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CHAPTER 1

Introduction

The propagation of a radio wave through some physical environment is effected by

various mechanisms which affect the fidelity of the received signal. Accurate prediction

of these effects is essential in the design and development of a communications system.

These effects can include shadowing and diffraction caused by obstacles along the prop-

agation path, such as hills or mountains in a rural area, or buildings in a more urban en-

vironment. Reflections off obstacles or the ground cause multi-path effects and the radio

signal can be significantly attenuated by various environmental factors such as ionospheric

effects, propagation through vegetation, such as in a forest environment, or reflection from

an impedance transition such as a river or land/sea interface. When line-of-sight (LOS)

propagation is not present these environmental mechanisms have the dominate effect on

the fidelity of the received signal through dispersive effects, fading, and signal attenuation.

Accurate prediction of these propagation effects allow the communications system en-

gineer to address the trade-off between radiated power and signal processing by developing

an optimum system configuration in terms of modulation schemes, coding, frequency band

and bandwidth, antenna design, and power. Current techniques commonly applied to char-

acterizing the communications channel are highly heuristic in nature and not generally

applicable. It is the intent of this work to define a methodology for the accurate and general

prediction of radio wave propagation by application of electromagnetic wave theory, and
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within this framework to develop electromagnetic models of canonical geometries which

represent various scattering and diffraction mechanisms in the propagation environment.

The scope of the problem should not be underestimated and once a basic methodology

is defined initial research must be narrowed to a specific region of investigation, i.e., fre-

quency band, domain type (rural, urban, satellite-based, ground-based, etc). These initial

electromagnetic models can then be built upon as a bases for expansion of the overall model

to include a wider range of propagation scenarios.

In the sections that follow the previous discussion will be expanded upon. The motiva-

tion behind this work is first discussed. Next the research approach is detailed, with a basic

methodology for the prediction of radio wave propagation defined. The specific focus of

this thesis within the broader scope of the propagation problem is then given, including a

description of two canonical diffraction models developed. The next section contains rel-

evant conventions, definitions and assumptions, used throughout this thesis, followed by a

brief introduction and outline of the chapters that follow.

1.1 Motivation

The basic motivating factor behind this work is the need for development of an accurate

and general propagation model. As mentioned previously the ability to accurately predict

the effects of the propagation environment on a communications channel is essential in the

development and optimal design of a communications system. Current methods of channel

characterization, while having the advantage of simplicity, do not adequately address the

issue and there is a need for significant improvement in the prediction of radio wave prop-

agation. Commonly used methods of channel characterization can be broken down into

two areas, empirical models, which are highly heuristic in nature, and simplified analytic

models. The empirical models are constructed from measured data and are not directly

connected to the physical processes involved. This limits them to very specific environ-
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mental conditions at the time the measurements were made as well as measurement system

attributes (band, bandwidth, and polarization). An example of a commonly used empirical

model for urban environments is the Okumura model [2]. This model uses simple alge-

braic equations to calculate mean path-loss for fixed frequency, observation distance, and

transmitter/receiver height. It does not account for coherence bandwidth, fading, or de-

polarization effects. In addition it fails if the antenna heights or orientations are changed.

Analytic models, while attempting to account for the interaction of the various mechanisms

which effect propagation, are simplified to a degree as to make them invalid for most prac-

tical applications. An example of this is the Longley-Rice irregular terrain model [3]. It

uses Geometrical Optics (GO) and ray-tracing to account for reflected fields and knife-edge

or Kirchhoff diffraction to account for path obstacles. The GO approximation does not ac-

count for shadowing and the knife-edge approximation is invalid in the transition region

between light and shadow and in the shadow region.

Due to the discussed shortcomings in existing methods of propagation prediction a

more rigorous approach, based on the application of electromagnetic wave theory, must be

applied to the problem at hand. The approach to be defined is directly connected to the

physical processes at work in the propagation environment and will result in propagation

models which are both accurate and more generally applicable.

1.2 Research Approach

As stated the prediction of radio wave propagation for general environments and in an

accurate manner is a complex problem with many avenues of research to pursue. In this

section a general approach or methodology for developing a complete propagation model is

defined. Within this framework the canonical models developed in this thesis are described.
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1.2.1 Methodology

The development of a more accurate and general model to predict radio wave prop-

agation requires that a basic methodology or approach to the problem be defined. The

flowchart in Figure 1.1 outlines this basic approach. Referring to Figure 1.1, the prob-

lem is first defined in terms of regions or domains, each of which have their own unique

environmental characteristics, thus requiring a somewhat different (although sometimes

overlapping) approach to solving the subsequent electromagnetic problem. These regions

can be defined in terms of urban/rural domains or ground-based/satellite-based scenarios.

The basic methodology within these domains is to develop a set of canonical diffraction

and scattering models which represent various environmental features. These models are

developed using the technique most appropriate for the given electromagnetic problem, i.e.,

analytic, numeric or some type of hybrid technique. Approximations are made which allow

for efficient application of the model, while retaining the accuracy required. The individ-

ual models are then merged into a complete propagation scenario. Monte Carlo simulation

accounts for the statistical nature of the propagation channel. Eventually remote sensing

information obtained from available databases can be used to define the propagation envi-

ronment. The complete model will allow for a simulation which is directly based on the

physical environment and therefore accurate and generally applicable.

1.2.2 Initial Concentration

Having defined the basic methodology to developing an overall propagation model an

area of concentration is now defined for this initial research. In this work the investigation

is focused on the rural domain or environment and ground-based (point to point) or ground

to/from unmanned aerial vehicle (UAV) communication at frequencies from HF through

L-Band. Figure 1.2 shows a typical propagation environment in a rural area. The radio

wave can be diffracted by obstacles such as hills, or mountains or an impedance transition
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Figure 1.1: Flowchart - Physics-based Methodology

such as a river or land/sea interface. Along the propagation path the signal may be per-

turbed by a highly scattering medium such as a forest. In this work two diffraction models

are developed, based on canonical geometries, and applicable to a rural environment, for

eventual integration into the overall propagation model. The first represents the effects of

a flat earth on the radio signal, which can contain a one-dimensional impedance variation,

representative of a river or land/sea interface. The second calculates the effects on the radio

signal of singly curved, convex obstacles with a large, slowly varying radius of curvature,

and which can represent terrain features such as hills or mountains.

Figure 1.2: Rural Terrain Scenario
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1.3 Relevant Assumptions & Definitions

In this section relevant assumptions, definitions, and conventions are given. Unless

otherwise indicated they are valid throughout the thesis.

The time conventione�iωt is assumed throughout this thesis and suppressed.

It is assumed throughout that the effects of the Earth can be modeled as a highly con-

ductive, non-magnetic impedance surface (εr ! ∞; µr = 1), which is essentially impen-

etrable and the Standard Impedance Boundary Condition (SIBC), namely,(n̂� n̂�E) =

�Z(n̂�H), with Z being the impedance of the Earth, is applied throughout. This as-

sumption is valid for a lossy Earth where the penetration depth, d, is small (d � λ), and

is applicable at the frequencies of interest in this work. Interested readers are referred to

[4] for a discussion on the SIBC as well as techniques to improve on the accuracy of this

assumption.

As the intent is to represent a lossy Earth in a realistic fashion, impedance values are

chosen which are representative of moist earth, or in the case of propagation over water,

saline water. The impedance values of the soil are derived from the values of permittivity

and conductivity given by Hipp [1] for San Antonio Gray Loam with a density of 1:4 g=cm3

and a varying moisture content (given as percent moisture in terms of gravimetric moisture

content). The impedance values of the water are derived from the equations for complex

permittivity given by Ulaby, et al., for saline water, with a salt content defined as as parts

per 1000 on a weight basis (pp/1000) [5]. Table 1.1 shows the complex permittivity and

conductivity calculated from the tables in [1] for San Antonio gray loam with moisture

content varying from 0 to 20%. Many of the examples to be shown are in the HF to VHF

frequency range, and as the permittivity and conductivity values in Table 1.1 are essentially

unvarying over this range the values given are assumed to be constant across this frequency

band.

It should also be noted that all simulation results provided in this thesis were run on a

Sun Microsystems Ultra2, with a 300MHz Sun microprocessor.
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Table 1.1: Soil parameters for San Antonio gray loam with a density of 1:4 g=cm3, for
varying gravimetric moisture content at 30MHz (from Hipp [1]).

% Moisture ε0r σ
0:0 3:5 � 10�4

2:5 5:8 5:0�10�3

5:0 8:2 1:0�10�2

10:0 14:0 5:0�10�2

20:0 24:0 8:0�10�2

1.4 Chapter Outline & Introduction

In the chapters that follow the development of the aforementioned diffraction models

along with relevant results and applications are presented. Each of these models represents

an independent electromagnetic problem and therefore each chapter, or a group of chapters

for each model is somewhat self-contained. The basic format is as follows. Each chapter

will contain brief paragraphs at the beginning and end to maintain a continuity or flow

from chapter to chapter. Each chapter will begin with an introductory section. This section

will include a detailed history and background of the problem at hand, the most current

techniques being applied, and the motivation for further research into improving on these,

or developing new techniques. Following this introduction will be a section containing the

specifics of the diffraction model being developed, including formulations and appropriate

derivations. A section containing validation and results follows. The final section in each

chapter will summarize the chapter and draw conclusions.

A problem of significant interest is the propagation of radio waves over a lossy Earth.

The surface of the Earth can be modeled locally as a flat, impedance half-space which can

also contain some type of transition in the surface impedance such as caused by a river or

seashore. In Chapters 2 and 3 a diffraction model for an impedance half-space, with one-

dimensional impedance variation, when excited by an infinitesimal dipole, is developed. In

Chapter 2 the effects of the homogeneous surface, without the transition is accounted for.
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This is a form of the classic Sommerfeld problem of the fields of an infinitesimal dipole

radiating above an lossy half-space. Resulting field expressions contain Sommerfeld type

integrals, which are highly oscillatory, and difficult to evaluate numerically. In Chapter 2 a

method is developed to transform the Sommerfeld integrals into a form more conducive to

numerical evaluation, while retaining the rigor of the original expressions. Beginning with

an alternate spectral domain representation of the dipole fields, an integral transform tech-

nique known as exact image theory is applied. Resulting field expressions are exact, and

contain integrands which converge extremely rapidly, up to several orders of magnitude

faster than the original Sommerfeld expressions. To complete the model for propagation

above an impedance half-space, Chapter 3 addresses the effect of an impedance transition

in the surface. Current methods such as the Geometrical Theory of Diffraction (GTD) can

only account for the effect of an abrupt discontinuity in the surface impedance. In Chap-

ter 3 a method is developed which is valid for any arbitrary one dimensional impedance

transition in the surface, provided the Fourier transform of the surface impedance function

is known. By application of a perturbation technique, an integral equation is solved for

unknown surface currents. Resulting expressions for the surface currents are recursive in

orders of perturbation in terms of multi-fold convolution. Far-field expressions are alge-

braic to first order. Also in Chapter 3 the combined effects of both the homogeneous surface

and the impedance transition are analyzed. Analysis of a land/sea transition shows that the

effects of the transition on the total fields is significant when both source and observation

are near the surface and insensitive to the gradient of the transition.

Another problem of significant interest is that of the propagation of radio waves over

convex obstacles encountered in the propagation environment such as hills, mountains, or

ridgelines. Current methods applied to this problem include Kirchhoff (knife-edge) diffrac-

tion, whose shortcomings have already been discussed, and GTD methods for both wedge

and convex surfaces. Solutions for wedge diffraction require a local radius of curvature

smaller than 1/100 of a wavelength which does not occur in nature, even at HF frequencies.
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GTD methods for convex surfaces tend to be mathematically and numerically cumbersome

and no one GTD method is valid in all regions around the surface (near-field, far-field, deep

shadow, deep lit, transition regions between light and shadow). In Chapters 4 and 5 a model

is developed which calculates the scattering and diffraction from a singly-curved convex

surface, with large slowly varying radius of curvature. The initial model is developed for

a perfect electric conducting (PEC) surface and determines induced surface currents in a

highly accurate fashion. Unlike GTD techniques for convex surfaces the technique requires

no numerical integration or complex mathematical analysis to determine these currents. For

a convex surface with large, slowly varying radius of curvature, the induced surface cur-

rents can be approximated locally by those of a circular cylinder and the solution of this

canonical problem is the first step in developing a model of the induced surface currents on

a general convex surface. In Chapter 4, a macromodel for the induced surface currents on

a circular PEC cylinder, when excited by a plane wave at oblique incidence, is first devel-

oped. This macromodel of the surface currents is based on the definitions of the Physical

Theory of Diffraction (PTD) [6] in which the total surface currents are decomposed into a

uniform, or physical optics (PO) component and a non-uniform or diffraction component,

which is a correction to the PO solution. Application of this macromodel produces highly

accurate surface currents for cylinders of any radius above one wavelength. This current is

generated by a simple scaling and interpolation of the exact currents on a reference cylinder

of moderate radius. In Chapter 5, the method is extended to general, singly-curved, convex

surfaces using existing methods found in the literature. The model is first applied to an el-

liptical cylinder and compared with results from a Method of Moments (MoM) numerical

code. The model is then applied to a parabolic surface and results are compared to those

generated by applying Kirchhoff (knife-edge) diffraction techniques.

In Chapter 6 this thesis work is summarized and conclusions drawn as well as sugges-

tions for future work.
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CHAPTER 2

Fields of an Infinitesimal Dipole Above an Impedance

Surface: Effect of the Homogeneous Surface

In this chapter and the next the effects of a lossy earth on the fields of an infinitesimal

dipole are examined. These effects can be modeled locally as a flat, planar, impedance

surface and the surface can contain an impedance transition such as a river or sea/land in-

terface. The problem can be decomposed into the effect of the homogeneous surface and

the effect caused by some impedance transition in the surface such as would be caused by

a river, sea/land interface, or swamp/dry land transition. In this chapter the effect of the ho-

mogeneous surface on the dipole fields is first discussed, with the effect of the impedance

transition as well as the combined effect of the homogeneous surface and impedance transi-

tion analyzed in the next. In order to avoid confusion, in the next two chapters the following

terminologies are adopted: The effect of the homogeneous surface on the total dipole fields

will be referred to as the diffracted fields, while the effect of the impedance transition is

defined as the scattered fields.

Calculation of the fields of an infinitesimal dipole radiating above a homogeneous

impedance half-space is a form of the classic Sommerfeld problem of calculating the fields

of an infinitesimal dipole above a lossy half-space. A solution to this problem was first

formulated by Arnold Sommerfeld in 1909 [7] and the resulting expressions for the tra-
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ditional solution consist of integrals of the Sommerfeld type which cannot be evaluated

in closed form and due to their highly oscillatory nature are difficult to evaluate numeri-

cally. A form of these integrals is thus sought, which retains the rigor and generality of

the original formulation, while making them more conducive to numerical computation.

By application of an integral transform method known as exact image theory explicit ex-

pressions are derived for a dipole of arbitrary orientation, above an impedance surface. A

spectral domain representation of the dipole fields, of a form not previously seen in the

literature, is first given. To apply exact image theory the reflection coefficients of the spec-

tral domain representation are cast in the form of the Laplace transform of an exponential

function. By exchanging the order of integration, the spectral domain integration is per-

formed analytically and field expressions are obtained which consist of rapidly converging

integrals in the Laplace domain. As no approximations are made, these expressions are

exact, and valid for any arbitrary source alignment or observation position. It is shown

that the formulation for a horizontal dipole contains an image in the conjugate complex

plane resulting in a diverging exponential term not previously discussed in the literature.

Comparison of numerical results from exact image theory and the original Sommerfeld type

expressions shows good agreement as well as a speed-up in computation time of several or-

ders of magnitude, which depends on the distance between the transmitter and the receiver.

This formulation can effectively replace the approximate asymptotic expressions used for

predicting wave propagation over a smooth planar ground (having different regions of va-

lidity) and in conjunction with the techniques of Chapter 3 (diffraction from an impedance

surface with one-dimensional impedance transition) provides a complete methodology for

the analysis of radio wave propagation over a smooth planar ground which can contain a

general, one-dimensional impedance transition.
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2.1 Introduction: The Sommerfeld Problem

The problem of a infinitesimal electric dipole radiating above a lossy half-space was

originally formulated by Arnold Sommerfeld in his classic work published in 1909 [7].

Since then it is an understatement to say that this problem has received a significant amount

of attention in the literature, with literally hundreds of papers published on the subject. The

inclusion of a sign error in the original work prompted much debate, over several decades,

on the existence of a Zenneck type surface wave and its significance in the fields generated

by a vertical electric dipole. The complete history of the problem is beyond the scope of this

thesis, but suffice to say that independent derivations by Weyl [8], Sommerfeld [9], van der

Pol and Niessen, [10] and Wise [11] confirmed the sign error, although Sommerfeld himself

never admitted to any error in the original 1909 work. The corrected formulation confirmed

the existence of a surface wave for certain values of impedance and observation angles, but

showed its contribution to the total field only significant within a certain range of distances,

dependent on the impedance of the half-space (Sommerfeld numerical distance). Readers

are referred to the work of Norton [12, 13] for a concise formulation of the problem, with

correct sign, and Ba˜nos [14] for a complete perspective of the historical development of the

mathematics of the problem.

The Sommerfeld solution is expressed in terms of integrals which cannot be evaluated

in closed form and due to their highly oscillatory nature are difficult to evaluate numeri-

cally. Numerous techniques, both analytic and numeric, have been applied to evaluate the

Sommerfeld integrals in an approximate fashion. To evaluate the Sommerfeld integrals an-

alytically standard asymptotic techniques, such as the method of steepest descent (Saddle

Point method), are typically applied [15, 16]. These techniques are valid when distance

between source and observation is large and contributions from poles (surface wave) and

branch cuts (lateral wave) must be accounted for when deforming the contour. For source

and observation near the surface the direct and reflected waves (geometrical optics (GO)

term, first order Saddle point) tend to cancel and higher order terms in the asymptotic ex-
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pansion are dominate. Norton interpreted this effect as a type of surface wave and thus

these higher order terms are typically referred to in the literature as a Norton Surface Wave

[12, 13]. For a highly lossy surface (small normalized impedance) the pole approaches the

saddle point and their contributions cannot be separated. In this case standard saddle point

techniques cannot be applied and an alternate asymptotic technique is necessary [15, 16].

To evaluate the Sommerfeld type integrals numerically, in an approximate fashion, several

techniques have been proposed. Parhamiet. al [17] proposed a method, valid for a vertical

electric dipole, in which the integration contour is deformed to the steepest descent path.

The integral is then solved asymptotically when distance between image and observation

is large, and numerically when this distance is small. Again poles and branch cuts must be

accounted for when the contour deformation encounters them and the technique requires

evaluation of Hankel functions of complex argument. Michalski [18] improved on this

method by proposing a variation in the way a branch cut is handled. Johnson and Dudley

[19] proposed a method, valid for small distances between image and observation, in which

an analytic technique is applied to reduce the oscillatory nature of the Sommerfeld inte-

grand. While these techniques improve the convergence properties of the Sommerfeld type

integrals they require transformations which increase the complexity of the formulation

and, as in the case of the asymptotic solutions, are not valid for all source and observation

positions, and electrical parameters.

As none of these analytical/numerical techniques are valid for general source orienta-

tion and observation location, or arbitrary impedance values, a solution is sought which

transforms the Sommerfeld type expressions into a form which retains the rigor and gener-

ality of the original formulation, while improving the computational efficiency to a degree

which makes evaluation of the resulting exact expressions practical from a numerical stand-

point. In order to improve the convergence properties of the Sommerfeld type integrals, an

integral transform technique known as exact image theory is applied. In this method an in-

tegral transform, in the form of the Laplace transform of an exponential function, is applied
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to the reflection coefficients of the Sommerfeld type integrals, resulting in expressions now

consisting of a double integral, one in the original spectral domain and one in the Laplace

domain. Application of appropriate identities allows for analytical evaluation of the integral

in the spectral domain and the remaining integral expressions in the Laplace domain are

dominated by a rapidly decaying exponential. These integral expressions are exact, with no

approximations made and the decaying exponential in the integrand results in significantly

improved convergence properties over the original formulation. The form of these integral

expressions can be interpreted as a distributed line source, located at the image point of the

dipole source, and extending into the complex plane.

Evaluating the Sommerfeld expressions as a type of distributed image was first pro-

posed by Booker and Clemmow [20]. They recognized that the first order term in the

asymptotic expansion of the field expressions in the upper half-space for a vertical dipole

was equivalent to straight edge (Kirchhoff) diffraction around a half-screen, if the screen

extended from the physical image point, vertically to infinity (in the upper half-space). The

field distribution in the lower half-space was in the form of a Fresnel type integral and could

be interpreted as a distributed line source beginning at the same physical image point and

extending to infinity in the lower half space. Representation of the reflection coefficients in

the Sommerfeld formulation in terms of the Laplace transform of an exponential function,

for a vertical electric dipole, was apparently first introduced by van der Pol [21] and can

also be seen in the work of Norton and Furutsu [13, 22]. Their intent in applying this type

of integral transformation was to simplify the asymptotic evaluation of the Sommerfeld

formulation by modifying the integrand into a more well behaved form. Interpretation of

this modified form of the integrand, for a vertical electric dipole, as a distributed image

source located in the complex plane was apparently first proposed by Felsen and Marcuvitz

[15], who recognized the improved convergence properties of the integrand for numerical

computation. Lindell and Alanen extended the technique to that of electric and magnetic

dipoles of arbitrary orientation radiating above a dielectric half-space [23, 24, 25]. For the
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dielectric case there is no exact transform for the reflection coefficient and the formulation

by Lindell and Alanen for the vertical electric dipole involves a decomposition of the kernel

function of the Laplace transform. For the case of a horizontal electric dipole only a formal

solution is presented, with no explicit expressions or detailed interpretation of image be-

havior. This might have been due to the fact that for a general half-space dielectric medium

exact analytical expressions for the image currents do not exist. However, such expressions

can be obtained for impedance surfaces and the behavior of the image currents for arbitrary

dipole orientation can be studied.

In this chapter exact image theory is applied to the problem of an electric dipole, of

arbitrary orientation, radiating above an impedance half-space. In Section 2.2 a spectral

domain representation of a form not previously seen in the literature, is given for the dipole

electric fields. For interested readers the derivation of this spectral form can be found in

Appendix A. This representation of the dipole fields, which consists of integrals of the

Sommerfeld type, is the starting point for all derivations that follow. Appropriate Bessel

identities are then given which are needed to transform the spectral domain representation

into a form which contains Bessel functions of the first kind, of order zero only, an initial

step in the derivation. The case of a vertical electric dipole is first examined, in a manner

similar to that of Felsen and Marcuvitz [15]. The methodology is then extended to the case

of a horizontal electric dipole, where it is noted that duality cannot be applied to solve the

equivalent problem of a vertical magnetic dipole radiating above a impedance surface. As

mentioned, integral expressions for the horizontal dipole show a diverging exponential term

which is not apparent in the formulation by Lindell and Alanen for a dielectric half-space

[25]. In Section 2.3 results are given including a comparison of field quantities generated by

evaluation of the exact image integrals, and the original Sommerfeld type expressions. In

addition a timing comparison shows numerical evaluation of the exact image formulation

to be several orders of magnitude faster than numerical evaluation of the corresponding

Sommerfeld type integrals. In Section 2.4 the chapter is summarized.
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2.2 Exact Image Formulation

Consider the problem geometry shown in Figure 2.1. A small dipole of lengthl , car-
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Figure 2.1: Problem geometry, dipole above an impedance plane

rying currentI0 and with orientation̂l is radiating in free space above an infinite, homo-

geneous impedance plane, representative of a lossy Earth. The characteristic impedance

of free space and of the impedance plane are defined asZ0 andZ1, respectively. The total

fields above the impedance plane propagate with the propagation constant of free spacek0,

and can be decomposed into a direct wave and diffracted wave given by

ET(r ; r0) = Ei(r ; r0)+Ed(r ; r0); (2.1)

wherer =
p

x2+y2+z2 is the distance to the observation point andr0 =
p

x0
2+y0

2+z0
2

is the distance to the source location. Also in (2.1) superscriptsT, i andd are indicative of

the total, direct and diffracted fields respectively, the diffracted fields being the perturbation

in the total fields caused by the impedance half-space.Ei(r ; r0) can be calculated directly

and the expression for it is given in Appendix A. Of interest are the diffracted fields and
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we begin the exact image derivation with an alternate spectral domain representation of the

dipole fields. As the focus of this work is the transformation of the this representation into

a form more conducive to numerical evaluation, the derivation will not be repeated here.

Interested readers are referred to Appendix A for an explicit derivation of these expressions.

The spectral representation of the diffracted electric fields of a dipole of orientationl̂ , where

l̂ = lxx̂+ lyŷ+ lzẑ, located at the origin, and radiating above an infinite impedance plane are

given by

Ed(r ; r0) =
k0Z0I0l

4π
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�ẑ

∞Z

0

kρ

kz
Γv[

k2
ρ

k2
0

lzJ0(kρD)+
ikzkρ

k2
0

(lxcosφ

+lysinφ)J1(kρD)] eikz(z+z0) dkρ

�
;

(2.2)

whereΓh and Γv are the horizontal (TE toz) and vertical (TM toz) Fresnel reflection

coefficients, respectively, given by

Γh =
η�k0=kz

η+k0=kz
; Γv =

�η+kz=k0

η+kz=k0
; (2.3)
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andη = Z1=Z0, is the normalized impedance of the half-space. In (2.2)kz is the dependent

variable defined ask2
z = k2

0�k2
ρ, andJ0;J1, andJ2 are Bessel functions of the first kind, of

order 0;1, and 2 respectively. Also in (2.2)D defines the radial distance between source

and observation points,z the height of the observation point,φ is the angle betweenD and

thex axis, withz0 being the height of the source point, all of which are seen in Figure 2.1.

The integrals in (2.2) are Sommerfeld type integrals and as already stated they are

highly oscillatory in nature, with poor convergence properties making them difficult to

evaluate numerically, especially for the case ofD� (z+z0). To improve the convergence

behavior of these integrals exact image theory is applied, by the application of integral

transforms and appropriate identities. The method is exact with no approximations made

and the resulting expressions are valid for any arbitrary source and observation position.

The basic methodology is to first rewrite the spectral domain formulation of (2.2) in terms

of zeroth order Bessel functions of the first kind only. Terms containing reflection coef-

ficients in the resulting expressions are expanded where necessary, and then rewritten in

the simple form of the Laplace transform of an exponential function. Order of integration

is exchanged and the spectral domain integration overkρ in (2.2) is performed in an an-

alytic fashion. The remaining expressions in the Laplace domain contain integrals which

are dominated by rapidly decaying exponentials and exhibit significantly improved con-

vergence properties over the original Sommerfeld expressions. In the next section relevant

transforms and identities will be given that are needed for the derivations that follow.

2.2.1 Transforms & Identities

In this section transforms and identities which are used throughout the derivations that

follow are defined. To apply exact image theoryΓh andΓv, given in (2.3), must be defined

in terms of a Laplace transform of an exponential function.Γh andΓv can be rewritten as,

Γh = 1� 2k0=η
kz+k0=η

= 1� 2κ
kz+κ

; (2.4)
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whereκ = k0=η, and

Γv = 1� 2ηk0

kz+ηk0
= 1� 2γ

kz+ γ
; (2.5)

whereγ = ηk0. Now recognizing that

∞Z

0

e�ζξ e�kzξ dξ =
1

kz+ζ
; (2.6)

whereζ is some constant coefficient, we can rewriteΓh andΓv in the form of a Laplace

transform of an exponential function or,

Γh = 1�2κ
∞Z

0

e�(κ+kz)ξ dξ; (2.7)

and

Γv = 1�2γ
∞Z

0

e�(γ+kz)ξ dξ: (2.8)

In the application of exact image theory to the case of a horizontal dipole, several terms

arise in the derivation which containΓh andΓv, however cannot be directly expressed as the

Laplace transform defined in (2.6). For the sake of simplicity and in order to minimize the

complexity of the resulting expressions it is desirable that all integral transforms applied

be in the form of this Laplace transform. For a horizontal dipole this is accomplished by

expanding the terms, where necessary, by partial fractions into a form which allows them

to be directly written in the form of (2.6).

In applying exact image theory to the Sommerfeld type expressions for the fields of

a dipole above an impedance surface an initial step in the derivation is to apply Bessel

function identities in order to rewrite (2.2) in terms ofJ0 only. To do this the following
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identities are needed:

1

k2
0

∂2

∂x2J0(kρD) =� k2
ρ

2k2
0

[J0(kρD)�cos2φJ2(kρD)]; (2.9)

1

k2
0

∂2

∂y2J0(kρD) =� k2
ρ

2k2
0

[J0(kρD)+cos2φJ2(kρD)]; (2.10)

1

k2
0

�
∂2

∂x2 +
∂2

∂y2

�
J0(kρD) =�k2

ρ

k2
0

J0(kρD); (2.11)

1

k2
0

∂2

∂x∂y
J0(kρD) =

k2
ρ

2k2
0

sin2φJ2(kρD); (2.12)

1

k2
0

∂2

∂x∂z
J0(kρD) =�i cosφ

kzkρ

k2
0

J1(kρD); (2.13)

1

k2
0

∂2

∂y∂z
J0(kρD) =�i sinφ

kzkρ

k2
0

J1(kρD): (2.14)

An additional identity which will allows for the analytic evaluation of the spectral do-

main integrals overkρ in the exact image expressions is

eik0R

R
= i

∞Z

0

J0(kρD) eikz(z+z0)
kρ

kz
dkρ; (2.15)

whereR=
p

(x�x0)2+(y�y0)2+(z+z0)2. The identity in (2.15) relates the free space

Green’s function to an alternate representation in the form of a Sommerfeld integral and is

appropriately referred to in the literature as the Sommerfeld Integral Identity.
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2.2.2 Vertical Electric Dipole

To find the diffracted fields generated by a vertical (z directed) dipole, the components

of (2.2) containinglz are first considered and then modified to include only zeroth order

Bessel functions. The reflection coefficients are rewritten in terms of their Laplace trans-

form and then the order of integration is exchanged in order to evaluate the integral in terms

of kρ analytically, using the Sommerfeld Integral Identity given by (2.15).

For a vertical dipole (2.2) reduces to

Ed
v(r ; r0) =

k0Z0I0l
4π

lz

∞Z

0

kρ

kz
Γv

�
ikzkρ

k2
0

cosφJ1(kρD) x̂

+
ikzkρ

k2
0

sinφJ1(kρD) ŷ� k2
ρ

k2
0
J0(kρD) ẑ

�
eikz(z+z0) dkρ;

(2.16)

where the subscriptv in (2.16) designates a vertical dipole. Applying the identities in

Section 2.2.1, (2.16) can be rewritten as

Ed
v(r ; r0) =�Z0I0l

4πk0
lz

�
∂2

∂x∂z
x̂+

∂2

∂y∂z
ŷ�

�
∂2

∂x2 +
∂2

∂y2

�
ẑ

�
∞Z

0

kρ

kz
Γv J0(kρD) eikz(z+z0) dkρ:

(2.17)

Now rewritingΓv in the form of (2.8), and substituting into (2.17) gives

Ed
v(r ; r0) =�Z0I0l

4πk0
lz

�
∂2

∂x∂z
x̂+

∂2

∂y∂z
ŷ�

�
∂2

∂x2 +
∂2

∂y2

�
ẑ

�
� ∞Z

0

kρ

kz
J0(kρD) eikz(z+z0) dkρ

�2γ
∞Z

0

∞Z

0

kρ

kz
J0(kρD) e�γξeikz(z+z0+iξ) dkρ dξ

�
:

(2.18)

The integrals in (2.18) in terms ofkρ can be solved analytically by applying the Sommerfeld
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integral identity of (2.15), giving the final form of the diffracted electric fields for a vertical

(z directed) dipole

Ed
v(r ; r0) =

iZ0I0l
4πk0

lz

�
∂2

∂x∂z
x̂+

∂2

∂y∂z
ŷ�

�
∂2

∂x2 +
∂2

∂y2

�
ẑ

�
�

eik0R

R
�2γ

∞Z

0

e�γξ eik0R0(ξ)

R0(ξ)
dξ
�
;

(2.19)

whereR is as previously defined andR0(ξ) =
p

(x�x0)2+(y�y0)2+(z+z0+ iξ)2. The

integrand in the last term of (2.19) can be interpreted as a distributed image source in the

complexzplane located at�z0, and as seen in Figure 2.2. In this integrand both exponential

factors,�γξ, and�k0R0(ξ), decay rapidly asξ becomes large. Due to this, the integral in

(2.19) converges very rapidly, for all source and observation locations.

Im[z]

Re[z]

z - plane

-z

e-γξ

ξ

|I           |image

0

Figure 2.2: Exact image inz-plane

2.2.3 Horizontal Electric Dipole

Before beginning the derivation of the fields from a horizontal electric dipole a brief

note about the application of duality is relevant. Having solved the problem of the elec-

tric fields from a vertical electric dipole above an impedance half-space, the problem of
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the magnetic fields of a vertical magnetic dipole above a similar half-space can be im-

mediately written by applying duality. Through Maxwell’s equations, electric fields are

obtained, equivalent to those generated by a loop of electric current in thex�y plane, and

it would appear at first glance that a solution which gives some insight into the problem of

a horizontal electric dipole is at hand. Several problems arise however. First it is desired

to obtain accurate dipole fields for any dipole orientation and observation and information

about the effects of the dipole pattern are lost in the dual solution. Also in applying dual-

ity the case of an impedance surface is transformed to that of an admittance surface, which

gives little physical insight into the problem. Because of these issues, the case of a horizon-

tal dielectric dipole radiating above an impedance half-space will be derived directly. As

the scalar potential is not obvious in the expressions for a horizontal dipole, the derivation

to be presented, while somewhat more cumbersome algebraically, results in complete field

expressions in terms of the exact image formulation for arbitrary dipole orientation in the

x�y plane.

In a manner similar to that of the vertical dipole appropriate terms in the Sommerfeld

type expressions for a horizontal dipole will be put in terms ofJ0 only to facilitate eval-

uation of the integral overkρ analytically. Initially thex component of the electric field

is derived. They component is determined in the same fashion, which for brevity will

not be repeated, and only the final result is provided. Finally thez component of the field

generated by a horizontal electric dipole is derived.

To derive thex component of the diffracted electric field for a horizontal electric dipole

the identities of (2.9) through (2.14) are applied, and noting thatk2
z = k2

0� k2
ρ, (2.2), be-
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comes

Ed
h(r ; r0) � x̂= k0Z0I0l

4π

∞Z

0

�
lx
k2

ρ

�
Γh

∂2

∂y2 �Γv
k2

0�k2
ρ

k2
0

∂2

∂x2

�

� ly
k2

ρ

�
Γh+Γv

k2
0�k2

ρ

k2
0

�
∂2

∂x∂y

�
kρ

kz
J0(kρD) eikz(z+z0)dkρ;

(2.20)

where the subscripth designates a horizontal dipole. (2.20) can be rewritten as

Ed
h(r ; r0) � x̂= k0Z0I0l

4π

�
lx(

∂2

∂y2 fa� ∂2

∂x2 fb+
1

k2
0

∂2

∂x2 fc)

�ly
∂2

∂x∂y
( fa+ fb� 1

k2
0

fc)

�
;

(2.21)

where

fa =

∞Z

0

kρ

kz
J0(kρD) eikz(z+z0)

Γh

k2
ρ

dkρ; (2.22)

fb =

∞Z

0

kρ

kz
J0(kρD) eikz(z+z0)

Γv

k2
ρ

dkρ; (2.23)

and

fc =

∞Z

0

kρ

kz
J0(kρD) eikz(z+z0) Γv dkρ: (2.24)

While fc can be evaluated directly by expressingΓv in the form of (2.8) (as in the previous

section, eqns. (2.17), (2.18), and (2.19)), the termsΓh=k2
ρ andΓv=k2

ρ, in fa; and fb, cannot

be directly written in terms of the Laplace transform of (2.6), however by applying partial
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fraction expansion they can be put in the appropriate form. Defining these terms as

A=
Γh

k2
ρ
; B=

Γv

k2
ρ
; (2.25)

writing Γh andΓv explicitly in terms ofk0; kz; κ, andγ (see (2.4) and (2.5)), and recognizing

thatk2
ρ = k2

0�k2
z = (k0�kz)(k0+kz), A andB can be written as

A=
kz�κ

(k0�kz)(k0+kz)(kz+κ)
; (2.26)

and

B=
kz� γ

(k0�kz)(k0+kz)(kz+ γ)
: (2.27)

Expanding (2.26) and (2.27) by partial fractions gives expressions of the following form

for A andB

A=
A1

(k0�kz)
+

A2

(k0+kz)
+

A3

(kz+κ)
; (2.28)

B=
B1

(k0�kz)
+

B2

(k0+kz)
+

B3

(kz+ γ)
; (2.29)

where

A1 =�B1 =
η�1

2k0(η+1)
;

A2 =�B2 =
η+1

2k0(η�1)
;

A3 =�B3 =
2η

k0(1�η2)
;

(2.30)
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and where the coefficients in (2.30) are given explicitly in terms of normalized impedance

η andk0, which will be used in the final expressions for thex component of the diffracted

electric fields. Now representing each term of the partial fraction expansions of (2.28) and

(2.29) in the form of the Laplace transform of (2.6), changing the order of integration as

before and applying (2.15) to evaluate the integral overkρ analytically, gives the following

expressions forfa and fb

fa =�i

∞Z

0

�
e�k0ξ (A1

eik0R00(ξ)

R00(ξ)
+A2

eik0R0(ξ)

R0(ξ)
)+A3 e�κξ eik0R0(ξ)

R0(ξ)

�
dξ; (2.31)

fb =�i

∞Z

0

�
e�k0ξ (B1

eik0R00(ξ)

R00(ξ)
+B2

eik0R0(ξ)

R0(ξ)
)+B3 e�γξ eik0R0(ξ)

R0(ξ)

�
dξ; (2.32)

whereR00(ξ) =
p

(x�x0)2+(y�y0)2+(z+z0� iξ)2. Also the expression forfc is given

by

fc =�i

�
eik0R

R
�2γ

∞Z

0

e�γξ eik0R0(ξ)

R0(ξ)
dξ
�
: (2.33)
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Noting thatB=�A, (2.21) can now be rewritten as

Ed
h(r ; r0) ��� x̂= ik0Z0I0l

�
lx

�
∂2

∂x2 +
∂2

∂y2

�
∞Z

0

�
1�η

2k0(1+η)
e�k0ξ eik0R00(ξ)

4πR00(ξ)
+

1+η
2k0(1�η)

e�k0ξ eik0R0(ξ)

4πR0(ξ)

�
dξ

� lx
2η

k0(1�η2)

∞Z

0

�
e�κξ ∂2

∂y2

eik0R0(ξ)

4πR0(ξ)
+e�γξ ∂2

∂x2

eik0R0(ξ)

4πR0(ξ)

�
dξ

� 1

k2
0

�
lx

∂2

∂x2 + ly
∂2

∂x∂y

��
eik0R

4πR
�2k0η

∞Z

0

e�γξ eik0R0(ξ)

4πR0(ξ)
dξ
�

+ ly
∂2

∂x∂y

�
2η

k0(1�η2)

� ∞Z

0

(e�κξ�e�γξ)
eik0R0(ξ)

4πR0(ξ)
dξ
�
;

(2.34)

In (2.34) an additional term is observed, containing the exponential factorR00(ξ), which

is not present in the expressions for the vertical dipole and also is not evident in the for-

mulation by Lindell and Alanen for a horizontal dipole over a dielectric half-space [25].

This denotes the image location in the conjugate complex z-plane which results in an ex-

ponentially diverging factor. While this term is an exponentially growing term, the image

current distribution, which depends on the surface impedance, is exponentially decaying at

a greater rate and dominates the integrand (ξ > Im[R00(ξ)]). Because of this the integral in

the first term of (2.34) still exhibits the rapid convergence properties inherent in the integral

expressions generated by the application of exact image theory.

The y component of the diffracted electric field generated by a horizontal dipole is

derived in a similar fashion and for the sake of brevity is not repeated here. The expression
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for it is given by

Ed
h(r ; r0) ��� ŷ= ik0Z0I0l

�
ly

�
∂2

∂x2 +
∂2

∂y2

�
∞Z

0

�
1�η

2k0(1+η)
e�k0ξ eik0R00(ξ)

4πR00(ξ)
+

1+η
2k0(1�η)

e�k0ξ eik0R0(ξ)

4πR0(ξ)

�
dξ

� ly
2η

k0(1�η2)

∞Z

0

�
e�κξ ∂2

∂x2

eik0R0(ξ)

4πR0(ξ)
+e�γξ ∂2

∂y2

eik0R0(ξ)

4πR0(ξ)

�
dξ

� 1

k2
0

�
ly

∂2

∂y2 + lx
∂2

∂x∂y

��
eik0R

4πR
�2k0η

∞Z

0

e�γξ eik0R0(ξ)

4πR0(ξ)
dξ
�

+ lx
∂2

∂x∂y

�
2η

k0(1�η2)

� ∞Z

0

(e�κξ�e�γξ)
eik0R0(ξ)

4πR0(ξ)
dξ
�
:

(2.35)

Derivation of thez component of the diffracted electric field generated by a horizontal

dipole is rather straightforward. Beginning with (2.2) and applying the appropriate identi-

ties we arrive at

Ed
h(r ; r0) � ẑ= 1

k2
0

(lx
∂2

∂x∂z
+ ly

∂2

∂y∂z
)

∞Z

0

kρ

kz
Γv J0 eikz(z+z0) dkρ; (2.36)

and recognizing the integral in (2.36) asfc, thez component of the electric field generated

by a horizontal dipole is given by

Ed
h(r ; r0) � ẑ=�ik0Z0I0l

�
1

k2
0

(lx
∂2

∂x∂z
+ ly

∂2

∂y∂z
)

�
eik0R

4πR
�2γ

∞Z

0

e�γξ eik0R0(ξ)

4πR0(ξ)
dξ
��

:

(2.37)

2.3 Analysis & Results: Exact Image Theory

In this section a validation of the exact image method will be given, along with timing

results showing the significant speed-up in computation time over that of the original Som-
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merfeld type expressions. In the results that follow all integrals are numerically evaluated

using the Gaussian quadrature numerical integration package Quadpack contained in the

Slatec mathematical computation libraries. The Quadpack routines require defining both

an absolute and relative error parameter, and these were set at 0:0 and 0:001 respectively.

For the initial comparison of the exact image formulation to the original Sommerfeld

type expressions, consider an electric dipole located 2m above the impedance surface (z0 =

2m), at the coordinate origin (x0 = y0 = 0) and radiating at 30 MHz. All field quantities are

normalized to dipole lengthl , currentI0 and wavelengthλ (E=(I0l=λ)), for all cases. The

geometry and coordinates are again as shown in Figure 2.1. The observation is on a radial

line, 2m above the impedance surface (z= 2m), ranging from 10m to 10010m along thex

axis (D = 10! 10010m; φ = 0) and field values are calculated at 11 data points along this

line. The normalized surface impedance value is chosen to beη = 0:3� i0:1 corresponding

to the impedance of San Antonio Gray Clay Loam with a 5% gravimetric moisture content

and a density of 1:4 g=cm3, derived from the values of permittivity and conductivity given

by Hipp [1], and as shown in Table 1.1.

Figure 2.3 shows thex component of the diffracted electric field, for a vertical dipole,

for this test case (no directx field component in this case). In Figure 2.3 results from nu-

merical evaluation of the exact image expressions are compared to results from numerical

evaluation of the original Sommerfeld type expressions. As can be seen the two results

are in excellent agreement. For the same test case Figure 2.4 shows the diffracted and total

(direct + diffracted)zelectric field components for a vertical (zdirected) dipole, again com-

paring the exact image calculation to those of the Sommerfeld formulation. As can be seen

in Figure 2.4 the diffracted fields are in good agreement, except for a slight discrepancy at

4000m, where evaluation of the Sommerfeld type integrals did not completely converge.

The total fields in Figure 2.4 show increased error at 4000m for the Sommerfeld solution

and also at distances beyond 6000m. This is due to the fact that the total field is the result

of two large numbers (direct and diffracted field) tending to cancel, for source and obser-
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Figure 2.3:x-component of total electric fields (diffracted only for this case) for a vertical
(ẑ) electric dipole, exact image (———–) compared with Sommerfeld (�����).
Dipole is located atx0 = y0 = 0,z0 = 2mand operating at 30 MHz. Observation
is atz= 2m, D = 10�10010m, along theφ = 0 (x axis). Normalized Surface
impedance value isη = 0:3� i0:1.

vation near the impedance surface. This has the effect of highlighting the numerical error

in the Sommerfeld integrals for the diffracted field, while the curves generated by the exact

image formulation decay smoothly as expected, thus indicating better convergence in the

numerical solution. This in fact is the case where higher order terms (Norton surface wave)

in the approximate asymptotic solutions dominate the total fields forR� (z+z0). To eval-

uate the effects of the Norton surface wave we observe that the expression forfc given in

(2.24) is simply thez directed potential for a vertical dipole. Defining this potential asGz,

the asymptotic solution ofGz can be decomposed as

Gz = Gi
z+Ggo

z +Gnsw
z (2.38)

where superscripti indicates the direct wave,go is the Geometrical Optics (GO) term,
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Figure 2.4:z-component of diffracted (exact image (� � � � �) and Sommerfeld (Æ Æ Æ Æ Æ)) and
total electric fields (exact image (———–) and Sommerfeld (� � � � ))
for a vertical (ẑ) electric dipole. Dipole is located atx0 = y0 = 0, z0 = 2m and
operating at 30 MHz. Observation is atz= 2m, D = 10�10010m, along the
φ = 0 (x axis). Normalized Surface impedance value isη = 0:3� i0:1.

equivalent to the first order Saddle point solution, andnsw indicates the Norton surface

wave component of the asymptotic solution, which is simply the higher order terms in the

Saddle point expansion, and which decay as 1=R2. The first two terms in (2.38) are given

by

Gi
z+Ggo

z =
eik0R0

4πR0
+Γv;sp

eik0R

4πR
(2.39)

whereR0 =
p

(x�x0)2+(y�y0)2+(z�z0)2 andΓv;sp is the vertical Fresnel reflection

coefficient evaluated at the saddle point, and given by

Γv;sp=
cosθ0�η
cosθ0+η

: (2.40)
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In (2.40) cosθ0 = (z+ z0)=R, andθ0 is as defined in Figure 2.1. Equation (2.39) can be

rewritten as

Gz =
eik0R0

4πR0
� eik0R

4πR
+

2cosθ0

cosθ0+η
; (2.41)

As source and observation move near the impedance surface the first two terms in (2.41)

tend to cancel and terms which decay as 1=ρ2 tend to dominate. These terms are implicit

in the third term of (2.41) and the higher order terms of the asymptotic expansion (Norton

surface wave). Assuming thatjηj � cosθ0, expanding (2.41) in a Taylor series, and rep-

resenting cosθ0 in terms ofz, z0, andρ, the decay as 1=ρ2 as well as the dependence of

(2.41) onη become explicit and (2.41) now becomes

Gi
z+Ggo

z =
1

2πρ2 (�ik0zz0+
z+z0

η
) eik0ρ; (2.42)

where in (2.42) it is assumed that a pole is not in the vicinity of the saddle point. Again

assuming thatjηj � cosθ0, the higher order terms in the asymptotic expansion (Norton

surface wave) are given by,

Gnsw
z =

p�i
8πk0ρ2

�
1
4
� 4

η2

�
eik0ρ: (2.43)

Figure 2.5 shows they components of the total electric field for a horizontal (y directed)

dipole, and for the same test case. Again the convergence problems of the Sommerfeld

type integrals are apparent in Figure 2.5 in the degradation of the appropriate curve beyond

2000m.

Having compared the accuracy of the exact image formulation to that of the original

Sommerfeld expressions the significant improvement in computational time will now be

discussed. In Figure 2.6 and Figure 2.7 the computation time (in seconds), required to cal-

culate all field components at each observation point is plotted for this same test case. The
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Figure 2.5:y-component of total electric fields for a horizontal ( ˆy) electric dipole, exact
image (———–) compared with Sommerfeld (� � � � ). Dipole is located
at x0 = y0 = 0, z0 = 2m and operating at 30 MHz. Observation is atz= 2m,
D = 10� 10010m, along theφ = 0 (x axis). Normalized Surface impedance
value isη = 0:3� i0:1.

curves in Figure 2.6 compare the time required for numerical evaluation of the Sommerfeld

type solution for the case of a vertical dipole, to the time required for the exact image for-

mulation to perform the same field calculations. Figure 2.7 shows a similar comparison for

a horizontal (y directed) electric dipole. As is obvious from both sets of curves, the com-

putation time required for the exact image calculations are significantly faster than the time

required to calculate the Sommerfeld integrals, in fact over two orders of magnitude faster

as the observation distance goes beyond 2000m. Note that for both methods only necessary

integrals were evaluated, i.e., for example, the integrals containinglx were not called if

the dipole was strictlyz directed (lz component only). In continuing with a comparison of

computation time between exact image and the Sommerfeld integrals, Table 2.1 shows a

comparison of the speed-up in computation time required by the exact image formulation
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Figure 2.6: Time (in seconds) to calculate all electric field components, at each observation
point, for a vertical (ˆz) electric dipole, exact image (———–) and Sommerfeld
(� � � � ). Dipole is located atx0 = y0 = 0, z0 = 2m and operating at
30 MHz. Observation is atz= 2m, D = 10�10010m, along theφ = 0 (x axis).
Normalized Surface impedance value isη = 0:3� i0:1.

over the original Sommerfeld type expressions. Speed-up is defined as the ratio of the time

required to calculate the Sommerfeld expressions to that required to perform the exact im-

age calculations (Sommerfeld time (seconds)/ exact image time (seconds)). In Table 2.1 the

computation time for each method is the time required to calculate all field components at

all observation positions (still eleven data points, fromD= 10! 10010m, φ = 0), again for

the case ofη = 0:3� i0:1, but with varying source and observation heights. As is seen in

Table 2.1 the exact image calculations exhibit a significant speed-up in convergence time,

over the Sommerfeld type expression, for numerical evaluation of the integrals. As a final

comparison of computation times, Table 2.2 shows the speed-up in computation time of

the exact image formulation over the Sommerfeld type expressions, for varying normal-

ized complex impedance values and for eleven data points, fromD = 10! 10010m, φ = 0,
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Figure 2.7: Time (in seconds) to calculate all electric field components, at each observation
point, for a horizontal ( ˆy) electric dipole, exact image (———–) and Sommer-
feld (� � � � ). Dipole is located atx0 = y0 = 0, z0 = 2m and operating at
30 MHz. Observation is atz= 2m, D = 10�10010m, along theφ = 0 (x axis).
Normalized Surface impedance value isη = 0:3� i0:1.

and for source and observation 2m above the impedance surface. Again the exact image

calculations are at least an order of magnitude faster than the Sommerfeld calculations for

all cases except that of a PEC surface.

Also in this section the effects of varying soil moisture on the total electric fields of a

vertical dipole, are presented. The dipole is again radiating at 30 MHz, with source 2m

above the impedance surface, observation is also 2m above the impedance surface, and

again along thex axis fromD = 10 toD = 10010m. Figure 2.8 shows a comparison of the

z component of the total electric fields, calculated using the exact image expressions, for

the same San Antonio Gray Clay Loam previously described, and again with a density of

1:4g=cm3. The curves show field levels for gravimetric moisture contents of 0%, 2.5%, 5%,

10%, and 20%, corresponding to normalized surface impedances (η) of 0:53, 0:38� i0:09,
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Table 2.1: Speed-up in computation time of exact image calculation over Sommerfeld type
integrals for normalized surface impedance of 0.3-i0.1, eleven data points from
D = 10! 10010m, φ = 0 and varying source/observation heights.

z0(m) z(m) Speed-up, Vertical Dipole Speed-up, Horizontal Dipole
2 2 303.92 565.96
2 200 54.89 106.92

200 2 56.11 107.00
200 200 65.00 110.00

Table 2.2: Speed-up in computation time of exact image calculation over Sommerfeld type
integrals for varying complex impedance,η. Source and receiver are 2m above
surface for all cases. Eleven data points are calculated fromD = 10! 10010m,
φ = 0.

η Speed-up, Vertical Dipole Speed-up, Horizontal Dipole
0.0-i0.0 5.41 13.86
0.1-i0.0 282.00 613.80
0.3-i0.0 318.17 624.60
0.5-i0.0 490.38 715.92

0.003-i0.1 9.81 31.03
0.003-i0.3 10.03 18.3
0.003-i0.5 9.96 14.51
0.1-i0.1 254.29 425.62
0.3-i0.3 266.00 452.20
0.5-i0.5 348.25 510.28

0:3� i0:1, 0:15� i0:09, 0:12� i0:07, respectively. As can be seen in Figure 2.8 the effect

of increasing moisture content (η is decreased) is to increase the vertical component of the

total electric fields by as much as 20 dB over the range shown. This dependence onη can

be seen in the asymptotic form of the fields ((2.42)). A similar analysis for a horizontal

dipole (y directed and again observation along thex axis) showed the total field levels to be

essentially insensitive to varying soil moisture.

As a final example the frequency response of the field of a vertical dipole over the

impedance half-space is examined. The frequency response is indicative of the dispersive

effects of the half-space, and these effects are of significant interest in the point to point
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Figure 2.8: Effect of varying soil moisture onz-component of total electric fields for a
vertical (ẑ) dipole located at the origin, 2m above an impedance surface, (x0 =
y0 = 0;z0 = 2m) and operating at 30 MHz. Observation is also 2m above the
surface and extends radially from the source along theφ = 0 (x axis) from
D = 10�10010m. Results are for soil moisture of 0% (η = 0:53, (———–)),
2.5% (η = 0:38� i0:09, (�����)), 5% (η = 0:3� i0:1, (� � � �)), 10% (η =
0:15� i0:09, (ÆÆÆÆÆ)) and 20% (η = 0:12� i0:07, (�� �� �� �))

transmission of wideband radio signals over the earth. For this example the source and ob-

servation are placed 2mabove the surface and the frequency response is examined at radial

distanceD = 300m from the source. Frequency is swept from 30 MHz to 130 MHz in steps

of 142.86 KHz. For obvious reasons the electric field quantities are not normalized toI0l=λ

as in the previous examples. Also field expressions must be multiplied by the dipole length

(in meters), and in this example the length is set at 0:2307m (λ=10 at 130MHz). As the

normalized impedance of the surface varies with frequency, the appropriate real compo-

nent of the relative permittivity (ε0r ) and conductivity (σ) are selected from the tables given

by Hipp [1] (Table 1.1) and the normalized impedance calculated from these parameters

at each frequency. As previously mentioned these values are slowing varying functions of
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frequency so the values given in Table 1.1, are assumed to be constant across the band.

The normalized impedance,η, at each frequency is then given byη = 1=
p

ε0r + iε00r , where

ε00r = σ=(ωε0) andε0 = 8:85� 10�12 is the permittivity of free space. For this example

these values were again chosen to be representative of San Antonio Gray Clay Loam with a

20% gravimetric moisture content and a density of 1:4 g=cm3 (ε0r = 24:0 andσ = 8�10�2

in Table 1.1). Figure 2.9 and Figure 2.10 compare the magnitude and phase of the fre-

quency response of the direct dipole field to that of the total field. It is shown that the
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Figure 2.9: Comparison of the magnitude of the frequency response of the direct field
(———–) to total field (� � � �), for a vertical (ẑ) dipole located at the
origin, 2.0m above the impedance surface (x0 = y0 = 0;z0 = 2:0m) with real
permittivity ε0r = 22:0, conductivityσ = 8� 10�2. Frequency sweep is from
30 to 130 MHz in steps of 142.86 KHz. Observation is also 2.0m above the
surface along theφ = 0 (x axis) and 300m from the source (D = 300m).

magnitude of the frequency response for the total field is monotonic and slowing varying

while the phase is essentially linear and almost identical to the phase of the direct field.

The phase behavior indicates that there is little or no dispersion of the broadband signal in
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Figure 2.10: Comparison of the phase of the frequency response of the direct field
(———–) to total field (� � � �) (in radians), for a vertical (ˆz) dipole
located at the origin, 2.0m above the impedance surface (x0 = y0 = 0;z0 =
2:0m) with real permittivityε0r = 22:0, conductivityσ = 8�10�2. Frequency
sweep is from 30 to 130 MHz in steps of 142.86. Observation is also
2.0m above the surface along theφ = 0 (x axis) and 300m from the source
(D = 300m)

such communications channels. This was found to be true for various complex impedances

corresponding to different moisture content, with the exception of the case of either source

or observation raised above the surface to a point where there is a significant difference in

path delay between the direct and ground (diffracted) waves.

2.4 Chapter Summary: Exact Image Theory

In this chapter the effects of a lossy, homogeneous flat earth on a propagating radio wave

was analyzed. Starting with a spectral domain representation of the fields of an infinitesi-

mal dipole above an impedance half space, the highly oscillatory Sommerfeld type integrals
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inherent in the original formulation, were transformed into a form more conducive to nu-

merical computation. By application of exact image theory, the convergence properties of

these integrals are improved to a degree making them practical for numerical computation

in their rigorous form. The Sommerfeld expressions are written in terms of zeroth order

Bessel functions of the first kind, and the reflection coefficients cast in the form of a simple

Laplace transform of an exponential function. Where necessary terms are expanded by par-

tial fractions so they can be expressed in this form. Order of integration is then exchanged

and the inverse transform from the spectral domain performed analytically. The remaining

expressions consist of integrals whose integrand is dominated by a decaying exponential,

and exhibit rapid convergence qualities. Numerical evaluation of these integrals show good

agreement with results obtained by numerical evaluation of the Sommerfeld type integrals,

while exhibiting a speed up in computation time of several orders of magnitude.

Having formulated a practical method for the efficient and accurate calculation of the

dipole fields above a homogeneous impedance surface, it is now desired to include the

effects of an impedance transition as might be caused by a river or land/sea interface in a

locally flat earth. In the next chapter this effect is accounted for by applying a perturbation

technique in the Fourier domain to solve for unknown surface currents. The method to

be described in Chapter 3 is valid for any general one-dimensional impedance transition,

where the Fourier transform of the impedance transition function exists.
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CHAPTER 3

Fields of an Infinitesimal Dipole Above an Impedance

Surface: Effect of an Impedance Transition

In the previous chapter the effects of a homogeneous impedance surface on the fields

of an infinitesimal dipole were determined in a more efficient fashion by application of

exact image theory to the original spectral domain expressions, in the form of Sommerfeld

type integrals. In this chapter the model is extended to account for the effects of a general

one-dimensional impedance transition on the dipole fields. This transition in an otherwise

homogeneous surface can be representative of a river, trough, or land/sea interface. The

problem of plane wave excitation is first solved and then extended to that of dipole exci-

tation in the standard way by representation of the dipole fields as a continuous spectrum

of plane waves. To derive the model an integral equation is first formulated in the Fourier

domain, and then solved iteratively using a perturbation technique. An analytical solution

is provided to any desired order in terms of multi-fold convolution integrals of the Fourier

transform of the impedance function. For far-field observation the resulting integrals are

solved by applying standard saddle point techniques, resulting in expressions for the in-

duced surface currents which are algebraic to first order in the perturbation series. Also, an

error bound for the perturbation parameter is established and defined in terms of incident

wave polarization and angle. The method is first validated by comparison with Geometri-
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cal Theory of Diffraction (GTD) techniques for an abrupt impedance transition (step insert)

and plane wave excitation. Effects of varying both the width of the insert and perturbation

parameter of the insert are discussed as well as the effect of oblique incidence and a more

gradual transition on the scattered fields. The technique is then integrated with that of the

previous chapter for a homogeneous surface, and the effect of a seashore or land/sea tran-

sition on the total fields of an infinitesimal dipole are examined. Note that, as previously

discussed, the effect of the transition on the total dipole fields is defined as the scattered

fields, while the effects of the homogeneous surface is defined as the diffracted fields.

3.1 Introduction: Impedance Transition

In order to completely characterize the fields of an infinitesimal dipole above a lossy

Earth, the effects of any impedance transition or inhomogeneity, such as caused by a river

or land/sea interface must be accounted for. For non-canonical problems it is usually dif-

ficult to obtain exact solutions for Maxwell’s equations and thus approximate solutions

are sought. GTD methods, while accurate at high frequencies, have only been applied to

problems where abrupt variations in a surface are present. The problem of coastal diffrac-

tion was originally examined by Clemmow [26], however he did not consider the case of

impedance junctions and was not able to derive closed form expressions for the relevant

split functions. Maliuzhinets was the first to consider two impedance junctions as a special

case of wedge diffraction [27] and the simpler dual-integral equation method can also be

employed [4]. The problem of plane wave diffraction from shorelines in planar land-sea

boundaries, using the Wiener-Hopf technique, was addressed by Bazer et al. [28]. For

this canonical geometry the sea and land surfaces were modeled by a perfectly conducting

and impedance surface respectively, and the diffraction is evaluated using the Wiener-Hopf

method. Wait and others addressed the diffraction effects caused by an inhomogeneous

surface using an integral equation technique to solve for an attenuation factor [29, 30, 31].

42



This solution can be shown to be equivalent to a Physical Optics (PO) solution, and is

formulated in terms of integrals which must be solved numerically.

An analytic solution is sought for problems with a more general variation across the

impedance surface, and with arbitrary dimensions compared to the wavelength. Sarabandi

presented an analytic technique for the 2-D problem of a resistive sheet when excited by a

plane wave, and with one-dimensional variation in the resistivity [32]. In [32] it was shown

that the method could be extended to that of an impedance sheet by simply replacing the re-

sistivity with the complex impedance divided by a factor of two. In this chapter the method

is extended to account for the scattering caused by a general one-dimensional impedance

transition in an otherwise homogeneous impedance surface when excited by a small dipole

of arbitrary orientation. To derive the formulation for small dipole excitation the method of

[32] for plane wave excitation is first extended to include arbitrary incidence angles. The

technique is then extended to that of small dipole excitation in the usual fashion by repre-

senting the incident dipole fields in their spectral domain form as an infinite spectrum of

plane waves.

When the actual solution of a problem varies only slightly (is perturbed) from a known

exact solution, perturbation theory is a viable approach to solve these general problems. In

this chapter a perturbation technique is applied to determine an analytic solution to the scat-

tering from a surface impedance transition of arbitrary profile, such as rivers, shorelines,

or troughs, when excited by a small dipole of arbitrary orientation. Basically the transi-

tion is modeled as an impedance transition in an infinite impedance plane, representing the

ground plane, which as previously noted, is an acceptable approximation over a frequency

range including HF to lower microwave frequencies. An integral equation is defined on

the surface for plane wave excitation, and which assumes a one dimensional impedance

variation only. Unknown induced surface currents are expanded in terms of a perturbation

series in powers of surface impedanceZ1, whereZ1 is the impedance of the unperturbed

surface (homogeneous surface as defined in the last chapter). To facilitate the analysis,
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the integral equation is transformed to the Fourier domain and from this, recursive expres-

sions for the induced surface current of any order are derived. The resulting expressions

are analytic and valid for any general one-dimensional impedance transition for which the

Fourier transform exists. The formulation is then extended to that of small dipole excita-

tion by representing the dipole fields as a continuous spectrum of plane waves. For source

and observation distant from the transition saddle point techniques are applied to solved

the radiation integrals. Resulting expressions are algebraic to first order in the perturbation

series.

To validate the technique, results, up to second order in the perturbation series, are

generated for plane wave excitation across a step insert and compared to a third order

GTD solution [33]. The effects of varying both the perturbation parameter and insert width

are discussed. Results are then given for plane wave excitation at various oblique angles.

Results from both an impedance step insert and a more gradual impedance transition, better

representing a riverbed, are also compared. The effects of a land/sea transition on the total

fields of a dipole are then examined, where it is shown that the effects of the transition on the

total fields is significant for observation distances far from the transition and independent

of the gradient of the transition when both source and observation are near the impedance

surface.

3.2 Plane Wave Excitation

3.2.1 Integral Equation Formulation

The geometry of the problem is as shown in Figure 3.1 withθ and φ as defined in

standard spherical coordinates. In all equations superscripti andsdenote parameters of the

incident or scattered fields, respectively, and primed and unprimed coordinates reflect as

usual the Green’s function source and observation coordinates, respectively.

Noting that the geometry is uniform iny and thus the propagation constant of the scat-
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tered field must match that of the incidence field along they dimension, thus the scattered

field field can only exist along the specular cone as is seen in Figure 3.1. As previously men-

x

yz

θ  i 
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ψEi

Specular Cone

β

β

Es

Z(x)

Figure 3.1: Scattering geometry for variable impedance surface.

tioned the assumption is of a lossy Earth, which is a highly conductive, dielectric medium,

and thus the standard impedance boundary condition (SIBC) ( ˆn� n̂�E) =�Z(x)(n̂�H))

is applied, whereZ(x) is the impedance parameter as a function ofx. The field equivalence

principle allows the tangential magnetic field in the SIBC to be replaced by an equivalent

electric current,J = (n̂�H), and as the fields of interest are in the upper half-space the

impedance surface can be replaced with a magnetic wall, doubling the electric currents and

eliminating the need to account for magnetic currents. This results in the following implied

integral equation for the total electric fields, evaluated on the impedance surface (z= 0).

ET = (Ei +Er +Es) jz=0 = Z(x)J(x); (3.1)

where the superscriptsT; i; r; ands are indicative of the total, incident, reflected, and scat-

tered fields, respectively. The scattered field in (3.1) is explicitly written as,

Es = 2ik0Z0

+∞Z

�∞

G2D?(ρ;ρ0) �J(x0) dx0; (3.2)
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whereG2D?(ρ;ρ0) is the spectral domain representation of the 2D Dyadic Green’s function,

for z> z0, evaluated on the impedance surface atz= z0 = 0 and given by

G2D?(ρ;ρ0) = eiki
yy i

4π

Z
1
kz

[êê+ m̂m̂]eikx(x�x0) dkx; (3.3)

and where the factor of 2 in (3.2) is from image theory. (Interested readers are referred to

Appendix B for the derivation ofG2D?(ρ;ρ0)). In (3.3),ρ= xx̂+zẑandkz=
q

k2
0�ki

y
2�k2

x =q
k2

0 sin2β�k2
x with β defined byk̂i � ŷ= cosβ = sinθi sinφi . The unit vectors, ˆe andm̂, in

(3.3) are given by

ê=
k̂� ŷ

jk̂� ŷj and m̂= ê� k̂: (3.4)

Noting thatk̂= [kxx̂+kyŷ+kzẑ]=k0, simplified expressions for ˆeandm̂ are given by

ê=
kxẑ�kzx̂
k0sinβ

and m̂=
ŷ�cosβ k̂

sinβ
: (3.5)

In (3.2),J(x0) = Jx(x0) x̂+Jy(x0) ŷ and a dependency ony of the formeiki
yy is assumed and

suppressed. Substituting (3.3) into (3.2) it can be shown that

Es =�2
k0 Z0

4π

+∞ZZ

�∞

1
kz

�
ê

�
Jx(x

0)

� �kz

k0sinβ

��
+ m̂

�
�cotβ

kx

k0
Jx(x

0)+sinβ Jy(x
0)

��

eikx(x�x0) dkx dx0:

(3.6)

Defining the incident field,Ei asEi = E0 eik̂i �r , wherer = xx̂+ yŷ+ zẑ, the incident and

reflected tangential electric fields on the surface are given by

(Ei
tan+Er

tan) jz=0= 2(E0� (E0 � ẑ)ẑ)ei(ki
xx+ki

yy); (3.7)
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where again the factor of 2 on the right side of (3.7) is from image theory. The integral

equation of (3.1) can now be written explicitly as

Z(x)
2

J(x) = (E0� (E0 � ẑ)ẑ) eiki
xx� k0 Z0

4π

+∞ZZ

�∞

1
kz

�
ê

�
Jx(x

0)

� �kz

k0sinβ

��

+m̂

�
�cotβ

kx

k0
Jx(x

0)+sinβ Jy(x
0)

��
eikx(x�x0) dkx dx0:

(3.8)

To facilitate analysis (3.8) is transformed to the Fourier domain using the standard

definition of a Fourier transform or

F̃(α) =
+∞Z

�∞

f (x) e�iαx dx; (3.9)

where the overstrike ˜ on any variable implies it is a Fourier domain variable. Apply-

ing the Fourier transform to the integrand of (3.8) and recognizing that it is in the form

of a convolution integral with respect tox0, eliminates the integration with respect tox0 in

the Fourier domain. The resulting integrand contains a delta function,δ(α� kx), allow-

ing the integral with respect tokx to be evaluated in closed form by applying the sifting

property of integrals. Performing these operations on (3.8) and noting thatkz becomes

kz =
q

k2
0�α2�ki

y
2 =

q
k2

0 sin2 β�α2. the following integral equation in the Fourier do-

main is obtained

1
4π

Z̃(α)� J̃x(α) =2πδ(α�ki
x) (E0� (E0 � ẑ)ẑ)

� k0Z0

2
1
kz

�
ê

� �kz

k0sinβ
J̃x(α)

�
+ m̂

�
�cotβ

α
k0

J̃x(α)+sinβ J̃y(α)
��

(3.10)

Now using the definitions for ˆe andm̂ given in (3.5), and after some algebraic manipula-

tions, the following integral equations for each current component in the Fourier domain
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are obtained:

1
4π

Z̃(α)� J̃x(α) = 2πδ(α�ki
x)(E0 � x̂)� k0Z0

2
1
kz

��
1� α2

k2
0

�
J̃x(α)�cosβ

α
k0

J̃y(α)
�

(3.11)

1
4π

Z̃(α)� J̃y(α) = 2πδ(α�ki
x)(E0 � ŷ)� k0Z0

2
1
kz

�
�cosβ

α
k0

J̃x(α)+sin2 β J̃y(α)
�

(3.12)

3.2.2 Iterative Solution

To obtain an iterative solution for the unknown induced surface currents in (3.11) and

(3.12), the surface impedanceZ(x) is first defined in terms of a perturbation parameter,

∆ and expressions are obtained for the zeroth order currents. These are applied to the

expanded current expressions in (3.11) and (3.12) and after some algebraic manipulation

recursive expressions are obtained which relate successive orders of current in the pertur-

bation series.

Defining the surface impedance,Z(x), in terms of∆ and an impedance transition func-

tion h(x) gives,

Z(x) = Z1(1+∆h(x)); (3.13)

whereZ1 is the unperturbed impedance of the homogeneous surface. In the Fourier domain

(3.13) becomes

Z̃(α) = 2πZ1δ(α)+Z1h̃(α)∆: (3.14)

Noting that∆ can be complex without loss of generality, for sufficiently small values of∆
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the surface currents in the Fourier domain may be expanded as,

J̃(α) =
∞

∑
n=0

(J̃nx(α) x̂+ J̃ny(α) ŷ) ∆n: (3.15)

For the zerothorder current components,J̃0x; J̃0y, corresponding to∆= 0, the impedance

function in the Fourier domain becomes,Z̃(α) = 2πZ1δ(α). Substituting this into (3.11)

and (3.12) gives the following two integral equations for thex andy components of the

surface fields due to the zeroth order currents in the Fourier domain

1
2

Z1J̃0x(α) = 2π E0x δ(α�ki
x)�

k0Z0

2
1
kz

��
1� α2

k2
0

�
J̃0x�cosβ

α
k0

J̃0y(α)
�

(3.16)

1
2

Z1J̃0y(α) = 2π E0y δ(α�ki
x)�

k0Z0

2
1
kz
f�cosβ

α
k0

J̃0x(α)+sin2 β J̃0y:(α)
�

(3.17)

whereE0x = E0 � x̂ andE0y = E0 � ŷ. Collecting terms in (3.16) and (3.17) and solving for

J̃0x; J̃0y gives the following expressions for the zeroth order currents:

J̃0x(α) =
fE0x[

1
2Z1+

k0Z0
2kz

sin2β]+E0y[
Z0α
2kz

cosβ]g 2πδ(α�ki
x)

[1
2Z1+

k0Z0
2kz

(1� α2

k2
0
)][1

2Z1+
k0Z0
2kz

sin2 β]�
�

Z0αcosβ
2kz

�2 ; (3.18)

J̃0y(α) =
fE0y[

1
2Z1+

k0Z0
2kz

(1� α2

k2
0
)]+E0x[

Z0α
2kz

cosβ]g 2πδ(α�ki
x)

[1
2Z1+

k0Z0
2kz

(1� α2

k2
0
)][1

2Z1+
k0Z0
2kz

sin2β]�
�

Z0αcosβ
2kz

�2 (3.19)

Note that the fields generated by these currents are the same fields calculated in Chapter 2

by exact image theory, i.e., the effect of the homogeneous impedance surface.

To derive the recursive relationship for thex component of the higher order currents

(and noting that a similar derivation is used to derive they component) the perturbed
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impedance of (3.14) and the current expansion of (3.15) is applied to (3.11) resulting in

the following expression

∞

∑
n=0

(
1
2

Z1J̃nx(α)∆n+
1

4π
Z1h̃(α)�J̃nx(α)∆n+1) = 2π E0x δ(α�ki

x)

� k0Z0

2

∞

∑
n=0

1
kz

��
1� α2

k2
0

�
J̃nx(α)�cosβ

α
k0

J̃ny(α)
�

∆n:

(3.20)

Rearranging the terms gives

1
2

Z1J̃0x(α)+
∞

∑
n=0

(
1
2

Z1(J̃(n+1)x(α)+
1
2π

h̃(α)� J̃nx(α))∆n+1

=2π E0x δ(α�ki
x)�

k0Z0

2
1
kz

��
1� α2

k2
0

�
J̃0x(α)�cosβ

α
k0

J̃0y(α)
�

� k0Z0

2

∞

∑
n=0

1
kz

��
1� α2

k2
0

�
J̃(n+1)x(α)�cosβ

α
k0

J̃(n+1)y(α)
�

∆n+1:

(3.21)

Observing that (3.16) is embedded in (3.21) all terms containing zeroth order current com-

ponents vanish. Noting that the equality remaining must hold for like powers of∆, the

following relationship is established for thex current component:

1
2

Z1J̃(n+1)x(α) =�
1
4π

Z1h̃(α)� J̃nx(α)

� k0Z0

2
1
kz

��
1� α2

k2
0

�
J̃(n+1)x(α)�cosβ

α
k0

J̃(n+1)y(α)
� (3.22)

Similarly, for they current component

1
2

Z1J̃(n+1)y(α) =�
1
4π

Z1h̃(α)� J̃ny(α)

� k0Z0

2
1
kz

�
�cosβ

α
k0

J̃(n+1)x(α)+sin2 β J̃(n+1)y(α)
�
:

(3.23)

Collecting terms and solving (3.22) and (3.23) for the higher order current components
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gives the following recursive relationship between successive orders of current, in the

Fourier domain,

J̃(n+1)x(α) =

1
2π

2
664
�

kzη
k0

���
kzη
k0

�
+sin2β

�
h̃(α)� J̃nx(α)+ kzη

k0

α
k0

cosβ h̃(α)� J̃ny(α)�
1+ kzη

k0

��
α2

k2
0
�sin2 β� kzη

k0

�
3
775 ; (3.24)

J̃(n+1)y(α) =

1
2π

2
664
�

kzη
k0

���
kzη
k0

�
+

�
1� α2

k2
0

��
h̃(α)� J̃ny(α)+ kzη

k0

α
k0

cosβ h̃(α)� J̃nx(α)�
1+ kzη

k0

��
α2

k2
0
�sin2 β� kzη

k0

�
3
775 ; (3.25)

whereη is the normalized surface impedance, previously defined in Chapter 2, and given

by η = Z1=Z0.

3.2.3 Scattered Field Expressions: Plane Wave

Once the induced currents are obtained the scattered field expressions for any order

current in the perturbation series can be calculated for any observation position by ap-

plication of the radiation integrals. Recalling that the induced current is of the form,

Jn(x;y) = ∆n Jn(x) eiki
yy, the scattered field can be obtained from

Es(r) = 2ik0Z0∆n

+∞ZZ

�∞

G(r ; r 0) �Jn(x
0) eiki

yy0 dx0 dy0; (3.26)

where G(r ; r 0) in (3.26) is the spectral domain representation of the free space dyadic

Green’s function forz> z0 given in Appendix B. Substituting the expressions forG(r ; r 0)
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from Appendix B into (3.26) and integrating first with respect toy0 and thenky gives

Es(r) =�k0Z0∆n

2π

+∞ZZ

�∞

1
kz

ei(kxx+ki
yy+kzz)fĥĥ+ v̂v̂g �Jn(x

0)e�ikxx0dx0 dkx; (3.27)

where the unit vectors,̂h; v̂, in (3.27) are given by

ĥ =
k� ẑ
jk� ẑj =

ki
y x̂�kx ŷq
kx

2+ki
y
2

(3.28)

and,

v̂ =
1
k0

ĥ�k =
�kxkz x̂�ki

ykzŷ+(kx
2+ki

y
2
) ẑ

k0

q
kx

2+ki
y
2

: (3.29)

Noting that
+∞R
�∞

Jn(x0)e�ikxx0dx0, in (3.27) is simply the Fourier transform ofJn(x0) with

α = kx the final form of the scattered field for plane wave excitation is

Es
n(r) =�k0Z0∆n

2π

+∞Z

�∞

1
kz
fĥĥ+ v̂v̂g � J̃n(kx)e

i(kxx+ki
yy+kzz) dkx; (3.30)

where subscriptndefines the order of the perturbation series solution, andkz=
q

k0
2�kx

2�ki
y
2.

3.2.4 Saddle Point Evaluation: Plane Wave Integral

For ρ =
p

x2+z2 � λ, standard saddle point techniques can be used to evaluate the

integral in (3.30) [15, 34]. If the slowly varying function (f g� J̃n(kx)) in 3.30) is non-zero in

the vicinity of the saddle or stationary point, stationary phase techniques, equivalent to first

order saddle point method, can be applied. Evaluating the exponential function,f (ki
x) =

kxx+ kzz, at it’s extrema gives the following expressions forkx and kz at the stationary
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points,

kx =
q

k2
0�ki

y
2cosψ ∆ ki

ρ cosψ

kz = ki
ρ sinψ;

(3.31)

whereψ is the scattering angle defined from thex axis, and positive towards thezaxis, in the

x�zplane andki
ρ = k0sinβ. Applying stationary phase for a one dimensional integral [35]

to (3.30) gives the following far zone scattered field expression for plane wave excitation:

Es
n(r) =� k0Z0∆nq

2πki
ρρ
fĥĥ+ v̂v̂g � J̃n(k

i
ρ cosψ) ei(ki

ρρ� π
4) eiki

yy; (3.32)

where the unit vectors,ĥ; v̂, in (3.32) are evaluated at the stationary points and are explicitly

given at these points by

ĥ =
k� ẑ
jk� ẑj =

�ki
ρ cosψ ŷ+ki

y x̂q
ki

ρ
2
cos2 ψ+ki

y
2

=
�ki

ρ cosψ ŷ+ki
y x̂q

k2
0 cos2ψ+ki

y
2sin2 ψ

; (3.33)

and,

v̂ =
1
k0

ĥ�k =
�ki

ρki
ysinψ ŷ�ki

ρ
2
sinψcosψ x̂+(k2

0 cos2 ψ+ki
y
2
sin2 ψ) ẑ

k0

q
k2

0 cos2 ψ+ki
y
2sin2 ψ

: (3.34)

3.3 Short Dipole Excitation

To extend the perturbation solution to include excitation by a short dipole the incident

dipole fields are represented in the form of a continuous spectrum of plane waves. The

methods of the previous section for plane wave excitation can then be applied to each spec-

tral component and the resulting expressions simply integrated over the entire dipole spec-

trum. Again stationary phase techniques (first order saddle point) can be applied to evaluate

the resulting integrals when both source and observation are distant from the transition.
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Consider a short dipole of lengthl carrying a sinusoidal current of amplitudeI0 and

located atr0 = x0x̂+ y0ŷ+ z0ẑ. The field emitted from this dipole at some observation

point r = xx̂+yŷ+zẑ for z< z0 can be expressed as a continuous spectrum of plane waves

and is given by

Ei(r) =
�I0lk0Z0

8π2

+∞ZZ

�∞

�
1
ki

z
[I � K iK i

k2
0

] � l̂ e�iK i �r0

�
eiK i �r dki

x dki
y; (3.35)

whereK i = ki
xx̂+ ki

yŷ� ki
zẑ, ki

z =
q

k2
0�ki

x
2�ki

y
2, and unit vector̂l indicates the dipole

orientation. The integrand of (3.35) can be restated asE0 eiK i �(r�r0), where

E0 =
�I0lk0Z0

8π2

1
ki

z

"
l̂ � K i � l̂ K i

k2
0

#
: (3.36)

Recognizing that the integrand describes a plane wave propagating alongK i

k0
vector and

using the linearity property of electromagnetic waves, the scattered field can be expressed

as a superposition of scattering from individual plane waves or

Es
dn(r) =

+∞ZZ

�∞

X(K i) e�iK i �r0 dki
x dki

y (3.37)

where the subscriptdn indicates the scattered dipole fields from the current of ordern

in the perturbation series, andX(K i) is the scattered field generated from each spectral

component of the dipole, of propagation vectorK i , and given by (3.30).

3.3.1 Stationary Phase Evaluation: Short Dipole

Again considering a situation where distance between source and observation are large

compared to wavelength, and also where both are distant from the transition in terms of

wavelength, then stationary phase techniques can be used to evaluate the integrals of (3.37).

Recognizing that the expression forX(K i) in the far-field of the impedance transition is as

54



described by (3.32) and substituting this expression into (3.37) gives the following expres-

sion for the far-zone scattered fields,

Es
dn(r) =

+∞ZZ

�∞

X(K i) eiki
ρρ eiki

yy e�iK i �r0 dki
x dki

y; (3.38)

where the exponential termseiki
ρρ andeiki

yy have been factored out ofX(K i). Applying

stationary phase for two dimensional integrals [36] and noting that the exponential function

is given by

f (ki
x;k

i
y) = ki

y(y�y0)�ki
xx0+ki

zz0+ki
ρρ; (3.39)

the components ofK i at the stationary points are found to be

ki
x =

�x0(ρ+ρ0)

ρ0RS
k0

ki
y =

(y�y0)

RS
k0

ki
z =

z0(ρ+ρ0)

ρ0RS
k0;

(3.40)

whereρ0 =
q

x2
0+z2

0 andRS=
p

(y�y0)2+(ρ+ρ0)2. Evaluating (3.38) at the stationary

points gives the final form of the scattered electric field for source and observation distant

from each other and the transition, or

Es
dn(r) = X(K i)

2πi
C

eik0RS; (3.41)
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where againK i is evaluated at the stationary points. and where

C=

vuut ∂2 f

∂ki
x
2

∂2 f

∂ki
y
2 �

�
∂2 f

∂ki
x∂ki

y

�2

: (3.42)

Explicit expressions for (3.42) are obtained by evaluating the second derivatives of the

exponential function at the stationary point and the resulting expressions are given by,

∂2 f

∂ki
x
2 =� ρ2

0

z0 ki
z
; (3.43)

∂2 f

∂ki
y
2 =�ki

z
2
+ki

y
2

ki
z
3 z0� k2

0

[k2
0�ki

y
2]3=2

ρ; (3.44)

∂2 f
∂ki

x∂ki
y
=�ki

xk
i
y

ki
z
3 z0: (3.45)

Simplified expressions for̃Jn(kx), wherekx = ki
ρ cosψ = k0sinβcosψ, can be derived by

evaluating (3.24) and (3.25) at the stationary points withE0x andE0y in (3.24) and (3.25)

defined by (3.36) Recognizing that sinβ = (ρ+ρ0)
RS

, cosβ = y�y0
RS

; andkz = k0sinβ sinψ the

following expression for the induced surface currents in the Fourier domain are obtained.

J̃(n+1)x(α) =

� 1
2π

ηsinβ
�
[ηsinψ+sinβ] h̃(α)� J̃nx(α)+cosψ cosβ h̃(α)� J̃ny(α)

	
(1+ηsinβ sinψ)(η+sinβ sinψ)

; (3.46)
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J̃(n+1)y(α) =

� 1
2π

η
��

ηsinβ sinψ+1�sin2β cos2ψ
�
h̃(α)� J̃ny(α)+sinβ cosβ cosψh̃(α)� J̃nx(α)

	
(1+ηsinβ sinψ)(η+sinβ sinψ)

:

(3.47)

3.3.2 Near-field Observation

For certain cases it is desirable to allow the observation position to move into the near-

field of the impedance transition while keeping the source distant, therefore allowing the

spectral domain integration overki
x;k

i
y in (3.37) to still be performed in an approximate

fashion using stationary phase techniques, while the scattered field for a given spectral

component,X(K i) in (3.37) is evaluated numerically. In order to evaluate the integration

overki
x;k

i
y by applying stationary phase techniques, it is necessary to have an explicit ex-

pression for the phase function, or high frequency component of the integrand. As the

Fourier transform of the current function is slowly varying, this high frequency component

is obviously the exponential factor in the integral expression forX(K i) given in (3.30).

Analysis shows however, that there is no analytic solution for the stationary points of the

dipole fields when the integrand is in this form. An alternate mapping in the complex plane

can be applied however as the contour is no longer along the real axis,ki
y is complex and

the integration overy0 in (3.26) is no longer straightforward. If however we subtract the

stationary points of the integrand in (3.30) (and given in (3.31)) from the exponential factor

of (3.30) and add them back, the following expression is obtained

Es(r) =�k0Z0∆n

2π

+∞Z

�∞

1
kz
fĥĥ+ v̂v̂g � J̃n(kx)e

i((kx�ki
ρ cosψ)x++(kz�ki

ρ sinψ)z) dkx ei(ki
ρρ+ki

yy);

(3.48)

wherex= ρcosψ, y= ρsinψ, and therefore thatki
ρ(cosψ x+sinψ y) = ki

ρρ. Recognizing

that the exponential function inside the integrand of (3.48) transitions to zero as the ob-
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servation moves into the far-field, it is obvious that this function is slowly varying for all

observation positions and that the rapidly varying component,ki
ρρ has been factored out of

the integrand. The integrand of (3.48) can now be evaluated numerically, while the high

frequency phase factor is of the form given in (3.38) and can be evaluated asymptotically,

in a similar fashion.

3.3.3 Error Bound

An important feature of the perturbation solution is its convergence properties and it is

appropriate at this point to establish some sense of these properties, i.e., for what values

of ∆ the perturbation expansion of (3.15) converges to the exact solution. To characterize

the limits of the perturbation method an error bound is determined on the maximum∆ al-

lowable, for a given incidence angle, and for a particular impedance profile. Analysis of an

error bound for the case of plane wave incidence will also give a sense of the convergence

of the perturbation series for dipole excitation in cases where one spectral component of the

dipole radiation is the dominate excitation. Mathematically this can be shown by finding

the radius of convergence of the expanded current series, in terms of the perturbation pa-

rameter∆. Even for a value of∆ > 1 the series will converge if the current coefficients are

decreasing for higher orders. Let us first consider a limiting case for which an exact solu-

tion exists. This corresponds to a constant perturbation function (h(x) = 1) whose Fourier

transform is aδ function. Applying this to (3.18) and (3.19), and assumingβ = π=2, gives

the following forms for the horizontally and vertically polarized currents:

J0h(x) =
[sinφi x̂+cosφi ŷ]

1
2Z1(1+∆)+ Z0

2cosθi

eik0 sinθi(cosφix+sinφiy); (3.49)

J0v(x) = [cosφi x̂+sinφi ŷ]
cosθi

1
2Z1(1+∆)+ Z0cosθ

2

eik0 sinθi(cosφix+sinφiy); (3.50)
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After some algebraic manipulations these equations can be put in the form of

J0 h;v(x) = K
1
υ
� 1

1+ ∆
υ
; (3.51)

whereK is some constant parameter and

υ =

8>><
>>:

1
ηcosθi +1 for J0h(x);

cosθi

η +1 for J0v(x):

(3.52)

The Taylor Series expansion of (3.51) will converge uniformly for all∆ < υ, which indi-

cates that the radius of convergence for low impedance surfaces can be very high.

3.4 Validation & Results: Perturbation Technique

In this section analytic results based on the perturbation solution are validated and are

compared with those obtained from independent techniques where possible. The impedance

values of the soil are again derived from the values of permittivity and conductivity given

by Hipp [1] for San Antonio Gray Loam with a density of 1:4 g=cm3 and shown in Ta-

ble 1.1, with the impedance values of the water derived from the equations for complex

permittivity given by Ulaby,et al. [5], as previously stated. Once the impedance values

for the soil and water are determined, the perturbation parameter∆ can be calculated from

(3.13).

To validate the perturbation method the case of plane wave excitation is first examined.

Results are generated for the case of scattering from an abrupt impedance discontinuity or

impedance step insert, which is representative of a river. Effects of varying the perturbation

parameter∆ (equivalent to varying soil moisture) are investigated and compared to a GTD

solution. Scattering for oblique incidence angles is also analyzed, as well as the effect of

varying the insert width. A comparison is made between the scattered fields from an abrupt
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discontinuity (insert) to those from a more gradual transition, which can better represent an

actual land/water transition. As previously mentioned the effect of a land/sea transition on

the total fields of an infinitesimal dipole is then examined.

Note that Figure 3.1, shown previously, describes the scattering coordinates for both

types of excitation.

3.4.1 Plane Wave Excitation

In this section results will be shown and discussed for plane wave excitation of the

impedance surface. As mentioned, the the impedance transition will initially be mod-

eled as an abrupt discontinuity, or impedance step insert. The step insert will be used

to validate and characterize the method by comparing with a GTD solution, normal in-

cidence (β = π=2). Results will then be shown for various oblique incidence angles. A

more gradual impedance transition function, which better represents an actual riverbed,

will then be described and results compared with that of the step insert. Also the effect

of varying the insert width will be discussed. Note that all results for plane wave excita-

tion, show the normalized scattering width,σs=λ, around the specular scattering cone, with

σs = 2πρ(jEsj=jEij) asρ! ∞.

As a validation of the proposed technique, it is important to know for what values of∆

a first order solution will give desirable accuracy. With this in mind results were generated

for first and second order scattered fields using the perturbation method and compared to

a third order GTD solution for the step impedance function, for the 2-D case of excitation

across the insert (φi = 180Æ). The order of the GTD solution describes to what degree

diffracted fields are accounted for, i.e., first order are the diffracted fields generated by the

incident wave, second order are the diffracted fields generated by these initial diffracted

fields interacting with the diffracting edges, etc. All results shown for plane wave excita-

tion are for a step insert 5λ wide, excited at 30MHz and normal incidence (β = π=2). The

insert is assumed to have a normalized complex impedance of 0:0369� i0:0308, represen-
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tative of saline water, with a salt content of 4pp=1000, and results are shown for varying

soil moistures (gravimetric moisture content). Figures 3.2 and 3.3 show results from the

first and second order perturbation solution, compared to the mentioned GTD solution,

for TE and TM cases, respectively (TE, TM, transverse electric and magnetic toz) and

for gravimetric soil moistures of 20, 10, and 5%, equivalent to normalized impedanceη of

0:12� i0:07; 0:15� i0:09; 0:3� i0:1, andj∆j= 0:6529; 0:7263; 0:8594, respectively, with

incidence angleθi at 45Æ. As soil moisture is varied from 20% to 5% the first and second
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(a) Moisture Content = 20%,j∆j= 0:6529
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(b) Moisture Content = 10%,j∆j= 0:7263
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(c) Moisture Content = 5%,j∆j= 0:8594

Figure 3.2: TE case, normalized bistatic echo width (σs=λ) of an impedance step insert, 5λ
wide, equivalent to slightly saline water (4pp=1000 salt content,η = 0:0369�
i0:0308). θi = 45Æ, φi = 180Æ, first (- - - - - ) and second order (� � � � �)
perturbation technique compared with GTD (———) for varying soil moisture.
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order perturbation solutions begin to degrade in accuracy. The degradation is especially

significant for the TM case and near grazing observation.

The convergence property of the perturbation solution as a function of the width of the

insert step function was also observed. The insert width was varied from 1 to 20λ with the

accuracy of both the TM and TE results essentially insensitive to insert width variations.
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(a) Moisture Content = 20%,j∆j= 0:6529
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(b) Moisture Content = 10%,j∆j= 0:7263
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(c) Moisture Content = 5%,j∆j= 0:8594

Figure 3.3: TM case, normalized bistatic echo width (σs=λ) of an impedance step insert, 5λ
wide, equivalent to slightly saline water (4pp=1000 salt content,η = 0:0369�
i0:0308). θi = 45Æ, φi = 180Æ, first (- - - - -) and second order (� � � � �)
perturbation technique compared with GTD (———) for varying soil moisture.

The effect of oblique incidence on the scattered wave was also examined for the case

of the impedance step insert when excited by a plane wave. First order perturbation re-
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sults were generated with the insert again representative of slightly saline water and the

surrounding impedance representative of the same San Antonio gray loam, with a mois-

ture content of 10%. Figure 3.4 shows the bistatic scattering width for co-polarization

results, with 3.4a showing the TE case and 3.4b the TM case. Figure 3.5 shows the cross-

polarization results for oblique incidence. Againθi = 45Æ, with φi rotated at the oblique

angles, 180Æ;135Æ, and 90Æ. Referring to Figure 3.4a and Figure 3.4b, the peak scattering
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(a) TE case,φi
= 180 (———), 135 (- - - - -),

and 90Æ (� � � � �).
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(b) TM case,φi
=180 (——— ), 135 (- - - - -),

and 90Æ (� � � � �).

Figure 3.4: Normalized bistatic echo width, (σs=λ), of an impedance step insert of width
5λ, equivalent to slightly saline water (4pp=1000 salt content,η = 0:0369�
i0:0308). Surrounding soil has a gravimetric moisture contend of 10% (j∆j =
0:7263). Incidence is atθi = 45Æ, first order perturbation technique.
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for, φi = 180Æ, is shown to be at approximately the specular angle ofψ = 45Æ. At φi = 90Æ

the incident wave is along the step insert and the scattering pattern is symmetric in thex�z

plane as expected.

Theoretically no cross-polarization results can exist for an incidence angle ofφi = 180.

As φi is rotated towards 90Æ cross-polarization levels become more significant. Figure 3.5

shows cross-polarization results, again in terms of normalized scattering width, for plane

wave excitation withθi = 45Æ andφi = 90Æ. Note that as the incident field is rotated to

a position along the step insert,φi = 90Æ, the cross-polarization levels rise and in fact the

cross-polarization forTETM with φi = 90Æ is the highest level for all results including co-

polarization curves. This indicates that receiver polarization (measuring the scattered field)

need be adjusted, for optimum polarization matching, as the incident field propagation

vector moves about the step insert.
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Figure 3.5: Normalized bistatic echo width, (σs=λ), of an impedance step insert of width
5λ, equivalent to slightly saline water (4pp=1000 salt content,η = 0:0369�
i0:0308). Surrounding soil has a gravimetric moisture contend of 10% (j∆j =
0:7263). Incidence is atθi = 45Æ, φi = 90Æ, first order perturbation technique.
TETM (——–), TMTE (- - - - -).

In order to more accurately represent an actual riverbed an impedance function with a

more gradual transition than the step function was generated and results compared to those

generated by the step insert at normal incidence. The transition is made over a distance of

λ=2 and and the width of the gradual impedance function set at 5λ, the same as the step

64



insert. The width of the gradual impedance function is defined as the distance between

points where the function is 3 dB below maximum. Again first order perturbation results

are shown with the transition representative of slightly saline water and the surrounding

soil having a moisture content of 10%. The results for the step insert, shown previously

with φi = 180Æ are overlayed with those of the gradual impedance transition and are seen in

Figure 3.6a and Figure 3.6b for TE and TM polarizations, respectively. As can be seen in
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(a) TE case
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(b) TM case

Figure 3.6: Normalized bistatic echo width, (σs=λ), of an impedance step insert of width
5λ, equivalent to slightly saline water (4pp=1000 salt content,η = 0:0369�
i0:0308). Surrounding soil has a gravimetric moisture contend of 10% (j∆j =
0:7263). Incidence is atθi = 45Æ, φi = 180Æ, first order perturbation technique.
Step insert (——–) compared to gradual transition (-- - - -).
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these figures, the gradual impedance transition tends to lower and pull the side lobe levels

towards the specular scattering direction ofψ = 135Æ. This is as expected since a more

gradual transition disturbs the induced surface currents less and in the limit should reduce

to case of specular scattering only.

3.4.2 Dipole Excitation: Land/Sea Interface

In this section the effect on the total fields of an infinitesimal dipole by an impedance

transition will be analyzed. For the case of an impedance step insert, examined in the

previous section, the effects of the transition are highly localized to the immediate vicinity

of the transition and has little effect on the total dipole fields away from the transition,

i.e., the effects of the homogeneous surface dominate here. Instead the case of a seashore,

or land/sea transition, which can have a significant effect on the total dipole fields distant

from the transition, will be examined. For all results presented in this section the impedance

of the land or ground, defined asZg will be the usual San Antonio gray loam, with 10%

gravimetric moisture content, and equivalent normalized impedanceηg, of 0:15� i0:09,

while the impedance of the water or sea, defined asZw will have a salt content of 4pp=1000

and normalized impedanceηw = 0:0369� i0:0308, as previously described. In this section

all field quantities shown are defined in terms of path loss, where path loss is the field

quantity normalized to the magnitude of the incident dipole field,E=jEi j.
To analyze the land/sea transition we will begin with the case of an abrupt transition

and then modify the resulting expressions to include the case of a more gradual transition.

Referring to Figure 3.7, the impedance transition function for an abrupt land/sea transition

can be represented by a signum (sgn(x)) function with an offset, where thesgn(x) function
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is defined as,

sgn(x) =

8>><
>>:
�1

2 for x< 0

1
2 for x> 0;

(3.53)

Due to the offset of the impedance transition function in the spatial domain, its Fourier

Earth Water

Reflection
Boundary

Zg

Zw

Ei
θ i θ i

Transition Width

0.9 Zw

0.9 Zg Z g Zw+

2

Figure 3.7: Geometry of a Land/Sea Interface

transform contains aδ function, and the perturbation technique described cannot be imme-

diately applied. In order to apply the perturbation technique the impedance transition will

be dealt with in a mean sense, i.e., we assume that the unperturbed impedanceZ1, in (3.13),

is the mean value of the impedance transition function or

Z1 =
Zg+Zw

2
; (3.54)
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as seen in Figure 3.7. The assumption of a mean impedance as the unperturbed impedance

is a valid assumption in terms of the first order and higher fields in the perturbation se-

ries. For source and observation near the impedance surface and distant from both each

other and the transition the assumption of a mean impedance for the homogeneous surface

should also produce the appropriate zeroth order (diffracted) fields. For this situation, the

observation is in the immediate vicinity of the Geometrical Optics (GO) reflection bound-

ary (boundary between GO fields reflected from land and GO fields reflected from the sea,

see Figure 3.7) and as in this region higher order terms in the asymptotic expansion of the

diffracted fields are dominate (Norton surface wave), there is no sharp transition at the re-

flection boundary between the fields diffracted from the land and those diffracted from the

sea (GO component of the diffracted field is not dominate), and thus the assumption of a

mean impedance for the homogeneous surface is valid. As observation and or source are

moved away from the impedance surface the dominate component of the diffracted fields

is the specular component, and the reflection boundary becomes more sharply defined.

In this region the mean impedance assumption, is invalid and the perturbation solution

will not produce the correct diffracted fields. For this case however, the space wave (di-

rect+diffracted) is the dominate contributor to the total fields and the diffracted fields can

be recovered by simply assuming a sharp reflection boundary and calculating the diffracted

fields from land or sea respectively, on either side of this boundary.

The impedance transition function,h(x), can now be written directly as,

h(x) =�sgn(x); (3.55)

h̃(α) =
i
α
; (3.56)

in the spatial and Fourier domain, respectively. To find the appropriate∆, (3.54) and (3.55)
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are substituted into (3.13). Solving for∆ gives,

∆ =
Zg�Zw

Z1
: (3.57)

In order to represent a more gradual transition function, (3.55) is modified to,

h(x) =�sgn(x)(1�e�κjxj); (3.58)

which in the Fourier domain becomes,

h̃(α) =
i
α
� iα

α2+κ2 : (3.59)

In (3.58)κ is a constant parameter, whereκ!∞ as the width of the transition goes to zero,

i.e., an abrupt transition.

Before beginning analysis of the land/sea transition it is appropriate to note the intro-

duction of a simple pole in the impedance transition function of (3.56), and therefore in

the scattered field integral of (3.30). This pole occurs at the reflection boundary of the

GO fields and while it can be shown this is a non-contributing pole care must be taken

when evaluating the integral of (3.30) asymptotically. As the stationary point approaches

the pole (observation approaches the reflection boundary) the effect of the stationary point

cannot be separated from the effect of the pole and modified asymptotic approaches must

be employed. In the literature two approaches are discussed, the additive, and multiplica-

tive method [37, 15]. In the additive method the integrand is regularized by subtracting

and adding an appropriate factor and the resulting expression expanded in an asymptotic

fashion. In the multiplicative method the integrand is regularized, appropriately by a multi-

plicative factor and also expanded into an asymptotic series. While both expansions can be

shown to be equivalent, the equivalence holds only for the complete asymptotic series of

both expansions [38]. When the series are truncated the equivalence does not hold and the
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truncated series may produce different results. In the analysis of the land/sea problem only

the first order term in the asymptotic series is retained and it was observed that the mul-

tiplicative method produced proper results, while the additive method did not sufficiently

compensate for the immediate presence of the pole, thus implying that higher order terms

in the asymptotic expansion are required to utilize this method.

To begin analysis of the land/sea transition we first examine the effect of a gradual tran-

sition on the scattered fields. A vertical electric dipole, operating at 30MHz, is placed 100λ

from the impedance transition, along the negativex axis and 100λ above the impedance

surface (x0 = �100λ;y0 = 0;z0 = 100λ). Observation is across the transition (y = 0) at

a fixed radial distance of 50λ. Note that for all results in this section thez component of

the scattered field is shown. For source and observation near the impedance surface the

z scattered field component from a vertical electric dipole is the dominate scattered field

component for any dipole orientation, and thus is of most interest in this analysis. Fig-

ure 3.8 shows the path loss for transition widths of 0 (abrupt transition), 1, and 10λ, where

the transition width is defined as the distance between the points where the transition func-

tion is 0:9 that ofZg or Zw, over land or sea, respectively (see Figure 3.7). As can be seen

in Figure 3.8, the effect of widening the transition is to focus the scattered energy in the

specular direction (ψ0 = 135Æ, note thatψ0 = (π�ψ) in the figures shown,φi = 0). How-

ever, in the neighborhood of the specular direction the transition width has little effect on

the field levels. This is a significant observation as it indicates that for source and obser-

vation near the surface, and again distant from each other and the transition, the width of

the transition will have negligible effect on the scattered fields as in this region the specular

angle is pushed to near-grazing observation, i.e., observation is always near the specular

point. This makes intuitive sense also as the width of the transition is less apparent as it

approaches the horizon of an observer.

In Figure 3.9 a similar problem is analyzed but for this case the transition width is fixed

at 1λ and the radial observation distanceρ is varied from 50 to 10 to 1λ. As can be seen in

70



0 50 100 150
−80

−70

−60

−50

−40

−30

−20

ψ′ (Degrees)

|E
zs |/|

E
zi |

Figure 3.8: Magnitude (dB), Path loss, land/sea transition located atx = 0, z component
of the scattered fields for a vertical (z-directed) electric dipole. Observationρ
is fixed at 50λ, observationy = 0, for dipole position ofx0 = �100λ;y0 =
0;z0 = 100λ. Ground moisture is 10% (ηg = 0:15� i0:09), Sea is saline
water (4pp=1000 salt content,ηw = 0:0369� i0:0308, j∆j = 1:14). Results
for transition widths of 0 (———), 1 (- - - - - ), and 10λ (� � � � �). Note
thatψ0 = π�ψ in curves.

Figure 3.9 this has the effect of spreading the energy out, around the specular direction. The

is indicative of the fact that for far-field observation the induced surface currents around the

transition look like a line source, while as observation is moved from far-field to near-field

the current distribution begins to look more like a distributed source.

In Figure 3.10 the transition width is fixed at 1λ, observation is fixed at a radial distance

of 100λ, with the three curves reflecting an offset of 0, 50, and 100λ in the y dimension

(oblique incidence). As can be seen in Figure 3.10 the effect of the obliquity across the

transition is to increase the amount of energy in the backscatter direction. This again makes

intuitive sense as the energy from the incident wave is coupled into a component along the

transition.

As a final analysis of the effects of a land/sea transition on the fields of an infinites-

imal dipole, we place a vertical electric dipole atx0 = �100λ;y0 = 0, move the source

and observation heights to 1, 5, and 10λ (for these examples source and observation are at

same height above surface), and compare the path loss of the space wave to that of the total
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Figure 3.9: Magnitude (dB), Path loss, land/sea transition, located atx= 0, zcomponent of
the scattered fields for a vertical (z-directed) electric dipole. Transition width
is fixed at 1λ, observationy = 0, for dipole position ofx0 = �100λ;y0 =
0;z0 = 100λ. Ground moisture is 10% (ηg = 0:15� i0:09), Sea is saline water
(4pp=1000 salt content,ηw = 0:0369� i0:0308,j∆j= 1:14). Results for radial
observation distanceρ of 50λ (———), 10λ (- - - - - ), and 1λ (� � � � �).
Note thatψ0 = π�ψ in curves.

fields. Observation is on a radial line between source and observation, fromx = �50λ to

x = 150λ. Note that other parameters are the same as for previous results in this section,

with the transition width at zero (abrupt transition). The results are seen in Figure 3.11, with

Figure 3.11a, b, and c, comparing the space wave (direct+diffracted) to the total fields (in-

cluding the effects of the transition) and showing the results for source/observation heights

of 1, 5, and 10λ, respectively. As mentioned for this case of source and observation near

the impedance surface the Norton surface wave, which decays at a rate of 1=R2, is the dom-

inate component of the diffracted fields. Noting that the scattered fields also decay at this

rate it is expected that the effect of the land/sea interface will have a significant effect on

the total dipole fields and as is seen in these figures, the effect of the land/sea transition on

the total fields is significant even at distances far from the transition. An additional note

on the plots in Figure 3.11. An abrupt discontinuity is observed at the reflection boundary

(x= 100λ), where the diffracted fields transition from ground reflections to reflections from

the sea. Normally it would be expected that the addition of the scattered fields to the total

72



0 50 100 150
−80

−70

−60

−50

−40

−30

−20

−10

ψ′ (Degrees)

|E
zs |/|

E
zi |

Figure 3.10: Magnitude (dB), Path loss, land/sea transition, located atx= 0, z component
of the scattered fields for a vertical (z-directed) electric dipole. Transition
width is fixed at 1λ, Radial observationρ is fixed at 10λ, for varyingy offset
between source and observation (oblique incidence), and for dipole position
of x0 =�100λ;z0 = 100λ. Ground moisture is 10% (ηg = 0:15� i0:09), Sea
is saline water (4pp=1000 salt content,ηw = 0:0369� i0:0308,j∆j = 1:14).
Results for offset iny of 0 (———), 50 (- - - - - ), and 100λ (� � � � �).
Note thatψ0 = π�ψ in curves.

fields should produce uniform results across the reflection boundary, i.e., a smooth transi-

tion between the fields diffracted from land and those diffracted from water. The abrupt

transition observed in these results can be explained by observing the transition function

seen in Figure 3.7 and its Fourier transform. The transition function is infinite in extent,

and as it is assumed that only one spectral component of the dipole fields excites the tran-

sition uniformly across the entire extent of the impedance surface, the transition function

contains infinite energy. Thus while its Fourier transform exists, it is not finite in energy,

at the reflection boundary. To show this we weight the transition function of (3.55) with a

dampening factor, or

h(x) =�sgn(x)e�κjxj (3.60)
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whose Fourier transform is given by,

h̃(α) =
iα

α2+κ2 ; (3.61)

The scattered fields produced by this transition function are compared to those from the

original abrupt transition, for source and observation heights of 1λ, and the results are

shown in Figure 3.12. As expected the effect of a dampened transition, with finite energy

smoothes the transition in the scattered fields over the reflection boundary. While this

result explains the apparent discontinuity in the fields across the reflection boundary it is

not apparent that this modification will produce acceptable results. Questions arise as to the

appropriate dampening factor to produce physical results. A more appropriate adjustment

may be made to the direct dipole fields. In implementing the perturbation technique it

is assumed that the dipole source is distant from the transition and that only one spectral

component excites the transition. While this is a valid assumption it assumes that one plane

wave illuminates the entire impedance surface (infinite energy across the surface), and does

not account for the pattern and decay of the dipole fields away from the transition. A more

proper solution may be to expand the dipole fields in a way which accounts for the dipole

field pattern across the impedance surface. In any case while the abrupt discontinuity across

the reflection boundary observed in Figure 3.11 is not in fact physical, the fields on either

side of the boundary are proper.

Finally, for the same test case the dipole is placed 1λ above the impedance surface and

path loss is observed in a rectangular grid, 1λ above the surface. Note that the transition is

located atx= 0 in these figures (abrupt transition). Figures 3.13 shows the path loss, with

Figures 3.13a showing the space wave and Figures 3.13b showing the total fields. As can

be seen in comparing the field plots, the land/sea transition has a significant effect on the

total dipole fields.

74



3.5 Chapter Summary: Impedance Transition

In this chapter the model for scattering and diffraction from an impedance half-space,

representing a locally flat, lossy Earth was extended to include an impedance transition

such as caused by a river or land/sea interface. Using the field equivalence principle, the

problem is formulated in terms of an integral equation for a fictitious electric current in-

duced on the variable impedance surface. A perturbation technique was used to derive

a recursive solution for any order surface currents in the perturbation series, in terms of

the previous order. An error bound was established to give some sense of the radius of

convergence of the perturbation series. Stationary phase techniques were used to evaluate

far-field expressions for both plane wave and short dipole excitations. Initial results were

shown for plane wave excitation to characterize and validate the perturbation technique.

Examining the case of an impedance step insert, results from the perturbation model, for

the 2-D case were compared to those of a GTD solution. It was shown that for impedances

representative of a river surrounded by moist soil, that the first order perturbation results

produced acceptable accuracy when the soil moisture content was at or above 10%. Even

for soil moisture levels below 10% the first order perturbation results were acceptable for

TE incidence with TM showing a degradation at near-grazing observation angles of 5 or

6 dB. It was observed that, for oblique incidence angles, the cross-polarization levels for a

TM polarized field, incident along the river, dominated the scattering levels. Effects of a

more realistic, gradual impedance transition were also examined. The effects on the total

fields of an infinitesimal electric dipole by a land/sea transition were then examined. Not-

ing that the ˆz component of the received electric fields from a vertical dipole are dominate

for source and observation near the impedance surface this case was examined. To imple-

ment the transition in the Fourier domain the impedance transition was dealt with in a mean

sense, which is an acceptable approximation for source and observation near the impedance

surface. Results from an abrupt transition were generated and compared to those from a

more gradual transition. It was shown that the while a more gradual transition tends to fo-
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cus the scattered field energy in the specular direction, the field levels in the neighborhood

around specular scattering was essentially unaffected, thus indicating that for source and

observation near the impedance surface the effects of the transition width are negligible.

Observation of the path loss in the total fields when compared with the path loss of the

space wave (direct+diffracted) showed that the land/sea transition has a significant effect

on the total dipole fields, even distant from the seashore.

Having developed a complete model in the last two chapters to account for the effects

of an impedance half-space, which can contain a general one-dimensional impedance vari-

ation, on the propagating radio wave, it is now desired to include the effects of natural

obstacles on the propagating wave. With this in mind, in the next two chapters a diffraction

model is developed which accounts for the effects on propagation of mountains, hills, or

ridgelines, which can be modeled as single curved, convex surface. For obstacles with a

large local radius of curvature, diffraction effects can be modeled locally by a right circular

cylinder. In the next chapter a somewhat novel model to predict scattering and diffraction

from right circular cylinders, when excited by a plane wave at oblique angles is developed.

In the chapter that follows the model is extended to include scattering and diffraction from

a general, singly curved, convex surfaces.
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(a)z0 = z= 1λ
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(b) z0= z= 5λ
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(c) z0= z= 10λ

Figure 3.11: Magnitude (dB), Path loss, land/sea transition, located atx= 0, z component
of the scattered fields for a vertical (z-directed) electric dipole. Transition
width is 0λ (abrupt), observationy = 0, observationx from �50λ to 150λ.
Dipole position is atx0 = �100λ;y0 = 0λ. for varying source/observation
heights. Ground moisture is 10% (ηg = 0:15� i0:09), Sea is saline water
(4pp=1000 salt content,ηw = 0:0369� i0:0308,j∆j= 1:14). Results for space
wave (———), and total dipole fields (- - - - - ).
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Figure 3.12: Magnitude (dB), Path loss, land/sea transition, located atx= 0, z component
of the scattered fields for a vertical (z-directed) electric dipole. Transition
width is 0λ (abrupt), observationy = 0, observationx from �50λ to 150λ.
Dipole position is atx0 = �100λ;y0 = 0λ. Source/observation heightz0 =
z = 1λ. Ground moisture is 10% (ηg = 0:15� i0:09), Sea is saline water
(4pp=1000 salt content,ηw = 0:0369� i0:0308,j∆j= 1:14). Results for space
wave (———), total dipole fields, infinite transition function (- - - - - ), total
dipole fields, weighted transition function (� � � � �).
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(a) Space wave (direct+diffracted)
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(b) Total fields (direct+diffracted+scattered)

Figure 3.13: Magnitude(dB), Path loss, land/sea transition, located atx= 0,zcomponent of
the scattered fields for a vertical (z-directed) electric dipole. Transition width
is 0λ (abrupt), observationx from �50λ to 150λ, observationy from �50λ
to 50λ. Dipole position is atx0 = �100λ;y0 = 0λ. Source/observation are at
z0 = z= 1λ. Ground moisture is 10% (ηg = 0:15� i0:09), Sea is saline water
(4pp=1000 salt content,ηw = 0:0369� i0:0308,j∆j= 1:14).
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CHAPTER 4

Diffraction from Convex Surfaces: Right Circular

Cylinders

In a rural or semi-rural propagation environment, natural obstacles such as hills, moun-

tains, or ridgelines can have a significant effect on the propagating radio wave. Many

natural terrain features exhibit both curved and doubly curved surfaces. Ridge lines in

mountainous areas exhibit the features of a long curved cylinder which is essentially in-

finite in one dimension at high-frequencies. These lines may be the result of the natural

formation of the mountain chain or a feature of erosion. Geologically recent mountain

chains, while exhibiting sharp edged features, still have electrically large radii of curvature

even at HF bands. This indicates that the radius of curvature must be accounted for, and

that diffraction from curved surfaces, as opposed to knife edge diffraction, is the appropri-

ate prediction tool.

Because of the numerical complexity associated with high frequency methods for con-

vex surfaces, simpler approaches are taken which do not account for the radius of curva-

ture of the diffracting obstacle. One of the most commonly used methods of prediction is

knife-edge or Kirchhoff diffraction. This method is an application of Huygens principle in

which the diffracting obstacle is replaced by an impenetrable screen and the field distribu-

tion in the plane of the screen (aperture) is integrated to produce the fields at the desired
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observation point. These integrals are usually in the form of either Fresnel type integrals

(intermediate range) or Fourier transforms (far-field observation). This method is simple

to implement, and for very narrow hills (small radius of curvature at the shadow bound-

ary) produces acceptable results in the far-field, away from the transition region (transition

between light and shadow), however it does not produce acceptable results for near-field

observation or in the shadow or transition regions. The method also does not account for

polarization effects, nor the shape of the obstacle (does not account for reflections from the

obstacle), and it is a 2-D method and therefore does not account for the effects of oblique in-

cidence. Luebbers [39] modeled diffracting obstacles as an impedance wedge and showed

a significant improvement over knife-edge techniques. The method is somewhat simple

to implement and is extendible to the oblique incidence case, however the accuracy of the

method is based on the assumption that the local radius of curvature at the shadow bound-

ary is less than 1=100 of a wavelength (rc� λ=100), which as mentioned tends not to occur

in nature. In addition the wedge is not a suitable representation for many natural features.

These features have a radius of curvature which makes a more gradual transition away from

the shadow boundary and creeping wave effects, which the wedge shape does not predict,

must be accounted for. For these obstacles, with a more gradual transition in radius near

the shadow boundary, wedge diffraction will not produce accurate results in the near-field

of the obstacle, especially in the deep shadow region.

With this as a motivation, in the next two chapters a somewhat novel method for the

prediction of diffraction and scattering from singly curved convex surfaces, with large,

slowly varying radii of curvature is developed. To avoid the aforementioned numerical

complexities associated with high-frequency techniques for convex surfaces, a much sim-

pler method is developed, which retains a high degree of accuracy, while avoiding the

numerical integration inherent in the existing techniques. The proposed method calculates

induced surface currents and thus through the radiation integrals gives accurate fields in

all regions around the surface. The induced surface currents on a general convex surface,
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again of large, slowly varying radius of curvature, can be modeled locally by the currents

on a circular cylinder and in this chapter a macromodel for the surface currents induced on

right circular cylinders, when excited by a plane wave at oblique angles, is developed. In

the next chapter the method is extended to account for the induced currents on a general

convex surface by application of known techniques.

In order to develop a macromodel for the induced surface currents on a right circu-

lar cylinder of large radius a heuristic approach is applied, based on the Physical Theory

of Diffraction (PTD) and Fock analysis. The currents are separated in the fashion of the

Physical Theory of Diffraction (PTD) in terms of a uniform or Physical Optics (PO) com-

ponent and a non-uniform or diffraction component which is highly localized to the shadow

boundary. The case of the 2D perfectly electric conducting (PEC) circular cylinder, excited

by a plane wave at normal incidence is developed first, and then extended to that of oblique

incidence analytically. The resulting expressions for the induced current are algebraic and

are shown to be highly accurate for cylinders having radii of curvature larger than a wave-

length. Total near fields generated by this macromodeled current are in good agreement

with those of the exact solution everywhere.

4.1 Introduction: Diffraction from Convex Surfaces

Current methods for the prediction of scattering and diffraction from convex surfaces

can be divided into two categories, those which are valid away from the surface (regions

I, II, III in Figure 4.1) and those which are valid near the surface of the object (regions IV,

V, VI in Figure 4.1). All of these methods treat the problem of high frequency scattering

and diffraction from a general convex surface by applying a solution for a circular cylinder

locally, on the convex surface. While the exact solution for a circular cylinder is known

[40] the convergence properties of the resulting eigenseries deteriorate as cylinder radius

increases, making it impractical for problems of large electrical size and thus alternate
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solutions are sought. The convergence properties of this series can be improved by applying

a Watson type integral transform [41] and the resulting expressions are the basis for many

of the high frequency techniques in use.

 

Shadow Boundary

Source

Grazing Ray

Convex
Surface

IV
V VI

I - Lit 

II - Transition
       Lit

II - Transition
       Shadow

III - Deep Shadow

●
Q1

Figure 4.1: Definition of regions around a convex surface.

Geometrical Theory of Diffraction (GTD) and Uniform Geometrical Theory of Diffrac-

tion (UTD) solutions are field solutions, valid away from the convex surface. GTD, devel-

oped by Keller [42] in the 1950’s is valid in the deep lit and deep shadow regions (regions

I and III in Figure 4.1), but not in the transition region between shadow and illuminated

(region II in the same figure). In his UTD solution for plane wave incidence, Pathak de-

veloped a method which accounts for the fields in the transition region (region II) [43]. In

this approach a Watson type transform is applied to the exact solution for a circular cylinder

[41] and the resulting integrals solved by making appropriate approximations depending on

the point of observation. The resulting expressions consist of a Fresnel type integral which

dominates in the transition region and a Pekeris function which dominates in the deep lit

region and should dominate in the deep shadow region. Hussaret. alhave shown that the

Fresnel term in the UTD solution does not decay in the predicted fashion in the shadow

region and thus the Pekeris term does not dominate as expected in this region [44]. For

source and/or observation in the near zone of the cylinder the UTD solution is not asymp-
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totic (in terms of cylinder radius) and significant error is observed in field calculations as

cylinder radius increases. Examples in [44] show an error of greater than 10 dB in the

shadow region near transition (the boundary between region II and III in Figure 4.1), which

increases to near 40 dB in the deep shadow region. Hussaret. aladjust the Pathak formula-

tion with a correction consisting of an infinite series which produces very accurate results.

Unfortunately, as in the case of the exact solution for circular cylinders, the convergence

properties of the resulting series deteriorates as cylinder radius is increased.

For observation points near or on the cylinder surface, asymptotic field solutions based

on Fock theory [45] are usually applied. These solutions in general consist of solving

the canonical Fock type integrals, which are functions of a universal variable, in either a

numerical fashion or by referencing tabulated data. In the deep lit and deep shadow regions

these integrals reduce to an asymptotic and residue series, respectively. These integrals

are highly oscillatory in nature and difficult to evaluate numerically, although a method

has been proposed by Pearson [46] to improve the convergence properties of integrals of

this type. Logan, in his extensive work on diffraction theory, has published tabulated data

on the Fock integrals [47]. As the tabulated data is a function of a universal variable,

the extent to which this data extends into the lit or shadow regions decreases as cylinder

radius increases. At the point where the tabulated data ends a transition must be made to

the residue (deep shadow) or asymptotic (deep lit) series. As cylinder radius is increased

this transition occurs at a point closer to the shadow boundary, in the lit region. For large

cylinders the asymptotic series does not converge well here and a significant discontinuity

in the surface current occurs. This effect can also be seen when directly evaluating the Fock

integrals numerically and will be discussed in further detail in Section 4.3.1.

Because of the aforementioned problems associated with GTD/UTD methods for field

calculations away from the surface of the cylinder and because none of the described meth-

ods are valid in all regions around a cylinder, induced surface currents will be used to cal-

culate the scattered fields everywhere. The induced surface currents can be calculated from
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the Fock integrals with the obvious advantage of calculating these integrals for specific data

points as opposed to using tabulated data. While methods for numerical evaluation of these

integrals in an efficient fashion [46] exist in the literature, a technique to evaluate the Fock

functions efficiently, without the need for numerical integration is sought.

With this as a motivation a heuristic method is developed to predict the behavior of

the induced surface currents on a perfect electric conducting (PEC) circular cylinder, when

excited by a plane wave at oblique incidence angles. The induced surface currents are

decomposed in the manner of the Physical Theory of Diffraction (PTD) [6] in terms of a

uniform or physical optics (PO) component and a non-uniform or diffraction component.

In using this decomposition, the proposed method can be described as a form of PTD for

convex surfaces. To predict these diffraction currents a set of macromodels are developed

using a combination of the asymptotic behavior of the Fock currents [41, 43, 45] and the

exact solution for oblique incidence. These macromodels are used to predict the high fre-

quency behavior of the diffraction current as a function ofk0a, wherek0 is the free space

propagation constant anda the cylinder radius, to a very high degree of accuracy. To pre-

dict the induced surface diffraction currents these macromodels are simply applied to a set

of reference data generated by the exact solution for a cylinder of moderate radius. These

macromodels are valid for cylinders of radiusa > λ and the resulting total surface cur-

rents are highly accurate. The observed error in magnitude,ejj, is less than -60 dB, where

ejj = 20log(jjJexj� jJmmjj) andJex andJmm are the exact and macromodeled total induced

surface currents, respectively. The error in phase,e\, is less than 0:1Æ everywhere except

in the deep shadow region, wheree\ = \Jex�\Jmm.

Section 4.2 describes the development of the macromodel as well as all appropriate

formulations. In Section 4.3 the macromodel is validated by comparison with currents

generated by the exact solution for circular cylinders. Field results calculated from these

approximate currents in the near zone of the cylinder are also compared with results from

the exact solution. In Section 4.4 the procedure to implement the macromodel is outlined
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in a concise fashion. Section 4.5 gives a brief description of other applications of the

macromodel, including far-field results of a point source radiating in the presence of a

cylinder, which can be used as a model for an aircraft fuselage. Section 4.6 summarizes

this chapter.

4.2 Development of Macromodel

In this section the macromodel for calculation of the induced surface diffraction cur-

rents will be developed. The problem will be outlined, the Fock formulations for induced

surface currents, which are a basis for the macromodel, will be discussed, and specifics

of the macromodel development given subsequently. Considering an infinite right circular

PEC cylinder, illuminated by a monochromatic plane wave, as shown in Figure 4.2. The

cylinder is oriented along thez axis with θi defined from thez axis and confined to the

y�z plane andφ defined from thex axis and positive towards they axis. The propagation

constant of the plane wavek is defined ask =�k0cosθi ẑ�k0sinθi ŷ. For the problem of

an infinite cylinder thez component of the propagation constant of the scattered field must

match that of the incidence field, requiring that scattered fields be confined to the specular

cone, as shown in Figure 4.2.

Decomposing the induced surface current in the manner of PTD we write the diffraction

currentJD asJD = Jex�JPO whereJPO is the PO current given by,

JPO =

8>><
>>:

2 n̂�H i; in the illuminated region

0 ; in the shadow region:

(4.1)

Depending on the polarization of the incident field, on the cylinder surface,

H i =

8>><
>>:
�H0 x̂ ; for the TM case (transverse magnetic toz axis),

H0(sinθi ẑ�cosθi ŷ); for the TE case (transverse electric toz axis):

(4.2)
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Figure 4.2: Scattering geometry of an infinite cylinder.

The objective is to macromodelJD(φ) = jJD(φ)j ejχ in terms ofk0a for the general case

of oblique incidence and arbitrary polarization. This is accomplished by simply applying

appropriate scaling (expansion or contraction of argumentφ) and weighting (multiplicative

factor) functions to reference data consisting of the magnitude and phase components of

the exact diffraction current. These are determined for a cylinder of moderatek0a excited

at normal incidence (2-D case). Subsequently, the Fock formulations for the generation of

induced surface currents on a PEC cylinder are reviewed along with observations relevant to

developing the macromodel. The macromodel will then be developed for the 2-D case (TM

z and TEφ currents only are excited) in both the shadow and lit regions. The macromodel

for the 2-D currents is then extended to the case of oblique incidence in a simple fashion.

All macromodeled currents, including the additionalz directed current excited at oblique

incidence for the TE case, are generated from the reference data for a cylinder excited at

normal incidence (2-D case). Also in all cases the macromodel is applied to generate the

induced surface currents on a half cylinder (�π=2� φ� π=2 in Figure 4.2) and this current

simply mirrored to generate currents around the full circumference of the cylinder.
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4.2.1 Fock Theory

The macromodel of the diffraction currentJD predicts the behavior of this current as

a function ofk0a by observing the asymptotic behavior in the analytical expressions for

the Fock currents. These currents indicate the general behavior of the diffraction current

as a function ofk0a for all regions on the cylinder surface. In this section Fock theory is

reviewed and observations are made in the Fock formulations relevant to the development

of the macromodel. The analytical expressions for currents on the surface of a PEC cylinder

are given by Pathak [43]. These expressions are a special case of the Fock currents in which

the canonical Fock integrals are approximated by a Taylor series expansion in the close

neighborhood of the surface and reduce to the Fock solution on the cylinder surface. In the

shadow region the Fock currents for TM and TE cases are given by

JTM
s =

iU i(Q1)

k0Z0
e�ik0aφ

�
k0

m

�
g̃(ζ) ẑ; (4.3)

JTE
s = �Ui(Q1) e�ik0aφ g(ζ) φ̂; (4.4)

where the subscripts denotes the shadow region. In (4.3) and (4.4)Ui(Q1) is the incident

electric field for the TM case and the incident magnetic field for the TE case evaluated on

the cylinder surface at the shadow boundary (pointQ1), shown in Figure 4.1. Also in (4.3)

and (4.4),m= (k0a=2)1=3, Z0 is the characteristic impedance of free space and ˜g(ζ) and

g(ζ) are the Fock functions given by

g̃(ζ) =
1p
π

+∞Z

�∞

dτ
eiζτ

w1(τ)
(4.5)

g(ζ) =
1p
π

+∞Z

�∞

dτ
eiζτ

w0
1(τ)

; (4.6)
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whereζ = �mφ and is defined in the shadow region only, andw1 is the Airy function as

defined in [41]. In the lit region the Fock currents are given by

JTM
l =

iU i(P)
k0Z0

ei (ζ
0)

3

3

�
k0

m

�
g̃(ζ0) ẑ; (4.7)

JTE
l = �Ui(P) ei (ζ

0)3

3 g(ζ0) φ̂; (4.8)

where the subscriptl denotes the lit region and the incident fieldUi is evaluated at the

point P on the surface of the cylinder, in the lit region, where the value of the induced

surface current is desired. In (4.7) and (4.8), ˜g and g are functions ofζ0, whereζ0 =

�msinφ and is defined in the lit region only. To construct the macromodel for the induced

surface diffraction currents the following observations of the asymptotic behavior of the

Fock currents are noted:

1. The factorm, implicit in bothζ (shadow region) andζ0 (lit region), is proportional to

(k0a)1=3.

2. In the shadow region the Fock functions for both the TM and TE cases can be eval-

uated in terms of a residue series which is a function ofζ. This indicates that the

macromodel developed for the complex diffraction current in the shadow region is

valid throughout the shadow region.

3. The TM current, given by (4.3) in the shadow region and (4.7) in the lit region, has a

weighting factor ofk0
m.

4. In the deep lit region ˜g(ζ0) andg(ζ0) can be expanded into an asymptotic series given

by

g̃(ζ0) = 2iζ0e�i (ζ
0)3

3

�
1� i

4ζ03
+

1

2ζ06
:::

�
; (4.9)

g(ζ0) = 2e�i (ζ
0)3

3

�
1+

i

4ζ03
� 1

ζ06
:::

�
: (4.10)
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5. The phase component of the Fock currents can be decomposed into a highly oscilla-

tory and slowly varying or gentle phase component. If we designate the exponential

of the diffraction current byeiχh(k0a;φ)+iχg(k0a;φ) where the subscriptsh andg indicate

the highly oscillatory and gentle phase components of the current, respectively, the

highly oscillatory phase terms are known in all regions. In the lit regionχh(k0a;φ) is

simply the phase of the incident field or

χh(k0a;φ) =�k0asinφ; (4.11)

and in the shadowχh(k0a;φ) is a linear phase term given by

χh(k0a;φ) =�k0aφ: (4.12)

The remaining gentle phase componentχg(k0a;φ) is monotonic in both the lit and

shadow regions and this is the component of the phase which will be macromodeled.

4.2.2 2-D Case, Normal Incidence

In this section the macromodel will be developed for the magnitude of the TM ˆz and

TE φ̂ diffraction currents in the shadow region, normal incidence. The macromodel for the

diffraction current magnitude will then be extended to the lit region. Finally, the gentle

phase component will be macromodeled.

As mentioned previously, to generate diffraction currents for cylinders of arbitrary ra-

dius, the macromodels will be applied to reference data consisting of the diffraction cur-

rents from a cylinder of moderate radius, generated from the exact solution. The macro-

models described in this section are developed using reference data for the TM case from a

cylinder of radius 20λ and for the TE case a cylinder of radius 50λ. Reasons for the choice

of these cylinder sizes to generate the reference currents will be given in more detail in
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Section 4.3.

Magnitude, Shadow region

To begin development of the macromodel for the diffraction current magnitude in the

shadow region we again note that the Fock currents in the shadow region can be evaluated

in terms of a residue series and thus the macromodel developed is valid throughout the

shadow region. Recall that the factorm is proportional to(k0a)1=3 and is implicit in the

argumentζ of both the ˜g(ζ) and g(ζ) terms in equations (4.3) and (4.4). This implies

a scaling ofφ by (k0a)1=3 for both the TM and TE cases. For the TM case, a factor of

(1=m) is observed in (4.3) implying a multiplicative or weighting factor for the TM current

of (k0a)�(1=3). Observation of (4.4) shows no weighting of the TE currents in the shadow

region. Examination of diffraction currents generated by the exact solution, however, shows

that the TM weighting factor is approximate and that there is a small weighting of the TE

currents. Empirical expressions are determined, which are functions ofk0a, to adjust for

this. Applying these scaling and weighting factors we now define the macromodel in the

shadow region, relating the diffraction current magnitudes on a cylinder of arbitrary radius

a2 to that of the reference cylinder of radiusa1 by

jJTM;TE
D (k0a2;φ)j= ΦTM;TE

s jJTM;TE
D (k0a1;

�
k0a1

k0a2

�(1=3)

φ)j: (4.13)

The weighting factorΦTM;TE
s is given by

ΦTM;TE
s =

�
k0a1

k0a2

�WTM;TE
s (k0a2)

; (4.14)

whereWTM;TE
s (k0a2) is approximately equal to(1=3) for the TM case and 0 for the TE

case. Expressions forWTM;TE
s (k0a2) are obtained empirically from the exact solution and

91



are given by

WTM
s (k0a2) =8>><
>>:

0:3373+0:009562e�0:1176k0a2 +0:0045531e�0:04896k0a2 1λ < a2 < 20λ

0:3348+0:005651e�0:01103k0a2 +0:001721e�0:0024k0a2 15λ < a2 <+∞
(4.15)

WTE
s (k0a2) =8>>>>>><

>>>>>>:

�0:02086+0:01708(1�e�0:09979k0a2)

+0:006827(1�e�0:002576k0a2) 1λ < a2 < 50λ

�j0:005987�0:007045(1�e�0:006046k0a2)j 20λ < a2 <+∞:

(4.16)

Magnitude, Lit Region

To macromodel the magnitude of the TM ˆzand TEφ̂ diffraction current in the lit region

we note that the behavior of the diffraction current (as a function ofk0a) transitions from

the shadow boundary to the deep lit region. To macromodel this behavior the magnitude

of the diffraction current is defined in the lit region, at and very near the shadow boundary,

and also at the deep lit region. Sigmoidal functions are then used to model the transition

from the shadow boundary to the deep lit region.

To define the magnitude of the diffraction current in the lit region at and very near the

shadow boundary for the TM case we note that in the transition from shadow to lit regions

the magnitude of the TM diffraction current is continuous across the shadow boundary

therefore (4.13) and (4.14) apply in the lit region at and very near the shadow boundary.

However, for the TE case the magnitude of the diffraction current across the transition from

shadow to lit is discontinuous. The PO current for the TE case undergoes an abrupt transi-

tion from a constant in the lit region to zero at the shadow boundary. The exact TE current

92



transitions gradually and monotonically across the shadow boundary. Remembering that

the diffraction current is defined asJD = Jex� JPO, the abrupt change in the PO current

causes a phase reversal in the TE diffraction current and an abrupt change in the magnitude

of the TE diffraction current across the shadow boundary. This can be seen in Figure 4.3b.

It was determined empirically from the exact solution that near the shadow boundary in

the lit region, (4.13) and (4.14) can be applied for the TE case if the factorWTE
s (k0a2) is

modified as follows:

WTE
l ;sb(k0a2) =�2:25WTE

s (k0a2); (4.17)

where the subscriptl ;sb implies the lit region at the shadow boundary.

To define the magnitude of the diffraction currents in the deep lit region recall that in the

deep lit region the surface currents are described by the asymptotic expansions of the Fock

functions,g̃(ζ0) andg(ζ0) given in (4.9) and (4.10). The first terms in (4.9) and (4.10) are

the PO currents, with higher order terms defining the non-uniform or diffraction currents.

In the deep lit region only the second term in (4.9) and (4.10) are needed to evaluate the

diffraction current. Substituting the second term in (4.9) and (4.10) for ˜g(ζ0) andg(ζ0) in

(4.7) and (4.8) and evaluating the resulting expressions indicates that the diffraction current

in the deep lit region is weighted by a coefficient of 1=(k0a), implicit in the (ζ0)3 term in

the denominator of the second term in (4.9) and(4.10) (recall that,m= (k0a=2)1=3). There

is no scaling of the argumentφ in the deep lit region for either the TM or TE case.

Having established the behavior of the diffraction current magnitudes at the shadow

boundary and in the very deep lit region, a function must be specified to transition from

the shadow boundary to the deep lit region. In a manner similar to the shadow region we

first define the relationship between the diffraction current magnitude in the lit region on a
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cylinder of arbitrary radiusa2 and the reference cylinder of radiusa1 as

jJTM;TE
D (k0a2;φ)j= ΦTM;TE

l jJTM;TE
D (k0a1;

�
k0a1

k0a2

�STM;T E
l (φ)

φ)j; (4.18)

whereΦTM;TE
l is the weighting factor in the lit region given by

ΦT M;TE
l (k0a2;φ) =

�
k0a1

k0a2

�WTM;T E
l (φ)

; (4.19)

and the functionsSTM;TE
l (φ) andWTM;TE

l (φ) in (4.18) and (4.19) are the powers of the

scaling and weighting expressions for the TM and TE cases, and define the transition in the

lit region. Recognizing that these functions ought to be very gentle, with known values at

the shadow boundary (φ = 0) and deep lit region (φ = π=2) Sigmoidal functions are chosen

to describe the transition.Sl andWl are given by the following expressions:

Sl(φ) = b� c

1+e�d( φ
2π�φ0)

; (4.20)

and

Wl (φ) = b+
c

1+e�d( φ
2π�φ0)

; (4.21)

whereb, c, d, andφ0 in (4.20) and (4.21) are constant parameters determined by optimiza-

tion. To calculate the optimal values for these coefficients a simple search algorithm is

employed. The algorithm searches through a range of values ford andφ0 (b andc are

defined in terms ofd andφ0) and determines the values which produce minimum error be-

tween diffraction current generated by the exact solution and diffraction current generated

by the macromodel. On a test cylinder of radiusa= 200λ (as the transitional behavior of

the diffraction currents through the lit region is a function ofφ only, any cylinder of radius

larger than the reference cylinders can be used as a test cylinder for optimization of these
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parameters), the optimal values ofb, c, d, φ0 are determined and are given in Table 4.1,

with the exception of theb andc coefficients for forWTM;TE
l defined asbTM

w , bTE
w , cTM

w and

cT E
w in Table 4.1. At the shadow boundaryWTM

l is defined byWTM
s andWTE

l is defined by

WTE
l ;sb (WTE

l defined at the shadow boundary given in (4.17)), making both functions ofk0a.

These coefficients as functions ofk0a are given by

cTM
w = (1�WTM

s )

�
1

1+e�d(1�φ0)
� 1

1+edφ0

��1

(4.22)

cTE
w = (1�WTE

l ;sb)

�
1

1+e�d(1�φ0)
� 1

1+edφ0

��1

(4.23)

bTM;TE
w = 1�cT M;TE

w

�
1

1+e�d(1�φ0)

�
: (4.24)

Table 4.1: Optimized parameters for Sigmoidal transition functions

d φ0 b c

STM
l (φ) 9.903 0.5650 0.3346 0.3391

STE
l (φ) 10.6 0.6630 0.3336 0.3430

WTM
l (k0a;φ) 10.025 0.5268 bTM

w cT M
w

WTE
l2 (k0a;φ) 8.5 0.610 bTE

w cT M
w

Phase, All Regions

Having developed an accurate model for the magnitude of the complex diffraction cur-

rent the next step is to macromodel the gentle phase component for the 2-D case. This gen-

tle phase component,χg(k0a;φ), is monotonic for the TM case and piecewise monotonic

for the TE case as shown in Figures 4.4a and 4.4b, respectively. The observed behavior
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of the Fock currents again allows for prediction of the asymptotic behavior of this gentle

phase factor in an accurate fashion. As already noted, in the shadow region a residue se-

ries is applied to calculate the complex surface currents. Recall that this residue series is a

function ofζ which again implies a scaling of the argumentφ, implicit in ζ, by (k0a)(1=3)

for both the TM and TE cases. This scaling was determined to be valid for the gentle phase

function in the shadow region. In addition, it was also determined empirically that this scal-

ing is an acceptable approximation in the lit region. While no weighting of the gentle phase

component is implied by observation of the Fock currents it was observed empirically that

a small offset ofχg(k0a;φ) as a function ofk0a is necessary and this offset is determined by

observation of the exact solution. Thus the expression relating the gentle phase component

for a cylinder of radiusa2 to the reference cylinder of radiusa1 is

χTM;TE
g (ka2;φ) = OTM;TE+χTM;TE

g (ka1;

�
k0a1

k0a2

�(1=3)

φ); (4.25)

whereOTM;TE is the adjustment factor for the gentle phase term and is given for the TM

case in all regions and the TE case in the shadow region by

OTM;TE(k0a2) = 8>>>>>>>>>><
>>>>>>>>>>:

0:07255�0:05857(1�e�0:08778k0a2)

�0:01777(1�e�0:01231k0a2) 1λ < a2 < 20λ

0:01608�0:01701(1�e�0:01592k0a2)

�0:005747(1�e�0:002158k0a2) 15λ < a2 <+∞;

(4.26)

As mentioned earlier the PO current for the TE case undergoes an abrupt transition at

the shadow boundary causing a phase reversal in the diffraction current. Thus,χTE
g is

discontinuous across the shadow boundary as can be seen in Figure 4.4b. Consequently,

OTE is also discontinuous across the shadow boundary. The relationship betweenOTE in
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the shadow and lit regions was determined empirically to be

OTE
l (k0a2) =�2 OTE

s (k0a2): (4.27)

4.2.3 Oblique Incidence

In this section the macromodel developed for the 2-D case will be extended to that of

oblique incidence. In addition a procedure for macromodeling the additional TEz-directed

current generated at oblique incidence will be given. The extension to oblique incidence is

rather simple and can be done in an analytic fashion. The coordinates are as described by

Figure 4.2 remembering that normal incidence corresponds toθi = π=2. The exact solution,

normal incidence, for the TM and TE currents on the surface of a PEC circular cylinder are

in the form of an eigenfunction expansion and are given by [40]

JTM
z =

2E0

πZ0k0a

+∞

∑
n=�∞

in
e�inφ

H(2)
n (k0a)

(4.28)

JTE
φ =�i

2H0

πk0a

+∞

∑
n=�∞

in
e�inφ

H(2)
n

0
(k0a)

; (4.29)

whereE0 andH0 are the magnitude of the incident electric and magnetic fields, respectively.

The exact solution for oblique incidence is given by [40]

JTM
z =

2E0e�ik0 cosθiz

πZ0(k0asinθi)

+∞

∑
n=�∞

in
e�inφ

H(2)
n (k0asinθi)

(4.30)

JTE
φ =�i

2H0sinθie�ik0 cosθiz

πk0a

+∞

∑
n=�∞

in
e�inφ

H(2)
n

0
(k0asinθi)

; (4.31)
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It is evident in the relation of (4.30) and (4.31) to (4.28) and (4.29) that surface currents

for the case of oblique incidence can be obtained from those of normal incidence with the

following modifications:

� k0a! k0asinθi ; incident wave simply “sees” an effectively smaller cylinder

� a multiplicative, progressive phase factor,e�ik0 cosθiz is added

� TE current is modified by sinθi (projection factor)

An additionalz - directed current is generated for the TE case at oblique incidence

angles. This current is not independent and its dependence onJTE
φ (k0a;φ;θi) is given by

[40]

JTE
z (k0a;φ;θi) =

�i cotθi

k0asinθi

∂
∂φ

JTE
φ (k0a;φ;θi): (4.32)

Having an expression forJTE
φ (k0a;φ;θi), the expression forJTE

z (k0a;φ;θi) can be obtained.

However, remembering thatJTE
φ (k0a;φ;θi) is composed of a PO component,JTE

POφ(k0a;φ;θi)

and a diffraction component,JTE
Dφ (k0a;φ;θi), the magnitude and phase ofJTE

Dφ (k0a;φ;θi) is

macromodeled separately and evaluation of∂
∂φJTE

Dφ (k0a;φ;θi) is not straightforward. A pro-

cedure is outlined for the calculation of∂
∂φJTE

Dφ (k0a;φ;θi).

As mentioned, in order to generateJTE
z (k0a;φ;θi), the term ∂

∂φJTE
Dφ (k0a;φ;θi) must be

evaluated in terms of the macromodel. The expression forJTE
Dφ (k0a;φ;θi) in terms of the

macromodel is of the form given by (4.13), (4.18) and (4.25) or

JTE
Dφ (k0a2;φ) =ΦTE jJTE

Dφ (k0a1;

�
k0a1

k0a2

�STE(k0a2;φ)
φ)j

e
fiOTE(k0a2)+iχTE

g (k0a1;(
k0a1
k0a2

)
(1=3)

φ)g
eiχh(k0a2;φ):

(4.33)

98



The derivative of (4.33) with respect toφ, in terms of the macromodel, is straightforward

with the exception of two terms. These terms are the derivatives of the magnitude and gentle

phase component of the reference cylinder, and their evaluation in terms of the macromodel

is not obvious. These terms are given by:

∂
∂φ
jJTE

Dφ (k0a1;

�
k0a1

k0a2

�STE(k0a2;φ)
φ)j= ∂

∂φ̃
jJTE

Dφ (k0a1; φ̃)j � ∂φ̃
∂φ

(4.34)

where

φ̃ =

�
k0a1

k0a2

�STE(k0a2;φ)
φ (4.35)

and

∂
∂φ

χTE
g (k0a1;

�
k0a1

k0a2

�(1=3)

φ) =
�

k0a1

k0a2

�(1=3) ∂
∂φ̃

χTE
g (k0a1; φ̃) (4.36)

whereSTE in (4.34) is the scaling factor for the TE case, given by 1=3 in the shadow region

and the Sigmoidal transition functionSTE
l in the lit region, as described previously. While

evaluation of the∂φ̃
∂φ in (4.34) is simple, evaluation of the other derivatives to the right of the

equal sign in (4.34) and (4.36) is not. To evaluate these terms we note that∂
∂φ̃ jJTE

Dφ (k0a1; φ̃)j
and ∂

∂φ̃χTE
g (k0a1; φ̃) in (4.34) and (4.36) are derivatives of the entire argument and are there-

fore independent ofk0a. We can therefore calculate these terms directly from diffraction

current in the reference data. To do this we simply define the diffraction current in terms of

its real and imaginary parts orJTE
Dφ = X+ iY. The derivative of the magnitude is then given

by

∂
∂φ̃
jJTE

Dφ j=
XX0+YY0

p
X2+Y2

; (4.37)
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and the derivative of the phase by

∂
∂φ̃

χTE
g =

Y0X�YX0

X2+Y2 : (4.38)

4.3 Validation: PEC Cylinder

In the previous section a macromodel was developed which relates the diffraction cur-

rent on a PEC cylinder of arbitrary radiusa2 to that of a reference cylinder of radiusa1,

for plane wave excitation. In practice this macromodel allows the complex diffraction cur-

rents for any cylinder with radiusa2 illuminated by a plane wave at oblique incidence to be

generated from the diffraction current for a reference cylinder of radiusa1 when excited at

normal incidence. The reference data is generated using the exact solution for a cylinder

with a moderate value ofk0a. In this section the validity and accuracy of the macromodel is

examined by comparing the surface currents and near fields generated by the eigensolution

with those of the macromodel for cylinders of radii larger than 1λ. Figure 4.3 shows the

macromodeled diffraction current magnitude for cylinders of radii 10λ and 100λ excited

at normal incidence compared to the exact solution for the TM case (a) and the TE case

(b). The horizontal axes in both figures are the normalized angular dimension orφ=2π with

φ=2π = 0; 0:5 corresponding to the top and bottom shadow boundaries respectively.

As mentioned previously, the reference cylinder radiusa1 was chosen to be 20λ for

the TM case and 50λ for the TE case. The choice of radius for the reference cylinder is

somewhat subjective but the main criteria was the negligible level of the ripple in the mag-

nitude and gentle phase components of the exact diffraction current in the deep shadow.

The diffraction current magnitude component in the deep shadow show a rapid oscilla-

tion (ripple) (as seen in Figure 4.3) which is due to the effects of higher order diffraction

(multiple transitions of the creeping wave around the cylinder). The gentle phase compo-

nent exhibits similar behavior but at a much lower level. As cylinder radius increases the
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Figure 4.3: Diffraction current magnitude (dB) around full circumference of 10 and 100λ
PEC cylinders excited at normal incidence angle,θi = π=2, eigensolution
current (———–), compared with macromodeled current (- - - - - -), φ

2π = 0
is equivalent to a point on top of the cylinder, perpendicular to the shadow
boundary, with φ

2π =�0:25 in the deep shadow region.

frequency of the ripple increases and becomes more localized to the deep shadow region

(φ=2π = �0:25 in Figure 4.3). It should be noted that the level of diffraction current at

which this ripple takes place is very low and therefore it is unlikely that this ripple would

affect the near field anywhere except perhaps very near the surface in the deep shadow.

Because this ringing cannot be macromodeled a reference cylinder radius was chosen to

minimize the error between the exact solution and the macromodel for any cylinder radius

greater than 1λ. In the reference data this ripple is removed from both the magnitude and

gentle phase components of the diffraction current and the remaining curve extended by

assuming a continuation of the slope of the remaining data. The macromodeled diffraction

current for the TE case (Figure 4.3b) shows noticeable error for the 10λ cylinder in the deep

lit region (φ=2π = 0:25) and is attributed to increasing error in the value of the weighting

factor Φ, for decreasingk0a. In this region the PO current is dominant however and the

error in the total current is still within the values described previously. In practice this has

no effect on the accuracy of the total fields.

The error between the exact solution and the macromodel was investigated from a cylin-
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Figure 4.4: Gentle phase component (degrees) around full circumference of 10 and 100λ
PEC cylinders excited at normal incidence angle,θi = π=2, 10λ (———–),
100λ (- - - - - -), φ

2π = 0 is equivalent to a point on top of the cylinder,

perpendicular to the shadow boundary, withφ
2π = �0:25 in the deep shadow

region.

der of 1λ radius up to a cylinder with radius of 200λ. In this range the maximum error in

magnitude in the total current (PO + diffraction) was -60 dB where the magnitude error is

as previously defined or,ejj = 20log(jjJexj� jJmmjj). The phase error over this range was

found to be less than 0:1Æ near the shadow boundary. Figure 4.5 shows an example of the

macromodeled total current for a 100λ PEC cylinder excited at oblique incidenceθi = π=4

as compared to the exact current. Figure 4.5a and Figure 4.5b show the magnitude and

phase, respectively, of the total current for the TM case. Figure 4.5c shows the TEφ - di-

rected current with Figure 4.5d showing the additionalz - directed current for the TE case

at oblique incidence angle. As can be seen the macromodel agrees very well with the exact

solution in all cases.

The accuracy of the total fields (incident + scattered) generated by the macromodeled

currents is shown in Figure 4.6a for the TM case and Figure 4.6b for the TE case. The

data shown is for a 100λ cylinder excited at oblique incidence,θi = π=4, with fields 1λ
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off the cylinder surface plotted. Results from the macromodel are again compared with

the exact solution. The scattered fields for both solutions are generated by applying the

radiation integrals to the exact and macromodeled total currents. The fields generated by

the macromodel are in good agreement over the entire range shown for both the TM and

TE cases. The macromodel was shown to produce near fields which are highly accurate

over a dynamic range of greater than 85 dB for cylinders of up to 200λ radius. The one

exception to this is the TEφ - directed near fields at oblique incidence. As the incidence

angle approaches grazing the TE PO current is attenuated by a sinθi factor. As this happens

the accuracy of the TEφ - directed near fields is degraded. In the near field however the TE

ρ - directed field is the dominate field component and the total field retains the high degree

of accuracy previously shown.

4.3.1 Direct Evaluation of Fock Type Integrals

As mentioned in the introductory section direct numerical evaluation of the Fock inte-

grals is difficult due to their highly oscillatory nature. At this point it is relevant to compare

results generated by direct numerical evaluation of these integrals to the proposed macro-

model. We begin by observing the TM and TE current distributions, for cylinders of radius

10, 15, and 20λ, and generated by the Fock type integrals as seen in Figure 4.7. What is

apparent in these curves is the convergence problems of the Fock type integrals in the deep

lit region, and the increasing region of non-convergence as cylinder radius increases. As

cylinder radius is increased the integrand becomes more oscillatory, and evaluation of the

Airy type functionsw1;w0
1 in (4.5) and (4.6), more difficult. Convergence of the integrand

for larger radius requires evaluation of the integrand for larger argument ofw1. As the ar-

gument ofw1 increases it value increases exponentially (see [41]) and the numerical error

in evaluating the integrand grows significantly, thus making convergence difficult. This

correlates with the discontinuity between transitioning from tabulated data generated in the

lit region towards the shadow boundary [47], to the asymptotic solution applied in the deep
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lit region, discussed previously. Due to the discussed convergence problems, it becomes

difficult to generate tabulated data to a point in the deep lit region where transition to the

asymptotic series becomes practical.

Table 4.2 shows the speed-up in time for the macromodel to calulate the induced surface

currents, over the time required for numerical evaluation of the Fock integrals (as before

speed-up is the time in seconds required to calculate the Fock integrals divided by the time

in seconds to calculate the currents using the macromodel). As can be seen evaluation of

the macromodel is significantly faster, especially when noting that to achieve complete con-

vergence of the Fock type integrals would require even more time. The scheme proposed

by Pearson [46] would eliviate some on the problems in evaluating the Fock type integrals,

but numerical integration is still required and while a speed up of 10 is reported over direct

evaluation of the Fock solution, this is based on a nominal accuracy requirement of 10%,

with higher accuracy requiring more computation time.

Table 4.2: Speed-up, Macromodel to Fock Integrals

Cylinder radius, a Speed-up

10 13.0
15 18.8
20 34.7

A final note is the effect of the non-convergence of the Fock type integrals on the to-

tal electric fields. Figure 4.8 shows a comparison of the total TM fields generated by the

macromodeled currents to those generated by the Fock type integrals, for a cylinder of ra-

dius 15λ. In Figure 4.7 is is apparent that the evaluation of the Fock integrals for a 15

radius cylinder did not converge properly near normal incidence, in the deep lit region.

This discrepency is apparent in the accuracy of the total fields seen in Figure 4.8. It can

be shown by asymptotic evaluation of the radiation integrals that in the deep lit and deep

shadow regions the main contributor to the scattered fields is the current in the neighbor-

hood around normal incidence, the same area where the convergence problems arise. This
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is evident in Figure 4.8 as the most significant error between the total fields generated by

the Fock integrals when compared to those generated by the macromodel can be seen in

these regions.

4.4 Application of Macromodel

To summarize the techniques described in the previous sections, the following steps are

applied to calculated the induced surface currents on a PEC cylinder using the proposed

macromodel:

1. Generate reference data at normal incidence (a= 20λ for TM, a= 50λ for TE) us-

ing the exact solution. Remove oscillations in reference data in deep shadow and

approximate by extending slope of remaining data.

2. Apply equations (4.13) through (4.16) and (4.17) through (4.24) to the magnitude of

the reference data for normal incidence to generate the magnitude of the diffraction

current in the shadow and lit regions, respectively, for a cylinder of the desired radius.

3. Apply equations (4.25) through (4.27) to the gentle phase component of the reference

data for normal incidence to generate the gentle phase component in the shadow and

lit regions, respectively.

4. To generate the TM ˆz and TE φ̂ currents for oblique incidence simply apply the

modifications given in Section 4.2.3. For the additionalz directed current generated

at oblique incidence for the TE case apply (4.32) through (4.38) to the reference data

for normal incidence to generate the derivative of theφ directed current needed.

5. Reference cylinder data is compressed onφ axis when macromodeling surface diffrac-

tion current on cylinders of larger radius than that of the reference cylinder. Because

of this the macromodeled data does not extend over full range of cylinder (deep
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shadow to deep lit). To extend the macromodeled data to the full extent of the cylin-

der simply assume a continuation of the slope in the lit and shadow regions, respec-

tively.

6. If higher sampling of diffraction currents is required apply simple linear interpola-

tion to the magnitude and gentle phase component of the macromodeled current to

generate additional data points.

4.5 Other Applications

The ability to accurately predict the scattered fields from a circular cylinder or any

general convex surface has applications other than those of interest in this thesis and at this

point it is appropriate to give some mention of them. In radar applications the proposed

method could be used to evaluate the detectability of hidden targets behind a hill or knoll.

In an extension to applications in wireless communication the macromodel can be applied

to evaluate the field pattern of antennas mounted on structures of circular cross-section. As

an example of this consider a small dipole mounted on an aircraft fuselage. By application

of reciprocity [48] source and observation can be exchanged, and the case of plane wave

incidence-near field observation, examined thus far, can be applied to evaluate the far-fields

generated from a point source (small dipole) radiating in the presence of a convex surface. It

can be shown through reciprocity that for identical point sources the following relationship

holds:

l̂1 �E2 = l̂2 �E1; (4.39)

whereE1; E2 are electric fields caused by point sources with orientationl̂1, l̂2, respectively.

If l̂1 is radiating in the far-field of the convex surface and the corresponding electric field

E1 is observed in the near-field of the surface it is equivalent to the plane wave excitation
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problem with the incident plane wave weighted by the dipole field coefficients given by

Ei
d(r) =

�il1k0Z0I0
4πr

eik0r [I � k̂i
1 � l̂1k̂i

1]; (4.40)

where the vectorr = r r̂ is defined from the axis origin (always at the origin of the local

radius of curvature) to the dipole position,l1 is the dipole length, andI0 is the dipole

current magnitude. Ifl2 is the orientation of a dipole radiating in the near-field of the

convex surface and knowing the plane wave solution (4.39) can be solved for fieldsE2

which are the far-fields generated by an infinitesimal dipole radiating in the presence of a

convex surface. Applying this technique, far-field results for the 2-D case were generated

for an infinitesimal dipole radiating in the presence of a 20λ circular PEC cylinder which

can represent the fuselage of an aircraft (12m diameter at 1 GHz). The dipole is positioned

at the top of the fuselage (x axis, coordinates in Figure 4.2 apply), 0:1λ away from the

surface. Figure 4.9 the shows the far-field patterns for three dipole orientations along with

their corresponding positions. Figure 4.9a shows the result from ax - directed point source

with Figures 4.9b and 4.9c showing the results from ay and z - directed dipole. Again the

fields generated from the macromodel are in excellent agreement with those generated by

the exact solution.

4.6 Chapter Summary: Diffraction from Right Circular

Cylinders

Motivated by the shortcomings in existing high frequency techniques, an alternative

method was sought to calculate the diffraction and scattering from general convex sur-

faces. In this chapter the case of right circular cylinders was examined and a macromodel

developed, based on PTD and Fock analysis, which predicts the diffraction currents in-

duced on the surface of electrically large cylinders when excited by a plane wave at oblique
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angles. The case of a PEC cylinder was examined and an approach to determining these

diffraction currents was presented which is based on the asymptotic behavior of the Fock

currents. The method is highly accurate, producing total near fields with a dynamic range

of over 85 dB. The macromodel developed is algebraic in nature and simple to implement.

In the next chapter the macromodel developed is extended to include the case of general

convex surfaces, when excited at oblique angles. The macromodeled currents are extended

to a convex surface in the standard manner of applying the currents induced on a circular

cylinder locally on the convex surface.
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Figure 4.5: Total current, magnitude (dB) and phase (degrees) around full circumference of
a 100λ PEC cylinder excited at oblique incidence angle,θi = π=4, eigensolution
current (———–), compared with macromodeled current (- - - - - -), φ

2π = 0
is equivalent to a point on top of the cylinder, perpendicular to the shadow
boundary, with φ

2π = �0:25 in the deep shadow region. (a) and (b) are
magnitude and phase of TMz - directed current with (c) and (d) magnitude
of TE φ andz - directed current respectively.
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Figure 4.6: Magnitude (dB) of total E-fields 1λ off the surface of a 100λ PEC cylinder
excited by a plane wave at oblique incidence angle,θi = π=4, eigensolution
(———–), macromodel (- - - - - -) with�90Æ corresponding to deep shadow
and 90Æ corresponding to normal incidence (deep lit).
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Figure 4.7: Total current magnitude (dB) of Fock currents around full circumference of a
PEC cylinder excited at normal incidence angle,θi = π=2, a= 10λ (———–),
a= 15λ (- - - - - -), a= 20λ (� � � � �). φ

2π = 0 is equivalent to a point on

top of the cylinder, perpendicular to the shadow boundary, withφ
2π =�0:25 in

the deep shadow region.
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Figure 4.9: Magnitude (dB) of total far-fields generated by a point source (small dipole)
radiating in the presence of a 20λ PEC cylinder positioned 0:1λ off cylinder
surface along thex axis (0Æ in plot) at z = 0. Observation is at 2(2a)2=λ
from cylinder center and inx� y plane atz = 0, eigensolution (———–),
macromodel (- - - - - -).
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CHAPTER 5

Diffraction from Convex Surfaces

In the preceding chapter a novel approach, based on the Physical Theory of Diffraction

(PTD) and Fock theory was developed to macromodel the induced surface currents on a

right circular, PEC cylinder, when excited by a plane wave. The proposed method generated

highly accurate surface currents without the need for complex mathematical analysis, or

numerical evaluation of integrals. For the case of a general convex surface, infinite in one

dimension, and with large, slowly varying radius of curvature, the induced surface currents

on a circular cylinder can be applied locally to approximate those induced on the convex

surface. In this chapter the macromodel for the induced surface currents on a right circular

PEC cylinder will be applied to approximate the currents induced on a general convex

surface, infinite in one dimension, which can represent the effect of natural obstacles, such

as hills, mountains, or ridgelines on the propagating radio wave. In the sections that follow

the macromodel will be extended to a general convex surface in a standard way, as found

in the literature [43], by applying the induced surface currents from a circular cylinder

locally, on the convex surface. To validate the technique on a non-circular cylinder, results

are generated for the fields scattered from an elliptical cylinder using the macromodeled

currents and compared to those generated by a Method of Moments (MoM) numerical

code. Curves are then shown for the fields scattered by a parabolic hill and compared to

those generated using the Kirchhoff (knife-edge) diffraction method.
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5.1 Introduction

As mentioned in the previous chapter, many natural terrain features exhibit both curved

and doubly curved surfaces. Ridgelines in mountainous areas can exhibit the features of a

long, singly curved surface (see Figure 5.1), which is essentially infinite in one dimension.

Current methods of propagation prediction for natural obstacles tend to be either overly

Figure 5.1: Ridgelines in Mountainous Region

simplistic, such as Kirchhoff (knife-edge) diffraction, or do not account for the curvature

of the obstacle, such as wedge diffraction. High frequency techniques, while accounting

for the radius of curvature of the obstacle, are mathematically complex, and can be numer-

ically cumbersome, as was seen in the last chapter in evaluating the Fock type integrals for

induced surface currents. In addition techniques such as the Uniform Theory of Diffrac-

tion (UTD) have been shown to have serious limitations in accuracy, and in essence are not

asymptotic in the high frequency limit, as cylinder radius increases. Details of the problems

and limitations of these techniques have been throughly discussed in the previous chapter

and will not be repeated here. Suffice to say that the need for an alternate method to pre-

dict scattering and diffraction from convex surfaces of large radius of curvature is apparent.

With this as a motivation a macromodel for the induced surface currents on a PEC right

circular cylinder was developed in the last chapter. The proposed macromodel is simple,

easy to implement, and most important, shown to be highly accurate. In this chapter the
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macromodeled currents from the circular cylinder will be applied in a standard fashion, to

approximate the induced surface currents on a singly curved (infinite in one dimension)

convex surface, with large slowly varying radius of curvature.

5.2 Induced Surface Currents: General Convex Surface

The macromodel for the surface currents induced on a right circular PEC cylinder, when

excited by a plane wave, are extended to that of a general convex surface by assuming that

the surface currents induced on the convex surface can be approximated locally by those

induced on a circular cylinder. This is a valid approximation provided that the convex sur-

face is of large, slowly varying radius of curvature. To extend the macromodel to a general

convex surface, and referring to the geometry as shown in Figure 5.2, modifications are

made to the following parameters, defined in the previous chapter for the circular cylinder.

Ei

P

P

●

Q1
●

●
x

y ϕi

β

β
n̂

t

l

s

Figure 5.2: Geometry of a General Convex Surface

116



In all regions:

Circular Cylinder:

m=

�
k0a
2

�(1=3)

(5.1)

General Convex Surface:

m(rc(P)) =

�
k0rc(P)

2

�(1=3)

; (5.2)

whererc(P) is the local radius of curvature of the surface, evaluated at some pointP on

the surface, and wherePl andPs indicate the pointP evaluated in the lit region, or shadow

region, respectively.

In the lit region:

Circular Cylinder:

Z0 =�mcosφ (5.3)

General Convex Surface:

Z0 =�mcosβ; (5.4)

whereβ is the angle between the incident ray and the surface normal.

In the shadow region:

Circular Cylinder:

Z =�mφ (5.5)
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General Convex Surface:

Z =

PsZ

Q1

m(rc(τ))
rc(τ)

dτ =
�

k0

2

�1=3 PsZ

Q1

dτ
rc(τ)2=3

; (5.6)

t =

PsZ

Q1

dτ; (5.7)

γ =
�

rc(Ps)

rc(Q1)

�1=6

: (5.8)

On a general convex surface the creeping wave sheds energy as a function of arclength

(parameterτ in (5.6)), thus (5.6) is the more general equation, valid for any convex surface

and reduces to (5.5) for the special case of a right circular cylinder. In (5.7)t is the arclength

along the convex surface from the shadow boundary at pointQ1 to Ps, andγ in (5.8) is

a multiplicative factor applied in the shadow region so that the Fock currents reduce to

Keller’s Geometrical Theory of Diffraction (GTD) formulation in the deep shadow region

[42, 43]. It is not clear in the literature how the parameterγ is arrived at, either by derivation

or empirically, only that it is necessary for the expressions in the deep shadow to uniformly

reduce to Keller’s solution.

5.3 Results: Diffraction from Convex Surfaces

5.3.1 Ellipse

To validate the extension of the macromodeled surface currents to a general convex

surface, the technique will first be applied to an elliptical cylinder, for the 2-D case (θi =
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90Æ) and compared with results obtained from a MoM code. The geometry is as shown in

Figure 5.3, witha andb describing the dimensions of the ellipse along they andx axes

respectively, withφi the incidence angle. Figure 5.4 shows the results for an ellipse with

y-dimensiona = 10λ and x-dimensionb = 8λ, with incident angleφi = 90Æ. The results

shown are the total fields (direct + scattered) observed 1λ off the surface of the ellipse and

observation is a function of the y-dimension in the figure. Figure 5.4a shows the TMz

x

y

Ei

ϕi

a

b

Figure 5.3: Geometry of Elliptical Cylinder

field component, with Figure 5.4b and Figure 5.4c showing thex andy components of TE

polarization, respectively. As can be seen in Figure 5.4 the total fields generated by the

macromodel are in good agreement with those generated by the MoM code. A note of

interest about these results. The fields generated by the macromodeled surface currents as

well as the fields generated by the MoM code for the TM case were done with a current

sampling rate of 10 samples/wavelength. To produce acceptable results for the TE case the

current sampling for the MoM code had to be increased to 30 samples/wavelength. This is

due to the fact that the Green’s function for the TE case contains higher order derivatives
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and evaluation of these derivatives in the TE MoM code are done numerically instead of

evaluation of the analytic expressions for the derivatives. Figure 5.5 shows results for the

same test case but with they andx dimensions of the ellipse interchanged, ora= 8λ and

b= 10λ. Again the total field results from the macromodeled current are in good agreement

with those generated by the MoM code. In Figures 5.6 and 5.7 the results are shown for a

similar test case, but with an increased axial ratio of the ellipse. Figure 5.6 shows results

for ellipse dimensions ofa= 10λ andb= 5λ, with Figure 5.7 showing results fora= 5λ

andb= 10λ. Again for both cases incident angleφi = 90Æ. As can be seen in all plots there

is again good agreement between total fields generated by both methods.

In order to examine the effect of even more extreme axial ratio on the accuracy of the

macromodel Figures 5.8 and 5.9 again compare the fields generated by the macromodel

those generated by the MoM code for an ellipse witha = 10λ and b = 3:33λ and a =

10λ and b = 2:5λ, respectively. As can be seen in these figures while the accuracy of

the macromodel begins to degrade as expected, there is still reasonably good agreement

between the curves except in the deep shadow for the TMzfields and the TEx fields.

Finally in this section results are generated with the incidence angleφi = 45Æ. This

is an interesting case as the surface currents on the ellipse are no longer symmetric about

the shadow boundary. Figures 5.10 and 5.11 show results for an ellipse witha= 10λ and

b = 8λ anda = 8λ andb = 10λ, respectively. Note that observation in these plots is a

function of angular dimensionφ. Again good agreement is observed between the total

fields generated with the macromodeled currents when compared to those generated by the

MoM numerical code.

120



−10 −5 0 5 10
−70

−60

−50

−40

−30

−20

−10

0

10

y−dimension (wavelengths)

|E
zT

M
|

(a) jETM
z j

−10 −5 0 5 10
−30

−25

−20

−15

−10

−5

0

5

10

y−dimension (wavelengths)
|E

xT
E
|

(b) jETE
x j

−10 −5 0 5 10
−70

−60

−50

−40

−30

−20

−10

0

10

y−dimension (wavelengths)

|E
yT

E
|

(c) jETE
y j

Figure 5.4: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 10λ, x-dimensionb = 8λ. Incidence angleφi is at 90Æ, MoM solution
(———–), compared with macromodel (- -- - - -).
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Figure 5.5: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 8λ, x-dimensionb = 10λ. Incidence angleφi is at 90Æ, MoM solution
(———–), compared with macromodel (- -- - - -).
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Figure 5.6: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 10λ, x-dimensionb = 5λ. Incidence angleφi is at 90Æ, MoM solution
(———–), compared with macromodel (- -- - - -).
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Figure 5.7: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 5λ, x-dimensionb = 10λ. Incidence angleφi is at 90Æ, MoM solution
(———–), compared with macromodel (- -- - - -).
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Figure 5.8: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a= 10λ, x-dimensionb= 3:33λ. Incidence angleφi is at 90Æ, MoM solution
(———–), compared with macromodel (- -- - - -).
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Figure 5.9: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 10λ, x-dimensionb = 2:5λ. Incidence angleφi is at 90Æ, MoM solution
(———–), compared with macromodel (- -- - - -).
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Figure 5.10: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 10λ, x-dimensionb = 8λ. Incidence angleφi is at 45Æ, MoM solution
(———–), compared with macromodel (- - - - - -).

127



−100 0 100 200 300
−80

−60

−40

−20

0

20

φs (degrees)

|E
zT

M
|

(a) jETM
z j

−100 0 100 200 300
−50

−40

−30

−20

−10

0

10

φs (degrees)
|E

xT
E
|

(b) jETE
x j

−100 0 100 200 300
−70

−60

−50

−40

−30

−20

−10

0

10

φs (degrees)

|E
yT

E
|

(c) jETE
y j

Figure 5.11: Magnitude (dB), total fields 1λ off the surface of an ellipse, with y-dimension
a = 8λ, x-dimensionb = 10λ. Incidence angleφi is at 45Æ, MoM solution
(———–), compared with macromodel (- - - - - -).

128



5.3.2 Knife-edge (Kirchhoff) Diffraction

A commonly used technique in predicting path loss from terrain obstacles is knife-edge

or Kirchhoff diffraction. Based on Huygen’s principle, the obstacle is represented by a

blocking screen and the field distribution across the resulting aperture (from the top of the

screen, vertically to infinity) integrated to produce the diffracted fields. The technique is

a 2-D method (does not account for oblique incidence) and assumes that both the source

and observation are very distant from the obstacle. It is a scalar method (does not account

for polarization effects) and cannot account for surface effects such as reflected fields or

creeping waves. Also it does not account for the impedance of the surface. Based on the

assumption that both source and observation are distant from the obstacle the following

expression, in the form of a Fresnel integral, can be derived for path loss by applying knife-

edge diffraction techniques, [49].

Path loss=

p
2

2

����
∞Z

�Hc

e�iπu2=2 du

����; (5.9)

where,

Hc =

�
2(R0+ jyj)

λR0jyj � 2i
πγ2

�1=2

ho: (5.10)

In (5.10)R0 is the horizontal distance from source to the blocking screen (perpendicular to

screen),y the horizontal distance from observation to screen,λ the free space wavelength,

γ a decay factor, representing a Gaussian field distribution across the aperture, andho the

vertical distance from observation to the top of the screen (see Figure 5.12 for geometry

details). Note thatHc in (5.9) and (5.10) is positive when observation is above the screen

and negative below. The geometry of the problem for both the convex surface and knife-

edge are shown in Figure 5.12. The convex obstacle is represented by a parabolic surface of

heighth and widthw, defined at the base of the surface (x= 0 in Figure 5.12). To minimize
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Figure 5.12: Scattering Geometry, Knife-edge and Convex Surface

edge effects the parabolic surface is extended below a virtual ground (x< 0) and the surface

currents tapered by a cosine function below this point. For all results that follow the angle

of incidence for the convex surface isφi = 90Æ (normal to the screen, see Figure 5.2) and the

source position,Ro for the knife edge is assumed to be distant so that plane wave incidence

can be assumed. Also the weighting parameterγ in (5.10) is set at 1000λ or essentially a

uniform aperture distribution.

If the blocking obstacle is much narrower in width than height it is assumed that knife-

edge diffraction should produce somewhat acceptable results provided that the observation

point in the shadow region is distant from the actual obstacle, although since knife-edge

diffraction is scalar diffraction, it will not properly predict the location of the ringing posi-

tions in the lit regions. As the width of the obstacle is increased these results should begin

to degrade even further when compared with results from the macromodel for convex sur-

faces, especially in the deep shadow of the obstacle. This can be seen in Figures 5.13

through 5.15. To generate these results the observation position was placed aty = �51λ

(see Figure 5.12) and moved vertically fromx= 0 to x= 100λ. The height of the obstacle

was set at 50λ. Figure 5.13 shows results from the macromodel, with width of the convex
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surface set atw= 6λ, compared with the knife-edge results (note that this width produces

a radius of curvature at the shadow boundary of approximately 1λ, the minimum radius of

curvature for which the macromodel can be assumed to be accurate). Figure 5.13a shows a

comparison of the z-component of the TM fields (total fields) with the knife-edge results,

with Figure 5.13b comparing the knife-edge results to the x-component of the TE fields. As

can be seen in Figure 5.13a, for the TM case, the knife-edge calculations produced some-

what acceptable in the lit region and through the transition region (again without properly

predicting the position of the ringing in the lit region) for this case of a very narrow obsta-

cle, although its accuracy begins to degrade in the deep shadow region as expected. The

results for the TE case, in Figure 5.13b, shows similar discrepancies. Figure 5.14 and

Figure 5.15 show similar results, with the width of the obstacle widened to 50 and 100λ

respectively. As expected the knife-edge results begin to degrade in the shadow region as

the width of the obstacle is increased, and the degradation tends to approach the transition

region and shadow boundary.
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Figure 5.13: Path loss (dB), total fields from an obstacle of heighth = 50λ, and width
w= 6λ. Observation is aty=�51λ and incident angle is atφi = 90Æ (normal
to the screen). Macromodel (———–), compared with knife-edge (Kirchhoff)
diffraction (- - - - - -).
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Figure 5.14: Path loss (dB), total fields from an obstacle of heighth = 50λ, and width
w= 50λ. Observation is aty=�51λ and incident angle is atφi = 90Æ (normal
to the screen). Macromodel (———–), compared with knife-edge (Kirchhoff)
diffraction (- - - - - -).
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Figure 5.15: Path loss (dB), total fields from an obstacle of heighth= 50λ, and widthw=
100λ. Observation is aty=�51λ and incident angle is atφi = 90Æ (normal to
the screen). Macromodel (———–), compared with knife-edge (Kirchhoff)
diffraction (- - - - - -).
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5.4 Chapter Summary: Diffraction from Convex Surfaces

In this chapter the macromodel developed in Chapter 4, for predicting the induced sur-

face currents on a right circular PEC cylinder, when excited by a plane wave at oblique

angles, was extended to the case of a general convex surface. Recognizing that the induced

surface currents on a circular cylinder can be applied locally on a surface with large, slowly

varying radius of curvature, the method was extended to a general convex surface by appli-

cation of standard methods found in the literature. The case of an elliptical cylinder was first

examined and the proposed macromodel showed good agreement when compared to results

generated by a MoM numerical code. The macromodel was then applied to a parabolic sur-

face and compared to results generated by using knife-edge or Kirchhoff diffraction. As

expected the knife-edge method produced somewhat acceptable results for a very narrow

obstacle, but as the obstacle was widened, results from the knife-edge method began to

degrade, especially in the shadow region and into the transition region.

133



CHAPTER 6

Summary & Future Work

As previously discussed, the ability to predict the propagation of radio waves in an ac-

curate and general fashion is essential in the performance analysis and optimal design of

a communications system. Without an accurate and general model, system issues such as

coherency, field variations, multipath, and path delay effects cannot be properly addressed.

Existing methods in propagation or channel modeling tend to be heuristic or overly sim-

plistic and do not adequately address the relevant issues for optimal system design. Due

to the discussed shortcomings in current techniques for the prediction of radio wave prop-

agation, a more general approach or methodology, directly based on the physics of the

propagation problem is defined. The basis of the methodology is, through the application

of electromagnetic wave theory, to develop a series of canonical scattering and diffraction

models which represent the effects of various mechanisms in the propagation environment,

on the radio wave. Depending on the problem at hand the appropriate technique is applied

whether it be analytic, numeric, or a hybrid technique. Relevant approximations are made,

based on the physics of the problem, which improve computational efficiency while re-

taining the required accuracy. Eventual merger of these canonical models with a satellite

terrain database will provide the system designer with an accurate and general model to

simulate the propagation environment.

Within the framework of this physics-based methodology the initial concentration or
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focus of this thesis work was defined. It is intended that the work in this thesis be a basis

for expansion into an overall propagation model, and with that in mind it was decided that

the concentration of this work would be on predicting propagation in a rural environment,

in the frequency range of HF to L-band, which can include point to point communication

on the ground or perhaps from an unmanned aerial vehicle (UAV) to/from ground. Included

in a rural environment can be the effects of a lossy earth on radio wave propagation as well

as scattering and diffraction from natural obstacles such as hills, mountains, or ridgelines.

In this thesis two diffraction models were developed. The first accounts for the effects of

a lossy earth on the fields of a small dipole, which can include the effects of some type of

impedance transition, representative of a river or land/sea transition. The second model de-

veloped determines scattering and diffraction from a general convex surface, representative

of a hill, mountain, or ridgeline. In this chapter this work will be summarized as well as a

discussion of future work presented.

6.1 Summary: Scattering & Diffraction from Impedance

Surfaces

The prediction of radio wave propagation over the Earth’s surface is important in the

characterization of a communications channel. Locally the Earth can be modeled as a flat,

impenetrable, impedance surface and the standard impedance boundary condition (SIBC)

applied. The problem can be decomposed into the effects of the homogeneous surface and

the effects of an impedance transition in the surface, such as caused by a river or land/sea

interface. In Chapter 2 the effects of the homogeneous surface were addressed with the

model extended to include that of an impedance transition in Chapter 3.
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6.1.1 Fields of a Small Dipole Above an Impedance Surface

The fields of an infinitesimal dipole, of arbitrary orientation, above a homogeneous

impedance surface is the classic Sommerfeld problem, with field expressions in the form

of Sommerfeld type integrals. These integrals are highly oscillatory and difficult to evaluate

numerically and the time taken to compute them discourages their application as Green’s

functions in integral equation techniques. With this in mind, in Chapter 2, a technique was

presented to significantly improve the convergence properties of these Sommerfeld type

integrals. By application of an integral transform technique known as exact image theory

the Sommerfeld type integrals were transformed into a form more conducive to numeri-

cal evaluation. As no approximations are made the resulting expressions are exact in the

analytic sense. Starting with a spectral domain representation of the dipole fields, and by

application of appropriate identities, the expressions are modified to consist of Bessel func-

tions of the first kind, of order zero, only. Reflection coefficients are then cast in the form

of the Laplace transform of an exponential function. The spectral domain integration can

then be performed analytically and the remaining integrals in the Laplace domain converge

extremely rapidly, up to several orders of magnitude faster than the original Sommerfeld

type expressions. Expressions for a horizontal dipole show a diverging exponential term

not previously discussed in the literature. The integrand for this case however, is still domi-

nated by a decaying exponential term and the rapid convergence properties are maintained.

6.1.2 Scattering from an Impedance Transition

Having developed a technique for efficient calculation of the fields of a dipole above

a homogeneous impedance surface, the model, in Chapter 3, was extended to include the

effects of a one-dimensional impedance transition in the surface, which can represent the

effects of a river or land/sea transition. Current methods in use, such as the Geometrical

Theory of Diffraction (GTD), are only valid for an abrupt transition and a method was
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sought which is valid for any arbitrary, one-dimensional, impedance transition function. A

perturbation technique is applied in which the impedance transition is represented as a per-

turbation in the surrounding impedance half-space. An integral equation is defined on the

impedance surface and the unknown surface currents in the resulting expression expanded

in terms of a perturbation parameter. For ease of analysis the resulting expressions are

solved in the Fourier domain for the unknown surface currents and recursive expressions

are obtained, relating higher order currents in the perturbation series to lower order in the

form of multi-fold convolution. An error bound was established which shows the perturba-

tion series to converge for a lossy surface, even for a very large perturbation parameter. All

field integrals were solved by application of stationary phase techniques producing field

expressions which are algebraic to first order in the perturbation series.

The technique was than applied to calculate the scattering effects of a land/sea transi-

tion on the total dipole fields. For this problem the impedance transition function was dealt

with in a mean sense, i.e., the unperturbed impedance (homogeneous surface) is the mean

value of the transition function. The perturbation technique inherently deals with the unper-

turbed impedance in this way and the assumption of a mean impedance is valid for source

and observation near the impedance surface, the case of interest to us. In this case the Ge-

ometrical Optics (GO) and direct fields tend to cancel and higher order terms dominate the

total dipole fields (Norton surface wave). The fields scattered from the impedance transi-

tion are now comparable to those from the homogeneous surface and thus it was shown that

the transition has a significant effect even distant from the land/sea interface. For this same

case, and when source and observation are also distant from each other, the observation is

near grazing and tends to be near the specular direction. Analysis presented shows that the

effects of the width of the land/sea transition are negligible in the specular direction and

thus the transition width has no effect on the fields when source and observation are near

the impedance surface. It was also shown in Chapter 3 that an apparent discontinuity in

the total fields at the GO reflection boundary was an artifact of applying stationary phase
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to determine the dominate spectral component or plane wave of the dipole fields which ex-

cites the transition. This single plane wave contains infinite energy across the extent of the

impedance surface and therefore the Fourier transform of the impedance transition function

contains infinite energy. Analysis showed that while the field levels through the reflection

boundary are not discontinuous they do transition very rapidly and the fields on each side

of the reflection boundary are correct.

6.2 Summary: Diffraction from Convex Surfaces

In a rural environment natural obstacles such as hills, mountains, or ridgelines can ex-

hibit the features of a long, slowly varying curved surface, which is essentially infinite in

one-dimension and can have a significant effect on radio wave propagation. Even at HF

frequencies these obstacles exhibit a finite radius of curvature which must be accounted

for, and currently applied techniques such as knife-edge (Kirchhoff) diffraction and wedge

diffraction do not address this. To address the issue of diffraction from convex surfaces high

frequency techniques are the appropriate tool, however as was shown they are mathemat-

ically complex, and can be highly inaccurate (Uniform Theory of Diffraction (UTD)). As

no one high frequency technique is valid in all regions around the obstacle it was decided

to work with the induced surface currents, which through the radiation integrals produce

fields in all regions. For surfaces with large, slowly varying radii of curvature, the cur-

rents excited on a circular cylinder are a valid approximation to those induced on a general

convex surface. While the Fock integrals can be used to calculate these induced surface

currents they were shown to be numerically cumbersome and in fact impractical for calcu-

lating the currents on cylinders of even moderate radius. With this as a motivation a novel

technique was introduced and developed in Chapter 4 to approximate the currents induced

on the surface of a PEC right circular cylinder, when excited by a plane wave.

The induced surface currents on a cylinder can be decomposed, in the manner of the
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Physical Theory of Diffraction (PTD), into a uniform or Physical Optics (PO) component

and a non-uniform or diffraction component which is a correction to the PO currents. The

PO currents are a form of the incident field and are know, thus the objective is to determine

a model for the diffraction currents. In Chapter 4 a macromodel for the diffraction currents

is developed which is simple, yet highly accurate and requires no numerical integration.

Based on Fock analysis, the high frequency behavior of the induced surface currents, as

a function of cylinder radius, is predicted. As shown in Chapter 4 this in practice means

applying simple scaling and weighting factors to the induced surface currents for a cylinder

of moderate radius in order to generate the surface currents for cylinders of any radius above

one wavelength. The resulting currents produce total fields with a dynamic range of over

85 dB.

In Chapter 5 the induced surface currents from the right circular cylinder were applied

locally, in a standard fashion to approximate the currents induced on a general convex

surface. To validate the method on a non-circular cylinder results were first generated for an

elliptical cylinder using the macromodeled currents and compared to those generated with

a Method of Moments (MoM) code, showing good agreement for all cases. Results from

the macromodel when applied to a parabolic surface were then generated and compared

to results from knife-edge diffraction. As expected the knife-edge results degraded in the

shadow region and as the parabolic surface became less narrow in width.

6.3 Future Work

The propagation problem is an open ended one and it is an understatement to say that

there is still a significant amount of research to be pursued. There are several things that

still need to be addressed in further development of the models described in this thesis and

that will be discussed in the sections that follow. It it appropriate beforehand however to

discuss recommendations for future work in terms of the overall context of the propagation
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problem. Having developed a basis for an overall propagation model both in this thesis and

in the work of other students involved in the project the next logical step in the process

is to address the issues of integration of the canonical geometries into a coherent propa-

gation model, including the statistical nature of the propagation environment and relevant

interactions between the individual models. A parallel effort should include the integra-

tion of a remote sensing satellite data base to model the physical environment within the

overall propagation scenario. Currently available remote sensing databases include all rel-

evant parameters including the topography of the terrain (digital elevation maps (DEM))

as well as statistical variations of the propagation environment such as soil moisture, snow

cover, vegetation classification, etc. In addition an obvious step would be the investigation

and application of these diffraction and scattering models to an urban environment. The

urban environment is of significant interest in the prediction of propagation for mobile sys-

tems and no techniques developed to date address the relevant issues inherent in an urban

environment. Finally and as should be obvious validation of the propagation model by

comparison with measured data should be pursued.

6.3.1 Future Work: Fields of a Dipole Above an Impedance Surface

To complete the model for the fields of a small dipole above an impedance surface

several issues can be investigated. The current model applies stationary phase techniques

to evaluate the field integrals and because of this approximation the dipole must be dis-

tant from the impedance transition. A more rigorous evaluation of the field integrals can

be examined which allows arbitrary placement of both the dipole and observation, while

maintaining the computational efficiency required. The perturbation method applied to cal-

culate scattering from a general impedance transition can determine the scattered fields for

any transition for which the Fourier transform exists. As an additional investigation other

types of transitions can be investigated including a swamp/dry land transition or a small

trough or depression in the terrain.
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6.3.2 Future Work: Diffraction From Convex Surfaces

The macromodel developed in Chapters 4 and 5 is for the case of a PEC surface when

excited by a plane wave and is intended to serve as a basis for determining the effects of

natural obstacles on radio wave propagation. There are two obvious extensions to the work

that must be developed in order to make the model of practical use. The first is to extend

the model to include dipole excitation. An initial step in this extension could be to restrict

the dipole location to be distant from the obstacle and thus only one spectral component of

the dipole expansion need be accounted for. The second is to extend the macromodel to

the case of a general impedance surface. As a significant amount of time was invested into

investigating this problem, some further discussion is in order.

It was initially believe that the macromodel for a PEC cylinder could be extended to that

of an impedance cylinder in a simple fashion by assuming that the currents on an impedance

cylinder could be represented as a perturbation from the PEC case. For the TM case this

assumption in fact proved to be true. If each term of the eigenseries for an impedance

cylinder is expanded into a Taylor series, for which the lowest order term represents the

PEC case it is observed that the convergence properties of the Taylor series improve as

cylinder radius increases. If the limiting case of an cylinder of infinite radius is examined

and the expressions for the induced surface currents similarly expanded into a Taylor series,

it can be shown that the series will always converge, for the TM case. A similar analysis

of the eigenseries for the TE case however shows a degradation in the convergence of the

the embedded Taylor series for increasing cylinder radius. Again looking at the limiting

case of a cylinder of infinite radius it can be shown that, for the TE case, the Taylor series

expansion will never converge for incident angles beyond Brewster’s angle. This analysis

indicates that in fact the approach of representing the impedance currents as a perturbation

from the PEC currents is not a valid one and alternate approaches need be investigated.
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Appendix A

Alternate Spectral Domain Representation the Fields of a

Small Dipole Above an Impedance Half-Space

In this appendix an alternate spectral domain representation for the electric fields of an

infinitesimal electric dipole radiating above a homogeneous, infinite impedance half-space

is derived. The geometry of the problem is as shown in Figure A.1. Starting with the the

standard spectral domain representation for the fields of a dipole above an impedance half-

space (Green’s function) an appropriate change of variables is then applied. Application of

Bessel identities will result in the final form of the spectral domain representation of the

dipole fields.

The standard spectral representation for the fields of a small dipole above an impedance

half-space (Green’s function), of lengthl , orientationl̂ and carrying currentI0, is given by

143



●

Z1

φ

D

-z

z

z

x

y

Observation

R

θ

k  ,Z 00

I l̂0

0

0

0

Figure A.1: Problem geometry, dipole above an impedance plane

[34],

ET(r ; r0) =� iI0Z0l
k0

(l̂ � ẑ)ẑ δ(r � r0)

�

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

k0Z0I0l
8π2

+∞RR
�∞

dkx dky
ei(kx(x�x0)+ky(y�y0))

kz

fĥ(kz) [Γh(ĥ(kz) � l̂) eikzz0 +(ĥ(kz) � l̂) e�ikzz0]

+ v̂(kz) [Γv(v̂(�kz) � l̂) eikzz0 +(v̂(kz) � l̂) e�ikzz0]g eikzz for z > z0

k0Z0I0l
8π2

+∞RR
�∞

dkx dky
ei(kx(x�x0)+ky(y�y0))

kz

f[ĥ(kz)Γh eikzz+ ĥ(kz) e�ikzz] (ĥ(kz) � l̂)

+ [v̂(kz)Γv eikzz+ v̂(�kz) e�ikzz](v̂(�kz) � l̂)g eikzz0 for 0 < z< z0:

(A.1)

In (A.1) k = kxx̂+kyŷ+kzẑwith dependent variable,kz defined askz =
q

k2
0�k2

x�k2
y, and
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the branch cut defined asi =
p�1. The polarization unit vectorŝh andv̂ are given by

ĥ(kz) =
k� ẑ
jk� ẑj ; v̂(kz) =

ĥ(kz)�k
k0

; (A.2)

and,

ĥ(�kz) =
K � ẑ
jK � ẑj ; v̂(�kz) =

ĥ(�kz)�K
k0

; (A.3)

where ĥ indicates horizontal polarization (transverse electric (TE) toz) and v̂ indicates

vertical polarization (transverse magnetic (TM) toz), andK = k�2(k � ẑ)ẑ= kxx̂+ kyŷ�
kzẑ. The reflection coefficientsΓh and Γv (horizontal and vertical reflection coefficients

respectively) in (A.1) are defined as,

Γh =
η�k0=kz

η+k0=kz
; Γv =

�η+kz=k0

η+kz=k0
; (A.4)

whereη is the normalized surface impedance,η = Z1=Z0. The terms containingΓh andΓv

in (A.1) represent the effects of the impedance surface on the total field and are designated

as the diffracted fields, with the the other terms representing the direct dipole fields. The

direct dipole electric fields are more convieniently evaluated in the spatial domain and are

given in dyadic form by

Ei
d(r ; r0) =

�ik0Z0I0l
4π

�
I +

1

k2
0

∇∇
�

eik0jr�r0j

4π
� l̂ ; (A.5)

wherer =
p

x2+y2+z2 is the distance to the observation point andr0 =
p

x0
2+y0

2+z0
2

is the distance to the source location. Expanding (A.5) gives the more useful form of the
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direct dipole fields or

Ei(r ; r0) = ik0Z0I0l

��
3

k2
0R2

0

� 3i
k0R0

�1

�
R̂0(l̂ � R̂0)

+

�
1+

i
k0R0

� 1

k2
0R2

0

�
l̂

�
eik0R0

4πR0
;

(A.6)

whereR0 = jr � r0j=
p

(x�x0)2+(y�y0)2+(z�z0)2 andR̂0 =
r�r0
jr�r0j

.

To derive an alternate representation for the diffracted dipole fields in the spectral do-

main, the standard change of variables is first applied to (A.1),

kx = kρ cosν; x�x0 = Dcosφ;

ky = kρ sinν; y�y0 = Dsinφ;
(A.7)

resulting in the following expression for the diffracted dipole fields,

Ed(r ; r0) =
k0Z0I0l

8π2

2πZ

0

∞Z

0

kρ

kz
[Γh(ĥ� l̂)ĥ+Γv(v̂(�kz) � l̂)v̂(kz)]

eikz(z+z0)eikρDcos(ν�φ) dν dkρ; (A.8)

In (A.8), (ĥ � l̂)ĥ and(v̂(�kz) � l̂)v̂(kz) can be rewritten in terms of the new variables as

(ĥ� l̂)ĥ= (lxsin2ν� lysinνcosν)x̂+(�lxsinνcosν+ lycos2 ν)ŷ; (A.9)

and

(v̂(�kz) � l̂)v̂(kz) =
1

k2
0

f�kzcosν[kρlz+kz(lxcosν+ lysinν]x̂

�kzsinν[kρlz+kz(lxcosν+ lysinν)]ŷ

+kρ[kρlz+kz(lxcosν+ lysinν)]ẑg:

(A.10)

Substituting (A.9) and (A.10) into (A.8) and recognizing that cos2 ν = (1+ cos2ν)=2,

sin2ν = (1� cos2ν)=2, and sinνcosν = (1=2)sin2ν and by applying the following two
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identities

2πZ

0

cos(nν) eikρDcos(ν�φ) dν = 2π(i)ncos(nφ) Jn(kρD); (A.11)

2πZ

0

sin(nν) eikρDcos(ν�φ) dν = 2π(i)nsin(nφ) Jn(kρD): (A.12)

the diffracted electric fields in (A.8) can be rewritten as

Ed(r ; r0) =
k0Z0I0l

4π

�
x̂

∞Z

0

kρ

2kz
fΓh[�lx(J2(kρD)cos2φ+J0(kρD))� lyJ2(kρD)sin2φ)]

+Γv[
2ikzkρ

k2
0

lzcosφJ1(kρD)+
k2

z

k2
0

lx(J0(kρD)�J2(kρD)cos2φ)

�k2
z

k2
0

lyJ2(kρD)sin2φ]g eikz(z+z0) dkρ

+ŷ

∞Z

0

kρ

2kz
fΓh[�lxJ2(kρD)sin2φ� ly(J0(kρD)�J2(kρD)cos2φ)]

+Γv[
2ikzkρ

k2
0

lzsinφJ1(kρD)� k2
z

k2
0

lxJ2(kρD)sin2φ

+
k2

z

k2
0

ly(J0(kρD)+J2(kρD)cos2φ)]g eikz(z+z0) dkρ

�ẑ

∞Z

0

kρ

kz
Γv[

k2
ρ

k2
0

lzJ0(kρD)+
ikzkρ

k2
0

(lxcosφ

+lysinφ)J1(kρD)] eikz(z+z0) dkρ

�
;

(A.13)

(A.13) is an alternate spectral domain representation for the fields of a small dipole above

an impedance half-space and the integrals contained within are Sommerfeld type integrals.
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Appendix B

Derivation of 2-D Dyadic Green’s Function

In this appendix the spectral representation of the 2-D dyadic Green’s function will be

derived. The geometry of the problem is as shown in Figure B.1. Observe thatθ andφ

are defined as in standard spherical coordinates with angleβ defined from the ˆy axis and is

used for projection into the ˆx� ẑ plane. Note that the geometry is not a function of ˆy and

thus the induced current along ˆy, and the scattered field, are of the form,eki
yy or are in phase

with the incident field. The incident field vectork i is defined as,

k i = ki
xx̂+ki

yŷ+ki
zẑ (B.1)

where,ki
x = k0sinθi cosφi , ki

y = k0sinθi sinφi , andki
z = k0cosθi.

First we start with the free space dyadic Green’s function which has the following form

in the spectral domain,

G(r ; r 0) =� ẑẑ
δ(r� r 0)

k2
0

+

8>><
>>:

i
8π2

RR 1
kz
[I � kk

k2
0
] ei(kx(x�x0)+ky(y�y0)+kz(z�z0)) dkx dky for z > z0;

i
8π2

RR 1
kz
[I � KK

k2
0
] ei(kx(x�x0)+ky(y�y0)�kz(z�z0)) dkx dky for z < z0;

(B.2)

whereK = k�2(k � ẑ)ẑ.
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Figure B.1: Scattering geometry for variable impedance surface.

Since the dependence of the induced currents and fields ony is known (eiki
yy), the 2-D

Green’s function can evaluated from (B.2) by integrating out they dimension to arrive at,

G2D(ρ;ρ0) = �ẑẑ
δ(ρ�ρ0)

k2
0

eiki
yy

+eiki
yy

8>><
>>:

i
4π

R 1
kz
[I � k̂k̂] ei(kx(x�x0)+kz(z�z0)) dkx for z > z0;

i
4π

R 1
kz
[I � K̂K̂] ei(kx(x�x0)�kz(z�z0)) dkx for z < z0;

(B.3)

whereρ = xx̂+zẑandkz =
q

k2
0�ki

y
2�k2

x =
q

k2
0 sin2 β�k2

x. Hereβ is defined bŷki � ŷ=
cosβ = sinθi sinφi .

Noting that[I� k̂k̂] = êê+m̂m̂, the 2-D Green’s function in the spectral domain is given

in its final form by

G2D?(ρ;ρ0) = eiki
yy i

4π

Z
1
kz

[êê+ m̂m̂] ei(kx(x�x0)+kz(z�z0)) dkx; (B.4)

whereêandm̂ correspond to the TE and TM cases, respectively, and are given by

ê= k̂� ŷ and m̂= ê� k̂: (B.5)
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Noting that,k̂= [kxx̂+kyŷ+kzẑ]=k0, simplified expressions for ˆeandm̂ are given by,

ê=
kxẑ�kzx̂
k0sinβ

and m̂=
ŷ�cosβ k̂

sinβ
: (B.6)

150



BIBLIOGRAPHY

151



BIBLIOGRAPHY

[1] J. E. Hipp, “Soil Electromagnetic Parameters as Functions of Frequency, Soil Density,
and Soil Moisture,” Proceedings of the IEEE, vol. 62, no. 1, pp. 98–103, January
1974.

[2] Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda, “Field Strength and its Variabil-
ity in VHF and UHF Land Mobile Service,”Rev. Elec. Comm. Lab, vol. 16, pp. 825,
September-October 1968.

[3] A. G. Longley and P. L. Rice, “Prediction of Tropospheric Radio Transmission Loss
Over Irregular Terrain, A Computer Method - 1968,” Tech. Rep. ERL79-ITS67,
ESSA Research Laboratories, Washington, D.C., 1968, US Government Printing Of-
fice.

[4] T. B. A. Senior, and J. L. Volakis,Approximate Boundary Conditions in Electromag-
netics, IEE Press, London, 1995.

[5] F. T. Ulaby, R. K. Moore, and A. K. Fung,Microwave Remote Sensing, Active and
Passive, Vols. I, II, and III, Artech House, Norwood, MA, 1986.

[6] P. Y. Ufimtsev, “Method of Edge Waves in the Physical Theory of Diffraction,” Tech.
Rep. Engl. transl. available from Nat. Tech. Inform. Serv., Springfield, VA 22161 ;
#AD733203, Sovyetskoye Radio, Moscow, Russia, 1962.

[7] A. Sommerfeld, “̈Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,”
Ann. Physik, vol. 28, pp. 665–736, 1909.

[8] H. Weyl, “Ausbreitung elektromagnetischer wellen ¨uber einem ebenen Leiter,”Ann.
Physik, vol. 60, pp. 481–500, 1919.

[9] A. Sommerfeld, “̈Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,”
Ann. Physik, vol. 81, pp. 1135–1153, 1926.
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