
Advanced Verification and Validation

Methods for Cyber-Physical Systems

James Kapinski,

Joint work with Hisahiro Ito, Ken Butts,

Jyotirmoy Deshmukh, and Xiaoqing Jin

October, 2017

J. Kapinski

Outline

1. Cyber-physical Systems for Verification & Validation

– Perspective

– Analysis for CPS
• Formal setting

• Emerging techniques

2. Requirements Engineering

– Ongoing challenges

– ST-Lib: Library of formal requirements for CPS applications

2

J. Kapinski

CPS will be everywhere!

http://www.toyota-global.com/innovation/intelligent_transport_systems/mobility/images/its_mobility_02_large.jpg

3

J. Kapinski

CPS is safety critical!

• CPSs used in safety critical applications

– Automotive powertrain control

– Smart grids

– Aerospace control

– Medical devices

– …

4

J. Kapinski

The FDA has issued 23 recalls of defective devices during

the first half of 2010, all of which are categorized as “Class

I,” meaning there is “reasonable probability that use of

these products will cause serious adverse health

consequences or death.”

5

CPS is safety critical!

J. Kapinski

FORMAL ANALYSIS SETTING

6

J. Kapinski

Setting

7

Definition (System):
System ℳ is some manifestation of a dynamical system whose behaviors 𝜙 ℳ, 𝑝, 𝑢
are determined by parameters 𝑝 and inputs 𝑢

• Generally, ℳ can be a model, a test experiment (e.g., HILs, SILs), or the physical system

• For simulation and analysis, we will assume ℳ is a model of the system (e.g., Simulink)

• Note that 𝑝 and 𝑢 can be taken from (possibly infinite) sets 𝑃 and 𝑈

ℳ
𝑢 ∈ 𝑈

Parameters: 𝑝 ∈ 𝑃
𝜙 ℳ, 𝑝, 𝑢

J. Kapinski

Setting

8

Definition (Simulation):
Process of generating 𝜙 ℳ, 𝑝, 𝑢 , which are the behaviors of ℳ given parameters 𝑝
and inputs 𝑢

• Assume simulations can be generated by numerical integration solver (e.g., Simulink)

𝑢

𝑡 𝑡

𝜙 ℳ, 𝑝, 𝑢

ℳ
𝑢 ∈ 𝑈

Parameters: 𝑝 ∈ 𝑃
𝜙 ℳ, 𝑝, 𝑢

𝑃

𝑝1

𝑝2
𝑝𝑈

J. Kapinski

Setting

9

Definition (Testing):

Determine whether 𝜙 ℳ, 𝑃, 𝑈 ⊨ 𝜑 for given finite sets 𝑃 ⊆ 𝑃 and 𝑈 ⊆ 𝑈

ℳ
𝑢 ∈ 𝑈

Parameters: 𝑝 ∈ 𝑃
𝜙 ℳ, 𝑝, 𝑢

𝜑

¬𝜑

𝑡 𝑡

𝑢 ∈ 𝑈 𝜙 ℳ, 𝑃, 𝑈
𝑃

𝑝1

𝑝2
𝑃𝑈

• Testing does not guarantee 𝜑 holds for all 𝑝 ∈ 𝑃 and 𝑢 ∈ 𝑈

J. Kapinski

Setting

10

Definition (Verification):
Prove 𝜙 ℳ,𝑃, 𝑈 ⊨ 𝜑 given 𝑃 and 𝑈

𝜑

¬𝜑

𝑡 𝑡

ℳ
𝑢

Parameters: 𝑝
𝜙 ℳ, 𝑝, 𝑢

𝜙 ℳ,𝑃, 𝑈
𝑃

𝑝1

𝑝2
𝑈

• Proves 𝜑 holds for all 𝑝 ∈ 𝑃 and 𝑢 ∈ 𝑈

Software vs. Control Design

• Classical software design

– Nontrivial verification questions for
finite state models of software are hard

– In general, proving nontrivial
properties for software is undecidable

• Σ1 undecidable

• Embedded control system design

– Nontrivial verification questions for
even simple CPSs are very
undecidable

• Σ2 undecidable†

11

H(s)

G(s)

Σ

Computer Controller

Environment

† E. Asarin and O. Maler. Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy. Journal

of Computer and System Sciences, Vol. 57, No. 3, pp. 389-398, 1998.

M
o

re
 S

ca
la

b
le

More formal/exhaustive

• Linear Analysis
(symbolic)

• Test Vector
Generation for
Model Coverage

• Simulation

• Linear Analysis
(numerical)

• Theorem
Proving

• (Bounded) Model
Checking • Stability

Proofs

• Reachability
Analysis

VerificationTesting/Control Techniques

Spectrum of Analysis Techniques

Less formal/exhaustive

Le
ss

 S
ca

la
b

le

• Concolic
Testing

• Ideal
technique

12

SIMULATION-BASED CHECKS FOR
POWERTRAIN CONTROL

13

J. Kapinski

Why simulations?
 Help design validation

 Provide visual feedback

 Can use existing design artifacts

 Can uncover bugs

 Unlike formal verification, simulation does not require knowledge of:

 Temporal Logic, SAT modulo theories, Bounded Model Checking

 Simulations are cheap and usually fast

 Test-suites can be shared and built up across models

 Promising simulation-based approach: requirement falsification…

14

J. Kapinski

Requirement Falsification

• Not verification, but systematic bug-finding

• No guarantees of completeness (except
asymptotic/probabilistic)

15

Definition (Falsification):
Find parameters 𝑝 ∈ 𝑃 and input 𝑢 ∈ 𝑈 such that behaviors 𝜙 ℳ, 𝑝, 𝑢
do NOT satisfy requirements 𝜑 (i.e., 𝜙 ℳ, 𝑝, 𝑢 ⊭ 𝜑)

ℳ
𝑢 ∈U

Parameters: 𝑝 ∈ 𝑃
𝜙 ℳ, 𝑝, 𝑢

J. Kapinski

Some key enablers

Robust satisfaction of 𝜑 by simulation trace 𝜙 ℳ,𝑝, 𝑢

• A function maps 𝜑 and 𝜙 ℳ, 𝑝, 𝑢 to ℝ

• Positive number = 𝜙 ℳ, 𝑝, 𝑢 satisfies 𝜑

• Negative number = 𝜙 ℳ,𝑝, 𝑢 does not satisfy 𝜑

• Moving towards zero = moving towards violation

Black-box Global optimizers

• Powerful heuristics to get close to global optimum

16

J. Kapinski

Falsification by optimization

𝑢 𝜙 ℳ, 𝑝, 𝑢

Optimizer:

Minimize robust
satisfaction value

\

\

17Falsification supported by both S-TaLiRo and Breach tools

Requirement Falsification

• Work by others

– S-TaLiRo [Fainekos, Sankaranarayanan, et al.]

• Metric Temporal Logic based requirements

• Supports several stochastic optimizers

– Breach [Donzé, CAV 2010, NSV 2013]

• Signal Temporal Logic based requirements

• Supports Nelder-Mead

• Can exploit sensitivity info

18

Requirement Falsification

• Other things we’ve done in the past

– Multiple Shooting [Zutshi, Sankaranarayanan, et al., EMSOFT 2014, HSCC2016]

• Multiple short simulations segments leading from initial conditions to unsafe states;

adjust initial conditions to piece segments together

– Stochastic Local Search for Falsification [with Deshmukh, et al., ATVA 2015]

• Discrete optimization method used as search heuristic

– Simulation-based testing for coverage [with Dreossi, et al., NASA Formal Methods 2015,

extensions with Adimoolam, et al., CAV 2017]

• Selecting inputs to maximize coverage of infinite state-space

– Simulation-based convergence/stability testing [with Sankaranarayanan et al., HSCC 2014,

extensions with Balkan, et al., EMSOFT 2016]

• Specifications in the form of Lyapunov-like function to test for convergence/stability

19

M
o

re
 S

ca
la

b
le

More formal/exhaustive

• Linear Analysis
(symbolic)

• Test Vector
Generation for
Model Coverage

• Simulation

• Linear Analysis
(numerical)

• Theorem
Proving

• (Bounded) Model
Checking • Stability

Proofs

• Reachability
Analysis

VerificationTesting/Control Techniques

Spectrum of Analysis Techniques

Less formal/exhaustive

Le
ss

 S
ca

la
b

le

• Concolic
Testing

• Ideal
technique

20

M
o

re
 S

ca
la

b
le

More formal/exhaustive

• Linear Analysis
(symbolic)

• Test Vector
Generation for
Model Coverage

• Simulation

• Linear Analysis
(numerical)

• Theorem
Proving

• (Bounded) Model
Checking • Stability

Proofs

• Reachability
Analysis

VerificationTesting/Control Techniques

Spectrum of Analysis Techniques

Less formal/exhaustive

Le
ss

 S
ca

la
b

le

• Concolic
Testing

• Ideal
technique

21

• Multiple shooting

• Coverage-based Testing

• Stochastic Local Search

• Simulation-Guided
Lyapunov Analysis

Other Simulation-based

Methods
• Other things we’ve done in the past

– Simulation traces to learn contraction metrics [with Balkan, et al., ICC, 2015]

• Simulations to learn Lyapunov-like function showing convergence; used to compute

flowpipes that contain all system behaviors; used for verification (proving safety for

infinite sets of behaviors)

– Simulation-based verification [with Fan, et al., EMSOFT 2016]

• Simulations used to compute flowpipes to prove safety

– Simulation traces to assist mechanical theorem provers [with Arechiga, et al., EMSOFT

2015]

• Simulations used to learn invariant sets; invariant sets used in theorem prover to show

safety

22

M
o

re
 S

ca
la

b
le

More formal/exhaustive

• Linear Analysis
(symbolic)

• Test Vector
Generation for
Model Coverage

• Simulation

• Linear Analysis
(numerical)

• Theorem
Proving

• (Bounded) Model
Checking • Stability

Proofs

• Reachability
Analysis

VerificationTesting/Control Techniques

Spectrum of Analysis Techniques

Less formal/exhaustive

Le
ss

 S
ca

la
b

le

• Concolic
Testing

• Ideal
technique

23

• Multiple shooting

• Coverage-based Testing

• Stochastic Local Search

• Simulation-Guided
Lyapunov/Contraction
Analysis

• Simulation
Guidance for
Theorem Provers

J. Kapinski

REQUIREMENT ENGINEERING

CHALLENGES

24

Image source: LinkedIn

J. Kapinski

Requirement Engineering

Challenges
• Outline

– Overview of requirements engineering

philosophy

• Comparison of perspectives: software vs.

CPS

• Challenges

– ST-Lib: collection of formal requirements

for control engineering applications

• Results and challenges applying ST-Lib

25

J. Kapinski

Requirements-Driven Approach

26

• Many of our efforts focus on

providing a requirements-driven

development approach

– Requirements are developed and

iterated on

– Requirements used to develop

control models and specify expected

behaviors of models

– Same requirements also used to

define expected behaviors from

calibration & test, as well as from the

deployed system

J. Kapinski

Classic Verification Assumption

27

Implementation ⊨ Requirements
?

Model

Requirements

Next

Development

PhaseVerification

Process

J. Kapinski

28

Model

Requirements

Next

Development

PhaseSimulation-

based checks

Engineering Insight

Informal

Incomplete

Results from

Integration Tests

The Reality for CPS

Takeaways:

1. Difficult/impossible to specify every aspect of CPS behaviors

2. Aspects of possible behaviors are discovered in simulation and testing phases

J. Kapinski

29

Model

Requirements

Next

Development

PhaseSimulation-

based checks

Engineering Insight

Informal

Incomplete

Results from

Integration Tests

The Reality for CPS

Additionally: Hardware development taking place in

parallel with controller development!

J. Kapinski

CPS Requirement Challenges

30

• Requirements are evolving due to CPS-related issues

– System hardware/software designs evolve concurrently

– Not possible to create a plant model that captures all behaviors

– Subtle interactions between states/signals are not known before integration

test

• Definition of correct behaviors exist only in engineer’s brain

– Formal requirements are hard for engineers to develop

– Existing requirements do not capture all of the desired behaviors

• Model may capture appropriate/expected behavior but requirements do not

J. Kapinski

ST-LIB

SIGNAL TEMPLATE LIBRARY

31
• J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito, T. Kaga, S. Kobuna,

S. Seshia. “ST-Lib: A Library for Specifying and Classifying Model Behaviors”.

Society of Automotive Engineers Technical Paper (SAE), 2016.

J. Kapinski

What is ST-Lib?

• Is a library for specifying and classifying

signal patterns of system behaviors

• Isn’t a modeling language like Simulink

for simulation

32

J. Kapinski

Why ST-Lib?

• Can formally specify intended design

behaviors using a signal template

• Can automatically use simulation-based

techniques to identify (near) worst-case

behaviors of system

33

J. Kapinski

Introduction to STL
• Signal Temporal Logic (STL)

– Specify timed behaviors of systems, containing:

• Logic operators (∧, ¬, ∨, →)

• Temporal operators (“always”, “eventually”, and “until”)

• Atomic constraint formula (𝑓(𝑥)≥0)

– Examples

34

0 10050

250

boost pressure

time

0 10050

2

gear

time

1

𝝉𝝐

𝑎𝑙𝑤𝑎𝑦𝑠 0,100 (𝐠𝐞𝐚𝐫 = 1 ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 0,𝜖 𝐠𝐞𝐚𝐫 = 2 → 𝑎𝑙𝑤𝑎𝑦𝑠 𝝐,𝝉+𝝐 𝐠𝐞𝐚𝐫 = 2)

𝑎𝑙𝑤𝑎𝑦𝑠 0,100 (𝐛𝐨𝐨𝐬𝐭 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞 < 250)

J. Kapinski

ST-Lib

• ST-Lib uses STL to identify signal patterns of

interest to design engineers, including:

– Ringing

– Spikes and glitches

– Excessive overshoot or undershoot

– Slow response time (settling, rising, or falling)

– Undesirable timed relation behaviors

– Steady state or tracking error

35

J. Kapinski

Example: Overshoot

36

𝝋 ≔ 𝒆𝒗𝒆𝒏𝒕𝒖𝒂𝒍𝒍𝒚 𝟎,𝑻 (𝒔𝒕𝒆𝒑 𝒙𝒓𝒆𝒇, 𝒓 ∧ 𝒆𝒗𝒆𝒏𝒕𝒖𝒂𝒍𝒍𝒚 𝒙 − 𝒙𝒓𝒆𝒇 > 𝒄)

𝒔𝒕𝒆𝒑 𝒙𝒓𝒆𝒇, 𝒓 = 𝒙𝒓𝒆𝒇 𝒕 + 𝝐 − 𝒙𝒓𝒆𝒇 𝒕 > 𝒓

𝑐

Note: Original ST-Lib requirements expressed bad behaviors:

• Bad behavior: 𝝋 ≔ 𝒆𝒗 𝟎,𝑻 (𝒔𝒕𝒆𝒑 𝒙𝒓𝒆𝒇, 𝒓 ∧ 𝒆𝒗 𝒙 − 𝒙𝒓𝒆𝒇 > 𝒄

• Expected behavior: ¬𝝋 = 𝒂𝒍𝒘 𝒐,𝑻 𝒔𝒕𝒆𝒑 𝒙𝒓𝒆𝒇, 𝒓 ⇒ 𝒂𝒍𝒘 𝒙 − 𝒙𝒓𝒆𝒇 < 𝒄

J. Kapinski

ST-LIB IN PRACTICE:

LESSONS LEARNED AND

CHALLENGES
37

J. Kapinski

ST-Lib Challenges

• Challenges applying ST-Lib in

practice

– Works well for simulation models and

engineered input patterns

– Does not work well with real data –

particularly real input patterns

– Does not account for subjective

nature of many evaluation practices

38

J. Kapinski

ST-Lib Example

• ST-Lib application example

– Applied versions of the following ST-Lib templates to a fuel cell

(FC) vehicle powertrain application

• Overshoot

• Settling time

• Rise time

• Steady-state error

39

J. Kapinski

ST-Lib Example

• ST-Lib application example

– Example: used the following version of the overshoot

requirement

40

OVERSHOOT := alw ((STEPUP and alw[dt,sstime] not(STEP)) => alw[dt,sstime] (OVERSHOOTLIMIT))

STEPUP := in[t+dt]-in[t] > StepThresh

STEPDOWN := in[t]-in[t+dt] > StepThresh

STEP := STEPUP or STEPDOWN

OVERSHOOTLIMIT := out[t] < 1.1*(in[t])

Comment:

• No other step should be present when

checking the overshoot

sstime: Time over which steady-state is assumed to be reached

dt: Small constant, comparable to a sampling step size

J. Kapinski

ST-Lib Application Example

41

• Overshoot requirement performance

– Good (expected) requirement performance for control model,

using engineered input patterns

Comments:

• Overshoot values are

appropriately detected

• New fault localization

tool use to highlight

instants when faults

occur

Anonymized

data

J. Kapinski

ST-Lib Application Example

42

• Overshoot requirement performance

– Bad (unexpected) requirement performance for real data

Comments:

• Many unexpected

behaviors are identified

• Other behaviors are

mischaracterized

Lower plot shows

moments when

OVERSHOOT

antecedent is true

Let’s look at some reasons why there are problems…

OVERSHOOT := alw ((STEPUP and alw[dt,sstime] not(STEP)) => alw[dt,sstime] (OVERSHOOTLIMIT))

antecedent

J. Kapinski

ST-Lib Application Example

• This behavior is appropriately identified as

a fault

43

J. Kapinski

ST-Lib Application Example

• Problem: Overshoot error tolerance fixed

– Engineer wants a.) relative error limit for large reference values

and b.) absolute error limit for small reference values

44

Comment:

• Using 10% overshoot error limit is too small for small reference values

• Engineer not so concerned about error at low reference values

J. Kapinski

ST-Lib Application Example

• Problem: Many important behaviors are neither steps nor steady-

state

– These behaviors should fall under some other category of inputs, like an

input ramp, with corresponding requirements

45

Comment:

• This is

appropriately

identified as an

overshoot failure

Comments:

• These behaviors are not steep

enough to be steps but not

small enough to be steady-

state

• So the behaviors are not

constrained in any way

• Want to make sure that all

behaviors are somehow

evaluated

J. Kapinski

ST-Lib Application Example

• Other challenges

– Engineer had a notion of an ideal response (included

a time-shifted, rate-limited version of the command

signal)

• Not easily captured in STL

• Addressed by a priori defining a new signal

– Using a fault localization (in time) tool

• Very difficult for complex STL formulas

46

J. Kapinski

ST-Lib Challenges

• ST-Lib shortcomings

– Scaling constants relative to command magnitude

– Step is not the only meaningful input

– For real data, need to define a partition on the input and relate a

corresponding behavioral constraint on output

– Need to allow for more subjective classification of reference

signal class (step, ramp, SS, others…)

47

J. Kapinski

ST-Lib Challenges

• We created some STL-based solutions for all of the

requirements, but…

– The requirements represent approximations of what they actually

want

• The requirements do not capture faults with 100% accuracy (there

are false positives/negatives)

– The requirements are very complicated

• Difficult to read/understand (this reduces the value of the

requirement)

• Are computationally expensive to monitor in Breach

48

J. Kapinski

ST-Lib Challenges

• General formal requirements challenge

– Subjective nature of behavior expectation difficult to capture

with temporal logic (like STL)

• We are capturing (poorly) right now using complex STL

requirements

– Need improved methods to capture designer intentions

• Alternatives:

– Write code that would monitor appropriate behaviors

» Downside: specification in the same language as the design

(uses a program to specify correct behavior of a program)

– Train a NN to classify (good/bad) behaviors like the engineer would

» Downside: Essentially provides a specification that is a black box

• Other ideas?

49

J. Kapinski

Summary

• CPS is everywhere and is safety critical
– Verification for CPS is hard!

– New simulation-based analysis techniques

• Simulation-based falsification methods can perform automated
bug-finding

• Requirement engineering an ongoing challenges for
CPS
– ST-Lib intended to support V&V activities for CPS

applications

• Application results are promising but many challenges revealed

– Need to think about improved methods to capture designer
intentions

50

J. Kapinski

Other CPS Test & Verification

Challenges
• Building appropriate models

– Model creation is time consuming and error-prone

– How to automate model construction

– How to check model accuracy

• Verification techniques
– Scaling model-checking/theorem proving techniques for CPS

– Dealing with black-box models

• Advanced testing/evaluation techniques
– Continue to develop new/better simulation-based falsification approaches

– Need automated testing approaches for calibration

• Control synthesis
– Can we create safe-by-construction control designs?

• Systems based on machine learning/AI
– Lots of immediate applications: autonomous cars, advanced driver assist

– Not clear how to test/certify

51

Super hot

topic!!

J. Kapinski

Thanks for your attention!

52Please read about these and related issues in our article in

the Dec. 2016 issue of IEEE Control System Magazine

• Thanks to…
– Toyota collaborators: Hisahiro Ito, Ken Butts, Jyotirmoy Deshmukh, Xiaoqing Jin

– Academic collaborators: Alexandre Donzé, Tommaso Dreossi, Sanjit Seshia (UC Berkeley), Ayca Balkan, Paulo Tabuada

(UCLA), Georgios Fainekos (Arizona State University), Nikos Arechiga, (Toyota Info Technology Center), Aditya Zutshi,

Sriram Sankaranarayanan (CU Boulder)

• Special thanks to Necmiye Ozay for the invitation!

• Questions? Comments?

