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ABSTRACT

THEORY AND EXPERIMENTAL EVALUATION OF A CONSISTENT
STEADY-STATE KINETIC MODEL FOR 2-D CONDUCTIVE
STRUCTURES IN IONOSPHERIC PLASMAS WITH APPLICATION
TO BARE ELECTRODYNAMIC TETHERS IN SPACE

, by
Eric Choiniere

Chair: Brian E. Gilchrist

A steady-state kinetic computational model is developed, allowing for self-consistent
simulations of collisionless, unmagnetized flowing plasmas in a vast region surrounding
any two-dimensional conductive object. An optimization approach is devised based on a
stable, noise-robust Tikhonov-regularized Newton method. Dynamic, adaptive, unstruc-
tured meshing allows arbitrary geometries and adequate resolution of plasma sheath fea
tures. A 1-D cylindrical solver (KiPS-1D) and afull 2-D solver (KiPS-2D) were devel oped,
the latter using coarse-grained parallelism.

This technique is applied to investigate various applications of special and fundamen-
tal importance, principally for space plasmas, although not limited as such. This thesis
addresses new simulations and experiments relevant to space borne electrodynamic teth-
ers for propellantless propulsion and for the remediation of radiation belts through charge
precipitation, as well asto Langmuir probesfor plasma diagnostic in flowing plasmas.

Here, the existing set of plasma sheath profiles and current collection characteristics

for round cylinders in stationary plasmas is extended to large bias potentials. Interfer-

Vii



ence effects between two parallel cylinders are shown to exist for spacings upward of 20
times the single-cylinder sheath radius, and an optimal spacing equal to the single-cylinder
sheath radius maximizes the sheath area, a finding qualitatively supported by our new ex-
perimental data on electron-collecting thin slotted tapes. Also, athin conductive solid tape
is shown to have an equal-capacitance circular radius of about 0.29 times its width. Its
predicted collected current characteristic as a function of width approximately agrees with
experimental measurements. Further, it has a lower current collection capability than the
equal-capacitance circular cylinder.

For ion-attracting cylinders, ionospheric plasma representative of an altitude of 1500
km with a flow energy on the order of the thermal energy is shown to cause significant
sheath asymmetries, reducing the sheath radius and current collection by about 30%. For
electron-attracting cylinders, a mesosonic flow is experimentally shown to significantly
enhance electron collection. This cannot be predicted by a collisionless model and may be

due to an elongation of the ram-side pre-sheath into a collisional zone for electrons.
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CHAPTER 1

Introduction, Background and Previous Research

1.1 Motivation and Definition of the Problem

Long conductive structures immersed in flowing plasmas have several applications in
science and engineering. Among them are propellantless in-orbit spacecraft propulsion [1,
2] and high-energy charge precipitation from the Earth’s radiation belts [3-5], also known
as remediation of radiation belts. Another common application is the Langmuir probe, a
devicethat iswidely used for laboratory and in-space plasmadiagnostics[6, 7].

Unfortunately, the existing models commonly used as design tools for these applica-

tions are limited in terms of one or more of the following:
e the cross-sectional geometries they can address,
e theregimes of operation they can support (e.g. voltage bias, plasma flow speed);

¢ the validity and accuracy of their treatment (self-consistency of the fields and space

charge).

Asit turnsout, the design parameters of some of the applicationsof present interest, namely
propellantless propulsion and high-energy charge precipitation, simply fall outside of the

scope of existing models, as will be explained later.



In the following paragraphs, the engineering applications that have motivated this re-
search will be described in more detail, and a generic problem will be defined along with
the regimes of interest applicable to these applications. This will demonstrate the need
for a more capable model of the plasma sheath structure and current collection properties
of conductive structures in ionospheric plasmas. For the moment however, let us outline
the scientific contributions provided by this thesis in order to address the need for such a

moddl:

1. definition and validation of an accurate 2-D steady-state plasma model based on a
fully kinetic description of the plasma species, applicable to cylinders of various

cross-section geometriesimmersed in stationary or flowing unmagnetized plasmas;

2. elaboration of a 1-D cylindrical version of the model useful for determining plasma
sheath dimensionsfor round cylindrical conductorsin stationary plasmas; this model
expands the domain of applicability of asimilar existing 1-D model [8] to very large

voltages (~ 10,000 times the electron temperature);

3. acquisition and analysis of new experimental vacuum chamber simulation data per-
taining to simulated tether samples in high-speed plasmas, in support of the 2-D

mode!.

The need for these new capabilities will become obvious in the following descriptions of

the engineering applications of interest.
1.1.1 Bare Electrodynamic Tethers for Space Propulsion

Space electrodynamic tethers offer the opportunity for propellantless propulsion of
gpacecraft in orbit around any planet with a magnetic field and plasmasphere, based on

the conversion of the geomagnetic force on an electric current along a conducting tether



Figure 1.1: Example of an application of the electrodynamic space tether concept for use
as a station keeping device for the International Space Station. Thisimage is a courtesy of
NASA.

into apropulsiveforce[2,9]. The electric current flow along the tether is generated through

either one of these mechanisms:

e the motional electromotive force (emf) experienced by the tether-bound charge car-

riers as they move at orbital speed through the Earth’s magnetic field;
e an on-board voltage source, which can either add to the motional emf or counter it.

The motional emf and the on-board voltage source can be used to drive current in either
direction, resulting in an increase or decrease of the orbital energy. Figure 1.1 shows an
example of the use of the propulsive force of an electrodynamic tether for station keeping
purposes on the International Space Station (ISS). The accelerating thrust provided by the
electrodynamic tether could be used to counter the atmospheric drag on the space station,
without the need for propellant that presently must be hauled periodically to the ISS by the
Space Shuttle [10]. One of the key parameters affecting thrust is the amount of electrical

current flowing through the tether, which in turnislimited by the amount of electron current
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collected from the ionosphere.

Some authors have proposed the use of bare conductive tethers as an alternative to con-
figurations using an insulated tether combined with an end collector [1,2]. Bare tethers are
believed to be efficient electron collectors provided that electrons are collected in a quasi
orbital-motion-limited (OML) regime. In a stationary unmagnetized plasma, the electron
collection process can reach the orbital motion limit, provided that the cylindrical collec-
tor is sufficiently thin [11, 12] with respect to a Debye length, the characteristic shielding
distance in aplasma. However, space tethers are moving through the ionosphere at orbital
velocities, effectively adding a flow component to the surrounding plasma. It is desirable
to assess how the electron collection capability of a cylindrical bare tether immersed in a
flowing plasma departs from that predicted by the orbital motion limit.

Past bare tether designs used a small, closely packed cross-section of wires or even a
single wire as the anode [13]. In future designs, addressing concerns such as survivability
from collisionswith micro-meteoroids and space debriswill require the use of distributed or
sparse tether cross-section geometries, which could span tens of Debye lengths, depending
on plasmadensity [14]. Since the merits of bare tethers are closely related to the efficiency
of the orbital-motion-limited regime, one needs to consider how these new distributed or
sparse geometrieswill performintermsof current collection, ascompared to thin cylinders.

To summarize, a better understanding of the effects of plasma flow and collector ge-
ometry on electron collection is necessary in order to enable efficient design techniquesfor

future propulsive space tether designs.
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Figure 1.2: Geometry of the interaction of the electrodynamic tether and the radiation
belt. Figure reproduced with permission [15]. The term “electrostatic tether”, used in
this figure, is often used to refer to the specific application of particle precipitation using
electrodynamic tethers and distinguish it from their original use for spacecraft propulsion.

1.1.2 Bare Electrodynamic Tethers for lonospheric High-Energy
Charge Precipitation (“Electrostatic” Tethers)

Another emerging application for bare electrodynamic tethers is the ionospheric high-
energy charge precipitation.! Sometimes called space remediation, its aim is to provide
ameans to precipitate high-energy (MeV) electrons from the Earth’s radiation belts [3-5,
15]. Such high-energy particles could be born out of a single low-yield (10-20 kilotons),
high-altitude (125-300 km) nuclear explosion and could potentially “disable — in weeks
to months — all low-Earth-orbit satellites not specifically hardened to withstand radia-
tion” [16]. Figure 1.2 illustrates the interaction between a bare tether used as a scattering
device (the “electrostatic” tether) and a trapped population of high-energy electrons that

are bouncing back and forth along the Earth’s magnetic field lines. A large sheath forming

1The expression “ Electrostatic Tether” is sometimes used to distinguish the use of electrodynamic tethers
for charge precipitation applications from their use as space propulsion devices.

5



around this high-voltage tether is meant to act as a scattering structure for the high-energy
electrons, causing some of them to fall prematurely into the loss cone of an Earth-bound
“leaky magnetic bottle” [4]. Inthisapplication, the bare tether is biased negatively, creating
an ion-attracting, electron-repelling plasma sheath around it. This alowsfor the scattering
of high-energy electrons by the electric field, while minimizing the amount of collected
current, due to the heavy mass of the collected ions as compared to electrons.

In the present application, the collected current is directly linked to the power expen-
diture necessary for maintaining the plasma sheath, and one therefore seeks to minimize
current collection. Interestingly, this goal of minimizing current collection is the opposite
of that demanded of bare tethers in the propulsive electrodynamic systems, in which the
propulsive force is proportional to the amount of current flowing on the tether. The two

guantities of interest are thus:

¢ the sheath dimension, which determine the “ cross-section” of the particle scatterer;

e the collected ion current, which is an undesired secondary effect that trandates into

expended power.

Designers of charge-precipitation tether systems will need to consider various tether
Ccross-section geometries in order to maximize sheath dimensions, while minimizing cur-
rent collection. In addition, the ionospheric flow plays a role in the determination of the
plasma sheath dimensions and current collection. Both the flow and geometry effects thus
need to be assessed in order to provide the tools necessary for the development of this

emerging technol ogy.
1.1.3 Plasma Diagnostics Probes

Langmuir probes are widely used as plasma diagnostic devices, both in vacuum cham-

ber experiments and in on-board spacecraft instruments [6, 7]. They allow for the determi-
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nation of plasma parameters such as the electron temperature, extracted from the electron
retardation regime, and the ion and electron densities, extracted from the ion and electron
saturation regimes. Analytical expressions for current characteristics to conductive cylin-
ders only exist for the two extreme geometrical cases, that is, for probes with very large
radii (hundreds of Debye lengths) or small radii (one Debye length or less). In order to min-
imize perturbations and optimize the spatial resolution of the measurement, however, small
probes are usually preferred, in which case the analytical expression for the orbital-motion-
limited current can be used for both electron and ion collection. The orbital-motion-limited
result only applies in stationary plasmas, but is still widely used for plasma diagnostics
of flowing plasmas, which may lead to errors in the extracted plasma densities, especially
when the electron saturation data are used for density extraction.

A new model that accounts for the effects of the plasma flow on current collection is
needed to allow for the development of improved plasma-parameter extraction algorithms

for usein the analysis of the current characteristics of Langmuir probesin flowing plasmas.
1.1.4 Other Applications

Although the applications outlined above define our requirements for the 2-D steady-
state plasma model developed here, a multitude of other potential applications exist. For
instance, this model could be adapted for the analysis of the interaction of a spacecraft
with the surrounding ionospheric plasma, including spacecraft charging effects. Other pos-
sible applications include plasma processing, plasma screens, plasma-based thrusters for
space propulsion, charge transport in solid-state material s (e.g., semiconductors), and space

charge effectsin solid or fluid dielectrics.



1.1.5 Description of the Problem & Regimes of interest

The three applications described above (propel lantless propul sion, charge precipitation,
and plasma diagnostics using Langmuir probes) require a detailed model of the plasmaki-
neticsin order to allow for the accurate prediction of sheath structures and current collec-
tion.

For the propellantless propulsion application, electron current collection is the most
important parameter of interest because it relates directly to the amount of thrust available
to the system; electrodynamic tether designers are thus interested in maximizing current
collection.

For the charge precipitation application, sheath size is of primary concern since it re-
lates directly to the overall cross-section of the system and, therefore, its scattering effi-
ciency. lon current collection, however, must be minimized because it trandates directly
into expended power.

In addition, both of these applications will require designs that are survivable to colli-
sionswith small orbiting debris. Thismay involve multi-wire or similar concepts spreading
the tether structure over severa parallel elements.

The geometries encountered in those applications are somewhat similar, allowing for
the definition of a generic problem applicable to al three technologies. The basic geom-
etry under consideration is an arbitrarily-shaped 2-dimensional conductive object, i.e., a
cylinder of arbitrary cross-section geometry and infinite length. Figure 1.3 illustrates some
examples of geometries that are considered in thisthesis either through the use of the pro-

posed kinetic model or via experimental measurements. We describe them bel ow.

Single Round Circular Cylinder The round cylinder is the most standard geometry for
tethers as well asfor Langmuir probes,; we investigate it here using both simulations

and experiments. We will use results for this geometry in order to validate our mod-
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eling approach with existing results at low voltages, which are available for both the

stationary [8] and flowing [17] cases.

Two Parallel Circular Cylinders Using multiple parallel wires as a tether structure is of
interest both from the standpoint of collision survivability, applicable to both propul-
sion and charge precipitation, and from the standpoint of reducing the collected ion

current in the electrostatic tether application.

Thefirst logical step in the analysis of the multi-wire geometry is to seek an under-
standing of the physicsinvolved in the two-wire geometry, which we develop using
our kinetic model. We assess the scaling of the sheath around the two wires, as
well as study interference effects involved in current collection. Results are validated
against an existing model for wire interference [18] and qualitative comparisons are
made with some of our experimental results involving slotted tapes, which basically

were equivalent to 4 parallel wires.

Thin Tape Cylinder The thin tape cylinder is another fairly simple geometry that is an
example of the geometries that could be considered for improved survivability from
collisions. We are primarily interested in determining the effect of the tape width
and plasma flow on collected electron current. Simulation results will be compared
against our own experimental data and against existing modelsfor tapesin stationary

plasmas[11].

Slotted tape This geometry was investigated experimentally. It consists of a flat tape out
of which slots were cut out, and is equivalent to a set of four parallel narrow tapes,
as seen on Figure 1.3(d). The experimental results will help our understanding of

sheath interference effects on current collection.

Even though we consider only alimited set of geometries as part of thisthesis, our kinetic
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(a) Single Circular (b) Two Pardlel (c) Solid Tape (d) Slotted Tape
Cylinder Circular Cylinders

Figure 1.3: Four examples of the cylinder geometries under consideration.

model was developed for problems involving conductive cylinders with arbitrary cross-
section geometries (i.e., any 2-D conductive object), as will become obviousin Chapter 2.

For each of the conductive cylinder geometries under consideration, the 2-D object
is immersed in a 2-species, unmagnetized plasma (flowing or stationary), and biased at
a specified potential Vo — Vp with respect to the background plasma potential V. When
considering a flowing plasma, the flow will always be directed along the x axis.

Table 1.1 lists some estimated representative values for the parameters of interest corre-
sponding to the propul sion and charge preci pitation applications, along with corresponding
estimates for the vacuum chamber experiment described in Chapter 3 and used in compar-
ison with our kinetic model. It is seen that all forms of collisions play a very minor rolein
these plasmas, so that they can safely be modeled as collisionless plasmas (more detail on
our assumptions can be found in Section 2.1). Another common feature among the three
sets of parametersisthat the effective plasma flow is much lower than the electron thermal
velocity (U << Vine), Which allows some simplifications for the treatment of the electron
species. Such simplifications are not possible for ions, because the ion thermal velocity
is seen to take on values that are alternatively smaller, larger, or on the order of the flow

velocity. The implications of the Larmor gyroradius are discussed in Section 2.1.

10



Vac. Chamber Propellantless Charge
Experiments Propulsion | Precipitation

Main Plasma Parameters
Altitude (km) - 300 km 1500 km
Dominant ion species Xe™ O HT
lon mass (kg) 2.18x 10~ 27x107% | 1.7x10°%
Plasma density ng (m~3) 5 x 10145 x 101° 1011 1.8 x 1010
Electron/ion temperature (eV) 1.5-1.8 0.1 0.4
lon thermal velocity (m/s) 10491194 644 6136
Electron thermal velocity (m/s) 5.1-5.6 x 10° 1.3x 10° 2.7 x 10°
Orbital or flow velocity (m/s) 6000 7700 7100
lon flow energy (eV) 25 5 0.27
Electron Debye length (m) 1.3-45%x 1074 74x103 | 35x10°?
Collision MFP (m)
Electron-neutral (elastic) 85 10% —10* 10*—10°
lon—neutral (elastic) 28 3x 103 108
lon—neutral charge-exchange 25
Electron—€lectron 5-32.6 106 107
Electron-ion 4.9-31.9 100 107
lon-ion 3.3-235 106 107
lon-electron 7.5-64.3 103 10°
lon Larmor gyroradius (m) 26-28.5 5 7.4
Electron Larmor gyroradius (m) 0.53-0.58 0.03 0.09

Table 1.1: Approximate plasma parameters for the main applications of interest [19-24]
and for our vacuum chamber experiments described in Chapter 3. MFP is an acronym for
Mean Free Paths.

1.2 Cylindrical Plasma Probes: Background and Litera-
ture Review

In the following we summarize the present state of research for the modeling of cylin-
drical conductive cylinders immersed in plasmas. Existing theories are described for the
current collection and sheath structure that are applicable to a limited range of bias poten-

tials, geometries and flow regimes.
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1.2.1 Stationary plasmas

When considering the problem of a round cylindrical probe immersed in a stationary

plasma, there are two key parameters for the applications of interest:

e Current Collection (electron or ion current) is of concern in al three applications.
For propellantless propulsion, the tether bias potentia is primarily positive, and we
seek to maximize electron current collection because it tranglates directly into avail-
able thrust. For charge precipitation, the tether is biased negatively, and we seek to
minimize the amount of ion current collected, because it trandates into expended
power. In plasma diagnostics using Langmuir probes, expected current characteris-
ticsas afunction of plasma parameters must be precisely knownin order to alow for

parameter extraction;

e Plasma sheath size and structure is a determining factor in the charge precipitation
application of electrostatic tethers. It determines the effective dimensions of the par-
ticle scatterer and thus its efficiency at precipitating high-energy electrons into the

loss cone [4].

The sheath structure and dimensions are closely linked to the particle kinetics, and can-
not be obtained by direct calculation for small and moderate-sized probes, even in the most
simple case of around cylindrical probe in a stationary plasma. The Child Law sheath [25]
analytical expression, for example, is only applicable to probes with large dimensions as a
function of the Debye length, i.e., it isonly valid in the thin-sheath limit, which is outside
of our regimes of interest.

Whereas sheath sizes cannot be computed directly for any probe size, exact analytical
expressions have been derived for the collected current to an attracting round conductive

cylinder immersed in a stationary, Maxwellian plasma. These expressions are only appli-
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cable to two extreme regimes:. the thin-sheath (infinite cylinder radius) and orbital-motion

(vanishing cylinder radius) limits. In the following, we provide a derivation of these limits.

1.2.1.1 Thin Sheath Limit

When the cylinder radius becomes sufficiently large, the current density collected to
the cylinder approaches that which would be collected on an infinite plate: thisisthe thin-
sheath limit.

Let us assume that an infinite plate, normal to the x axis, is the rightmost bound of
a 2-species Maxwellian plasma, with the velocity distribution functions of either plasma

species given by

o i (Vx,Vy) = 2n;(r)em'l?el. exp { —% (Vg +v7) } , (1.1)
where ng is the background plasma number density inm—3, Me,i is the electron or ion mass
in kg, Tei isthe electron or ion temperature in €V, and the velocity components vy and vy
are in m/s. First, note that the background density ng is recovered by simply integrating

over velocity space:

ne7i - / fe| Vx,Vy dVXdVy - no (12)
Vy=

Now, let us assume that the infinite plate is biased at a potential Vg with respect to the
plasma potential (i.e., Vpiate — Vplasma = Vo). For either population (electrons and ions), the
current density collected on the infinite plate can be obtained by integrating the accel erated

or decelerated particle flux over al rightward-directed velocities on the plate’s left-side

surface, i.e.
Jei = Qe,ile,i
oo Vy:+°°
NoMe,j Me,i o 20eiVo 2
= (e . Vyexps ——= \Y; ’ V dvydvy.
i oreTe; / / X p{ 26Te KX+ me; ) V| AW
- Vy=—00

(13)
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Performing the integral over vy, we get

~+oo

Me Me 20e.iVi
el el el

206 iV,
e o 500)

Finally, we integrate over vy, and obtain

eTe,i 1 GeVo <,
L e , | 15
ei = Ue,iNo 27me x {exp{—q;.’ll:/io} Qe,iVo > 0. (9
—— .
Jih

In Equation (1.5), Ji, issimply the thermal current density, i.e., the average random current
density one finds at any location within the background plasma. Thisresult shows that the
current density varies exponentially under arepelling bias and saturates to a constant val ue,
the thermal current Jy,, for an attracting bias. The reason why the current density is limited
to thethermal current isthat the sheath only extendsin a single dimension, which precludes

any particle focusing.

1.2.1.2 Orbital-Motion Limit (“Thick” Sheath Limit)

We now consider the opposite limit, corresponding to a vanishing cylinder radius. In
practice, this limit is achieved when the cylinder radius falls below the Debye length. An
analytical expression for the OML current was first derived by Mott—Smith and Lang-
muir [26], based on conservation of energy and angular momentum in a central force
field. The orbital-motion-limit (OML) regimeis attained when the cylinder radiusis small
enough that all particle trajectories terminated on the cylinder’s surface are connected to
the background plasma, regardless of their angular momentum (i.e., none are connected to
another location on the probe’s surface). Since, in a collisionless plasma, the distribution
function is conserved along particle orbits, having all “directions of arrival” populated cor-
responds to an upper limit on the collected current. In the following, we derive the OML

current based on the precedent argument, similar to the approach used by Laframboise [6].
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Using the alternative, but equivalent representation of velocity space in the form of
(2 \2

Kinetic energy xk = %{TV") in units of electron-volts and angular direction o in units of

radians, the energy distribution function of any given species at the surface of the probe

may be written:

No ex _EK+qe,iV > max O QSIV
Oei (K, ) = 2 Te; p{ eTe,i } ( . ) (1.6)
0 Kk < max(0, —%V)

where V is the local electric potential. The number density ne; at the probe's surface is
recovered by simply integrating over all of kinetic energy space and half of the angular

directions (since the probe blocks half of velocity space):

Nej = / / Oei (K, 00)dxdo

k=0 a=o/+r/2 (L.7)
1 fop(-%Y), GV <0

= -Ng )
2711, GeiV >0

where o/ is the angle between the outward surface normal and the x axis. Likewise, the
OML current density can be obtained by integrating the normal flux to the surface:
Jei = Qe,ileji

400 o= (X+—
:qei/ / 1/26—Kcos fe|(K‘ o)dxdo
Me,i

k=0 o=0a'+m/2

(18)

o | Z ‘leT'e\f+exp( qu)erfc( _‘geT-g), GV <0
C V2 e (). GV >0

Jthe

Jin is the thermal current density and the complementary error function erfc(x) is given
by erfc(x) = \/_ e e~tdt. The repelled-species current is the same in the thin sheath and
OML limits, as can be seen by comparing (1.5) and (1.8) — thisis called the retardation
region of the current characteristic and isvalid in al regimes. The attracted-species current

is constant and equal to the thermal current in the thin-sheath limit, whereas in the OML
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Figure 1.4: Normalized current characteristics in the thin sheath limit and orbital motion
limit.
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eTe7i

regime, it grows without limit with the effective applied bias potential ; thisregion is
called the saturation region of the current characteristic. Figure 1.4 depicts the limits ob-
tainedin (1.5) and (1.8) for both the retardation (repelled particles) and saturation (attracted

particles) regimes.
1.2.1.3 Numerical Approaches for Arbitrary Probe Sizes

To address cases other than the thin-sheath and OML limits, a consistent solution to
the problem of the stationary ion-attracting round cylindrical probe was first provided by
Bernstein and Rabinowitz [27], who developed a Poisson-Vlasov consistent, cylindrical
1-D model based on approximationsof mono-energetic ionsand negligibleelectron current.
The computations consisted of numericaly integrating an ordinary differential equation
of one variable. Laframboise [8] later developed a consistent iterative numerical scheme
that allowed for Maxwellian distributions (far from the probe) for both the attracted and
repelled species. This theory involves the iterative resolution of a nonlinear system of

integral equations, and is applicable to all temperatures, probe sizes with respect to the

16



Debye length and potential values, although results were only given for relatively small
bias potentials.

In addition to providing results for the current collected to round cylindrical probes of
arbitrary sizes, these numerical schemes were the first to provide self-consistent results for

the density profiles of the attracted and repelled species.

1.2.2 Flowing Plasmas

1.2.2.1 Treatments Based on a Symmetric Potential Profile Assumption

Several authors have addressed, in afirst-order sense, the problem of ion collection by
around cylindrical probe immersed in a flowing plasma, using the crucial assumption of a
radially symmetric potential profile unaffected by any flow effects. Mott—Smith and Lang-
muir [26] derived an asymptotic formulavalid in the limit of large speed ratios (relative to
the ion thermal velocity) for the current characteristic in the large-sheath limit (orbital mo-
tion limit). Kanal [28] derived similar expressions valid in the limit of small speed ratios.
Hoegy and Wharton [29] generalized those results by providing expressions valid for all
speed ratios, for the limiting cases of thin-sheath, large-sheath (orbital-motion-limit), and
retarding regimes.

Godard and Laframboise [30] went further by developing a numerical model that al-
lowed for al probe radii to be considered in the flowing case by using the 1-D cylindrically
symmetric potential profiles obtained by Laframboise [8] as the assumed el ectric potential.

In the case of the mesosonic regime, where the velocity of the flow is much larger
than the ion thermal velocity but much smaller than the electron thermal velocity, only
ion collection can be addressed by an approximate solution based on an assumed symmet-
ric potential profile. Such an approximation would show virtually no departure from the
stationary results in the case of electron collection, due to their large thermal velocity as

compared to the speed of the flow for the regimes of interest here. The effects of the flow
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on the collection of the light species— the electrons— are thusonly indirect. That is, these
effects only occur due to the asymmetriesin the potential profile around the probe that are
induced by the heavier ion species. However indirect, these effects can be significant, as
will be seen in Chapter 4.

Even for the ion-attracting case, the assumption of a symmetric profile could fail to

provide a correct answer at least in cases showing one or more of these two conditions[30]:

e the probe radiusis not small with respect to the Debye length, implying a non negli-

gible and likely asymmetric ion space-charge distribution near the collector;

e the ratio of flow energy to bias potential is neither very small (a small flow could
only cause small asymmetries) nor very large (in which case the bias potential could

not significantly affect the flow).

1.2.2.2 Consistent Numerical Treatments

A few numerical treatments have been performed to consistently model flow effects
on the sheath structure (i.e., asymmetries) and current collection to a round cylinder. In
the following we discuss some of the work that has been done using steady-state kinetic

approaches or particle-in-cell implementations.

1.2.2.2.1 Steady-State Kinetic Treatments Xu [17] and McMahon [22] have worked
on consistent steady-state kinetic model sto address the problem of ion collection to around
cylinder in aflowing plasma. The main difference between their approachesisthat Xu uses
an inside-out trgjectory tracking procedure whereas McMahon uses an outside-in strategy.

The outside-in steady-state method used by McMahon [22] bears some similarity with
the popular particle-in-cell plasma modeling techniques [25], in part due to the manner

in which the discrete charges are assigned to a fixed set of grid nodes. This approach is
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intrinsically more efficient computationally, at the expense of some added numerical noise
associated with the charge assignment.

The inside-out approach used by Xu [17] and in the present work, although not as
efficient computationally, is based on adirect sampling of the velocity distribution function

at the nodes of amesh.

1.2.2.2.2 Particle-in-Cell Treatment Onishi [31] has performed simulationsof asingle
electron-attracting cylinder immersed in a flowing unmagnetized plasma using a particle-
in-cell approach. His findings indicate that a population of trapped €electrons, upstream
of the cylinder, is necessary for the plasma to reach a steady state. This requirement is
attributed to the fact that the local increase of theion density on the ram side of the cylinder,
beyond the ambient density, must be matched by an increased electron density to satisfy
the quasi-neutrality condition. Limitations on the computational zone size may be in part
responsible for this computational requirement, and it is not clear whether or not thisisa

physical requirement.
1.3 Summary of Research Contributions

The general aim of theresearch that hasled to thisthesiswasto improvethe understand-
ing of the steady-state perturbations caused in a two-species plasma (flowing or stationary)
by the introduction of along conductive cylinder (e.g., an electrodynamic tether) of arbi-
trary cross-section geometry, biased at a specified potential. Specifically, our main interests

were to determine
e the structure of the plasma sheath/pre-sheath, and

e the amount of collected current
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as afunction of cylinder geometry, bias potential, and plasma flow speed. These objectives
have required both the development of a new computer model capable of accurately sim-
ulating the general problem of interest, and an experimental investigation using a vacuum
chamber. Consequently, the contributions of the research presented in thisthesisfall in one

of three major categories:

1. acomputational model for the self-consistent modeling of arbitrary 2-D conductive

structures immersed in flowing plasmas,

2. new computer simulation results for regimes (combination of biases, geometries, and

plasmaflow) not addressed in previous research;

3. new experimental results pertaining to the effects of plasma flow and geometry on

electron collection.

We describe these contributions in more detail in the following three sub-sections corre-
sponding to the three major categories outlined above.
1.3.1 A Self-Consistent Steady-State Kinetic Model for Arbitrary 2-D
Conductive Structures in Flowing Plasmas
A new computational model was created for the self-consistent kinetic modeling of the
charge-imbalance structure forming around arbitrary two-dimensional conductive objects

immersed in stationary and flowing two-species plasmas. The following are some new

contributions brought about by this new model.

1. A dynamic, adaptive, unstructured meshing strategy that allows support for arbitrary
2-D geometries and can accurately resolve features with widely disparate scales, such
as very small probes together with very large sheath structures. Another typical

plasma feature that requires this dynamic resolution capability is the narrow surge
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of the net charge density found at the sheath edge (a location not known a priori) in
the case of high-voltage biases, which is attributed to the combination of the density

profiles of the counter-streaming attracted and repelled species.

2. A new approach based on a Tikhonov-regularized Newton method for the efficient
minimization of the nonlinear least-squares problem, which provides a numerical
approximation for the fixed point of the Poisson-Vlasov operator. This approach is
robust to numerical instabilities and numerical noise as well as very versdtile, in that
it can successfully solve awide class of 2-D problems without the need for empirical

tuning of parameters such asisrequired by overrelaxation techniques [17].

3. Support for the kinetic treatment of both ions and electrons, even in the case of a
flowing plasma. Previous treatments of the flowing plasma case, applied for ion

collection only, have assumed “Boltzmann” electrons[17, 22].

4. A parallel implementation of the 2-D Vlasov solver based on the PVM library [32],
which enables a very accurate representation of plasmas extending over large do-
mains within reasonable computing times. The parallel code is a coarse-grained
MPMD (Multiple Processors, Multiple Data) implementation that runs efficiently on
a dynamically-configured scattered network of workstations, using their idle com-
puting time. The code was developed and tested on scattered networks of Sun™
and Linux workstations, and also has been tested successfully on a standard Linux

cluster.

1.3.2 New Simulation Results

Using this new steady-state kinetic model, a collection of new results applicable to

the problems of interest have been obtained via computer ssmulation. These new results
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provide:

1. an extension of the operating regimes covered by Laframboise [8], Xu [17] and
McMahon [22] to awider range of bias potentials. Bias potentials from an arbitrary
small fraction of the plasma temperature T up to 10,000T have been successfully

covered by the cylindrical 1-D model. The full 2-D model has reached 640T,.

2. an assessment of wire interference effects on sheath structure and current collection
based on two parallel round cylinders with various center-to-center spacings in a

stationary plasma.

3. an assesment of the sheath structure and current collection for the case of athin tape

cylinder.

4. an assessment of plasma flow effects on sheath structure and current collection for
both ion- and electron-attracting round cylinders. The electron-collecting case has
not been previously successfully analyzed in an unmagnetized plasma.?2 As for the
ion-collecting case, it has previously been addressed by Xu [17] and McMahon [22]
using a Boltzmann approximation for the electrons. The present research containsthe
first results of simulations using anon-PIC fully kinetic treatment for both speciesin

aflowing plasma.

To the author’s knowledge, items 2 and 3 constitute the first fully self-consistent kinetic

simulation results for cylinder geometries other than circular cylinders.

1.3.3 New Experimental Results

Experimental testing of electron collection to tether samples of various geometries in

a mesosonic xenon plasma were performed using the Large Vacuum Test Facility at the

2Onishi [31] has reported that his particle-in-cell code could not reach a steady state when simulating a
flowing, collisionless, unmagnetized plasma.
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University of Michigan’'s Plasmadynamics and Electric Propulsion Laboratory. New ex-

perimental results were obtained pertaining to

o the effect of plasma flow on the electron collection to round cylinders (a significant

enhancement was observed); and

e acomparison of electron current collection efficiencies of solid and dlotted tape tether

samples, oriented parallel and perpendicular to plasma flow.

The geometry effects observed during these experiments are in general agreement with
those predicted by our kinetic model. As for the electron current enhancement associated
with the mesosonic plasma flow, it cannot be predicted by our collisionless plasma model.
However, the sheath structures obtained via simulation give some indication as to how

pre-sheath collisions may have caused the observed enhancement.

1.4 Dissertation Overview

The five chapters of this dissertation are structured as follows:

Chapter 1 provides motivation, defines the problem of interest, reviews previous relevant

research, and summarizes research contributions.

Chapter 2 develops the theory and describes the computer implementation of a steady-
state Poisson-Vlasov self-consistent computational model based on kinetic theory.
The model is applicable to a wide range of 2-D objects immersed in stationary and
flowing plasmas. Both a 1-D cylindrical implementation and a full 2-D implementa-

tion are presented side-by-side.

Chapter 3 describes the experimental testing of electron-collecting tether samples in a
mesosonic flowing plasma. The sample geometries tested include a round cylinder,

thin solid tapes, and thin slotted tapes.
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Chapter 4 presents and discusses the results and analyses of the kinetic simulations per-
formed using the computer model defined in Chapter 2. Comparisons with our ex-

perimental results are also shown.

Chapter 5 discusses the conclusions of this dissertation and provides suggestions for fu-

ture research.
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CHAPTER 2

Steady-State Poisson-Vlasov Model: Theory and
Implementation

We present the theory and software implementation of a consistent, steady-state, elec-
trodynamic plasma model based on kinetic theory. The solver presented here is best clas-
sified as a Vlasov code based on a kinetic description of plasmas [33]. It differs from
particle-in-cell methods in that the Vlasov equation is solved directly instead of resorting
to a set of discrete macro-particles. It is also distinct from Eulerian Vlasov implemen-
tations [34], owing primarily to the fact that a steady-state “non time-varying” solution is
sought directly, without resorting to incremental time stepping. The steady-state solver pre-
sented here bears some similarity with previous work addressing other geometries[35-37],
and may beregarded as a 2-D extension of the 1-D cylindrical model developed by Lafram-
boise [8].

The general aim of this model isto numerically solve, in a self-consistent manner, the
Poisson and Vlasov equations in a steady state over alarge computational region around an
arbitrarily-shaped 2-D conductive body in a collisionless, unmagnetized, flowing 2-species
plasma. The implementation of the 2-D solver, called KiPS-2D (Kinetic Plasma Solver,
2-dimensional) consists of successive linearizations of the nonlinear Poisson—Vlasov op-
erator, within a Tikhonov-regularized Newton iterative process. Following are listed the

main features of the proposed model and solver:
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it allowsfor the representation of the complete, arbitrary velocity distribution of both

plasma species at all sampled locations in the computational domain;

it can model plasma cross flow in all speed regimes with respect to the ion thermal

velocity;

it includes a finite-element-based Poisson solver incorporating a background plasma

boundary condition based on asymptotic analytical results [27];

it provides a dynamic, adaptive, unstructured meshing strategy, allowing for the res-
olution of sheath asymmetries induced by the plasma flow and the support of con-

ductive objects with arbitrary 2-D geometries,

it allows for the simulation of very large computational domains in order to accom-
modate the pronounced pre-sheath elongation aong the direction of plasmaflow. The
variable grid size istailored locally to efficiently accommodate potential variations.
Numerical instabilities resulting from large grid sizes are handled using a Tikhonov

regul arization process;

its steady-state Vlasov solver features a parallel implementation based on the PVM
library [32], alowing it to run on either a single host, a parallel architecture, or a
scattered network of workstations based on aMPMD (Multiple Processors, Multiple

Data) scheme.

Although the primary purpose of this work was to provide a 2-D solver, a 1-D cylin-

drical implementation of this model, called KiPS-1D, was also developed. This 1-D code

has been validated against results from Laframboise [8], and extends the covered range of

probe bias potentials from 25T, to 10,000T,. In addition, it serves as a validation tool for

the 2-D implementation of the code. In the following sections, the general formulation will
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be described consistent with the 2-D implementation. However, where necessary, specific
derivations will be presented pertaining to the 1-D and 2-D implementations of each com-
ponent. Note that the main symbols used throughout this chapter and others are listed in

Appendix A for convenience.

2.1 Basic Assumptions

The aim of the steady-state, consistent kinetic plasma model presented in thisthesisis
to provide an accurate representation of the dominant physical mechanismsinvolved in the
formation of a steady-state sheath aswell asin current collection to 2-D conductive bodies.
In setting up the basic physics underlying the model, we make the following assumptions

regarding the physical mechanisms involved in the sheath—plasma system:

e the plasmaiscollisionless;

a steady state exists;

the plasmais unmagnetized;

the background plasmais a drifting Maxwellian;

end effects are negligible;and

e trapped orbits are unpopulated.

Let us now describe in more detail each of these assumptions.

The Plasma is Collisionless Several types of collisions can be considered. Based on the
very long mean free paths given in Table 1.1, we can certainly neglect the elastic
ion—neutral and electron—neutral collisions for al three cases (vacuum chamber ex-
periment, electrodynamic tethers, and electrostatic tethers), because they are much

larger than the typical sheath sizes we are interested in.
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Coulomb collisions are aso neglected, i.e., we assume that the forces experienced
by any of the charged particles forming the plasma are entirely due to the collective
effect of the charge density contributed by all particles, not to their individual ef-
fect. Thisassumption is accurate for sufficiently low plasma densities (such as space
plasmas), in which any given particle very rarely “meets’ another particle in aclose
encounter. In other words, the number of particles contained within the “sphere of
influence” (Debye sphere) of a given particle is so large that the overall forces are

overwhelmingly attributable to the bulk of the plasma.

A Steady State Exists We assumethat there existsasteady state of the plasmadensity and
potential distributions in the frame of reference of the moving tether or probe. By
“steady state” we imply a state in which there are no time variations of the plasma
density or electric potential anywhere in the frame of reference of the moving object.
Our definition of the steady state allows for a steady flow of plasma particles in any
directions where applicable, including a net drift component of the plasma bulk due
to the orbital motion of the tether. Thisimpliesthat time variations may be perceived

as seen from other frames of reference.

The existence of a steady state will be proved a posteriori by showing that we can
find a self-consistent, steady-state solution satisfying both the steady-state Vlasov
and Poisson equations. Proving the existence of a steady state is not, however, a
guarantee that no time variations can exist even in the absence of transients and ex-
ternal excitations. Nonethel ess, the steady-state solution that we provide here can be
regarded as alowest energy state that the electrodynamic forces will seek to attainin

order to minimize the system energy.

The Plasma is Unmagnetized We assume that the effect of the magnetic field on the so-
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lution is negligible, and therefore choose to neglect the magnetic field force in our
computational model. To qualify this approximation, let us consider the effect of
the magnetic field for the main applications of interest. This effect can be gaged by
comparing the typical gyroradius of the attracted species within the computational
domain to the size of the computational zone, which is typically on the order of the
sheath dimensions. The effect of the magnetic field on the repelled species’ density
is unimportant as long as the said species does not have a sizable drift component
as compared to its thermal distribution, because then the local densities are solely
determined by the local potential for all practical purposes. This appliesto the elec-
trons when using a negative bias potential, since their drift velocity is negligiblein

the regimes of interest.

For charge precipitation, the magnetic field effect on the repelled electrons is there-
fore negligible for the reason just mentioned. Asfor the attracted ions, Table 1.1 lists
for their gyroradius in the background plasma a value of 7.4 m, which is admittedly
smaller than the typical sheath diameters of interest for tether bias potentials in the
vicinity of 100,000 volts. However, thisrelatively small value of the Larmor gyrora-
dius should be put into perspective, because it only appliesin the background plasma
where particle velocities are on the order of the thermal velocity. Within the acceler-
ating potential of the sheath structure however, the attracted particles are accel erated
to velocities that can be up to a few hundred times the thermal velocities, for tether
bias potentials of afew tens of thousands of volts. The gyroradiusrg is proportional

to the ratio of the particle velocity to the magnetic field intensity [38],

o m;v

= 2.1
e eB’ ( )

wherethe magneticfield B isin unitsof Teslaand v isthelocal ionvelocity. Insidethe

sheath the accelerated species’ gyroradius scales proportional to particle velocities,
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to values much larger than the corresponding sheath size. For example, consider a
one-Debye-length-radius ion-attracting tether, used for charge precipitation, biased

at 100,000 volts. Scaling the ion Larmor gyroradius proportional to the ratio of in-

sheath velocity to the thermal velocity, the ion gyroradius close to the probeis given
by
=1/250000 x 7.4 m= 3700 m. (2.2

- /1000008
G~V "04ev 'Ct
rgL=7.4m

This result is significantly larger than any practical sheath size, and emphasizes the

fact that the magnetic field should not play a significant role in this application. For
this specific bias potential and atether radius of one Debye length, the sheath diame-

ter is about 92 meters according to the asymptotic expressions derived in Chapter 4.

For propellantless propulsion applications, the electrons are the attracted species.
Their relatively small Larmor gyroradius of 3 cm would be scaled up, within asheath

created by atypical 1 kV-biased tether, to avalue of

1o
G~ 01 GL

whichis aso significantly larger than the approximate sheath diameter of 0.5 m.

=1/10000 x 0.03m = 3 m, (2.3

rgL.=0.03 m

In general, we can therefore say that attracted species can be expected to have large
gyroradii for most of the sheath as compared to the sheath’s dimensions. This means
that the magnetic field is playing a relatively minor role in the sheath formation and
current collection processes, and may thus be safely ignored for these purposes, es-
pecially for the charge precipitation application where bias voltages are typically
larger than in the propulsion application. A similar reasoning can be made based on
acomparison of the magnitudes of the electrostatic and magnetic forces acting on the
particles: the electrostatic field forces can be as much as a few orders of magnitude

larger than the magnetic field forces.
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Our kinetic model therefore assumes that no magnetic fields are present, resulting in

apurely electrostatic solution of the plasma sheath.

The Background Plasma is a Drifting Maxwellian Although no assumptions are made
with regardsto the vel ocity distributionswithin the computational domain, the source
of the plasma entering the computational domain must be known and is defined as a
boundary condition. The computational domain must be made sufficiently large to
include all of the major perturbations on the plasma caused by the presence of a con-
ductive object. The velocity distribution of the incoming plasma particles entering
the simulation domain is thus assumed to closely correspond to the ambient veloc-
ity distribution that exists in the background (undisturbed) plasma. In a stationary
plasma, the 2-D vel ocity distribution is assumed to be Maxwellian (see equation 1.1).
For amoving plasma, the background vel ocity distribution function for both electron

and ion species becomes

_ _ NoMe,i _ Me,i N2 2
fei (Vy, Vy) = et exp{ 2ot [(vX U) +vy}}, (2.4)

where we assume that the plasma is moving along the direction of the x axis with
velocity U. Note that the v, dependence of the 3-D velocity distribution function
has been integrated out into a constant in front of equations (1.1) and (2.4) since
we only consider 2-D structures in unmagnetized plasma, which implies that the v,
Maxwellian dependence of the plasma is unchanged throughout the computational
domain. Section 2.4.2.2 provides more detail regarding the method used to account
for the small perturbations to this distribution function that occur between the back-

ground plasma (at r — o) and the outer boundary of the computational domain.

End Effects are Negligible Probe end effects are neglected in this treatment. This is

hardly an approximation in the case of bare, space borne electrodynamic tethers,
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which are typically several kilometers|ong, corresponding to lengths of tens of thou-
sands of Debye lengths and beyond. In the case of laboratory probes of more modest
lengths, the end effect can be neglected provided that the cylinder is of sufficient
length. The typical probes considered here are several hundred to a few thousand
Debye lengthslong. In addition, it has been shown, at least for ion-attracting probes,
that end effects are negligible provided that the probe is oriented perpendicular to the

direction of plasmaflow. [39]

Trapped Orbits are Unpopulated In our analysis, we assume that trapped particle or-
bits are unpopulated, which is consistent with the treatments described by Lafram-
boise [8] and Xu [17] (more detail is given in Section 2.4). This assumption fol-
lows from the previous “collisionless’ and “steady-state” assumptions. When both
of these assumptions hold, al particles present anywhere in the vicinity of the 2-D
object can be traced back to the background plasma (the “source”’) on collisionless

orbits. Therefore closed orbits cannot be popul ated because they have no source.

Coallisions, when they occur, may be regarded as scattering events that can displace
a particle from one “collisionless orbit” to another. The present assumption, based
on a*“ conservation of orbits’ argument, is appropriate for the plasmas of interest (see
Table 1.1), because they feature very few collisions, implying that the “paths’ con-
necting two points in the background plasma or connecting the background plasma
to the tether can be traversed by a particle with virtually no collision events. Time
variations, which could be induced by external perturbations such as variationsin the
plasma environment, can also be regarded as scattering events, similar to collisions.
The present treatment does not account for any “filling” of the trapped orbits that
could result from such time variations. The impact of collisional and time-varying

effects on the level of filling of trapped orbits will be assessed as part of future re-
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search. Some authors have provided indications as to how this may be done [40,41].

As pointed out by Prof.Laframboise® in recent discussions, trapped orbits could also
potentially be filled by some of the particles entering through the ends of the cylindri-
cal sheath of atether, since some of the so-called “trapped* collisionless orbits may
actually be connected to the background plasma through the hemispherical end caps
of the long, but finite, cylindrical sheath enclosing the tether. The level of “steady-
statefilling” of trapped orbits attained through this mechanism should be assessed as

part of future research but is beyond the scope of the present work.

2.2 Poisson-Vlasov Representation of Collisionless Plas-
mas

Obtaining a simultaneous solution in two dimensions for the asymmetric steady-state
electric potential distribution and charge density distributions of both plasma species (ions
and electrons) requires the ability to solve, self-consistently, Vlasov’'s equation for each
species and Poisson’s equation for the electric potential and charges, while satisfying ap-
propriate boundary conditions.

Both the electric potential and charge densities are sampled on a piecewise-triangular
mesh, which is generated using the Bidimensional Anisotropic Mesh Generator (BAMG)
developed at INRIA, France [42]. An adaptive process was implemented whereby the
BAMG mesher is used to periodically refine the mesh based on the best avail able approxi-
mation of the net charge density and potential distributions.

In charged media such as a plasma, the steady state of the potential distribution and net

charge distribution obeys Poisson’s equation [43],

V2 (x,y) = _p(:;y)7 (2.5)

3Prof. James G. Laframboise, York University, Ontario, Canada.
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at any point within the plasma. In addition, each species comprising the plasma, that is,
electrons and ions, is composed of particles with a distribution of velocities at any point
in space fzq(X,Y,z,Vx,Vy,V;). In an unmagnetized electrostatic plasma bounded with 2-
dimensional boundaries, the distribution of velocities along the third dimension is inde-
pendent of position, such that we only need to keep track of the 2-dimensional velocity

distribution function obtained by integrating along v,

VZ:+°°

f2d (X7 Y, Vx, VY) = / dVZ f3d (X7 Y, Vx, VY7 VZ) ; (26)

Vz=—o0

where the z variable was dropped because the 2-D boundary conditions preclude any de-
pendence on z. The number density of each speciesis obtained by integrating the velocity

distribution function over all velocity space,

Nej = // fei(X, Y, Vx, Vy) dvydvy, (2.7)
where the indices e and i refer to electrons and ions, respectively. The net charge density
results from

P(%Y) = Gini(X,Y) + GeNe(X,Y), (2.8)
where g and g; are the electron and ion particle charge.
In a collisionless, unmagnetized plasma at the steady state, the velocity distribution
functions f(x,y, vy, Vvy) of each species is conserved aong particle orbits. Thisis stated by
Vlasov's equation in the steady state(% =0) [25],

dfe,i dfe dfei Qe dVdfei QejdV dfej
pA— ) o o > L > — 2
dt  Xox Iy Meiox vy Me; dy vy 0 (29)

where we substituted the electric field components with the gradient of the electric poten-
tia, i.e,, E = —VV. Given aknown potential distribution and a boundary condition for the
incoming particles at the outer boundary of the computational domain, the method of char-
acteristics can be used to solve (2.9) for the velocity distributions fe i (X, Y, vx, vy) of both the

electronsand ions, at all positionsand for all velocities.
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The use of the method of characteristics for the resolution of Vlasov's equation in
plasma problems was reported early on [36], and was referred to as the inside-out proce-
dure. It consistsof tracking a particle strajectory back intime until it intersectsthe “ source
boundary” (which in our case isthe outer boundary) of computational space, where the ve-
locity distribution function is sampled. Any trgjectory not originating from the outer shell
is deemed unpopulated [8]. Such is the case for trgjectories originating from the tether
itself, which we assume does not emit charged particles, as well as trapped trajectories,
which have no sourcesin the collisionless case.

The steady-state of the plasma must simultaneously satisfy Poisson’s equation (2.5) and
Vlasov's equation (2.9), subject to boundary conditions on the potential and the incoming

particles. To find the steady-state sol ution, both a Poisson and a Vlasov operator are needed:

e the Poisson operator solves for the potential distribution V (x,y), given a net charge
distribution p(x,y) together with boundary conditions on the potential distribution,

consistent with Poisson’s equation (2.5);

¢ theVlasov operator solvesfor the charge distribution p(x,y), given apotential distri-
butionV (x,y), consistent with Vlasov’s equation equation (2.9) as well as equations

(2.7) and (2.8).

L et the Poisson operator be defined by the functional

fp :V(va) =fp {pin(xay)}> (210)

and the Vlasov operator be defined by the functional

fV : pOUt(Xay) = fV {V (Xay)} . (211)

Then the solution of the problem lies at the fixed point of the Poisson—Vlasov functional,
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defined as a composition of the Poisson and Vlasov functionals:

fpv 2 pout(X,Y) = fev {pin(X,¥) } = fv { fe {pin(X,¥) } } - (2.12)

That is, the solution for the net charge distribution p(x,y) is that which, when given at the
input of the Poisson-Vlasov operator, yields an identical output (pout(X,Y) = pin(X,Y)). A
Vlasov-Poisson operator could also be considered that would have V (x,y) asitsinput and
output. The Poisson-Vlasov operator was chosen because of a stability advantage inherent
to the regularization process discussed | ater.

In the following, we present the specific Poisson and Vlasov solvers used in both our
1-D and 2-D implementations. We then proceed to define an algorithm for finding a best
approximation to the fixed point of the Poisson-Vlasov operator, i.e., the steady state of the

plasma.

2.3 Finite-Element Poisson Solver

Here we derive the Poisson solver, a numerical approximation for the Poisson operator
defined above by the functional fp. The Poisson solver will provide the capability to obtain
anumerical approximation for the potential distribution satisfying Poisson’s equation and
boundary conditions for a given net charge density distribution. We have chosen to use
the finite-element method to implement our Poisson solver, due to its relative simplicity
and mathematical compactness. In addition, it does not present any of the numerical issues
associated with the poles generated with techniques such as the method of moments.

The approximate character of the Poisson solver is due to the finite discretization em-
ployed to solve Poisson’s differential equation (2.5). Both the potential and charge distri-
butions are assumed piecewise-linear, and the accuracy of this representation improves as
the mesh density increases.

In the following, we show two separate derivations for the 1-D cylindrical Poisson
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Solver, used in KiPS-1D, and for the full 2-D Poisson Solver, used in KiPS-2D.
2.3.1 1-D Cylindrical Implementation

In the absence of any azimuthal variation of either the charge distribution or boundary

conditions on the potential, Poisson’s equation (2.5) simplifiesto

1d dv 1

Finding a unique solution for this differential equation requires boundary conditions on
V (r). At the surface of the probe, located at r = rg, we require that the potential be equal to
the applied bias voltage, i.e., V (r = rg) = V. Now, our computational domain isfinite and
terminates at alarge radius r = ry. We have found that the most suitable boundary condi-
tion to represent an open-ended plasma domain is a floating boundary condition based on
the asymptotic potentia profile V (r) o< 1/r derived by Bernstein and Rabinowitz [27] and
also used by Laframboise [8]. This asymptotic behavior, together with the bias potential,

resultsin the following boundary conditions for the potential:

V (r=ro) = Vo, (2.14)
v __V (2.15)
dr r=rm r r=rm

According to variational principles [44, 45], which are the foundation of the finite-
element method, the solution of (2.13), subject to boundary conditions defined in (2.14)—
(2.15), is equivaent to the stationary point (or minimum energy point) of the following
functional:

1Y 2
M= /ro dr BN%)—M] L (2.16)

& 2

r=ry
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This can be verified by deriving the variation of IT [45],

o [rp(r)  d(rV) rons ™ _
ST — /ro dr{ | VOV VeV, —0 (217

e aw] o
5n__/ro dr{go + DN fvrivysv), L, -yl =0, (28)

and finding the stationary point corresponding to 611 = 0. The physical solution thus cor-
responds to the minimum energy state for I1. Since all 3 termsin (2.18) are independent of
each other, each must vanish independently. Setting the integrand of the first term equal to
0 yields Poisson’s equation (2.13), while setting the second term equal to 0 yields the outer
boundary condition given in (2.15). The third term vanishes simply because 6V |,_,, = 0,
i.e., thereisno variation of the potential at r = rg, sinceit isforced to afixed value, namely
Vo.

Thus, our Poisson solver must minimize IT as given by (2.16). To accomplish this,
we first approximate (2.16) by discretizing the potential V (r) and the charge distribution
p(r) and assuming a linear variation between the samples. The resulting piecewise repre-
sentations of V (r) and p(r) can be used to write the following approximate equation for

II:

S [
i1 (fiy1— I’|)2 4
_ (rt—rf)

2€p
3 3
r3.—r
- % Vi (ripit1 — 2ri1pi + Mit1Pit1)
€0

+ Vit1 (ric1pi — 2ripic1+ ripi)]
(rt,—rf

|+jr£ '>(pi+1—Pi)(Vi+l_Vi) , (2.19)

2
Idiscrete = 7’\' (Vi—i—l —Vi)z

(rig1pi — ripiv1) (figaVi —riVig1)

wherer;, i =1,...,N are appropriately chosen sample locationsin theinterval r € [ro, rm],

and the potential and charge density samples correspond toV; =V (r =r;) and p; = p(r =
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ri). The equivalent matrix-form expressionis:

1.

. 1
T ~ Mgiserete = EVTKNxNv -

—VTQuxn P, (2.20)
€
where K and Q are N x N matrices, and the elements of the vectorsV and g correspond to
the potential and charge density samplesV; and p; for i € [1,N]. The non-zero elements of

matrix K are given by

s rs—rf r5—rf
" row: Kpi=—"—, Kio=——*—5
2(ra—rq) 2(rp—r1)
r2 . _r2 r2_r2 r2 . _r2
ith row: Ki,i—1: i—1 i 5, Ki,i _ i i—1 2+ i+1 i .
2(ri—ri-1) 2(ri—ri—1)®  2(riza—ri)
22 (2.22)
and Kijpi=——""1  i€2N-1]
2(rip1—ri)
2 .2 2 _ .2
rg—r rg—r
NP row: KN,N—lZ—N—N_lz, KN :1+N—N—12_
2(rn—rn-1) 2(rn —rn-1)
With regards to matrix Q, the non-zero elements of itsfirst row are given by
1 1 2 1
Qui= |3 (5-18) - Sra (13— rD) + 3 (1)) and
()" L2 3 4 (2.22)
1 1 2 2y, 1 3 3 1.4 a4 } '
=~ |—znr(r5—ri) +=(ri+r) (rs—r3) == (r5—r7) |,
Q12 (rz—rl)z[ > (r3—r7) 3 ) (r3—r7) 4(2 1)
the non-zero elements of rows 2 through N — 1 are given by
1 1 2 2 1 3 3 1,4 4
i = | —=li_1li (rf—r1; —(rici+r)(r’=r ) == (r —r;
Ql,l—l (ri—ri—l)z { 2 i—1 I( i |—1>+3( i-1+ l)( i |—1> 4( i |—1> >
1 1o 2 2 3.3 1.4 4
= | T i —=ri_1(r’—r; — (" —r;
QIJ (ri—ri—l)z |:2rl—l (rl r|—1) 3 i 1( i |—1) +4( i |—1)
1 1, (2 2 2 3 3, 1,4 a4
+m {éri—H (ri+1—ri)—§ri+l (ri+1—ri)+z(ri+1—ri) , and
1 1 2 o, 1 3 3y L4 4 }
i1 = |—=rilig1 (r5 =10+ = (ri+rig) (P, —r7) == (', —r) |,
QI,I+1 (ri+1—ri)2 [ 2 | H-l( i+1 |> 3( I 1+ )( i+1 |> 4( i+1 |>
(2.23)
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and the non-zero elements of its N row are given by

1 1 1
QN,N—l :m |:—§rN_1I’N (r,%] — I’ﬁ_l) + é (FN_1—|— I’N) (rﬁ — r:lél—l)
1
-7 (rh—rn_1)| and
1 1 2 1
QNN :m {érﬁ—l (r,%, - rl%l—l) - érN—l (rﬁl - rr‘?l—l) + 2 (rf\ll - rﬂl—l) )

(2.24)

with all the unspecified matrix elements equal to zero.

Now, the best approximation to the physical solution, i.e., the stationary point of IT,
which isalso the root of 611 as specified in (2.18), is obtained by setting to zero the partia
derivatives of Tgigrete With respect to the unknown potential samples Vi, i = 2,...,N. This

operation yields the following linear system of equations:

. 1 .
Kon2nVan = 8_OQ2:N,1:N p —VoKan,1. (2.25)

This system is then solved for the unknown potential samplesVi,i € [2,N]:

~ 1 _ 5 _
Von = 8—0(K2:N,2:N) "Qonin p —Vo(Kan2n) 1K2:N,5, (2.26)
‘]Pf\lflxN

where we have defined an (N — 1) x N matrix Jp’ and avector V' with (N — 1) elements.
Based on this result and the potential boundary condition at r = rg, we can form the com-

plete Poisson solver as follows:

V =Jpp+V, (2.27)
with
Jpanan = Jp, (2.28)
Jprin =0, (2.29)
VS =V, and (2.30)
VI =V (2.31)
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The expression given by (2.27) isthe final compact form of our finite element-based cylin-
drical 1-D Poisson solver. It isobviously alinear operator, and only needs to be computed

once upon generating a new grid.
2.3.2 2-D Implementation

For the 2-D implementation of our Poisson solver, we wish to approximately solve, in
two dimensions, Poisson’s equation (2.5), with appropriate boundary conditions. We will
first focus on the boundary conditions, and then proceed to derive the finite element solver

itself.

2.3.2.1 Poisson Boundary Conditions

At the surface of the conductive object(s) (e.g., probe), we simply enforce afixed bias
potential V =V, with the potential V being measured from infinity.

The question of the outer boundary condition is significantly more difficult to address.
Since the computational domain must be finite, an appropriate outer boundary condition
should be selected that will help keep the required extent of the computational domain at a
reasonable size. Initsundisturbed state, the plasmaisneutral, and it therefore actsto shield
any perturbations in the electric potential caused by a biased conductive object inserted
within that plasma. For that reason, we can make the argument that the potential profile,
beyond the circular outer edge of the computational domain, must fall off faster than it
would in free space.

In free space, we drop the space charge term p(x,y) on the right-hand side of Pois-
son’s equation (eg. (2.5)), and recover Laplace’'s equation. In 2-D cylindrical coordinates,

Laplace's equation can be written as

VA =

19 [ oV 102V
—§< ) 0 (2.32)

ror\"or ) Tregez ~
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Free Space | Plasma
mode # Ern o< Ern o<
0 1/r 1/r?[27]
1 1/r? 1/r3
2 1/r3 1/r
n l/rn+l l/rn+2

Table 2.1: Decay rates of the radia electric field E,, = ALY for various circular har-

ar
monic modes. The exact rates are given for free space [46], while in a plasma only the 0O

order mode has an asymptotic rate. The rates in bold are assumed, based on a qualitative
argument.

and can be solved by separation of variables. The solutions are circular harmonics of the

form [46]

Vyo = Colnr+ Doy, (2.33)

Vyn = (Apcosnd +B,sinnd)( C, r"+Dpr™"), n=1,23,... (2.34)

=0

Since we are looking for solutions that vanish as r — «, we must set C,, = 0. It isthus

seen that the potential for the circular harmonics decays as 1/r" for n > 1. Table 2.1 lists
Vn
ar

in free space, along with the corresponding assumed decay rates in a plasma. Following

the decay rates of the radial electric field Eqy, = — for each circular harmonic mode
the asymptotic result derived for the 1-D cylindrical case[27], we assume that the 0™ order
mode decays as Epn o< 1/r2 (Vxn o< 1/r) in a plasma, a faster decay rate than that obtained
in free space. Without further demonstration, we generalize the shielding effect of the
plasma observed in the 0" order mode to higher-order modes by assuming a decay rate of
Ernoc 1/r"2, or Vi o 1/r"L,

Furthermore, we will assume these decay rates to be appropriate in flowing plasmas
aswell. Future work should focus on seeking asymptotic analytical expressions for these

modes in stationary as well as flowing plasma; such results would very likely contribute
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to reducing the computational domain size requirements in the flowing plasma case, in a
similar fashion as the improvement obtained in the 1-D cylindrical case upon replacing the
hard outer boundary conditionV = 0 with a boundary condition based on the asymptotic
behavior V o< 1/r.

The decay rates for each mode were not hard-coded into the program. Instead, those
rates are given as an input parameter by the user, such that one may provide the best-suited

decay rates for the application of interest.

2.3.2.2 Finite-Element Formulation

We proceed by fully discretizing Poisson’s equation in two dimensions (2.5) using a
piecewise-hilinear representation of the potential and charge density distributions. The 2-
D domain is subdivided into triangular elements.* The formulation of the linear Poisson
solver is based on that found in chapter 2 of Tong's finite-element textbook [44]. Anal-
ogous to (2.16), we choose the functional for which the stationary point corresponds to
the solution of (2.5), subject to the boundary conditions defined in Section 2.3.2.1. This

functional is given by

H:%{/dA(W)ZJr%A/M/dAM (V)2 (VAV) V] —%{/dAp(x,y)V, (2.35)
S g At }

~—
1 T

3

where (V)2 = (W) (VV), the area A refersto the full area of the computational domain,
and A.. represents the area extending beyond the computational domain, al the way to

infinity (r > rw).

2.3.2.2.1 Formulation of the Outer Boundary Condition We hereby derive an ap-
proximation for Iy, the energy outside of the computational domain, in terms of the sam-

ples of the potential profile at the outer boundary r = ryy of the computational domain, to

4Section 2.6 describes the mesh construction process.
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serve as an outer boundary condition, consistent with the assumptions on the decay rates of
circular harmonics described in Section 2.3.2.1.
Using Green’s 1% formula[47], the second term of (2.35) can be re-written as a contour

integral on the outer circular boundary at r = ry:
2r
1 oV
Hg——ée/OVWerG. (2.36)

Outside of the computational domain (r > ry), an expansion of the 2-D potential profilein

circular harmonicsyields, for the potential and itsfirst radial derivative:

Nrmodes
v v y(n) .
V(0,r)=~Ag— — A 60+B 0 2.37
(6,r) Or+r§’1(r) (Ancosné + B, sinng) (2.37)
oV v Ninoges r&(n) .
_W = AO? —+ ngl '}/(n) (m (An cosno + anmn@), (238)

where y(n) is the specified decay rate for the n'" circular harmonic of the potentia and is
usually set to y(n) = n+ 1, consistent with the arguments given in Section 2.3.2.1. The

Fourier series coefficients are given by Euler formulas [47]:

A 1 2ﬂdé)v 0 2.39
= r .
1 r2n
An:E doV(rm,0)cosn6, n=12,.. (2.40)
0
1 r2n
B”:E doV(rm,0)snnd, n=12 ... (2.41)
0

where the potential is integrated over the outer circular boundary. These formulas are

discretized based on abilinear variation of the edge potential between itssamplesV (rv, 6;):

Nob
Ao o Y agV (rm, 6) (2.42)
Tia
Nob
A, ~ - Y anV(rm,6) n=1,2,.. (2.43)
i=1
1 Nob
B, ~ - Y bV (rm,6) n=1,2,.. (2.44)
i=1
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where Ngp is the number of potential samples on the outer boundary. The coefficients agj,
ani and by,; are obtained by integrating the piecewise-linear representation of the boundary
potential profile along with either 1, cosn®, or sinn6 over each sub-interval defined by the

outer boundary sample locations, yielding:

1
agi =  [mod (611 — 61, 27) + mod (6 — 6i-1, 2m)] (2.45)
- (cosnB; — cosn6;_1) B (cosn@; 1 — cosno;) (2.46)
" n2mod(6; — 6i_1,21) n2mod(6i1— 6;,27) '
(sinn6; —sinn6;_1) (siNnBj;1 —sinno;) (2.47)

" 2mod (6 — 6,_1,21)  n2mod (6.1 — 6;, 27)
where mod() is the modulo function, and the 6; samples are assumed to be ordered in
counter-clockwise (increasing) order. These coefficients are computed for modes n =
0,1,2,...Nmodess Where Nmoges 1S chosen sufficiently large to accurately represent the az-
imuthal modes that the outer boundary sampling can support. Typically, Nmogdes 1S chosen

as afew times (10 times, for example) the approximate Nyquist limit, i.e.,

T
N _ 2.4
modes = CEl < Omin\mod(9i+1—9i,2ﬂ)|) =

where the function ceil () rounds its argument up to the next integer. In contrast with the
discrete Fourier transform, which givesrise to aliasing when the Nyquist limit is exceeded,
there is no concern for aliasing here, since we have defined the coefficients agi, ani and
bni based on the continuous Fourier transform of a piecewise-linear boundary potential,
as opposed to having discretized the Fourier integrands, as is done in the discrete Fourier
transform.

We may now put the pieces together to obtain a discrete representation of IT,. Insert-

ing (2.37)—«2.38) into (2.36), we obtain for IT,:

1 Nmodes
=n {A3+ 5 Y ¥(n) (A2+B2) } : (2.49)
n=1
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Using (2.45)—(2.47), we insert (2.42)—2.44) into (2.49), and re-write the resulting expres-

sion in vector form,

17| 1 1 Ninoges BN
M= 2V | 2-dod@h += Y, v(n) (&l +Bib] ) | Vb, (2.50)
2 2n T =
<

where V, is a vector containing the potential samples at the outer boundary, (\7b>_ =
1

V (ru, 6i), and the vectors &, &,, and b, are made up of the elements given by (2.45)—

(2.47). The matrix K/, is a stiffness matrix that constitutes the outer boundary condition

and will contribute to the global stiffness matrix defined in what follows.

2.3.2.2.2 Formulation of the Internal Finite Elements Analogous to the 1-D cylin-
drical case given by (2.19), both surface integrals in the energy contributions IT; and I3
in (2.35) are approximated by sums of sub-functionals m,1 and w3 (N =1,2,...,N;) that

each operate on a sub-domain defined by triangle n:

Nt Nt
O=Ym + M + Y a3 (2.51)
n=1 n=1
I I3
with
2 (v
iy = 2// 5 oty and o= ——//p XYV (x,y)dxdy,

(2.52)

where N; isthe number of triangles, and A, defines the surface of the nth triangle.
The potential and charge density distributions are assumed piecewise-hilinear over the
set of triangular elements. Within triangle n, the potential and charge density profiles are

given by
V(X,Y) = Vin1 f1(%Y) +Vin 2 f2(%,¥) +Vin 3 fa(x,y) and (2.53)
P(X,Y) = pin,) F1(X,Y) + Pi(n,2) F2(X,¥) + pirn,3) f3(X,Y), (2.54)
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where the V;'s and p;’s are samples of the potential and charge density distributions, and
i(n,:) is alookup table mapping each of the 3 vertices of triangle n to the corresponding
indices within the vectors of samplesV and . The f;’s are bilinear interpolation functions
given by

(ai +bix +ciy)

fity) = ">, =123, (2.55)

with coefficients [44]

1
A= > [X2Y3 — X3y2 + X3y1 — X1Y3 + X1Y2 — X2Y1|,

a1 =Xay3—Xay2, bi1=Y2—Yy3, Ci1=Xz—Xy,
(2.56)

a2 =X3zy1—X1y3, b2=Yy3—Yy1, C2=X1—X3,

az = X1y2 —X2¥1, b3 =Yy1—Y2, C3=X2—Xy,
where the x;’s and y;'s are the coordinates of the 3 vertices for triangle n and A is the
triangle area. Based on the piecewise-linear description of the potential and charge density

distributions specified by (2.53)—(2.56), approximations for mn1 and 3 can be written in

matrix form as

Tl =~ Vi(njl;g)knl\_/’i(n,ls) and 717n3%—S—OVi(n,l;g)QnPi(n,l:s)a (2.57)

NI =

where kn1, and Q,, are both 3 x 3 matrices. The elements of k1 are obtained from [44]

B ofidfj dfidfj
(Kn1)ij _/(WWjL&—ya—y) dxdy
An (2.58)

1
=1 (bibj —|—CiCj) ,
where A, the by’s, and the ¢;’s are defined by (2.56) for triangle n.
Now, finding an expression for the elements of the 3 x 3 loading matrix Q,, isabit more

involved. The following expression is consistent with w3 in (2.52), (2.54), and (2.57):

(Qn)ij 1 / (aj+bjx+cjy) (ai+bix+ciy) dxdy, (2.59)

T A2y,
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where the aj’s and b;’s are given by (2.56) for triangle n. Using Green’s theorem [47], we
can substitute this surface integral, performed over triangle n's area A,, with a counter-

clockwise contour integral over the triangle’s three edges.

1
(Qulij = 732 § FLly)dx+ Falx,y)dy (260
Cn
. 1
with  Fi(x,y) = —é/dy(aj—Fij—FCjY) (aj + bix+ciy) (2.61)
and Fx(x,y) :+%/dx(aj+bjx+cjy) (aj+ bix +cjy) . (2.62)

Now, the contour integral is based on 3 line integrals over the edges of trianglen. Thisre-

quires parameterizing F; and F, over each edge: { X } = { X0 } +s{ X1=Xp } where
y Yo Y1—Yo

the coordinates (xo,Yo) and (x1,y1) represent the coordinates of the starting and ending

vertices for each edge, respectively. Using this parametrization yields

1
(Qn)ij:im.z /(){Fl(S)%+F2(S)%}dS

3 X 1 2,63
=+ % {(XlXo)/Fl(S)d5+(y1yo)/OFz(S)dS (259

where the plus or minus sign is used depending upon whether the three edges are ordered in
counter-clockwise or clockwise order, respectively. Theindefinite integrals given by (2.61)
and (2.62), aswell as the definite integral givenin (2.63) can all be performed analytically.
Equation (C.1) in appendix C gives a detailed analytical expression for ((Qn)ij) . which
can be used directly to compute the elements of matrix Qy,, without resorting to numerical
integration.

The approximate expressions for the energies m,; and m,3 given by (2.57) can be com-

bined to form approximate expressions for the energy contributionsIT1 and I3 in (2.51):

l—' — l—r
M~-V' Ky V and T3~ ——VT B 2.64
1~ 1 3 & Q p, (2.64)
NxN N xN
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where N is the total number of samples (vertices) in the computational domain, and the
N x N matrices K; and Q are obtained by combining the contributions of the kn;’sand and
Qn’sgiven by (2.58) and (C.1). The “decay rates’ outer boundary condition, embedded in
I, and defined in (2.50), can how be added to (2.64) to obtain the complete approximation

for the functional IT:

1. o Lot o
I~ Meisorete = 5V ' K1 +Kp V —g—OvTQ B, (2.65)
M, +I1p

where the N x N matrix Ky is built by filling some of its entries with elements from the
Np x Np matrix K/, with N thetotal number of verticesand Ny, the number of outer boundary
vertices. Thisis done according to Ky (iy, ip) = K}, where iy, is an index vector listing the
indices of the vertices located on the outer boundary, sorted in a counter-clockwise order.
The stationary point of (2.65), corresponding to the minimum energy state of the sys-
tem and providing an approximation to Poisson’s equation in two dimensions, is obtained
by equating to zero the gradient of the approximate energy Igiscrete With respect to the un-
known potential samples. This process, similar to that which lead to (2.25), resultsin the

following linear system of equations:
— 1 N N
Ko aVu = 8—0Qa7:P —VoK g1, (2.66)

where 1 represents a vector with all elements equal to 1, and where we introduced the

following subsets of potential sampleindices:

e the subset k designates all sampleindices located on the conductor surface, for which

the value isknown (thisis the bias potential);

e the subset U designates all sample indices not located on the conductor surface, for

which the value is unknown;
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e the use of the colon “:” as a matrix index designates the complete set of potential

samples (same notation as in the Matlab™ scripting language).

We can then solve for the unknown potential samples, analogousto (2.26):

. 1 _ . _ .
Vo= L—O (Kaa) 1Qa7:} P —Vo(Kaa) Kyl (2.67)
JP/[\::XN ] Ve

where Ny is the number of unknown samples (i.e., the length of ), and Ve has N, d-
ements. Finally, we combine this resulting operator with the known potential samples to

form the complete 2-D Poisson solver as follows:

V =Jpp+VH, (2.68)
with
Jpa. =Jp, (2.69)
Irg. = [Olnexn s (2.70)
Ve =V and (2.72)
VS =Vol, (2.72)

where [O]kaN isan Nx x N zero matrix. (2.68) gives the fina compact form of our finite
element-based 2-D Poisson solver. Just like its 1-D counterpart, it is alinear operator and

only needs to be computed once upon generating a new triangular mesh.

2.4 Steady-State Vlasov Solver

We now derive the Vlasov solver, that is, a numerical approximation for the Vlasov
operator defined above by the functional fy. The Vlasov solver will provide the capability
to find anumerical approximation for the net charge density distribution satisfying Vlasov's

eguation and boundary conditions for the inbound particles.
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The Vlasov solver described here alows each species to express the full kinetic nature
of its 2-D velocity distribution. This feature alows for the realistic and accurate modeling
of non-thermal plasmas, that is, plasmas that are not at thermal equilibrium due to large
electric fields and high velocity flows. It accounts for the largest part of the computational
complexity of the technique presented in thiswork.

The approximate character of the Vlasov solver is due to the following:

o the finite discretization of the potential mesh: the potential distribution is approxi-
mated by a piecewise-bilinear representation, which limits the accuracy of the trajec-

tory tracking procedure (2-D implementation only);

¢ the finite precision of the quadrature technique employed to integrate over velocity

space (both 1-D and 2-D implementations).

The Vlasov functional fy, and therefore the Vlasov solver, are nonlinear operators. In
this section, we will derive, in addition to the Vlasov nonlinear operator itself, a technique
for the extraction of the linearized behavior of the Vlasov operator about a given “ operating
point” corresponding to apotential profile. The resulting linearized Vlasov operator will be
required in Section 2.5 when we formulate our regularized Newton iterative scheme for the
resolution of the nonlinear fixed point problem involving the Poisson—Vlasov functiona
fpy, defined in (2.12).

Following are two separate derivations: one for the 1-D cylindrical Vlasov solver, used

in KiPS-1D, and one for the full 2-D Vlasov solver, used in KiPS-2D.

2.4.1 1-D Cylindrical Implementation

Our 1-D formulation of the Vlasov solver is based on equations provided by San-

martin [11], and is equivalent to the procedure used by Laframboise [§].
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2.4.1.1 Approximating the Vlasov Functional fy in 1-D

The potentia profileis symmetric about the center of the round cylindrical probe. Since
the only force present is that due to the electrostatic field, we have a central force field.
Because there are no azimuthal forces, the angular momentum L = mrvg of any particle
is conserved along its trgjectory. In addition, the transverse energy of a particle, E =
Me i

=21 (v2,—Vv2), is conserved®:

Me,i

5 (V2 4+Vv3) +qV =E, (2.73)

whereV is the electric potential, and m and g are the mass and charge of the particle. In
this 1-D formulation, the cylindrical symmetry of the electric field and particle distribu-
tions only allows us to consider the “stationary plasma’ case. Both the ion and electron
populations are assumed to have Maxwellian velocity distributions far from the probe, as

[ —> ool

No Me.j E
fe,i o E,L)= ’ - 2.74
ilr = =Bl = g~ ). 274

where we use the invariants E and L as the independent variables for ssmplicity and to be
consistent with Sanmartin.® At any given location in space, the velocity distributionisequal
to that given by (2.74) for al energy and angular momentum values (E, L) corresponding
to atrgjectory that is connected to infinity, and is assumed unpopulated otherwise. Let us
define LZ(E) = 2meir?[E — ge,;V (r)] and recognize that L7(E) = L?+m3;r2vZ. We repeat

here, for completeness, the criteriagiven in [11] for atrajectory to be connected to infinity:

e 0owing to conservation of energy, only particles with atotal energy sufficient to over-

come any electric potential barriers, i.e., particles with an energy

E > Emin=max (0,max {qV (r'); r <r’ < eo}), (2.75)

Sv.. isthe particle’s velocity when it is far removed from the probe, i.e., asr — o,
8In this text, the variable L is used for angular momentum, whereas Sanmartin [11] uses the notation J.
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are connected to infinity;

e anincoming particle can only reach r if itsangular momentum L is sufficiently small
to alow v? to have stayed positive from r’ = o to r’ = r. This specifies an allowed

range that the angular momentum of an incoming particle can have at r:
O<L<L{(E)=min{Lp(E); r <r’ <eo}. (2.76)

Particles with alarger angular momentum L > L;(E) are thus “reflected” by what is

sometimes described as an effective potential barrier;

e for outgoing particles there is, in addition to an upper bound L; (E) on the angular
momentum, a lower bound Ly (E) = min{Ly(E);ro < r’ <e}. Particles having a

lower angular momentum are collected on the probe at r = rg and thus do not return.

Based on these bounds for the angular momentum, the velocity distribution is given by:

fei(r —oo,E,L) ifvy<OandO<L <L{(E)
fei (RLE,L)=q feji(r = o,E,L) ifvy>0andLy (E) <L <L{(E) (2.77)
0 otherwise.

The number density is then obtained by integrating the velocity distribution function over
velocity space, or alternatively, over the 2-D space defined by E and L. The change of

variables (vr,vg) — (E,L) impliesthe following Jacobian:

IEL  |ovg avg | MVLEE)-L2
JE  JL
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Using this Jacobian and accounting for both positive and negative values of the angular

momentum L, we obtain

Li(E) L= Lr* E)
Nei(r) = / dE ex = / /
o eTe. P e \/LZ Iz e \/LZ 2
i vr<0 Vr>0 |
E L Ly (E) L Ly (E)
dE ex sint ( ) +sin?t ( )
TceTe| / p( Te|> N LF(E) 0 Lr(E) Ll’fo(E)
Emin vrzO v:;O
E ., LxE) . L (E)]
dE ex 2sn 11—/ qpn 1o ,
TceTe| / p( Te,i> |: LF(E) Lr(E)
(2.79)

with Emin asdefined in (2.75), and L; (E ) asdefined in (2.76). Theintegral in (2.79) cannot,
in general, be performed analytically, because of the dependence of Ly (E) and Ly (E) on
part or al of the potential profile through (2.76). Thisistrue even in the case of the orbital
motion limit, aregime in which all trgjectories hitting the probe surface at r = rq are con-
nected to infinity, except for n(r =ro). Inthecaseof OML, L} (E) = Ly, (E) applies, so that
the bracketed expression in (2.79) goesto n/2, resulting in n(rp) = ng/2. However, even
in OML, Ly (E) < L(E) for some positions r, which means that, at several positions, es-
pecially further out from the probe, the integral cannot be performed analytically to obtain
the number density.

In generadl, it sufficesto integrate the exponentially-decaying integrand up to afinite en-
ergy value E = Krange€Te,i, With a sufficiently large value for xrange, to obtain an acceptable
accuracy on the integral. A value of Krange = 5 istypically chosen, corresponding to anin-
tegrand exp ( a .) ) = 0.0067, and yielding integration accuracies on the order of

E=5eTe;
1%. Our 1-D Vlasov solver computes an approximation for thisintegral to agiven relative
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accuracy & using a numerical integration technique. We have implemented an adaptive
scheme using the trapezoidal quadrature rule [48] to that effect, which is discussed in Ap-
pendix D. This adaptive quadrature scheme selects a set of abscissa Ey,k = 1,2, .., Ny,
where the integrand is evaluated, along with associated weights, resulting in the following

approximation for the density profile at locationsr =rj, j=1,2,...,N:

Ny Ly (Ex) Ly (E
No Ex ) .1 Tk LAY
e7|( J) ( e,l)J 7'L'ETe7| kgi k p< eTe7i [ LrJ(Ek) Lr](Ek)

with E1<BEsx<..<E(<..<En_1<En,

Ey = max (0, max {ge,Vy; j < j' <N}),

2Meir? [Ex — de,iVj]  Ek > Ge,iVj
Lr,-(Ek)I{\/ eil§ [Bk—GeiVi]  Ei> ey i and
0 Ek < Qe,iVj

Ly (B9 =min{Lr; j< i <N},
(2.80)

The complete 1-D Vlasov solver computes both density profiles ne(r) and ni(r) by
numerically evaluating (2.80) at a set of radial positionsin computational space within the
range ro < r < ry. It then combines both results to obtain the “output” net charge density

at all sampled locationsrj, j=1,2,...,N:

p(rj) = (Pout)j = Ge (Ne) j +Gi (Ni);, (2.81)

where ge and ¢; are the electron and ion charge, respectively. The term “output” is used

here to designate the output of the Vlasov solver.

2.4.1.2 Linearizing the 1-D Vlasov Solver

We now proceed to find expressions for the linearized behavior of the discrete Vlasov

operator specified by (2.81) and (2.80), with respect to the samples of the potential profile.

—

Let us define 8_\;; an N x N matrix, as the Jacobian of the Vlasov solver, i.e.,, a matrix

containing the linearized behavior of each net charge density sample as afunction of all the
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potential samples:

85) apj .
— | ==, j,k=12,...N. 2.82
(58 = 282
Based on (2.81) we can deffineg—rii and a—rie such that ‘9—’3 = qe&—rle +qia—rli asfollows:
d oV oV oV oV
— = , J,k=1,2,...,N, and 2.83
(% o (289)
am> (),
— = . J,k=1,2,...,N. 2.84
(% = (284)

Analytical expressions for the elements of thesetwo N x N matrices are fairly compli-
cated and therefore difficult to write in compact form. However, they can be written in a
fairly compact form as an algorithm used to fill the elements, which isdonein Algorithm 1,
consistent with (2.80). It should be noted that the E’s are samples of the independent vari-
able (the energy), and therefore have no dependence on the potential.

Finally, considering aVlasov “input” potential profile Vi, aVlasov “output” net charge

—

profile pout, and the Jacobian expression Jy = g—\’; the linearized behavior of the Vlasov

solver can be described as

o d

P Pout 55 (V=Vin) (2.85)
for any input potential profileV in the vicinity of Vi,. Thislinearized behavior will be used
in Section 2.5 for the implementation of the regularized Newton iterative scheme used for

the resolution of the nonlinear fixed point Poisson—Vlasov problem.

2.4.2 Full 2-D Implementation
2.4.2.1 Orbit Tracking and Analysis

The crucia difference between the 1-D Vlasov solver and its 2-D counterpart is that
the latter requires explicit tracking of particle tragjectories in order to sample the velocity
distribution function in 2-D velocity space. This requirement is born out of the fact that,

generally speaking, the 2-D potential profile is not rotationaly symmetric, i.e., there are
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Algorithm 1 Algorithm used to compute the elements of the density Jacobian 3_\? (2-D
cylindrical implementation)

N . ]
Initialize Jacobian: 3_\7 = [O]nxN
fork=1toN do

if k #k* and L} (Ex) > Othen

(7).~ o), memmee () gy
meTe eTe,i (Ex —aVk) v1—72u

(50) = (30),,. - o (- 5 )y
kk* K k* ”eTe,i eTe; (Ex—qVk) v/u(1—72u)’

*

— Vi
Ek — Vi

with y— andu—1+q
Mk

end if
if k # 1* and Ly, (Ex) > O then

()= (37)... - ammmen(am )y —~
- =| = + wiexp| — Y '
oV K1t oV K,1¢ ZﬂeTe i eTe,i (Ex — Vi) \/m
<9_Ef> :(3_§> B Qe,lo-wkexp(_ k.>y/ 1 |
8V k,1* aV k,1* 27teTe,| ETe7| (Ek . qVk) u (1 . ’J/IZUI)
- n Vi —Vy
withy' = L andu' =1+ 1
. 4 Ik qu—qVk
end if
end for

wherek*, ry and 1*, r] are such that:
L7, (Ex) = Ly (Ex) = Lr. (Ex) = minimum { Ly, (Ex) : k <K' <N}
L7, (Ex) = Ly; (Ex) = Ly, (Ex) = minimum {Ly,, (Ex) : 1<k <N}

azimuthal variations of the potential and net charge density distributions. Any particle

trajectory belongs to one of three states:

plasma-bounded trajectories are trajectories originating from the background plasma;

conductor-bounded trajectories are tragjectories originating from the surface of a con-

ductor, such as a probe;

trapped trajectories are trgectories of indefinite length, which typically orbit around the

probe.
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In our basic implementation, only plasma-bounded trajectories are populated. Conductor-
bounded trajectories are left empty, consistent with our assumption of non-emitting con-
ductors; accounting for thermionic emission would require populating those trajectories.
Trapped trajectories are deemed unpopulated because of the absence of collisions to scat-
ter bounded particles into trapped states.’

In the 1-D cylindrical case, conservation of angular momentum L allows for the direct
determination of the state of a particle strajectory based solely on its energy E and angular
momentum L, as described in Section 2.4.1. However, since the angular momentum L is not
conserved in the more general 2-D case, an “inside-out” [36] trajectory tracking procedure
isemployed in order to determine the origin of each trajectory and therefore its state.

Figure 2.1 illustrates the particle tracking process, which is similar to that used by
Xu [17]. The trgjectories are tracked analytically backward in time from one edge of the
mesh to another, assuming a constant electric field within any given triangle of the mesh;
this is consistent with the assumption of a piecewise-bilinear potential distribution. Every
sub-trgjectory is resolved by computing the intersection of a quadratic parametric curve
with a segment on the mesh.

Within a given triangle of the mesh, a particle’ strajectory is described by

1

X = Xj -+ Vixt + éaxt2 and (2.86)
1 5

y=Yi+Vil+ éayt ’ (2.87)

where (xi,yi) and (Vvix, Viy) aretheinitial position and velocity of the particle upon entering

the triangle, t < 0 is the negative time-of-flight® from the triangle entry, and the constant

"Under certain conditions, however, even very low collision rates can lead to substantial accumulation of
particles in trapped states [41].
8The time-of-flight is negative since we are tracking trajectories backward in time.
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Figure 2.1: Example of the semi-analytical particle tracking process through the potential
mesh on a grid with normalized coordinates. The normalized coordinates of the density
interrogation point for the case shown are (40.7,15.2).
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accelerationd = { } is obtained from the potential samplesat thetriangle sverticesusing
q
m

i=—E= VV
__9 [(V1b1 +Vabo +V3bz) X+ (V1€1 +VaC2 + Vac3) V] (2.88)
m 2A )

where V1, Vo, and V3 are the potential samples at the three vertices of the triangle under
consideration and the bj, ¢j, and A constants are given by (2.56) as afunction of the triangle
vertex coordinates. This trgjectory is intersected with each of the three segments, and
the intersection resulting in the shortest time-of-flight is selected as the origin of this sub-

trajectory. Each triangle’s segment can be represented in one of two forms:
Z2(x,y) =s(y—px—q) =0 (2.89)
for segments oriented within 45 degrees of the x axis, and
Z(x,y)=s(x—p'y—q) =0 (2.90)

for other segments. In both (2.89) and (2.90), s is chosen as either +1 or —1, such that
z(x,y) or Z(x,y) is made positive inside the triangle and negative outside. Inserting (2.86)

and (2.87) into either (2.89) or (2.90), we obtain

S
Z(t) = > (ay — pax)t2 +§(viy — pvixzt +s(yi—pxi—q) =0 (2.91)
ﬁ,_/ 2; 2
A
or
S
Z(t) = 2 (ax - p/ay) t?+s (le p V|y> t+s ( —plyi— q/>J =0, (2.92)
— Z 7

A

respectively. Only one of the two roots of z(t), which we define asz(t) = zat? + zgt +z¢ in
either cases, corresponds to an intersection where the particle isentering the triangle. This
“entering” intersection must sﬂlsfy > 0, sincez(t) < O outsidethetriangleand z(t) < 0

inside the triangle. The unique solution that is both a root of z(t) and satisfies % > 0 can
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Algorithm 2 Numerically stable evaluation of quadratic root
if 22 — 4zpzc < Othen
No real root: trajectory does not intersect segment
else if zg <0and zp > 0 then
No past “entering” root fort < 0
else if zg <0andzpa < 0then

~2g + /25 — dzp2c

t <«

. 22A
else if zg > 0 then
—27c

[

be written in two equivalent forms. For numerical stability [48], the roots are evaluated
according to Algorithm 2.
Although both expressions for t in Algorithm 2 are mathematically equivalent, either

one can become numerically unstable, and we must therefore choose the most stable ex-

: . . dz . : . .
pression on every evaluation. Our condition on i is easily verified for both expressions:
dz . . .

i 2Ipt + 25 = ,/z% —4zpzc > 0. The first expression is numerically unstable when

zg > 0, especially when zp is small, due to near cancellation of the two terms in the nu-
merator; a pathological example is that when z4 = 0, which leadsto t « ‘ZBT“B = 8, an
indeterminate state, while the second expression yields the correct result, t = —E—g. The
second expression is numerically unstable when zg < 0, especially when z¢ issmall, dueto

near cancellation of the two terms in the denominator; a pathological exampleisthat when

z. = 0, leading to the indeterminate state t < ZBEZB =3

This semi-analytical trgjectory-tracking technique is much more efficient than using
a fixed time step particle pusher, since the number of computations necessary for each
trajectory depends on the number of edges being crossed rather than the number of time
steps necessary to reach a boundary. Thisisa highly desirable feature, in light of the fact

that our typical applications (small probes at high voltage) require multi-scale resolution.

61



In addition, given the assumption of a piecewise-bilinear potential distribution, it provides
exact (nearly exact if we account for roundoff errors) conservation of energy along orbits,

which contributes to the accuracy of the overall approach.

2.4.2.1.1 A Note on Segment-bound Trajectories Under certain conditions of the ac-
celerating electric fields in the two triangles surrounding a given mesh segment, some tra-
jectories become bound to that segment, which can give rise to alarge number of intersec-
tionswith the segment dueto tiny oscillations of the trajectory from one side of the segment
to the other. Because this large number of intersections can significantly slow down com-
putations, this case is treated as an exception. When such infinitessmal oscillations are
detected, the oscillating portion of the trgjectory is resolved using only the tangential ve-
locity and accel eration along the segment. This process does not reduce the accuracy of the

trgjectory tracking in any way.
2.4.2.2 Sampling the Velocity Distribution Function

In collisionless plasmas, the velocity distribution function f(X,y,vy,Vy) is conserved
along particle orbits [25], which alows one to infer the value of f(xs,yr,Vxs,Vyt) @ a
final position (xt,y¢) and velocity (vxt,Vyt ), based onitsinitial value f(Xi, i, Vxi, vyi) at the
origin of the particle's trgjectory, at a position (x;,y;) and velocity (vyi, Vyi).

Using the semi-analytical trajectory-tracking procedure just described, we may deter-
mine the origin of a given particle trgectory, and thus sample the velocity distribution
function. Thisistypically referred to as the inside-out technique [36] in plasma modeling
and, more generally, as the method of characteristics [49] for solving partial differential
equations (here, the collisionless Vlasov equation).

For plasma-bounded trajectories, the reverse-time tracking procedure eventually gets

to the outer boundary of the computational domain (its origin), at a position (xj,y;) with
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an “initial” velocity (vyi,Vyi). The velocity distribution at the “final” position (x¢,ys) and
velocity (vxf,Vyf) can therefore be sampled based on the known velocity distribution on the
outer boundary. Thefact that the potential is floating on the outer boundary impliesthat the
velocity distribution function at that location, fi(vxi,Vyi) = (i, Vi, Vxi, Vyi), is different than
the velocity distribution function f..(Vxe., Vye) @t infinity. Since the electric fields are not
modeled from r = < to the outer boundary of the computational domain, an approximation
must be made to infer fj from f...

For this purpose, we use the ““straight-line approximation. This approximation con-
sists of assuming straight-line trgjectories from infinity to the outer boundary of the com-
putational domain. Particles in the drifting Maxwellian population at r = - are assumed
to be accelerated along straight lines in the direction pointed to by their initial velocity, all
the way to the point where they intersect the outer boundary of the computational domain.

Based on this assumption, a drifting Maxwellian at infinity, given by

NoMe,i Me i 2 .2
Fon (Voo Vyer) = 2 — e (g —U 2.93
(Ve V) = e, eXp{ 2eTe, () +V°°>}’ (2.93)

where U is the flow speed of the background plasma, would be mapped to the following

distribution on the outer boundary of the computational domain:

NoMe i Meg i Qe,i 2 2 2
fi (Xi,Yi, Vxi, Wi) = exps — 2—V, Vg + v +U
i (Xi, Vi, Vxi» Vyi) 26T, p{ 2eTe, < Me.i edge T Vii + Vyi +

V2 V2 4 2kl
2vaiJ MO e R (2.04)

Vg + V)%i
where Veqge IS the potential at the entry point on the outer boundary of the computational
domain. This method was used for the calculations performed by Godard and Lafram-
boise [30]. Its main advantage is that it provides a smooth transition to the stationary case
where U = 0, in which case we simply recover the exact accelerated Maxwellian distribu-

tion. The expression given by (2.94) is no longer an approximation when U = 0 because,
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in this case, the velocity distribution function samples do not depends on trajectories, they
simply depend on total energy, just like in the 1-D model.

The reverse-time tracking procedure eventually traces the origin of conductor-bounded
trajectories back to the surface of the probe or other conducting surfaces. Since the con-
ductors are not emitting particles, we assume that these tragjectories are unpopul ated and set
fe,i (Xt,Y,Vxf,Vys) = 0.

Trapped trajectories, defined earlier in this section, are deemed unpopulated just like
conductor-bounded trgjectories. Thus, the velocity distribution function sample for tra-
jectories identified as trapped is set to zero. The main difficulty with these trajectories,
however, resides in the determination of the trapped state. Since, by definition, trapped tra-
jectories orbit indefinitely, a set of criteria must be used to determine whether a trgjectory

being followed is actually trapped:

Maximum angular displacement The angular displacement of the particle is integrated
over time, i.e.,
tf
Our — / 'de—(t) ‘ dt. (2.95)
dt
t=tj
When this quantity goes beyond 2rMp, the trgjectory is deemed trapped. Typicaly,

Morp IS Set to 3, which, for a trgjectory orbiting in a constant orientation along 6,

corresponds to 3 full orbits about the origin.

Maximum number of radial oscillations Beyond a given number Mg Of significant os-
cillations of the particle' sradia coordinater, the trgjectory isassumed trapped. Typ-

ically, Myog 1S Set to 5. This parameter is discussed in more detail in Section 4.3.2.1.

Maximum number of intersections of any single edge When the trgjectory intersects a
given edge, within the mesh, more than a given number Msegeross Of times, the trajec-

tory is assumed trapped. Typically, Mgeycross iS Set to 100.
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2.4.2.3 \elocity Space Integration

Having defined a mechanism for sampling the velocity distribution function, we now
turn to the method used to compute the particle number density at any given point in com-

putational space. This requiresintegrating f(X,y, vx,Vvy) over al of velocity space.

2.4.2.3.1 Defining “Directional-Energy” Space For convenience, we map all of the

2-D velocity space onto directional-energy space, a 2-D space defined as follows:

Ev= oV (x,y) + ot (B +12), (2.96)

coso = fo’ (2.97)
\/VE+VZ

snog— —__ (2.99)

where the total (kinetic+potential) particle energy Ey is in units of electron-volts. Using
the (Ey, ) domain of integration instead of the velocity domain of integration, i.e. (v, vy),
simplifies the integration process and facilitates the graphical representation, in cylindri-
cal coordinates, of velocity distributions. In this new domain, the density integral (2.7)

becomes:
i (6Y) = [ [ geax,y.Ev,0) dEvder (299)
where ge i (X, Y, Ev, o) is the directional-energy distribution function defined as

e 2e 2e
ge,i(xvya EV7 OC) = Mo i fe7i (X7y7 \/m - (EV q:' ) COS( ) \/m (EV - qe IV) ( )) .
€l el e,

(2.100)

In this domain, the drifting Maxwellian velocity distribution becomes:

ge7i (X7y> EV7 a) = ge7i (Xiayia EV7 al)

No 1 2me iEy Me U2 (2.101)
= Ey—Uy/ " cosog + —
2T, exp{ e ( v— o COS0i+— ,
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where the index i refersto the entry (or “initial™) point of the particle at the outer boundary
of computational space, and the total energy E, is conserved all along the trajectory from
(Xi,Yi) to (x,y).

To limit the computational task, we restrict the domain of integration to a finite annular
region within directional-energy space, outside of which ge i (X, Y, Ey, &) isknown to be very

low:

2
- m -
Ev,min = mMax (%V (x,Y), < %U — KrangeTe7i> ) (2.102)

2

(2.103)

Ma
Evmax = <\/ ZZIU 4/ K'rangeTe,i>

Outside of those bounds for the energy Ey, the exponentia factor in (2.101) is guaran-
teed to be lower than exp{—xrange}. We typically choose krange = 5, corresponding to
exp{ —Krange} } range—5 — 0.0067. This means that we are neglecting the integrand wherever

its value goes below 0.67% of its maximum value (see discussion on page 54).

2.4.2.3.2 Numerical Integration in “Directional-Energy” Space Based on the new
directional-energy space defined above, we numerically integrate ge i (X, Y, Ev, o) within the

rectangular domain given by:

Evmin <Ev < Eymax (2.104)

0<a < 2r. (2.105)

Several numerical quadrature schemes were considered, such as an adaptive cubature of

triangular elements[50, 51]. Asit turns out, however, this technique, as well as other high-

order automatic quadrature routines available, are most suitable for smooth integrands.
Even though (2.101) does appear to be a smooth function, the directional-energy do-

main defined above is only partly covered with plasma-bounded trgjectories. Some sub-
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domains are populated with conductor-bounded and trapped trajectories, for which the dis-
tribution function gei(X,Y, Ey, o) is set to zero. This creates major discontinuities in the
integrand, which are best represented and integrated using simple first-order polynomials.
Consistent with those findings, a low-order numerical scheme was implemented using
a2-D iterated integral, based on a single-variable adaptive trapezoidal quadrature[48]. The

outer integral is performed along the direction o:

2r Ne
n(x,y) = / l1(x,y,0)do ~ 2 Wi, 11(X, Y, 0, ) = Nest(X,Y), (2.106)
o=0 ko=1

with the integrand I1(X,y, ox,) obtained by integrating along the energy Ey (inner inte-
grand),
Ev,max NE(kO()

/ ge7i (X7y7 EV7 aka) dEV ~ z Wka,kE ge7i (X7y7 Eka,kE ) aka) - Il(X7y7 aka)a (2107)
ke=1

Ev:Ev,min

where we have explicitly indicated the dependence of the inner quadrature coefficients
Wi, ke » the energy samples Ey, k. = Ey (Ko, ke ) and the number of energy samples Ne (Ky)
on the azimuthal sample number k.

For each one-dimensional quadrature, the domain of integration issub-divided into a set
number of sub-intervals, typically 25 along E, and 45 along «c. Theintegral over each sub-
interval is then initially performed using both 2-point and 3-point trapezoidal rules [48].
The difference between the 2-point and 3-point quadratures is used as an estimate of the
quadrature error. The sub-integrals are then refined by increasing the number of points
used with the trapezoidal rule, providing improved sub-integrals and error estimates. This
refinement is performed on the sub-integrals in decreasing order of quadrature error, until
the total estimated error dneg Over the collection of sub-intervals is small enough that
ONest < TraNest, Where dneg IS the estimated error on neg, and 7,4 IS a relative tolerance

on the integration error.
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L et us consider the outer quadrature given by (2.106). In addition to the error caused by
this quadrature approximation, there isasecond error term caused by theerror 611(x,y, ox,,)
ontheintegrand I1(X,Y, &, ), which stems from the error generated by the inner quadrature
givenby (2.107). However, if we assumethat theerrors §11(X, Y, ok, ), ke =1, ...,Ny arenot
correlated and use the same relative error 1,4 for the inner quadrature as we do for the outer
guadrature, then thetotal error term contributed by those integrand errors can be considered

small as compared to the quadrature error onest = TrgNest ON the outer quadrature:

Ng N
D Wi, S11(X,Y, 0%,) = D Wi, P, Trel1(X,Y; 0k, ) << TraiNest, (2.108)
ke=1 ko=1

where py, = £1 is arandom phase factor. Thisjustifies using the same relative tolerance
for both the inner and outer quadratures.

In addition to the use of arelative error tolerance, an absolute error tolerance is also
used, in order to prevent excessive refinements of the inner quadrature. For some values of
ke, theintegrand 11(x, Y, ok, ) can take on relatively small values, contributing very little to
Nes, and therefore need not be computed with an accuracy as good as that specified by the
relative tolerance. Let us assume that we can tolerate an additional error term to negt, 0N the
same order of magnitude as dnest = TrgNest, Which, if we spread it out over the integrand

11(x,y, o), determines an absol ute tolerance on the values computed for 11(x, Y, o, ):

TabsE = Tre';f. (2.109)

Since the value for Tase is required in advance, i.e., before having computed a value for
Nest, We USe our best available estimate for neg to compute Ta,s g, thet is, the value obtained
at the previous iteration of the iterative process (see Section 2.5). Finally, for the same
reasons mentioned earlier, the non-correlated addition of the error terms caused by the
use of this absolute error tolerance actually contributes much less than the outer-integral

guadrature error Snegt = TrgNegt. Therefore, for al practical purposes, we need not account
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for this error term within 6neg.

We hereby summarize the complete quadrature process:

e The inner quadrature dynamically selects, using adaptive trapezoidal rules on a set
of sub-intervals, the energy samples Ey, «., ke = 1,...,Ne(ky) and corresponding
weightswy, k. that are required in order to compute I1(X,Y, o, ) with arelative accu-

racy Tg such that

Nest,prev
2

5'1(X7y7 aka) < Trel Il(x7y7 aka) + Trel (2110)

With neg prev @0 estimate for the density based on the previousiiteration.

e The outer quadrature dynamically selects, using adaptive trapezoidal rules on a set of
sub-intervals, the direction samples o, ko = 1,...,Ny and corresponding weights
Wy, that are required in order to compute the estimate ne (X, y) for the density n(x, y)
with an accuracy

ONest < TrgNest- (2111)

e The net result of those two embedded quadratures is an approximate number density
N Ne (ka)
Ni=n(Xj,yj) = D Wi, D, Wigkeei(X,Ys By ke » Ok)s (2112
ko=1 ke=1
where wy, and oy, are selected by the «-quadrature, while wy,, . and Ey, . are
selected by the E-quadrature. Finally, both the electron and ion number density
estimates at al node locations are combined into the net charge density p through

the expression

P(Xj,¥j) = (Pout) j = e (Ne) j +di (M) .- (2113)
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2.4.2.4 Linearizing the 2-D Vlasov Solver

The linearization of the 2-D Vlasov operator issimilar to that of the 1-D Vlasov opera-

tor. It provides a Jacobian matrix Jy = % = 85 \;”t that describes the linear dependence

of the output charge distribution onto the potential distribution.

Appendix E detailsthe linearization process used for the 2-D Vlasov solver. It describes
two different techniques that are used aternatively for stationary and flowing problems,

respectively, along with sources of error in the calculation of the Jacobian.

2.5 Regularized Newton Iterative Poisson—Vlasov Scheme

Using the Poisson and Vlasov solvers, we now seek to find a solution for the poten-
tial and charge distributions that satisfies both the Poisson and Vlasov equations. We have
seen that thistask is equivalent to finding the fixed point of the Poisson—Vlasov functional
defined in (2.12) and illustrated in Figure 2.2. In Sections 2.3 and 2.4, we have defined
Poisson and Vlasov solvers that are numerical approximations of the Poisson (2.10) and
Vlasov (2.11) operators, respectively. In Table 2.2, we show the correspondence between
the functional and associated numerical solver for the Poisson, Vlasov, and Poisson-Vlasov
operators. As can be seen in that table, we distinguish the functionals from their corre-
sponding numerical solvers by putting an arrow on top of the symbols used for the opera-
tors, which were defined in Section 2.2. The newly defined functions fp, fy and fpy are
thus all multi-valued functions of multiple variables.

There are known difficulties arising in finding the fixed point of a multivalued, multi-
variate function [8]. Simple iteration of the fixed point operator does not in genera yield
convergence, since it is a non-contractive mapping [52]. Laframboise [8], Xu [17], and
McMahon [22] use a method consisting of mixing consecutive iterates using empirically-

determined mixing functions. Because of the breadth of regimes sought as part of this
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| Operator | Functional | Numerical Solver |

Poisson V(x,y) = fp{p(x,y} = fp {Pin}
Vlasov oY) = WYY} | Pou=F{V]
Poisson-Vlasov | pout(X,Y) = fev {pin(X,¥)} | Pout = fPV {Pin}

Table 2.2: Functional operators and corresponding numerical solvers. The Poisson-Vlasov
functional is defined as a composition of the Poisson and Vlasov functionals, so that

foy {} = fu { Fp{-}}.

research (low and high voltages, arbitrary geometries, plasma flow), we found that the it-
erate mixing method could not provide a repeatable and reliable automated technique for
finding accurate approximations to the fixed point of the Poisson-VIasov operator in area
sonable number of iterations. This is especially true when modeling two kinetic species

and in regimes comprising high voltages and various probe geometries.
2.5.1 Top-level Iterative Scheme

To address these difficulties, we have chosen to implement a procedure based on New-
ton’s method for nonlinear systems of equations [53]. This technique, which we desig-
nate as the Progressive Tikhonov-regularized Newton iterative Poisson-Vlasov procedure,
is depicted in Figure 2.3. It consists of progressively improving a solution vector iy, i.€.,

reducing the residua norm || Bin — Pout||, by successively linearizing the Poisson-Vlasov

Poisson-Vlasov Operator fp\/

Poisson | 77 | Vlasov |
7 solver 1 Solver |1 ¥
Pin T . ; ﬁout

Figure 2.2: Poisson-Vlasov operator comprised of both the Poisson and Vlasov solvers.
This operator is an approximation of the Poisson-Vlasov functional defined in (2.12).
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P01sson Vlasov Operator fp\/

0 +| Poisson | 1/ | Vlasov [:Pout
MRS »

Solver | Solver

P = Pout + Ipv (0 — pin)

fia+ B (Tov = D (7 — fio) |«

/ Tikhonov—Reg\;ularized Inversion

Step Size Control

Figure 2.3: Tikhonov-regularized Newton iterative Poisson-Vlasov procedure.

operator and finding a regularized solution for the resulting linearized system of equations.
This process relaxes the solution vector g, and has the global effect of reducing the Eu-
clidean distance between pi,, and pout- The iterative process continues until the solution can
no longer be improved with the specified quadrature accuracy used in the Vlasov solver.
In practice, a suitable quadrature accuracy is chosen that allows the iterates to reach area-
sonably low residual norm || Bin — Pout||.., ON the order of one percent of the background
plasma density.

Thisiterative procedure requiresthe N x N Jacobian matrix Jpy of the Poisson—Vlasov
operator, which is defined as

_ 9fpy
=32 (2.114)

ﬁzﬁin
and can be obtained, using the chain rule, as a combination of the Jacobian matrices of the
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Poisson and Vlasov operators, following

_3FVX3FP _ 9Pout OV 3]
VTN R LT oV apm TP (2.115)
P=Pin \Jz—/\‘]/
v p

where the Jacobian of the Poisson operator was simply recognized as the matrix in the
linear Poisson operator, as obtained for KiPS-1D in (2.27) and for KiPS-2D in (2.68). The
Jacobian of the Vlasov solver, Jy, was derived in Sections 2.4.1.2 and 2.4.2.4, where we
discussed the linearization of the Vlasov operator in the 1-D and 2-D solvers, respectively.

In its simplest form, the Newton method [53] attempts to use the linearized behavior
of a multivalued function of several variables to solve a nonlinear system of equations. In
the present case, we are looking for the fixed point of the Poisson-Vlasov operator or, put

differently, we are looking for the vectorial root of the vectorial equation

-

g(p)=fev(p)—p =0, (2.116)

which, upon approximating fpy by itsfirst-order Taylor expansion
fov () ~ Pout + Ipv (B — Bin) , (2.117)
yields alinear system of N equationsin N variables,

[Jpv — 1] (P — Pin) = Pin — Pout, (2.118)

where the unknown vector p — pi,, isan incremental improvement that will be added to the

present guess pi,, of the charge density distribution, and | isthe N x N identity matrix.

2.5.2 Conditioning and Quadrature Noise Issues

Oneisfirst tempted to simply invert the system matrix and compute the corrected charge
density distribution according to
Pin = Pin+ [Iev — 1] (Bin — Pout) (2.119)
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which can be performed using standard linear algebra a gorithms such asthe LU decompo-
sition [54]. Such an attempt, however, isin general met with wild, non-physical variations
in the charge density distribution g;, at some point during the iterative process, and a-
most never leads to a convergence of the result to a low ||pin — Pout|| €rror state. This
diverging behavior is generally due to the ill-conditioning of the system matrix [Jpy — ]
for some iterates, which can greatly amplify any quadrature noise present in the error vec-
tor (Bin — Pout)- The ill-conditioning of the system matrix can be due to a combination of

severa causes, some of which we identify here.

IlI-conditioning of the Vlasov operator, which can be due to the weak or inexistent de-
pendence of most particle trajectories upon some samples of the potential, at various
“operating points’ of the potential solution vector V (near or far from the physical

solution).

IlI-conditioning of the Poisson operator due to a high mesh density in some locations
that creates very similar dependences to some of the densely packed charge samples,

thereby causing highly similar linesin the Poisson matrix Jp, defined in Section 2.3.

Incomplete entries in the Vlasov Jacobian Jy due to the fact that some components of
the linearized dependence upon the potential samplesV could not be fully accounted
for by the approximate gradient calculation (this only applies to the 2-D version —

see Section 2.4.2.4).

Because of the ill-posedness of this problem, the standard Newton method turns out to
beimpractical for the resolution of thisnonlinear system of equations. In the following, we
will describe a diagonal scaling technique and a nonlinear regularization method to address

this conditioning issue.
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Even though our nonlinear system (2.116) does not contain any noisy data per se, the
right-hand side of the linearized system (2.118) is noisy due to the finite precision used in

calculating the output charge profile poyt = foy (Pin), Which we emphasize here:

[Jpv =11 (P — Pin) =Pin—  Pout (2.120)
N

m“- 0 Pout

where dpout is the quadrature noise term. Recall that the output charge profile poy is

computed based on subtracting the electron and ion charge profiles,
Pout = € (M —Tle) , (2.121)

which impliesthat any numerical quadrature error in the calculation of the density profiles
fij and fie can lead to alarge relative error “H%’z—fn”h” wherever the electron and ion densitiesare
very similar, leading to a subtraction of like terms. This situation arises close to the outer
boundary of the computational domain, whichistypically sized large enough to enclose all

of the significant charge imbalance, that is, al of the sheath and some of the pre-sheath.

2.5.3 Diagonal Preconditioning

One of the simplest measures that can be taken in order to mitigate the propagation of
the quadrature errors present on the RHS of (2.120) to theincremental solution p — g, isto
perform adiagonal preconditioning of thelinear system, in an effort to reduce the condition
number of the system matrix. Let usfirst re-cast the linearized system of interest (2.120)

into the following standard form:
AX =B =Db+ &b, (2.122)

where A = [Jpy — 1], b = Bin — Pout, X = (P — Pin) and the quadrature noise is given by
Sbh=-6 Pout- The vector X thus constitutes an increment to the present state of the charge

profile Bin. We chooseto use adiagonal right preconditioner [54] D, that must approximate
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A~ as best as possible without actually inverting A, in such a manner as to make the
product AD, closer to the identity matrix. Inserting D,[,Dg1 into (2.122), we write:
AD, (D, %) =b. (2.123)
——

~—~
A/ %!

To solve (2.122), we will therefore first solve A’X’ = b, and then compute X using X = DpX'.
For the class of problems at hand, it was found that setting the entries of the diagonal
matrix D, equal to the inverse of the norm of the corresponding column vectors of A

yielded the best results:

Dy {i =i Ooj=1am (2.124)

where || A. i||2 is the Euclidean norm of the i!" column of the system matrix A. Using this
preconditioner, the scaled solution vector X’ has its elements scaled proportional to the
level of dependence of the system matrix A on each element of X, thereby improving the
signal-to-noise ratio on the elements of X upon which the system is most dependent.

Even though preconditioning is essential and improves the condition of the linearized
system, it is simply not sufficient to fully prevent quadrature noise from entering the solu-
tion vector. The regularization process described below will complete the required set of

tools for an accurate resolution of the nonlinear systems at hand.
2.5.4 Tikhonov “Progressive” Regularization

In this section we will describe the complete regul arization procedure, which we repre-
sent as a“ Tikhonov-regularized inversion” in Figure 2.3.

The topic of regularization of linear systems of equations has attained a very good
maturity level [55-60] and is extensively used for inverse linear problems involving noisy
data in applications such as ionospheric characterizations [61]. A typical linear inverse

problem involving noisy datais of theform AX =y =Yg+ 8, where Yy contains some noisy
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data and X is a set of unknown parameters.
Nonlinear inversion has also seen significant progress [62—66]. It consists of looking

for asolution X to anonlinear system of equations of the form
F(X) =Y =Yo+5, (2.125)

where F isanonlinear multivalued function of several variables, y contains noisy data, and
X isthe set of unknown parameters.

Our problem of interest is different from nonlinear inversion in that we are not trying
to “invert” anonlinear function given a specified noisy data set. Instead, we are looking for
the fixed point of a nonlinear function fpy (), i.€., the root of the nonlinear function § (5)
as specified by (2.116). Thisis equivaent to solving a nonlinear system of the form given
by (2.125) withy = 0.

We therefore seek a method to limit the amount of quadrature noise entering the so-
[ution vector pi, at every iteration, while still alowing a significant improvement of the
solution. Instead of directly solving the preconditioned linear system of equations (2.123),
we seek a compromise between the reduction of the error | A’X’ — b|| and the amount of
noise “creeping into” the solution. A useful compromise is one that would prevent any
significant magnification of the noise present in b by the inversion of the ill-conditioned
system matrix A’, while still significantly reducing the error |A’X’ —b)|. This can be ac-
complished by solving only for the “modes’ in X’ upon which the preconditioned system
matrix A’ is most dependent, effectively filtering out the more independent, higher-order
“modes’ that are very sensitiveto any noisein b.

The “modes’ we refer to here correspond to the set of singular values of the precondi-

tioned system matrix A’. Using the singular value decomposition [54], the N x N matrix
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A can be factorized to the form:
A’ = U diag(3) VT, (2.126)

where diag(G) is a diagonal matrix whose diagonal is formed by the N elements of the
vector 6, which arethe singular values of A’ numbered in descending order, 61 > 02 > ... >
on > 0. U and V are both N x N unitary matrices. Recasting the system equation (2.123)

based on this transformation yields:

diag(3) VX' =U"Db (2.127)
or
diag(6)% = b, (2.128)
with
£=V'® and b=U"D (2.129)

The linearized system has been re-written in a vector space corresponding to the singular
values of the system matrix A, yielding a set of uncoupled linear relationships between the

corresponding components of X and b:

61)?1 = 51
62)?2 = 52
(2.130)
onfn = by.

In this transformed vector space, a direct inversion of the linearized system is performed
by simply solving each mode separately using
. b
Pi=—. 2.131
X o ( )
Now, an ill-conditioned matrix A has some extremely small singular values o; for large i,
potentialy resulting in extremely large amplitudes for some of the X;'s, along with signifi-

cant amplification of the noise present in the corresponding bi's.
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Setting an appropriate “low-pass’ filter to allow the lowest-order modes corresponding
to the largest singular values of ¢; while blocking the high-order modes corresponding to
the smallest singular values of o; would accomplish our goal of somewhat improving upon
the current guess pi, while limiting the amount of noise creeping into the solution. The
Tikhonov regularization [56, 58] implements such a continuous “low-pass’ filter. Instead
of directly solving for X using (2.131), the Tikhonov-regularized inversion is implemented

as
Oi

%i = ———bi,
' oA

(2.132)
effectively shutting down the high-order modes corresponding to small singular values for
which o; < A. A mathematically equivalent form of the Tikhonov regularization existsin

the non-transformed domain, as a replacement for the simpleinversion X’ = [A'] ~1b:
X = [ATA +121] " ATh. (2.133)

For our application, the Tikhonov-regularization parameter A istuned according to the
following criteria: the targeted error is to be equal to half of the present error, in order to
achieve some progress while limiting the amount of noise creeping into the solution. This
prudent requirement constitutes the basis of the proposed progressive Tikhonov regulariza-
tion. It has been shown in practice to prevent divergence due to the ill-conditioning of the
system matrix, while alowing for significant reduction of the present error || pin — Pout||»-

This criteria can be written as
Ib—A'%; [|2=0.5]b]2 (2.134)

or, using the original notation,
1(Bin — Pout) — [Ipv — 1 X3 [l = 0.5]|pin — Pout | - (2.135)

In these two expressions, X/’l and X;, both correspond to the result from (2.133) for a given
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value of the regularization parameter A, and are related through X; = DpX; . At each it-
eration, an optimal value for A must be determined that satisfies the equivalent expres-

sions (2.134) and (2.135). Thisisdonein one of two ways:

o If the dimension of the system matrix, N, is not too large (say N < 1000), A’ is
first factored into a set of singular values and corresponding unitary matrices U and
V, consistent with (2.126), using the singular value decomposition algorithm [54].
(2.134) isthen solved by numerically solving for A the equivalent expression

%LZB? S b2, (2.136)
i—1 (024 12) 43
using an appropriate numerical root-finding algorithm (we use the function fminnbd()

provided as part of the Matlab™ software package).

e If the dimension of the system matrix N is too large (N > 1000) for the singular
value decomposition to be performed quickly, then equations (2.134) and (2.133)
are used to numerically solve for A with reasonable accuracy. This method is more
computationally economical than the previous one since, by using the optimal value
of A obtained at the previous iteration, as few as 10 trials are typically necessary
to re-optimize for A. For large N, 10 linear system resolutions of an N x N system
as performed in (2.133) are done much faster than one singular value decomposi-
tion (e.g., for N = 1000, it takes about 65 times longer to perform a singular value

decomposition than to perform an LU decomposition.®)

This progressive regul arization strategy enables the iterative refinement procedure to safely
get through the highly singular iterates, that is, the iterates for which the system ma-

trix A = [Jpy — I] is quasi-singular, without diverging. The net effect of the progressive

9Based on abenchmark performed on a Linux-based Matlab ™ 6.0 engine.
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Tikhonov regularization is that the incremental correction of the solution vector dominates
over the addition of quadrature noise, resulting in a net improvement of the solution.

The combination of the diagonal preconditioner, described in Section 2.5.3 and the reg-
ularized inversion described in this section constitute the “ Tikhonov-regularized inversion”
and are represented using the symbol T in Figure 2.3. The complete Tikhonov-regularized

inversion referred to in Figure 2.3 can thus be written as

Apin =B (Jpv — |)T (Pin — Pout) = BDp (ADD)T ADp + 2?1 - (ADD)T (Pin — Pout)
(2.137)
where A = (Jpy — 1), A is determined according to (2.135), D, is the diagonal precon-
ditioner described in Section 2.5.3, and f3 is the step length determined by the step size

control procedure described in Section 2.5.6.

2.5.5 Discrepancy Principle as Stopping Criteria

As the agorithm approaches the solution, the error b= Pin — Pout goes down signifi-
cantly while the quadrature error b = — 8y 0n the RHS of (2.122) and (2.123) increases
due to the fact that the densities for both species have reached similar values close to the
outer computational boundary, that is, in the pre-sheath (see discussion in Section 2.5.2).

For a given quadrature accuracy, there is a point at which the magnitude of the quadra-
ture error will become comparable to that of the residual norm of the solution, i.e., ||b|2 ~
|8b|2. According to the discrepancy principle [57], [67, §26], [64], this corresponds to
the ideal level of regularization, an optimal compromise between the minimization of the
residua norm || Bin — Pout||2 @d the penetration of quadrature noise in the solution piy.

We therefore set as a stopping criteria that the iterations must stop when the ratio of

guadrature noise over residual norm goes beyond unity:

16bll2 __lI8Pautll, - 4 (2.139)

Stopping Criteria: = > 1.
bl [[Pin— Poutll,
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Continuing the iterations further would “oversolve” the problem (or under-regularize) and
stopping any earlier would “undersolve’ the problem (or over-regularize). Of course,
this stopping criteria is dependent upon computing a sufficiently accurate estimate of the
guadrature error as part of the quadrature algorithms for KiPS-1D and KiPS-2D, presented
in Sections 2.4.1.1 and 2.4.2.3 respectively.

The quadrature accuracy estimates used as part of thiswork are conservative, i.e., they
tend to overestimate the quadrature error, which means that most of the time we may be
somewhat “undersolving” (or over-regularizing) the solution. The only consequence of
this is that a better quadrature accuracy may be required in order to reduce the residual
norm to a given desired level as compared to the ideal situation where one has an infinitely
accurate evaluation of the quadrature error. We choose to stay on the “safe” side and risk
undersolving the problem rather than to risk | etting any quadrature noise degrade the quality

of the solution and possibly generate a nonphysical solution.

2.5.6 Dynamic Step Size Control

We hereby describe the step size control procedure represented by the constant 3 in
Figure 2.3. The standard Newton method simply uses B = 1. This is not suitable, in

genera, for our problems of interest, for several reasons.

e For some iterates, the local curvature of the “solution path” in N-dimensional space
is sufficiently pronounced that the local linearization of the Poisson-VIasov operator
fov, represented by the Jacobian Jpy, cannot be trusted to represent fpy for afull

unit step.

e Eventhough the analytical Poisson—Vlasov functional fpy (see Table 2.2) has afixed
point corresponding to the physical solution, its approximate numerical representa-

tion fpy may not actually have an exact fixed point due to the discrete representation
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of the numerical solver. Therefore, the Poisson-Vlasov operator fpy can be singu-
lar at the optimum solution point, i.e., the linearized system can be ill-conditioned
near the optimum solution. The optimal solution in this case corresponds to a least-

sguares solution.

e The Jacobian can in some cases be incomplete for some N-dimensional space direc-

tions, as mentioned in Section 2.5.2.

In order to ensure a fault-tolerant step size control algorithm (i.e., tolerant to an in-
complete Jacobian), we cannot use any implicit step size formula that would be based on
the Jacobian. In addition, we cannot afford to perform an explicit line search that would
involve evaluating the Poisson—Vlasov operator along the search direction. Instead, we
seek to control the progress of the iterations by enforcing a specified “angle” o, between

successive search directions, as defined by

- T -
1(ABin)ll ] | [/(ABin)i—1]|
(APin)i eeetion (i : (APin)k-1 :
where TR is the present search direction (iteration k) and T@al is the previous

iteration’s search direction (iteration k — 1).

The guarded tangent control algorithm that we present here seeks to control the step
size B in such a way as to stabilize the change in successive directions to a target value
o = of. Let usfirst define an a posteriori formulathat applies a correction to the present

step length B based on the present value of o and the target value o,

1 1+cos(ae)y }

. 2.140
2" 1l+coso ( )

g 2 <in
where we enforce a minimum step size compression of % to improve the stability of the
algorithm. This correction formula provides a smple correction based on two successive
search directions. However, using it directly may cause the step size to oscillate as a func-

tion of the iteration number k. For additional stability, controls are included that mix the
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Algorithm 3 Dynamic step size control
Initialize step size: set B = 1;
Initialize mixing factor: set yumix = 0.1;
Initialize iteration number: set k = O;
while Solution has not converged do
k<k+1,
Compute search direction;
if Not first iteration then
Compute angle (o), between (k — 1)1 and k™ search directions using (2.139);
Compute desired step size 3957 pased on present step size B and o using (2.140);
if (o), isbelow athreshold value o™ then
Mix the present step size with the desired step size using the mixing factor tmix:
B < B+ tmix (B4 — B)
Enforce maximum step size (a prudent value is Bmax = 1): B < min(Bmax, B);
if the step size has changed in the opposite direction from the previous iteration
then
Decrease the mixing factor (within bounds)
Umix <= max (0.01,0.5 tmix)
else
Increase the mixing factor (within bounds)
Umix <= mMin(1.0,1.1 tmix)
end if
else
Use the desired step size directly: set i = pesed;
Resume the previous solution vector : set (pin), = (Bin)k_1;
end if
end if
end while

previous step size f_1 with the “desired” step size B9, and dynamically adjust the
mixing factor in order to stabilize the step size. Thisis shown in Algorithm 3. Note that
the stabilizing effect comes from the contrast between the increasing (1.1) and decreasing
(0.5) multipliers used to modify the mixing factor tmix: the mixing factor drops sharply
to dampen any detected oscillations, and then slowly ramps up as long as no oscillations
are detected. In addition to attempting to maintain o, near atarget value o, the agorithm
featuresa“guard” value of"® that it isnot allowed to exceed. Whenever successive search
directions differ so much that o,{"® is exceeded, the previousincremental adjustment to the

solution vector giy, is canceled and the iterations resume starting with the previous guess for

84



Pin and an appropriately reduced step size. This adds some stability to the whole procedure
by guarding against excessive step sizes that would bring the solution vector too far off

from the linearized behavior of the Poisson-Vlasov operator.

2.5.7 Dynamic Adaptive Quadrature Tolerance

In Section 2.5.5, we have seen that the iterative process is allowed to continue as long
as the quadrature error is smaller than the residual norm (see (2.138)). On the other hand,
for the early iterates the residual normis so large that it would be acceptable to use alarger
guadrature tolerance for these iterates. Setting the quadrature tolerance in a dynamic fash-
ion at every iteration allows great savings on computing time. In order to include margin
with the stopping criteria, however, our dynamic adaptive quadrature tolerance strategy is

based on the requirement
1APout 2
||I_5in - I_jout||2
whichisequal to half of the level set for the stopping criteria defined in (2.138).

<0.5, (2.141)

Now, the output charge density profile is computed from poyt = € (i — M), Where e is
the magnitude of the electron and ion charge, and fij, i are the ion and electron number
density profiles. Thus, the error on the net output charge density profile relates to the

relative quadrature tolerance on densities 7, through
APout = € Tt (Ti+Tle). (2.142)
Combining the requirement given by (2.141) with (2.142), the rel ative quadrature tol erance

Trg fOr agiven iteration can be set based on the previousiteration’s residual norm using

goa 1— ||ﬁin—ﬁout||2

— . 2.143
o = 2 (Mt i), (2143)

Now, in order to prevent oscillations of the tolerance from one iterate to another, we in-

troduce asymmetric mixing factors that favor a reduction rather than an increase of the
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tolerance. The actual tolerance is computed based on the present tolerance and the “goal”

tolerance given by (2.143) following Algorithm 4.

Algorithm 4 Relaxation of relative quadrature tolerance

if 197 < 7,4 then
Tre < T?e?al

else
Tre < Trg +0.1 (rf’;al — rrd>

end if

2.6 Dynamic Adaptive Mesh Refinement

For both the 1-D and 2-D implementations, a dynamic adaptive grid refinement strategy
is necessary in order to efficiently resolve not only the geometrical features of the conduc-
tive structure (in the 2-D case), but also the natural features of the density and net charge
density profile. For example, in the case of high-voltage probes a sharply-defined ring
formsin the net charge density profile, as aresult of the combinations of the density drops
of both the electron and ion species. The location of this sharp peak is not known a priori,
which is why mesh refinements are necessary to accurately resolve thisimportant feature.

The general mesh refinement strategy used in both KiPS-1D and KiPS-2D is shown in
Algorithm 5. The mesh is refined a set number of times, typically anywhere from 3 to 5
times, which we have found sufficient to capture all of the important features of the plasma
for the cases of interest, based on observing the convergence of the plasma profiles.

In the following we describe the particular details of the mesh refinement strategies

pertaining to both the 1-D and 2-D implementations of KiPS.
2.6.1 KIiPS Cylindrical 1-D Implementation

The grid used in the 1-D implementation is fairly simple. We start with an initial set of

samples spaced logarithmically along the radia direction between the round cylinder and
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an outer boundary located at a specified radius Rmax, which istypically set to be about three
times the expected sheath size. This has been found to be more than sufficient to capture all
of the important features of the density profiles that cannot be accurately accounted for by
the floating outer boundary condition used for the Poisson solver and specified in (2.14)—
(2.15).

The grid refinement is implemented as follows using Matlab™. For a given absolute
tolerance Tmesh abs SPECifying the acceptable errors on the electron, ion, and net charge
density profiles, we first compute the desired local grid spacings hgoa (ri) based on their

local second derivatives,

Tmesh,abs (2.144)
1 dn; 1 d% ’
r=rj

"no drZ eng dr2
for al radial samplesr = r;, with the second derivatives approximated using finite differ-

)
r=rj

hgoal (i) = 1 dn
e

r=rj

ences. This relationship is based on assuming a piecewise linear variation for all three
d?n
W r=rj

The dynamic grid refinement simply consists of sub-dividing the intervalsfor which the

quantities, which is consistent with alocal error given by én(r;) ~ h(r;)

the desired local grid spacing is smaller than the present local grid spacing, i.e., for which

hgoal (1) < h(ri). Those said intervals are divided into a number of sub-intervals given by

o =81 (251

Algorithm 5 General mesh refinement strategy

Generate initial mesh from given geometry.

Initialize the solution vector with some “guessed” charge distribution (typicaly we as-

sume zero net charge everywhere, i.e., no disturbance of the plasma);

for a pre-determined number of refinement steps N, do
—Refine the present mesh based on the present best estimate of the solution and agiven
set of criteria pertaining to the electron density distribution, ion density distribution,
net charge distribution, and potential distribution;
—Improve the solution using the regularized Newton iterative Poisson—Vlasov scheme
until convergence;

end for
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In the 1-D implementation, the grid intervals are aways refined, never coarsened. A
more efficient mesh refinement procedure would both refine and coarsen as needed. Chap-
ter 4 shows some KiPS-1D simulation resultsthat illustrate the result of the grid refinement

described here.
2.6.2 KIiPS 2-D Implementation

The 2-D implementation was designed to allow the analysis of any 2-D geometry im-
mersed in a flowing plasma. As mentioned in Section 2.3.2.2, the 2-D implementation
of the finite-element formulation is performed over a set of triangular elements filling the

complete 2-D domain occupied by the plasma.

2.6.2.1 Meshing Software

In order to generate the meshes for arbitrarily-defined geometries, we use an unstruc-
tured mesh generator, a freely available copyrighted software called the Bidimensional
Anisotropic Mesh Generator (BAMG) developed at the INRIA (France). The BAMG man-
ual [68] describes the software in detail, and related publications [69, 70] provide its theo-
retical basis.

The mesh generation and refinement process is performed based on a file-based inter-
face. KiPS-2D generates the initial geometry input file required by BAMG, and calls to

BAMG are made to both generate the initial mesh and perform mesh refinements.

2.6.2.2 Mesh Symmetry Axes

KiPS-2D implements 2 optional symmetry axes that can be used wherever applicable.
Horizontal (y = 0) and vertical (x = 0) symmetry axes can be defined that apply to both
the electrostatic fields (Poisson solver) and kinetic plasma flow (Vlasov solver). These

allow for major savings in terms of computational effort and memory requirements. The
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following are the typical cases where savings can be made based on using symmetry axes:

1. Inastationary plasma, for any structure that has 2 symmetry axes (x = 0and y = 0),
we generate a “single quadrant” mesh and perform the kinetic simulation in this
guadrant only. This results in a reduction of the Vlasov computational effort by a
factor 4, and a reduction of the Poisson computational effort by a factor 424 ~ 39,
an estimate based on the measured computational work for the LU decomposition,
which scales as N2%4. The Poisson savings becomes significant when the number of

samples N ison the order of 2000 and beyond;

2. In aflowing plasma with an x-directed flow, for any structure having at least a hor-
izontal symmetry axis, we generate a “two-quadrant” mesh and perform the kinetic
simulation in those two quadrants. In this case, we must simulate two quadrants even
with structures having two symmetry axes, because of the asymmetry introduced by

the horizontal flow.

A minor modification was made to the metric construction routine within the BAMG
software to alow for the correct mesh refinement near the computational zones bounded
by one of the symmetry axes. Whereas the original version of the code assumes vanishing
second derivatives on all boundaries for the quantity being refined, with our modification
it accounts for non-zero second derivatives consistent with a “mirroring” of the quantity

being refined at the boundary.

2.6.2.3 Mesh Refinement: Strategy & Metrics

Mesh refinement isdriven by the state of the best-available consistent simulation results
at any of the refinement stages as shown in Algorithm 5. The mesh refinement is performed
based on the criteria of the equidistribution of error [68] for several quantities of interest

(single-species number density, charge density, and potential distributions). Several metrics
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are used in conjunction to determine the best set of anisometric trianglesthat should be used
based on the best-known consistent plasma solution. Using several callsto BAMG’smetric
construction routine, a single anisometric metric is generated that seeks to satisfy all of the

following set criteria:

¢ the absolute error on the electric potential distribution V (r,6) must be no larger
than min { (AV )z > Tmeshv X [Max{V (r,0)} —min{V(r,0)}] }, where (AV),, and

Tmeshy are absolute and relative tolerances, respectively;

e the absolute error on the net charge density distribution p(r,6) must be no higher

than a set fraction Tmesn p Of the full range of the charge density distribution Ap =

max{p(r,0)} —min{p(r,0)},i.e, 6p < Tmesh pAp;

e the absolute error on each single-species number density distribution ne(r,6) and
ni(r,0) must be no higher than a set fraction Tmesnn Of the full range of each of the
number density distributions Anej = max {nei(r,8)} —min{ne;i(r,0)}, i.e,, Sne; <

Tmesh,nANg j.-

The resulting metric satisfying all these criteria specifies the desired 2-D dimensions and
orientations of the triangle elements. The metric is then fed into the mesh refinement
routine from BAMG to construct a refined mesh. Typical values used for the tolerances

defined above are as follows:

Tolerance Parameter | Typica Value
(AV) max 2.0

Tmesh.V 0.025—-0.05

Tmesh,p 0.025—-0.05

Tmesh,n 0.025—-0.05

These values were chosen based on a reasonable compromise between the accuracy of the
results and the required computational effort. Since these specified tolerances apply to nor-

malized quantities (as opposed to physical ones), they are not application-dependent. It is
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generaly recognized in the finite-element community that using several different redun-
dant tolerance criteria based on the physical quantities of interest, as we have done here,

improves the accuracy of the macroscopic results.

2.6.2.4 Examples of Mesh Geometries Under Consideration

The 2-D implementation of our solver generally supports any 2-D conductor geome-
try. Three basic geometries have been tested as part of this thesis and are described in
this section. Support for additional geometries can be implemented through the addition
of afairly smple geometry-construction routine along with an associated routine for the
interpretation of collected currents.

The three geometries shown here all use two symmetry axes, such that their meshes
were computed for a single quadrant and then replicated in the 3 other quadrants. In addi-
tion, since all three of these cases correspond to stationary situations, the symmetry of the
plasmaand electric fieldsis conserved; therefore, the actual simulationswere al performed
within asingle quadrant only. However, four-quadrant meshes are shown to illustrate more
clearly the actual geometries under consideration. Note that an independent mesh refine-

ment for all four quadrantsis also possible for cases not featuring either symmetry axes.

2.6.2.4.1 Single Round Cylinder The simplest geometry of interest isthe single round
cylinder, which is a case that can be compared directly against the KiPS-1D simulation
results (see Chapter 4 for detailed comparisons). Figure 2.4 shows the evolution of the
mesh structure from the initial mesh to the fourth refinement step for a typical single one-
Debye-length-radius round cylinder simulation. It is seen that the fourth and fifth mesh
are quite similar, which is an indication that a sufficient number of refinements have been
performed. It is seen that a strong mesh density is required near the sheath edge (whichis

well within the computational domain) to satisfy all of the metric requirements outlined in
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Figure 2.4: Initial mesh shown together with a set of four refined meshes obtained for a
single one-Debye-length-radius round cylinder biased negatively at a voltage of —640T,
and immersed in a stationary plasma. Two symmetry axes were used in this simulation.
Scales represent the x and y coordinates in units of the Debye length.

Section 2.6.2.3.

2.6.2.4.2 Tape Cylinder InFigure 2.5 we show a sequence of five meshes obtained for
the simulation of athin tape cylinder of dimensions 20.4Ape x 0.7Ape, biased at a positive
potential of 180T.. Again, we observe a convergence of the mesh structure, which empha
sizes the concentration of charge on the circular sheath edge that is well contained within
the ssimulation domain. Note that the tape geometry of the cylinder is filtered out by the
Laplacian fields within the sheath. This occurs with sufficiently large biases for which the

space charge in the vicinity of the tape is negligible as compared to the amount of surface
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Figure 2.5: Initial mesh shown together with a set of four refined meshes obtained for a
tape cylinder with awidth of 20.4Ap¢ and a thickness of 0.7Ape. The tape was biased at a
positive voltage of 180T, and immersed in a stationary plasma. Two symmetry axes were
used in this simulation. Scales represent the x and y coordinates in units of the Debye
length.

charge on the conducting tape itself.

2.6.2.4.3 Two Round Cylinders In Figure 2.6 we show a sequence of five meshes per-
taining to the 2-wire configuration. Two parallel one-Debye-length-radius round cylinders
are spaced 10Ape apart (center-to-center distance) and are both biased at a negative voltage
of —320T,. Here again, mesh convergence is observed after the fifth refinement step. De-
spite the asymmetric geometry of the structure, a circular charge-rich sheath structure still

formson acircle of radius ~ 30Ape and is resolved by the mesh refinement procedure.
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Figure 2.6: Initial mesh shown together with a set of four refined meshes obtained for 2
paralel one-Debye-length-radius cylinders with a center-to-center spacing of 10Ape. Both
cylinderswere biased at a negative voltage of —320T, and immersed in a stationary plasma.
Two symmetry axes were used in this simulation. Scales represent the x and y coordinates
in units of the Debye length.

2.7 Computer Implementation

In the following we explain the general approach used for implementing the algorithms

described in this chapter, for both the cylindrical 1-D and full 2-D cases.

2.7.1 General Philosophy

Our general scientific programming philosophy isto use a high-level scripting language

wherever possible (Matlab™ scripts were implemented for that purpose, which could be
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easily ported to functionally similar platforms such as Scilab or Octave), because it speeds
up development time and isless error prone. Where necessary, specific routines can then be
optimized through a different implementation using alower-level language such as Fortran
90, avery standard platform in the scientific computing community. Appropriate interfaces
must then be used to dynamically link the Fortran 90 routines with Matlab™ at run time
when called from high-level Matlab™ scripts. Building Matlab™ EXecutable (MEX)

files using Fortran routines allows such interfacing.

2.7.2 Optimizing & Parallelizing the Vlasov Solver

At the early stages of development, it soon became apparent that the Vlasov solvers
(both 1-D and 2-D versions) were so computationally demanding that they required opti-
mization for any practical use.

The numerous numerical integrations performed in the 1-D Vlasov solver can actu-
aly be performed from within Matlab™, but it is much more efficient to implement the
numerical quadrature in Fortran 90.

In the case of the 2-D Vlasov solver, the computational requirements are much more

severe for the following three reasons in decreasing order of importance:

1. inKiPS-2D, each sample of the velocity distribution function that is being integrated
as part of the quadrature integration invol vestracking a particle trgjectory through the

potential structure, whereas in the case of KiPS-1D no particle tracking is required,

2. in KiPS-2D, the numerical quadrature integrations need to be performed in 2-D
velocity space, whereas in KiPS-1D one of the integrals is performed analytically,

which means that only a single-variable quadrature is required;

3. inKiPS-2D, the number of density samples that need to be computed, using numeri-

cal quadrature, is an order of magnitude larger than that which isrequired in the 1-D
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implementation (~ N2 as compared to N).

For these reasons, implementing a VVlasov solver that would be both efficient and accurate
mandated the use of parallel computing resources. To accomplish this, the 2-D version of
the Vlasov solver was thus implemented in Fortran 90 using an MPM D10 parallel process-
ing scheme based on the Parallel Virtual Machine library [32]. Since the Vlasov solver
consists of computing a fixed number (say M) of plasma density samples throughout the
computational domain based on a given potential profile, it can be divided easily into M
independent sub-tasks. These sub-tasks can be distributed to the slave nodes on a parallel

platform in what constitutes a coarse-grained parallel algorithm.
2.7.3 Present Parallel Computing Platform
The primary computing platform that we have used for this purpose consists of:

e A Linux-based master node, ! running the top-level Matlab™ scripts, the Matlab™.-
based Poisson solver, and the top-level part of the Fortran 90-based Vlasov solver that

distributes sub-tasks to slave nodes.

e A dynamically-configured pool of about 150 Sun Blade 1000/1500 workstations,
each running a Fortran 90-based slave node and forming part of the Vlasov solver. A
total of 250 workstations are being used on an opportunistic basis, being swapped in

and out of the 150-workstation slave node pool according to their availability.12

2.7.4 Alternative Parallel Computing Platforms

Other parallel computing platforms were used as part of this project:

OMultiple Program, Multiple Data.

1Dual-CPU Intel-based system running at a clock speed of 2.4 GHz with 4 GB of random-access memory.

12 workstation is removed from the slave node pool when a console user logsin, and only moved back in
when no console users are logged in.
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e An opportunistic pool of around 10 to 20 Linux workstations (based on 3.0-GHz
CPU’s) was used. Although the computing power of these nodes surpassed that of
the Sun Blade workstations, the number of Linux nodes accessible on campus could

not rival the shear number of existing Sun workstations;

e Dedicated Linux clusters, such as those operated by the University of Michigan's
Computer Aided Engineering Network (CAEN) as part of the National Partnership
for Advanced Computer Infrastructure (NPACI), were used and shown to provide
very efficient computing power due to a better interconnection speed between the
slave and master nodes. However, the number of nodes and level of availability of
these queue-managed systems could not compare to that provided by the opportunis-
tic pooling of workstations for purposes of developing the code. Future production
runs requiring less user interaction and changes may be more suited for this kind of

platform.

Ultimately, the ideal computing platform is a dedicated Linux cluster comprised of
about 20 dual-CPU nodes. This would provide simulation times on par with our present
pool of 150 Sun workstationswith amuch higher degree of availability than pooled parallel

computing resources.
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CHAPTER 3

Experimental Investigation of Electron-Collecting Tether
Samples in a Mesosonic Xenon Plasma

3.1 Background

In this chapter, we present the results of an experimental investigation of the electron
current collection to tether samples of various cross-section geometries. round cylinder,
solid tape and dlotted tape. These results were submitted for publication [71]. A compar-
ison of some of these results with kinetic simulation results obtained using KiPS-2D are
performed in Chapter 4 as part of the kinetic model validation.

The orbital-motion limit will be used as a baseline to compare the current collection
results for the various sample geometries and sizes. Recall that the OML electron current

collected by athin cylinder is given by (1.8), which we re-write here for clarity:

I=A — |erf 3.1
L {\/, +exp( . )efely—=) 3.1
—————

kthe

with erfe(x) = 2= [Zetdt. (3.1) isapproximated, for Vo —V, > 2T, by
v Jx p
eTe 2 Vo—V
| :ApneE\/znr:]e ﬁ 1+ OTe p, (32)
N————

lthe

whereVq isthe applied voltage, V|, isthe plasma potential, Te is the electron temperaturein

eV, Ap isthecylinder area, and ke isthe electron thermal current given as afunction of the

98



electron number density ne (in m—3), electron mass me, and electron charge magnitudee. In
an effort to facilitate comparisons with OML theory, results are presented in a normalized
format, showing the normalized current I, = I /Iy as afunction of the normalized voltage

¢o = (Vo —Vp) /Te, which in the case of OML yields the simple equation:

I = %\/%+exp(¢o)erfc(\/%> ~ %\/1+ o . (3.3)

For large voltages, (3.3) isindependent of the temperature Te, since both the right-hand side
and |eft-hand side are then proportional to 1/+/Te. This normalization allows us to directly
compare the OML theory, which only applies to thin cylindersin stationary plasmas, with
our experimental results involving a flowing plasma and various tether geometries.

In a previous investigation [72], it was concluded that tape tethers with widths up to
10 Debye lengths would perform close to an equal-area reference cylinder and that the
perpendicular tape orientation, with respect to plasma flow, would consistently outperform
the parallel orientation in terms of collected current.

In this chapter, we describe the results of a new set of chamber tests that were in-
tended to address questions of end effects and plasma source current limitations discussed
by Gilchrist et al [72], in addition to testing a larger breadth of “solid tape” widths and
a new “dotted tape” geometry with various porosities. The issue of end effects was ad-
dressed by adding guards to the tether samples, which are described below. The question
of possible plasma source current limitations, raised by Gilchrist et al [72], was resolved

by modifying the plasma source parameters, as discussed in Section 3.3.

3.2 Design and Assembly of Solid and Slotted Tape Tether
Guarded Samples

The tether samples tested here, in addition to a thin cylindrical reference sample, in-

cluded solid tape samplesin three different widths, and slotted samples of equivalent widths
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Detail A

Sample | Description Width | Feature Description
(mm)
A 4lines, 3 dots, 28% porosity | 1.95 | Slot gap: 0.20 mm
Line width: 0.34 mm
B 4 lines, 3 dots, 50% porosity | 2.89 | Slot gap: 0.51 mm
Line width: 0.34 mm
C 4lines, 3 dots, 75% porosity | 5.95 | Slot gap: 1.53 mm
Line width: 0.34 mm

G Narrow Solid Tape 195 | N/A
H Medium Solid Tape 289 | N/A
I Wide Solid Tape 595 | N/A

Figure 3.1: Drawing and description of the six guarded tether samples shown before as-
sembly. The lengths indicated in the drawing are in mm (30-mm probe, 60-mm guards)

and corresponding to three different porosity levels. The details of these designs, as well
as adrawing of the samples and their characteristic sizes, are shown in Figure 3.1. Each of
the 6 solid and slotted tapes were tested in two different orientations, parallel and perpen-
dicular to the plasmaflow, and, along with the reference sample, at three different distances
from the plasma source. Tungsten metal was used for all samplesto ensure that they would
endure the expected high temperatures that are caused by the collection of high-energy
electrons to the samples’ surfaces. Nonetheless, a low duty cycle pulsing of the applied
voltages was necessary to alow the samplesto cool off, thus preventing melting; details of
this procedure are reported by Gilchrist et al [72].

The effective diameter of the reference cylinder and effective widths of the three tape

samples, for the plasma densities tested here, are given in Table 3.1 in terms of the Lang-
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Ref. Solid Tape

Pos. Cyl. | Narrow | Medium | Wide
75cm 2.0 13.7 20.4 41.9
160cm || 1.1 7.4 11.0 22.6
300cm || 0.7 4.9 7.2 14.9

Table 3.1: Effective diameter of the reference cylinder and effective widths of the three
solid tapes at al three locations, in terms of the local Debye length.

muir probe-measured local Debye length for the three chamber positions that were used
in these tests. The reference cylinder’s diameter, spanning from 0.7 to 2.0 Debye lengths
depending on position, is sufficiently thin to collect el ectron current under conditions close
to that of the OML regime in a stationary plasma. The effective solid tape widths spanned
from 4.9 to 41.9 Debye lengths, which extends the previous range of tested widths[72].

As for the three dotted samples, they were designed with the same overall widths as
their solid counterparts; this strategy allowed usto compare solid and porous samples span-
ning equivalent widths. In addition, the design is such that each of the four lines on every
slotted sample has the same perimeter as the reference cylinder, allowing one to consider
the effects and measure the extent of sheath interactions. The effective center-to-center
spacings of the slotted samples are givenin Table 3.2.

Since our primary interest is very long electrodynamic tethers, a technique was sought
to mitigate any probe end effects. For thispurpose, guardswere includedin all of our tether
sample assemblies. Each guard is essentially identical to the center section and is biased at

the same potential. The guards, which are each 6 cm in length while the center probe itself

Slotted Tapes by Porosity
Position || 28% | 50% | 75%

75 cm 3.8 6.0 13.2
160 cm 2.1 3.2 7.1
300 cm 14 2.1 4.7

Table 3.2: Effective center-to-center line spacing as a function of sample porosity at all
three locations, in terms of the local Debye length.
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Figure 3.2: Assemblies of the reference cylinder (a) and tape (b) guarded tether samples.

is3 cm long, are shown in Figures 3.1 and 3.2 together with the probes. The effect of the
guardsisto extend the cylindrical sheath to the full length of the sample, that is, five times
the length of the center probe on which current is measured.

Schematics of the full assemblies of the guarded tether sasmplesare shownin Figure 3.2.
Dueto the very small thickness of the tungsten samples under consideration here (0.1-mm
thick), it was not physically possible to feed the center probe using a feeding wire that
would have been inserted in one of the guards, as is typically done on some larger tri-
axial Langmuir probes. Instead, the center feed wire runs through an oblique ceramic tube
and connects to the center probe at one of its ends. On al samples, the feed wires to
both the guards and the probe were both soldered to the center conductor of a bulk-head

SHV (safe high voltage) connector; the connector-sample interfaces were then covered
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Figure 3.3: Example of the ceramic attachment used on all solid and slotted tape samples
to attach the probe and guards while preserving electrical isolation.

with vacuum epoxy. The aluminum support structure for the SHV connectors provided a
localized ground.

The probe and guards also had to be physically attached but electrically insulated from
each other. Ceramic joints were used to this effect, an example of which is shown in Fig-
ure 3.3, and were attached to the tungsten probes and guards using stainless-steel machine
screws that were then carefully sanded down into a flat surface, in order to best emulate
the surface of the sample. The portion of the surface area of the ceramic joint covering the
tungsten probe and not covered by the screw head was accounted for in the calculation of
the total area of each probe.

Figure 3.4 shows pictures of three of our tether sample assemblies. the reference cylin-
der, the wide solid tape, and the 75%-porous wide slotted tape. The solid and slotted sam-
ples are shown with both SHV connectorsinstalled, while the reference cylinder sampleis

shown prior to the installation of the connectors.
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Figure 3.4: Pictures of three typical tether samples: (a) the 0.28 mm-diameter reference
cylinder, (b) the 5.95-mm wide solid tape, and (c) the 75%-porous wide slotted tape.
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3.3 Vacuum Chamber Setup and Plasma Source Charac-
teristics

The vacuum chamber testswere performed in the Large Vacuum Test Facility (LVTF), a
9-meter by 6-meter cylindrical stainless-steel-clad tank located within the Plasmadynamics
and Electric Propulsion Laboratory at the University of Michigan. For this experiment,
four of the seven available nude cryopumps were used to reach a high vacuum.

Figure 3.5 showsadiagram of the experimental setup withinthe LV TF. Two positioning
tables were used to change the separation distance between the thruster and sample plane
and to locate the sample under test directly along the thruster’s centerline. The thruster was
mounted on an x-y table that could move axialy over a 1.0-m range and over sufficient ra-
dial rangeto cover all samples. The sampleswere mounted on an aluminum frame that was
connected to an axial table that could span a1.5-m axia range. Combined table movement
allowed thruster—sampl e separation distance to change from 0.75 m to 3 m; our tests were
performed at 0.75 m, 1.60 m and 3.00 m from the thruster. Changing separation distance
was the primary mechanism for changing the plasma density seen at the sample plane.

Figure 3.6 shows an overall picture of the aluminum structure supporting the tether
samples and Langmuir probes, together with the Hall thruster used as a plasmasource. The
latter isa5 kW-class Hall thruster named “P5”, which was devel oped by the Plasmadynam-
ics and Electric Propulsion Laboratory and the Air Force Research Laboratory; more detail
isgiven by Haaset al. [73]. For these tests, the thruster was set at off-nominal conditionsin
order to lower the plasma velocity and density seen along the thruster’s axial direction. Its
operating conditions are given in Table 3.3. The primary changes in those settings from the
ones used previoudy [72] are the discharge current, which was raised to 12.5 A, up from
5.3 A and 4 A and, consequently, the anode flow rate, which had to be raised to 112.1 sccm

to support the increased discharge current.
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Figure 3.5: Experimental setup in the Large Vacuum Test Facility (LVTF) at the Plasma-
dynamics and Electric Propulsion Laboratory (PEPL).

Assessment of the emitted beam energy was estimated using two different techniques.
Laser-induced fluorescence (L1F) measurements have provided an estimate of 43 eV [74],
whereas Langmuir probe (LP) measurements in the ion saturation regime (discussed in
Appendix F) have yielded avalue of 25.0 eV. More detail regarding the LIF measurements
isgiven by Gilchrist et al [72] and Williams et al [75]. It should be noted that the LP value
of 25.0 eV iscloseto, if not within, the bounds of the error on the LIF-determined beam

energy value, which is about 40%, given that the reported typical error on the velocity
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Figure 3.6: Picture of the guarded sample support structure and the P5 Hall thruster used
as a high-speed plasma source.

determined using the multiplex technique is 20% [76].

The values given for both the LIF and LP measurements were measured 75 cm away
from the thruster onits centerline axis. According to the LIF measurement, theionshave an
offset Maxwellian distribution, with a directed energy as given above, and atemperature of
about 0.4 eV at 75 cm. The electron temperature, as determined by the L P measurements,

varied as afunction of position between 1.4 eV and 1.8 eV (see Table 3.4).

Maximum Chamber Pressure 9.1 utorr

Discharge Voltage, V4 100V
Discharge Current, 14 125A
Inner Magnet Current, lim 3.0A
Outer Magnet Current, lom 20A
Cathode Voltage, V [—17,—18] V
Heather Voltage, Vi 83V
Anode Flow rate, m, 112.1 sccm
Cathode Flow rate, m 6.0 sccm

Table 3.3: Operating parameters of the plasma source (P5 Hall thruster).
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Ne Te Abe Hb
Position (m=3) (eV) | (mm)

75cm || 495x 10 | 1.80 | 0.14 | 95%
160cm || 1.37x 10 | 1.72 | 0.26 | 53%
300cm || 0.51x 10 | 1.47 | 0.40 | 32%

Table 3.4: Variation of the measured plasma parameters as a function of distance from
the Hall thruster. Measurements were performed using the ion saturation and electron
retardation data from a transverse LP. The beam energy value determined using the LP is
25 eV. The “beam fraction”, up, indicates the fraction of all ions that are believed to be
beam (high-speed) ions. Density, temperature and Debye length estimates have about 6%,
1% and 3.5% accuracy, asdiscussed in F.1.

A schematic of the current—voltage measurement system is given in Figure 3.7. We
connected a Universal Voltronics BRC 20000 HV power supply to the tether samples
through a high-voltage relay box inside the chamber. The HV power supply was controlled
via RS-232 by the computer controller running a custom virtual instrument (V1) under
LabVIEW™. The computer commanded the HV power supply to a specified voltage and
then quickly back to zero (within 50 to 100 ms), followed by several seconds of cool-down
to minimize sample heating. Current measurement on the sample probes was achieved
using an American Aerospace Controls 835—2—10 current sensor; increased current sensi-
tivity was obtained by looping the HV supply line ten timesthrough the sensor. The current
to the sample guards was measured separately using a FW. Bell ma-2000 current sensor.
An HP 34970 data acquisition unit was used to measure the voltage signals generated by
both current sensors. The data were recorded as triplets containing the applied voltage, the

probe current, and the guard current.

3.4 Plasma Parameter Measurements Using Negatively-
Biased Langmuir Probes

Plasma density, temperature, flow speed, and the fraction of beam ions to background

ions were determined using a4-cm long, vertically oriented (i.e., perpendicul ar to the flow)
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Figure 3.7: Schematic of the computer-controlled high-voltage test equipment setup.

Langmuir Probe (LP) with a diameter of 0.28 mm (same diameter as for the reference
cylinder sample). All LP sweepswere performed using aKeithley 2410 source el ectrometer
controlled via a custom LabVIEW™ script running on a personal computer.

The plasma parameters, shown in Table 3.4, were extracted from the ion saturation
(OML regime) and electron retardation regions of the I-V characteristics using a LP ori-
ented transverse to the direction of the flow. In the OML regime, there are several ad-
vantages to selecting the ion saturation as opposed to the electron saturation region for
parameter extraction. A cylindrical probe oriented transverse to the flow in a high-speed
plasma is known to be virtually free of end effects [39]. In addition, a smple but fairly
accurate collection model is available that accounts for the velocity of the flow in that
regime [29]. By contrast, there are currently no accurate models for the electron collec-
tion to an electron-attracting probe that can account for the plasma flow. In the mesosonic
regime, where the plasmaflow ismuch faster than thethermal ion velocity yet much smaller

than the electron thermal velocity, important sheath asymmetries and elongations exist in
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the electron-attracting mode that get stronger with the applied bias, which makes this a
complex problem. One of the aims of the experimental work presented here is in fact to
improve the understanding of the macroscopic effect of plasmaflow on electron collection.
Finally, using a negatively-biased LP provides an independent assessment of the plasma
parameters, since all the test samples are biased positively.

The procedure that was used for the plasma parameter extraction from the Langmuir
probe current characteristics is detailed in Appendix F. In addition to providing plasma
density and temperature readings, this analysis quantifies the ion “beam fraction” and de-
scribes what appears to be effective workfunction variations.

The results of this analysis indicate the existence of a population of thermal ions far
from the high-speed plasma source, which is born out of cumulative charge-exchange col-
lisions between the incident high-speed ions and the neutral background xenon gas. The
number-density ratio of high-speedionsto thermal ionsisquantified in Table 3.4 and ranges
from an assumed 95% at the closest distance (75 cm) to acalculated 32% at the farthest dis-
tance (300 cm). Thisfall-off of the fraction of beam ions can be best-fitted to an equivalent
“beam ion survival characteristic distance” of 2.14 m, which isjust short of the theoretical
charge-exchange mean free path of 2.6 m corresponding to the measured background pres-
sure, ion energy, and assuming a background neutral temperature of 350 K. The fall-off is
likely due to a combination of effects, such as the beam loss through charge-exchange col-
lisions and the geometrical divergence of the beam, which may explain the smaller value

obtained.

3.5 Experimental Results & Analysis

Our results are presented here in four parts. the reference cylinder, the solid tapes, the

slotted tapes, and, finally, a comparison of the solid and slotted tapes. All results are pre-
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sented in normalized form. The collected current is normalized to the electron thermal
current lihe collected at the plasma potential, as defined in (3.1). All probes should collect
this amount of current when biased at the plasma potential. The normalization of potential
consists of atrangation corresponding to the plasma potential, followed by a scaling by the
inverse of the electron temperature, T.. An OML theoretical plot, scaled this way, would
result in (3.3) and would be independent of temperature, as discussed in the introduction.
This normalization provides a means of evaluating the performance of various probes by
comparing them to OML theory as well as by comparing their respective “electron collec-
tion efficiencies” Note, however, that the extent of the normalized voltage axis variesfrom
one graph to another, due to changes in the electron temperature used in the normalization

of thisaxis, and from variations in the collected data range.
3.5.1 Reference Cylinder

Figure 3.8 shows the normalized results for the reference cylinder at the three distances
from the plasma source (Figure 3.9 showsidentical information for the reference cylinder).
Thereference cylinder at 75 cm is seen to collect much more current than that predicted by
OML theory, by as much as 40% at a bias of 100 Te. This enhancement is seen to decrease
aswe move away from the thruster to 160 cm and 300 cm. In fact, there is no enhancement
at 300 cm. Since the fraction of beam ions was also determined to fall off with distance
(95% at 75 cm, 53% at 160 cm, and 32% at 300 cm), this observed enhancement could be
linked to the effects of the high-speed flow. This changein enhancement level ismost likely
not due to the change in the effective size of the reference cylinder (2.0, 1.1, and 0.7 Debye
lengths) since decreasing the size would theoretically have the opposite effect, that is, to
increase the collection efficiency rather than to decrease it as observed here. In addition,

even if there were any residual end effects despite the use of our guard structures, we

111



believe that the enhancement could not be attributed to those end effects, since the stronger
end effects should occur at the location where the cylinder is the shortest in terms of the
local Debye length (at 300 cm), whereas the observed enhancement is strongest where the

effective cylinder length isthe longest (at 75 cm).
3.5.2 Solid Tapes

Figure 3.8 presents results for all solid tape samples and the reference cylinder at all
three distances from the plasma source (75 cm, 160 cm, and 300 cm). The effective tape
widths, shown in terms of the Debye lengths in the legend as well asin Table 3.1, span
from 4.9 to 41.9 electron Debye lengths. Three major observations are noted from these

results:

1. All samples collect electrons less efficiently than the reference cylinder, as is ex-
pected because of their larger sizes. Likewise, all samples are seen to collect less
efficiently as the effective width of the tape is increased, regardless of their orienta-
tion. Thisis true whether we are looking at a mostly high-speed plasma (at 75 cm)
or amostly quiescent plasma (at 300 cm). When compared to the reference cylin-
der, the relative collection efficiency of all solid tapes decreases with increasing tape
width, similar to the “current ratio” characteristic reported by Estes et al [12, Figure
4(b)] based on an effective circular cylinder radius equal to four times the tape width
(Req = 4wiape [11]). The overall relative efficiency is seen to be somewnhat lower than
that predicted by Estes and Sanmartin [12] and is closer to, although still lower than,
our steady-state kinetic simulation results (see Chapter 4). This reduced efficiency
may be explained by the reduction in collection efficiency due to the presence of

mounting screws that account for a small fraction of the total collecting area.

2. At both the 75-cm and 160-cm distances, all solid tape samples collected more cur-

112



Normalized Current Characteristics of

Solid Samples at 75 cm

Normalized Current Characteristics of Solid Samples at 160 cm
T T T

T T T T T T T T T
18| —— Reference Cylinder, dia=0.28mm=2.0 Ade 1 181 Reference Cylinder, dia=0.28mm=1.1 Ade
—— Paral. Solid Tape, width=1.95 mm=13.7Ade —v— Paral. Solid Tape, width=1.95 mm=7.4Ade
16H —©— Paral. Solid Tape, width=2.89mm=20.41de i 16| —©— Paral. Solid Tape, width=2.89mm=11.0Ade
—8— Paral. Solid Tape, width=5.95mm=41.9 de —8— Paral. Solid Tape, width=5.95mm=22.6Ade
—¥— Perp. Solid Tape, width=1.95 mm=13.7Ade 14H —¥— Perp. Solid Tape, width=1.95 mm=7.4Ade
14r| -e Perp. Solid Tape, width=2.89mm=20.4Ade ] —®— Perp. Solid Tape, width=2.89mm=11.0rde
—®— Perp. Solid Tape, width=5.95mm=41.9Ade —®= Perp. Solid Tape, width=5.95mm=22.61de
12| — Theory: Retardation and OML 12| — Theory: Retardation and OML
— — Electron Thermal Current — — Electron Thermal Current
4 L
,-\g 10F ¥ Ag 10
< st < 8
6 6
4r 4+
2 n=5x10" m™, T =1.8 eV, 1, =95 % 2r n=1.4x 10" m™> T =1.7 eV, =53 %
0 . . . . . . OowelL I I . . . . .
0 20 40 60 80 100 0 20 40 60 80 100 120 140
q>0=(VO—Vp)/Te d)O:(VUpr)/Te
Normalized Current Characteristics of Solid Samples at 300 cm
T T T T T T T T T
16| —— Reference Cylinder, dia=0.28mm=0.7 Ade
—v— Paral. Solid Tape, width=1.95 mm=4.9Ade
—5— Paral. Solid Tape, width=2.89mm=7.2\de
14r| = paral. Solid Tape, width=5.95mm=14.9Ade
—¥— Perp. Solid Tape, width=1.95 mm=4.9Ade
12+ —®— Perp. Solid Tape, width=2.89mm=7.21de
—®— Perp. Solid Tape, width=5.95mm=14.9Ade
— Theory: Retardation and OML
10r== Electron Thermal Current
2
=
= 6-
4t
2 n=5.1x10"m™> T =15 eV, =32 %
ol . . . . . . . .
0 20 40 60 80 100 120 140 160

¢o:(VD—Vp)/T e
(©

Figure 3.8: Normalized |-V characteristics of paralel and perpendicular solid tapes at (a)
75 cm, (b) 160 cm and (c) 300 cm.

rent when oriented perpendicular (transverse) rather than parallel to the flow. In
addition, the contrast between perpendicular and parallel results is observed to get
stronger asthe effective width of the tapeincreases. However, such aclear distinction
isnot evident in the measurements taken at 300 cm, which islikely a consequence of
the low fraction of beam ions that was measured at that location, combined with the
lower effective widths of the tapes (the Debye length was highest at that location) as
compared to the two other locations. The near-overlapping of the perpendicular and

paralel results at 300 cm also serves as qualitative confirmation that the measured
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fraction of beam ions has dropped down as compared to that measured at 75 cm.

3. The previous observation of the increase of collected current from parallel to perpen-
dicular is seen to occur when the probes are biased above a certain threshold, which
varies from about 25 to 40 volts. Thislevel ison the order of the estimated ion beam
energy (somewhere between 25 eV, according to the LP results, and 43 eV, according
to the LIF results). At this threshold bias, the parallel results are seen to present a
“knee’, which is most apparent in the widest effective tape at 75 cm. These observa-

tions are in agreement with previous results based on a similar experiment [72].

3.5.3 Slotted Tapes

Figure 3.9 presents results for all dotted tape samples and the reference cylinder at
all three distances from the plasma source. The effective center-to-center line spacings,
shown in terms of the Debye lengths in the legend as well as in Table 3.2, span from 1.4
to 13.2 Debye lengths. It should be emphasized that the overall widths of the slotted tapes,
including the gap spacings, are the same as the solid tape widths (1.95 mm, 2.89 mm, and

5.95 mm). The following are some observations regarding these results:

e Similar to the tape results, the slotted samples collected electrons less efficiently,
on a per-area basis, than the reference cylinder at all three distances, athough they
were more efficient than the solid tapes. Thisisan indication that the individual-line

sheaths were strongly interacting.

e The contrast between the results in the parallel and perpendicular orientations has a
similar character as that observed for the solid tapes: the perpendicular slotted tapes
collect more current than their parallel counterparts. However, distinct from the solid

tape results is the smaller variation between the responses of the three perpendicular
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Figure 3.9: Normalized 1-V characteristics of parallel and perpendicular slotted tapes at
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dlotted tapes widths (especialy at 75 cm and 160 cm) as compared to the parallel
slotted ones. Specifically, the efficiency of the widest (and most porous) slotted tape,
with a line spacing of 13.2 Debye lengths at 75 cm, is roughly on par with that of
the medium slotted tape (6.0 Debye lengths at 75 cm), and even goes above it at
the highest bias potentials. This may indicate that the widest line spacing was close
to a critical value, corresponding to the minimum efficiency, and beyond which the
collection efficiency would start increasing again, up to the very wide spacing limit

where al four lines become independent and collect as efficiently as the reference

115




cylinder. We seem to have attained this limit only in the perpendicular orientation,
which can be explained by the fact that the sheath elongationsin the direction of the
flow [77,78] would cause the sheath interactions to grow stronger when aligned with
(i.e., parallel to) the flow, thereby moving the critical spacing to a higher value for
the parallel case. Clearly, testing of wider line spacingswill be required to determine

those critical values and relate them to the flow energy.

e A “knee” ismost apparent in the results for the widest parallel slotted tapes at 75 cm
and 160 cm, around 29 and 21 volts, respectively (note that the positions of the knees
on the graphs need to be scaled with their respective electron temperatures), which
is close to the estimated ion beam energy. The parallel and perpendicular results

separate at the potential bias corresponding to the location of this knee.

3.5.4 Comparison of the Solid and Slotted Tapes

Figs. 3.10-3.12 show the same sets of results shown earlier, but with the solid and
slotted tapes plotted on common graphsto facilitate their comparison. The absol ute amount
of current collected by the solid tape samples was higher than that collected by the slotted
tape samples in al cases, as expected, and is not shown here. The slotted samples were
somewhat more efficient on a per-area basis than their solid counterparts. Thisistrue at all
positions, and does not seem to be a function of the fraction of beam ions present. Hence,
the slotted samples are aways more efficient on a per-area basis, regardless of whether in a
stationary or flowing plasma. For example, at 75 cm the parallel wide slotted tape collected
about 37% of the current collected by the paralel wide solid tape at a normalized bias of

80T,, asomewhat higher fraction than the porosity of the sample, which was 28%.
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Figure 3.10: Comparison of the |-V characteristics of solid and slotted tapes at 75 cm.
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Normalized Characteristics of Parallel Solid and Slotted Samples at 160 cm
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Figure 3.11: Comparison of the -V characteristics of solid and slotted tapes at 160 cm.
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Figure 3.12: Comparison of the -V characteristics of solid and slotted tapes at 300 cm.
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3.6 Present Status and Conclusions

Several conclusions can be drawn from the analysis of these experimental results:

1. the plasma flow leads to significant current enhancements over that predicted by the

orbital-motion-limited theory;

2. the electron collection efficiency of solid tapes (on a per area basis) decreases as the

width of the tape is increased;

3. beyond athreshold bias close to the beam energy, solid and slotted tapes both collect

more current when oriented transverse (perpendicular) to the flow;

4. equivalent-width slotted tapes are more efficient electron collectors than solid tapes

on a per-area basis;

5. our data suggests the electron collection efficiency of slotted tapes decreases with
increasing line spacing until a possible minimum efficiency is attained, beyond which
it is expected to start increasing again. The minimum may have been attained in
the case of the samples oriented transverse to the flow, but not in the case of the
samples aligned with the flow, for which the critical spacing is likely higher due to
an increased sheath interaction radius of each line caused by the elongation of the

sheath associated with plasmaflow.

Further experiments are needed to more completely quantify the observed effects. In
addition, larger line spacings should be tested in both the paralel and perpendicular ori-
entations to verify the existence of and quantify the critical spacing that corresponds to a
minimum collection efficiency.

A lower background pressure might help improve the survival of the ion beam out to 3

meters, and could possibly be achieved with the use of additional cryopumps. For example,
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using 7 cryopumps instead of 4, we could expect a drop of the background pressure by a
factor 4/7, and consequently an increase of the charge-exchange mean-free-path length by
afactor 7/4. Since the value shown for the high-speed beam fraction (u, = 32%) at 300 cm
in Table 3.4 is consistent with amean free path of about 2.6 meters, thisadditional pumping
power could be expected to increase the mean free pathto 2.6 mx 7/4 ~ 4.6 m. Thiswould
therefore improve the beam survival at 300 cm from 32% to 52% (exp (—3310) = 0.52).
Finally, in future experiments one should consider shifting the entire hardware setup
further away from the downstream end of the vacuum chamber, which might reduce a

possible accumulation of neutrals near that end of the chamber, since the cryopumps are

located on the upstream end.
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CHAPTER 4

Simulation Results and Validation

In this chapter we present and analyze our simulation results, and proceed to validations
with other published results wherever possible. Section 4.1 describes the normalizations
used throughout this chapter. Section 4.2 discusses the simulation results applicable to a
round cylinder in a stationary plasma. Sections 4.3 and 4.4 discuss probe geometry effects
using simulation results pertaining to the two-wire and thin tape cylinder, respectively.
Finally, Sections 4.5 and 4.6 discuss the effects of plasma flow on sheath structure and
current collection for ion- and electron-attracting round cylinders.

Note that for al of the simulations presented in this chapter, the electron and ion pop-
ulations are at thermal equilibrium (T; = Te), because this setting is most representative
of the ionospheric environments of interest. Although they were not tested as part of this
analysis of results, the model does alow for settings of the temperature ratio T;/Te other

than 1.13

4.1 Definition of Normalized Physical Quantities

All simulation parameters and results are presented in a normalized form in order to

make them as general as possible. The normalizations used in this chapter are consistent

B3Results shown in Ref. [8] indicate that, for temperature ratios T;/Te below unity, we should expect a
reduction of the sheath dimensions as well as the collected ion current for ion-attracting bias potentials as
compared to the case where T; = Te.
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with those used to present our experimental results in normalized form in Chapter 3. The

following is adescription of the normalized parameters used throughout this chapter:

e Thenumber densities are normalized with respect to the number density of the back-
ground plasma (the ambient density). The normalized density n, is the ratio of the

actual density n (in m~3) to the background number density ng of the plasma: n, = nlo

o Similarly, the net charge density is normalized in terms of the ambient density and
the electron charge e. At any location in space, the normalized net charge density py,

isgiven by

_ P _Mi-ne
€Np No

Pn ) (41)

where p isthe actual net charge density.
e The electric potentials are normalized in terms of the electron plasma temperature

Te (units of eV) and the plasma potentia V|, (in volts). At any location in space the

normalized potential isthus given by

o= ; (4.2

whereV isthelocal electric potential and V, isthe background plasma potential. The

bias potentia is similarly normalized according to ¢g = VOT_eV", where V is the bias

potential in volts.

e All coordinates and dimensions are normalized in terms of the electron Debye length

in the ambient plasma. The normalized coordinates (xy,yn) are given by
X
Xn=-— and yp=-— (4.3)

where (x,y) are the physical coordinates and Ape is the electron Debye length, both

given in units of meters.
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e The velocities are normalized with respect to the electron thermal velocity Vine =

\/ em—T: The normalized velocity components vy, and vy, are given by

nyn - — and Vyyn - — . (44)

e collected current is normalized with respect to the electron or ion thermal current,
depending upon whether electrons or ions are being collected. In most situations that
wewill consider, the magnitude of the bias potential islarge enough that only asingle
species is being collected at any given time. For positive bias potentials (collecting
electrons), we use the normalized collected electron current 1., whereas for negative
bias potentials (collecting ions), we use the normalized collected ion current I ,;. Both

guantitiesrelate to the physical currents le and I; through the expressions

le,i eTe,i
lhei= ’ Jthe,i = €Noy [ 5—— 4.5
ne,i Jthe,iAp the,i 0 27rme,i’ ( )

where l¢/l; isthe physical electron/ion collected current in units of amperesand A, is

the total collecting area of the probe or tether. The thermal current densities Jiye i are
givenin terms of the temperatures Te j (in €V), the masses me ; and the magnitude of

the electron charge e.

e Thelinear charge density Q, given in Coulombs per meter (C/m) of cylinder length,
is normalized consistent with the normalizations used for the net (volume) charge

ho The linear charge density Q contributed by a constant volume

charge density p over a2-D zone with area A is given by Q = pA. Correspondingly,

when using a normalized charge density p, = e”TO and normalized area A, = /IAZ’ we
De

obtain for the normalized linear surface charge

Q

= A = = —
Qn = Pon Qenolge eTe

(4.6)
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e Theion and electron temperatures T; and Te are normalized to the electron tempera-
ture Te, resulting in
Te

T.
Tin= T—; and Ton= T 1, 4.7)

whichyields atrivia result of unity for the normalized electron temperature.

e The particle masses m; and me are normalized to the electron massme, i.e.

m.
m|n:m— and men:—::l.7 (48)
whichyields atrivia result for the normalized electron mass.

e Similar to the masses, the particle charges g; and ge are normalized to the electron

charge ge, i.e.
Qin = % and  Qen= e _ 1 (4.9

e e

The normalizations above are consistent with the following normalization of Poisson’s

equation (2.5):
d2v  d?v P d2p d%¢
2y — 2
VeV = oz T IV — Vo= i +-= a2 = —Pnsnormalized form  (4.10)
where pp = £ and V,, is the Laplacian applied on the normalized space coordinates

(Xn,Yn). In addition, Vlasov's eguation (2.9) can be recast in terms of the normalized

guantities:
% dfn  an d¢ dfn  an do If,
9%y P"Oyn  Mndxn dVxn My Ayn dVyn

Vy =0, (4.11)

where f,,, gy and m, are normalized quantities that apply to either electronsor ions, i.e.,

[ fe/no — Jen ) Men
f”_{fi/'ﬂo}’ q"_{qi,n}’ nd m”_{mi,n}' (412
Because both of the fundamental equations used in the computational model can be

recast in normalized form as given by (4.10) and (4.11), any solutions that we obtain based
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on the simulations can be applied to a vast number of practical cases based on the proper
scaling of the normalized quantities using the physical valuesfor the parametersng, Te, Me,

and ge.

4.2 Single Round Cylinder in Stationary Plasma

The most simple configuration that can be analyzed using both the KiPS-1D and KiPS-
2D modelsisthat of the single round cylinder immersed in a stationary plasma. Although
basic, this configuration allows for validations to be performed against previous publica-
tions, as well as validations of the more sophisticated KiPS-2D model against the simpler
KiPS-1D model.

We should note that, because there is no plasma flow, al of the normalized results
presented in this section can be applied to either ion or electron collection. That is, the nor-
malized density profiles of the attracted and repelled species are independent of mass and
therefore achange in the polarity of the bias potential smply hasthe effect of interchanging
the density profiles of the electrons and ions, knowing that the ions are singly charged and
that the electron and ion temperatures are equal, Ti /Te = 1.

In addition to validations, the results from these simulation runs will alow usto answer
an important question that was not addressed in previousworks: how do the sheath dimen-
sions scale at large bias potentials? To the author’s knowledge, large bias potentials (up to

10,000T,) were not addressed using any self-consistent kinetic treatment before thiswork.

4.2.1 Validation of Potential & Density Profiles at Low Bias Voltages

We first present avalidation of our simulation results against the widely accepted sim-
ulation results obtained by Laframboise [8] for low bias voltages. Figures 4.1-4.3 show a

comparison of some of our KiPS simulation results against Laframboise’s results for four
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Figure 4.1: Normalized ion(top) and electron(bottom) charge densities as a function of
normalized distance from the surface of around cylindrical probeimmersed in a stationary
plasma, with ¢g = YoV _ _25and Ti = Te. Resultsobtained using the KiPS-1D and KiPS-

Te

2D solvers are shown for various probe sizes (ro/Ape = 1,2,5, and 10) and compared
with results computed by Laframboise [8,79]. All of the reference data were obtained
from Laframboise’s thesis [8], except for the ro = Ape data which include a minor, recent
correction [79].
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Figure 4.2: Normalized net charge density as a function of normalized distance from the
surface of around cylindrical probe immersed in a stationary plasma, with a bias potential
Vo—Vp = —25T and T = T. Results obtained using the KiPS-1D and KiPS-2D solversare
shown for various probe sizes (ro/Ape = 1,2,5 and 10) and compared with the simulation
results computed by Laframboise [8, 79].

different cylinder radii: 1, 2, 5 and 10 Debye lengths. Results are shown for both KiPS-
1D and KiPS-2D, and for both kinetic and Boltzmann* electrons. Excellent agreement is
seen between the reference data and both our KiPS-1D and KiPS-2D simulation results.
The Boltzmann approximation for the repelled electrons is also seen to be very accurate
when compared to the results obtained using kinetic electrons. The attracted ion density
at the probe surface is seen to be maximized for the smaller probe radius, with a maxi-
mum value of half the ambient density. This is expected, as is shown by (1.7): for small
probe radii, the OML is attained and the surface density reaches its maximum value of half
the ambient density. The net charge density shown in Figure 4.2 shows a large region of

guasi-neutrality, indicating that a sufficiently large computational domain was sel ected.

14The Boltzmann approximation consists of approximating the repelled electron density using ne ~
noexp((V —Vyp) /Te), or smply ne = noexp(V /Te) if weassumeV, = 0.
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Figure 4.3: Normalized electric potential (V —Vy)/Te asafunction of normalized distance
from the surface of around cylindrical probe immersed in a stationary plasma, with a bias
potential Vo —Vp = —25T¢ and Tj = Te, shown in both linear and semi-logarithmic formats.
Results obtained using the KiPS-1D and KiPS-2D solvers are shown for two probes sizes
(ro/Ape = 1,2,510), some of which (ro/Ape = 1,10) compared with the simulation results
computed by Laframboise [8].
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Another interesting observation regards the potential distribution shown on the semilog
plot on the bottom of Figure 4.3. The behavior of the graphs close to the probe is seen
to follow a linear dependence on the semilog scale, which simply is a result of the fact
that space charge only starts to significantly affect the potential profile at a sufficient dis-
tance from the probe for cumulative space charge to amount to a significant fraction of the
surface charge held by the probe. The region of logarithmic dependence of the potential
extendswith increasing bias potential, aswill become obviouswhen we consider large bias
potentials.

Unfortunately, the author has not found in the literature any appropriate experimental
data set that could be used for the validation of these potential and density profiles in
stationary plasmas. Obtaining some sort of experimental validation of these profiles would

be very valuable.
4.2.2 Validation of Collected Current at Low Bias Voltages

In addition to validating the potential and density profiles, we now proceed to validate
the collected currents computed using KiPS-1D and KiPS-2D for a round cylinder in a
stationary plasma. Figure 4.4 shows a comparison of the collected current characteristics
for various probe radii. The agreement is excellent between the KiPS results and the results
obtained by Laframboise [8], although our results appear to be somewhat higher by about
0.5%. Thisdlight discrepancy could be explained by a combination of a number of factors

such as:

¢ the quadrature tolerance used in the current calculation performed using our model,

which was set to 1%; and

e the error involved in manually copying data points off of Laframboise’s graphs|[8].
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Figure 4.4: Normalized collected ion current | /I, to around conductive cylinder asafunc-
tion of normalized bias potential ¢o = (Vo—Vp)/Te With Tj = Te. Results obtained using the
KiPS-2D solver are shown for various normalized probe radii ro/Ape = 1.5,2,2.5,3,4,5,
and 10 and compared with the simulation results computed by Laframboise [8].

The excellent agreement between KiPS-1D and KiPS-2D collected current results provides
further confirmation of the validity of both models.

It is observed, as a “sanity check”, that the collected current approaches the thermal
current as the probe bias potentia approaches the plasma potentid, i.e., in Figure 4.4, the
normalized current goes to 1 as the normalized bias potential approaches zero. In addition,
we can see that as the probe radius becomes smaller, the collected current approaches the
orbital motion limit current, i.e., the current collection efficiency is maximized on a “per

area’ basis.
4.2.3 Assessment of Collected Current at High Bias Voltages

Figure 4.5 shows the simulated current collection efficiency to 3 high-voltage cylinders,

biased at 300T, 1000T, and 3000T, as a function of the cylinder radius. We define the
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Figure 4.5: Current ratio | /1om (“current collection efficiency”) as a function of the radius
of a round conductive cylinder immersed in a stationary plasma. Results obtained using
the KiPS-1D and KiPS-2D solvers are shown for two bias potential values of |¢o| = 300
and |¢o| = 1000. A comparison is shown with calculations published by Estes and San-
martin [12] for Tj = Te.
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“current collection efficiency” as the ratio of the collected current over the orbital motion
limit current lomy.

As expected, our results show a decrease in collection efficiency as the cylinder radius
increases, because it results in a gradual breakdown of the orbital motion limit conditions.
As the probe radius becomes larger, an increasing number of attracted-particle orbits con-
nect two points on the probe surface. These unpopulated orbits create voidsin the velocity
distribution function of the inbound particles at the probe surface which grow as the probe
radius increases.

Our results are compared against an approximate current calculation performed by
Estes and Sanmartin [12]. The agreement with our simulation results is good, although
not excellent. The source of the discrepancy is most likely the approximations used by
Estes and Sanmartin [12], where an asymptotic approach is used that is only exact in the
limit of thin cylinders. Our kinetic results allow us to confirm that, as observed by Estes
and Sanmartin [12], the collection efficiency appears to be mostly dependent on the cylin-
der radius, and isonly aweak function of the bias potential. Thisbehavior providesafairly
simple rule that could be used by the designer of an electrodynamic tether system in the

determination of an appropriate tether radius.
4.2.4 Plasma Profiles at High Voltages

Having validated our kinetic model in the low voltage regimes for which independent
simulation data are available, we now turn to an important question that was not resolved
by previouswork in thefield: how does sheath radius generally scale as afunction of probe

radius and bias potential ?
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Figure 4.6: Typical high-voltage cylindrical sheath structure shown on a semilog scale.

These profiles were obtained using KiPS-1D with a cylinder radius ro = Ape and a bias
potential ¢o = "2 = —5000.

4.2.4.1 Typical Plasma Profile from KiPS-1D

Figure 4.6 shows a typical self-consistent high-voltage plasma profile obtained using
KiPS-1D for a one-Debye-length-radius probe negatively biased at ¢g = —5000 (5000
times the electron temperature). Note that the profiles are shown on a semilog scale to
facilitate their interpretation.

The potential profile shown on the top half of Figure 4.6 is seen to follow alogarithmic
trend out to aradius near 70 Debye lengths, which indicates that space charge effects are
unimportant for smaller radii. To illustrate this, a plot of the “cumulative charge” is shown
on the same figure which confirms that the amount of space charge due to the plasmais

unimportant until we reach a sizable distance from the probe’'s surface. The total amount of
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negative linear surface charge on the cylinder Q, = —6800 (unit-less, normalized value) is
only neutralized by the plasma charge once we reach aradius of about 175 Debye lengths,
at which point the cumulative space charge has reached aval ue very closeto 6800, precisely
balancing out the cylinder surface charge. Much of the charge neutralization thus seems
to occur within an annular region of inner radius rinner = 70Ape and outer radius royter =
175Ape.

Because the potential profile has a logarithmic behavior for a sizable portion of the
sheath, a useful approximation for the potential profile can be obtained using linear regres-

sion over itslogarithmic portion. This best-fit approximation takes the form

_ In(r/ro)
¢ = ¢o <1— ln(rs/ro)) : (4.13)

where rg is the cylinder radius, and rs is defined as the effective sheath radius. The term

“effective” refers to the fact that the potential profile is effectively the same as that which
would exist if al of the space charge were lumped into a thin cylinder of charge located
at aradius r = rs. This can be thought of as an analogy to a coaxial capacitor, for which
al of the outer charge is located on the outer conductor. Another reason for using the
term “effective sheath radius’ instead of simply “sheath radius’ isto avoid any confusion
with the classical notion of sheath edge, which istypically defined as the minimum radius
at which the plasma is deemed quasi-neutral based on a somewhat arbitrary definition of
quasi-neutrality [22]. For the present case shown in Figure 4.6, we find for the effective
sheath radius a value of about 100 Debye length, which correspondsto the radius where the
best-fit approximation intercepts a potential of zero. This definition of the sheath radius,
which is based on the specific needs of the charge precipitation application, is believed to
provide a better measure of the effective region of influence of the sheath than the classical
definition and is most appropriate for high voltages, which cause the space charge to lump

within an annular region of limited extent.
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Now let us consider the density profiles shown on the bottom portion of Figure 4.6.
First, the density of the repelled electrons is, not surprisingly, negligible over the vast ma-
jority of the sheath, having dropped sharply together with theion density drop. Another ob-
servation of interest is that, as was observed at |lower voltages, the ion density here reaches
the orbital motion limit of half of the ambient density (n;j/no = 0.5), because the cylinder
radiusis sufficiently small.

Now, one feature of crucial importance is the very low ion density that exists within
the sheath. The minimum density seen on this particular profile is about 0.05, that is, 5%
of the ambient density. This relatively low value of the minimum ion density is key to
obtaining large sheath sizes because it represents a limitation in the shielding capability of
the ambient plasma.

The very low minimum ion density observed within the sheath extends over a sizable
range at high voltages (keep in mind that the scale used in Figure 4.6 is semi-logarithmic).

This can be interpreted in one of two equivalent ways, which we state here:

Current conservation The quasi-conservation of theradial ion current forces the inward-
directed component of theion density to drop as the ions accelerate into the potential
well of the sheath. The same reasoning appliesequally well to the* outward-directed”
component of the ion density, which must increase as the ions decelerate as they
come out of the potential well. Although simplistic, thisexplanation can qualitatively
explain the sudden drop of the ion density near aradiusr =~ 150 Ape. The validity
of thisreasoning is based on the fact that the vast portion of the incoming ions at the
sheath edge will miss the small probe, so that we may assume that the inward and
outward populations contribute equivalent amounts to the local density. In addition,
most inward ions do not “turn back” before they get in relatively close range from

the cylinder, which allows us to use the argument of conservation of current for the
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inward and outward popul ations separately.

Angular Momentum limitations In the region just within the sheath but still far enough
from the cylinder, the ion population is mostly radially-directed because of the ac-
celeration it has experienced asit entered the sheath. In these locations, alarge range
of directionswith relatively large angular momentum are therefore not popul ated be-
cause they are located on collisionless “trapped” orbits, i.e., orbits that are closed

onto themselves and do not originate from the background plasma.

The reasons for these reduced ion densities will become more evident as we discussthe

variation of the ion velocity distributions throughout the sheath in Section 4.2.4.4.

4.2.4.2 Typical Two-Dimensional Plasma Structure from KiPS-2D

Figures 4.7 and 4.8 illustrate the 2-D structure of the plasma surrounding the conduc-
tive cylinder, as computed using KiPS-2D, along with corresponding x-axis cross-sectional
profiles. The dynamic meshing capability of KiPS-2D is shown by the high mesh density
near the sheath edge, where a surge in the net charge density is observed. The obtained

profiles are in agreement with results obtained using KiPS-1D.

4.2.4.3 Profile dependence on Bias Potential and Cylinder Radius

It turns out that the value of the minimum ion density goes down as the magnitude of
the bias potential increases, which contributes to a further increase in sheath dimensions.
This is seen in Figures 4.9 and 4.11, which show a set of various density and potential
profiles corresponding to various bias settings for a cylinder of radius ro = Ape. Similar
families of curves are shown in Figures 4.10 and 4.12 for a much smaller cylinder radius
ro = 0.001Ape. Although both sets of curves behave somewhat similarly at large radii, the

main difference with the smaller cylinder radius is that the ion density is allowed to ramp
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Figure 4.8: Poisson—Vlasov consistent electron and ion density distributions corresponding
to the single-cylinder solution shown in Figure 4.7 (ro = Ape, ¢o = —320). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile pout = € (nj — ne) shown in Figure 4.7(c).
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Normalized Electron Density Profile
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Normalized Electron Density Profile
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Normalized Potential Profile
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back up to the ambient density due to an improved geometric convergence at smaller radii,
before dropping back to half of the ambient density at the probe surface, the orbital motion
limit.

4.2.4.4 Variation of the lon Velocity Distribution Throughout the Sheath

In order to better understand the nature of the pronounced ion density drop in the sheath,
we now inspect the ion velocity distribution functions throughout the sheath. Since within
the potential well, the velocity distributions are getting compressed onto a thin annulus, a
perhaps better graphical representation of the velocity distribution function can be obtained
using the concept of directional-energy distribution, which we now define. Let E be the
total particle energy, including both potential and kinetic energy components. At a given
location in the plasma, we may write E as

n
E=qV + ?' (V2+v3) (4.14)

whereV isthe local potentia, i = e istheion charge, m; istheion mass, and the instanta-
neous velocity componentsin cylindrical coordinates are vy and vg. In the ambient plasma

(asr — ), the total energy distribution of theionsisaMaxwellian:

fe (E) = :—_?exp <—$) . (4.15)

As we get closer to the sheath, the total energy distribution is no longer isotropic, so we
introduce the concept of “directional-energy” f (Er,Eg), where E, and Eg are defined as
Vr Ve

S _ e
\/VE+ V3 \/VE+ V3

The directional distribution of particles can thus be given as a function of the two variables

E,=E and Eg=E (4.16)

E, and Ep.
Figure 4.13 depicts the directional-energy distributions at various locations along the

ion density profile.
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In the following we describe the nature of the velocity distributions as applicable to
the various distributions labeled from 1 to 22 in Figure 4.13, going from the largest radius

(point 1, farthest location) to the probe surface (point 22):

Locations No. 1-2 The inbound ions are Maxwellian. The outbound ions are only par-

tially blocked out by the probe (probe shadow effect).

Location No. 3 The probe shadow grows as we get closer to the probe, just outside the
sheath. Some very small unpopulated trapped orbits start to appear, due to some

angular momentum limitations.

Location No. 4 The probe shadow is unchanged. The zone of unpopulated trapped orbits

israpidly expanding as we enter the sheath and ions are radially accelerated.

Location No. 5 The probe shadow now starts shrinking as we enter the sheath, since the
“shadowed trgjectories’ are also being radially accelerated. The zone of unpopulated
trapped orbits continues to expand significantly, and the directional-energy distribu-

tion appears to be increasingly radially-directed.

Locations No. 6-13 The probe shadow is fairly small within the sheath since shadowed
trajectories are very radially directed. The ions are aimost exclusively radially di-
rected. The ion density has dropped significantly because of the radial acceleration
as we enter the sheath, leaving the inaccessible large-angular-momentum orbits un-
populated. Theion density reaches its minimum at location No.7. Beyond this point,
geometrical concentration of current will overcome the sheath acceleration effects

and gradually populate the depleted zones, causing the density to increase.

Locations No. 14-20 The probe shadow is now growing as we near the probe. Geomet-

rical concentration of current has overcome the sheath acceleration effects and the
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depleted zones are gradually getting filled as we near the probe.

Location No. 21 There are virtualy no unpopulated trapped zones anymore. Thisis be-
cause we have reached a small enough radius for geometrical concentration to have

re-populated the depleted zones.

Location No. 22 We are now at the surface of this one-Debye-length-radius probe. Half
of the directions are blocked by the probe, and consequently the density is half the
ambient density. There are no unpopulated incoming directions at the surface of this
small probe, which is why the surface ion density achieves its maximum possible
value of half the ambient density; this is the orbital motion limit. A larger probe
would result in a lower ion density because it would feature depleted zones which

would correspond to a set of orbits linking two points on the probe’s surface.

4.2.5 Sheath Radius at High Voltages

Having defined an effective sheath radius rs consistent with an asymptotic best-fit of
the potential profile given by (4.13), we now consider the effect of the bias potentia ¢o
and probe radius rg on the effective sheath radius rs. The top part of Figure 4.14 shows
the variation of the normalized effective sheath radius rg as a function of the normalized
bias potential ¢, for several values of the cylinder radius ro. Not surprisingly, the effective
sheath radius growsfor increasing bias potential magnitudes and also grows monotonically
as afunction of the cylinder radius ro.

Aswe have discussed before, at large voltages the space charge in the immediate vicin-
ity of the probe should have a negligible effect on the local potential which is overwhelm-
ingly dominated by the effect of the cylinder surface charge. For sufficiently thin cylinders,
which cause little shadowing effect on outbound trajectories over most of the sheath, the

electrodynamic processes in the bulk of the sheath should become nearly independent of
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the cylinder radius for a given cylinder surface charge. Instead of plotting the sheath radius
as a function of bias potential, on the bottom part of Figure 4.14 we now plot it against
the magnitude of the negative linear charge present on the cylinder’s surface, which can be

obtained through one of two equivalent methods:

e by integrating the positive total plasma space charge surrounding the cylinder, which

isequal and opposite to the total negative charge held by the cylinder;

e by inferring it from the knowledge of the cylinder radius rq, bias ¢o and effective

sheath radius rs using the linear capacitance formulafor a coaxial capacitor [43],

B 21t o

=
InrO

Qn

(4.17)

All of the plots shown on the top part of Figure 4.14 now align over each other on the bot-
tom part, except for the plot corresponding to the largest tested cylinder radius of rg = Ape.
This remaining discrepancy is due to the fact that this cylinder radius is sufficiently large
to cause significant shadowing of some outbound ion trajectories which are left unpopu-
lated, causing areduction of the ion density throughout the sheath and a reduced shielding
capability consistent with the observed larger sheath size as compared to cases with equal
surface charge but smaller cylinder radius rg.

As is shown on the bottom part of Figure 4.14, an asymptotic best-fit of the rs-vs-Q,
relationship was performed over the highest values of the linear wire charge Qn, which
applies accurately for |Qn| > 200 and rg < 0.1Ape. This best-fit asymptotic relationship is
given by

5 0.123]Qn|075. (4.18)
)LDe

Although this equation is not accurate for larger cylinder radii as is seen for rg = Ape

on the bottom part of Figure 4.14, it may still be used for purposes of determining a lower
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bound. Thisasymptotic equation can now be combined with (4.17) to determine an implicit

asymptotic equation for the effective sheath radius rs as afunction of the bias potential ¢o:

s 1.325 r
2. 554< ) In= = —¢p. (4.19)
Abe ro

Although this equation cannot be solved analytically for rg, it can be inverted numerically
or computed directly for a given set of negative values for the bias potential ¢q. Consistent
with the restrictions mentioned above, it can be used to accurately predict sheath radii for
cylinder radii of atenth of a Debye length or less (ro <= 0.14pe) and for bias potentials ¢

with a magnitude such that

|¢O|>_| r—~318l r_o (4.20)

For values of the bias potential ¢g and cylinder radius ro beyond these limits, the sheath

dimensions given by numerically solving (4.19) should be regarded as lower bounds.

4.3 Interference of Parallel Round Cylinders in a Station-
ary Plasma

In an effort to gain a basic understanding of the physics of plasma-immersed multi-
wire conductive structures, we consider a structure consisting of two parallel, identical
round cylinders with equal bias potential (see Figure 1.3(b)). The geometrical parameters
are the cylinder radius rg and the center-to-center spacing Ax. All of the smulation results
presented in this section were performed using a cylinder radiusro = Ape and anormalized

= Yol — 320,

bias potential ¢o =

We consider the effect of the center-to-center spacing on sheath structure and current
collection, always comparing performances to those of a single round cylinder with radius
ro = Ape and bias potential ¢g = —320. The value of the center-to-center spacing Ax will

vary from Ax = Ape (cylinders touching) all the way to Ax = 200Ape. This maximum
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spacing corresponds to about 10.5 times the single-wire effective sheath radius of 19Ape
(see Figure 4.14).

In the negative bias potential situation under consideration, the ions are the attracted
species. Since the plasmais not moving (no flow), the results we obtain are also directly
applicable to the electron-attracting situation with equal and opposite bias potential, pro-

vided that we swap the ion and electron density profiles.

4.3.1 Treatment of Repelled Electrons

Our model allows for the full kinetic representation of both species. However, in a
stationary situation we know that the electric potential will have the same sign as the bias
potential, everywhere in space around the perturbation, and certainly everywhere within
the computational zone. For a repelling bias potential of such a large magnitude as that
considered here (¢o = —320), we can affirm that, for all practical purposes, none of the
electron tragjectories which contribute to the el ectron density intersect the conductive cylin-
ders. Thismeansthat all electron trgectories are connected to the background plasma, and

allows us to use with excellent accuracy the Boltzmann equation for the electron density:

\Y
e = Noexp—, (4.21)

e
where we assume that V < 0 everywhere in space, and arbitrarily set the plasma potential
to zero. Thisapproach resultsin significant computational savings, dueto the fact that only

the ions need to be treated kinetically.

4.3.2 Orbits of the Attracted lons

We now turn our attention to the orbits of the attracted ions. 1n the following we discuss
the existence of complex ion orbits which do not exist in the single-cylinder case, and

explain that the criteria used to determine whether an orbit is trapped (and unpopul ated)
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must be lessrestrictive than in the case of the single cylinder. We then show some examples

of these complex orbits.

4.3.2.1 Criteria for Trapped Orbits

The symmetric potential structure which existsin the simple single-cylinder case does
not allow any of the non-trapped trajectories to feature more than one change of “radial
direction”, that is, one change of sign of the radial component of velocity, v,. In other

words, any orbit originating from the background plasmawill either:

e approach the conductive cylinder (v, < 0), miss it due to an excessive angular mo-

mentum and return to the background plasma (v > 0);

e approach the conductive cylinder and get collected onto it (v, < 0 all along).

When two parallel cylinders immersed in a plasma are placed sufficiently close to one
another (i.e., when theindividual sheath radiusisanon-negligible fraction of the center-to-
center spacing Ax), the shadow effect created by one cylinder can affect the space charge
surrounding the other sufficiently to create asymmetries in the potential structure. Those
asymmetries, in turn, could allow for the existence of collisionless trgectories of an in-
creased complexity, featuring for example severa “radial oscillations’ about a given cylin-
der, or even “figure eight” trajectories orbiting about both cylinders. At any given location,
some of the directions in velocity space that were unpopulated when there was no neigh-
boring cylinder may now be populated through relatively complex paths originating from
the background plasma, while other directions that were previously populated may now be
unpopul ated due to the existence of new types of trapped orbits, such as the “figure eight”.

As a consequence, the simulation parameters used to determine whether a trgjectory is
trapped or not will be especially important for this asymmetric structure. We need to set a

sufficiently large radial oscillation limit to allow for the existence of these more complex
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orbits (described in Section 2.4.2.2), while at the same time keeping it down to a reason-
able value to obtain reasonable simulation times. We have found that allowing for up to
20 radia oscillations (Myes: = 20) provided such a compromise. The maximum angular
displacement Mg, (See Section 2.4.2.2) was not used to impose further restrictions on the

orbits, and Msegcross Was set to 100.

4.3.2.2 Examples of lon Orbits

In Figure 4.15 we show a few typical examples of ion orbits across the self-consistent
potential structure of the two-cylinder configuration with a center-to-center spacing Ax =
20Ape, abias potential o = —320T, and acylinder radiusrg = Ape. Thecircle shown at one
end of each trgjectory indicates the location of the interrogation point where the velocity
distribution function is being sampled. Following the trgectory from this point backward
in time leads us to the “source” point of the trajectory, indicated by a square.

The source point can be either the background plasma, a cylinder’s surface (in which
case the orbit is unpopulated since the cylinder is not a source), or it may be undetermined
in the case of atrapped orbit.

Figures 4.15(a)—4.15(c) have a common interrogation point, located on a node on the
right side of the mesh. Figure 4.15(a) shows an example of an unpopulated orbit originating
from the surface of the rightmost cylinder; this orbit is not populated because the cylinder
is not a plasma source. Figure 4.15(b) depicts a populated orbit that undergoes two loops
around the rightmost cylinder before reaching the interrogation point, on the outer edge of
the computational zone. Figure 4.15(c) depicts avery complex but populated ion orbit that
originates from the background plasma, undergoes several loops around both cylinders, and
finaly reaches the interrogation point.

Figure 4.15(d) corresponds to a different interrogation point. It is shown here to illus-

trate one example of an unpopulated orbit that was deemed “trapped”, having exceeded the
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maximum number of radial oscillations set for this simulation, which was Mqg. = 20.

4.3.3 Inspection of the 2-D Sheath Structure

We now consider the general aspect of the sheath structure surrounding both cylinders
for a few values of the center-to-center spacing: AX = 2Ape, 10Ape, 20Ape, 40Ape, 80Ape,
and 160Ape. First, we note that al of the two-cylinder ssimulations presented here were
performed using two axes of symmetry, as described in Section 2.6.2.2. In other words,
only a single quadrant had to be simulated, thanks to the symmetry of the two-cylinder
geometry and the fact that the plasmais not flowing. The distributions are shown over two
guadrants, in order to clearly illustrate the two-cylinder geometry under consideration. The
simulation results, performed in the quadrant 6 < [0, r/2], were smply “mirrored” to the
second quadrant in 6 € [/2, ]. We have opted to only show the results in the half-space
0 € [0, x|, so that the features of interest near the cylinders can be clearly seen. All of the

distributions shown in Figures 4.16 through 4.25 are given in the following two formats:

e 2-D distributions are shown on the |eft, over the half-space 6 < [0, r];

e profiles of cross-sections performed along the x axis are shown on the right.

The self-consistency of the solutions that we show here can be verified by comparing the
distributions for pj, and poyt, Which correspond to the input and output of the Poisson—
Vlasov operator as specified in Figure 2.3. The distributions for pi, and poyt shown in
Figures 4.16, 4.18, 4.20, 4.22, 4.24, and 4.26, are very close to one another, which proves
the self-consistent nature of the solutions.

Figures 4.16 and 4.17 show the distributions pertaining to the smallest center-to-center
spacing, Ax = 2Ape (cylinders touching). Due to the proximity of the two cylinders, the
profiles obtained are very close to what would be obtained with a single cylinder. The

ion density, shown in Figure 4.17(b), is seen to drop to half the ambient density on the
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Figure 4.16: Poisson-Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius ro = Ape, center-to-center spacing AX = 2Ape, and normalized bias ¢g =
—320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on theright. lon and Electron density dist. are shown in Figure 4.17.
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Figure 4.17: Poisson-Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.16 (ro = Ape, ¢o = —320, AX = 2Ape). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile pout = € (ni —ne) shown in Figure 4.16(c).
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externa surfaces of both cylinders, as is expected. Angular momentum limitations/ion
radial acceleration are responsible for the significant drop in density as the ions enter the
sheath, similar to what was seen in the single-cylinder case.

Figures 4.18 and 4.19 pertain to the spacing Ax = 10Ape. The potential is seen to drop
in magnitude in between the two cylinders, to a potential ¢ ~ —235 from a bias potential
of ¢g = —320. A similar drop of the ion density is seen in Figure 4.19(b) as the ions enter
the sheath, with a minimum density of about 0.2ng. A relatively large ion density is seen
to exist in between the two cylinders, which reaches a maximum of about 0.7ng but only
has limited extent. Theion density at the surfaces of the cylindersis seen to be much lower
here than what was seen for the case where the cylinders are touching. Theion densitieson
the external and internal surfaces of the cylindersare about 0.27ng and 0.19n¢, respectively.
Thisis an indication that the orbital-motion-limit was not achieved for current collection,
due to the overall extent of this “two-cylinder” probe. The center-to-center spacing is not
guite large enough for the two sheaths to have separated, so that the two cylinders are in
effect emulating a larger structure, leading to reduced current collection, similar to what
was seen for large cylinder radii in Figure 4.5.

Figures 4.20 and 4.21 pertain to the spacing Ax = 20Ape. Here the potential is seen to
drop down in magnitude to ¢ ~ —150 in between the two cylinders; the el ectric fields from
both cylinders are still strongly coupling. Theion density profile presents various “ bumps’
aswe enter the sheath, which may be dueto the partial filling of some of the velocity space’s
directionsthat were left empty in the single-cylinder case due to angular momentum restric-
tions. Some of these directions are being popul ated by the complex trajectoriesdescribed in
Section 4.3.2. Those“bumps’ may also be attributed, in part, to some momentum inaccura-
cies on some of the convoluted ion trajectories, due to the piecewise-linear approximation

used for the potential structure. The ion acceleration through the sheath still resultsin a
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Figure 4.18: Poisson-Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius ro = Ape, Center-to-center spacing Ax = 10Ape, and normalized bias ¢g =
—320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on theright. lon and Electron density dist. are shown in Figure 4.19.
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Figure 4.19: Poisson-Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.18 (ro = Ape, ®o = —320, Ax = 10Ape). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile oyt = € (nj — ne) shown in Figure 4.18(c).
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Figure 4.20: Poisson-Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius ro = Ape, Center-to-center spacing Ax = 20Ape, and normalized bias ¢g =
—320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on theright. lon and Electron density dist. are shown in Figure 4.21.
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Figure 4.21: Poisson-Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.20 (ro = Ape, ¢o = —320, Ax = 20Ape). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile pout = € (ni —ne) shown in Figure 4.20(c).
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significant drop of the ion density, albeit for a somewhat smaller range of distances from
the cylinder’s surface. The ion density at the surface is still well below the orbital motion
limit: we have nj ~ 0.2ng on the inside surface and n; ~ 0.3ng on the outside surface. We
can therefore still expect a significant current reduction as compared to the OML limit. The
peak in ion density previously seen for Ax = 10Ape has dropped to about n; ~ 0.58ng, as
the sheath has begun to separate into two separate sheaths, which causes some restrictions
of the angular momentum with respect to each cylinder’s axis.

Figures4.22 and 4.23 pertain to the spacing Ax = 40Ape. The magnitude of the potential
in between both cylinders has now dropped significantly, to ¢ ~ —24, which is still suffi-
cient to fully blow away the electrons from a large region formed by the accretion of two
overlapping disk-shaped sheaths. Theion density has similar features as those observed for
AX = 20Ape, i.€., the density has some “bumps’ as we enter the sheath.

Figures 4.24 and 4.25 pertain to the spacing Ax = 80Ape. At this large spacing, the
two cylindrical sheaths have now separated, and the electron density now peaks at above
half of the ambient density in between the two cylinders. We begin to distinguish a net
charge distribution which features two structures resembling the net charge distribution
around a single independent cylinder, except for some remaining strong asymmetry. This
asymmetry remains in spite of the fact that the surface charges located on one cylinder
practically no longer contribute to the electric fields within the sheath around the other
cylinder. Rather than being due to a direct field coupling, the remaining asymmetry is
due to the fact that some velocity space directions in the sheath around one cylinder are
left unpopulated because their corresponding trajectories originate from the surface of the
other cylinder. This effect can be significant because of the focusing effect between the
two sheaths which concentrates trgjectories toward the inside of the sheath even as they

are moved apart significantly. The asymmetries are also amplified by the changes that
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Figure 4.22: Poisson-Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius ro = Ape, Center-to-center spacing Ax = 40Ape, and normalized bias ¢g =
—320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on theright. 1on and Electron density dist. are shown in Figure 4.23.
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Figure 4.23: Poisson-Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.22 (ro = Ape, ¢o = —320, AXx = 40Ape). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile pout = € (ni —ne) shown in Figure 4.22(c).
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Figure 4.24. Poisson-Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius ro = Ape, Center-to-center spacing Ax = 80Ape, and normalized bias ¢g =
—320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles

are shown on theright. lon and Electron density dist. are shown in Figure 4.25.
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Figure 4.25: Poisson-Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.24 (rg = Ape, ¢o = —320, AXx = 80Ape). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile oyt = € (nj — ne) shown in Figure 4.24(c).
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they induce in the population of the orbits that are normally “trapped and unpopul ated”
in the case of an independent cylinder. The ion density profile seen in Figure 4.25 shows
two familiar patterns resembling the ion density profile that we have found for a single
independent cylinder, albeit with some asymmetry. Theion density reaches aval ue of about
0.54ng on the x axis in between the two cylinders. We observe that this is a significantly
lower density than would be observed at such alarge distance from an independent cylinder
(about 0.75np). The asymmetry however causes some increase of the “outside” density
profile, where we observe a“bump”.

Figures 4.26 and 4.27 pertain to the spacing Ax = 160Ape. Now the two sheaths are
definitely not coupling through electric fields as can be seen from the potentia profile
which goes to virtually zero for a distance of amost 100 Debye lengths. The asymmetry
however still remains. It is attributed, as discussed before, to the voids created in the ion
densitiesin one sheath by the shadowing effect of the cylinder in the other sheath, amplified
by its effect on unpopulated orbits.

The observations that we have made concerning the wider separations can be summa-

rized as follows;

1. theion densities on the outermost side of agiven cylinder are somewhat increased by

the potential asymmetries caused by the trgjectory connections among both sheaths;

2. the ion densities on the innermost side of a given cylinder are somewhat decreased

due to the unpopulated trajectories originating from the surface of the other cylinder.

Whilethefirst observation may lead to a decrease of the effective sheath radius as measured
on the outermost side as compared to that of an independent cylinder, the second observa-
tion may cause an increase of the “inner” effective sheath radius. The overall outcome of

these two competing effects is difficult to predict. We will assess it in the following two
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Figure 4.26: Poisson—Vlasov consistent solution for the two-cylinder configuration with
a cylinder radius ro = Ape, center-to-center spacing Ax = 160Ape, and normalized bias
¢o = —320. 2-D solutions are shown on the left, and corresponding x-axis cross-section

profiles are shown on the right. 1on and Electron density dist. are shown in Figure 4.27.
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Figure 4.27: Poisson-Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.26 (ro = Ape, ¢o = —320, AX = 160Ape). These
density profiles constitute the output of the Vlasov solver and are subtracted to form the
output net charge density profile poyt = € (nj — ne) shown in Figure 4.26(c).
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sections based on a more general measure of the sheath dimensions, the effective sheath

area.

4.3.4 Definition of an Effective Sheath Area Concept

In Section 4.2.4.1 we have defined a metric for the effective sheath radius rg consistent
with the asymptotic form of the potentia profile given by (4.13), which applies for the
symmetric sheath structure in the vicinity of around cylinder. We now seek to generalize
the concept of effective sheath radius for use with non-symmetric sheaths, while providing
ametric consistent with that used for round cylinders.

Let usfirst consider a sheath with circular symmetry, for which (4.13) applies. We may
define an effective sheath area A consistent with our previous definition of the effective

sheath radius rg based on the relationship
As = mrg, (4.22)

where we include the area of the cylinder itself as part of the effective sheath area. Simi-
larly, we define

A=nr? and Ag=nr3, (4.23)

where A is the area enclosed by any equipotential circle of radius r, and Ag is the cylin-
der’s cross sectional area. Using (4.22) and (4.23), we re-write the potential profile given

by (4.13) intermsof As, A and Ao:

B In(A/Ao)
¢ = ¢o (1— m) . (4.24)

This asymptotic relationship, relating the potential on any contour level to the area it en-
closes, holdsfrom the surface of the cylinder out to afairly largeradiusr (or areaA). Inthe
case shown in Figure 4.6, the asymptotic approximation is a good approximation until we

reach aradius of about r = 1752pe, or until the enclosed areareaches about A = 17527212,
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We may now generalize (4.24) to any type of sheath structure, by considering the varia-
tion of the potential ¢ asafunction of the area A enclosed within the corresponding contour
level, and finding an appropriate measure of the sheath area As based on some asymptotic
behavior of the ¢-vs-A plot. Aswasjust demonstrated, in the case of the single round cylin-
der, thisdefinition will provide us with a measure for the effective sheath area As consistent
with the effective sheath radius rg that was defined in Section 4.2.4.1, i.e., As = nrsz.

4.3.5 Determination of the Effective Sheath Area of the Two-Cylinder
Configuration

Figures4.28-4.33 graphically illustrate, for a subset of 6 different center-to-center spac-
ings (Ax € [2, 10, 20, 40, 80, 160]), the process that was used to determine an effective sheath
area A, consistent with the definition given in Section 4.3.4. On each of these figures, part
(a) shows a set of equipotential contour levels and part (b) shows a plot of the potential ¢
as a function of the surface area A enclosed by the corresponding contour level. Consis-
tent with the method used for the determination of the effective sheath radius performed
in Section 4.2.4.1, the effective sheath area A is determined by the A-intercept!® of the
extrapolated asymptotic behavior of the ¢-vs-A data. Values for both the single-cylinder
effective sheath area A 1 = nr? and two-cylinder effective sheath area A are givenin Fig-
ures 4.28-4.33.

The results for the smallest spacing, Ax = 2, are shown in Figure 4.28. The contours
quickly become circular as the potential drops from the cylinders surfaces. As a conse-
guence, the ¢-vs-A data shown in Figure 4.28(b) almost immediately follows alogarithmic
pattern (which shows as a linear variation on this semi-logarithmic scale), just like would
be expected of a single-cylinder structure. Thislogarithmic relationship is consistent with

anegligible effect of the space charge in the vicinity of the two-cylinder structure, and is

5The A-intercept is defined as the value of A at which the linear graph intersects the A axis.
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Figure 4.28: Potential contour levels (a) along with a plot of the contour level as afunction
of the areaenclosed by agiven contour (b), for two cylinders with a center-to-center spacing
AX = 2Ape. The cylinder radiusis ro = Ape and both cylinders are biased at a normalized
potential ¢po = —320.
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Figure 4.29: Potential contour levels (a) along with a plot of the contour level as afunction
of the areaenclosed by agiven contour (b), for two cylinders with a center-to-center spacing
AX = 10Ape. The cylinder radiusisrg = Ape and both cylinders are biased at a normalized
potential ¢po = —320.
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Figure 4.30: Potential contour levels (a) along with a plot of the contour level as afunction
of the areaenclosed by agiven contour (b), for two cylinders with a center-to-center spacing
AX = 20Ape. The cylinder radiusisrg = Ape and both cylinders are biased at a normalized
potential ¢po = —320.
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Figure 4.31: Potential contour levels (a) along with a plot of the contour level as afunction
of the areaenclosed by agiven contour (b), for two cylinderswith a center-to-center spacing
AX = 40Ape. The cylinder radiusisrg = Ape and both cylinders are biased at a normalized
potential ¢o = —320.
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Figure 4.32: Potential contour levels (a) along with a plot of the contour level as afunction
of the areaenclosed by agiven contour (b), for two cylinders with a center-to-center spacing
AX = 80Ape. The cylinder radiusisrg = Ape and both cylinders are biased at a normalized
potential ¢po = —320.
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followed by a “tail” attributed to space charge effects, as was seen in the single-cylinder
case. The effective sheath area corresponding to the graphed asymptote is larger than that
of a single cylinder, for which the ¢-vs-A would have fallen logarithmically immediately
starting at the cylinder’s surface. In the present case, the physical extent of the touching
cylindersis sufficiently large to allow them to hold alarger total surface charge than asin-
gle cylinder would at that same bias potential, resulting in a 55% increase of the effective

sheath size over that of asingle cylinder:

As  1744.823,

= ~ 1.55. 4.25
Asi 1128613, (4-25)

The effective sheath area is however smaller than the combined sheath area of two inde-
pendent cylinders.

Upon increasing the center-to-center spacing to Ax = 10, as shown in Figure 4.29, the
semilog graph of the ¢-vs-A data now shows two distinct linear regions, indicated by sep-
arate linear “best fits’. Thefirst linear region (on the left) corresponds to the set of circular
contour levelsenclosing each cylinder separately. The slope associated with thisfirst region
isnot as steep asthat which would be expected of an independent cylinder, and is consistent
with the observed lower amount of normalized surface charge Q,, held separately by each
of the cylinders as compared with the surface charge held by an independent cylinder.6
This lower charge can be attributed to a “virtual” effective sheath edge enclosing an area
A; virtual (Shown on the figure to be further out on the right of the graph) that is much larger
than the effective sheath area of an independent cylinder. The fact that each cylinder holds
alower amount of surface charge than an independent cylinder is consistent with the large

area As virtual , @S is evidenced by the following equation applicable to coaxial capacitors:

- do
Qn1= 4”|n(As,1/Ao)’

18Note that even though the surface charge Q, = 1052.5 shown in Figure 4.29 is larger than the surface
charge held by an independent cylinder Q , 1 = 683.4, theamount of charge held individually by each cylinder,
$Qn =526.25, islower.

(4.26)
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where Qp 1 is the normalized surface charge held by acylinder and Ag = nrg isthe single-
cylinder area. The expression given by (4.26) clearly shows that the surface charge Qn 1
goes down with increasing sheath area As.

The leftmost linear region extends until we approach a critical point where the equipo-
tential contours of both cylinders connect together to form asingle contiguous contour. The
¢-vs-A data then rapidly switches to the rightmost linear region corresponding to the set of
circular contour levels enclosing both cylinders. The effective sheath area of the systemis
defined as the A-intercept of the rightmost linear fit. In this particular case, it turns out that
the sheath area As is amost exactly equal to the combined sheath areas of two independent
cylinders, i.e., As ~ 2As 1.

Space charge effects can be seen at two different locationsin Figure 4.29. Thefirst one
occurs near the inflection point between both linear regimes, where the ¢-vs-A datais seen
to momentarily drop below the leftmost linear best-fit before it starts growing faster toward
the rightmost linear best-fit. This momentary slope reduction is attributed to the shielding
effect of space charge, which is having a detectabl e effect because of the sufficient spacing
between the cylinders, where some space charge exists. Beyond the turning point of this
graph, the effect of space charge becomes negligible again for alarge portion of this outer
sheath, until we reach beyond an area A ~ 1000156, where we notice the typical tail-like
behavior of the potential associated with space charge shielding.

For a center-to-center spacing of Ax = 20Ape, We still observe two linear regimes, as
seen in Figure 4.30. The inflection point between both linear regions now occurs at amuch
larger area, in the vicinity of A = 500&58. The system capacitance has increased such that

the total amount of charge held by both cylinders is now amost equal to that held by two

completely independent cylinders, i.e., 2821 = 0.94. Thisexplainswhy the slope of thefirst

linear region has gotten closer to the dashed line which appliesto 2 fully independent cylin-

179



ders. One might observe that the effective area As is essentially unchanged from that seen
in the case where Ax = 10Ape, in spite of the significant increase of the surface charge held
by the cylinders. This apparent contradiction is resolved when one considers the “virtual”
effective sheath area A yirua , Which relates to the potential drop in close proximity of each
cylinder, and ismuch lower for Ax = 20Ape as compared to the Ax = 10Ape Case, consistent
with the observed increase in capacitance and with (4.26) as applied to each cylinder taken
separately.

The results for a center-to-center spacing of Ax = 40Ape are shown in Figure 4.31.

Interestingly, the total sheath area is now a smaller fraction of the independent-cylinder

sheath area 5>~ = 0.61. Thisis consistent with the fact that the system capacitance has

gone above the combined capacitance of two single independent cylinders, i.e., %2’1 =
1.11. Thisreduced sheath area is explained by the ion density increase on the outermost
side of each cylinder, as explained earlier in Section 4.3.3.

The results shown in Figures 4.32 and 4.33, which apply to Ax = 80Ape and Ax =
160Ape, correspond to a regime where both sheaths have become “ Poisson-uncoupled"
while still being “Vlasov-coupled”. What we mean by this is that the charges present
in one sheath do not significantly contribute to the fields in the other sheath (*Poisson-
uncoupled”), but shadow effects and asymmetry-induced effects on unpopulated orbits
(discussed in Section 4.3.3) create connections between both sheaths (*“V1asov-coupled”).
Results for both of these spacings show that in both cases the cylinders hold a total surface
charge dightly above the surface charge that would be held by two independent cylinders,
and that their total sheath areais correspondingly slightly smaller than the total sheath area

created by two independent cylinders.
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Figure 4.34: Effective sheath area ratio as a function of the center-to-center spacing of
two parallel cylinders. The results shown here apply to the case of two cylinders of radius
ro = Ape With normalized bias ¢o = —320. The effective sheath arearatio istheratio of the
two-cylinder sheath area to the single-cylinder sheath area.

4.3.6 Parametric Analysis of the Sheath Structure

Using the definitions given in the previous section, we can now consider an analysis of
the effects of center-to-center spacing on the effective sheath area and total surface charge
held by the cylinders.

First we define the effective sheath area ratio as the ratio of the total effective sheath
area As of a two-cylinder system to the effective sheath area A 1 of a single independent
cylinder, i.e.,

Ra = —> . (4.27)

Figure 4.34 depicts the variation of the effective sheath area ratio Ra, as a function of the
center-to-center spacing Ax of the two parallel cylinders.

The leftmost data point in Figure 4.34 corresponds to a spacing of AX = 2Ape and
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applies to “touching” cylinders since they both have aradius ro = Ape. Ra, is seen to start
at about 1.55 when the cylindersare touching, indicating atotal sheath area55% larger than
that of asingle cylinder. For a smaller cylinder radius, we would expect to obtain Ra, = 1
when the cylinders are touching because the full extent of the two touching cylinderswould
be small enough for the shadowing effect to be negligible on the density of outward-moving
ions throughout the sheath (see a discussion on thistopic in Section 4.2.5).

The ratio Ra, rises above 2.0 for spacings of Ax = 5Ape and Ax = 20Ape, indicating
that the effective sheath area is on par with the sheath area expected of two independent
cylinders. This represents an optimal spacing for purposes of maximizing the total sheath
area, asisdesired for the high-energy particle precipitation application. Theratio Ra, then
drops sharply to a minimum value at a spacing of about Ax = 40Ape, and goes back up
relatively quickly until the spacing reaches Ax = 60Ape, beyond which it follows a slow
upward slope for the remainder of the graph. It is seen that the total effective sheath area
has only reached about 1.5 times the sheath area of a single independent cylinder at a
spacing of Ax = 200Ape, Whereas we expect it to reach aratio Ra, = 2.0 when the spacing
is sufficient for the two sheaths to be fully independent of each other. An extrapolation of
alinear fit performed on this slow increase indicates that “full independence” would only
be reached at an approximate spacing Ax ~ 660Ape, Which corresponds to about 35 times
the independent cylinder sheath radius of Rg ~ 19Ape.

An alternative measure of the sheath dimensions can be obtained by considering the
“outward” effective sheath radius, which is measured from the center of the rightmost
cylinder toward increasing values of x on the x axis. This radiusis determined based on the
cross section of the potential, consistent with the effective sheath concept used for single
cylinders. Figure 4.35 shows a plot of the ratio of the outward effective sheath radius to

the effective sheath radius of a single independent cylinder as a function of the center-to-

182
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Figure 4.35: Ratio of the outward sheath radius to the single independent cylinder sheath
radiusrs 1 asafunction of the center-to-center spacing of two parallel cylinders. Theresults
shown here apply to the case of two cylinders of radius ro = Ape With normalized bias
¢ = —320.

center spacing. It shows, as expected, an enhancement of the sheath radius for very small
spacings, with an optimal spacing of Ax = 5Ape. The minimum effective sheath radius is
obtained for aspacing Ax = 40Ape, aresult which coincides with the spacing corresponding
to the minimum effective sheath area, as seen in Figure 4.34. The outward effective sheath
radius is then seen to slowly increase with increasing spacing, and is expected to reach the
independent sheath radius at a sufficiently large spacing (ratio of 1 on the graph).

The surface charge ratio is shown in Figure 4.36. Thisratio is defined as the ratio of
the total surface charge held by both cylinders to the surface charge held by a single inde-
pendent cylinder. As discussed before, thinner cylinders allowing reduced spacings would
carry the same amount of charge as a single thin cylinder when approached sufficiently
close to one another. Since here we are considering relatively large cylinders with a ra

dius of one Debye length (ro = Ape), they cannot be brought sufficiently close together to

183



Surface Charge Ratio
T T T T T T T T

2.2F .

1.8 7

1.4 .

1.2 7
& | | | | | | | | |
20 40 60 80 100 120 140 160 180 200

Center-to—Center Spacing, A x/kDe

Ratio of Surf. Charge to Single-Wire Surf. Charge

Figure 4.36: Ratio of the total surface charge on both cylinders to the surface charge held
by a single independent cylinder. The results shown here apply to the case of two cylinders
of radius rop = Ape With normalized bias ¢g = —320.

achieve as low a capacitance as a single wire. Thisiswhy the graph shown in Figure 4.36
starts above 1.0, at aratio of about 1.15 for a spacing Ax = 2Ape. As the cylinders are
spaced apart, their combined capacitance increases so that the amount of charge they hold
grows to a value of about 2.25 times the single-wire surface charge at Ax = 40Ape. Thisis
actually more than two independent cylinders could hold (2.0), and is consistent with the
observed reduced effective sheath area seen in Figure 4.34 as compared to the total sheath
area of two independent cylinders. Thetota charge then slowly ramps down as the spacing
increases beyond Ax = 40Ape, and the graphed ratio should eventually reach 2.0.

Figure 4.37 is an aternative representation of the information shown in Figure 4.34.
It shows the “equivalent bias potential” for a single cylinder. This is the bias potential
required on asingle cylinder to generate an effective sheath area equal to that generated by

our two-cylinder system biased at oo = —320T,. It is seen that one could create a sheath as
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Figure 4.37: Equivalent bias potential of a single cylinder as a function of the center-to-
center spacing of two parallél cylinders. The results shown here apply to the case of two
cylindersof radiusrg = Ape With normalized bias ¢g = —320. The equivalent bias potential
is that which would be necessary for a single cylinder to yield the same sheath area as the
combination of the two cylinders.

large asthat which is created by asingle cylinder of radius ro = Ape biased at ¢g = —570T,
by using two cylinders of equal radius ro = Ape biased at ¢g = —320T, and spaced 5Ape Or
20Ape apart.

Figure 4.38 is another aternative representation of the same information. 1t shows the
“equivalent radius’ of the two-cylinder system as a function of center-to-center spacing.
Thisisthe cylinder radius rg required of asingle cylinder biased at the same bias potential
¢o = —320T, to generate the same equivalent sheath area as that generated by the two-
cylinder system. At the optimal spacings Ax = 5Ape and Ax = 20Ape, the equivalent radius

isabout 2.85Ape.
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T T T T T T T T

=
©
T

=
o
T

!A
N
T

> | | | | | | |
20 40 60 80 100 120 140 160 180 200
Center—to—Center Spacing, A x /kDe

Figure 4.38: Equivalent radius of a single cylinder as a function of the center-to-center
spacing of two parallel cylinders. The results shown here apply to the case of two cylinders
of radius ro = Ape With normalized bias potential ¢g = —320. The equivalent bias potential
is that which would be necessary for a single cylinder to yield the same sheath area as the
combination of the two cylinders.

4.3.7 Interference Effect on Collected Current

Figure 4.39 depicts the variation of collected ion current as a function of center-to-
center spacing. The graph is normalized to the current that would be collected by two
independent cylinders, lingep. IN the present case, which involves cylinderswith arelatively
small radius ro = Ape, lindep IS Very close to the orbital motion limit, as can be seen in
Figure 4.5.

When the cylinders are touching (Ax = 24pe), the current ratio | /lingep is about 0.79.
Thisreduced ratio is attributable primarily to the concave structure formed by the two cylin-
ders, which prevents many incoming directions from reaching the facing internal surfaces
of the two cylinders. In fact, one can approximate the current that should be collected

based on the current entering a convex envelope enclosing both cylinders, asis shown in
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Figure 4.39: Current ratio as a function of center-to-center spacing for the two-cylinder
configuration. The current ratio is defined as the ratio of the total collected current to the
current that would be collected by two independent cylinders.

Figure 4.40. If we assume that the overall two-cylinder structure is still sufficiently small
for orbital motion limit collection to apply, we can compute the expected collected cur-
rent based on the ratio of the convex envelope’s perimeter to the concave perimeter [18] as

follows:
convex perimeter  4rg+27rg

- = ~ 0.82. (4.28)
concave perimeter 4rro

lexpected = loml <

This value (0.82) is just above our result of 0.79. The remaining discrepancy can be at-
tributed to a mild departure from the OML limit due to the overall size of the collecting
structure. This is supported by the fact that the ion density at the external surface of the
cylindersis dlightly lower than half the ambient density, as seen on the x axis cross-section
profile of Figure 4.17(b).

Asthe cylinder spacing is increased, the collected ion current is seen to drop to amin-

imum of half of the independent cylinder current near an optimal spacing of Ax = 10Ape.
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Figure 4.40: Illustration of the convex envelope surrounding both cylinders. The current
collection to the concave portion of the perimeter islimited to some directions.

The current then rises sharply at a spacing Ax = 30Ape, When two separate sheaths have be-
gun to form. The remainder of the graph shows arather steady increase of collected current
with increasing spacing. This steady increase occurs once the sheaths have completely sep-
arated and are primarily coupled through the empty ion orbits connecting both cylinders
surfaces. The observed current increase is attributed to the gradual reduction of the number
of connected ion orbits, which are not populated and therefore do not contribute current at
the cylinders' surfaces. It isinteresting to note that a similar observation was made in Sec-
tion 3.6 concerning the experimentally measured current collected by dlotted tape samples.
The correlation between the experimentally observed decrease in the collection efficiency
of the perpendicular dotted tapes with increasing gap widths and our simulation results
indicate that the gap spacings sampled during our experiments were all located on the left

of the expected minimum point on the current-vs-spacing graph.
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4.4 Solid Tape Cylinder in Stationary Plasma: Current
Collection

The solid tape geometry isof interest primarily for the spacecraft propul sion application
of electrodynamic tethers. Thisgeometry presents afew advantages over that of the circular

cylinder wire:

¢ the orbital-motion-limited regime has been shown to hold for tape widths twice that

of round cylinders, resulting in amaximum OML current collection 27% higher [11];
e atape geometry is both lighter and more flexible [11];

e awider tape structure would allow for improved collision survivability with orbiting

debris.

In this section we consider the current collection capability of the solid tape geometry.
The calculations were performed for electron-attracting bias potentials, but the normalized
collected currents are equally applicable to ion-attracting bias potentials. In the following,
we first make some comparisons with theoretical predictions given by Sanmartin et al [11]
and Estes and Sanmartin [12], and then compare our simulation results with experimental
data shown in Chapter 3.

4.4.1 Equivalent Cylinder Radius and Collected Current: Theoretical
Comparisons

Using asymptotic analyses for both the circular cylinder and tape cylinder, Sanmartin
and Estes[11] haveidentified asimplerelationship between the tape width w and equivalent
circular cylinder radiusReq, given by Req = ¥ for sufficiently thin tapes where the thickness
does not play asignificant role. Their asymptotic analysis showsthat, at a sufficiently large

distance from the surface of a thin tape of width w but well within the Laplace-potential
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region,'’ the potential structure variesidentically asin the vicinity of acircular cylinder of
radiusReq = %, that is,

0 ~ g {1— allnRL] , (4.29)
eq

where o = g—;‘t isafunction of the normalized linear capacitance C,, = Qn/ o, and Q,, isthe

normalized linear charge held at the surface of the cylinder. Recall that we had identified

the same asymptotic form in (4.13) based on our numerical simulations and had chosen to

_ 1
In(rs/Req)

For a given bias potential ¢o, a1 sSimply relates to the normalized linear charge Qn

write oy interms of an effective sheath radius rs, o =

located on the cylinder’s surface. Thus, the identification process that has led to the result
Req = % Obtained by Sanmartin et al [11] is equivalent to finding the cylinder radius Req
that would hold the same amount of linear charge Q,, as a solid tape of width w for agiven
bias potentia ¢p.

We may therefore independently determine an equivalent radius based on equal linear
charge Q, that is equivalent to the method used by Sanmartin et al [11], but is based on our
consistent kinetic simulation results for tape and circular cylinder collectors. Figure 4.41
shows a comparison between the equal-charge probe radius as determined from our simu-
lation results and the equivalent probe radius predicted by Sanmartin et al [11]. These sSim-
ulationswere performed with abias ¢g = 300 and tape widths spanning from 1 to 50 Debye
lengths. Our results show a somewhat larger equivalent radius than predicted by Sanmartin
etal [11]. A best-fit linear relationship extracted from our simulation data and shown on the
legend indicates an equivalent radius Req ~ 0.29w. The small discrepancy between these
resultsis most likely due to the approximations used by Sanmartin and Estes[11] in calcu-

lating the electron space charge using an asymptotic approach that does not provide afully

17For a cylinder (of any cross-section) biased at a large potential, we define the Laplace-potential region
as the region in the immediate vicinity of the cylinder in which space charge effects do not have significant
effects on the potential profile.
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Equivalent Probe Radius (Equal Cylinder Charge) vs Tape Width
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Figure4.41: Equivalent circular probe radius as afunction of width for a solid tape electron
collector biased at ¢g = VO_Vp = 300. The equivalent probe radius Req is computed based

on equal surface charge. Results are compared against the theoretical prediction Req =
w/4[11].

self-consistent Poisson—Vlasov solution. In fact, the relatively close agreement between
our self-consistent 2-D simulation and their asymptotic calculation confirms the validity of
Sanmartin and Estes’ asymptotic analysis as afirst-order tool.

The main parameter of interest for propulsion applicationsis the efficiency of electron
collection as a function of tape width. As we have seen in Figure 4.5, the efficiency of
current collection, with respect to the orbital motion limit, decreases with the radius of a
round cylinder. In Figure 4.42, we show the results of asimilar evaluation of the current ra-
tiol /lom asafunction of solid tape width. Asexpected, the current ratio is seen to decrease
with increasing tape width, a fact that is attributed to the existence of unpopulated orbits
bounded on both ends by the tape’s surface (same asfor circular cylinders). Our 2-D simu-
lation resultsfor the tape, performed for abias potential ¢g = 300, are compared against the

resultsof a1-D simulation of acircular cylinder with equivalent radius Req = 0.29w + 0.09.
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Figure 4.42: Current ratio | /1oy as a function of tape width for a solid tape biased at
0o = VOT_ Yo _ 300. KiPS-2D simulation resultsfor the tape are compared against KiPS-1D

simulation results based on the equal-charge equivalent radius determined in Figure 4.41.

The comparison clearly shows that a tape current collector has a lesser current-collection
efficiency than its equal-charge circular counterpart. From the same graph, one finds that
the maximum width of a thin tape for the OML current expression to hold within about
1% is approximately Wmax ~ 2.5Ape, Which isjust shy of the maximum width predicted by

Sanmartin and Estes[11] at this bias potential. 18

4.4.2 Collected Current: Comparisons with Experimental Results

Here we consider comparisons of our simulation results with some of the experimental
data pertaining to solid tapes that were shown in Chapter 3.

Figure 4.43 showsaplot of the current ratio | /o, Similar to that shown in Figure 4.42
but pertaining to a lower bias potential, ¢g = 100. Our simulation results are compared

against three different sets of experimental data which were obtained at three distances

1A ccording to Sanmartin and Estes. [11, Figure 6], Wmax = 4Rmax ~ 4 X 0.75Ape = 3Ape.
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Figure4.43: Simulated current ratio | /1oy asafunction of tapewidth for asolid tape biased
a ¢o = V"{EV" = 100, along with experimental data. Simulations were done assuming a
thin tape with finite thickness h = 0.25Ape. Simulation results are compared against our
experimental results (detailed in Chapter 3) obtained for a solid tape at three test locations
from the plasma source: 75 cm (mostly flowing plasma), 160 cm and 300 cm (mostly
stationary plasma). Note that the experimental datawas calibrated using the round cylinder
reference probe data instead of 1oy, in order to remove any flow enhancement effects for

this comparison.

from a high-speed plasma source (see details in Chapter 3): 75 cm, 160 cm, and 300cm.
Since these experiments were performed in a flowing plasma, we have attempted to “nor-
malize out” any flow enhancement factors in order to compare with our stationary simu-
lation results. Thus, instead of being normalized to the orbital-motion-limit current I gy,
the experimental data curves shown in Figure 4.43 are normalized to the reference cylinder
data. In other words, we have plotted the following ratio in Figure 4.43 for the experimental

data curves:

| |
Ratio = tape/ tape,thermal _ ( 430)
Irefcyl/ Irefcyl ;thermal

Note that the reference cylinder is sufficiently thin to collect current at the OML level in a
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stationary plasma.

We observe a general qualitative agreement of the data with our simulation results at
al 3 locations (75 cm, 160 cm, and 300 cm). We note that the experimental error in the
determination of the ambient density and electron temperature could explain the existing
discrepancies. Error boxes are shown in Figure 4.43 for the normalized experimental data.

The sizes of these error boxes are determined based on three types of error sources:

1. current and voltage measurement errors on the tape samples themselves, which are

estimated to amount to less than 1%;

2. systematic errors associated with the finite accuracy of the plasma parameters used
as part of the normalization process. The plasma density ng and temperature T,
obtained from our Langmuir Probe sweeps, were estimated to have 8% and 5% ac-

curacy, respectively, as discussed in Appendix F;

3. asystematic error associated with the finite accuracy of thetotal tape sample el ectron-
collecting area Ap, which is estimated to be on the order of 6%, similiar to the error

on the Langmuir probe area discussed in Appendix F.

S0, using the 8% and 5% error estimates for density and temperature, we can infer a 6.5%
error on the Debye length, since Ape < \/'Im. Now, since lgy is proportional to ng x
Ap x vV, whereV isthe applied tether voltage and A, is the total area of the tape sample,
the 1% error on voltage measurements and 6% error on tape area A, combine with the 8%
error on density to yield for lom an error of 8% + 6% + 0.5 1% = 14.5%. Therefore, in
Figure 4.43, the error boxes surrounding the normalized data points have a relative height
of 1%+14.5%=15.5%, corresponding to the sum of the error on measured current | and
the error on Iy, and a relative width of 6.5% corresponding to the relative error on the

normalized width w/Ape, Where we assume that the bulk of the error is contributed by
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the error on Ape While the actual widths w have a much better precision due to use of an
electrical discharge machining process for tape sample fabrication.

Having first observed the dependence of collected current on tape width, we now con-
sider the complete current characteristics (Current vs Voltage) of severa tape configura-
tions, which we compare against our experimental results. Figures 4.44 through 4.46 show
the simulation/experiment comparisons pertaining to the three sample positions that were
tested: 75 cm, 160 cm and 300 cm from the plasma source (see Chapter 3 for details).

Only the parallel tape data were used, since they featured less flow effects than the
perpendicular tape data and were therefore more appropriate for comparison with our sta-
tionary plasma computer simulations. It should be emphasized that the experimental data
were processed in such a way as to remove the remaining flow effects. This was done
by multiplying all normalized tape current data by the ratio of the normalized reference
cylinder data lrefcyi / Irefcyl therma tO the theoretical normalized OML current lony:

lomi (V)
Irefcyl (V ) / Irefcyl ,thermal (V ) .

Iwithout flow (V) = with flow (V) X (4.31)

Thisis thought to remove much of the flow-induced current enhancement, since the refer-
ence cylinder experiences asimilar enhancement. However, we must still keep in mind that
some of the flow enhancement could still be present in the experimental data, especially at
the closest range of 75 cm, since the correction above is only approximate. At the farthest
range however (300 cm) we have determined that the plasma was mostly stationary, and
therefore the normalization performed by (4.31) only had a minor effect.

The simulation and experimental results shown in Figures 4.44 through 4.46 are in good
agreement for the widest tape configuration, whereas for the medium and narrow tapes the
experimental datais less efficient than predicted by our simulations. The reduction of the
current collection efficiency caused by the screw attachments is thought to be the most

likely cause for this discrepancy, since the fraction of the collecting area contributed by the
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Figure 4.44: Normalized current characteristics of solid tapes. comparison of simulation
resultswith experimental dataobtained at 75 cm. Three different tape widths are compared.
Tape widths w and thicknesses h are indicated in terms of the local Debye length.

screws is significantly more important in the case of a narrow tape than it isin the case of
a wide tape. Note that the screw areas were accounted for in the calculation of the total

sample area, as discussed in Chapter 3.

4.5 Flow Effects on lon-Attracting Round Cylinder

We now consider the effects of plasma flow on the sheath structure and current collec-
tion of ion-attracting round cylinders. We will consider flow speeds U that are very small
with respect to the electron thermal velocity Vipe, i.€.,, U << Vihe. Therefore, the electrons
are essentially a stationary species that only respond to the asymmetries in the potential
structure. Those asymmetries are introduced by the ions, whose thermal velocity is on the
order or even slower than the flow speed U.

Throughout this section, we designate the flow speed using three alternate notations:
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Figure 4.45: Normalized current characteristics of solid tapes. comparison of simulation
results with experimental data obtained at 160 cm. Three different tape widths are com-
pared. Tape widthsw and thicknesses h are indicated in terms of the local Debye length.
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¢ theflow velocity U, givenin m/s,

o theflow energy Ue,, givenin eV, which relates to the velocity U through the expres-
sion
~ miU 2

=— 4.32
ev 2e7 (3)

where m; isthe ion atomic mass, ande = 1.6 x 10719 C;

e the ion speed ratio Sy, which is the ratio of the flow velocity to the ion thermal

U Uey
Sy= — =& 433
d Vthi Ti (433)

where T; is the ion temperature in eV. The ratio Sy is used in section 4.5.3 when

velocity, given by

making comparisons with a publication using that notation.

In the following, we first describe the trapped orbit criteria, and the various treatments
of electrons that were used here. In Section 4.5.3, we perform a few validations with
the simulation results obtained by Xu [17]. Finally, in Section 4.5.4, we perform a detailed
analysis of theimpact of theionospheric flow on the sheath structure and ion current collec-

tion at an altitude that is representative of the high-energy particle precipitation application.
4.5.1 Criteria for Trapped Orbits

The asymmetry introduced by the plasma flow allows for the existence of some orbits
of increased complexity, although not quite as complex as in the two-cylinder case. To
accommodate for these relatively complex trajectories, we have set the maximum number
of orbits to Mg, = 3, which corresponds to a maximum angular displacement of 67 (see
definition for Mg, in Section 2.4.2.2) beyond which a trgjectory will be deemed trapped.
A maximum number of radial oscillations was not necessary for these simulations, since it

would be redundant.
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45.2 Treatment of Electrons

For similar reasons as in the case of the two-cylinder electron-repelling configuration
described in Section 4.3.1, the treatment of el ectrons can be greatly simplified in the present
case, because the electron population is not effectively drifting. Since in the flowing case
the potential can get slightly positive at some locations (on the ram side of the cylinder)
even when applying a negative bias potential, an accurate collisionless treatment for elec-
tronsthat provides excellent accuracy is based on thefollowing “ clipped” Boltzmann equa-
tion:

Yy v<
e = {noexpTe M (4.34)

No V > 0.

This treatment is actually exact for a stationary species if all collisionless orbits are con-
nected to the background plasma, which isthe case here because the electrons are repel led,
implying that no electron orbit intersects the probe for all practical purposes. Using a“full
Boltzmann” approximation for electrons, i.e., setting ne = ng exp\T’—e for both negative (re-
pelling) and positive (attracting) potentials, is also appropriate as long as potentials do not
significantly exceed zero. Doing so actually provides a feedback mechanism in the simu-
lation which improves the convergence rate, and does not unduly impact the quality of the
solution as long as the final potential profile does not significantly exceed zero.

Three different types of treatments were used to compute the electron density in the

simulations presented in Section 4.5.3. They are:

Boltzmann Electrons This is the same approximation as was used by Xu [17], and is

designated above as the “full Boltzmann” approximation.

“Clipped” Boltzmann Electrons This approximation is appropriate for low speeds only.
It does not alow for any negative-energy electrons, and therefore could not be used

for some combinations of high-voltage and/or high-speed settings due to numerical
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stability issues.

Kinetic Electrons Thisis the same kinetic treatment asis used for the ions, and involves
tracking thousands of trgjectoriesin order to compute the density at a given interro-

gation point.

The last two methods, the “clipped” Boltzmann and kinetic electrons, have not reached
convergence for all combinations of voltage and speed settings, due to the non-smoothness
of the electrons' Vlasov Jacobian matrix. For this reason and due also to time constraints,
some of the graphs shown throughout Section 4.5.3 only contain simulation data for a
subset of the three electron treatments just mentionned. All data points shown, however,

are based on adequately converged, self-consistent simulations.
4.5.3 Validation with Existing Simulation Results

Before using our model for the analysis of our application of interest, we consider some
comparisons with simulations performed by Xu [17]. lon density profiles and collected ion

current are compared below.

45.3.1 lon Density Profile Validations

Figures 4.47 and 4.48 illustrate the cross-sectional ion density profiles obtained for
various flow speeds along the axis of plasma flow (x axis) for a round conductive cylinder
(ro = Ape) biased at a normalized potential ¢o = —25. Four different flow speed settings
are shown corresponding to speed ratiosSq = 0.5, 1, 3, and 6 or, alternatively, flow energies
Uey = 0.25Tg, Te, 9T and 36Te.

The agreement between our results and Xu's results [17] is very good, except perhaps
for some minor discrepancies on the ram side of the cylinders at low speed (S4 = 0.5 and

1).
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lon density Profile on X axis (rO:kDe, ¢0:—25, Sd:0.5)
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Figure 4.47: lon normalized density profile along the central axis of a round conductive
cylinder (ro = Ape) biased at a potential of —25T, and immersed in a plasma flowing at
speed ratios Sq = 0.5 and Sy = 1, with corresponding flow energies of Ug, = 0.25T, and
Ues = Te. Results are compared against the simulation results published by Xu [17], which
used the Boltzmann approximation for the electrons.
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lon density Profile on X axis (rosze, ¢0=—25, Sd=3)
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Figure 4.48: lon normalized density profile along the central axis of a round conductive
cylinder (ro = Ape) biased at a potential of —25T, and immersed in a plasma flowing at
speed ratios Sq = 3 and Sy = 6, with corresponding flow energies of Ug, = 9T, and Ug, =
36Te. Results are compared against the simulation results published by Xu [17], which
used the Boltzmann approximation for the electrons.
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The ion density on the ram-side surface of the cylinder is seen to stay close to the
ambient density up to arelatively close distance from the cylinder. The density then drops
to a value which, for sufficiently large flow speeds (Sq = 3 and Sy = 6), is larger than the
orbital-motion limit of half the ambient density. Thisis of course attributable to the average
drift velocity of the ion population. In the limit of very high speeds, practically all of the
ion population would be moving to the right at a uniform velocity and would “ram” the
cylinder without having been deflected by its surrounding electric fields, trandating into a
density equal to the ambient density on the ram-side of the cylinder’s surface.

On the wake side of the cylinder, the depletion of ions due to plasma flow is seen to
occur very quickly: the wake-side surface density has already dropped to around one-fifth
of the ambient density for a speed ratio Sq4 = 0.5, and is zero for the three other speed

settings.
45.3.2 lon Current Collection Validations

Figures 4.49 and 4.50 show some comparisons of the ion current dependence on the
flow speed ratio Sy for various probe radii: ro = 0.2Ape, Ape, 5Ape and 10Ape. Agree-
ment between our simulation data and Xu's results [17] is very good. Our results show a
similar departure from Godard and Laframboise’s symmetric-profile as was observed by
Xu at intermediate values of the speed ratio. However, they indicate a less pronounced
dip of the current at the critical speed corresponding to the minimum current collection.
This observation is most obvious on the lower graph in Figure 4.49 at the highest bias po-
tential setting, ¢o = —25: Xu’'s data goes down to a minimum of 4.4, while our KiPS-2D
simulation results do not go much lower than 5.0.

The non-monotonic nature of these current curves can be explained by the combination
of two opposite phenomena: the decrease of the wake-side current and the increase of the

ram-side current. As the flow speed is increased from zero, the wake-side density drops
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Normalized lon Current vs lon Speed Ratio, r0=0.2 kDe
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Figure 4.49: Collected ion current as a function of the ion speed ratio Sy, for around con-
ductive cylinder with probe radii ro = 0.2Ape and ro = Ape, immersed in a flowing plasma
with Ty = Te. KiPS-2D results for three different bias potentials (po = —5, —15, —25) are
compared with simulation results published by Xu [17] (asymmetric profile, kinetic code)
and Godard and Laframboise [30] (symmetric sheath approximation).
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Normalized lon Current vs lon Speed Ratio, r0=5 kDe
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Figure 4.50: Collected ion current as a function of the ion speed ratio Sy, for around con-
ductive cylinder with probe radii ro = 5Ape and ro = 10Ape, immersed in aflowing plasma
with Ty = Te. KiPS-2D results for three different bias potentials (po = —5, —15, —25) are
compared with simulation results published by Xu [17] (asymmetric profile, kinetic code)
and Godard and Laframboise [30] (symmetric sheath approximation).
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dramatically, as was seen on the ion density profiles shown in Figures 4.47 and 4.48. The
relatively slow increase in ram-side current collection initially does not suffice to counter
the decrease in wake-side current, which leadsto a net decrease of the collected current. As
the plasma speed increases further, the wake-side current eventually reaches zero. Beyond
this point, the net current starts increasing again because its sole contribution is now the

ram-side current, which increases with the incoming beam vel ocity.
4.5.4 lonospheric Flow Effects at High Altitudes (H=1500 km)

For the energetic particle precipitation application (also known as the remediation of
radiation belts), we are primarily interested in whether or not we should expect the orbital
velocity of a tether, which can be interpreted as plasma flow as seen from the frame of
reference of the tether, to affect the overall sheath dimensions and ion current collection
properties as determined for a stationary plasma in Section 4.2. For the following study,
wewill consider arepresentative atitude of 1500 km for the operation of an electrodynamic
tether as a scattering device. If the tether were located on an equatoria orbit, placing it at
this particular altitude would allow for remediation of radiation beltsin the vicinity of the

L = 1.24 magnetic field shell 1°.

45.4.1 Flow Energy at Altitude of Interest
At an altitude of 1500 km, Hydrogen is the dominant ion species. If we assume a

circular orbit, and further assume that the orbital velocity U = 7113 m/s [80] completely

translates into plasma motion relative to the spacecraft,?° we may compute the flow energy

19The L-shell level on the equatorial plane is computed as the ratio of the distance from the Earth’s center
to the Earth'sradius. In this case, L = 1500KmL8370km ., 7 54,

2This is not rigorously accurate, since the ionosphere rotates around the Earth in the opposite direction,
somewhat reducing the net relative velocity.
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Ue, to be

2
Ugy = mz'—‘é — 0.265 eV, (4.35)

where we have used Hydrogen's atomic mass m; = 1.67 x 10~27 kg, the orbital velocity
U = 7113 m/s, and the constant e = 1.6 x 10~19 JeV. Since we assume for the electron and
ion temperature T = To = 0.4 eV (see Table 1.1), the normalized flow energy is UT—EV ~ 0.66,

and correspondsto aspeed ratio Sy = +/0.66 = 0.81 with respect to theion thermal velocity.

4.5.4.2 Inspection of the Sheath Structure

In order to address the question of the importance of flow effects, we set the flow
speed at a fixed value Ug, = 0.66T, and observe the changes in the structure of the plasma
as we gradually increase the bias potential on the cylinder. Figures 4.51 through 4.64
show some 2-D distributions along with corresponding x-axis cross sections of the net
charge, potential, and density distributions corresponding to cylinder bias potentials of
¢o = —5,—10,—20,—50,—100, —200 and —300. In addition, overlays of al of the po-
tential and density cross-section profiles are provided in Figures 4.65 and 4.66. Note that
the “clipped Boltzmann” treatment was used for electrons for all these simulations.

Oneimmediately noticesthat the asymmetries present at |ow bias potentials do not fade
away as the bias potential increases to values as large as ¢o = —300, a bias potential over
450 times the flow energy. This may be regarded as contrary to “common wisdom”, ac-
cording to which an impinging flow energy as small as UT—‘:V = 0.66 should have anegligible
effect on the sheath structure with bias potentials afew orders of magnitude larger. AsFig-
ure 4.66 shows, the asymmetry in theion and el ectron density profiles only gets stronger as
the bias potential isincreased. Asfar asthe potential profileisconcerned, it only showsvis-
ible signs of asymmetry as one gets closer to the pre-sheath, with the wake-side pre-sheath

zone showing a slightly negative potential, offset from the ram-side pre-sheath potential by
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an amount on the order of the beam energy. This“tail” inthe potential profileisstill clearly
visible with a bias potential ¢o = —300.

A flow energy equal to 66% of the thermal energy (Ue, = 0.66Te) introduces a signifi-
cant asymmetry in the ion population’s Maxwellian vel ocity distribution in the background
plasma. The resulting asymmetry in the ionic density distribution causes a corresponding
asymmetry in the potential distribution, breaking the conservation of angular momentum

associated with a central force. This has two effects:

¢ the unpopulated trapped orbits are compressed to the right, away from the cylinder

on the wake side and closer to the cylinder on the ram side;

o theion-depleting effect of the cylinder’s shadow becomes less important on the ram

side and more important on the wake side.

Both of these effects cause the ion density to keep to the ambient value up to amuch closer
distance on the ram side of the cylinder, while stretching the depletion zone further out on
the wake side. One observes that, even though the bias potential is large, the “ion source’
feeding the high-voltage sheath islocated in the background plasma, where the potential is
zero. Thus, when assessing whether asymmetries should be expected or not, the important
parameter to compare against flow energy is not the bias potential, but the ion temperature
at the source, in the background plasma. An ion source which has a significant offset (=
flow speed) in its velocity distribution function will cause significant asymmetries in the
ionic density profiles, especially as the bias potential increases.

Another aspect of interest that is noted from the ionic density profilesis the significant
drop of the ion density on the wake side's surface of the cylinder, down to a value near
0.15ng for a bias potential of ¢g = —300. As we will see in what follows, this causes a

reduction of the collected current as compared to the stationary case.
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Figure 4.51: Poisson-Vlasov consistent solution for an ion-attracting cylinder (ro = Ape)
-D solutions are shown on the left,

and corresponding x-axis cross-section profiles are shown on the right. Corresponding ion

and electron density distributions are shown in Figure 4.52.
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Figure 4.52: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢op = —5 and immersed in a flowing plasma with
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile pout = € (fii — fe) shown in
Figure 4.51(c).
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Figure 4.54: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢g = —10 and immersed in a flowing plasma with
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile oyt = € (fij — fe) shownin
Figure 4.53(c).
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(c) Output Net Charge Distribution poyt/
Figure 4.55: Poisson-Vlasov consistent solution for an ion-attracting cylinder (ro = Ape)

biased at ¢g = —20 and immersed in aflowing plasmawith flow energy Ue,

consistency is shown by the similarity of pin and poyt. 2
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Figure 4.56: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢g = —20 and immersed in a flowing plasma with
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile pout = € (fii — fe) shown in

Figure 4.55(c).

214




A A
0.8 | M)“ 08 ]
il '
—~ 0.6 “ )“Mf;
GC)O ” A ' M\&\“\\ ,;D 0.6 1
£ 01 il i === e
= NN o £ ’
02 I ;‘Aﬁ%&&%‘z’i&i%
)//'f ey /o 02 ]
_ / @
0 7 10 §°
0 20 As 0 30 20 10 0 10 20 30
10 20 0 = - -
X/}LDE 30 Xl}LDe
(8) Input Net Charge Distribution pin/ (eno)
(Poisson Solver) U
AN
Z 0
- =
0~ :V;‘y w’;:';(;;?ﬂztlA = 2 -10
Witz
Wi~ -
-10 "MMK’#’»‘:’!%’" E 50
‘Ix\\‘”‘h'b‘:{iw o
it g
20 “;‘(‘w«'r 2
< bt e
30 -40
30
_40\
® 0% 20 10 o 10 20 =0
-50- N XM
-30
0 10
x/?»De 20 30 0
(b) Potential Distribution ¢ = (V —V,) /Te
l} (Vlasov Solver) U
Y|\
AN R
0.8 / ‘;‘ “‘ 08 1
> 1 ‘sﬁyw: A
g 06+ ’) ‘“"w\\\ =06 1
= 1| R N =2
304+ ‘,}f ‘ W <
- == it === 2 |
] 7524 WNETSETS
02 ﬂ%j)) D MNETAAAD
Aﬂhg/ ’ /./’ Q\\\{‘QQAW . 0.2 1
0— Z RS \‘\'Q
%0 % 0 -30 -20 -10 0 10 20 30
X/A'De 10 20 30 0 XMDe

(c) Output Net Charge Distribution poyt/ (eng)

Figure 4.57: Poisson-Vlasov consistent solution for an ion-attracting cylinder (ro = Ape)
biased at ¢g = —50 and immersed in a flowing plasmawith flow energy Ue, = 0.66T,. Self-
consistency is shown by the similarity of pi, and poyt. 2-D solutions are shown on the | eft,
and corresponding x-axis cross-section profiles are shown on the right. Corresponding ion
and electron density distributions are shown in Figure 4.58.
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Figure 4.58: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢g = —50 and immersed in a flowing plasma with
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile oyt = € (fij — fe) shownin
Figure 4.57(c).

216



- [ee) © < o~ o
S = o 21
ul
Ao: 9)/ d
? %

N
V)
o B

A
o

i
AR

W T
R
it
W

WG

20 40

x/kDe

-20

-40

eno)

(

(a) Input Net Charge Distribution pj,/

1} (Poisson Solver) |}

40

20

-20

-40

o
<

-100

XIhg

-20—

-40

—-60—

-80—

0

20

40

xMDe

—Vp) /Te

\

U (Vlasov Solver) U

(b) Potential Distribution ¢

-20 20 40
XIA
De

—40

N
Ry
NN
NN
OO
RO
Tt

0»1 Nz

20

(c) Output Net Charge Distribution poyt/ (eng)

Figure 4.59: Poisson-Vlasov consistent solution for an ion-attracting cylinder (ro = Ape)

biased at ¢o = —100 and immersed in a flowing plasma with flow energy Ue, = 0.66T,.

Self-consistency is shown by the similarity of pj, and poyt. 2-D solutions are shown on the

left, and corresponding x-axis cross-section profiles are shown on the right. Corresponding

ion and electron density distributions are shown in Figure 4.60.
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Figure 4.60: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢o = —100 and immersed in a flowing plasmawith
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile pout = € (fii — fie) shown in
Figure 4.59(c).
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Figure 4.61: Poisson-Vlasov consistent solution for an ion-attracting cylinder (ro = Ape)
biased at ¢o = —200 and immersed in a flowing plasma with flow energy Ug, = 0.66T,.
Self-consistency is shown by the similarity of pj, and poyt. 2-D solutions are shown on the
left, and corresponding x-axis cross-section profiles are shown on the right. Corresponding
ion and electron density distributions are shown in Figure 4.62.
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Figure 4.62: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢o = —200 and immersed in a flowing plasmawith
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile oyt = € (fij — fe) shownin

Figure 4.61(c).
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Figure 4.63: Poisson-Vlasov consistent solution for an ion-attracting cylinder (ro = Ape)
biased at ¢o = —300 and immersed in a flowing plasma with flow energy Ug, = 0.66T,.
Self-consistency is shown by the similarity of pj, and poyt. 2-D solutions are shown on the
left, and corresponding x-axis cross-section profiles are shown on the right. Corresponding
ion and electron density distributions are shown in Figure 4.64.
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Figure 4.64: Poisson—Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (ro = Ape) biased at ¢o = —300 and immersed in a flowing plasmawith
flow energy Ue, = 0.66T,. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile oyt = € (fij — fe) shownin
Figure 4.63(c).
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Potential Profile on X axis (r.=A_ ,U_ =0.66T)
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Figure 4.65: Set of curves of the axial potential profiles corresponding to various bias
potentialsfor aone-Debye-length-radius round cylinder immersed in aflowing plasmawith
flow energy Us, = 0.66T,. The profiles are taken along the axis of the flow.

45.4.3 Plasma Flow Effects on Sheath Structure and Dimensions

One wonders what the overal effect of this asymmetric distribution will be on the
sheath structure and size, since the main parameter of interest for charge precipitation ap-
plicationsisthe overall sheath size. Using the concept of effective sheath area As which we
defined in Section 4.3.5, we now proceed to asimilar analysis as that which was performed
in Section 4.3.6 for the two-cylinder configuration.

Figure 4.67 depictsthe variation of the effective sheath arearatio, defined by (4.27), asa
function of bias potential, for around cylinder with aradiusrg = Ape immersed in aflowing
plasma with flow energy Ue, = 0.66T;. The plot suggests that the effective sheath ratio
stabilizes near half (50%) of the stationary effective sheath area, and there is no indication
that this ratio would increase back to higher levels at larger bias potentials. However,

simulations should be performed at higher bias potentials to confirm the observed trend. It
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Figure 4.66: Set of curves of the electron and ion axial density profiles corresponding to
various bias potentialsfor aone-Debye-length-radius round cylinder immersed in aflowing
plasmawith flow energy Us, = 0.66T,. The profiles are taken along the axis of the flow.
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Effective Sheath Area Ratio vs Normalized Bias Potential
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Figure 4.67: Effective sheath area ratio R, as a function of normalized bias potential for
an ion-attracting single round cylinder immersed in a flowing plasma with flow energy
Uey = 0.66T.. The cylinder has a radius ro = Ape. The effective sheath area ratio is the
ratio of the sheath area obtained with a flowing plasma to that obtained at the same bias
potential in a stationary plasma.

should be noted that this 50% reduction of the effective sheath area really corresponds to
about a 30% reduction of the effective sheath radius, as compared to the non-flowing case
(1-+/0.5~0.3).

Figure 4.68 depicts the variation of the cylinder’s surface charge as a function of bias
potential. The displayed graph is normalized with respect to the surface charge held by an
identical cylinder immersed in a stationary plasma. The excess surface charge is consistent
with the reduced effective sheath areas shown in Figure 4.67, since they are directly related
through (4.26), our definition of the effective sheath area. The surface charge peaks to a
value of about 13.2% above the stationary surface charge at ¢g = —250, and then starts

decreasing slowly.
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Surface Charge Ratio vs Normalized Bias Potential
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Figure 4.68: Ratio of surface charge to the “stationary” surface charge as a function of
normalized bias potential, for anion-attracting single round cylinder immersed in aflowing
plasmawith flow energy Ug, = 0.66T,. The cylinder hasaradiusrg = Ape.

45.4.4 Plasma Flow Effect on lon Current Collection

Figure 4.69 depictsthe variation of theion current ratio as afunction of normalized bias
potential ¢o. This“current ratio” issimply the ratio of the current collected with flow, lfow,
to the current collected without flow, Inefiow, fOr a given bias potential. The ratio is seen
to drop below 0.7 and possibly follows an asymptotic behavior with an asymptote of about
0.65. Thisis consistent with the very low ionic density observed in Section 4.5.4.2 on the
wake side of the cylinder’s surface. This current reduction is actually a unique feature of
low flow energies, since as the lower graph in Figure 4.49 shows, a current reduction only
occurs for alimited range of flow speeds, beyond which current enhancement becomes the
norm.

For the particle precipitation application, the reduction of the sheath area observed in
Section 4.5.4.3 will therefore be somewhat compensated by a reduction of the collected ion

current. Thisimpliesthat, for a given power budget, the bias potential could be set higher
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Figure 4.69: Current ratio as a function of normalized bias potential for an ion-attracting
single round cylinder immersed in a flowing plasma with flow energy Ug, = 0.66Te. The
current ratio is defined as the ratio of the collected current to the current that would be
collected by an identical cylinder immersed in a stationary plasma. The cylinder has a
radiusrg = Ape.

in aflowing plasmathan in astationary plasmafor equal current collection. The higher bias
potential setting in the flowing plasma might help gaining back some or al of the “lost”

sheath area.

4.6 Flow Effects on Electron-Attracting Round Cylinder

In this section, we discuss the effect of plasma flow on sheath structure and current
collection to electron-attracting round cylinders. We concentrate on the same speed regime
asin Section 4.5, that is, velocitiesU much smaller than the el ectron thermal velocity. Thus,
any flow effect on the electron current collection isindirect, since the electron populationis
not drifting for all practical purposes. The electron density distribution and €l ectron current

collection can only be affected indirectly by the potential asymmetries induced by the ion
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flow.

In the following analysis, we will only consider a single value of the normalized bias
potential, ¢g = 20, and study the effect of flow speed on the sheath structure and current
collection. We will then compare the simulated electron current collection to that observed

experimentally in Chapter 3.
4.6.1 Potential and Density Profiles

In Figures 4.70 through 4.77, we show some examples of plasma profiles pertaining to
an electron-attracting round cylinder biased at ¢g = 20 for various flow energies spanning
from Ug, = 0.2T, to Ug, = 1.5T¢. The self-consistency of the results is illustrated by the
fact that the input and output net charge density distributions gi,, and poyt are very closeto
one another.

Although the potential profile corresponding to the lowest flow setting of Ug, = 0.2T,
(shown in Figure 4.70) only shows what appears to be a minor asymmetry, a significant
effect is seen on both density profiles, but especially on the electron density profile (the
attracted species). The latter shows, on the ram side of the cylinder, a quasi-absence of
the usual density drop associated with the shadowing effect and angular momentum limi-
tations, and a deepening of the density drop on the wake side. The asymmetry allows more
electronsto penetrate closer to the cylinder on the ram side, whileincreasing the shadowing
effect of the cylinder on the wake side due to an increased focusing of the shadowed tra-
jectories. At Ug, = 0.2T, the plasma flow is not sufficiently energetic to prevent electrons
from reaching the wake-side surface of the cylinder, which is why a near-OML electron
density (just short of half the ambient density) is seen in Figure 4.71 for both the ram and
wake sides of the cylinder.

Asthe flow speed increases to higher values, several observations can be made:
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Figure 4.70: Poisson-Vlasov consistent solution for an electron-attracting cylinder (ro =
Ape) biased at ¢p = 20 and immersed in a flowing plasma with flow energy Ug, = 0.2 Te.
Self-consistency is shown by the similarity of pj, and poyt. 2-D solutions are shown on

the left, and corresponding x-axis cross-section profiles are shown on the right. lon and
Electron density dist. are shownin Figure 4.71.
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Figure 4.71: Poisson-Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (ro = Ape) biased at ¢g = 20 and immersed in aflowing plasma
with flow energy U, = 0.2 Te. These density profiles constitute the output of the Vlasov
solver and are combined to form the output net charge density profile pout = e (fi — fie)
shown in Figure 4.70(c).
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Figure 4.72: Poisson—Vlasov consistent solution for an electron-attracting cylinder (ro =
Ape) biased at ¢p = 20 and immersed in a flowing plasma with flow energy Ue, = 0.5 Te.
Self-consistency is shown by the similarity of pi, and poyt. 2-D solutions are shown on
the left, and corresponding x-axis cross-section profiles are shown on the right. lon and
Electron density dist. are shown in Figure 4.73.
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Figure 4.73: Poisson-Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (ro = Ape) biased at ¢o = 20 and immersed in aflowing plasma
with flow energy U, = 0.5 Te. These density profiles constitute the output of the Vlasov
solver and are combined to form the output net charge density profile pou = e (i — fie)
shown in Figure 4.72(c).
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(c) Output Net Charge Distribution poyt/ (
and corresponding x-axis cross-section profiles are shown on the right. lon and Electron

density dist. are shown in Figure 4.75.

Ape) biased at ¢g = 20 and immersed in a flowing plasmawith flow energy Ue,

Figure 4.74: Poisson-Vlasov consistent solution for an electron
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Figure 4.75: Poisson-Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (ro = Ape) biased at ¢g = 20 and immersed in aflowing plasma
with flow energy Ue, = Te. These density profiles constitute the output of the Vlasov solver
and are combined to form the output net charge density profile poy = e (fii — fie) shownin
Figure 4.74(c).
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Figure 4.76: Poisson—Vlasov consistent solution for an electron-attracting cylinder (ro =
Ape) biased at ¢p = 20 and immersed in a flowing plasma with flow energy Ug, = 1.5 Te.
Self-consistency is shown by the similarity of pj, and poyt. 2-D solutions are shown on
the left, and corresponding x-axis cross-section profiles are shown on the right. lon and
Electron density dist. are shown in Figure 4.77.
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Figure 4.77: Poisson-Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (ro = Ape) biased at ¢g = 20 and immersed in aflowing plasma
with flow energy U, = 1.5 Te. These density profiles constitute the output of the Vlasov
solver and are combined to form the output net charge density profile pout = e (fi — fie)
shown in Figure 4.76(c).
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e A potential depression (below 0 V) appears on the wake side of the cylinder, which
gets deeper with increasing flow energy. This acts as a potential barrier which pre-

vents some electrons coming from the right from reaching close to the cylinder.

e Theion number density plateaus longer on the ram side, due to its increased inertia

associated with the increasing flow energy.

e Since quasi-neutrality must be satisfied at sufficiently large distances from the cylin-
der’ssurface, the electron number density also plateauslonger on theram side, before
dropping to half the ambient density on the ram-side of the cylinder’s surface. The
mechanism that allows this is the focusing of leftward-directed electrons onto the

ram-side potential “bump”.

e The bottom level of the wake-side dip in the electron number density goes deeper
as the flow energy increases, which is due to the repelling effect of the wake-side
potential depression, preventing some electrons from approaching the cylinder from

the wake side.

e The wake-side surface electron density drops below the OML value to values below
half the ambient density. This effect does not occur as quickly as the decrease of
the previously described “wake-side dip level density” because it is countered by the

geometrical concentration of electron current.

4.6.2 Electron Current Collection

We now turn to the analysis of electron current collection in a flowing plasma. Fig-
ure 4.78 shows the dependence of electron current on flow energy. It can be seen that
the amount of collected e ectron current goes down with increasing flow energy. This can

be explained by the action of the previously described wake-side potential barrier which
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Figure 4.78: Collected Electron Current Ratio le /lom @s afunction of the normalized flow
energy Uey/Te (00 = 20, ro = Ape).

blocks electrons with insufficient energy from accessing the vicinity of the cylinder from
the wake side. Since the potential barrier grows with increasing flow energy, the collected
current drops accordingly. On the ram side, the electron current is just below the OML
level (as can be inferred from the electron density profiles), so that the decrease in electron
current iswholly attributed to the growth of the wake-side potential barrier.

Now, asthe reader may recall from Chapter 3, our experimental measurements have led
usto conclude that there is a significant enhancement of the electron current with respect to
the orbital motion limit, contrary to what our simulation resultsindicate here. Figure 3.8 (a)
indeed indicates strong enhancements of about 25% at ¢g = 20 and 40% at ¢o = 100 for
the reference cylinder’s collected electron current with respect to OML, when placed at
the closest position with respect to the plasma source, where a large fraction of the ion
popul ation was determined to be high speed ions with an energy of about 25 eV, or 13.9T,.
The reduced enhancement seen at 160 cm, along with the absence of any enhancement

at 300 cm, re-enforce our confidence that the strong enhancement observed at 75 cm is
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indeed a consequence of the plasma flow, as opposed to an artifact of the measurement
errors involved in the determination of the plasmadensity for example.

If we assume that the observed enhancement was real, then there must be some addi-
tional important physics not included in our kinetic model that could potentially explain it.
Let usfirst ask the question of how much electron collection is possible given the assump-

tions used in our kinetic model. Following are two key facts for this discussion:

1. the plasmaisassumed collisionless, and therefore only collisionless trajectories con-

nect the electron velocity distribution at a given point (r, 0) in space with a normal-

V-

ized potential ¢ = Tev" to the background plasma (r — - and ¢ = 0);

2. the electron population has no drift component in the background plasma, for all
practical purposes, because the electron thermal velocity vine 1S much larger than
the drift velocity U. The background electron population (the source) can therefore
be accurately represented by a pure Maxwellian distribution, as given by (2.4) with

U=0.

Given the collisionless assumption and the fact that the electrons are a stationary species,
we conclude that, in our kinetic simulations, the electron density at any position within
the potential structure cannot exceed the ambient density ng, nor can the collected electron
current to a probe exceed the orbital motion limit, as we show in Chapter 1 in accordance
with a proof given by Laframboise [6].

We hereby propose a possible mechanism for the experimentally observed current en-
hancement. As was seen in the collisionless self-consistent potential structures shown in
Figures 4.70 through 4.76, the electric potential stabilizesto arelatively large value on the
ram-side edge of the computational domain, which ison the order of the beam energy U, .

The potential must therefore slowly drop from this relatively large potential down to zero
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(the plasma potential) over avery large distance, since the electric field appears to already
be very low at the outer boundary of the computational domain, as expected within the
pre-sheath zone. Out at some distance on the x axis in the ram direction, the electric field
will have dropped to such alow level that some collisional forces would start dominating
electron behavior, even though the local potential would still be at a non-negligible fraction
of the electron temperature. Thisis unlike the symmetric stationary problem, in which the
electric potential drops sufficiently fast that it reaches a very small fraction of T, before
the electric field has dropped to a sufficiently low level to allow some collisional forces to
dominate electron trajectories.

Mathematically speaking, we may compare the stationary and flowing cases by consid-
ering the asymptotic forms that the potentia profile may take along the x axis, on the ram
side. In the stationary case, we have the asymptotic result ¢ = ¢(Rref)R+ef, for sufficiently
large values of r (see Section 2.3.2.1), where R is some reference radius. Our flowing
results seem to indicate a slower asymptotic drop of the potential on the ram side, i.e.,
6 = 0(Rees) (RTef)k with k < 1. The normalized radial component of the electric field is
thus given by

90 R,

Enr = _m = (P(Rref) km, (4-36)

which should be compared against the stationary electric field Encnt = q)(Rref)RrL;f. The

ratio of the “flowing” to “ stationary” electric field expressionsis given by

k—1
Enr(r) _ K (Rﬁ> <1forr >R g andk < 1, (4.37)
Ennnf(r) r

whichisclearly lessthan one asindicated, meaning that theradial component of the electric
field isweaker in the case of aflowing plasma.
In the collisional zone of the pre-sheath, where collision forces dominate electric field

forces, collisions gradually re-thermalize the electron population as it is accelerated down
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the shallow potential well leading to the “collision-free” zone. In the process, the electron
temperature may rise by a small amount (i.e., collisional heating), but, more importantly,
there is an increased concentration of electrons on the ram-side of the collisional zone,
where the potential is positive (and electron-attracting). In other words, the incoming elec-
tron density at the outer boundary of the collision-free zone is larger than the ambient
density by an amount that depends primarily on the potential level on that boundary.?* A
fair approximation for this potential dependence is given by the Boltzmann approximation
Ne &~ Noexp (¢ (r)), whereng isthe ambient plasmadensity, ¢ isthelocal normalized poten-
tial V /Te, and Te is the electron temperature, which we assume here has not changed, i.e.,
no significant heating has occurred. This collisional concentration process would thus lead
to an increased influx of electrons on the ram side of the sheath, and therefore an increased
collected current primarily on the ram side of the cylinder. If we estimate that the electron
flux to the ram side of the cylinder’s surface will increase by a factor corresponding to the
increased electron density at the outer edge of the collision-free zone, and further assume
that no electron collection takes place on the wake side at sufficiently large flow energies
due to the repelling effect of the wake-side potential depression, we may approximate the

enhanced electron current collection to asmall cylinder by

le flowi 1
w ~ 5 eXp ((Pcollision boundary) . (4.38)
lestationary 2

According to this crude model, a 40% enhancement such as we have observed experi-
mentally for a bias potential ¢g = 100 and flow energy U, = 25T, would correspond to
a normalized potential at the frontier between the collisional and collision-free zones of
dcollision boundary = 1, that is, a potentia on the order of electron temperature. Given the

ram-side pre-sheath potentials that were obtained in the simulation results shown in Fig-

2INote that we should more generally refer to atransitional zone between the collisional and collision-free
zones rather than a well-defined boundary.
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ures 4.70 through 4.77 which were applicable to low-speed flows from Ug, = 0.1T to
Uey = 1.5T¢, avaue of 1 for the ram-side pre-sheath potential does seem quite reasonable
for such alarge flow energy asUgq, = 13.9T,.

The implementation of a dual model which includes both collision-free and collisional
zones has previously been presented [77] and will require further refinement to accurately

predict the observed enhancements.

4.7 Outline of Simulation Resource Requirements

In this section we give a coarse overview of the costs, in terms of computer resources
and computing time, of the kinetic simulations that were performed as part of this work.
A detailed “operation count” has yet to be performed for both the 1-D cylindrical imple-
mentation (KiPS-1D solver) and full 2-D implementation (KiPS-2D solver), but we can

nonethel ess provide an overall description of the resource costs involved.
4.7.1 1-D Cylindrical Implementation (KiPS-1D)

The KiPS-1D solver was implemented using Matlab™ and Fortran 90, as described
in Section 2.7. It runs on a single computer using a single processor, and uses a relatively
small amount of random-access memory (RAM), on the order of afew tens of megabytes,
well below the amount of available RAM on our Linux workstation, which has 4 GB of
RAM.

In order to illustrate the computing time requirements for KiPS-1D, we have run KiPS-
1D with ro = Ape for severa bias potentia values from ¢g = —10 to ¢g = —12800. The
number of unknowns (samples) required to properly sample the problem increases with the
value of the bias potential. Figure 4.79 shows a plot of the number of iterationsrequired for

convergence as a function of the number of unknowns, along with a plot of the CPU pro-
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Figure 4.79: Number of iterations required for convergence and CPU time as a function
of the number of unknowns in KiPS-1D simulations involving a cylinder radius of ro =
Ape- The number of unknowns was modulated by changing the bias potential, since higher
potentials demand alarger number of grid samples.

cessing time required on our Linux workstation as a function of the number of unknowns.
One can see that the type of 1-D simulations that we have run as part of this project only
has modest computing time requirements, since the longest simulation on this graph took
less than 150 seconds.

Figure 4.80 shows that, when the number of unknownsis sufficiently low, the comput-
ing time scales roughly linearly with the number of iterations required for a given problem.
It appears that this behavior breaks down when the number of unknowns becomes larger,
whichislikely aconsequence of the increased time required to invert the linearized system

at each iteration.
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Figure 4.80: CPU time as a function of the number of iterations required for convergence
in KiPS-1D simulationsinvolving acylinder of radius ro = Ape. The number of unknowns
was modulated by changing the bias potential, since higher potentials demand a larger
number of grid samples.

4.7.2 2-D Cylindrical Implementation (KiPS-2D)

As was discussed in Section 2.7, the KiPS-2D solver is much more computationally
demanding. As the reader may recall from Section 2.7, the Poisson solver and Tikhonov-
regularized Newton iterative processes run on a single Linux workstation (2.4 GHz dual-
Xeon), while the Vlasov solver uses a collection of about 150 slave nodes running on a
dynamically-configured pool of Sun Blade™ 1000/1500 workstationsin order to compute

the plasma density samples.

4.7.2.1 Processing Time

Although a detailed, careful analysis of the computing time requirements has not been

performed for KiPS-2D, we present in Figure 4.81 some timing data pertaining to the simu-
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Figure 4.81: Simulation time required as a function of the magnitude of the normalized
bias ¢, for the KiPS-2D simulations shown in Section 4.5.4, with ro = Ape, Uey = 0.66Te,
and one mesh refinement.

lation results shown in Section 4.5.4. Bare in mind that at |east two other KiPS-2D simula-
tionswere running simultaneously, competing for resources. Thus, the actual time spent for
these simulations would correspond to about one third of the values shown in Figure 4.81

or even less.

Generally speaking, the primary parts of the algorithm that contribute to the computing

time in KiPS-2D are the following (not necessarily in that order):

1. theVlasov solver, which uses all 150 slave workstations to compute the density sam-

ples based on several thousand particle trajectories;
2. building the Poisson-Vlasov Jacobian matrix, as described by equation (2.115);

3. performing the Tikhonov regularization, which includes the selection of the regular-
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ization parameter A in (2.133).

A future thorough assessment of the computing requirements should include separate tim-
ings for each of those three major computational hurdles.

For the time being, we have been able to determine that the computational bottleneck
for KiPS-2D is different depending on the regime of operation. When the number of mesh
nodesisrelatively small (i.e. 500 or less), the bulk of thetimeis spent in the Vlasov solver
(step 1), while steps 2 and 3 amount to a small fraction of the computing time; thisis the
most efficient mode of operation. On the other hand, when the number of mesh nodes
becomes somewhat larger (1000 and above), the matrix manipulations involved in steps
2 and 3 now require the most computing time. The shift between these two regimes is
apparent in Figure 4.81, and seems to occur around a bias potentia |¢o| = 100. The larger
bias potential values require more mesh refinement near the cylinder and therefore cause
a dramatic surge in the number of mesh nodes. For example, at |¢o| = 250 about 1800
mesh nodes are required, which implies the manipulation of matrices with dimensions of
1800 x 1800.

Thus, in its current state the 2-D solver is optimal for use at moderate bias voltages.
Future modifications should seek to minimize the bottleneck associated with high mesh
density in the vicinity of biased conductors. This could be done by using alternate rep-
resentations for the Poisson solver, over small areas near high-voltage conductors, which
are not based on a full discretization, but instead only discretize the perimeters surround-
ing those high-field areas. Such an approach would assume a negligible effect of the local
space charge in high-field areas near high-voltage conductors.

Anocther, rather simple improvement could be done to reduce the computing time in-
volvedin step 2 above. The present implementation uses full matricesfor Jy when comput-

ing the Poisson-Vlasov Jacobian matrix Jpy, which resultsin a pure matrix-matrix product
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involving full matrices. However, as is explained in Appendix E, the approximation used
for the Vlasov Jacobian Jy is merely a diagonal matrix. One could take advantage of this
fact in order to significantly speed up the matrix-matrix product involved in computing the

Poisson-Vlasov Jacobian matrix.

4.7.2.2 Random-Access Memory Requirements

The RAM requirement on slave nodes is very reasonable, typically on the order of ten
to afew tens of megabytes, and therefore does not constitute a bottleneck. On the master
workstation, RAM requirements can sometimesreach ashigh as 2 gigabytes, when building
very large matrices in problems involving high voltages probes, as described above. This
requirement should be relaxed significantly when the optimizations discussed above are
implemented. However, should the simulation of problems involving tens of thousands
of mesh nodes be required, one would have to consider moving to a 64-bit computing
platform, in order to reach beyond the memory addressing limit of 4 gigabytes 22 imposed

by 32-bit platforms such as the one that was used for thisthesis.

22The practical limit is 3 gigabytes on a properly configured Linux kernel due to the operating system
overhead.

247



CHAPTER 5

Conclusions and Recommendations for Future Research

Designing bare electrodynamic tethers for propellantless space propulsion or radiation
belt remediation will demand a detailed understanding of the impact of tether geometry
and ionospheric flow on plasma sheath structure and current collection. Geometries are
being sought that improve structural merits and survivability from collisions with microm-
eteroids, while optimizing sheath structure and current collection. Previous research on
sheath structure and current collection has only addressed |ow-voltage regimes and simple

round cylinders as collectors, whether it be in stationary or flowing plasmas.

5.1 Summary and Conclusions of Research

This research has sought to fill the gaps in the existing literature by investigating,
through both simulation and experimentation, the sheath structure physics and current col-
lection properties of cylindrical collectors with various cross-sectional geometries in sta-

tionary and flowing plasmas.

5.1.1 Self-Consistent Steady-State Kinetic Model

Because no suitabl e existing model could adequately support the structures and regimes
of interest, a novel computational model was devised to address the problems under con-

sideration. Using kinetic theory, a steady-state kinetic computational model was devel oped
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which allows for the self-consistent modeling of collisionless, unmagnetized two-species
plasmas in a vast region surrounding an arbitrarily-shaped 2-D conductive object. This
model allows for both stationary and flowing plasmas. Following are some of its main

features:

e it can provide kinetic treatment for both species based on the dynamic sampling of

the velocity distribution function at afinite set of nodes,

e it provides a dynamic, adaptive, unstructured meshing strategy, allowing for the sup-
port of arbitrary 2-D geometries and the adequate resolution of plasma sheath fea-
tures, such as the narrow surge of the net charge density which exists near the sheath

edge in the case of high-voltage biases;

e it alowsfor the ssimulation of very large computational domains, based on tailoring

the variable grid size to efficiently accommodate potential and density variations;

e it usesanew approach, called the Progressive Tikhonov-Regularized Newton Method,
to efficiently minimize the Poisson-Vlasov residual in order to approximate the fixed
point of the Poisson—Vlasov operator. This approach isrobust to numerical instabili-
ties and quadrature noise and has successfully been used to solve awide class of 2-D

problems without the need for empirical adjustments;

e itincludesa coarse-grained parallel implementation for its Vlasov solver, allowing it

to run on MPMD (Multiple Processors, Multiple Data) parallel architectures.

Based on this model, two solvers were developed: a 1-D cylindrical model, implemented
in asolver called KiPS-1D, and a full 2-D model, implemented in KiPS-2D. The relative
computational simplicity of the 1-D cylindrical model has allowed it to be used exten-

sively to develop a basic set of sheath profiles for high-voltage circular cylinders, after an
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initial validation was performed based on the available literature that covers low bias po-
tential regimes. This aso provided a reference for the validation of the more complex 2-D
solver, in addition to the available literature. Several asymmetric problems were simulated
in KiPS-2D, allowing for the characterization of the two-cylinder and solid tape config-
urations, as well as an assessment of flow effects on ion- and electron-attracting round
cylinders.
5.1.2 Experimental Investigation of Electron-Collecting Tether Sam-
ples

An experimental investigation was performed which consisted of measuring electron
current collection to cylindrical, solid tape, and slotted tape el ectrodynamic-tether samples
in a mesosonic flowing xenon plasma. A Hall thruster was used to simulate a flowing
unmagnetized space plasma in a large 6-m x 9-m vacuum chamber. Solid tape samples
with effective widths spanning from 4.9 to 41.9 Debye lengths, and slotted tapes with
center-to-center line spacings spanning from 1.4 to 13.2 Debye lengthswere tested. Several

conclusions were drawn from the analysis of the results:

e plasma flow leads to significant current enhancements over that predicted by the

orbital-motion-limited theory;

e the electron collection efficiency of solid tapes (on a per area basis) decreases as the

width of the tape is increased, consistent with our computer simulations;

e beyond a threshold bias potential close to the beam energy, solid and slotted tapes

both collect more current when oriented transverse to the flow;

e equivalent-width slotted tapes are more efficient electron collectors than solid tapes

on aper areabasis;
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¢ the data suggests that the electron collection efficiency of slotted tapes decreases
with increasing line spacing until a minimum efficiency is attained, beyond which
it is expected to increase monotonically up to the orbital-motion limit expected of

independent lines.
5.1.3 Important Simulation and Experimental Results

Kinetic simulations and experimental investigations have allowed several new results

to be obtained. We describe the major resultsin the following.

5.1.3.1 lon-Attracting High-Voltage Single Cylinder in Stationary Plasma

Acceleration of attracted ionsinto the high-voltage sheath resultsin a significant deple-
tion of ions within alarge portion of the sheath, primarily as a result of flux conservation.
This is the primary mechanism allowing for the creation of relatively large sheath radii,
as compared to what may have been expected from a uniform ion density assumption, for
example. An asymptotic equation relating the normalized bias potential ¢o and cylinder

radius ro to the effective sheath radius rs was obtained in (4.19) and is repeated here:

r 1.325 r
2.554 <—S) In= = —¢p. (5.1)
Ape o

5.1.3.2 Interference Effects of Parallel Cylinders

Interference effects between two paralel cylinders were shown to exist for spacings
upward of 20 times the single-cylinder sheath radius, and an optimal spacing equal to the
single-cylinder sheath radius was seen to maximize the overall sheath areato a value equal
to twice the independent single-cylinder effective sheath area (for one value of the bias
potential, ¢g = —320). In addition, for a spacing of haf the single-cylinder sheath ra-
dius, current collection is reduced to a minimum of half of the current collected by two

independent cylinders. This is attributed to the existing set of unpopulated collisionless
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paths connecting both cylinders which create voids in the incoming velocity distribution
at the cylinders’ surfaces, thereby reducing the collected current. This particular spacing
is thought to maximize the number of such unpopulated orbits bounded by the cylinders,

hence the minimal current collection.

5.1.3.3 Geometry Effects of the Solid Tape Cylinder

The capacitance-based equivalent circular radius of a solid tape biased at a normalized
bias potential ¢g = —320 was shown to be approximately equal to 0.29w, where w is the
tape width. This result was verified over a large range of tape widths spanning from 1 to
50 Debye lengths, and is slightly higher than a previous asymptotic result of 0.25w [11].
On a per-area basis, solid tapes have a reduced current collection capability as compared
to that of an equal-capacitance circular cylinder. The general character of the departure
of collected current from the orbital motion limit value has been shown to agree, within
experimental uncertainties, with experimental current measurements on solid tapes after

normalizing out flow enhancement effects using data from a reference cylinder.

5.1.3.4 Plasma Flow Effects on lon-Attracting Cylinder

Flow effects on ion-attracting cylinders were investigated through kinetic simulations
using KiPS-2D. Results indicate that flow energies representing any significant fraction of
the plasma temperature are sufficient to cause significant sheath asymmetries, regardless
of the bias potential applied on the cylinder. In fact, asymmetries were seen to grow with
increasing applied bias potential. For a flow energy of 66% of the thermal energy of the
plasma, results indicate a reduction of the effective sheath radius by about 30% (the sheath
areawas reduced by about 50%) at large bias potentials with respect to the stationary case.
The collected current was also reduced by about 30%, which translates into a 30% savings

in terms of power expenditure for a given bias voltage.
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5.1.3.5 Plasma Flow Effects on Electron-Attracting Cylinder

Flow effects on electron-attracting cylinderswere investigated through both kinetic sim-
ulations and experimental investigations. Kinetic simulations have shown strong sheath
asymmetries with flow energies on the order of the plasma temperature, along with a re-
duction of the collected electron current attributed to the buildup of a potential barrier for
electrons downstream of the cylinder. Our experimental results, however, have shown a
clear enhancement of electron current collection over the orbital-motion limit for a cylin-
der immersed in aflowing plasma.

Even though this measured current enhancement could not be predicted by our colli-
sionless simulations, the obtained simulated plasma profiles can hel p interpreting the cause
for the enhancement. The strong elongation of the pre-sheath potential structure, upstream
of the cylinder, points to the possible existence of a collisional zone for electrons with non
vanishing potentials, far upstream from the cylinder, where even weak collisional forces
would dominate electric field forces. The thermalizing effect of these weak collisions over
an extended range where the electric potential is still above zero would cause a concen-
tration of electrons with densities exceeding the ambient density upstream of the cylinder,
providing an increased influx of electrons on the ram side and thereby enhancing the col-
lected electron current. A somewhat analogous explanation of electron current enhance-

ment, which appliesin the case of magnetized plasmas, is given by Cooke and Katz [81].

5.2 Recommendations for Future Research

Suggestions for future research can be categorized into 1) computational modeling and

2) experimental testing efforts.

253



5.2.1 Computational Modeling

Several problems of interest that have not yet been addressed should be simulated using

KiPS-2D:

1. The two-cylinder configuration should be generalized to allow for the simulation of
an arrangement of N cylinders, and to alow for the comparison of the merits of var-
ious arrangements with the goals of minimizing current collection and maximizing
sheath cross-section, two objectives pertaining to the particle precipitation applica-

tion.

2. Similarly, the dotted tape samples that were investigated experimentally as part of
this thesis should be simulated. This structure consists of a “fence” of four parallel

narrow tapes.

3. The study of ionospheric flow effects on ion-attracting cylinders should be extended
to include larger bias potentials, to verify the apparent asymptotic character of the

sheath arearatio.

Following are some key fundamental improvementsto the kinetic model that should be

considered.

1. A more thorough study of the several “trapped” state criteria used for determining
whether a given trgjectory is populated should be performed. A more general crite-
ria should be sought, if possible, that would be independent of the geometry under

consideration.

2. At large negative bias voltages it is possible that the ion bombardment to a tether
might cause secondary emission of electrons, causing an increase in the net collected

current. In order to study the possible impact of this effect, support should be added
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in KiPS-1D and KiPS-2D for particle emission from conductive surfaces. A sepa-
rate, first-order initial analysis [82] has shown that, even though secondary electron
emission can contribute a significant amount of electron density near the cylinder’s
surface, its overall effect on the sheath structure should be negligible. The outward
acceleration of therepelled electronsis so important that, due to current conservation,
the secondary-electron density drops very quickly as we move away from the cylin-
der’s surface, to a degree such that the area over which significant electron density

can exist is very small and therefore cannot contribute significantly to space charge.

. In an effort to better understand and characterize the flow-induced electron cur-
rent enhancement that was observed experimentally, support for weak thermaliz-
ing collisions based on a Krook model should be implemented or, alternatively, a
dynamically-defined collisional zone should be included based upon the local mag-

nitude of the electric field. Some work toward these tasks has already been initiated.

. Support for periodic time variations could be added to the 1-D cylindrical implemen-
tation, in order to perform a self-consistent study of the effect of periodic excitations
of tether bias potentials. Such excitations may be used to affect the sheath struc-
ture and current collection properties, using the ponderomotive force for example, as

suggested by some analyses of the Oedipus C tethered payload experiment [83].

. The computationally tractable range of the bias potential in the 2-D model could be

expanded by either one of the following two additions.

e Since the sheath solution is virtually independent of the density samples lo-
cated sufficiently close to a high-voltage conductive surface, one could signifi-
cantly reduce the computational cost of each iteration by excluding such nodes

from the Vlasov density calculationsfor all iterations but the last one (that is, if
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knowledge of those densitiesisrequired at al). This procedure would alleviate
the steep increase in computational cost that results from the stringent require-
ments on mesh density near high-voltage surfaces, which are necessary for the

accurate tracking of trajectories transiting through those zones.

e The implementation of a second-order, piecewise quadratic approximation for
the potential and charge density distribution should be considered. It would en-
tail are-formulation of the finite-element Poisson solver and a re-formulation
of the semi-analytical trgjectory tracking process. This higher-order implemen-
tation would relax the meshing requirements for accurate trajectory tracking,

and thereby enable the solution of more complex problems.

6. Support for magnetic fields should be implemented. Depending on the field’s orien-
tation, this may however imply the need for the representation of three-dimensional
velocity space, which would come at a significant computational cost, but is nev-
ertheless foreseeable for the near future, assuming that the exponential growth of

computing power predicted by Moore'slaw [84] continuesto hold...

5.2.2 Experimental Testing

Continued experimental testing is necessary for the validation and refinement of the
analytical and computational modelsthat will be used by designers. Following are sugges-

tions of future experimental tests that should be considered.

1. Although our experimental tests of slotted tape samples have allowed usto sample a
few effective gap spacings, they were not sufficient to adequately sample the current
ratio curve shown on Figure 4.39, for example. An ideal test setup to validate this
simulated data would consist of two thin cylinders (wires) which could be mechani-

cally moved to dynamically adjust the spacing between them, therefore providing a

256



means to adequately sample the relationship of current ratio as a function of spacing

using a dynamic selection of the spacing.

. The sheath structure forming around one or several thin cylinders biased at a high
voltageisof primary interest for thisresearch, and has only been investigated through
simulations as part of this thesis. The experimental validation of the sheath profiles
obtained in this thesis is instrumental for the future use of our kinetic model for
design purposes. A low-voltage bias probe could be used to sample the electron
density structure around such a high-voltage system in order to determine a measure
of the sheath structure and dimensions. This could then be used to validate the model.
One of the difficultiesin devising such a system would be to minimize the perturbing
effect of the probe, but such a perturbation should not be critical in regard of the high

voltages involved in the sheaths under study.

. The existence of the sheath asymmetries which have been identified through simula-
tions even with moderate flow energies (66% of thermal energy) should be assessed
experimentally. This could be done by measuring the electron density profile using
the low-voltage bias probe system described above, or, preferably, using a different

measurement method that would obtain amore direct measurement of theion density.
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APPENDIX A

Nomenclature

The mksA (meter—kilogram—second-Ampére) units are used throughout this work, ra-
ther than cgs (centimeter—gram—second). The following is a listing of the major symbols

and variables used in thiswork, along with a brief description and the appropriate unit.

Nomenclature Description (Unit)

o Direction of particle velocity vector (rad)

o Angle between successive search directions (rad)

o Target value for o (rad)

B Step size of iterative resolution procedure

o Direction of particle velocity vector upon entry into the compu-
tational domain (rad)

y(n) Specified decay rate of the n" circular harmonic of the exterior
potential

Teji Electron/ion particle flux (s~ 1m~2)

(AV) max Absolute mesh error tolerance on electric potential

AX Center-to-center spacing between two cylinders (m)

F=) Vacuum permittivity (F/m)

Bvar Angular displacement (rad)

K Particle kinetic energy (eV)

Krange Kinetic energy integration range (in terms of temperature T)

A Tikhonov regularization parameter

Abe Debye length (m)

Up Fraction of high-speed ions

I1 Energy functiona of FEM-based Poisson solver

Iy Energy functional associated with Laplace fields

I, Energy functional associated with exterior fields

I3 Energy functional associated with space charge

IMgiscrete Numerical approximation of IT

p Net charge density (C/m?3)

259



Nomenclature

Description (Unit)

Pn

—

p

Pin(xay)
pOUt(va)
5in

50Ut

Oi

-

o

Trel
Tabs,E
Tmesh,abs
Tmesh,n

Tmesh,V
Tmesh,p

o
do

(pcollision boundary
a0i7 ani7 bni

do, an,bn
Ao

An

As

As1

As,vi rtual
A

~

U wowols >
o)

mmm ®
g

min

,kE = EV(kOh kE)

Normalized net charge density

Vector containing the net charge density samples at all mesh
nodes (C/m?3)

Input charge density distribution (input of Poisson functional)
Output charge density distribution (output of Vlasov functional)
Vector form of the input charge density distribution

Vector form of the output charge density distribution

it singular value of the preconditioned system matrix A’
Vector containing the singular values of the preconditioned sys-
tem matrix A’

Relative quadrature tolerance on number densities

Absolute tolerance on energy-quadrature error

Absolute mesh error tolerance

Absolute mesh error tolerance on the density distribution, rela-
tiveto itstotal range

Absolute mesh error tolerance on the electric potential distribu-
tionV (r,0), relative to its total range

Absolute mesh error tolerance on the net charge density distri-
bution p(r, 6), relative to its total range

Normalized potential

Normalized bias potential

Normalized potential at the frontier between collisional and
collision-free zones

Quadrature coefficients used to approximate the Fourier series
coefficients of the potential profile on the outer boundary
Vector form of the quadrature coefficients ag;, ani, bni
Cylinder’s cross sectional area (m?)

Normalized area (in terms of A3)

Effective sheath area (m?)

Single-cylinder effective sheath area (m?)

Virtual effective sheath area (m?)

Surface of the domain exterior to the computational zone
System matrix

Preconditioned system matrix

Right-hand side of the linearized system of equations
Transformed Poisson-Vlasov residua

Magnetic field intensity (Tesla)

Diagonal right preconditioner

Constant (1.6 x 10719 JeV)

Transverse energy of a particle (J)

Total energy of quadrature samples (eV)

Minimum transverse particle energy (J)
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Nomenclature

Description (Unit)

Enr

Ennnf

Ev,mim Ev,max

fe(E)
f (v, Vy)
fi(Vxi, Vyi)

fp

fpv

fy

9(x, @)
g(EV7 a)
h

hgoal

H

Normalized radial component of the electric field under flowing
conditions

Normalized radial component of the electric field for a non-
flowing plasma

Directional total energy components (€V)

n" azimuthal mode of the radia electric field on the outer
boundary

Total particle energy (eV)

Minimum and maximum total particle energies in quadrature
integration (eV)

1-D total energy distribution

2-D velocity distribution

2-D velocity distribution at the entry point on the outer bound-
ary of the computational domain

Poisson functional

Poisson-Vlasov functional

Vlasov functional

2-D directional kinetic energy distribution

2-D directional total energy distribution

Local grid size for 1-D model

Target local grid size for 1-D model

Altitude (m)

Total collected current (A)

Hall thruster discharge voltage (volts)

Collected electron current (A)

Collected ion current (A)

Hall thruster inner magnet current (A)

Current collected on a single independent cylinder (A)

Hall thruster outer magnet current (A)

Normalized collected current

Orbital motion limited current (A)

Current collected to the reference cylinder (A)

Current collected to athin tape (A)

Current flowing along tether (A)

Thermal current (A)

Electron/ion current density (A/m?)

Thermal current density (A/m?)

Jacobian matrix of the Poisson solver

Jacobian matrix of the Vlasov Solver

Poisson-V lasov Jacobian matrix

Stiffness matrix of the FEM-based Poisson formulation
Angular momentum (kg m?/s)

Special Definition given on page 52 (kg m?/s)
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Nomenclature

Description (Unit)

e,i
Je,n,din
Q

Q

Qn

Qn,l

)

Hall thruster anode flow rate (sccm)

Hall thruster cathode flow rate (sccm)

Electron/ion mass (kg)

Normalized electron/ion mass

Modulo function

Maximum angular displacement (number of multiples of 27)
Maximum number of radial oscillations

Maximum number of intersections of any single edge
Background plasma number density (m—3)

Electron/ion number density (m—3)

Numerical estimate of number density (m—3)

Vector containing the Electron/ion number density samples at
all mesh nodes (m—3)

Number of mesh nodes (also the number of unknowns)
Number of energy quadrature samples for the k' oc-integral
Number of azimuthal modes used to represent the outer bound-
ary potential profile

Number of potential samples on the outer boundary

Number of mesh refinement steps

Electron/ion charge (C)

Normalized electron/ion charge

Loading matrix of the FEM-based Poisson formulation

Linear surface charge (C/m)

Normalized surface charge

Single-cylinder normalized surface charge

Round cylinder radius (m)

Gyroradius (m)

Larmor gyroradius (m)

Radius of the outer boundary of the computational domain (m)
Effective sheath radius (m)

Effective sheath radius of a single independent cylinder (m)
Effective sheath arearatio

Equal-charge equivalent circular cylinder radius (m)

lon speed ratio

Ambient electron/ion temperature (eV)

Normalized ion/electron temperature

Temperature of alow-energy, non-flowing ion population (eV)
Plasma flow velocity (m/s)

Plasma flow energy (eV)

Particle velocity componentsin cylindrical coordinates (m/s)
Particle velocity components in Cartesian coordinates (m/s)
Particle velocity components upon entry intro the computa
tional domain (m/s)
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Nomenclature

Description (Unit)

Vxf, Vyf

Vxn, Vyn
V)(oo 9 Vyoo

\
0

V
Vv
Vi

Vavg,fit

Ve

Vedge

Xi, Yi
Xf,Y¢

Xns Yn

Wi

Wkﬂth

2(t) = zpat? 4 2t + ¢

Particle velocity components at the interrogation point within
the computational domain (m/s)

Normalized particle velocity components

Particle velocity components in the background plasma, away
from the perturbation asr — oo (M/9)

Potential (volts)

Bias potential (volts)

Vector containing the potential samplesat all mesh nodes (volts)
Vector containing the potential samples on the outer boundary
(volts)

Average bias potential over which the ion saturation best fit is
performed as part of the Langmuir probe data analysis

Hall thruster cathode voltage (volts)

Hall thruster discharge voltage (volts)

Electric potential at the entry point of the particle on the outer
boundary

Potential drop along an electrodynamic tether due to the net ef-
fect of motional el ectromotive force combined with an on-board
voltage source (volts)

Hall thruster Heather voltage (volts)

Plasma potential (volts)

nt" azimuthal mode of the electric potential on the outer bound-
ary (volts)

Linearized system unknowns

Transformed system unknowns

Particle coordinates upon entry into the computational domain
(m)

Coordinates of the interrogation point within the computational
domain (m)

Normalized coordinates (in terms of the Debye length)
Quadrature weights, 1-D Vlasov solver

Quadrature weights, 2-D Vlasov solver

Quadratic equation of the intersection of a sub-trajectory with a
mesh segment

263



APPENDIX B

Acronyms

Although most of the acronyms used are defined in the text, we have listed them here

for convenience.

Acronym Description

BAMG Bidimensional Anisotropic Mesh Generator
CAEN Computer Aided Engineering Network

CPU Central Processing Unit

FEM Finite Element Method

HV High Voltage

INRIA Institut National de Recherche en Informatique et en Automatique
ISS International Space Station

LIF Laser Induced Fluorescence

LP Langmuir Probe

LVTF Large Vacuum Test Facility

NPACI National Partnership for Advanced Computational Infrastructure
PEPL Plasmadynamics and Electric Propulsion Laboratory

RHS Right-Hand Side

KiPS-1D Kinetic Plasma Solver, 1-D

KiPS-2D Kinetic Plasma Solver, 2-D

OML Orbital Motion Limit

MFP Mean Free Path

MPMD Multiple Processors, Multiple Data
PIC Particle-In-Céell

PVM Parallel Virtual Machine

SHV Super High Voltage
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APPENDIX C

2-D Poisson Solver: Detailed Expression of the Loading
Matrix Elements

Section 2.3.2.2.2 includes a derivation of the 2-D finite element method used for our
Poisson solver. The definite integral given by (2.63) was performed using Matlab™, which
allowed us to obtain an analytical expression for each of the 3 components of Q,,’s matrix

elements. The resulting expression is

1
((Q“)ii>ie ~96A2"
{(2bjbiyo+ 2bjbiy1) X3

+ [(bjci+cjbi) v+ 2 (bjai +biaj) Yo — 2bjbix1yo + 2bjbixays
+2(jci+¢jbi) yayo + 4 (biaj +bjai) y1| x§

+ [2cjciyi — 2cjciys + 2cjciyiyo + 2¢jciyayg + 2bjbixdys + 2 (bjci + cjbi) xay4
—2(bjci +cjbi) x1y§ — 2bjbixdyo — 2 (cjai +ciaj) 5 + 4 (ciaj + cjai) y3 (C1)
+4 (biaj +bjai) x1y1 + 4 (ciaj + cjai) yayo — 4 (biaj + bjai) X1yo + 12a;aiy1] Xo

— 4(cjai +Ciaj) X1y1Yo — 2CjCiX1y1y§ + 2x1CjCiy; + 2 (Cjai + ciaj) Xay3

— (bjci+cjbi) x3y3 — 2cjcix1ys — 4 (ciaj +cjai) x1y§ — 12ajaix1yo — 2bjbiyox;

—4(bjai +biaj) yoxZ — 2 (bja; + bia;j) x3y1 — 2cjCiX1yoy}

—2(cjbi+bjci) Xy1yo — 20jbiy1x3 }
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where the coordinates of the vertices corresponding to edge i, are simply noted as (Xo, Yo)

and (x1,y1) to avoid making the expression any heavier.
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APPENDIX D

Adaptive Integration Using Trapezoidal Quadrature

Both the 1-D and 2-D implementations of the Vlasov solver use a common adaptive
quadrature algorithm in order to numerically evaluate integrals with agiven finite accuracy.
We describe here the implementation of this adaptive quadrature technique.

A low-order quadrature integration scheme, the trapezoidal rule [48], was chosen in-
stead of higher-order quadrature schemes, because it is more suitable for the integration of
functions comprising discontinuities, as discussed in Section 2.4.2.3.2.

In order to adequately capture most existing discontinuitiesin the functions of interest,
the 1-D domain of integration isfirst sub-divided into a set number of of sub-intervals The
integral over each sub-interval isthen performed using both 2-point and 3-point trapezoidal
rules[48], and the difference between the two resultsis retained as an estimate for the local
quadrature error.

The sub-intervals are then refined, in decreasing order of their respective quadrature
error estimates, by doubling the number of samples and re-evaluating the sub-integral us-
ing trapezoidal quadrature applied to the new set of samples. This refinement procedure
continues until the total absolute error estimate (the sum of the errors on each sub-interval)
becomes smaller than a given absolute tolerance 74,5, Or until the total relative error esti-

mate becomes smaller than a given relative tolerance ;4.
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APPENDIX E

Linearization of the 2-D Vlasov Solver

The basic philosophy underlying the linearization of the 2-D Vlasov operator is very
similar to that presented in Section 2.4.1.2 for the one-dimensional Vlasov operator. How-
ever, approximations must be made in the process that were not necessary in the 1-D case.
The reason for that is that no information can be inferred regarding the potential depen-
dence of the “shadow” boundaries of the directional-energy distribution function, i.e., the
boundaries at the interface between the popul ated regions and the regions that are unpopu-
lated due to obstruction (shadowing) by conductive surfaces.

Nonethel ess, even partial information on the gradient can be sufficient to provide proper
search directions that can be used in order to reduce the residual term and eventually lead
to a self-consistent solution. Two alternative approaches have been successfully used in
approximating the gradient and are described in the following. The first method, presented
in section E.1, is appropriate for use with stationary plasmas, regardless of geometry. The
second method, presented in section E.2, can be used for both stationary and flowing plas-
mas. Although the second method can provides a continuum of results from the stationary
regime through high-speed regimes, the first method leads to faster convergence for sta-

tionary cases.
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E.1 Gradient Approximation for Stationary Plasmas

In stationary plasmas, each sample of the directional-energy distribution function only
depends on total energy. Since energy is the dependent variable in the integral given
by (2.99), the total value of the integral is only a function of the bounds of the domain
over which the integrand is non-zero. The o-dependence of those bounds cannot be ac-
counted for, because no information is available on the potential dependence of the origin
of each collisionless trgjectory. However, the dependence of the integral on the minimum

total energy Emin iswell defined and can be approximated as

8ne7i
aEMn

2r
~~ [ gei(Emn @) der ED)
=0

where Emin is determined from (2.102), the directional-energy distribution ge i was defined
in (2.100), and we have omitted the position variables x and y for compactness. The depen-

dence of Eqin, on thelocal potential V can be determined from (2.102) to be

. . , 2
OEmin {qz’la %V (x,y) > ( %U —/ KrangeTe,i> .
= U

oV

= Krange le,i

(E.2)

0, otherwise

The chain rule can then be used to infer the gradient of the local density with respect to the

local potential, following

ane,i . ane,i IEmin

In this approximation, the local density is assumed to only depend on the local potential.

The Jacobian 88 \;" istherefore adiagonal matrix with diagonal entries computed according

to (E.3) and all other entries set to zero.

E.2 Gradient Approximation for Flowing Plasmas

For flowing plasmas, the bulk contributions to the integral in (2.99) by the integrand

given by (2.100) isno longer located near the minimum energy E nin, provided that the flow
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energy is a sizeable fraction of the temperature. It was determined that the best available
approximation for the gradient would instead be obtained by summing the contributions of
the integrand’s gradient in directional-kinetic-energy space, instead of directional-energy
(i.e. total energy) space. This entails re-writing the integral given by (2.99) in terms of the

kinetic energy in electron-Volts, denoted here by «:

Nei(X,y) = //gel XY, &, o) dxdo (E4)

where ge i (X, Y, k, ) isthe directional, kinetic energy distribution function defined as

ge7i(x,y,1<,oc)——fe,< y,«/—xcos 1/—KSII’] ) (E.5)
EI EI

Consistent with (2.101), asample of the kinetic-energy distributionge i (x,, x, &) at agiven

location (x,y) within the computational domain is given by

ge7i(xay7 Ka OC) =

(e 2
No 1 Qel 2Mej (TV—FK) me iU
Y . ' : E.6
2T, exp{ T ( + K \/ . 0004 + — , (E6)

where ¢ specifies the orientation of the velocity vector upon entry into the computational

space. Re-writing this expression in a more suitable form, we obtain

me7iU2
2e ’

No 1 Qe i
expld - = | By e
2nTe; P +

ge,i (X7y7 K? OC) =

\ 0 )
(E7)

where vy isthe x-component of the velocity at the entry point and V; isthe electric potential
at the entry point (X;,Yi). It can now be seen that the value of a given sample ge i(X,Y, k, @)
not only depends on the local potential V, but aso depends on the entry potential V; and on

all potential samplesthat affect the trajectory connecting the “entry” point of the trajectory
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at (xi, Vi, ki, o) and the interrogation point (X, Y, k, o), through the dependence on vy; in the
term denoted by (1.

In order to simplify the gradient expression, we recognize that the potential values on
the outer boundary are very closeto zero, at |east upon reaching a solution. Thismeans that
the expression under the squareroot in (E.7) will be very closeto 1 and that its dependence
upon the entry potential V; as well as the local potential V is weak, and can therefore
be neglected. Furthermore, the dependence upon all the potential samples affecting the
trajectory and by extension the value of vy could be computed using a chain rule combining
sub-trajectory coordinate Jacobians. However, an attempt at this calculation showed that
the numerical errors generated during such a lengthy chain rule can generate noise that
hinders convergence under certain conditions.

In light of the above two observations, it was decided for the gradient calculation to
drop any dependence upon the mesh potential samples of the term given by [J in (E.7).
Extensive testing under various conditions has shown that this doesn’'t prevent convergence

of the ssimulation. For the purpose of computing the gradient aag\;’i , the only term deemed to

represent a significant dependence upon potential mesh samplesis the first term within the
parentheses in (E.7), which contains the local potential V. Our first-order approximation

for the gradient of ge ;j with respect to the local potential V istherefore given by

99ei _ Gei
N T,

(E.8)

Due to the simplicity of thisexpression, it is seen that a corresponding first-order approxi-

mation for the gradient of the local density ne ; as obtained from (E.4) is given by

ane,i e

av ~ eTeJ ne7i. (Eg)

Again, asin the case of stationary plasmas, we observe that the local density only depends

ﬁ’e,i

on the local potential in our first-order approximation of the gradient. The Jacobian 88\7
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will therefore take the form of a diagonal matrix with the diagonal entries computed ac-
cording to (E.9) and all other entries set to zero.

Although the resulting Jacobian expression is only approximate, it has been shown in
practice to be quite sufficient to obtain convergence to low-error self-consistent solutions.
Asnoted above, the accuracy of the approximation improvesaswe get closer to the solution
due to the fact that the edge potentials tend to go down to very small values, which helps
providing better search directions as we get closer to a solution.

In closing, we should emphasize that the approximation used for the Jacobian only
affects the intermediate search directions, not the actual specified plasma source, for which
al the terms in (E.6) or (E.7) are fully accounted for. The approximations used in the
gradient calculations are therefore of no consequence to the accuracy of any obtained self-

consistent solution.
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APPENDIX F

Langmuir Probe Analysis for the Experimental
Assessment of Density, Temperature, and Flow Speed

The plasma parameter extraction isan iterative procedure that requires several iterations
of the “ion saturation analysis’ and “electron retardation analysis’, described below, to
reach convergence. At every step, the electron retardation anaysis is performed on the
electron current exclusively, by removing the ion saturation best fit from the current data.
Conversely, the ion saturation analysis is performed on the ion current alone by removing

the latest best fit to the electron retardation region from the measured current.

F.1 lon Saturation Analysis: Density n, = n;, Flow Energy
Uev, and High-Speed Fraction uy

The OML ion current to a cylindrical probe biased negatively, Vo —Vp < 0, in aplasma

flowing at avelocity U and a corresponding “flow energy” Ue, = m'z—gz isgiven by [29]

Ape1.5 1
ni | =Ti +Ue +Vp—Vo, F1
ﬂ\/ﬁi i 2 i ev p 0 ( )

~0

where Vp — Vo >> Ug,. The sope of the best fit to the I2-vs.-V LP data can be used
to determine the plasma density ne = n; (quasi-neutrality is strongly enforced within the
plasma beam), while the offset allows one to determine an estimate for the quantity %Ti +

Uev. An example of this procedure is shown in Figure F.1. In our calculations of the flow
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Figure F.1: Best fit of the 12-vs.-V datain the ion saturation regime. Thisis used to deter-
mine the density, flow energy, and fraction of beam ions.

energy Ue,, We have neglected the first term %Ti since the ion temperature is very low (on
the order of 1 eV).

An additional feature was added to the analysis in order to account for the presence of
a background of low-energy ions that have only thermal energy (i.e., they are not flowing),
in addition to the beam of directed ions. If we suppose that a fraction uy, of the ions are
beam ions and that the low-energy ions have atemperature Ty, then the total ion current

collected is given by

li = \/én\/ﬁni {ub\/éﬂ +Ue +Vp —Vo+ (1_,Ub)\/Tslow+Vp —Vo} . (F.2)
Now, the slope of theresulting Ii2-vs.-V graph only variesslowly, asevidencedin Figure F.1,
which clearly showsthe linear behavior in the ion saturation region. We may still perform
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abest fit of the collected Ii2 vs. V, and determine the “apparent” ion density nj gpp and flow
energy Uevapp < Uev. Assuming the flow energy Ue, of the high-speed ion population is
known, the actual ion density n; and the “high-speed fraction” uy both can be determined

accurately, using the following set of formulas that were devised based on (F.2):

A= \/Tslow +Vp —Vavgfit, (F.3)
B= \/Uev +Vp —Vavg fits (F.4)
C = Uavapp +Vp —Vavgfit: (F5)

1 1
D=2-+. (F6)
Ho = cg;i/—A B’ (F7)
VAB (F.8)

B+ (L A (A (L f)B)
where Vq,q fit is the average bias potential over which the best fit was performed to obtain
the values for nj gpp and Ue,gpp. There is a one-to-one map between the apparent flow
energy Uevapp and the actual high-speed ion fraction u, for agiven value of the high-speed
energy Ugy.

The value of the high-speed energy Ue, Was selected such that the high-speed ion frac-
tion uy, is equal to 0.95 at the closest position to the thruster (75 cm), which is approx-
imately in agreement with the energy distributions obtained using laser-induced fluores-
cence (LIF) at the same position. Thisprocedure hasyielded abeam energy of Ue, = 25 €V,
which is within the bounds of the error of the LIF result (43 eV), as discussed earlier. The
high-speed fractions obtained for all three positions are shown in Table 3.4: 95% at 75 cm,

53% at 160 cm, and 32% at 300 cm.
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F.1.1 Evaluation of the Error on Density Estimates

Typically, the error on Langmuir probe density measurement is estimated as the discrep-
ancy between the electron and ion densities. However, in the case of aflowing plasma, elec-
tron current collection is significantly enhanced, as is shown in chapter 3, a phenomenon
that no existing model can quantitatively predict, as discussed in Section 4.6. On the other
hand, the effect of flow onion current collection is very well understood, which means that
plasma flow does not cause significant errors in the ion density estimates. Thus, the quan-
tity |ne — nj| would merely provide ameasure of the error on the electron density introduced
by the plasma flow.

Giventhat plasmaflow does not contribute asignificant error to theion density estimate,
the primary source of error in the determination of plasma density estimates is the error
on the Langmuir probe area estimate. We estimate the error on the length of the 4-cm
Langmuir probe to be about 1 mm. Asfor the Langmuir probe’s diameter of 0.28-mm, it
is much more accurate due to precision manufacturing; it is estimated to have a 0.01-mm
tolerance (actual tolerance could not be obtained from the manufacturer). Based on these
two errors, the relative error on the probe area can be computed as1/40+ 0.01/0.28 ~ 6%.

Now, the collected ion current is proportional to the product of the probe area and
plasma density. Thus, the 6% relative error on probe area contributes a 6% relative error
on our density estimates. Other, secondary sources of error, such as voltage and current
measurement errors, should certainly amount to lessthan 2%. A conservative error estimate

would thus be obtained by the sum of 6% and 2%, for atotal of 8%.
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F.2 Electron Retardation Analysis: Plasma Potential V,
and Electron Temperature T,

Variationsin the effective work function on the surface of our Langmuir probe (referred
to as work function patchiness by Brace [7]) has turned out to be an area of concern in our
experimental data. Our results appear to suggest a total effective work function variation
of severa eV. Figure F.2 illustratesthat effect, which leads to a departure from exponential
behavior before the plasma potential is attained. Possible explanations for this variation
could include polycrystalline workfunction variations of the Tungsten probes (on the order
of 1 eV, the Tungsten workfunction being on the order of 4.5 eV), and possible surface
contaminants, such as adsorbed residual gases and adsorbed xenon ions. A quantitative
assessment of the contamination sources is outside of the scope of the present paper, but
we note here that several authors have linked effective work function variations to surface
adsorbates [85-91].

A simple numerical experiment on the theoretical current collection curves was per-
formed in order to emulate the “blurring” effect of the work function variation. Figure F.3
shows the results of this numerical experiment in the “thin sheath” and “OML” limits. The
dashed curves, shown in both linear and semi-logarithmic formats, is the result of “blur-
ring” the theoretical curves using a local averaging window of width equal to 4.8 times
the electron temperature. The blurred thin sheath curve is shown to collect less than the
thermal current I, at the plasma potential (V /Te=0 here), while on the blurred OML curve,
the collected current at plasma potential is still equal to the thermal current Iyy,. It turns out
that it will stay within 3% of Iy, as long as the work function variation is under 6.7 times
the thermal temperature.

We use this feature of the OML blurring in our determination of the plasma potential.

In other words, we locate the plasma potential by finding the potential where the collected
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Figure F.2: Best fitsin the electron retardation regime of atransverse-flow Langmuir probe.
Two linear best-fits are performed on this semi-log plot. The one occurring at lower poten-
tial values corresponds to a population of warmer electrons, which account for just a few
percent of the electron population.

current is equal to the electron thermal current. The cross-hair in Figure F.2 illustrates that
result. As for the electron temperature, we may safely determine it based on the inverse
of the dlope of the retardation region within the linear part of FigureF.3(b), that is, beyond
the reach of the blurring effect of the work function variation, as the rightmost linear fit
shows in Figure F.2. The leftmost linear fit shown on the same figure is identified with a
population of warmer electrons, which account for just a few percent of the total electron

population.
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Figure F.3: Theoretical “blurring” of the current collection to probesin the (a) thin sheath
and (b) OML limits.
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F.2.1 Evaluation of the Error on Temperature Estimates

The temperature determination from the exponential fit of the retardation data is inde-
pendent of the probe area, and as a consequence, the error on the Langmuir probe area
estimate has no bearing on the accuracy of the temperature estimate. The primary sources

of error in the temperature determination are thus

¢ therelative accuracy of the voltages measured by the Keithley 2410 sourcemeter that

was used for the LP measurements, which is better than 1%; and

o the empirical process used to select the voltage range over which a best fit of the

retardation regime is performed.

In order to be conservative in accounting for both of these error terms, we will assume an
overall accuracy of 5% for our temperature estimates.

Because the Debye length estimate is determined based on the estimated density and
temperature values through the relationship Ape = ZOTTOE the relative accuracy on Debye

length, consistent with the 5% and 8% relative accuracy estimates for temperature and

density, is obtained from:

Mpe 1/AT, An\ 1
_ 2 (Ale [ AN _ 2 5ot 89%) — 6.5% F9
Ao 2<Te+n 5 (5%+8%) ° (F9)
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