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From Shannon

Erkip 2/ 81



To 5G

Figure curtesy of Nokia
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5G in the popular press

What 5G will mean for you
Downloading movies in seconds.
Networks that connect millions of new devices.
Driverless cars with extremely fast response times.
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5G in the popular press

Get ready – 5G will create waves of innovation that disrupt
every industry

5G connectivity and the Internet of things create a platform for
services, partnerships and businesses to be built on.
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5G in the popular press

Why the FCC unanimously voted to advance 5G networks
Nearly 11 gigahertz of high-frequency spectrum for mobile,
flexible, and fixed-use wireless broadband.
Process led by the private sector for producing technical
standards.
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But what exactly is 5G?

Higher data rates: 1000×
More spectrum (licensed+unlicensed, mmWave).
More infrastructure density (small cells).
More antennas (massive MIMO).
Higher spectral efficiency (full-duplex).

Lower delay: 10×
Integrated design of the protocol stack/core network (SDN).
Moving intelligence to the edge of the network (Fog RAN).

Heterogenous devices and applications
Mobile broadband.
Machine-type communications (IoT).
Ultra-reliable communications (vehicular networks).
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Where is information theory in 5G?

Everywhere!
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Where is information theory in 5G?

Wideband channels

Higher data rates: 1000×
More spectrum (licensed+unlicensed, mmWave).
More infrastructure density (small cells).
More antennas (massive MIMO).
Higher spectral efficiency (full-duplex).

Lower delay: 10×
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Where is information theory in 5G?

MIMO/massive MIMO

Higher data rates: 1000×
More spectrum (licensed+unlicensed, mmWave).
More infrastructure density (small cells).
More antennas (massive MIMO).
Higher spectral efficiency (full-duplex).

Lower delay: 10×
Integrated design of the protocol stack/core network (SDN).
Moving intelligence to the edge of the network (Fog RAN).

Heterogenous devices and applications
Mobile broadband.
Machine-type communications (IoT).
Ultra-reliable communications (vehicular networks).
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Where is information theory in 5G?

Multiuser IT

Higher data rates: 1000×
More spectrum (licensed+unlicensed, mmWave).
More infrastructure density (small cells).
More antennas (massive MIMO).
Higher spectral efficiency (full-duplex).

Lower delay: 10×
Integrated design of the protocol stack/core network (SDN).
Moving intelligence to the edge of the network (Fog RAN).

Heterogenous devices and applications
Mobile broadband.
Machine-type communications (IoT).
Ultra-reliable communications (vehicular networks).
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Where is information theory in 5G?

Joint source-channel coding

Higher data rates: 1000×
More spectrum (licensed+unlicensed, mmWave).
More infrastructure density (small cells).
More antennas (massive MIMO).
Higher spectral efficiency (full-duplex).

Lower delay: 10×
Integrated design of the protocol stack/core network (SDN).
Moving intelligence to the edge of the network (Fog RAN).

Heterogenous devices and applications
Mobile broadband.
Machine-type communications (IoT).
Ultra-reliable communications (vehicular networks).
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Opportunities for IT in 5G

Develop new results.
Advanced technologies ⇒ Old ideas can be practical.

Computational power, cheap storage, higher degrees of
freedom.

Today: Cooperative networks.
Terminals helping one another communicate.
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Roadmap

Theoretical foundations of cooperation
70’s-80’s: Gen X and Y , “oldies but goldies”

Extensions to the theory
Late 90’s-21st century: Gen Z , driven by wireless

Applications in 5G
Gen α?
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Roadmap

Theoretical foundations of cooperation
70’s-80’s: Gen X and Y , “oldies but goldies”

Extensions to the theory
Late 90’s-21st century

Applications in 5G
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It al started with...

E.C. van der Meulen, “Three
terminal communication
channels,” 1971.

T1 communicates with T3 with help of T2.
Examples, bounds.
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Then came the relay channel..

T.M. Cover and A.A. El Gamal,
“Capacity theorems for the
relay channel,” 1979.

Key results, achievable schemes, capacity in special cases
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The relay channel

Broadcast: Source to relay and destination.

Multiple access: Source and relay to destination.
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The relay channel

Broadcast: Source to relay and destination.

Multiple access: Source and relay to destination.
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Model assumptions

Relay is causal.
Relay is full-duplex.

Relay can receive and transmit at the same time.
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Capacity of the relay channel

Capacity not known in general, only in some special cases.
Cutset upper bound.
Achievable schemes.

Erkip 20/ 81



Decode-and-Forward (DF)

Achievable strategy.
Destination cannot decode by itself.
Relay fully decodes source information and re-encodes.
Source and relay transmit “cooperatively” to resolve the
ambiguity at the destination.
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Optimality of DF
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DF is optimal for the physically degraded relay channel.

p(y2, y1|x1, x0) = p(y1|x1, x0)p(y2|y1, x1).

Relay can decode whatever the destination can decode.
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Compress-and-Forward (CF)
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Compress Y1 as Ŷ1 and send to destination.
Compression makes use of the correlated destination signal Y2.

Wyner-Ziv (WZ) compression.

Erkip 23/ 81



Comments on CF

CF works well when relay cannot decode and
relay-to-destination channel is “good.”

Major improvements to CF (came much later)
Quantize-map-forward [Avestimehr, Diggavi, Tse, 2007].
Noisy network coding [Lim, Kim, El Gamal, Chung, 2010].
Also work well in relay networks.
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Another Dutch master

Frans Willems in the 80’s.
Cribbing/conferencing
encoders.

MAC with generalized feedback.
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Roadmap

Theoretical foundations of cooperation
70’s-80’s

Extensions to the theory
Late 90’s-21st century: Gen Z , driven by wireless

Applications in 5G
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Theory – driven by wireless

Wireless channel: Cooperation under fading.
Practical constraints: Half-duplex.
Cooperation in multiuser channels.
Cooperation in cellular networks.
Cooperation in large networks.
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Cooperation in fading channels

Cooperation can mitigate fading: Creates diversity.
User-cooperation diversity.
[Sendonaris, Erkip, Aazhang, 1998]
Cooperative diversity.
[Laneman, Tse, Wornell, 2000]
Motivated wireless researchers to study cooperation.
Scope expanded beyond IT.
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Cooperation diversity

If only one link fails, transmission is successful.
If two links fail, transmission may fail.
→ Diversity = 2.
Same as 2-antenna source.
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Full-duplex

Common assumption in IT.
Transmit and receive signals 100dB apart.
Not possible in practice (until recently).

“Use your inside scream”
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Half-duplex

Either transmit or receive, but not both.
Can adapt DF, CF to work in half-duplex.
Gaussian channel: Amplify-and-forward (AF).
[Laneman, Tse, Wornell, 2004]
For all strategies

Diversity ↑ at the expense of spectral efficiency.

Diversity-multiplexing tradeoff of cooperative communications.
[Yuksel, Erkip, 2007]
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Theory – driven by wireless

Wireless channel: Cooperation under fading.
Practical constraints: Half-duplex.
Cooperation in multiuser channels.
Cooperation in cellular networks.
Cooperation in large networks.
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Multiple relays

Single source-destination.
Diamond relay channel.
[Schein, Gallager, 2000]
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Multiple relays

Distributed space-time coding.
Relays act as antennas of a space-time code.
[Laneman, Wornell, 2003]
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Multiple relays

Distributed beamforming.
Need phase information and synchronization among relays.
[Mudumbai, Brown, Madhow, Poor, 2009]
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Multiple access relay channel
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Multiple access relay channel
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Broadcast relay channel
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Broadcast relay channel
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Two-way relay channel

!
"#

!
$#

Erkip 39/ 81



Two-way relay channel
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Interference relay channel
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Interference relay channel
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New ideas

Relay does not have to decode each source individually.
Relay can decode functions of source messages and forward.

Analog network coding, compute-and-forward.
Structured codes.
[Zhang, Liew, Lam 2006], [Popovski, Yomo, 2006], [Nazer, Gastpar,
2006]
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New ideas
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Signal forwarding not possible.
Interference cancellation: Transmit −X2 to cancel interference
at D1.
Interference forwarding: Transmit X2 to boost and help decode
interference at D1.
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New ideas
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Relay can do
Signal forwarding.
Interference forwarding.
Interference cancellation.

[Sahin, Simeone, Erkip, 2009]
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Theory – driven by wireless

Wireless channel: Cooperation under fading.
Practical constraints: Half-duplex.
Cooperation in multiuser channels.
Cooperation in cellular networks.
Cooperation in large networks.
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Cooperation in cellular networks

Cooperation of BSs.
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How do BSs cooperate?

BSs have baseband processing capability.
Backhaul.
Hard information, DF.
4G LTE: Coordinated Multi-Point (CoMP).

Baseband processing done centrally.
Fronthaul.
Soft information, CF.
Cloud-RAN (CRAN).
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BS cooperation

Tools from Wyner’s cellular model.
[Wyner, 1994]

Tools from MIMO broadcast/multiple access channels.
Tools from multiuser cooperation.
Mitigate/exploit inter-cell interference.
[Gesbert, Hanly, Huang, Shamai, Simeone, Yu, 2010]
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Cooperation in large networks

Large ad-hoc network with n nodes.
Rather than the exact capacity region, study how capacity
scales with n.
Scaling laws.
[Gupta, Kumar, 2000]

Operating regimes: Area ∼ nν .
[Ozgur et. al. 2010]

Multi hop essential for communication among distant nodes.
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Roadmap

Theoretical foundations of cooperation.
70’s-80’s.

Extensions to the theory.
Late 90’s-21st century.

Applications in 5G.
Gen α?

“No you weren’t downloaded. You were born.”
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Cooperative networking in 5G

Relaying in 5G.
Full duplex cellular and impact of BS cooperation.
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Relaying in 4G

Multihop mode.

Used for: Shadowing, hotspots, coverage.

Figure courtesy of Nokia.
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Commercial 4G relaying
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Issues with 4G relaying

4G is limited in degrees of freedom (DoF).
Spectrum scarce.
Small number of antennas.

Relaying mainly used for power gain.
Half-duplex: Need to give up DoF for relaying.
Net impact on throughput may be limited.

Erkip 53/ 81



What about 5G?

Abundant DoF.
More spectrum (licensed+unlicensed, mmWave).
More antennas (massive MIMO).

Full-duplex implementations.
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Capacity as a function of bandwidth

C (W ) = W log
(
1+

P

WN0

)
.

Low SNR: Power limited.

C (W ) ≈ P

N0
.

High SNR: Bandwidth limited

C (W ) ≈W log
(

P

WN0

)
.

Erkip 55/ 81



Cellular network and bandwidth

When does a cellular network become power/ bandwidth
limited?
What is the role of relaying?
Use capacity scaling as a metric.
Incorporate bandwidth into the formulation.
Cellular network.
Investigated in
[Gomez-Cuba, Rangan, Erkip, González-Castaño, 2014, 2016]
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Model

BS

Cellular traffic.
Uplink/downlink.

n→∞ nodes.
Path loss exponent α.
Uniform in area A ∼ nν .
Served by m ∼ nβ BSs.
BS has ` ∼ nγ antennas.
Non-cooperative BSs.

Each BS serves ≈ n/m users.

Bandwidth W ∼ nψ.
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DL upper bound: Cut around each BS

One BS → All nodes, remaining BSs.
Perfect cooperation on each side.

Single transmitting BS with receiver cooperation.
Equivalent to a `× n MIMO.

Upper bounds feasible rate in one cell; repeat for all cells.
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Achievable rates

Two protocols, leading to achievable rates.
Infrastructure Single Hop (ISH).
Infrastructure Multi Hop (IMH).
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Infrastructure single hop

Each BS directly transmits to nodes in its cell.
BS-node transmission

Divide users into groups of `.
`× ` MIMO-BC within each group.
Each group in orthogonal subchannel.
Out of cell interference treated as noise.
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Infrastructure multi hop

BS transmits to nodes by multihop.
Divide each cell into routing sub-cells.
BS initiates ` routes simultaneously
using MIMO-BC.
Each sub-cell forwards data to the next.
Multiple routes at the same time.

BS
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Upper bound versus protocols

Exponent Parameter
α Pr = Ptr−α

ψ BW W ∼ nψ

ν Area A ∼ nν

β BSs m ∼ nβ

γ BS ant’s ` ∼ nγ
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4G: Fixed bandwidth
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4G: Fixed bandwidth

BSs ∼ nβ , BS ant’s ∼ nγ , β + γ ≤ 1.

Rate decreases (is constant) with n.

More infrastructure (β + γ) → Slower decrease.
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4G: Fixed bandwidth

ISH optimal, no need for IMH.
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5G: Increasing bandwidth and ISH
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5G: Increasing bandwidth and ISH

BSs ∼ nβ , area ∼ nν , path loss α.

ISH optimal until edge nodes become power limited.

Cannot exploit BW for ψ > (β − ν)α2 .
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5G: Increasing bandwidth and IMH

BSs ∼ nβ , area ∼ nν , path loss α.

IMH always optimal.

Network/IMH is BW limited for a larger range of ψ.
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5G: Increasing bandwidth and IMH

Network/IMH becomes power limited when nearest neighbor node
becomes power limited.
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5G: Impact of multihop

Multihop more effective when BW is large.

Multihop gain 1− β higher for smaller BS densities.
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Discussion

Protocols for

Infrastructure relays.
Infrastructure hierarchical cooperation.
Hierarchical cooperation not as useful as in the ad-hoc setting.
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What about BS cooperation?

BS cooperation potentially useful.

Protocols for capacity limited backhaul/fronthaul?
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Cooperative networking in 5G

Relaying in 5G.
Full duplex cellular and impact of BS cooperation.

Erkip 70/ 81



5G: Full duplex is practical

Figure from [Sabharwal et. al., 2014]

Analog and digital cancellation of SI.
Cancelation using: Polarization, antenna separation.
Residual self-interference.
[Sabharwal et. al., 2014]
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Commercial full duplex

Start-up founded by Levis and Katti, Stanford EE and CS
professors.
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Half duplex cellular

Standard cellular operation:
Uplink and downlink operated in TDD or FDD.
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Full duplex cellular

Full duplex BSs, half duplex mobiles:
Self interference at BSs.
DL-UL interference: Interference among BSs.
UL-DL interference: Interference among mobiles.
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Full duplex cellular with BS cooperation

A study showing potentials of full duplex under BS cooperation.
[Simeone, Erkip, Shamai, 2014]
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Impact of BS cooperation

BS cooperation more valuable in full duplex.
DL-UL interference (among BSs) can be mitigated.

Intra-cell UL-DL interference: SIC at mobiles.
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Full duplex gain

Net gain of FD 1.7×, less than 2×.
Due to inter-cell UL-DL interference.
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Intra-cell UL-DL interference

SIC essential to get full duplex benefits.

Alternative: User scheduling: [Goyal et. al., 2013]
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This talk...

Shannon theory 5G applications

Figure curtesy of Nokia

40+ years of rich theory and applications of cooperative
communications.
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What’s next?

For researchers
Still many interesting open problems.
New problems inspired by technology.
Old techniques now practical.

For (future) engineers
Many advanced technologies rooted in IT.
“IT thinking” allows you to dig deeper and innovate.

Even more than what you think, how you think matters.
Atul Gawande, The Mistrust of Science, Caltech graduation
speech, 2016.
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Thank you Shannon for teaching us how to think!
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