems for the relay channel," 1979.

• Key results, achievable schemes, capacity in special cases

The relay channel

The relay channel

• Broadcast: Source to relay and destination.

The relay channel

• Broadcast: Source to relay and destination.

• Multiple access: Source and relay to destination.

- Relay is *causal*.
- Relay is full-duplex.
 - Relay can receive and transmit at the same time.

19/81

- Capacity not known in general, only in some special cases.
- Cutset upper bound.
- Achievable schemes.

- Achievable strategy.
- Destination cannot decode by itself.
- Relay fully decodes source information and re-encodes.
- Source and relay transmit "cooperatively" to resolve the ambiguity at the destination.

21/81

• DF is optimal for the physically degraded relay channel.

$$p(y_2, y_1|x_1, x_0) = p(y_1|x_1, x_0)p(y_2|y_1, x_1).$$

22/81

• Relay can decode whatever the destination can decode.

Compress-and-Forward (CF)

- Compress Y_1 as \hat{Y}_1 and send to destination.
- Compression makes use of the correlated destination signal Y_2 .
 - Wyner-Ziv (WZ) compression.

23/81

• CF works well when relay cannot decode and relay-to-destination channel is "good."

- Major improvements to CF (came much later)
 - Quantize-map-forward [Avestimehr, Diggavi, Tse, 2007].
 - Noisy network coding [Lim, Kim, El Gamal, Chung, 2010].
 - Also work well in relay networks.

Another Dutch master

- Frans Willems in the 80's.
- Cribbing/conferencing encoders.

• MAC with generalized feedback.

Roadmap

- Theoretical foundations of cooperation
 - 70's-80's
- Extensions to the theory
 - Late 90's-21st century: Gen Z, driven by wireless

• Applications in 5G

- Wireless channel: Cooperation under fading.
- Practical constraints: Half-duplex.
- Cooperation in multiuser channels.
- Cooperation in cellular networks.
- Cooperation in large networks.

- Wireless channel: Cooperation under fading.
- Practical constraints: Half-duplex.
- Cooperation in multiuser channels.
- Cooperation in cellular networks.
- Cooperation in large networks.

- Cooperation can mitigate fading: Creates diversity.
- User-cooperation diversity. [Sendonaris, Erkip, Aazhang, 1998]
- Cooperative diversity.

[Laneman, Tse, Wornell, 2000]

- Motivated wireless researchers to study cooperation.
- Scope expanded beyond IT.

Cooperation diversity

- If only one link fails, transmission is successful.
- If two links fail, transmission may fail.
 → Diversity = 2.
- Same as 2-antenna source.

Full-duplex

- Common assumption in IT.
- Transmit and receive signals 100dB apart.
- Not possible in practice (until recently).

- Either transmit or receive, but not both.
- Can adapt DF, CF to work in half-duplex.
- Gaussian channel: Amplify-and-forward (AF). [Laneman, Tse, Wornell, 2004]
- For all strategies
 - $\bullet\,$ Diversity $\uparrow\,$ at the expense of spectral efficiency.
- Diversity-multiplexing tradeoff of cooperative communications. [Yuksel, Erkip, 2007]
- Wireless channel: Cooperation under fading.
- Practical constraints: Half-duplex.
- Cooperation in multiuser channels.
- Cooperation in cellular networks.
- Cooperation in large networks.

33/81

Multiple relays

- Single source-destination.
- Diamond relay channel. [Schein, Gallager, 2000]

Multiple relays

- Distributed space-time coding.
- Relays act as antennas of a space-time code. [Laneman, Wornell, 2003]

- Distributed beamforming.
- Need phase information and synchronization among relays. [Mudumbai, Brown, Madhow, Poor, 2009]

Multiple access relay channel

Multiple access relay channel

Broadcast relay channel

Broadcast relay channel

Two-way relay channel

Two-way relay channel

Interference relay channel

Interference relay channel

- Relay does not have to decode each source individually.
- Relay can decode *functions* of source messages and forward.

- Relay does not have to decode each source individually.
- Relay can decode *functions* of source messages and forward.
- Analog network coding, compute-and-forward.
- Structured codes.

[Zhang, Liew, Lam 2006], [Popovski, Yomo, 2006], [Nazer, Gastpar, 2006]

- Signal forwarding not possible.
- Interference cancellation: Transmit $-X_2$ to cancel interference at D_1 .
- Interference forwarding: Transmit X_2 to boost and help decode interference at D_1 .

42/81

- Relay can do
 - Signal forwarding.
 - Interference forwarding.
 - Interference cancellation.

[Sahin, Simeone, Erkip, 2009]

- Wireless channel: Cooperation under fading.
- Practical constraints: Half-duplex.
- Cooperation in multiuser channels.
- Cooperation in cellular networks.
- Cooperation in large networks.

Cooperation in cellular networks

• Cooperation of BSs.

- BSs have baseband processing capability.
 - Backhaul.
 - Hard information, DF.
 - 4G LTE: Coordinated Multi-Point (CoMP).
- Baseband processing done centrally.
 - Fronthaul.
 - Soft information, CF.
 - Cloud-RAN (CRAN).

- Tools from Wyner's cellular model. [Wyner, 1994]
- Tools from MIMO broadcast/multiple access channels.
- Tools from multiuser cooperation.
- Mitigate/exploit inter-cell interference. [Gesbert, Hanly, Huang, Shamai, Simeone, Yu, 2010]

Cooperation in large networks

- Large ad-hoc network with *n* nodes.
- Rather than the *exact* capacity region, study how capacity scales with *n*.
- Scaling laws.
 - [Gupta, Kumar, 2000]
- Operating regimes: Area $\sim n^{\nu}$. [Ozgur et. al. 2010]
- Multi hop essential for communication among distant nodes.

Roadmap

- Theoretical foundations of cooperation.
 - 70's-80's.
- Extensions to the theory.
 - Late 90's-21st century.
- Applications in 5G.
 - Gen α ?

"No, you weren't downloaded. Your were born." "No you weren't downloaded. You were born."

Erkip

49/81

- Relaying in 5G.
- Full duplex cellular and impact of BS cooperation.

Relaying in 4G

• Multihop mode.

• Used for: Shadowing, hotspots, coverage.

Commercial 4G relaying

deployments.

Erkip

52/81

- 4G is limited in degrees of freedom (DoF).
 - Spectrum scarce.
 - Small number of antennas.
- Relaying mainly used for *power gain*.
- Half-duplex: Need to give up DoF for relaying.
- Net impact on throughput may be limited.

- Abundant DoF.
 - More spectrum (licensed+unlicensed, mmWave).
 - More antennas (massive MIMO).
- Full-duplex implementations.

- Abundant DoF.
 - More spectrum (licensed+unlicensed, mmWave).
 - More antennas (massive MIMO).
- Full-duplex implementations.

Capacity as a function of bandwidth

$$C(W) = W \log \left(1 + rac{P}{W N_0}
ight).$$

• Low SNR: Power limited.

$$C(W) \approx \frac{P}{N_0}.$$

• High SNR: Bandwidth limited

$$C(W) \approx W \log\left(\frac{P}{WN_0}\right).$$

- When does a cellular network become power/ bandwidth limited?
- What is the role of relaying?
- Use capacity scaling as a metric.
- Incorporate bandwidth into the formulation.
- Cellular network.
- Investigated in

[Gomez-Cuba, Rangan, Erkip, González-Castaño, 2014, 2016]

Model

- Cellular traffic.
 - Uplink/downlink.
- $n \to \infty$ nodes.
- Path loss exponent α .
- Uniform in area $A \sim n^{\nu}$.
- Served by $m \sim n^{\beta}$ BSs.
- BS has $\ell \sim n^{\gamma}$ antennas.
- Non-cooperative BSs.
 - Each BS serves $\approx n/m$ users.
- Bandwidth $W \sim n^{\psi}$.

DL upper bound: Cut around each BS

- \bullet One BS \rightarrow All nodes, remaining BSs.
- Perfect cooperation on each side.
 - Single transmitting BS with receiver cooperation.
 - Equivalent to a $\ell \times n$ MIMO.
- Upper bounds feasible rate in one cell; repeat for all cells.

- Two protocols, leading to achievable rates.
- Infrastructure Single Hop (ISH).
- Infrastructure Multi Hop (IMH).

- Each BS directly transmits to nodes in its cell.
- BS-node transmission
 - Divide users into groups of ℓ .
 - $\ell \times \ell$ MIMO-BC within each group.
 - Each group in orthogonal subchannel.
 - Out of cell interference treated as noise.

Infrastructure multi hop

• BS transmits to nodes by multihop.

- Divide each cell into routing sub-cells.
- BS initiates ℓ routes simultaneously using MIMO-BC.
- Each sub-cell forwards data to the next.
- Multiple routes at the same time.

Upper bound versus protocols

4G: Fixed bandwidth

4G: Fixed bandwidth

- BSs $\sim n^{\beta}$, BS ant's $\sim n^{\gamma}$, $\beta + \gamma \leq 1$.
- Rate decreases (is constant) with n.
- More infrastructure $(\beta + \gamma) \rightarrow$ Slower decrease.

4G: Fixed bandwidth

• ISH optimal, no need for IMH.

- BSs $\sim n^{\beta}$, area $\sim n^{\nu}$, path loss α .
- ISH optimal until edge nodes become power limited.
- Cannot exploit BW for $\psi > (\beta \nu)\frac{\alpha}{2}$.

• BSs $\sim n^{\beta}$, area $\sim n^{\nu}$, path loss α .

• BSs
$$\sim n^{eta}$$
, area $\sim n^{
u}$, path loss $lpha$.

• IMH always optimal.

- BSs $\sim n^{\beta}$, area $\sim n^{\nu}$, path loss α .
- IMH always optimal.
- Network/IMH is BW limited for a larger range of ψ .

 Network/IMH becomes power limited when nearest neighbor node becomes power limited.

66/81

5G: Impact of multihop

- Multihop more effective when BW is large.
- Multihop gain 1β higher for smaller BS densities.

- Protocols for
 - Infrastructure relays.
 - Infrastructure hierarchical cooperation.
 - Hierarchical cooperation not as useful as in the ad-hoc setting.

What about BS cooperation?

- BS cooperation potentially useful.
- Protocols for capacity limited backhaul/fronthaul?

- Relaying in 5G.
- Full duplex cellular and impact of BS cooperation.

70/81

5G: Full duplex is practical

Figure from [Sabharwal et. al., 2014]

- Analog and digital cancellation of SI.
- Cancelation using: Polarization, antenna separation.
- Residual self-interference.

```
[Sabharwal et. al., 2014]
```

Commercial full duplex

Start-up founded by Levis and Katti, Stanford EE and CS professors.

Half duplex cellular

• Standard cellular operation:

• Uplink and downlink operated in TDD or FDD.

Full duplex cellular

- Full duplex BSs, half duplex mobiles:
 - Self interference at BSs.
 - DL-UL interference: Interference among BSs.
 - UL-DL interference: Interference among mobiles.

Full duplex cellular with BS cooperation

• A study showing potentials of full duplex under BS cooperation. [Simeone, Erkip, Shamai, 2014]

Erkip

75/81

Impact of BS cooperation

- BS cooperation more valuable in full duplex.
 - DL-UL interference (among BSs) can be mitigated.

Impact of BS cooperation

- BS cooperation more valuable in full duplex.
 - DL-UL interference (among BSs) can be mitigated.
- Intra-cell UL-DL interference: SIC at mobiles.

Full duplex gain

• Net gain of FD 1.7×, less than 2×.

• Due to inter-cell UL-DL interference.

Intra-cell UL-DL interference

- SIC essential to get full duplex benefits.
- Alternative: User scheduling: [Goyal et. al., 2013]

This talk...

Shannon theory 5G applications

40+ years of rich theory and applications of cooperative communications.

- For researchers
 - Still many interesting open problems.
 - New problems inspired by technology.
 - Old techniques now practical.

- For researchers
 - Still many interesting open problems.
 - New problems inspired by technology.
 - Old techniques now practical.
- For (future) engineers
 - Many advanced technologies rooted in IT.
 - "IT thinking" allows you to dig deeper and innovate.

- For researchers
 - Still many interesting open problems.
 - New problems inspired by technology.
 - Old techniques now practical.
- For (future) engineers
 - Many advanced technologies rooted in IT.
 - "IT thinking" allows you to dig deeper and innovate.

Even more than what you think, how you think matters. Atul Gawande, *The Mistrust of Science*, Caltech graduation speech, 2016.

Thank you Shannon for teaching us how to think!

Erkip

