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CHAPTER 1  

Introduction 

1.1 Motivation 

Many engineering problems, including the analysis of radar scattering from air- and 

spacecraft, the design of antennas and microwave circuits, the characterization of 

electromagnetic (EM) interactions with biological tissue, and the study of 

electromagnetic compatibility and interference phenomena, call for the analysis of time-

harmonic electromagnetic interactions with electrically large and geometrically intricate 

structures. In each problem, one seeks the solution of Maxwell’s equations for the given 

radiation and scattering system. Since the exact analytical solutions to Maxwell’s 

equations are available only for canonical geometries such as spheres, spheroids, and 

infinite cylinders, computational electromagnetics (CEM), encouraged by the advent of 

powerful computers, became the most important approach to solve real-life time-

harmonic EM scattering and radiation problems. Various numerical methods are 

developed for the formulation and solution of these problems [1-10]. However, problems 

with increasing complexity and the trend towards using higher operating frequencies 

encourage the development of new methods in CEM. Each of these existing CEM 

methods has their strengths and weaknesses when applied to certain type of problems. 

Hybrid techniques combine two or more methods to retain their strengths and overcome 

their weaknesses, which yields greater flexibility in modeling complex structures.   
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The following discussion briefly overviews two of the major methods in CEM: 

integral equation (IE) and finite element (FE) methods. It is merely indented to provide a 

background for a hybrid method introduced later in this thesis. For a more complete 

survey on CEM methods, the reader is referred to [5, 7, 11] and the references there in. IE 

methods formulate the EM scattering and radiation problem as integral equations in terms 

of unknown equivalent surface or volumetric current densities according to equivalence 

theorem [12]. IEs can be classified into two sub-groups based on this distinction: surface 

(S) and volume (V) IEs. VIE methods are suitable for modeling arbitrarily 

inhomogeneous dielectric structures, whereas SIE methods can only be applied to 

piecewise homogeneous dielectric structures (possibly including perfect electrically 

conducting (PEC) objects or surfaces) [1-6]. To numerically solve SIEs and VIEs, 

surfaces and volumes are discretized using 2D (e.g. flat or curvilinear triangular 

elements) and 3D (e.g. hexahedral or tetrahedral elements) elements, respectively. Then, 

the unknown currents are expanded in terms of linearly independent basis functions 

supported on these elements. Using the popular method of moments (MOM) procedure 

[1], IEs are converted into linear systems of equations of order ,N  where N  is the 

number of basis functions used to expand surface (for SIEs) or volume (for VIEs) 

currents. The classical (i.e. nonaccelerated) iterative solution of adequately 

preconditioned MOM systems requires 2( )O N  memory and 2( )O N  CPU resources, 

respectively. During the past decade, several accelerators that reduce these memory and 

CPU requirements have been proposed; examples include, but are not limited to, the 

multi-level fast multipole algorithm (MLFMA) [13, 14], the conjugate gradient fast 

Fourier transform [15] and pre-corrected fast Fourier transform [16] techniques, and the 

adaptive integral method (AIM) [17-19]; the latter two are closely related. In this thesis a 

memory efficient extension of classical AIM, named fast Gaussian gridding (FGG) –

AIM, is developed for SIEs [20] and VIEs. This efficiency is achieved by incorporating 
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fast Gaussian gridding (FGG) [21, 22], a recently developed scheme for computing 

nonuniform FFTs (NUFFTs) with low memory requirements, into the AIM framework.  

In the last decade, SIE solvers that use high order representations of the surface 

and/or current density become increasingly popular due to their high fidelity modeling 

capabilities [23]. They aim to reduce two major sources of errors in the numerical 

solution of SIEs, namely, errors due to finite approximation of the surface and current 

density. For a given accuracy high-order solvers are computationally more efficient then 

their low-order counterparts, since they require less number of basis functions to expand 

the current density to reach the same accuracy [14, 24]. However, these methods are 

usually not generalized for composite structures with arbitrary metal-dielectric junctions. 

Donepudi et al. [24] presented a high order, MLFMA accelerated SIE solver for 

composite dielectric and PEC structure; unfortunately their method does not consider 

open PEC surfaces and the treatment of the junction problem is not discussed. In [25] 

Kim et al. presented a high order, AIM accelerated volume and combined volume-surface 

IE solver for the same problem. However, in their method metallic and dielectric objects 

are assumed to be removed from each other. In this thesis a high order, AIM-FGG 

accelerated SIE solver is developed for general composite dielectric-PEC structures with 

arbitrary surface junctions [26].  

FE methods formulate the EM radiation and scattering problem as partial differential 

equations (PDEs) derived by starting directly from the Maxwell’s equations. These 

equations are solved by discretizing the solution domain into smaller elements, and 

expanding the unknown field quantities on these elements. Their solution leads to sparse 

matrix systems which can be solved efficiently [8, 10]. FE methods have the ability to 

model arbitrarily inhomogeneous composite dielectric-PEC structures. However, they 

require artificial truncation of the otherwise infinite solution domain by enforcing 

approximate radiation conditions at the truncation boundary, which leads to numerical 
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error accumulation. A popular alternative is to combine FE and SIE methods to exploit 

the strengths of each, i.e. the modeling flexibility of FE and the rigor of SIE methods.  

The resulting hybrid is often referred as finite element boundary integral (FE-BI) method 

[10, 27, 28].  In this hybrid, SIEs formulated on the truncation boundary serve as 

boundary conditions for FE system. SIEs discretized via the MOM are coupled to the FE 

system through various formulations [29-31]. The matrix vector multiplications pertinent 

to the BI portion of the hybrid FE-BI systems can be accelerated via the aforementioned 

acceleration methods for IEs [32, 33]. The above mentioned AIM-FGG acceleration is 

also extended to FE-BI solvers in this thesis. 

Even though there exist well-established FE and IE methods and their hybrids, 

solving real-life scattering and radiation problems still stays as a challenge. Difficulty 

often arises when geometrically intricate devices with sub-wavelength features have to be 

modeled on large platforms such as antenna systems mounted on spacecrafts. Meshes 

generated for this type of structures will have large variations in element sizes and 

eventually lead to badly-conditioned system matrices. In the last decade domain 

decomposition (DD) strategies have become increasingly popular to address this 

challenge. Instead of tackling the entire computational domain directly, DD method starts 

with partitioning the computational domain into several sub-domains which allows the 

separation of small- and large- scale features of the structure. EM scattering from each 

domain is characterized separately and a global solution is obtained by coupling these 

solutions by enforcing electric and/or magnetic field boundary conditions on domain 

boundaries. Often, auxiliary unknowns are defined on domain boundaries to interface 

domains with each other. DD method has more popularity in FE methods [30, 34-40], 

while recently some IE based methods are proposed [41-44]. 

One example to these challenging real-life problems is the EM analysis of plasma 

engulfed re-entry vehicles. Space vehicles often are affected by communication blackout 
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upon re-entering the Earth’s atmosphere [45]. The blackout arises when the vehicle 

interacts with the atmosphere around it, giving rise to dense plasmas that are 

impenetrable by EM waves [46]. The vehicle itself often is covered in a thin and 

inhomogeneous plasma shell, the density of which decreases rapidly with distance from 

the vehicle surface. This plasma shell hinders the operation of antennas mounted on the 

side of the vehicle. As the vehicle moves through space, it also leaves behind a large 

plasma plume. This plume hinders the operation of antennas mounted on the back of the 

vehicle. The nature and density of the plasma shell and wake heavily depend on 

operational and environmental conditions and vary rapidly with the vehicle’s position 

along its trajectory. To analyze the occurrence of communication blackout and facilitate 

the design of robust navigation systems, fast simulators capable of accurately 

characterizing the operation of antennas mounted on plasma-engulfed vehicles are called 

for. 

The majority of past efforts aimed at analyzing antennas in plasma environments 

have relied on finite difference time domain solvers and were limited to relatively simple 

antennas and platforms [47]. Unfortunately they do not permit modeling of antennas on 

realistic structures. Recently a ray tracing technique was used to analyze antennas on 

plasma engulfed re-entry vehicles [48]. Albeit very powerful, this approach does not 

allow for a detailed modeling of the antennas and/or complex plasma structures that may 

arise in a turbulent wake.   

In this thesis a new full-wave hybrid technique is developed to address the 

aforementioned challenges in analyzing scattering and radiation from plasma-engulfed 

space vehicles. Different solvers are combined to be used in the plasma shell and the 

wake region. A DD-FE-BI solver is used to model EM fields in the plasma near the 

vehicle as this permits the analysis of highly inhomogeneous plasma distributions near 

the vehicle. A VIE solver is used to model EM fields in the plasma wake behind the 
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vehicle; this choice of solver is motivated by the (relatively) slow variations of the 

plasma parameters in the wake, and the computational benefits associated with accurately 

modeling wave propagation over large distances using integral as opposed to differential 

equation methods. The resulting hybrid DD-FE-BI-VIE is solved iteratively and the 

matrix vector multiplications pertinent to the BI-VIE coupled system are accelerated with 

AIM-FGG.  

1.2 Advances Proposed by This Work 

This thesis is aimed at developing fast, DD based hybrid methods for the solution of 

real life EM scattering and radiation problems. The following contributions are presented 

in this thesis: 

 A high-order SIE solver, using divergence conforming Graglia-Wilton-Peterson 

basis functions [49], for composite dielectric and PEC structures with arbitrary 

surface junctions. 

 A memory efficient extension of classical AIM, named AIM-FGG, for the 

acceleration this high-order SIE-solver. 

 AIM-FGG accelerated VIE and FE-BI solvers. Roof-top basis functions defined 

on hexahedral elements are used to discretize VIEs, curl conforming basis 

functions defined on tetrahedral elements are used to discretize PDEs in FE 

method, and zeroth order basis functions (RWGs) defined on flat triangles are 

used to discretize BIs. 

 An AIM-FGG accelerated hybrid DD-FE-BI-VIE solver, combining above 

mentioned VIE and FE-BI solvers, and AIM-FGG acceleration. This solver is 

capable of modeling highly complex, composite dielectric-PEC structures.  The 
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development of this solver is motivated by the challenges in analyzing scattering 

and radiation from plasma-engulfed space vehicles. 

1.3 Organization of Chapters 

The remainder of this thesis is organized as follows. Chapter 2 presents the 

formulation of the high order SIE solver for analyzing EM scattering and radiation from 

composite dielectric and PEC structures with arbitrary surface junctions. Surface 

modeling with curvilinear triangular elements, GWP basis functions, and a procedure for 

resolving the dependencies of the GWP basis functions intersecting at the surface 

junctions are detailed in this chapter. Chapter 3 describes the proposed AIM-FGG hybrid 

for the acceleration of high order MOM-based SIE solvers for composite dielectric and 

PEC structures. In Chapter 4, we detail a VIE solver and its acceleration with a classical 

FFT scheme and the proposed AIM-FGG hybrid. The rooftop basis functions and 

hexahedral discretization elements used in the VIE solver are also described in this 

Chapter. An AIM-FGG accelerated FE-BI solver is presented in Chapter 5. In Chapter 6, 

we detail the proposed AIM-FGG accelerated DD-FE-BI-VIE solver. Conclusions and 

future work are outlined in Chapter 7. 
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CHAPTER 2  

Surface Integral Equations for Piecewise Homogeneous 

Composite Metallic-Dielectric Structures 

2.1 Introduction 

 Method of Moments (MOM) based surface integral equation (SIEs) solvers are 

widely used for analyzing time-harmonic EM interactions with composite metallic and 

dielectric structures. The literature abounds with SIE methods for isolated metallic and 

dielectric structures [refs]. However, these methods are usually not generalized for 

composite structures with arbitrary metal-dielectric junctions. In the earlier studies on this 

topic metallic and dielectric objects are often assumed to be removed from each other 

[ref] or the junction treatment is not discussed [ref]. In [24] a high-order SIE approach, 

which uses curvilinear triangular patches to represent the surfaces, and high order 

Graglia-Wilton-Peterson (GWP) basis functions [49] to expand the surface currents, is 

presented. However in this approach open metallic surfaces are not considered and the 

junction treatment is not discussed. Recently, [50] and [51] introduced systematic 

procedures to treat the general metal-dielectric junction problem and presented results for 

low-order SIEs solvers in which flat triangular patches and Rao-Wilton-Glisson (RWG) 

basis functions are used for surface modeling and current expansion, respectively.  
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This chapter describes an extension to the high-order SIE approach in [24] to handle 

open metallic surfaces and general metal-dielectric junctions using the procedures 

prescribed in [50, 51]. The remainder of this chapter is organized as follows: Section 2.2 

reviews the well known electric, magnetic, and combined-field integral equations (EFIE, 

MFIE, and CFIE) for perfect electrically conducting surfaces (PEC) and Poggio-Miller-

Chang-Harrrington-Wu-Tsai (PMCHWT) formulation for dielectric interfaces for a 

single domain object. Their generalization to multi domain composite structures is 

elucidated in Section 2.3. Discretization of the surfaces using curvilinear and flat 

triangular elements, and high-order basis function expansion of the unknown surface 

currents are explained in Section 2.4.1. MOM solution of the SIEs and the treatment of 

general metal-dielectric junctions are detailed in Section 2.4.2 and 2.4.3, respectively. 

Finally, numerical results that serve to validate the presented formulation are presented in 

Section 2.5. 

2.2 Integral Equations for a Single Domain Object 

Consider a homogeneous penetrable object with surface 1S  residing in an unbounded 

background medium. 1S  divides the entire space D  into two (exterior and interior) 

homogeneous domains 1D  and 2D  as shown in Fig. 2.1(a). Let ,p  p , and 

pp p    denote the permittivity, permeability, and wave impedance of ,pD  

1, 2.p   The object  2D  is excited from inside and outside by impressed electric and 

magnetic current sources  , ,i i
p pJ M  1, 2p   with angular frequency .  These currents 

generate the incident electric and magnetic fields  ,i i
p pE H  in an unbounded 

homogeneous medium with constitutive parameters  , .p p    The objective is to find the 

total electric and magnetic fields  ,p pE H  in ,pD  1, 2.p   The classical approach is to 

separate the original problem into external and internal equivalent problems by  
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Figure 2.1: (a) Original Problem. (b) External equivalent problem. (c) Internal equivalent 
problem. 

introducing unknown surface electric and magnetic currents  1 1,J M  and  2 2, ,J M  

respectively, on 1.S   These currents are chosen such that 

         1
ˆ ˆ,          p pp p p p S    J r n H r M r E n r r  (2.1) 

where ˆ
pn  is the unit normal on 1S  pointing  towards ,pD  1, 2.p     ,p pJ M  generate 

electric and magnetic fields 

   1
ˆ ,

2
s
p p pp p p p p   r JE n M M   (2.2) 

(b) (a) 

(c) 
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   1
ˆ

2 p p p
s

p ppp p    JH r J Mn    (2.3) 

in an unbounded homogeneous medium with  , ,p p   1, 2,p   where the integral 

operators p  and p  are defined as 

       ,
p

p p p
pS

j
jk g ds

k

 
        

 



 X r X r rX r  (2.4) 

     .
p

p p

S

g ds   X X r r r  (2.5) 

In (2.4)-(2.5),    4pjk

pg e     r rr r r r  and p p pk     are the Green’s 

function and the wavenumber of the medium ,p  p  is evaluated in Cauchy principle 

value sense, and X  stands for pJ  or .pM  In the external equivalent problem,  1 1,J M  

radiate together with the impressed sources  1 1,i iJ M  to generate the original fields 

      1 11 1,     s i D E r E r E r r  (2.6) 

      1 11 1,     s i D H r H r H r r  (2.7) 

in 1D  and zero fields in 2.D  Similarly for the internal equivalent problem  2 2,J M  

radiate together with the impressed sources  2 2,i iJ M  to generate total fields 

      2 2 2 2,     s i D E r E r E r r  (2.8) 

      2 2 2 2,     s i D H r H r H r r  (2.9) 

inside 2D  and zero fields inside 1.D  Then, the integral equations on 1S  is obtained by 

enforcing the boundary conditions, i.e. the continuity of the tangential electric and 

magnetic fields,  

    1 1 1 2 1ˆ ˆ ,     S   n E r n E r r  (2.10) 

    1 1 1 2 1ˆ ˆ ,     S   n H r n H r r  (2.11) 
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which also imply that 1 2 J J  and 1 2. M M  Substitution of (2.2), (2.6) and (2.8) into 

(2.10), and (2.3), (2.7) and (2.9) into (2.11) yields the well known Poggio-Miller-Chang-

Harrrington-Wu-Tsai (PMCHWT) equations [52] 

        1 1 1 12 1 1 12 1 2 12ˆ ˆ     i i S              n J M n E r E r r     (2.12) 

        2 21 2 1 21 1 1 1 1 1 1ˆ ˆ     i i S              n J M n H r H r r     (2.13) 

which can be solved simultaneously for  1 1, .J M   

Now consider the case when 2D  represents a non-penetrable (PEC) object. Fields 

inside 2D  are zero, hence only the exterior problem is considered in the analysis. The 

boundary conditions on a PEC surface dictate that 1 1ˆ 0 n E  and 1 1ˆ 0. n H  From the 

former boundary condition it is understood that magnetic currents vanish on a metallic 

surface, 1 0.M  Under these conditions (2.12) and (2.13) will reduce to well known 

electric and magnetic field integral equations (EFIE and MFIE) 

   1 1 1 1 1 1 1ˆ ˆ EFIE     i S   n J n E r r  (2.14) 

   1 1 1 1 1 1 1

1
ˆ ˆ MFIE    .

2
i S    J n J n H r r  (2.15) 

To eliminate the interior resonance problem with the closed PEC objects (like 2D ) the 

combined field integral equation (CFIE) can be applied by linearly combining (2.14) and 

(2.15) as 

  1 1ˆCFIE EFIE+ 1 MFIE.    n  (2.16) 

where    is a parameter ranging between 0 and 1. The MFIE and CFIE can only be 

applied to closed PEC surfaces, while the EFIE applies to open surfaces as well. 
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2.3 Generalization to composite objects with multiple domains 

2.3.1 Geometry and notation 

Consider a general composite structure (Fig. 2.2(a)) comprising open and closed 

PEC surfaces and piecewise homogenous dielectric domains residing in an unbounded 

homogeneous background medium. Let M  be the total number of PEC or dielectric 

domains (including the background medium). Let PEC  and PEC  represents the set of 

closed PEC domains and open or closed PEC surfaces, respectively. Let pqS  (or qpS ) 

represent the surface separating pD  and ,qD  clearly ,pq qpS S , 1,..., .p q M  It should 

be noted that pqS   if pD  and qD  do not share an common interface; and ppS  

represents open PEC surfaces in .pD  Each domain is bounded by the union of surfaces 

 
1

M

p pq
q

S S


  (2.17) 

Let ,p
sN  and ˆ

pqn  represent the dimension of the non-empty set 1,..., :q M ,pqS   and  

the unit normal vector on  pqS  pointing towards .pD  

2.3.2 Equivalent problem in each domain 

First step in constructing SIEs for composite structures is to set up an equivalent 

problem in each domain ,pD  1,..., :p M p PECD   in a similar fashion to the single 

domain case (Fig. 2.2(b)-(e)). Suppose that the structure is excited with electric and 

magnetic fields  ,i i
p pE H  generated by impressed sources  ,i i

p pJ M  residing in one or 

more non-metallic domains ,pD 1,..., :p M .p PECD   In response to the excitation, 

equivalent magnetic and electric currents  ,pq pqJ M  are induced on surfaces pqS , 

, 1,..., .p q M  It should be noted that 0pq pq J M  if pqS   or ,p PECD   0qp M  

if ,pq PECS   and  ,pq pqJ M  are not necessarily equal to  , .qp qpJ M   
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(a) Original multi-domain problem 

(b) Equivalent problem for 1D  

 

(c)  Equivalent problem for 2D  

2 23 24 23,    PECS S S S    32 33 34 32 333 ,     , PECS S S SS S    

(d)  Equivalent problem for 3D  

111 1511 14 15 ,     , PECS S S SS S    
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Figure 2.2: An example composite structure with five domains 5M   one of which is a PEC 
object  5 .PEC D   In this example 11 33 44 15 45 23.PEC S S S SS S       Equivalent 

problems for ,pD  1,..., 4,p   are shown in (b)-(e), respectively. 

Equivalent problem for each pD  can be stated as finding  , ,pq pqJ M  1,...,q M  that 

radiate together with  ,i i
p pJ M  to generate the original fields inside pD  and zero fields 

outside. More formally, the equivalent problem for pD  can be represented as SIEs in 

terms of the unknowns  ,pq pqJ M  

      
1

1
ˆ ˆ ,     

2

M
i
p

q
pq pq p p pq p pq pq pqS



    M r n J M n E r r   (2.18) 

      
1

1
ˆ ˆ ,     .

2

M
i
p

q
pq pq p pq p pq p pq pqS



     J r n J M n H r r   (2.19) 

(2.18) and (2.19) can be derived using the current-field relations 

        ˆ ˆ,         .pq p pq pq pq p pqS   M r E r n J r n H r r  (2.20) 

Combining (2.18) and (2.19) from equivalent problems for pD  and qD  using PMCHWT 

approach yields the following integral equations on a dielectric surface pq PECS   

4 43 44 45

44 45

41 42

, PEC

S S SS S S

S S

   




 

(e) Equivalent problem for 4D  
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   

   
1 1

ˆ

ˆ

M M

q q q
q p

i i
p

pq p p pq p pq qp qp

pq q

 
 

 
    
 

    

 n J M J M

n E r E r

   
 (2.21) 

 
   

   
1 1

ˆ

ˆ

pq p pq p pq

M M

qp q q q
q p

i

p qp

p
i

q p q

 
  

   

 
    
 

    

 n J M J M

n H r H r

   
 (2.22) 

where ,pqSr  and ,pq qp J J .pq qp M M  On open PEC surfaces pq PECS   the EFIE 

is formulated as 

    
1

ˆ ˆ    .pq p p pq p pq pq p
q

p

M

q
i S



 
    
 

n J M n E r r   (2.23) 

Whereas on surfaces bounding closed PEC domains CFIE is used to avoid internal 

resonance problems, that is  

 

 

 

   

1

1

ˆ ˆ

1
ˆ(1 ) (1 )

2

ˆ ˆ ˆ(1 )     

pq pq p p pq p pq

p pq p pq p p

M

q

M

q p
q

pq p

pq pq p pq pp q
i i

p S

 

    

  

 










 
   

 
 

     
 

      





n n J M

J n J M

n n E r n H r r

 

   (2.24) 

2.4 Numerical Solution of Integral Equations 

2.4.1 High order Geometry Modeling and Basis Functions 

To numerically solve (2.18) and (2.19), surfaces ,pqS  , 1,..., : pqp q M S   are 

discretized using a mesh of pqN  triangular elements n
pq  n

qp   as 

 
1

.
pqN

n
pq

n
pqS



   (2.25) 
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Triangular elements can categorized as flat or curvilinear. Flat triangular elements are 

defined by three nodes and they conform exactly to flat surfaces but they provide only an 

approximation to curved surfaces which cause errors in the solution. These geometrical 

approximation errors can be reduced (in some cases completely removed) by using 

curvilinear (high order) triangular elements [53]. In this work only 6-node curvilinear 

elements are used although the method can easily be generalized to higher order 

elements. 

Equivalent currents  ,pq pqJ M  on the discretized surface are expanded in terms of 

thr  order divergence conforming GWP [49, 53] basis functions as 

    
1 1

{      1,. ,, .. }:
pq

bN N
ne ne

pq q
e

ppq
n

qpI p q SM
 

 J r S r  (2.26) 

    
1 1

    {1,..., }:  , ,  
q

b
pN

pq PEC p

N
ne ne

pq pq pq q
n e

K p SMq S
 

   M r S r  (2.27) 

where    ne ne
pq qpS r S r  represents the the  basis function on defined on element ,n

pq  bN  

is the number of basis functions defined on each element   1 3 ,bN r r    and 

 ,ne ne
pq pqI K  are the corresponding unknown electric and magnetic current coefficients. 

Using high-order basis functions significantly reduce the errors introduced by the finite 

expansion of the current. GWP basis functions are interpolatory in nature, i.e.  ,ne ne
pq pqI K  

represent one vector component of the tangential electric and magnetic fields at an 

interpolation point ne
pqr  in .n

pq  thr  order GWP functions interpolate 1r   points along the 

triangle edges and  1r r   points in each triangular element. Zeroth order GWP basis 

functions are equivalent to the half RWG basis functions [54]. Fig 2.3 (a) and (b) depicts 

zeroth and first order GWP functions defined on flat and curvilinear triangles, 

respectively.  
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Figure 2.3: Generic illustration of (a) zeroth and (b) first-order GWP basis functions defined on 

flat and curvilinear triangular elements.   0 1 0 3 3N      zeroth order and 

  1 1 1 3 8N      first order basis functions are supported on each element. 

(a) 

(b) 
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2.4.2 MOM System of Equations 

In this section a new notation for indexing basis functions is introduced to simplify 

the formulation that follows. The new notation replaces the pair  ,n e with a single index 

bk nN e   

 ,     ,     k ne k ne k ne
pq pq pq pq pq pqI I K K  S S  (2.28) 

where  1,..., 1,pqn N   1,..., ,be N  and 1 .b
pqk N N    

Double summations in (2.26) and (2.27) can easily be rearranged as a single 

summation with the new notation. Substitution of (2.26) and (2.27) with the new notation 

into (2.18) and (2.19), and Galerkin testing the resulting equations yields the matrix 

equation 

 
1 1

M M

qq
q

pqq qpp pp pq qp
p

 
  

   Z U Z U V V  (2.29) 

In (2.29) pqU   and pqV  are the b
pqN N   vectors of unknown current coefficients and 

tested incident fields, and pqqZ  is the 2 2q pq
b b

pN N N N  MOM impedance matrix 

 
2 1 2 1 2 2

        
b

pq pq pq
b

pq
b b

E EE EH
pq pq pqq pqq

pq pq pqqH HE HH
pq pq pqq pqqN N N N N N N N

 


   

    
      

        

I V Z Z
U V Z

K V Z Z
 (2.30) 

Their entries are 

 ( ) ,    1,..., bk
pq pq pqk I k N N I  (2.31) 

 ( ) ,     1,..., bk
pq pq pqk K k N N K  (2.32) 

          1,.. ,, .
pq

k i b
p

S

E
pq pq pqdk k Ns N   E rV S r  (2.33) 

           1,...,
pq

H
pq p

k
q

b
p

S

pq
i dsk k N N  S r H rV  (2.34) 

      ,   ,   ,  1,..1,..., .,
pq

EE k
pqq p p pq p

k b b
pq q pq

S
kk kNk N N N 

    Z SS r   (2.35) 
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      , ,    1, ,  1,..., ,...,
pq

EH k
pqq p p

k b b
pq pq pq

S
qkk N k NNk N

     SS rZ   (2.36) 

    , ,HE EH
pqq pqqk k k k   Z Z  (2.37) 

     2, ,HH EE
pqq pqq jk k k k   Z Z  (2.38) 

where the inner product 
pqS

 is defined as 

        ,
pq

pq

S
S

ds a r b r a r b r  (2.39) 

The entries of these matrices are given explicitly by 
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Similarly, MOM systems for EFIE and CFIE are given by 
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and 
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respectively. In (2.43) pqqI  is a pq pqN N   matrix with entries 

  
1    for ,  

,
0    otherwisepqq

q q k k
k k

    


I  (2.44) 
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2.4.3 Independent Unknowns and Junction Treatment 

To solve for all pqU  , 1,...., :p q M  pqS  , a global system of equations must be 

assembled by combining (2.29) for dielectric surfaces, (2.42) for open PEC surfaces, and 

(2.43) for surfaces bounding PEC domains. It should be noted that so far in the 

formulation every basis function is paired with a different coefficient in (2.29) (also in 

(2.42) and (2.43)). However these coefficients do not constitute an independent set. That 

is, a straight-forward assembly of these equations will lead to a rank deficient system.  

This section presents a systematic procedure to remove the dependent coefficients. 

Removing a coefficient can be interpreted as combining rows and columns of an initially 

rank deficient system matrix. 

Rule 1: If two triangular elements n
pq  and m

pq  share a common edge, the 

interpolation points on this edge are shared by the basis functions defined on these 

elements, i.e. .k l
pq pqr r  Initially two independent set of coefficients  ,k k

pq pqI K  and 

 ,l l
pq pqI K  are paired with these basis functions. To ensure the current continuity from 

one triangle to the other, the redundant set is removed from the independent unknown list 

and basis functions corresponding to these unknowns are paired with the coefficients 

 ,      .l k l k
pq pq pq pqI I K K     (2.45) 

Rule 2: At an interface between two dielectric domains pD  and ,qD  initially two 

independent set of unknowns  ,k k
pq pqI K  and  ,k k

qp qpI K  are defined. To enforce the 

conditions ,qp pq J J qp pq M M  explicitly, one set is removed from the independent 

unknown list and the basis functions corresponding to these unknowns are paired with the 

coefficients 

 ,      .k k k k
qp pq qp pqI I K K     (2.46) 

Hence, only one set of independent unknown current coefficients represent the currents 

on .pq qpS S   
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Rule 3: For a PEC surface pq PECS   magnetic currents are zero 0,pq M  so 

,k
pqK 1,..., ,pqn N  1,..., b

pqk N N  are removed from the independent unknown list. Also 

if the PEC surface pqS  is at an interface where two dielectric domains intersect, 

independent unknowns k
pqI  and k

qpI  on both sides of pqS  are kept intact. 

Rule 4: At a junction where only dielectric surfaces intersect Rules 1 and 2 are 

systematically applied. As a result only a single set of unknowns remains in the 

independent unknown list. 

Rule 5: At a junction where only PEC surfaces intersect Rules 1 and 3 are 

systematically applied. If the junction is totally immersed in a single domain one of the 

independent unknowns must be removed to satisfy the Kirchhoff’s current law. Let  

 1 1, ,..,k k k n
pp pp ppI I I    represent the remaining set of unknowns at such a junction after 

applying Rules 1 and 3. Then the final set of independent unknowns will be  

 
1

1

1

, ,..., .
n

k k k
pp pp ppI I I 




 



  
 

  (2.47) 

Rule 6: At a general PEC-dielectric junction Rules 1, 2, and 3 are applied. Since 

magnetic currents vanish on PEC surfaces, all magnetic current coefficients must be 

removed, including the ones on dielectric surfaces (to satisfy the continuity).  

Fig. 2.4 depicts how these rules are applied for various dielectric-PEC surface 

junction examples. Note that the original index notation  ,n e  is used in the examples to 

discriminate between different elements and local basis function indices. 
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(a) Dielectric interface -- 1st order basis functions 
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(b) Intersection of three dielectric domains/surfaces – 0th order basis functions 

(c) Intersection of PEC and dielectric surfaces – 0th order basis functions 
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Figure 2.4: Unknown resolution procedure for various PEC-dielectric junction cases. 

2.4.4 Global System of Equations 

After resolving the independent set of unknowns in pqU  , 1,...., :p q M   by 

following the rules described above, (2.29) can be assembled together to yield the global 

system of equations  

 ZU V  (2.48) 

where  

(d) Intersection of three PEC surfaces immersed into a single domain -- 1st order basis functions 

(e) Intersection of three dielectric domains with two PEC surfaces – 0th order basis functions 
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1 1 1

M M M
T
pq pqq pq

p q q
 

  

  Z R Z R  (2.49) 

V  is the right hand side vector 

 
1 1

.
M M

T
pq pq

p q 

 V R V  (2.50) 

and U  is the N vector of independent unknowns, where N  represents the total number 

of independent unknowns. Here, pqR  ,  1,...., :p q M pqS   is a highly sparse 

selection matrix of dimension  2 ,b
pqN N N  mapping the independent unknowns to the 

original set of current coefficients on .pqS  The transpose matrix T
pqR  performs the 

inverse of this mapping. Each row of pqR  has a possible single non-zero entry of either 1 

or -1. The only exception occurs when the structure comprises open PEC surface 

junctions immersed in a single domain. In that case rows with multiple entries (of either 1 

or -1) can appear in  .pqR  (2.49) can be represented in a more compact way as 

 
1

M
T
p p p

p

 Z R Z R  (2.51) 

where pZ  and pR  are the p p
s sN N  and  1p

sN   block matrices comprising the blocks 

pqqZ  and  pqR  ,  1,..., :q q M   ,,  pq pqS S    respectively. Let pN  represent the number 

of elements in pS  

 
1

p pq

M

q

N N


   (1.52) 

Then, the total dimensions of pZ  and pR  are b b
p pN N N N  and ,b

pN N N  

respectively. 

When N  is large, (2.48) can only be solved iteratively, a process that requires the 

repeated multiplication of Z  by trial solution vectors. It should be noted that although the 

matrices pZ  are dense, the global system matrix Z  can be sparse for multi domain 
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structures.  The sparsity of Z  depends only on the topology of the structure. The memory 

and CPU requirements of MOM-based iterative solvers therefore scale as 

  2

1

M
b

p
p

O N N


 
 
 
  (1.53) 

and 

  2

1

,
M

p

b
iter pN O N N



 
 
 
  (1.54) 

respectively. Here iterN  is the number of iterations required for the solution to reach a 

given accuracy; typically iterN N , especially when D  is electrically large and 

uniformly discretized. For a single object problem these requirements reduce to classical 

 2O N  and  2
iterN O N  memory and CPU requirements for dense matrix systems. In 

this work the solver is implemented using the popular message passing interface (MPI) 

programming model, and executed on clusters of processors to reduce these 

computational requirements. 

2.5 Numerical Results 

This section presents numerical results that demonstrate the high-order accuracy of 

the solver and validate the solver for various metal-dielectric junction cases. First, 

scattering from PEC and dielectric spheres is analyzed and the results are compared to 

those obtained using exact analytical methods, i.e. Mie series solutions. The 

parallelization efficiency of the solver is demonstrated via CPU time statistics. Next, 

various objects with arbitrary metal-dielectric junctions are analyzed and the junction 

resolution rules are validated. In the examples mesh density is represented by average 

edge length of the triangular elements .  A transpose free quasi minimal residual 

(TFQMR) iterative scheme [55] is used to solve MOM matrix equations. Unless 
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otherwise stated a diagonal pre-conditioner is used in all simulations, tolerance of 

TFQMR is set to 610 ,  and iterN  represents number of iterations required to reach this 

tolerance in the examples. The surface meshes are generated using a commercially 

available software package NX-IDEAS. All simulations are carried out on a cluster of 

dual-core 2.8 GHz AMD Opteron 2220 SE processors at the Center for Advanced 

Computing, University of Michigan.  

2.5.1 PEC Sphere 

The first test geometry is a PEC sphere of radius 1 m. The sphere is illuminated by a 

plane wave  

 0
ˆˆ ,jki e krE p  (2.55) 

with ˆ ˆp x  and ˆ ˆ,k z  and frequency 300 MHz.f   A CFIE solver with 0.6   is used 

to compute the RCS of the sphere and the results are compared to the Mie series solution. 

Three simulations are performed for different orders of surface discretization elements 

and basis functions: (i) flat elements with zeroth order (RWG) basis functions (case A), 

(ii) curvilinear elements with first order basis functions (case B), and (iii) an exact 

representation of the sphere surface (obtained by mapping flat elements onto the sphere) 

with second order basis functions (case C). Fig. 2.5(a) shows the bistatic RCS of the 

sphere in E-plane ( 0   ) and H-plane ( 90   ) obtained for Case A, B, and C. The 

accuracy of the solutions are measured quantitatively by computing the relative root-

mean-square (RMS) error in the bistatic RCS 
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where   and ref  represent the bistatic RCS obtained by the proposed solver and Mie 

series solution. In (5.31) sN  represents the total number of observation angles  i  in E- 

 0i    and H-  90i    planes at which RCS is sampled. Average edge length  , 

number of unknowns N  and iterations ,iterN  and the RMS error in the simulations are 

given in Table 2.1 As expected higher order simulations are yielding more accurate 

results for almost the same .N  To demonstrate the parallel efficiency of the solver, 

matrix-vector multiplication time (total wall-time for the iterative solver divided by the 

number of matrix-vector multiplications) versus number of processors is plotted in Fig. 

2.5(b). The solver has excellent parallel scalability for all cases. Fig. 2.5(b) also shows 

that matrix-vector multiplication is faster in high-order solvers. This result is due to the 

data structures designed to store the MOM impedance matrix. Access time to these data 

structures depends strongly to the number of elements instead of the order of basis 

functions. 

   N  iterN  RMS Error 

Case A 00.1  4,371 53 21.14 10  

Case B 00.2  4,360 91 31.4 10  

Case C 00.25  4,074 224 44.59 10  

Table 2.1: Average edge length   (in terms of wavelength), number of unknowns and iterations, 
and RMS error in RCS results in three simulations performed for the PEC sphere. 

2.5.2 Dielectric Sphere 

In the second example scattering from a dielectric sphere of radius 1 m and relative 

permittivity 0 2.5 0.5r j      is analyzed. Three simulations are carried out with the 

same surface discretization-basis function combinations described in Section 2.5.1. The 

sphere is illuminated with a ˆ ˆp x  polarized plane-wave propagating in ˆ ˆk z  direction at  
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Figure 2.5: (a) Bistatic RCS of a PEC sphere of radius 1 m. An ˆ x polarized plane wave 
propagating in z  direction illuminates the sphere. (b) Average wall-clock time per iteration vs. 

number of processors. 
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Figure 2.6: (a) Bistatic RCS of a dielectric sphere of radius 1 m and relative permittivity 
2 0.5r j   . An ˆ x polarized plane wave propagating in z  direction illuminates the sphere. 

(b) Average wall-clock time per iteration vs. number of processors. 
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300 MHz.f    Fig. 2.6(a) shows the bistatic RCS of the sphere in E-plane ( 0   ) and 

H-plane ( 90   ) obtained for case A, B, and C. Table 2.2 shows , ,N  ,iterN  and the 

RMS error in RCS in the simulations. Similar to PEC sphere example, solver has 

excellent parallel scalability for all cases as shown in Fig. 2.6(b). 

 

   N  iterN  RMS Error 

Case A 00.1  8,742 215 36.8 10  

Case B 00.2  8,720 423 31.46 10  

Case C 00.25  8,148 1047 43.92 10  

Table 2.2: Average edge length in the mesh, number of unknowns and iterations, and RMS error 
in RCS results in three simulations performed for the dielectric sphere. 

2.5.3 High-order Accuracy and Efficiency 

The high-order behavior of the proposed solver is further demonstrated via analysis 

of scattering from a dielectric sphere of radius 1 m with 2.5r  , which is illuminated by 

a ˆ ˆp x  polarized plane wave propagating in ˆ ˆk z  direction at 75 MHzf  . Three sets 

of simulations are performed: In each set, the simulation is repeated while the 

discretization density is increased for a given order of discretization elements and basis 

functions. The RMS error of the RCS values computed in these simulations is plotted in 

Fig. 2.5. The figure clearly demonstrates the high-order convergence of the proposed 

scheme. 
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Figure 2.7: Relative norm error in bistatic RCS (with respect to Mie series solution) for different 
orders of basis functions and discretization densities. 

2.5.4 Multi Domain Dielectric Sphere 

To validate the rules for resolving unknowns at purely dielectric surface junctions, 

scattering from a dielectric sphere of radius 1.25 m with 2 0.5r j    is analyzed and the 

results are compared to the Mie series solution. The incident field is a ˆ ˆp x  polarized 

plane wave propagating in ˆ ˆk z  direction at 300 MHz.f   Two simulations are 

performed for different decompositions of the sphere. In the first case (A) the sphere is 

modeled as two dielectric hemispheres (Fig. 2.6(b)), where as in the second case (B) a 

two layer sphere with an inner radius of 1.0 m is considered (Fig. 2.6(c)). In both cases 

3,M   surfaces are discretized with curvilinear (six node) elements, and second order 

basis functions are used. Fig. 2.6(a) shows the bistatic RCS of the sphere in E-plane 

( 0   ) and H-plane ( 90   ) obtained for case A, B. Results are both in an excellent 
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agreement with the Mie series solution. Table 2.2 shows ,N  ,iterN  and the RMS error in 

the simulations. 

 
 

 
 

Figure 2.8: (a) Bistatic RCS of a homogeneous dielectric sphere of radius 1.25 m and relative 

permittivity 2.5 0.5r j   . A ˆ ˆp x  polarized plane-wave propagating in the ˆ ˆk z  direction 

at frequency 300 MHzf   illuminates the sphere. The geometry is decomposed into multiple 
domains in two different ways as illustrated in (b) and (c), denoted as Case A and B. 
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 N  iterN  RMS Error 

Case A 21,072 1,094 47.28 10  

Case B 27,552 1,821 45.42 10  

Table 2.3: Number of unknowns and iterations, and RMS error in RCS results in the simulations 
performed for the multi domain dielectric sphere. 

2.5.5 PEC Disk 

In this example the scattering from a PEC disk of radius 0.5 m is analyzed to validate 

some of the PEC-dielectric junction unknown resolution rules. The disk is illuminated by 

a ˆ ˆp x  polarized plane wave propagating in ˆ ˆk z  direction at 300 MHz.f   

Simulations are performed for two equivalent models of the PEC disk geometry as shown 

in Figs. 2.9 (b) and (c). In the first case the disk is modeled in a regular way, whereas in 

the second it is enclosed in a dummy dielectric sphere of the same radius, with free-space 

permittivity. In both cases surfaces are discretized with curvilinear (six node) elements, 

and first order basis functions are used. Fig. 2.9 (a) shows the comparison of the bistatic 

RCS in E-plane ( 0   ) and H-plane ( 90   ) obtained for cases A and B. ,  ,N  and 

iterN  for these simulations are given in Table 2.4. 

 

   N  iterN  

Case A 00.2  1,530 2,089 

Case B 00.2  24,980 566 

Table 2.4: Average element length in the mesh, number of unknowns and iterations for the PEC 
disk example. 
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Figure 2.9: (a) Bistatic RCS of a PEC disk of radius 1 m in the xz  plane. First the structure itself 
(b) is simulated (denoted as Case A in the results), then two dummy free-space hemispheres are 
placed next to the original structure to test the dielectric-metallic junctions (denoted as Case B in 

the results). 

 

 

−1
−0.5

0
0.5

1 −1

0

1

−1

−0.5

0

0.5

1

yx

z

−1
−0.5

0
0.5

1 −1

0

1

−1

−0.5

0

0.5

1

yx

z

0 20 40 60 80 100 120 140 160 180
−30

−25

−20

−15

−10

−5

0

5

10

15

20

θ°

B
is

ta
tic

 R
C

S
 (

dB
)

 

 

Case A
Case B

0    

90    

(a)

(b) (c) 

PEC disk 
Free-space 

hemispheres PEC disk 



36 

 

2.5.6 Hemispherical PEC Shell Conforming to a Dielectric Sphere 

Junction unknown resolution rules are further validated by analyzing the scattering 

from a composite structure comprising a hemispherical PEC shell conforming to a 

dielectric sphere of radius 1 m with 2.5 0.5.r j    Similar to previous examples the 

structure is illuminated by a ˆ ˆp x  polarized plane wave propagating in ˆ ˆk z  direction at 

300 MHz.f   Simulations are performed for two equivalent models of the geometry as 

depicted in Figs. 2.10 (b) and (c). In the first case the dielectric sphere is represented by a 

single domain, whereas in the second it is decomposed into two hemispheres. In both 

cases surfaces are discretized with curvilinear elements, and first order basis functions are 

used. ,  ,N  and iterN  in the simulations are given in Table 2.5. The bistatic RCS of the 

sphere in E-plane ( 0   ) and H-plane ( 90   ) is depicted in Fig. 2.10. The relative 

norm of the difference between two RCS results is 41.6 10 .  Relative norm difference 

formula can be obtained by letting   and ref in (5.31) represent the RCS results of case 

A and B, respectively. 

 

   N  iterN  

Case A 00.2  15,936 1,261 

Case B 00.2  17,420 1,338 

Table 2.5: Average element length, number of unknowns and iterations for the hemispherical 
PEC shell conforming to a dielectric sphere example. 

2.5.7 PEC Hemisphere 

Next consider a PEC hemisphere of radius 1 m. The structure is illuminated by a 

ˆ ˆp x  polarized plane wave propagating in ˆ ˆk z  direction at 300 MHz.f   Simulations 

are performed for two equivalent models of the geometry as depicted in Figs. 2.11 (b) 
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and (c) . In the first case the structure is modeled in a regular way, whereas in the second 

it is attached to a dummy dielectric sphere with the same radius and free-space 

permittivity. In both cases surfaces are discretized with curvilinear elements, and first 

order basis functions are used. A hybrid PMCHWT-EFIE solver is used to compute the 

RCS results.  ,  ,N  and iterN  in the simulations are given in Table 2.6. The bistatic RCS 

of the sphere in E-plane ( 0   ) and H-plane ( 90   ) is depicted in Fig. 2.11 (a). The 

relative norm of the difference (defined in the previous example) between two RCS 

results is 41.6 10 .   

   N  iterN  

Case A 00.2  5,250 1,100 

Case B 00.2  12,250 951 

Table 2.6: Average element length, number of unknowns and iterations for the PEC hemisphere 
example. 

2.5.8 Tri-Plate PEC Junction 

Finally a tri-plate PEC junction configuration analyzed and the monostatic RCS 

results are compared to the published results in [51]. The structure comprises three 

rectangular PEC plates of dimension 0.5 m 1 m  intersecting at the common (long) edge 

as shown in Fig. 11 (b). The vertical plate forms a 90  angle with the other two 

horizontal plates. Flat elements and zeroth order basis functions are used in the 

simulation, and the excitation frequency 300 MHz.f  .  RCS of the structure for ˆ ˆ   

and ˆ ˆ   polarizations are in a very good agreement with [51] as shown in Fig. 11 (a). 

 
 
 
 
 
 



38 

 

 
 
 
 
 
 

Figure 2.10: Bistatic RCS of a hemispherical PEC shell conforming to a dielectric sphere of 
radius 1 m and permittivity 2.5 0.5r j    in (a) E- and (b) H- planes. The geometry is 

decomposed into multiple domains in two different ways as illustrated in (c) Case A and (d) Case 
B. PEC surfaces and dielectric interfaces are denoted by thick and dashed lines, respectively. 
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Figure 2.11: Bistatic RCS of a PEC hemisphere of radius 1 m in (a) E- and (b) H- planes.  Two 
cases are considered: First the structure itself (c) is simulated (denoted as Case A), then a dummy 

free-space hemisphere is placed next to the original structure to test the dielectric-metallic 
junctions. 
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Figure 2.12: (a) Monostatic RCS of a tri-plate structure (b) Tri-plate structure. 
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CHAPTER 3  

Adaptive Integral Method with Fast Gaussian Gridding 

3.1 Introduction 

The adaptive integral method (AIM) uses an auxiliary set of discrete sources residing 

on a uniform grid to represent “far-fields” generated by actual currents [17]. This 

representation permits the use of fast Fourier transforms (FFTs) to accelerate matrix-

vector multiplications required in the iterative solution of the MOM systems such as the 

one described in Chapter 2. The AIM reduces the iterative solution’s memory and CPU 

requirements to ( log )c cO N N  and ( ) ( )cO N O N , respectively. Here, cN  is the number 

of nodes on the auxiliary grid enclosing the scatterer; for volumetric and quasi-planar 

scatterers, where the basis functions occupy most of the space enclosed by the AIM grid, 

cN N ; for arbitrarily shaped three-dimensional (3D) surface scatterers 1.5
cN N . 

Conventional methods to map basis functions onto the uniform AIM grid include moment 

[17] and far-field [18, 56] matching. The first and the second terms in the above memory 

requirement estimate are due to the storage of matrices/vectors needed for FFTs and the 

AIM mapping coefficients, respectively. When using the aforementioned mapping 

methods,   scales as 3( )O   with   being the number of AIM mapping coefficients 

per source/basis function along each dimension; ,  along with the grid spacing, 

controls the accuracy of the AIM [17]. When large   are needed to ensure high 

accuracies, the ( )O N  mapping component of the scheme’s memory requirements often 
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overtakes the ( )cO N  FFT component, eventually ruling out the usage of the AIM on 

electrically large problems. While this storage bottleneck in principle can be avoided by 

computing moment or far-field matching mapping coefficients on the fly (i.e., during 

each iteration), in practice such is seldom done as the computational overhead is very 

high. (Note: there exist other FFT-based techniques [57-60] that use auxiliary grids to 

accelerate matrix-vector multiplications in iterative integral equation solvers. To the 

authors’ knowledge, they all suffer from the same drawback as the above-referenced 

AIMs in that they require storage of mapping coefficients to not to compromise the 

scheme’s CPU requirements.)   

Here, we incorporate fast Gaussian gridding (FGG) [21, 22], a recently developed 

scheme for computing nonuniform FFTs (NUFFTs) with low memory requirements, into 

the AIM framework. In the proposed AIM-FGG hybrid,   is of (1)O , that is, it no longer 

scales as 3( )O   as in classical AIM schemes. NUFFT [61] or unequally spaced FFT 

[62] algorithms combine interpolation/convolution schemes with regular FFTs to rapidly 

compute discrete Fourier transforms when the space and/or spectral domain data are 

unequally spaced. Outside CEM [63, 64], NUFFTs find applications in medical and radar 

imaging [65-68]. FGG drives its memory-efficiency from Gaussian-based interpolation 

schemes. Contrary to moment or far-field matching procedures, which produce discrete 

source constellations with spatial spectra that closely match the original currents’ 

spectrum at low frequencies or on the Ewald sphere, the FGG was not designed with the 

AIM in mind and therefore produces spectra with errors that are rather uniformly 

distributed. The accuracy of the AIM-FGG hybrid therefore is typically somewhat less 

than that of an AIM solver that uses moment or far-field matching. For many 

applications, however, the dramatic memory savings of the method far outweigh this 

drawback.  
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This Chapter details the proposed AIM-FGG technique for accelerating the MOM-

based solution of integral equations pertinent to the analysis of scattering from 3D 

composite structures. Section 3.2 summarizes AIM operations, details the FGG for 

mapping sources onto uniform AIM grids, and compares the latter to moment and field 

matching methods commonly used for the same purpose. Finally, numerical results that 

serve to validate and demonstrate the efficiency of the proposed acceleration are 

presented in Section 3.3. 

3.2 Classical AIM 

AIM reduces the memory and CPU requirements of MOM-based iterative integral 

equation (IE) solvers to iter c c( log ),O N N N  and c( ) ( )O N O N , respectively. Here cN  is 

the number of nodes on the auxiliary AIM grid that encloses the structure .D  The AIM 

achieves this efficiency by accelerating all matrix-vector multiplications pertinent to ,pZ  

1,...,p M  through exploitation of   'spg r  spatial translational invariance. Here, for the 

sake of simplicity in the formulation that follows a single penetrable object with surface 

S  will be considered  2M  , and the notation for the basis functions will be changed to 

,e
nS  11,..., ,n N  1,..., .be N  

When using the AIM, MOM matrices ,pZ  1,  2p   are separated into near- and far-

field components as 

 near far .pp p Z Z Z  (3.1) 

The AIM accelerates matrix-vector multiplications involving far
pZ  by using point 

sources on the auxiliary AIM grid. Let ( )e
nA r  denote the integral 

 ( ) ( ) ( )p
e e
n n

S

A g ds    r r r r  (3.2) 
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where ( )e
n r  represents ( ),e e

n nI   S r  ( )e e
n nK   S r  or any Cartesian component of 

( )e e
n nI S r  and ( ).e e

n nK S r  Using an qN  point quadrature rule, (3.2) is approximated as 

 
1

( ) ( ),
qN

e e i
n n

i
i nA g



   r r r  (3.3) 

with   ;e e i i
n n n ni

w     r  here, and in (3.3), ˆ ˆ ˆi i i i
n n n nx y z  r x y z  and ,i

nw  1,..., ,qi N  are 

quadrature points and weights for the thn  triangle on surface ,S  respectively. The 

convolution theorem implies that (3.2) is equivalent to 

  1 1( ) { ( )} { ( )} { ( )}e e e
pn n nA A g       r k r r  (3.4) 

where   represents the continuous 3D Fourier transform. The Green function, evaluated 

on the uniform grid, is represented as a three level Toeplitz matrix which enables the use 

of 3D FFTs to perform these Fourier transforms efficiently. Evaluating (3.4) numerically 

using FFTs requires mapping of the nonuniform samples ,
i

e
n    1,..., ,qi N  onto 

auxiliary sources residing on the uniform AIM grid and zero padding the AIM grid (at 

least doubling its size in each dimension) to avoid aliasing errors. The conventional 

methods used to perform this mapping, their shortcomings, and the proposed FGG are 

described later in this subsection. 

The following three-step recipe summarizes the AIM: (i) ( )e e
n nI   S r  and all three 

Cartesian components of ( )e e
n nI S r  are mapped onto the uniform AIM grid for all n  and 

.e  (ii) The fields p pJ  and ,p pM  1,  2p   on the grid due to these auxiliary AIM 

sources are computed using global FFTs. After p pJ  and p pM  are computed, p pJ  

and p pM  are approximated using finite differences evaluated on the AIM grid [69]. (iii) 

Finally, p pJ  and p pM  along with p pJ  and p pM  are mapped back onto the basis 

functions and testing integrals are computed. In (3.1), near
pZ  is a sparse matrix that stores 

pre-corrected near-field interactions; its entries are computed using the formulation 

described in Chapter 2 and corrected for errors introduced by the use of the global FFTs 
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used in the matrix-vector multiplications involving far .pZ  The iter c c( log )O N N N  

computational cost is due to all global FFTs, and dominates the  iterO N N  cost of the 

matrix vector multiplications pertinent to near ;pZ  the c( ) ( )O N O N  memory 

requirements are due to the storage of fields and currents on the AIM grid and the 

mapping coefficients required in steps (i) and (iii).  

The parameter   depends on the actual method used for computing the AIM 

mapping coefficients. Two commonly used methods are moment and field matching. The 

moment matching (MM) method [17] maps each actual source onto the auxiliary AIM 

grid by solving a linear system of equations that equates the source’s moments to those of 

the closest 3  AIM sources --   is the linear dimension of the AIM sub-grid a source 

maps onto. Field matching achieves the same by equating far-field signatures [18, 56]. 

Typically, when using MM and field matching, mapping coefficients are computed once 

and stored in memory because computing them on the fly during the iterative solution 

process would be too time consuming. The mapping of each source using pre-computed 

coefficients requires 3  multiplications and additions. Due to the storage of these 

coefficients   scales as  3bO N   in these methods. For large M  and bN  (higher 

order basis functions) this storage dominates that of fields on the AIM grid – this is 

especially so for quasi-planar and volumetric scatterers. Below, a memory efficient 

technique to perform AIM mappings is described. 

3.3 Fast Gaussian Gridding 

This subsection elucidates the incorporation of the FGG into the AIM framework. 

Interested readers are referred to [22] for a detailed description of the FGG. The usage of 

FGG in AIM is justified by observing that steps (i) and (ii) of the AIM lead to an 

approximation of the uniformly sampled Fourier transform of ( )J r  and ( )M r  that is 
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highly accurate for spatial frequencies in or near the Ewald sphere (implying highly 

accurate “far-field” representations). This operation also can be performed by NUFFT 

algorithms, even though they deliver spectra that are accurate even beyond the Ewald 

sphere (which is of no use for AIM purposes). FGG is an NUFFT algorithm that is 

particularly memory efficient; it achieves this efficiency leveraging a Gaussian-based 

interpolation/convolution technique as described next. The AIM-FGG hybrid convolves 

the nonuniform surface current samples 
i

e
n    with a 3D Gaussian, then samples the 

resulting continuous (and periodic) function on the AIM uniform grid points to obtain 

FGG auxiliary sources. That is, the 
i

e
n    are interpolated/spread onto the uniform grid 

using a Gaussian kernel; it will be demonstrated below that this can be achieved 

efficiently by storing only four exponentials per source. The FFTs of the auxiliary 

sources thus obtained result in the Fourier transform of the original sources multiplied by 

that of the Gaussian convolution kernel. An approximation to the original transform is 

obtained upon dividing the transform of the FGG auxiliary sources by the transform of 

the Gaussian. Step (iii) of the AIM is also performed by FGG, this time to obtain the 

nonuniform samples (at points dictated by the testing integral) of p  and p  from the 

uniform samples in transform domain. In the remainder of this subsection a more formal 

and mathematical description of AIM-FGG is presented. 

Let ( )H r  represent the separable function 

 ( ) ( , , ) ( , , ) ( , , ),x x y y z zH h x T h y T h z T  r  (3.5) 

where  

 
2( ) /4( , , ) t lT

l

h t T e 


 



   (3.6) 

is a periodic one dimensional Gaussian function, ,xT  ,yT  and zT  are ( )H r ’s periodicity  

and ,x  ,y  and z  are measures of its width along x, y, and z. Note that Gaussians are 
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highly peaked and ,xT  ,yT  and zT  are set to the extent of the AIM grid. That is, only a 

single period of the periodic Gaussian function has to be considered. The spreading of the 

actual sources is expressed by the convolution  

      3ˆ ( ) ,s s DH     r r r r  (3.7) 

where  

  
1

1 1 1

( ).
b

qNN N
e i
n n

n
i

e
s

i

  
  

   r r r  (3.8) 

In (3.7), the 3D Gaussian ( )H r  is truncated by the rectangular function  3D r  

  3 ,D

x y z

x y z

                  
r

  
 (3.9) 

where , ,  and x y z    represent the AIM grid sizes along , , and z,x y  respectively, and 

  
1       -0.5 0.5

.
0       

t
t

otherwise

 
  


 (3.10) 

The values of the AIM sources are obtained by sampling ˆ ( )s r  at the regular grid 

points ˆ ˆ ˆx y zn x n y n z     r x y z , where  , ,x y zn n n  represent discrete coordinates on the 

grid. Note that due to the truncation of the Gaussian, each source does not spread across 

the entire AIM grid but is limited to the closest   nodes in each dimension. Just like 

other NUFFT algorithms the main source of error in the FGG results from spatial 

truncation and spectral aliasing due to the finite rate at which ˆ ( )s r  is sampled [70]. For 

each   the optimum values of ,x  ,y  and z  to minimize this error are easily found by 

a numerical search.  

In the FGG scheme computing the convolution in (3.7) requires the storage of only 4 

mapping coefficients per nonuniform sample point .i
nr  These coefficients are obtained by 

factorizing the Gaussians in (3.7) as 
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     

                 

2 2 2

2 2 2
22 2

4 4 4

4 4 4 44 4 .

i i i
x k x y k y z k z

i i i
i yx zi ik x k y k z

y yk y x x z zk x k z

n x x n y y n z z

nn nx y z n yy y n x n zx x z z

e e e

e e e e e e e

  

      

        

            


(3.11) 

The exponentials 
     2 2 2

4 4 4

,
i i i
k x k y k zx y z

e
      

   ,
i
k xx xe   ,

i
k yy ye   and 

i
k zz ze   are the mapping-

coefficients that are computed and stored for each point .i
nr  The last three exponentials in 

(3.11) are the same for all ,i
nr  so they are computed only once. After carefully arranging 

the loops, the spreading from ,i
nr  to the closest 3  nodes is achieved with minimum 

number of arithmetical operations ( 3  multiplications and additions) using these 

coefficients. Then, a 3D FFT is performed on the interpolated AIM sources. The 

spectrum of these sources is corrected for the smoothing introduced by the Gaussians to 

retrieve the original spectrum. This correction is basically a deconvolution operation 

performed by dividing the spectrum of the sources by (an approximation to) ( )H r ’s 

spectrum 

        , , , , , , ,x x x y y y z z zH h k T h k T h k T  k         (3.12) 

where  

  224
( , , ) ,k Th k T e

T
    (3.13) 

and  , , ,x y zk k kk     1,2,..., ,x xk N  1, 2,..., ,y yk N  and 1, 2,...,z zk N . Here, ,  x yN N  

and zN  are the number of nodes on the AIM grid in each dimension ( c x y zN N N N   ).   

The entire FGG algorithm can be captured as follows: (i) For each element 

11,...,n N  and quadrature point 1,..., qi N , compute and store the mapping coefficients 

 1 2 2 2,  ,  ,  x y zC C C C , 

 
     2 2 2

, , ,4 4 4

1 ,
i i i i i i
k k x x k k y y k k z zx y z

C e
            

   (3.14) 

      , , ,

2 2 2,  C , and C ,
i i i i i i
k k x x k k y y k k z zx x y y z z

x y zC e e e
          

    (3.15) 
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where  , , ,, ,i i i i
k k x k y k z  ξ  are the discrete coordinates of the grid point closest to i

nr . 

Also compute and store the exponentials:  

      22 244 4
3 3 3( ) ,  C ( ) , and C ( ) ,yx zp yp x p z

x y zC p e p e p e         (3.16) 

where 2 1,..., 2.p      (ii) Map each source onto the AIM grid: let 

 , , ,,  ,  ,i i i
k x k y k zp q r      2 1,..., 2 ,p      2 1,..., 2 ,q      

2 1,..., 2 ,r      represent the discrete coordinates of the 3  AIM sources 

closest to the actual sources at i
nr  having the magnitudes 1

bN e e
ne n i

I      and 1

bN e e
ne n i

K     . 

Then the contributions of actual sources to these AIM sources  pqrV  are obtained using 

the pre-computed mapping coefficients as  

          0 2 3 2 3 2 3 ,
qp r

pqr x x y y z zV V C C p C C q C C r  (3.17) 

where 10 1

b e
n

N e
e n i

IV C       or 10 1 .
bN e

e nn
e

i
KV C        (iii) Obtain the spectrum of the 

original sources: After taking the 3D Fourier transform of the AIM sources the correction 

is made by simply dividing by ( ).H k   

To map the fields back onto the basis functions (step (iii) of the AIM), the FGG is 

performed again, this time to smear out the fields on the grid to the nonuniform points on 

the basis functions. To this end, step (ii) of the original AIM is slightly modified. First the 

spectrum of the corrected sources is multiplied with that of the Green’s function to 

compute ( )A r ’s spectrum ( )A k   as in the original AIM. Then, ( )A k   is divided by ( )H k   

to pre-correct the effect of Gaussian smoothing in the final mapping. After that, a 3D 

inverse FFT is performed on the pre-corrected ( ).A k   Finally, the resulting pre-corrected 

fields on the uniform AIM grid are mapped onto the nonuniformly distributed quadrature 

points of the testing integrals using the same FGG scheme. Note that, when using the 

same quadrature rules for the source and testing integrals, the 4 mapping coefficients 

used in the forward and backward mapping are identical. That is, they can be used in both 

operations.  
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In classical AIM [17], which uses far-field or moment matching, the memory 

required for storing mapping coefficients scales as  b 3 .O N    When AIM-FGG is used, 

the memory required for storing mapping coefficient is of (1)O ; it only stores four real 

numbers for each quadrature point being mapped. AIM-FGG has more pronounced 

benefits when it is applied to high-order current expansions (e.g., b 8 /15N  ,  for 

1 / 2st nd  order expansion)  since the number of quadrature points used to compute source 

and test integrals in the far-field interactions only weakly increase with order of current 

expansion. Additionally, since the same basis functions are used for expanding  M r  

and  J r , no additional memory is needed even though the number of unknowns is 

doubled in the MOM system.  

3.4 Numerical Results 

This section presents numerical results that serve to validate the accuracy and 

demonstrate the efficiency of the AIM-FGG hybrid. First, the accuracy of FGG mapping 

is investigated and compared to that of MM methods. Next, scattering from some 

benchmark radar targets, viz. a plate, a double ogive, and PEC and dielectric spheres is 

analyzed using AIM-FGG accelerated solvers, and the results compared to those obtained 

using nonaccelerated SIE solvers, published measurements, and analytical solutions. 

Then, scattering from a more complex structure, namely a Humvee model, is analyzed. 

Finally, radiation pattern of a dielectric rod antenna is analyzed and the results are 

compared to published measurements. 

3.4.1 FGG Mapping Accuracy 

To characterize the accuracy of FGG mapping, consider the CFIE matrix element 

due to the two basis functions defined on the triangles shown in Fig. 3.1. The CFIE 
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interaction element versus distance between the triangle pairs is computed using both the 

AIM-FGG and AIM-MM for increasing .  The relative error AIM  is defined as 

 
   

 
1,2 1,2

1,2

AIM
AIM 

 
Z Z

Z
, (3.18) 

where  1, 2Z  is computed classically, and AIMZ  is obtained using either AIM-FGG or 

AIM-MM. Fig. 3.2 shows the relative error AIM  versus inter-basis function distance. 

The free space wavelength 0  is 50 m and the CFIE constant   is set to 0.6. The AIM 

grid size along each dimension is 5 m, i.e. 5 m.x y z       The curl of the vector 

potential on the AIM grid is computed using a fourth-order accurate finite difference 

formula. It is observed that while FGG delivers high accuracy, MM is more accurate for 

any given .  This is due to differences in the spectral approximations inherent in both 

methods. To demonstrate this difference, the Fourier transform of a single point source is 

computed using the FGG and MM and then compared to the exact transform, i.e. a 

constant over the whole k -space. Fig. 3.3 shows the relative error versus 

  0x y zk k k   for different .  The accuracy of MM is very high around 0xk   but 

decreases rapidly for increasing .xk  In contrast, FGG is less accurate for small xk  but its 

accuracy decreases slower than that of MM. That said, on the Ewald sphere (defined by 

2 2 2 2
0x y zk k k k   ) MM is more accurate than FGG irrespective the choice of  -- this 

explains why AIM-MM is more accurate than AIM-FGG for the same .  Furthermore 

in [56] it is shown that far-field matching is often more accurate than MM, which suggest 

that on the Ewald sphere far-field matching is even more accurate. We note, however, 

that accuracy is far less of an issue in AIM-FGG than it is in AIM-MM or AIM-FMM as 

M can be increased (and along with it, accuracy) without requiring extra memory. The 

next sections will demonstrate that the small sacrifice in accuracy associated with FGG 

mapping is more than compensated for by its large memory savings. 
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3.4.2 Scattering from PEC Plates 

To illustrate the dependence of the AIM accuracy on grid size   ,x y z      and 

,  the radar cross section (RCS) of a 15 cm 15 cm  PEC plate is computed by solving 

the EFIE ( 0  ). The excitation frequency is 26.3 GHz, corresponding to a free-space 

wavelength of 0 1.14 cm  , and 59,134.N   In this and the following examples, the 

AIM near-field region comprises a sphere of radius of 0 2.  The plate is illuminated by 

a plane-wave  

 0
ˆˆ ,jki e krE p  (3.19) 

where    ˆ ˆ ˆcos 45 sin 45    p x z  and  ˆ ˆ ˆsin 45 cos(45 ) .    k x z  Fig. 3.4 shows the 

relative root-mean-square (RMS) RCS error versus the AIM grid size for various ;  the 

RMS error is defined as 

 
   

 

2

1

2

1

, ,

RMS Error=

,

s

s

N
AIM

i i i i
i

N

i i
i

     

  








 (3.20) 

where AIM  and   represent the bi-static RCS obtained by AIM accelerated and 

nonaccelerated EFIE solvers, respectively. In (3.20) sN  is the total number of 

observation angles ( i ) in E- ( 0i   ) and H- ( 90i   ) planes at which the RCS is 

sampled. As it was observed in the previous paragraph, while the AIM-FGG is highly 

accurate, AIM-MM is more accurate for any given grid size and .  Note that the RMS 

error decreases with the AIM grid size or increases in ,  in both methods.   

The sacrifice in accuracy associated with the AIM-FGG hybrid dwarfs in comparison 

with the memory savings the method realizes. To illustrate this, assume the plate’s side 

length changes while the excitation, average mesh density (in unknowns per square 

wavelength), and AIM parameters are kept constant. Fig. 3.5(a) shows the FFT, FGG, 

and MM memory requirements, versus .N  These graphs are characteristic of all planar 
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scatterers; note, in particular that the FFT storage requirements scale as    cO N O N . 

The memory requirements of the FGG are independent of ,M and smaller than the FFT 

storage requirements. The same is not true for MM: as soon as 4  the storage 

requirements associated with the mapping exceed those associated with the FFT 

operations. 

Next, computational complexity, memory requirement, and the parallel efficiency of 

the proposed scheme are evaluated. Consider a rectangular PEC plate with edge lengths 

0.1778 m 0.1016 m  in x  and y direction. The plate is illuminated by a ˆ ˆp x  

polarized plane-wave propagating in ˆ ˆk z direction. EM scattering from the plate is 

analyzed using the AIM-FGG accelerated EFIE solver. A series of simulations are carried 

out by increasing the frequency of this excitation. In each case a new mesh is generated 

to keep the average mesh density (in unknowns per square wavelength) constant. 0 , ,N  

,cN  and iterN  in the simulations are given in Table 3.1. In all simulations aim grid size 

 x y z      is set to 0 20  and 6.  Each simulation is repeated by utilizing 

increasing number of processors to assess the parallel efficiency. Figs. 3.6 (a) and 3.7 (a) 

show the matrix-vector multiplication time in the iterative solver and the memory 

requirement per processor versus number of processors in the simulations. Dashed lines 

in the figures are ideal speed-up tangents. Matrix-vector multiplication time (when 

utilizing 24 processors) versus N  is plotted in Fig. 3.6 (b).  Fig. 3.7 (b) depicts the 

corresponding measured peak memory over all processors, which includes the operating 

system overhead. Lines corresponding to theoretical  logO N N  and  O N  complexity 

are also plotted in Figs. 3.6 (b) and 3.7 (b), respectively. 

3.4.3 Monostatic RCS of a Metallic Double Ogive 

Next, scattering from a PEC double ogive, an electromagnetic code consortium 

(EMCC) benchmark target [71], is analyzed using the CFIE solver accelerated via the 
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AIM-FGG and the results are compared to those obtained using a nonaccelerated CFIE 

solver and measurements data [71]. The double ogive comprises two sections of lengths 

6.35 cm and 12.7 cm and tip angles 46.4and 22.62 . The excitation frequency is 9 GHz, 

10,536,N   and 0.6.   In this simulation  2.1 cm,x y z      6,M   and 

196 64 64cN    . Figs. 3.8 (a) and (b) show the double ogive’s monostatic RCS for the 

HH- and VV-polarizations, respectively; the elevation angle is zero in both cases. The 

FFT and FGG require 36.7 MB and 2.5 MB of storage, respectively. When using MM 

instead of FGG with the same parameters, the mapping coefficient storage cost increases 

to 135 MB, and thus exceeds the FFT storage requirements.  

 

0  N  
cN  iterN  

25.4 m 9,830 294 180 12   580 

20.0 m 15,307 378 216 12   642 

10.0 m 62,105 750 420 12   722 

7.4 mm 109,698 960 560 12   856 

4.9 mm 249,035 1440 840 12   1,083 

2.4 mm 1,191,782 3136 1792 12  2,485 

Table 3.1: Free-space wavelength 0 , number of unknowns ,N  aim grid dimensions ,cN  and 

number of iterations iterN  in PEC plate simulations.  

3.4.4 Scattering from PEC Spheres 

The bistatic RCS of a PEC sphere of radius 2 m is computed using an AIM-FGG-

accelerated CFIE solver and compared to the Mie series solution. The sphere is 

illuminated by a plane wave with ˆ ˆp x  and ˆ ˆ.k z  The frequency of excitation is 1 GHz, 

263,667,N   and 0.6.   The curl of the vector potential on the AIM grid is computed 
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using a fourth-order accurate finite difference formula. In this simulation 

 2.5 cm,x y z      6,M   and 350 350 350.cN     Figs. 3.9 (a) and (b) show the 

bistatic RCS of the sphere in E-plane ( 0   ) and H-plane ( 90   ), respectively. For 

these parameters the FFT and FGG require 2.4 GB and 86 MB of storage; MM requires 

4.5 GB.  

Next, assume that the sphere dimensions change while the excitation, average mesh 

density (in unknowns per square wavelength), and AIM parameters are kept constant. 

Fig. 5(b) shows the FFT, FGG, and MM memory requirements, versus N . These graphs 

are characteristic of all non-planar scatterers; note, in particular that the FFT storage 

requirements scale as    1.5
cO N O N . Although the MM storage requirements do not 

dominate those associated with the FFT for large ,N  using FGG saves significant 

memory resources and permits the use of AIM on structures larger than possible with an 

AIM-MM solver. 

To demonstrate the computational complexity, memory requirement, and the parallel 

efficiency of the proposed scheme a PEC sphere of radius 1 m is considered.  The sphere 

is illuminated by an x̂  polarized plane-wave propagating in the z  direction. EM 

scattering from the sphere is analyzed using the AIM-FGG accelerated EFIE solver. A 

series of simulations are carried out by increasing the frequency of this excitation. In each 

case a new mesh is generated to keep the average mesh density (in unknowns per square 

wavelength) constant. 0 , ,N  ,cN  and iterN  in the simulations are given in Table 3.2. 

Each simulation is repeated by utilizing increasing number of processors to assess the 

parallel efficiency. Figs. 3.10 (a) and 3.11 (a) show the matrix-vector multiplication time 

in the iterative solver and the memory requirement (per processor) versus number of 

processors in the simulations. Dashed lines in the figures are ideal speed-up tangents. 

Matrix-vector multiplication time (when utilizing 24 processors) versus N  is plotted in 

Fig. 3.10 (b).  Fig. 3.11 (b) depicts the corresponding measured peak memory over all 
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processors, which includes the operating system overhead. Lines corresponding to 

theoretical  1.5 logO N N  and  1.5O N  complexity are also plotted in Figs. 3.10 (b) and 

3.11 (b),  respectively. 

3.4.5 Bistatic RCS of a Dielectric Sphere 

The proposed AIM-FGG accelerated PMCHWT solver is used in the analysis of 

scattering from a dielectric sphere of radius 2 m, with 2.5 0.5r j   . The sphere is 

illuminated by an x̂  polarized plane wave propagating in z  direction at 1.5 GHzf  . 

Two simulations are performed: In the first one, the currents on the sphere are expanded 

using 837,618 zeroth-order basis functions, where as in the second one only 92,080 first-

order basis functions are used for the same purpose. In both simulations the surface of the 

sphere is discretized using curvilinear elements. Fig. 3.12 shows that both solutions 

practically have the same accuracy even though the high-order method requires far fewer 

unknowns. 

 

0  N  
cN  iterN  

0.8 m 6,924 120 120 120   493 

0.5 m 21,399 192 192 192   1,012 

0.32 m 47,556 280 280 280   2,500 

0.22 m 103,809 420 420 420   2,134 

0.16 m 184,080 540 540 540   3,060 

Table 3.2: Free-space wavelength 0 ,  number of unknowns ,N  aim grid dimensions ,cN  and 

number of iterations  iterN  in PEC sphere simulations.  
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3.4.6 Scattering from a Humvee 

Next a more realistic geometry is considered. Scattering from an all-PEC model of a 

Humvee [Fig. 3.13 (a)] is analyzed using an AIM-FGG-accelerated hybrid EFIE-CFIE 

solver. The EFIE is applied on the main body of the Humvee, which is an open surface, 

while the CFIE is applied on the tires, which are closed surfaces. The Humvee fits in a 

box of dimensions 5.14 m 2.44 m 1.6 m   and is illuminated by an incident plane wave 

with ˆ ˆ ,p y     ˆ ˆ ˆcos 45 sin 45    k x z  of frequency 1 GHz; the discrete model 

involves 151,026N   unknowns. In this simulation  1.875 cm,x y z       4,M   

560 270 250,cN     and 0.6  for the CFIE. Figs. 3.13 (b) and (c) show the real and 

imaginary parts of the surface current. The storage of the matrices and vectors for the 

FFT and the FGG mapping coefficients requires 1.7 GB and 75 MB, respectively. Once 

again the FGG requires far less memory than the MM, which needs roughly 1.2 GB to 

store mapping coefficients. 

3.4.7 Radiation Pattern of a Dielectric Rod Antenna 

The proposed solver is used in the characterization of a dielectric rod antenna [72], 

with 2.1r   and a loss tangent 4tan 3 10 .    The end of the rod is coated with an 

antireflective layer ( 1.45r  ). The antenna is fed by a rectangular PEC waveguide at 

9 GHzf   (Fig. 3.14(a)). The current on the PEC and dielectric surfaces are expanded 

using 14,846 first-order basis functions. Fig. 3.14 (b) shows the real and imaginary parts 

of the surface current. Fig. 3.15 (a)-(b) shows that the radiation pattern computed by the 

proposed solver agrees well with the measurement data presented in [72]. 
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Figure 3.1: Two RWG basis functions; the “distance” between them is defined as that between 
the mid-points of their defining edges. 

 

Figure 3.2: Relative error versus “distance/a” between basis functions. “Distance” and “a” are 
illustrated in Fig. 1. 
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Figure 3.3: Relative error in the Fourier transform of a single dipole versus xk  0y zk k   

 

 
Figure 3.4: RMS error in the RCS of a PEC plate versus AIM grid size for various 

10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

R
M

S
 E

rr
or

λ
0
/Δ

x,y,z

 

 

MM, M=2
MM, M=4
FGG, M=2
FGG, M=4
FGG, M=6
FGG, M=8

−25 −20 −15 −10 −5 0 5 10 15 20 25
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k
x

R
el

. E
rr

or

 

 

Analytical
FGG, M=2
MM, M=2
FGG, M=4
MM, M=4
FGG, M=6
MM, M=6
FGG, M=8



60 

 

(a) 

 
(b) 

Figure 3.5:  Estimated memory storage requirements of auxiliary AIM sources (denoted by FFT), 
MM and FGG mapping coefficients for different   versus N  for (a) volumetric and quasi-

planar (b) arbitrary 3D surface scatterers. 
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Figure 3.6:  (a) Matrix-vector multiplication time versus number of processors for PEC plate 

example. Dashed lines are ideal speed-up tangents. (b) Matrix-vector multiplication time versus 
N  when simulations are executed on 24 processors. 
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Figure 3.7:  (a) Matrix-vector usage per processor versus number of processors for PEC plate 
example. Dashed lines are ideal speed-up tangents.  (b) Total memory usage versus .N  

Simulations are executed on 24 processors. 
 

10
0

10
1

10
2

10
1

10
2

10
3

Number of processors

M
em

or
y 

us
ag

e 
pe

r 
pr

oc
. (

M
B

)

 

 

9830 unk.
15307 unk.
62105 unk.
109698 unk.
249035 unk.
1191782 unk.

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

Number of unknowns (N)

M
em

or
y 

U
sa

ge
 (

G
B

)

 

 

Actual

O(N)

(a) 

(b) 



63 

 

 

 

 

 

 

 

 

 

 

(a) 
 

 

 

 

 

 

 

 

 

(b) 
Figure 3.8: Monostatic RCS of the metallic double ogive at zero elevation angle for (a) HH (b) 

VV polarizations. 
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(a) 

(b) 
Figure 3.9:  Bistatic RCS of a PEC sphere in (a) E-plane (b) H-plane. 
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Figure 3.10:  (a) Matrix-vector multiplication time versus number of processors for PEC sphere 
example. Dashed lines are ideal speed-up tangents. (b) Matrix-vector multiplication time versus 

N  when simulations are executed on 24 processors. 
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Figure 3.11:  (a) Matrix-vector usage per processor versus number of processors for PEC sphere 
example. Dashed lines are ideal speed-up tangents. (b) Total memory usage versus N  when 

simulations are executed on 24 processors. 
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Figure 3.12: Bistatic RCS of a dielectric sphere.  RCS is computed for two different orders of 

basis functions and compared to Mie-series solution 
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Figure 3.13: (a) Humvee geometry. (b) Real and (c) imaginary parts of the surface currents. 
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Figure 3.14: (a) Dielectric rod antenna geometry and material details. All dimensions are given in 
mm. (b) Real and imaginary parts of the surface currents. 
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Figure 3.15: Radiation pattern of the dielectric rod antenna in (a) E- and (b) H-planes  

 

(a) 

(b) 

[72]

[72]



71 

 

CHAPTER 4  

Volume Integral Equation Method 

4.1 Introduction 

The analysis of electromagnetic (EM) wave interactions from composite and 

inhomogeneous dielectric structures is important in many engineering applications such 

as characterization of radar cross section of complex structures, homogenization of 

metamaterials, radiation from antennas placed next to radomes [73, 74], and microwave 

imaging. Volume integral equation (VIE) based simulators provide high accuracy and 

flexibility for the analysis of arbitrarily inhomogeneous structures. The solution of VIEs 

via the method of moments (MOM) calls for the solution of linear systems of equations 

of order ,N  where N  is the number of basis functions used to expand the fields inside 

the structure. The classical (non-accelerated) iterative solution of MOM systems requires 

 2O N  memory and  2O N  CPU resources. In contrast to surface integral equation 

(SIE) solvers, which require the expansion of the currents only on the surface of the 

object, VIE solvers lead to systems of larger .N  However SIE solvers are only applicable 

to piecewise homogeneous structures.  

Several accelerators that reduce these memory and CPU requirements of VIE solvers 

are proposed, examples include but not limited to, multi-level fast multipole algorithm 

(MLFMA), conjugate gradient fast Fourier transform (CG-FFT) and pre-corrected FFT 
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techniques, and the adaptive integral method (AIM); the latter two are closely related. 

These accelerators reduce the iterative solutions memory and CPU requirements to 

 O N  and  log ,O N N  respectively. CG-FFT method requires the structure to be 

discretized with a uniform regular grid of hexahedral elements to exploit the Toeplitz 

property of the MOM matrix via FFTs. However this type of discretization leads to 

geometry errors due to staircase approximations, and larger number of unknowns since 

the original structure has to be embedded in a free-space box. MLFMA and AIM (also P-

FFT) approaches are proposed to alleviate these drawbacks. Among these accelerators 

AIM is attractive in particular because of its straightforward implementation and 

parallelization.  

In this chapter, AIM-FGG acceleration is presented for the iterative solution of VIEs. 

AIM-FGG is a memory efficient extension to conventional AIM, which is originally 

developed for high order SIE solvers for composite dielectric and PEC structures. AIM-

FGG virtually eliminates the need to store AIM mapping coefficients. Section 4.2 

summarizes the VIEs. The discretization of the VIE and their MOM based solution is 

detailed in Section 4.3. A CG-FFT based acceleration technique is presented in Section 

4.4. This solver is mainly used to provide benchmark solutions for the proposed AIM-

FGG accelerated VIE solver, which is summarized in Section 4.5. Finally, numerical 

results that serve to validate the presented formulation and demonstrate the efficiency of 

the proposed solver are presented in Section 4.6. 

4.2 Volume integral equations 

Consider the time-harmonic EM wave scattering problem from inhomogeneous 

dielectric objects with arbitrary shape residing in free-space. Let D  represent the 

bounded but not necessarily connected domain which comprises all the scatterers. Let 
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 r r  and 0  denote the permittivity of D  and free-space, respectively. All the objects 

are non-magnetic and have the permeability of free-space 0.  An incident electric field 

  ,iE r  generated by the sources  iJ r  located outside of ,D  illuminates the scatterers. 

According to Maxwell’s equations, electric and magnetic fields    ,  E r H r  satisfy 

        ij  H r r E r J r  (4.1) 

where 3r   is the position vector. Let  J r  represent the volumetric polarization 

current density 

      0  .  j D     J r r E r r  (4.2) 

Using (4.2), (4.1) is rewritten as 

        0 .ij   H r E rJ J rr  (4.3) 

 J r  in (4.3) can be interpreted as a secondary source radiating in free-space generating 

the fields  .sE r  Then, the total fields can be expressed as the super-position of the 

fields generated by  J r  and  iJ r  [12] 

      s i E r E r E r  (4.4) 

      .s s sj   E r r rA  (4.5) 

Here, the magnetic vector and scalar electric potentials sA  and s  are  

     ( )s

D

g dr   A r J r r r  (4.6) 

    
0

1
( )

D

s g dr
j
      r J r r r  (4.7) 

where   is the angular frequency,    0 / 4jkg e    r r rr r r  is the free-space 

Green’s function, r  and r  are the observer and source points, and 0 0 0k     is the 

free-space wave number. (4.4) along with (4.5)-(4.7) constitutes a VIE in terms of 
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unknown  .J r  However, for the reasons that will become apparent later in this chapter, 

it is more convenient to formulate a VIE in terms of electric flux density 

      .D r r E r  (4.8) 

 J r  and  D r  are related by the formula 

      jJ r r D r  (4.9) 

where   r  is the contrast ratio 

    
 

0 .
 







r
r

r
 (4.10) 

Substitution of (4.9) into (4.6) and (4.7), and the resulting equations into (4.5) and (4.4)

yields the VIE 

 

   
       

     

0

0

2

0

.
1

i

D

D

g dr

g

k

dr










   

       

 

  





r D r r r

r D r r r

D r
E r

r
 (4.11) 

4.3 Numerical solution of VIEs 

4.3.1 Geometry Modeling and Basis Functions 

To numerical solve (4.11) for   ,D r  D  is discretized using a mesh of hexahedron 

(brick) elements and the flux density  D r  is expanded as  

    
1

N

k k
k

I


 D r S r  (4.12) 

where kI  and   ,kS r 1,...,k N are unknown expansion coefficients and divergence 

conforming roof-top basis functions, respectively [75, 76]. Each  kS r  is supported in a 
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hexahedron pair kk kD D D   (Fig. 2 (c)). Let  k
S r  and  k

S r  represent part of the 

basis function  kS r  defined on kD  and ,kD  respectively.  

Figure 4.1: (a) A hexahedral mesh of a rectangular prism. (b) Canonical unit cube. (c) Points in a 
hexahedron in real space can be obtained using a mapping from the reference system. 

In order to represent basis functions supported in arbitrarily shaped hexahedra a reference 

system , ,u v w  is introduced as depicted in Fig. 2 (b). Then the volume of the hexahedron 

can be defined as a transformation of the unit cube in the reference system , ,u v w  to real 

space as 

    
8

1

, , , , i
i

iu v w P u v w


r r  (4.13) 

where ,ir 1,...,8i   are the vertices of the hexahedron, 0 1,u   0 1,v   0 1,w  and 

 , ,iP u v w  are the polynomials 

kD  

kS  

kD  

(b) (c) 

(a) 

2r  

1r  

3r  

4r  

5r  

6r  

7r  

8r  

u  

v  

w

Mapping 

 , ,u v wr  
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          
      

 

1 2 3

4 5 6

7 8

1 1 1     1 1     1 1

1     1 1     1

1     .

P u v w P u v w P u v w

P uv w P u v w P u v w

P u vw P uvw

         

      

  

 (4.14) 

Base vectors and the Jacobian of the parametric transformation  , ,u v wr  are given by 

        .vu wu v w

  
  
  

r r r
a a a  (4.15) 

 

x y z

u u u
x y z

v v v
x y z

w w w

   
    
       

    
    

  (4.16) 

Each hexahedron supports six half basis functions  

 

       

         

1 2 3

4 5 6

1 1 1
    1     

1 1 1
1         1

v

v w

u u

w

u u v

v w w

  

  

   

    

S r a S r a S r a

S r a S r a S r a

  

  

 (4.17) 

where   represents the determinant of .   On each face kS  only one basis function 

 kS r  has normal component which is also continuous over the face. This property 

naturally satisfies the continuity of the  D r  across dielectric interfaces.  Also,   r  is 

approximated by piecewise constant functions which has a constant value k
  over each 

hexahedron ,kD  1,..., .k N  To simplify the formulation that follows let  k r  

represent the local piecewise constant function 

  
,     

,     

0,       otherwise

k k

k k k

D

D



 

 

 








 



r

r r  (4.18) 
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4.3.2 MOM System of Equations 

Substitution of (4.12) into (4.11) and testing the resulting equations with   ,k k S r  

1,...,k N  yields the MOM system 

 ZI V  (4.19) 

where I  and V  are the N  vectors of unknown coefficients and tested incident fields, 

and Z  is the N N  MOM impedance matrix. Their entries are 

   kk II  (4.20) 

        
k

i
k k

D

k dr  r S r E rV  (4.21) 

 

          

         

         

       

       

  
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0

0
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, 1

1
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k k

k k

k k

k k

k k k k

k k k k

k k k k

k k k k

k k

D

D D

D D

D S

S

k

D

k k

k k k

k k dr

k
g dr dr

g dr dr

g dr dr

g dr dr

g





 

 

 

  

  

   









 

 

 

 
 

 
 

   
 



    

  

 

  

   



 

 

 

  


   





 

 

 

 

Z r S r r S r

S r r r S r

S r r r S r

S r r r
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r r

r r

r

r

r S r

r 
k kS S

dr dr


 
 
 
 
 
 
 
 
 

  
  

  r  (4.22) 

where 1,...,k N  and 1,..., .k N   Note that there is an ambiguity when kS  touches the 

boundary of D  since kD  (or kD ) falls beyond D  and it is not defined. This can be 

solved by padding the original mesh with a single layer of elements with free-space 

permittivity  0 .    

When N  is large, (4.19) can only be solved iteratively, a process that requires the 

repeated multiplication of Z  by trial solution vectors. The memory and CPU time 

requirements of classical MOM-based iterative solvers therefore scale as  2O N  and 
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 2
iterO N N , respectively. Here iterN  is the number of iterations required for the solution 

to reach a given accuracy; typically iterN N , especially when D  is electrically large 

and uniformly discretized. 

4.4 A Special Case: Uniform Mesh and FFT Accelerated VIE solver 

When the hexahedra mesh conforms to a regular grid, Z  becomes a multilevel block 

Toeplitz (MBT) matrix due to  g r ’s spatial translational invariance property. By the 

virtue of the MBT property, matrix vector multiplications pertinent to Z  can be carried 

out efficiently (and exactly) using FFTs. This method reduces the memory and CPU 

requirements of the MOM-based iterative solver to  O N  and  log ,iterO N N N  

respectively [15].  

To detail the VIE-FFT algorithm, matrix equation (4.19) is decomposed into five 

terms as 

 , , , ,

              
           RI Z I Z I Z I Z I V         (4.23) 

where R  is a sparse matrix with entries representing the first integral in (4.19), 
  is 

the diagonal matrix with entries ,k
 1,..., .k N  Here,  ,

th
k k  entry of , Z  denote the 

remaining interaction integrals in (4.19) involving only half basis functions  k
S r  and 

 k

S r  excluding the contrast functions k

  and .k

  

For a regular grid each basis function can be addressed by three integers 1,..., ,p P  

1,..., ,q Q  1,..., .r R   For the sake of simplicity, in what follows the index k  and the 

notation  k
S r  are replaced with the quartet  , , ,p q r t  and the notation  ,

, ,
t
p q r
S r . 

1,  2,  3t   along with   or   sign discriminates the six half basis functions defined on a 

hexagon. Using the new notation entries of † †, Z  are denoted as 

    , ,† † † †, , , ; , ,k k p p q q r r t t        Z Z  (4.24) 
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where †  and †  denotes   or   signs, and the MLT property is indicated. Then, the thk  

entry of the matrix vector product †

† †,

 
Z I  can be represented as the 3D convolution 

  † † † † ,†
, , , , , ,

†,† , , , ; , .t
p q r p q r p q r

k t p q r

p p q q r r t It


 
   

     


   

          Z I Z  (4.25) 

Finally, the convolutions in (4.25) are carrier out efficiently by using 3D FFTs (and 

IFFTs) of size 2 2 2P Q R   and element to element vector multiplications, as is well 

known. The  logiterO N N N  computational cost of VIE-FFT is due all FFTs, and  O N  

memory requirements are due to the storage of unique blocks of † †, Z  and the sparse 

matrices and vectors in (4.23) 

4.5 AIM-FGG Accelerated VIE solver 

Alternatively, the matrix vector multiplications pertinent to the MOM matrix Z  can 

be accelerated with AIM-FGG. When using AIM Z  is separated into near and far field 

components as 

 near far . Z Z Z  (4.26) 

The AIM accelerates the matrix vector multiplications involving farZ  by using point 

sources on the auxiliary AIM grid. Let  kA r  denote the integral 

 ( ) ( ) ( )
k

k k p

D

A g dr    r r r r  (4.27) 

which appears in (4.22), where ( )k r  represents ( ) ( )k k kI     r S r  or any Cartesian 

component of ( ) ( ).k k kI   r S r  Using an qN  point quadrature rule, (3.2) is approximated 

as 

 
1

( ) ( ),
q

i
k k

N
i
k

i

A g


 r r r  (4.28) 
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with   ;i i
k k

i
k k w  r  here, and in (3.3), ˆ ˆ ˆi i i i

k k k kx y z  r x y z  and ,i
kw  1,..., ,qi N  are 

quadrature points and weights for the thk  basis function respectively.  Then, the AIM-

FGG algorithm described in Chapter 3 can be employed to accelerate the iterative 

solution of (4.19). In (4.26) nearZ  is a sparse matrix that stores pre-corrected near-field 

interactions; its entries are computed using (4.22) and corrected for the errors introduced 

by the use of global FFTs used in the matrix-vector multiplications involving far .Z  

In the special case when the hexahedra mesh conforms to a regular grid, AIM-FGG 

can be modified in two aspects for further memory efficiency. First, only a single 

row/column of nearZ is enough to represent the whole nearZ  since the entries are repeating 

themselves due to the regularity of the structure. Second, when element dimensions are 

the same only one set of coefficients are required to map the actual sources to the nearest 

AIM sources. That is, only 4 qN  coefficients are computed/stored and used for the whole 

mesh. The memory efficiency of this special AIM-FGG implementation is shown by 

examples in the numerical results section. 

In contrast to FFT acceleration, AIM-FGG acceleration of VIE solver allows its 

hybridization with SIE solvers. This is due to the explicit calculation of the fields on the 

auxiliary AIM grid in AIM-FGG. When hybridized with an SIE solver an extended AIM 

grid covering both domains allows both solvers to couple. 

4.6 Numerical Results 

This section presents numerical results that validate the solvers and demonstrate their 

efficiency. First, nonaccelerated VIE solver is used to analyze EM scattering from a 

dielectric sphere and an array of dielectric cubes and the results are compared to those 

obtained using exact analytical methods, i.e. Mie series solutions, and a PMCHWT based 

SIE solver. Next, VIE-FFT solver is validated via the scattering analysis of a dielectric 
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cube and a large dielectric sphere and the results are compared to those obtained using 

nonaccelerated VIE solver, Mie series solution, and the SIE solver. Finally, VIE-AIM-

FGG is used to analyze scattering from a large dielectric cube and the results are 

compared to those obtained using the VIE-FFT solver. In the examples mesh density is 

represented by average edge length of the hexahedral elements .  All solvers are 

implemented using the popular message passing interface (MPI) programming model, 

and executed on clusters of processors to reduce the computational requirements. 

Computational complexity and the parallelization efficiency of the above mentioned 

solvers are demonstrated via memory usage and CPU time statistics for problems with 

increasing N  and number of processors. A transpose free quasi minimal residual 

(TFQMR) iterative scheme [55] is used to solve MOM matrix equations. Unless 

otherwise stated the tolerance of TFQMR is set to 610  and iterN  represents number of 

iterations required to reach this tolerance in the examples. All simulations are carried out 

on a cluster of dual-core 2.8 GHz AMD Opteron 2220 SE processors at the Center for 

Advanced Computing, University of Michigan. A parallel subroutine library, FFTW [77], 

is employed to carry out the FFTs (and IFFTs) in the VIE-FFT and VIE-AIM-FGG 

solvers.  

4.6.1 Validation of the Non-Accelerated VIE-Solver 

The first test geometry is a dielectric sphere of radius 0.24 m with relative 

permittivity 2.0 0.5.r j    The sphere is embedded in a free-space cube of edge length 

0.48 m. A staircase approximation models the sphere as shown in the inset in Fig. 4.2. A 

VIE solver is used to compute the RCS of the sphere and the results are compared to the 

Mie series solution.  The sphere is illuminated by a plane wave  

 0
ˆˆ ,jki e krE p  (4.29) 
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with ˆ ˆp x  and ˆ ˆ,k z  and frequency 750 MHz.f   In the simulation average edge 

length, number of unknowns, and number of iterations are 0.02 m,   43,200,N   and 

20,iterN   respectively. Fig. 4.2 (a) shows the bistatic RCS of the sphere in E-plane 

( 0   ) and H-plane ( 90   ).  

 Next, the EM scattering from a structure comprising 2 2 2   array of dielectric 

cubes is analyzed and the results are compared to those of a PMCHWT based SIE solver. 

Cubes are homogeneous and each has the dimensions 0.5 m  0.5 m  0.5 m.   The 

relative permittivity of the dielectric medium in cubes is linearly varied between 

1.5 5.0  from the first cube to the last, as shown in Fig. 4.3 (c). The structure is 

illuminated with a ˆ ˆp x  polarized plane wave propagating in ˆ ˆk z  direction at 

 300 MHz.f   In the VIE based simulation 0.05 m,   26,400,N   and 84,iterN   

whereas in the SIE based simulation 28,800,N   and 614.iterN   A diagonal pre-

conditioner is used for the SIE solver. The triangular mesh used in the SIE solver is also 

shown in Fig. 4.3 (d).  Fig. 4.3 (a)  and (b) shows the bistatic RCS of the sphere in E-

plane ( 0   ) and H-plane ( 90   ), respectively. 

4.6.2 Validation of the VIE-FFT Solver 

The first test geometry for the VIE-FFT solver is a dielectric cube of edge length 

0.5 m,  with 2.0 0.5.r j    The cube is discretized with a regular uniform grid of 

hexahedral elements with 0.02 m.   The incident field is a x̂  polarized plane wave 

propagating in ẑ  direction at 750 MHz.f   The EM scattering from the cube is 

analyzed and the results are compared to those obtained with nonaccelerated VIE solver, 

and PMCHWT based SIE solver.  In the VIE-FFT simulation 48,750,N   and 

20iterN  , whereas in the SIE based simulation 22,500,N   and 309.iterN   In the SIE 

solver a diagonal pre-conditioner is utilized. Fig. 4.4 shows the bistatic RCS of the cube 

in E-plane ( 0   ) and H-plane ( 90   ). 
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Next, a series of simulations are performed by increasing the size of the dielectric 

cube while keeping rest of the simulation parameters intact. Simulations are carried out 

using 32 processors. Fig. 4.6 (a) and (b) show the matrix setup and matrix-vector 

multiplication times, and fitting  O N  and  logO N N  lines, respectively. The 

deviation from  logO N N  line in Fig. 4.6 (b), especially for small ,N  is due to the 

overhead associated with the parallel FFTs.  

To demonstrate the parallel efficiency of the solver scattering from a dielectric cube 

of edge length 3.2 m,  with 2.0r   is analyzed using the VIE-FFT solver.  A series of 

simulations are performed by increasing the number of processors. The incident field is a 

x̂  polarized plane wave propagating in ẑ  direction at 300 MHz.f   In all simulations 

0.05 m,   798,720,N   and 130.iterN   Memory usage and matrix-vector 

multiplication time of the solver are plotted with respect to number of processors in Fig. 

4.6 (c) and (d).  

4.6.3 Validation of the VIE-AIM-FGG Solver 

Finally, the VIE-AIM-FGG solver is validated via the scattering analysis of 

dielectric cubes with 2.0.r   Six simulations are performed by increasing the size of the 

dielectric cube while keeping other simulation parameters intact. All cubes are discretized 

with a regular uniform grid of hexahedral elements with 0.1 m.   The incident field is a 

x̂  polarized plane wave propagating in ẑ  direction at 300 MHz.f   AIM grid size 

0.0833 mx y z       and 6.   The RCS of the cube is computed and the results 

are compared to those obtained with VIE-FFT solver.  The edge lengths of the cubes, ,N  

,iterN  and the root mean square (RMS) error in bistatic RCS results are given in Table 

4.1. Here, RMS error   
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
 (4.30) 

where   and ref  represent the bistatic RCS obtained by the VIE-AIM-FGG solver and 

VIE-FFT solver, respectively. In (5.31) sN  represents the total number of observation 

angles  i  in E-  0i    and H-  90i    planes at which RCS is sampled. Fig. 4.7 

(a) and (b) show the bistatic RCS of the 6.0 m cube in E-plane ( 0   ) and H-plane 

( 90   ). All simulations are carried out using 16 processors. Fig. 4.8 (a) and (b) show 

CPU time to setup nearZ  and carry out each matrix-vector multiplication with respect to 

.N  Also the fitting  1O  and  logO N N  lines are overlaid in this figure.  To 

demonstrate the parallel efficiency of the VIE-AIM-FGG solver the case with 4.0 m edge 

length is simulated using increasing number of processors. Fig. 4.8 (c) shows the CPU 

time to carry out each matrix vector multiplication with respect to the number of 

processors. The solver exhibits excellent scalability in this example. 

 

Cube Edge 
Length 

2.0 m 2.5 m 3.0 m 4.0 m 5.0 m 6.0 m 

N  25,200 48,750 83,700 196,800 382,500 658,800 

iterN  50 71 107 212 383 592 

RMS error 0.0046 0.0252 0.058 0.0397 0.0251 0.0353 

Table 4.1: Number of unknowns and iterations, and RMS error in the RCS results of the VIE-
AIM-FGG solver for various dielectric cubes of given edge lengths. Reference results for is the 

RMS error calculations are obtained with the FFT solver. 
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Figure 4.2: Bistatic RCS of a dielectric sphere of radius 0.24 m and relative permittivity 
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Figure 4.3: Bistatic RCS of the eight cube structure in (a) E- and (b) H-planes. The meshes of 
eight cube structure for (c) VIE and (d) SIE solvers. The relative permittivity of each cube is 

given in (c). 
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Figure 4.4: Bistatic RCS of a homogeneous dielectric cube of edge length 0.5 m and relative 

permittivity 2.0 0.5.r j    

 
Figure 4.5: Bistatic RCS of a dielectric sphere of radius 0.8 m and relative permittivity 
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Figure 4.6: (a) Matrix setup and (b) matrix vector multiplication time of the VIE-FFT solver. (c) 
Memory usage and (d) matrix vector multiplication time versus number of processors. Dashed 

lines in (c) and (d) represent the ideal scaling lines. 
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Figure 4.7: Bistatic RCS of a dielectric cube of edge length 6 m,  with 2.0.r   
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Figure 4.8: Computational Complexity and parallel efficiency of the VIE-AIM-FGG solver. 

Dashed lines in (c) represent the ideal scaling lines with respect to number of processors. 

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors

M
at

rix
 v

ec
to

r 
m

ul
ip

lic
at

io
n 

tim
e 

(s
ec

.)

(a) (b) 

(c) 

10
4

10
5

10
6

10
0

10
1

10
2

10
3

Number of Unknowns (N)

S
et

up
 ti

m
e 

(s
ec

.)

 

 

O(1)

VIE−AIM−FGG

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

Number of Unknowns (N)

M
at

rix
 v

ec
to

r 
m

ul
ip

lic
at

io
n 

tim
e 

(s
ec

.)

 

 

O(NlogN)

VIE−AIM−FGG



91 

 

CHAPTER 5  

Finite Element Boundary Integral Method 

5.1 Formulation 

Consider a penetrable inhomogeneous scatterer D  residing in unbounded free-space. 

Let     , r r  and  0 0,   denote the permittivity and permeability of D  and free-

space, respectively. The scatterer is illuminated by external incident electric and fields 

 iE r  and  .iH r  We wish to find the total electric and magnetic fields everywhere in 

space. Maxwell’s equations state that the electric and magnetic fields  E r  and  H r  

satisfy  

      j  E r r H r  (5.1) 

      j H r r E r  (5.2) 

where   is  angular frequency of the incident field. Taking the curl of (5.1) and the 

substitution of (5.2) yields the vector wave equation for  E r  

 
       2

0 0   
1

 r
r

k D


  E r E r r
r

r  (5.3) 

where     0r  r r  and     0r  r r  are the relative permittivity and 

permeability of ,D  0 0 0k     is the free-space wavenumber. To numerical solve (5.3) 
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for   ,E r  D  is discretized using tetrahedral elements, and   ,E r   H r  are expanded in 

terms of edge based curl conforming volume basis functions  kN r  [8] as 

    
1

FE

k k

N

k

E


 E r N r  (5.4) 

    
1

FE

k k

N

k

H


 H r N r  (5.5) 

where  ,  ,  k 1,..., FEk kE H N  are the electric and magnetic field unknowns. To solve for 

 , ,k kE H  electric field vector wave equation is discretized in Galerkin weak form 

yielding the following FEN  equations in D  

            

     

2
0

0

1

ˆ 0,   1,...,

k

D

k

S

k r
r

FE

k dv

jk ds k N




 
  

 
 

 

 



 





N r E r r r EN

N r

r

n r H r

r  (5.6) 

where S  is the closed surface bounding ,D   n̂ r  is the outward pointing unit vector 

normal to ,S  and    0ZH r H r  with 0 0 0 .Z    In obtaining (5.6), a vector identity 

and the divergence theorem is used to transfer the curl operator onto the basis function 

 kN r  and to form the surface integral. Substitution of (5.4) and (5.5) into (5.6), and 

rearranging unknowns and equations yields the matrix system 

 

I

B

BI BB

II IB

B

 
         

     

E
A A 0 0

E
0A A B

H

 (5.7) 

where IE  is a I
FEN   vector of electric field unknowns in ,D  BE  and BH  are 

B
FEN  vectors of electric and magnetic field unknowns on .S  Clearly, .I B

FE FEFEN N N   

,IIA  ,IBA  ,BIA  ,BBA  and B  are the well-known sparse FE sub-matrices whose entries 

are given by 
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              2
0

1
, k k r

r
k k

D

k k k dv


   
 

    
 
 N r N r r r rA N N

r
 (5.8) 

      0 ˆ, .k k

S

k k jk ds      B N r n N r  (5.9) 

For a unique solution of E  and ,H  an auxiliary equation must be introduced to (5.7). 

This is done by formulating a combined field integral equation on surface .S  Let  J r  

and  M r  represent the surface electric and magnetic currents induced on S  in response 

to the excitation iE  and .iH  Enforcing the boundary conditions on electric and magnetic 

fields tangential so S  yields the electric and magnetic field integral equations (EFIE and 

MFIE); a CFIE is obtained by linearly combining EFIE and MFIE 

      ˆ ˆ  (EFIE),i     n J M n rE�   (5.10) 

      ˆ ˆ  (MFIE),i     n J M n rH �  (5.11) 

 EFIE+MCFIE= FIE. (5.12) 

Here, r is an observation point exterior to ,D  and    0ZJ r J r  and     0 .
i iZH r H r  

Integral operators  X  and  X  are given by 

        0 2
0

1

S

jk g ds
k

 
         

 
 X r X r r rX  (5.13) 

      
2 S

dg s     
X

X X r r r  (5.14) 

where    0 4jkg e     r rr r r r  is the free-space scalar Green function, X  

represents  J r  or   ,M r  and the  integral in (5.14) is evaluated Cauchy principle value 

sense. (5.10) and (5.11) can be derived using the current-field relations 

        ˆ ˆ,        S   M r E r n J r n H r r  (5.15) 
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To numerically solve (5.12), S  is discretized using triangular elements that are 

conforming to the FE mesh, and the currents are expanded as 

        
1 1

,        
BI BI

n

N

n
n n

N

n
nI K S

 

   J r S r M r S r r  (5.16) 

where { , }n nI K  and   nS r  are unknown current coefficients  and Rao-Wilton-Glisson 

(RWG) basis functions [54], respectively. Substitution of (5.16) into (5.12), testing the 

resulting EFIE with      ˆ1n n   S r n S r ,  and MFIE with  ˆ
nn S r  yields the 

MOM system 

    
 

 

I
Q P V

K
 (5.17) 

where I and K are BIN vectors of unknown current coefficients and tested incident 

fields, P  and Q  are BI BIN N  MOM impedance matrices. Their entries are 

    ,   1,...,k BIk I k N I  (5.18) 

    ,   1,...,k BIk K k N K  (5.19) 

 
             

 
ˆ ˆ1 , ,

, 1,...,

i i
k k k

BI

k

k k N

          

 

V S r n S r E r n S r H r
 (5.20) 

 
          

      

ˆ1 ,

ˆ

,

 , 1,.. ,, .

k k k

k k B

S

IS

k k

k k N

  



  



 

 

S r n S r S r

n S r S r

Q 


 (5.21) 

 
      

          

ˆ ,

ˆ1

,

   , 1,...,,

k k

k k k BI

S

S

k k

k k N 





 

 

 

 

n S r S r

S r n S r

P

S r




 (5.22) 

where the inner products 
S

 are defined as 

        , .
S

S

ds a r b r a r b r  (5.23) 
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The choice of testing functions for EFIE and MFIE is motivated by obtaining a better 

conditioned matrix at the end [29]. It should be noted that the FE basis functions kN  

representing the fields on S  are equivalent to ˆ ,kn S  and .B
BI FEN N  Therefore, BE  and 

BH  are equivalent to  K  and ,I  respectively. Combination of (5.17) and (5.7) yields the 

final tot totN N  FE-BI system 

 ,

II IB

BI

I

BB B

B

     
          
         

A A 0 E 0

A A B E 0

0 P Q H V

 (5.24) 

where .I
FE

tot
BIN N N   

5.2 Solution of FE-BI System 

For large ,totN  (5.24) can not be solved directly and iterative solvers are called for. 

Iterative solvers repeatedly apply FE-BI matrix to trial vectors until the solution reaches a 

given accuracy. Therefore the computational requirements scale multiplicatively with the 

cost of applying FE-BI matrix to trial vectors and the number of iterations iterN . iterN  is 

closely related to the condition number of the FE-BI matrix. Unfortunately, the condition 

number is affected by the existence of sparse FE sub-matrices.  FE matrices are usually 

bad conditioned especially for non-uniform meshes and highly inhomogeneous materials 

[78]. As a remedy for this problem, a pre-conditioner that utilizes sparse direct solvers is 

employed [78]. Before solving (5.24) iteratively, 2 2  FE matrices 

 
II IB

BI BB

 
  
 

A A
A

A A
 (5.25) 

are factorized using a sparse direct solver and the factorizations are stored in the 

computer memory. Availability of the inverse of FE matrices 1A  permits us to 

reformulate FE-BI equations and remove the FE unknowns IE  and BE  from the global 
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system of equations. Using the first two row blocks of (5.24) a relation between BE  and 

BH  is obtained  

 1 .B B  
     

 

0
E R A H

B
 (5.26) 

Here R  is a BI FEN N  sparse matrix selecting the boundary unknowns of the FE system  

  R 0 I  (5.27) 

where I  is a BI BIN N  identity matrix. Substituting (5.26) into (5.24) yields the reduced 

BI BIN N  FE-BI system of equations 

  B B    Z H P G Q H V  (5.28) 

where G  is the compact notation 

 1 .  
     

 

0
G R A

B
 (5.29) 

In the iterative solution of (5.28), the matrix-vector multiplications pertinent to P  

and Q  have  2O N  memory and CPU requirements. These requirements can be reduced 

using adaptive integral method (AIM) [17] or multilevel fast multipole [11, 79] 

accelerators. In this work AIM-FGG [20, 80] a memory-efficient extension of classical 

AIM is employed for this purpose to reduce the memory and CPU requirements to 

 cO N  and  log ,c cO N N  respectively. Here, cN N  for volumetric and quasi-planar 

scatterers, where the basis functions occupy most of the space enclosed by the domain 

D ; 1.5
cN N  for arbitrarily shaped three-dimensional (3D) surface scatterers. A detailed 

explanation of AIM-FGG acceleration technique can be found in Chapter 3.  
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5.3 Validation and Numerical Results 

This section presents numerical results that validate the AIM-FGG accelerated FE-BI 

solver and demonstrate its efficiency. First, nonaccelerated FE-BI solver is used to 

analyze EM scattering from a dielectric sphere the results are compared to those obtained 

using exact analytical methods, i.e. Mie series solutions. Next, a series of simulations are 

performed for the same example by decreasing the discretization size and the accuracy of 

the FE-BI solver is compared to that of the VIE solver for the same discretization size.  

Finally AIM-FGG accelerated FE-BI is used to analyze scattering from a large dielectric 

cube and the results are compared to those obtained using the VIE-FFT solver. In the 

examples mesh density is represented by average edge length of the tetrahedral elements 

.  Proposed solver is implemented using the popular message passing interface (MPI) 

programming model, and executed on clusters of processors to reduce the computational 

requirements. A transpose free quasi minimal residual (TFQMR) iterative scheme [55] is 

used to solve FE-BI matrix equations. Unless otherwise stated the tolerance of TFQMR is 

set to 610  and iterN  represents number of iterations required to reach this tolerance in the 

examples. All simulations are carried out on a cluster of dual-core 2.8 GHz AMD 

Opteron 2220 SE processors at the Center for Advanced Computing, University of 

Michigan. A commercially available software package PARDISO is used to compute the 

LU factorization of the sparse FE matrix ,A  and apply forward and backward 

substitution. 

5.3.1 Dielectric Sphere 

The first test geometry is a dielectric sphere of radius 0.2 m,  with relative 

permittivity 2.0.r   The sphere is embedded in a free-space cube of edge length 0.4 m.  

A staircase approximation models the sphere as shown in the inset in Fig. 5.1(a). An non-

accelerated FE-BI solver with parameter 0.4   is used to compute the RCS of the 
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sphere and the results are compared to the Mie series solution.  The sphere is illuminated 

by a plane wave  

 0
ˆˆ ,jki e krE p  (5.30) 

with ˆ ˆp x  and ˆ ˆ,k z  and frequency 300 MHz.f   In the simulation average edge 

length, number of unknowns, and number of iterations are 0.025 m,   4,608,BIN   

and 10,iterN   respectively. Fig. 5.1 (a) shows the bistatic RCS of the sphere in E-plane 

( 0   ) and H-plane ( 90   ).  

Next, a series of simulations are performed for the first example by changing the 

discretization size   from 0.1 m to 0.008 m  while keeping other parameters intact. The 

accuracy of the solutions are measured quantitatively by computing the relative root-

mean-square (RMS) error in the bistatic RCS 

 
   

 

2

1

2

1

, ,

RMS Error=

,

s

s

N
ref

i i i i
i

N
ref

i i
i

     

  








 (5.31) 

where   and ref  represent the bistatic RCS obtained by the FE-BI solver and Mie 

series solution, respectively. In (5.31) sN  represents the total number of observation 

angles  i  in E-  0i    and H-  90i    planes at which RCS is sampled. Same set 

of simulations are repeated for the VIE-FFT solver described in Chapter 3. Fig. 5.1 (b) 

shows the RMS error versus   for both solvers. As expected FE-BI methods is less 

accurate for given mesh density. 

5.3.2 Inhomogeneous Dielectric Cube 

Next, EM scattering from an inhomogeneous dielectric cube of edge length 2.0 m,  is 

analyzed. The cube is divided into two homogeneous layers in x  direction. These layers 

have the relative permittivity 1 2.5 0.25r j    and 1 2.0 0.5.r j    The incident field is a 
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x̂  polarized plane wave propagating in ẑ  direction at 300 MHz.f   An AIM-FGG 

accelerated FE-BI solver with 0.4   is used to compute the RCS of the sphere and the 

results are compared to those obtained using a non-accelerated FE-BI solver and a VIE-

FFT solver. AIM grid size 0.05 mx y z       and mapping parameter 6.  In the 

FE-BI simulation 28,800,N   and 20iterN  , whereas in the VIE-FFT based simulation 

196,800,N   and 83.iterN   In both simulations 0.05 m.  . Fig. 5.2 (a) and (b) show 

the bistatic RCS of the cube in E-plane ( 0   ) and H-plane ( 90   ). 
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Figure 5.1: (a) Bistatic RCS of a dielectric sphere of radius 0.2 m and relative permittivity 
2.r   (b) Discretization size versus RMS error. A uniform rectangular grid is used to model the 

sphere. The staircase approximation of the sphere surface is depicted in the inset of (a). 
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Figure 5.2: Bistatic RCS of an inhomogeneous dielectric cube of edge length 2 m.  
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CHAPTER 6  

Domain Decomposition Based Finite Element-Boundary 

Integral-Volume Integral Equation Method 

6.1 Introduction 

This chapter details the proposed hybrid domain decomposition (DD) based finite 

element (FE) –boundary integral (BI) –volume integral equation (VIE) approach for 

analyzing electromagnetic (EM) wave scattering from complex inhomogeneous 

structures. Section 6.2 details the hybrid DD-FE-BI-VIE formulation and its MOM based 

discretization. Section 6.3 presents a memory and CPU time efficient approach to solve 

the hybrid DD-FE-BI-VIE MOM system. Preliminary numerical results are presented in 

Subsection 6.4 to validate the accuracy of the proposed solver. 

6.2 Formulation 

Consider the EM wave scattering problem from a composite structure comprising 

PEC surfaces and arbitrarily inhomogeneous dielectric bodies   residing in unbounded 

free space. Let ( ) r  and 0  denote the permittivity of   and free-space, respectively. 

DD method begins with dividing   into N  non-overlapping domains ,i  
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Figure 6.1: Composite structure and domain decomposition. Dielectric interfaces and PEC 
surfaces are represented by solid and dashed lines, respectively.  

1,..., .i N  Let FE BIN   and VIEN  represent the number of domains modeled by FE-BI and 

VIE methods, respectively; and FE BI VIEN N N  . In Fig. 14 an example structure with 

5FE BIN    and 1VIEN   is illustrated. VIE domains are non-magnetic and have free-

space permeability 0.  A disjoint dielectric body can be represented by a single domain 

or partitioned into several domains if the electric size is too big. In general, domains are 

tailored to have similar sizes for computational efficiency. Let ,  1,...,i FE BIi N    

denote the boundaries of FE-BI domains. PEC surfaces can reside on i  or can be 

enclosed in ,  1,..., .i FE BIi N    The structure is excited by incident time-harmonic 

electric and magnetic fields ( )incE r  and ( )incH r with angular frequency  . In what 

follows time dependence j te   is assumed and suppressed. 

The numerical analysis starts with subdividing FE-BI domains ,  1,...,i FE BIi N   

into tetrahedral elements and expanding electric and magnetic fields  iE r  and  iH r  in 

each domain in terms of edge based curl-conforming volume basis functions  ijN r  [8] 

as   

FE-BI 

FE-BI 

VIE

1  

PEC 
3

4  

5  6  

1n̂  

3n̂  

4n̂  
5n̂  

incE  
incH  

k̂  

2  

FE-BI PEC 

2n̂  

6n̂  
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        
1 1

,  ,  1,..., ,
FE FE
i iN N

ij ij
j

i ij i ij FE B
j

IE H i N
 

   E r N r H r N r  (6.1) 

where FE
iN  is the number of FE unknowns,  ,  ,  1,..., FE

ij iijE H j N  are the electric and 

magnetic field unknowns in ,  1,..., .i FE BIi N   To solve for these unknowns electric 

field vector wave equation is discretized in Galerkin weak-form yielding the following 

FE
iN  equations in i  

            

   

2
0

0

1

ˆ 0,   1,...,

i

i

ij ij

F

i r i

E

r

iij i i

k dv

jk ds j N








 
  

 

 

  

    





NN r E r r r E r

N r n H r

r
 (6.2) 

where     0r  r r  and     0r  r r  are the relative permittivity and 

permeability of ,  0 0 0k     is the free-space wavenumber, ˆ
in  is the outward 

pointing unit vector normal to i , and    0i iZH r H r  with 0 0 0Z    being the 

free-space intrinsic impedance. Substitution of (6.1) into (6.2) yields the matrix equation 

(assuming there are no interior sources)  

 

I
iII IB

i i B
iBI BB
Bi i i
i

 
                

E
A A 0 0

E
0A A B

H

 (6.3) 

where I
iE  is the vector containing electric field unknowns in ,i  ,B

iE  and B
iH  are the 

vectors containing electric and magnetic field unknowns on .i  ,II
iA  ,IB

iA  ,BI
iA  ,BB

iA  

and iB  are the well-known sparse FE sub-matrices whose entries are given by 

              2
0

1

i

i ip iq r
r

ip iqpq
k dv






 
   





  A NN r N r r r r

r
N  (6.4) 

      0 ˆ .
i

ipi p iqq
jk ds



     B N r n N r  (6.5) 
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Next step in the analysis is to build and discretize the coupled IEs for the exterior 

medium and VIE domains. In response to ( )incE r  and ( )incH r  electric and magnetic 

surface currents ( )s
iJ r  and ( ),s

iM r  and volume (polarization) currents ( )v
iJ r  are induced 

on ,  1,..., ,i FE BIi N    and in  ,  1 ,..., .i FE BIi N N    These currents satisfy the 

following coupled set of boundary and volume IEs: (i) on ,  1,...,i FE BIi N    electric 

and magnetic field IEs  

        
1 1

, 1,. ., .
VIEFE BI NN

ss s s v v inc
ii i i i i i FE BI

i i

i N





 

         r rJ M J E    (6.6) 

        
1 1

, 1,. .., ,
VIEFE BI NN

s incs s s v v
ii i i i i i FE BI

i i

i N





 

       
  rJ J rM H    (6.7) 

(ii) in  ,  1 ,...,i FE BIi N N    electric field IE 

 

           
1 1

, 1 ,... . ,
VIEFE BI NN

ss s s v v inc
ii i i i i i i FE BI

i i

i N N



 

        


 J M J E r r rE   (6.8) 

Here i
  is the exterior side of ,i  0

s s
i iZJ J  and 0

inc incZH H , and  iE r is the total 

electric field in  1 ,...,, i FE BIi N N   . In (6.6) and (6.7) the first and second terms on 

the left hand side of the equation represent the scattered fields from the FE-BI and VIE 

domains, respectively. Surface and volume integral operators ,s
i  s

i , ,v
i  and v

i are 

defined as 

        0 2
0

1

i

s
i jk g ds

k

 
         

 
 X r X r r rX  (6.9) 

      
2

i

s
i dsg



      
X

X X r r r  (6.10) 

        0
0

1

i

v
i j g dv

j




 
         

 
 X r X r r rX  (6.11) 
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      0

i

v
i vZ g d



   X X r r r  (6.12) 

where    0 4jkg e     r rr r r r  is the free-space scalar Green function. Integral in 

(6.10) is taken as Cauchy principal value.   v
iJ r  is related to  iE r  and the electric flux 

density      i iD r r E r  as  

            0 1 ,.. , .,  i F I
v
i E Bjj i N N           r E r r D r rJ r  (6.13) 

where    01   r r  is the contrast parameter. Substitution of (6.13) into (6.6)-(6.7) 

yields S-EFIE, S-MFIE, and V-EFIE in ,s
iJ  ,s

iM  and iD   

        ,

1 1

, 1,..., 
VIEFE BI NN

ss s s v D inc
ii i i i i i FE BI

i i

i N





 

      


 J M D rE r    (6.14) 

        ,

1 1

, 1,..., , 
VIEFE BI NN

s incs s s v D
ii i i i i i FE BI

i i

i N





 

       
  rJ D rM H    (6.15) 

          ,

1 1

, 1 ,..., ,
VIEFE BI NN

ss s s v I inc
ii i i i i i FE BI

i i

i N N



 

       


 J M D E r r   (6.16) 

where , ,v D
i  , ,v D

i  and ,v I
i  are the complementary volume integral operators given by 

            , 2
0

0

1
,

i

v D
i g dv  



 
                 

 
 r X r r X r r rX  (6.17) 

        
0

, 0 ,
i

v D
i

jk
dvg

 

      X r X r r r  (6.18) 

      
, , .v I v D

i i 
 

X
X X

r
   (6.19) 

To numerical solve the coupled set of equations (6.14)-(6.16) for ,iJ  ,iM  and iD  

using MOM, surfaces ,  1,...,i FE BIi N    and volumes  ,  1 ,...,i FE BIi N N    are 

discretized by meshes of planar triangles and hexahedra and   ,iJ r    ,iM r  and  iD r  

are expanded as 
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        
1 1

,   ,  ,  1,...,
BI BI
i iN N

RWG RWG
iji ij i ij i FE BIij

j j

J M i N
 

    J r S r M r S r r  (6.20) 

      
1

,  ,  1 ,...,
VIE
iN

ij i FE BI
RT

i ij
j

D i N N


  D r S r r  (6.21) 

where  , ,  1,..., ,ij ij
BI
iJ M j N  ,  1,..., VIE

ij iD j N  are the unknown expansion coefficients, 

 RWG
ijS r  are divergence conforming Rao-Wilton-Glisson (RWG) basis functions [54] 

defined on triangle pairs,  RT
ijS r  are divergence conforming roof-top basis functions 

defined on hexahedron pairs [7, 75, 81], BI
iN  and VIE

iN  are the number of BI and VIE 

unknowns on i  and in ,i  respectively. Also   r  is approximated by pulse basis 

functions which assume constant values over each hexahedron. It should be noted that the 

FE basis functions  ijN r  representing the fields on i  are equivalent to 

 ˆ ,  ,  1,..., .i FE BI
RWG
ij i N  n S r r  Hence ,B

iE  B
iH  are related to ,iJ  iM  as  

 ,  1,..., ,i
FE BI

i
B

i

B

i

i N 

   
    
  

ME

JH
 (6.22) 

where 1 ,BI
i

T

Ni i i
J J   J   1 BI

i

T

Ni i i
M M   M   are the vectors containing the 

unknown current coefficients; here superscript T  represents the transpose operation. 

Therefore  , , i
I
i iE J M  are the only set of unknowns considered in FE-BI system of 

equations for .i   

BI-VIE system of equations are discretized and coupled with the FE matrices (6.3) 

by taking the following steps: (i) (6.20) and (6.21) are substituted into (6.14)-(6.16). (ii) 

The resulting equations are tested with      ˆ1 ,RWG RWG
ij i ij   S r n S r   ˆ ,RWG

iji n S r  

and     ,RT
ij r S r  respectively. Here,   is a real parameter changing from 0 to 1. The 

choice of testing functions for EFIE and MFIE is motivated by obtaining a better 

conditioned matrix at the end [29]. (iii) First two equations are linearly combined to 

obtain combined field integral equation (CFIE) type BI-VIE matrices. (iv) Finally the 
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resulting BI-VIE matrices are augmented with (6.3) yielding the tot totN N  global system 

of equations is assembled by combining matrices from all domains 

 
, ,

, ,
,

FE BI FE BI FE BI VIE FE BI FE BI

VIE FE BI VIE VIE VIE VIE

    



     
        

     

Z Z I V
Z I

Z Z I V
 (6.23) 

where totN  is the total number of unknowns  

 
1 1

.
FE BI

FE BI

N N
tot BI FE VIE

i i i
i i N

N N N N


  

     (6.24) 

Here 1 FE BI

T

N

FE BI FE BI FE BI


     V V V  and 
1FE BI

VIE V T

N

VIE
N

IE
 

   V V V  represent the 

tested incident fields on ,  1,..., F I
i

E Bi N    and in 1,  ,..., ,FE B
i

Ii N N    respectively. 

More specifically 

 ,FE BI
i

BI
i



 
   
  

0

V 0

V

 (6.25) 

and the entries of ,  EI
i

IB
N
VV V  are given by  

        ˆ, , 1,  ,..., .
i

i

incRWG inc RWG FE BI
ip ip

BI
i p

i N




 
    S r E r n S r H rV  (6.26) 

        ,  1 ,., ..,
i

inVIE cRT
i ipp

FE BIi N N 


      E rV r S r  (6.27) 

with the inner products 
i
 and 

i
 defined as 

        , ,
i

i

ds




 a r b r a r b r  (6.28) 

        , .
i

i

dv



 a r b r a r b r  (6.29) 

In (6.23) FE BI V TIE   I I I  is the unknown coefficient vector with 

1 FE BI

TFE BI FE BI
N

FE BI



     I I I  and 
1FE BI

V T

N
E

N

I
 

   I D D  being the individual FE-

BI and VIE unknown coefficient vectors.  ,  1,...,i FE BI
FE BI I
i i i i N

   I E M J  and 
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 ,  1 ,...,FE BIi i N N D  are the FE-BI and VIE unknown coefficient vectors, 

respectively. 

In the remainder of this section, sub-matrices , ,FE BI FE BI Z  , ,FE BI VIEZ  , ,VIE FE BIZ  and 

,VIE VIEZ  are described. Sub-matrix ,FE BI FE BI Z  is a collocation of FE-BI matrices 

,FE BI FE BI
ij

 Z  from every domain pair      , ,  , 1,..., FE BIji i j N     

 

, , ,
11 12 1

, , ,
21 22,

, ,

1

2

,

2

,

FE BI

FE BI

FE BI FE BI FE BI FE BI

FE BI FE BI FE BI FE BI FE BI FE BI

FE BI FE BI FE BI FE BI FE BI FE BI
FE BI FE BI

FE BI FE BI FE BI FE BI FE BI FE

N

N N N

BI

N

N





   

     

     
 

     

 
 
   
 
  

Z Z Z

Z Z Z
Z

Z Z Z




   


 (6.30) 

where  

    , ,   1,..., ,ii i FE BI

ii ii

II IB
i i

FE BI FE BI BI BB
i i i N




 
   




 

A A 0

Z A A B

0 P Q

 (6.31) 

      , ,   , 1, ,...,ij FE BI

ij ij

FE BI FE BI i ji j N 
 

 
   
 



 


0 0 0

Z 0 0 0

0 P Q

 (6.32) 

In (6.31) ,ijP  ijQ  are the CFIE type BI matrices whose entries are  

 
       

       

ˆ1 ,

ˆ , 1,..., ,  1,..,  .,

i

i

RWG RWG s RWG
ij ip i ip j jqpq

RWG s RWG BI BI
i ip j jq i jp N q N

 








      





  

S r n S r S

n r

P

S S




 (6.33) 

 
       

       

ˆ1 ,

ˆ ,, 1,..., ,  1,..., . 

i

i

RWG RWG s RWG
ij ip ip j jqpq

RWG s RWG BI BI
ip j jq i jN qp N

 





  



  

 





S r n S r S

n S S

Q

r




 (6.34) 

Sub-matrix ,FE BI VIEZ  accounts for the interactions between surface- test and volume-

source basis functions and it can be represented by 
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   

   

, , ,
11 1 1 2

, , ,
2, 1 2

, , ,

1

2

2

2 ,

FE BI FE BI

FE BI FE BI

FE BI FE BI FE BI

FE BI VIE FE BI VIE FE BI VIE
N

FE BI VIE FE BI VIE FE BI VIE
NFE BI VIE

FE BI VIE FE BI VIE FE BI V

N N

N N

I

N N N

E

N

 

 

  

  

 

  
  

  

 
 
 

  
 
 
  

Z Z Z

Z Z Z
Z

Z Z Z





   


 (6.35) 

where ,FE BI VIE
ij

Z  is the compact notation 

    ,

,

,  1,..., ,  j ,...1 ,FE BI VIE
ij

BI VIE
FE BI FE BI

ij

i N N N 


 
   
 

 


0

Z 0

Z

 (6.36) 

with  

 
   

   

, ,, ˆ, ,

1,..., ,  ,..

,  

., .1

i i

RWG v D RT RWG v D RT
ip

BI
i jq i ip i jq

VIE
ij

BI VIE
i j

pq

p N q N

 
 

 

  SZ S n S S 
 (6.37) 

Similarly ,VIE FE BI
ij

Z  accounts for the interactions between volume- test and surface-source 

basis functions  

  

     

     

1

, ,

2

1 2

1 2

,

1 1 1

, , ,
, 1 2 2

, , ,

,

FE BI FE BI FE BI FE BI

FE BI FE BI FE BI FE BI

FE BI

VIE FE BI VIE FE BI VIE FE BI

N

VIE FE BI VIE FE BI VIE FE BI
VIE FE BI

VIE FE BI FE BI VIE VIE FE B

N N N

N N N N

N
I

N NN

   

   



  

  

  
   

  

 
 
 

  
 
 
  

Z Z Z

Z Z Z
Z

Z Z Z





   


 (6.38) 

where ,FE BI VIE
ij

Z  is the compact notation 

    , , , ,..., ,  j,  11 ,...,VIE FE BI VIE BI E VIE BI
FE BI

H
ij i FEi Bj j IN Ni N  

     Z 0 Z Z  (6.39) 

with 

          , , ,..., ,  1,..., ,,  1
i

RT s RWVIE BI E
ij

G VIE BI
ip i jq i jpq

p N j N


     r rZ S S  (6.40) 

        , , ,..., ,  1,..., .,  1
i

RT s RWVIE BI H
ij pq

G VIE BI
ip i jq i jN Np j



     Z r S S  (6.41) 
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Finally, the sub-matrix ,VIE VIE
ijZ accounting for the interactions between volume-test 

and volume-source basis functions is given by 

 

       

       
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, , ,

1 1 1 2 1

, , ,

2 1 2 2 2,

, , ,

1 2
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FE BI FE BI

N N N N N

N N N

VIE VIE VIE VIE VIE VIE

N

VIE VIE VIE VIE VIE VIE

NVIE VIE

VIE VIE V

N N

NN N N N

IE VIE VIE VIE
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    

    

 

    

    

 

 






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Z Z Z

Z Z Z
Z

Z Z Z





   

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






 (6.42) 

where 

 
         

   

, , ,..., ,  

1,..., ,  1,.

,

..

,  , 1

, .

i

VIE VIE RT RT
ij ip jqp

v I
i FE BI

VIE
i

q

VIE
j

Nj N

p N q N

i 


 

    Z r S r S
 (6.43) 

6.3 Solution of DD-FE-BI-VIE-MOM System 

For large totN  (6.23) can not be solved directly and iterative solvers are called for. 

Iterative solvers repeatedly apply Z  to trial vectors until the solution reaches a given 

accuracy. Therefore the computational requirements scale multiplicatively with the cost 

of applying Z  to trial vectors and the number of iterations iterN .  The former can be 

reduced by using adaptive integral method (AIM) [17] or multilevel fast multipole [11, 

79] accelerators to accelerate the matrix-vector multiplications pertinent to BI-VIE 

coupled system. In this work AIM-FGG [20, 80] a memory-efficient extension of 

classical AIM is employed for this purpose.  

iterN  is closely related to the condition number of the global system matrix .Z  

Unfortunately, the condition number of Z  is affected by the existence of sparse FE sub-

matrices.  FE matrices are usually bad conditioned especially for non-uniform meshes 

and highly inhomogeneous materials [78]. As a remedy for this problem, a pre-

conditioner that utilizes sparse direct solvers is employed [78]. Before solving (6.23) 
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iteratively, FE matrices ,  1,..., FE BI
i i N A  are factorized using a sparse direct solver and 

the factorizations are stored in the computer memory. Availability of the inverse of FE 

matrices 1
i
A permits us to reformulate FE-BI equations and remove the unknowns ,I

iE  

iM  from the global system of equations as follows. A relation between iM  and iJ  is 

obtained from (6.3) using 1
i
A  

  1 . 1,. ,H
i i i

FE BI
i

i

Ni  
     

 


0
M Q A J

B
 (6.44) 

Here BI FE
i iN N  matrix H

iQ  define the operator for selecting the boundary unknowns 

from the FE matrix given by 

  ,H
i Q 0 I  (6.45) 

where I  is the BI BI
i iN N  identity matrix.  Substituting (6.44) into (6.31) yields reduced 

FE-BI matrices FE BI
ij

Z  

    1,. , .., .FE BI
ij ij j ij FE BINi j 

     Z P G Q  (6.46) 

Here 1
jj

TH
j j

       G Q A 0 B  is the compact notation of the operation relating iM  to 

.iJ  Finally the global system (6.23) can be reformulated as a tot totN N   matrix equation 

in J  and D  as 

 
, ,

, ,
.

BIFE BI FE BI FE BI VIE

VIE VIEVIE FE BI VIE VIE

  



    
     
    

J VZ Z

I VZ Z


 (6.47) 

where  

 
1 1

.
FE BI

FE BI

N N
tot BI VIE

i i
i i N

N N N


  

    (6.48) 
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6.4 Numerical Results 

This section presents numerical results that validate the proposed FE-BI-VIE solver. 

First, non-accelerated DD-FE-BI solver is used to analyze EM scattering from a dielectric 

sphere, and the results are compared to those obtained using exact analytical methods, i.e. 

Mie series solutions. Next, a 27 cube dielectric structure is considered. RCS results are 

obtained using AIM-FGG accelerated DD-FE-BI solver, and the results are compared to 

those obtained using an AIM-FGG accelerated PMCHWT based SIE solver. Finally, 

AIM-FGG accelerated DD-FE-BI is used to analyze scattering from a composite 

structure comprising dielectric and PEC cubes and the results are compared to those 

obtained using a AIM-FGG accelerated PMCHWT-EFIE based SIE solver. In the 

examples mesh density is represented by average edge length of the tetrahedral elements 

,s  which also corresponds to the average edge length of the triangular elements 

discretizing the domain boundaries. Average edge length for the hexahedral elements 

used to discretize domains modeled by VIE solver is denoted by v  Proposed solver is 

implemented using the message passing interface (MPI) programming model, and 

executed on clusters of processors to reduce the computational requirements per 

processor. A transpose free quasi minimal residual (TFQMR) iterative scheme [55] is 

used to solve the hybrid DD-FE-BI-VIE matrix equations. Unless otherwise stated the 

tolerance of TFQMR is set to 610  and iterN  represents number of iterations required to 

reach this tolerance in the examples. All simulations are carried out on a cluster of dual-

core 2.8 GHz AMD Opteron 2220 SE processors at the Center for Advanced Computing, 

University of Michigan.  

6.4.1 Dielectric Sphere 

The first test geometry is a dielectric sphere of radius 0.5 m,  with relative 

permittivity 2.5r   which is embedded in a free-space cube of edge length 1.0 m,  
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which is decomposed into eight domains (Fig. 6.1(b)). Sphere surface is modeled by a 

staircase approximated as shown in Fig. 6.1(c). An incident plane wave  

 0
ˆˆ ,jki e krE p  (6.49) 

with ˆ ˆp x  and ˆ ˆ,k z  at frequency 300 MHzf   is illuminating the sphere. The 

proposed DD-FE-BI (non-accelerated) solver with parameter 0.4   is used to compute 

the RCS of the sphere and the results are compared to the Mie series solution. In the 

simulation average edge length, number of unknowns, and number of iterations are 

0.05 m,s   14,400,totN   and 355,iterN   respectively. Fig. 6.1 (a) shows the bistatic 

RCS of the sphere in E-plane ( 0   ) and H-plane ( 90   ).  

6.4.2 Composite Dielectric/PEC Structure 

Next, a composite structure comprising dielectric and PEC regions is considered. 

The structure is decomposed into six cubical (and conforming) domains as shown in Fig. 

6.2 (a). Two of these domains are dielectric with relative permittivity 2.5 0.5.r j    

These cubes are residing between three free-space cubes ( 1r  ), and a PEC cube at the 

end. An incident plane-wave with ˆ ˆp x  and ˆ ˆ,k z  at frequency  300 MHzf   is 

illuminating the structure. EM scattering from the structure is analyzed using an AIM-

FGG accelerated DD-FE-BI solver with 0.4.   In this simulation 0.05 m,s   

43,200,totN   and 1315.iterN   To obtain a reference solution a second simulation is 

performed using an AIM-FGG accelerated PMCHWT-EFIE based SIE solver. This time, 

an equivalent structure shown in Fig. 6.2(b) is considered. The free space cubes are 

removed from the model and the remaining structure is excited with the same incident 

plane-wave. In the second simulation 36,000,N   and 463.iterN   In both simulations 

AIM grid size 0.05 mx y z       and mapping parameter 4,  and AIM near-

field region comprises a sphere of radius of 0 4.  Bistatic RCS of these structures is 
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computed and the results are compared in E-plane ( 0   ) and H-plane ( 90   ) as 

depicted in Fig. 6.3 (a) and (b). 

6.4.3 Dielectric Cube Array 

Next, EM scattering from a 3 3 3   array of dielectric cubes is analyzed using the 

AIM-FGG accelerated DD-FE-BI solver with 0.4.  . Each cube is homogeneous with 

relative permittivity   2.5 1.0 0.5 1 26,ri j i      1,..., 27.i   The array is illuminated 

by a  ˆ ˆp x  polarized plane wave propagating in ˆ ˆk z  direction at frequency 

 300 MHz.f   Another simulation is performed using an AIM-FGG accelerated 

PMCHWT based SIE solver [26] to obtain a second set of results that serve as a 

reference. In the first simulation 194,400totN   and 1,603iterN  , whereas in the second 

simulation 388,800,N   and 574.iterN   In both simulations 0.05 m,s   AIM grid size 

0.05,x y z       mapping parameter 6,  and AIM near-field region comprises a 

sphere of radius of 00.3 .  Bistatic RCS of the structure is computed and the results in E-

plane ( 0   ) and H-plane ( 90   ) are compared in Fig. 6.4 (b) and (c). 

 

6.4.4 Homogeneous Dielectric Cubes 

Finally, EM scattering from a structure comprising two dielectric cubes is analyzed 

using the AIM-FGG accelerated hybrid DD-FE-BI-VIE solver with 0.4.   Each cube is 

homogeneous with relative permittivity 2.0.r   The geometry is decomposed into nine 

domains. The first cube is modeled as a single domain handled with the VIE solver, 

whereas the second cube is decomposed into eight identical domains handled with the 

DD-FE-BI solver as shown in Fig. 6.5(a). The structure is illuminated by a  ˆ ˆp x  

polarized plane wave propagating in ˆ ˆk z  direction at frequency  300 MHz.f   

Another simulation is performed using a pure VIE solver to obtain results that serve as a 

reference. In the first simulation 0.1 m,s v    39,600,totN   and 1,361iterN  , 
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whereas in the second simulation 50,400,N   and 63.iterN   AIM grid size 

0.083,x y z       mapping parameter 6,  and AIM near-field region comprises 

a sphere of radius of 00.5 .  Bistatic RCS of the structure is computed and the results in 

E-plane ( 0   ) and H-plane ( 90   ) are compared in Fig. 6.5 (b) and (c). 
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Figure 6.2: (a) Bistatic RCS of a dielectric sphere of radius 0.5 m and relative permittivity 
2.5.r   (b) Cubic 8 domain mesh. (c) Stair case approximation to the sphere embedded in (b). 
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Figure 6.3: Two equivalent structures. (a) Six cube structure with two dielectric cubes, one PEC 
cube, and three free-space (dielectric) cubes. This structure is analyzed with an AIM-FGG 

accelerated FE-BI solver. (b) Three cube structure. Equivalent to since only the free-space cubes 
are removed. This structure is analyzed with an AIM-FGG accelerated PMCHWT based SIE 

solver. 
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Figure 6.4: Bistatic RCS of the structure shown in Fig. 6.2 in (a) E- and (b) H- planes.  
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Figure 6.5: (a) 27 cube structure. Each cube is homogeneous, and the relative permittivity of the 

cubes is changing linearly from 1 2.5r   to 27 3.5 0.5.r j    Bistatic RCS of the structure 

shown in (b) E- and (c) H- planes.  
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Figure 6.6: (a) A structure comprising two homogeneous dielectric cubes with 2.0.r   First 

cube is handled with VIE solver, while the second one is decomposed into eight domains and 
handled with DD-FE-BI solver. Bistatic RCS of the structure shown in (b) E- and (c) H- planes.  
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CHAPTER 7  

Conclusions and Future Work 

7.1 Summary 

A high order SIE solver is developed for the analysis of EM wave interactions with 

piecewise homogeneous composite dielectric and PEC structures with arbitrary surface 

junctions. In this solver curvilinear triangular elements and GWP basis functions are used 

to discretize the surfaces and expand the currents. To our knowledge a high order solver 

capable of simulating structures with arbitrary dielectric-PEC junctions has not been 

presented before, this work fills this gap in the literature.  

A memory efficient extension to AIM that incorporates FGG, a fast and memory-

efficient NUFFT algorithm to map surface sources onto an AIM grid, is developed. 

Established AIM mapping techniques, e.g. moment and far-field matching methods 

require pre-computing and storing 3M  coefficients for each actual source. The proposed 

method, in contrast, requires computing and storing only 4 exponential coefficients per 

source. Furthermore, after these coefficients have been computed, mapping each source 

using the FGG requires the same number of multiplications and additions as the 

established methods. Hence, without increase in CPU-time, the proposed method 

dramatically reduces the memory requirements of the AIM. The numerical results show 

that the method realizes significant memory savings but is not as accurate as MM. AIM-
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FGG is successfully applied to a high order SIE solver for piecewise homogeneous, 

composite dielectric and PEC structures; a zeroth order DD-FE-BI solver for arbitrarily 

inhomogeneous, composite dielectric and PEC structures; and a VIE solver for arbitrarily 

inhomogeneous dielectric structures. Furthermore it is applied to a hybrid, DD-FE-BI-

VIE solver combining all the aforementioned solvers. The accuracy and efficiency of the 

implementation is validated via various numerical examples.  

An AIM-FGG accelerated DD-FE-BI-VIE solver is developed for the EM analysis of 

plasma engulfed re-entry vehicles. To this end, AIM-FGG accelerated FE-BI and VIE 

solvers are developed and validated independently. Then, FE-BI method is further 

improved with a DD technique. Numerical results that serve to validate the accuracy and 

demonstrate the efficiency of these solvers are presented in Chapter 4, 5, and 6. Finally, 

these solvers are combined in a hybrid DD-FE-BI-VIE solver. A preliminary result is 

validating the accuracy of this solver is presented in Chapter 6. The proposed hybrid 

solver exhibits unprecedented modeling flexibility for the solution of EM scattering and 

radiation from complex real life problems.  

 

 
Level of 
dielectric 

inhomogeneity 

Composite 
metallic-
dielectric 

Multi-scale 
structures 

Scalability 
with respect 

to N 

High order 
SIE 

* *** * ** 

VIE ** - * *** 

DD-FE-BI *** ** *** *** 

DD-FE-BI-
VIE 

**** ** *** *** 

Table 7.1: Computational performances of the solvers for different types of structures. The 
greater number of *’s represents a better grade. Each solver is assumed to be accelerated with 

AIM-FGG. N represents the total number of independent unknowns for each solver. 
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The computational performances of the aforementioned solvers for different type of 

structures are summarized in Table 7.1. All solvers are assumed to be accelerated with 

AIM-FGG and the specific formulations presented in this thesis are considered. High 

order SIE solver is suitable for piece-wise homogeneous composite structures with 

arbitrary metal-dielectric junctions. As the level of inhomogeneity increases the 

efficiency of this solver decreases. SIE solver has a superior ability to handle arbitrarily 

shaped open or closed PEC structures compare to other solvers. However convergence 

problems arise for structures having sub-wavelengths features and large scale features at 

the same time (multi-scale). VIE solver can handle inhomogeneous dielectric structures 

better it can not model PEC structures. Similar to the SIE solver, multi-scale structures 

can be problematic for the VIE solver. On the other hand, DD-FE-BI solver provides 

greater overall flexibility in modeling inhomogeneous and even multi-scale composite 

structures. However it is less accurate compared to the SIE and VIE solvers. DD-FE-BI-

VIE hybrid solver takes advantage of the modeling flexibility of the DD-FE-BI and the 

accuracy of the VIE solvers to overcome this problem.  

The first column in Table 7.1 ranks the solvers considering their computational 

efficiency and accuracy when simulating dielectric-only structures with different levels of 

inhomogeneity. The number of * in this column represent the level inhomogeneity in the 

structure. If the medium is piecewise homogeneous SIE must be the solver of choice 

since it requires only the discretization of the surfaces which will yield smaller number of 

unknowns compared to volumetric discretizations other solvers require. VIE and DD-FE-

BI solvers can handle higher inhomogeneity, although DD-FE-BI offers less accuracy 

compared to VIE. The hybrid DD-FE-BI-VIE solver takes advantage of both solvers, thus 

earning four *’s. The second column in Table 7.1 ranks the solvers for their ability to 

model composite structures. SIE solver can model open and closed PEC surfaces with 

arbitrary junctions earning the most *’s. VIE solver can not model PEC structures. DD-
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FE-BI (also DD-FE-BI-VIE) can model closed PEC structures but open PEC surfaces and 

junctions are not supported. Although the method can be modified to cover these 

structures, they are not included in the current implementation. The third column 

represents the performances of the solvers for multi-scale structures. SIE and VIE solvers 

suffer from the aforementioned convergence and computational efficiency problems for 

these types of structures. DD-FE-BI (also DD-FE-BI-VIE) solver overcomes these 

problems with DD strategy. The final column in Table 7.1 ranks the solvers for their 

computational efficiency when simulating bigger structures (increasing number of 

unknowns). All solvers have a CPU time and memory complexity of  logO N N  and 

  ,O N  respectively. However, there is one exception: When SIE solvers are used for 

surface scatterers CPU time and memory scale as  1.5 logO N N  and  1.5 .O N  Therefore 

SIE solver has two *’s in this category. 

Part of the work presented in this thesis is published in [20, 26, and 80].  

7.2 Future Work 

In the current implementation, zeroth order volume/surface elements and 

field/current basis functions are used in the discretization of PDEs and IEs in the AIM-

FGG accelerated FE-BI solver. The accuracy and the efficiency of this solver will benefit 

from high-order volume/surface discretizations and field/current expansions. GWP basis 

functions defined on curvilinear elements can be combined with high order FE basis 

functions defined on tetrahedral elements to achieve this efficiency. Improvements in this 

direction are under consideration. 

The FE-BI solver presented in this thesis is susceptible to convergence problems in 

the iterative solution of system BI portion of the system when surface meshes include 

sub-wavelength features. These types of meshes lead to ill-conditioned system matrices, 
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i.e. system matrices with high condition numbers, for IE solvers. This issue is 

investigated extensively in the literature. One of the popular techniques to remedy this 

problem is to use Calderon pre-conditioners [82, 83]. The AIM-FGG accelerated DD-FE-

BI solver presented in this thesis can benefit from Calderon pre-conditioners. 

Improvements to this end are also under consideration. 
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