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ABSTRACT

THEORY AND EXPERIMENTAL EVALUATION OF A CONSISTENT
STEADY-STATE KINETIC MODEL FOR 2-D CONDUCTIVE

STRUCTURES IN IONOSPHERIC PLASMAS WITH APPLICATION
TO BARE ELECTRODYNAMIC TETHERS IN SPACE

by
Éric Choinière

Chair: Brian E. Gilchrist

A steady-state kinetic computational model is developed, allowing for self-consistent

simulations of collisionless, unmagnetized flowing plasmas in a vast region surrounding

any two-dimensional conductive object. An optimization approach is devised based on a

stable, noise-robust Tikhonov-regularized Newton method. Dynamic, adaptive, unstruc-

tured meshing allows arbitrary geometries and adequate resolution of plasma sheath fea-

tures. A 1-D cylindrical solver (KiPS-1D) and a full 2-D solver (KiPS-2D) were developed,

the latter using coarse-grained parallelism.

This technique is applied to investigate various applications of special and fundamen-

tal importance, principally for space plasmas, although not limited as such. This thesis

addresses new simulations and experiments relevant to space borne electrodynamic teth-

ers for propellantless propulsion and for the remediation of radiation belts through charge

precipitation, as well as to Langmuir probes for plasma diagnostic in flowing plasmas.

Here, the existing set of plasma sheath profiles and current collection characteristics

for round cylinders in stationary plasmas is extended to large bias potentials. Interfer-
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ence effects between two parallel cylinders are shown to exist for spacings upward of 20

times the single-cylinder sheath radius, and an optimal spacing equal to the single-cylinder

sheath radius maximizes the sheath area, a finding qualitatively supported by our new ex-

perimental data on electron-collecting thin slotted tapes. Also, a thin conductive solid tape

is shown to have an equal-capacitance circular radius of about 0.29 times its width. Its

predicted collected current characteristic as a function of width approximately agrees with

experimental measurements. Further, it has a lower current collection capability than the

equal-capacitance circular cylinder.

For ion-attracting cylinders, ionospheric plasma representative of an altitude of 1500

km with a flow energy on the order of the thermal energy is shown to cause significant

sheath asymmetries, reducing the sheath radius and current collection by about 30%. For

electron-attracting cylinders, a mesosonic flow is experimentally shown to significantly

enhance electron collection. This cannot be predicted by a collisionless model and may be

due to an elongation of the ram-side pre-sheath into a collisional zone for electrons.

viii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

CHAPTERS

1 Introduction, Background and Previous Research . . . . . . . . . . . . . . 1
1.1 Motivation and Definition of the Problem . . . . . . . . . . . . . . 1

1.1.1 Bare Electrodynamic Tethers for Space Propulsion . . . . 2
1.1.2 Bare Electrodynamic Tethers for Ionospheric High-Energy

Charge Precipitation (“Electrostatic” Tethers) . . . . . . . 5
1.1.3 Plasma Diagnostics Probes . . . . . . . . . . . . . . . . . 6
1.1.4 Other Applications . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Description of the Problem & Regimes of interest . . . . . 8

1.2 Cylindrical Plasma Probes: Background and Literature Review . . 11
1.2.1 Stationary plasmas . . . . . . . . . . . . . . . . . . . . . 12

1.2.1.1 Thin Sheath Limit . . . . . . . . . . . . . . . . 13
1.2.1.2 Orbital-Motion Limit (“Thick” Sheath Limit) . . 14
1.2.1.3 Numerical Approaches for Arbitrary Probe Sizes 16

1.2.2 Flowing Plasmas . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2.1 Treatments Based on a Symmetric Potential

Profile Assumption . . . . . . . . . . . . . . . . 17
1.2.2.2 Consistent Numerical Treatments . . . . . . . . 18

1.2.2.2.1 Steady-State Kinetic Treatments . . 18
1.2.2.2.2 Particle-in-Cell Treatment . . . . . . 19

1.3 Summary of Research Contributions . . . . . . . . . . . . . . . . 19

ix



1.3.1 A Self-Consistent Steady-State Kinetic Model for Arbi-
trary 2-D Conductive Structures in Flowing Plasmas . . . . 20

1.3.2 New Simulation Results . . . . . . . . . . . . . . . . . . . 21
1.3.3 New Experimental Results . . . . . . . . . . . . . . . . . 22

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Steady-State Poisson–Vlasov Model: Theory and Implementation . . . . . 25
2.1 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Poisson–Vlasov Representation of Collisionless Plasmas . . . . . 33
2.3 Finite-Element Poisson Solver . . . . . . . . . . . . . . . . . . . 36

2.3.1 1-D Cylindrical Implementation . . . . . . . . . . . . . . 37
2.3.2 2-D Implementation . . . . . . . . . . . . . . . . . . . . . 41

2.3.2.1 Poisson Boundary Conditions . . . . . . . . . . 41
2.3.2.2 Finite-Element Formulation . . . . . . . . . . . 43

2.3.2.2.1 Formulation of the Outer Boundary
Condition . . . . . . . . . . . . . . 43

2.3.2.2.2 Formulation of the Internal Finite
Elements . . . . . . . . . . . . . . . 46

2.4 Steady-State Vlasov Solver . . . . . . . . . . . . . . . . . . . . . 50
2.4.1 1-D Cylindrical Implementation . . . . . . . . . . . . . . 51

2.4.1.1 Approximating the Vlasov Functional fV in 1-D 52
2.4.1.2 Linearizing the 1-D Vlasov Solver . . . . . . . . 55

2.4.2 Full 2-D Implementation . . . . . . . . . . . . . . . . . . 56
2.4.2.1 Orbit Tracking and Analysis . . . . . . . . . . . 56

2.4.2.1.1 A Note on Segment-bound Trajec-
tories . . . . . . . . . . . . . . . . . 62

2.4.2.2 Sampling the Velocity Distribution Function . . 62
2.4.2.3 Velocity Space Integration . . . . . . . . . . . . 65

2.4.2.3.1 Defining “Directional-Energy” Space 65
2.4.2.3.2 Numerical Integration in

“Directional-Energy” Space . . . . . 66
2.4.2.4 Linearizing the 2-D Vlasov Solver . . . . . . . . 70

2.5 Regularized Newton Iterative Poisson–Vlasov Scheme . . . . . . . 70
2.5.1 Top-level Iterative Scheme . . . . . . . . . . . . . . . . . 71
2.5.2 Conditioning and Quadrature Noise Issues . . . . . . . . . 73
2.5.3 Diagonal Preconditioning . . . . . . . . . . . . . . . . . . 75
2.5.4 Tikhonov “Progressive” Regularization . . . . . . . . . . . 76
2.5.5 Discrepancy Principle as Stopping Criteria . . . . . . . . . 81
2.5.6 Dynamic Step Size Control . . . . . . . . . . . . . . . . . 82
2.5.7 Dynamic Adaptive Quadrature Tolerance . . . . . . . . . . 85

2.6 Dynamic Adaptive Mesh Refinement . . . . . . . . . . . . . . . . 86
2.6.1 KiPS Cylindrical 1-D Implementation . . . . . . . . . . . 86
2.6.2 KiPS 2-D Implementation . . . . . . . . . . . . . . . . . 88

2.6.2.1 Meshing Software . . . . . . . . . . . . . . . . 88
2.6.2.2 Mesh Symmetry Axes . . . . . . . . . . . . . . 88

x



2.6.2.3 Mesh Refinement: Strategy & Metrics . . . . . . 89
2.6.2.4 Examples of Mesh Geometries Under Consid-

eration . . . . . . . . . . . . . . . . . . . . . . 91
2.6.2.4.1 Single Round Cylinder . . . . . . . 91
2.6.2.4.2 Tape Cylinder . . . . . . . . . . . . 92
2.6.2.4.3 Two Round Cylinders . . . . . . . . 93

2.7 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . 94
2.7.1 General Philosophy . . . . . . . . . . . . . . . . . . . . . 94
2.7.2 Optimizing & Parallelizing the Vlasov Solver . . . . . . . 95
2.7.3 Present Parallel Computing Platform . . . . . . . . . . . . 96
2.7.4 Alternative Parallel Computing Platforms . . . . . . . . . 96

3 Experimental Investigation of Electron-Collecting Tether
Samples in a Mesosonic Xenon Plasma . . . . . . . . . . . . . . . . . . . 98

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 Design and Assembly of Solid and Slotted Tape Tether Guarded

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3 Vacuum Chamber Setup and Plasma Source Characteristics . . . . 105
3.4 Plasma Parameter Measurements Using Negatively-Biased Lang-

muir Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.5 Experimental Results & Analysis . . . . . . . . . . . . . . . . . . 110

3.5.1 Reference Cylinder . . . . . . . . . . . . . . . . . . . . . 111
3.5.2 Solid Tapes . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.5.3 Slotted Tapes . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.4 Comparison of the Solid and Slotted Tapes . . . . . . . . . 116

3.6 Present Status and Conclusions . . . . . . . . . . . . . . . . . . . 120

4 Simulation Results and Validation . . . . . . . . . . . . . . . . . . . . . . 122
4.1 Definition of Normalized Physical Quantities . . . . . . . . . . . . 122
4.2 Single Round Cylinder in Stationary Plasma . . . . . . . . . . . . 126

4.2.1 Validation of Potential & Density Profiles at Low Bias
Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.2 Validation of Collected Current at Low Bias Voltages . . . 130
4.2.3 Assessment of Collected Current at High Bias Voltages . . 131
4.2.4 Plasma Profiles at High Voltages . . . . . . . . . . . . . . 133

4.2.4.1 Typical Plasma Profile from KiPS-1D . . . . . . 134
4.2.4.2 Typical Two-Dimensional Plasma Structure

from KiPS-2D . . . . . . . . . . . . . . . . . . 137
4.2.4.3 Profile dependence on Bias Potential and Cylin-

der Radius . . . . . . . . . . . . . . . . . . . . 137
4.2.4.4 Variation of the Ion Velocity Distribution

Throughout the Sheath . . . . . . . . . . . . . . 143
4.2.5 Sheath Radius at High Voltages . . . . . . . . . . . . . . . 146

4.3 Interference of Parallel Round Cylinders in a Stationary Plasma . . 149
4.3.1 Treatment of Repelled Electrons . . . . . . . . . . . . . . 150

xi



4.3.2 Orbits of the Attracted Ions . . . . . . . . . . . . . . . . . 150
4.3.2.1 Criteria for Trapped Orbits . . . . . . . . . . . . 151
4.3.2.2 Examples of Ion Orbits . . . . . . . . . . . . . . 152

4.3.3 Inspection of the 2-D Sheath Structure . . . . . . . . . . . 154
4.3.4 Definition of an Effective Sheath Area Concept . . . . . . 170
4.3.5 Determination of the Effective Sheath Area of the Two-

Cylinder Configuration . . . . . . . . . . . . . . . . . . . 171
4.3.6 Parametric Analysis of the Sheath Structure . . . . . . . . 181
4.3.7 Interference Effect on Collected Current . . . . . . . . . . 186

4.4 Solid Tape Cylinder in Stationary Plasma: Current Collection . . . 189
4.4.1 Equivalent Cylinder Radius and Collected Current: Theo-

retical Comparisons . . . . . . . . . . . . . . . . . . . . . 189
4.4.2 Collected Current: Comparisons with Experimental Results 192

4.5 Flow Effects on Ion-Attracting Round Cylinder . . . . . . . . . . 196
4.5.1 Criteria for Trapped Orbits . . . . . . . . . . . . . . . . . 198
4.5.2 Treatment of Electrons . . . . . . . . . . . . . . . . . . . 199
4.5.3 Validation with Existing Simulation Results . . . . . . . . 200

4.5.3.1 Ion Density Profile Validations . . . . . . . . . . 200
4.5.3.2 Ion Current Collection Validations . . . . . . . . 203

4.5.4 Ionospheric Flow Effects at High Altitudes (H=1500 km) . 206
4.5.4.1 Flow Energy at Altitude of Interest . . . . . . . 206
4.5.4.2 Inspection of the Sheath Structure . . . . . . . . 207
4.5.4.3 Plasma Flow Effects on Sheath Structure and

Dimensions . . . . . . . . . . . . . . . . . . . . 223
4.5.4.4 Plasma Flow Effect on Ion Current Collection . . 226

4.6 Flow Effects on Electron-Attracting Round Cylinder . . . . . . . . 227
4.6.1 Potential and Density Profiles . . . . . . . . . . . . . . . . 228
4.6.2 Electron Current Collection . . . . . . . . . . . . . . . . . 237

4.7 Outline of Simulation Resource Requirements . . . . . . . . . . . 242
4.7.1 1-D Cylindrical Implementation (KiPS-1D) . . . . . . . . 242
4.7.2 2-D Cylindrical Implementation (KiPS-2D) . . . . . . . . 244

4.7.2.1 Processing Time . . . . . . . . . . . . . . . . . 244
4.7.2.2 Random-Access Memory Requirements . . . . . 247

5 Conclusions and Recommendations for Future Research . . . . . . . . . . 248
5.1 Summary and Conclusions of Research . . . . . . . . . . . . . . . 248

5.1.1 Self-Consistent Steady-State Kinetic Model . . . . . . . . 248
5.1.2 Experimental Investigation of Electron-Collecting Tether

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.1.3 Important Simulation and Experimental Results . . . . . . 251

5.1.3.1 Ion-Attracting High-Voltage Single Cylinder in
Stationary Plasma . . . . . . . . . . . . . . . . 251

5.1.3.2 Interference Effects of Parallel Cylinders . . . . 251
5.1.3.3 Geometry Effects of the Solid Tape Cylinder . . 252
5.1.3.4 Plasma Flow Effects on Ion-Attracting Cylinder . 252

xii



5.1.3.5 Plasma Flow Effects on Electron-Attracting
Cylinder . . . . . . . . . . . . . . . . . . . . . 253

5.2 Recommendations for Future Research . . . . . . . . . . . . . . . 253
5.2.1 Computational Modeling . . . . . . . . . . . . . . . . . . 254
5.2.2 Experimental Testing . . . . . . . . . . . . . . . . . . . . 256

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

xiii



LIST OF TABLES

Table

1.1 Approximate plasma parameters for the main applications of interest. . . . 11

2.1 Decay rates of the radial electric field Ern = −
∂Vxn

∂ r
for various circular

harmonic modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Functional operators and corresponding numerical solvers. . . . . . . . . . 71

3.1 Effective diameter of the reference cylinder and effective widths of the
three solid tapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Effective center-to-center line spacing as a function of sample porosity. . . 101

3.3 Operating parameters of the plasma source (P5 Hall thruster). . . . . . . . . 107

3.4 Variation of the measured plasma parameters as a function of distance from
the Hall thruster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



LIST OF FIGURES

Figure

1.1 Example of an application of the electrodynamic space tether concept for
use as a station keeping device for the International Space Station. . . . . . 3

1.2 Geometry of the interaction of the electrodynamic tether and the radiation
belt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Four examples of the cylinder geometries under consideration. . . . . . . . 10

1.4 Normalized current characteristics in the thin sheath limit and orbital mo-
tion limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Example of the semi-analytical particle tracking process through the poten-
tial mesh on a grid with normalized coordinates. . . . . . . . . . . . . . . . 59

2.2 Poisson–Vlasov operator comprised of both the Poisson and Vlasov solvers. 71

2.3 Tikhonov-regularized Newton iterative Poisson–Vlasov procedure. . . . . . 72

2.4 Sequence of refined meshes obtained for a single one-Debye-length-radius
round cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.5 Sequence of refined meshes obtained for a tape cylinder. . . . . . . . . . . 93

2.6 Sequence of refined meshes for 2 parallel one-Debye-length-radius cylinders. 94

3.1 Drawing and description of the six guarded tether samples shown before
assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Assemblies of the reference cylinder and tape guarded tether samples. . . . 102

3.3 Example of the ceramic attachment used on all solid and slotted tape samples.103

3.4 Pictures of three typical tether samples. . . . . . . . . . . . . . . . . . . . 104

xv



3.5 Experimental setup in the Large Vacuum Test Facility (LVTF) at the Plas-
madynamics and Electric Propulsion Laboratory (PEPL). . . . . . . . . . . 106

3.6 Picture of the guarded sample support structure and the P5 Hall thruster
used as a high-speed plasma source. . . . . . . . . . . . . . . . . . . . . . 107

3.7 Schematic of the computer-controlled high-voltage test equipment setup. . . 109

3.8 Normalized I–V characteristics of parallel and perpendicular solid tapes. . . 113

3.9 Normalized I–V characteristics of parallel and perpendicular slotted tapes. . 115

3.10 Comparison of the I–V characteristics of solid and slotted tapes at 75 cm. . 117

3.11 Comparison of the I–V characteristics of solid and slotted tapes at 160 cm. . 118

3.12 Comparison of the I–V characteristics of solid and slotted tapes at 300 cm. . 119

4.1 Normalized ion and electron charge densities as a function of normalized
distance from the surface of a round cylindrical probe. . . . . . . . . . . . 127

4.2 Normalized net charge density as a function of normalized distance from
the surface of a round cylindrical probe. . . . . . . . . . . . . . . . . . . . 128

4.3 Normalized electric potential as a function of normalized distance from the
surface of a round cylindrical probe. . . . . . . . . . . . . . . . . . . . . . 129

4.4 Normalized collected ion current I/Ith to a round conductive cylinder as a
function of normalized bias potential φ0 = (V0−Vp)/Te. . . . . . . . . . . 131

4.5 Current ratio I/Ioml (“current collection efficiency”) as a function of the
radius of a round conductive cylinder. . . . . . . . . . . . . . . . . . . . . 132

4.6 Typical high-voltage cylindrical sheath structure. . . . . . . . . . . . . . . 134

4.7 Poisson–Vlasov consistent KiPS-2D solution for a single cylinder configu-
ration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 Poisson–Vlasov consistent electron and ion density distributions for a
single-cylinder configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.9 Family of electron and ion density profiles for a round conductive cylinder
with radius r0 = λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Family of electron and ion density profiles for a round conductive cylinder
with radius r0 = 0.001λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xvi



4.11 Family of potential profiles for a round conductive cylinder with radius
r0 = λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.12 Family of potential profiles for a round conductive cylinder with radius
r0 = 0.001λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.13 Ion “directional-energy” distributions in the high-voltage cylindrical sheath. 144

4.14 Equivalent sheath radius as a function of normalized bias potential and nor-
malized line charge for an ion-attracting round conductive cylinder. . . . . . 147

4.15 Examples of some typical ion orbits within the self-consistent potential
structure of a two-cylinder system. . . . . . . . . . . . . . . . . . . . . . . 153

4.16 Poisson–Vlasov consistent solution for a two-cylinder configuration with
∆x= 2λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.17 Poisson–Vlasov consistent electron and ion density distributions for a two-
cylinder configuration with ∆x= 2λDe. . . . . . . . . . . . . . . . . . . . . 156

4.18 Poisson–Vlasov consistent solution for a two-cylinder configuration with
∆x= 10λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.19 Poisson–Vlasov consistent electron and ion density distributions for a two-
cylinder configuration with ∆x= 10λDe. . . . . . . . . . . . . . . . . . . . 159

4.20 Poisson–Vlasov consistent solution for a two-cylinder configuration with
∆x= 20λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.21 Poisson–Vlasov consistent electron and ion density distributions for a two-
cylinder configuration with ∆x= 20λDe. . . . . . . . . . . . . . . . . . . . 161

4.22 Poisson–Vlasov consistent solution for a two-cylinder configuration with
∆x= 40λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.23 Poisson–Vlasov consistent electron and ion density distributions for a two-
cylinder configuration with ∆x= 40λDe. . . . . . . . . . . . . . . . . . . . 164

4.24 Poisson–Vlasov consistent solution for a two-cylinder configuration with
∆x= 80λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.25 Poisson–Vlasov consistent electron and ion density distributions for a two-
cylinder configuration with ∆x= 80λDe. . . . . . . . . . . . . . . . . . . . 166

4.26 Poisson–Vlasov consistent solution for a two-cylinder configuration with
∆x= 160λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xvii



4.27 Poisson–Vlasov consistent electron and ion density distributions for a two-
cylinder configuration with ∆x= 160λDe. . . . . . . . . . . . . . . . . . . 169

4.28 Potential contour levels along with a plot of the contour level as a function
of the area enclosed by a given contour, for a two-cylinder configuration
with ∆x= 2λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.29 Potential contour levels along with a plot of the contour level as a function
of the area enclosed by a given contour, for a two-cylinder configuration
with ∆x= 10λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.30 Potential contour levels along with a plot of the contour level as a function
of the area enclosed by a given contour, for a two-cylinder configuration
with ∆x= 20λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.31 Potential contour levels along with a plot of the contour level as a function
of the area enclosed by a given contour, for a two-cylinder configuration
with ∆x= 40λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.32 Potential contour levels along with a plot of the contour level as a function
of the area enclosed by a given contour, for a two-cylinder configuration
with ∆x= 80λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.33 Potential contour levels along with a plot of the contour level as a function
of the area enclosed by a given contour, for a two-cylinder configuration
with ∆x= 160λDe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.34 Effective sheath area ratio RAs as a function of the center-to-center spacing
of two parallel cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.35 Ratio of the outward sheath radius to the single independent cylinder sheath
radius rs,1 as a function of the center-to-center spacing of two parallel cylin-
ders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.36 Ratio of the total surface charge on both cylinders to the surface charge
held by a single independent cylinder. . . . . . . . . . . . . . . . . . . . . 184

4.37 Equivalent bias potential of a single cylinder as a function of the center-to-
center spacing of two parallel cylinders. . . . . . . . . . . . . . . . . . . . 185

4.38 Equivalent radius of a single cylinder as a function of the center-to-center
spacing of two parallel cylinders. . . . . . . . . . . . . . . . . . . . . . . . 186

4.39 Current ratio as a function of center-to-center spacing for the two-cylinder
configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xviii



4.40 Illustration of the convex envelope surrounding both cylinders. . . . . . . . 188

4.41 Equivalent circular probe radius as a function of width for a solid tape
electron collector biased at φ0 =

V0−Vp
Te
= 300. . . . . . . . . . . . . . . . . 191

4.42 Current ratio I/Ioml as a function of tape width for a solid tape biased at
φ0 =

V0−Vp
Te
= 300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.43 Simulated current ratio I/Ioml as a function of tape width for a solid tape
biased at φ0 =

V0−Vp
Te
= 100, along with experimental data. . . . . . . . . . 193

4.44 Normalized current characteristics of solid tapes: comparison of simulation
results with experimental data obtained at 75 cm. . . . . . . . . . . . . . . 196

4.45 Normalized current characteristics of solid tapes: comparison of simulation
results with experimental data obtained at 160 cm. . . . . . . . . . . . . . . 197

4.46 Normalized current characteristics of solid tapes: comparison of simulation
results with experimental data obtained at 300 cm. . . . . . . . . . . . . . . 197

4.47 Ion normalized density profile along the central axis of a round conductive
cylinder (r0= λDe) biased at a potential of−25Te and immersed in a plasma
flowing at speed ratios Sd = 0.5 and Sd = 1. . . . . . . . . . . . . . . . . . 201

4.48 Ion normalized density profile along the central axis of a round conductive
cylinder (r0= λDe) biased at a potential of−25Te and immersed in a plasma
flowing at speed ratios Sd = 3 and Sd = 6. . . . . . . . . . . . . . . . . . . 202

4.49 Collected ion current as a function of the ion speed ratio Sd , for a round
conductive cylinder with probe radii r0 = 0.2λDe and r0 = λDe, immersed
in a flowing plasma with Ti = Te. . . . . . . . . . . . . . . . . . . . . . . . 204

4.50 Collected ion current as a function of the ion speed ratio Sd , for a round
conductive cylinder with probe radii r0 = 5λDe and r0 = 10λDe, immersed
in a flowing plasma with Ti = Te. . . . . . . . . . . . . . . . . . . . . . . . 205

4.51 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −5 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.52 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−5 and immersed in a flowing
plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . 210

xix



4.53 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −10 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.54 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0= λDe) biased at φ0=−10 and immersed in a flowing
plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . 212

4.55 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −20 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.56 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0= λDe) biased at φ0=−20 and immersed in a flowing
plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . 214

4.57 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −50 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

4.58 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0= λDe) biased at φ0=−50 and immersed in a flowing
plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . 216

4.59 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −100 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.60 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−100 and immersed in a flow-
ing plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . 218

4.61 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −200 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4.62 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−200 and immersed in a flow-
ing plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . 220

4.63 Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0= λDe)
biased at φ0 = −300 and immersed in a flowing plasma with flow energy
Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

xx



4.64 Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−300 and immersed in a flow-
ing plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . 222

4.65 Set of curves of the axial potential profiles corresponding to various bias
potentials for a one-Debye-length-radius round cylinder immersed in a flow-
ing plasma with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . 223

4.66 Set of curves of the electron and ion axial density profiles corresponding
to various bias potentials for a one-Debye-length-radius round cylinder im-
mersed in a flowing plasma with flow energy Uev = 0.66Te. . . . . . . . . . 224

4.67 Effective sheath area ratio RAs as a function of normalized bias potential
for an ion-attracting single round cylinder immersed in a flowing plasma
with flow energy Uev = 0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . 225

4.68 Ratio of surface charge to the “stationary” surface charge as a function
of normalized bias potential, for an ion-attracting single round cylinder
immersed in a flowing plasma with flow energy Uev = 0.66Te. . . . . . . . 226

4.69 Current ratio as a function of normalized bias potential for an ion-attracting
single round cylinder immersed in a flowing plasma with flow energy Uev=
0.66Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

4.70 Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0=
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy
Uev = 0.2 Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.71 Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in
a flowing plasma with flow energy Uev = 0.2 Te. . . . . . . . . . . . . . . . 230

4.72 Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0=
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy
Uev = 0.5 Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.73 Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in
a flowing plasma with flow energy Uev = 0.5 Te. . . . . . . . . . . . . . . . 232

4.74 Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0=
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy
Uev = Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

xxi



4.75 Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in
a flowing plasma with flow energy Uev = Te. . . . . . . . . . . . . . . . . 234

4.76 Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0=
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy
Uev = 1.5 Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

4.77 Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in
a flowing plasma with flow energy Uev = 1.5 Te. . . . . . . . . . . . . . . . 236

4.78 Collected Electron Current Ratio Ie/Ioml as a function of the normalized
flow energy Uev/Te (φ0 = 20, r0 = λDe). . . . . . . . . . . . . . . . . . . . 238

4.79 Number of iterations required for convergence and CPU time as a function
of the number of unknowns in KiPS-1D simulations involving a cylinder
radius of r0 = λDe. The number of unknowns was modulated by changing
the bias potential, since higher potentials demand a larger number of grid
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

4.80 CPU time as a function of the number of iterations required for conver-
gence in KiPS-1D simulations involving a cylinder of radius r0 = λDe. The
number of unknowns was modulated by changing the bias potential, since
higher potentials demand a larger number of grid samples. . . . . . . . . . 244

4.81 Simulation time required as a function of the magnitude of the normalized
bias φ0, for the KiPS-2D simulations shown in Section 4.5.4, with r0= λDe,
Uev = 0.66Te, and one mesh refinement. . . . . . . . . . . . . . . . . . . . 245

F.1 Best fit of the I2
i -vs.-V data in the ion saturation regime. . . . . . . . . . . . 274

F.2 Best fits in the electron retardation regime of a transverse-flow Langmuir
probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

F.3 Theoretical “blurring” of the current collection to probes in the thin sheath
and OML limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

xxii



LIST OF ALGORITHMS

Algorithm

1 Algorithm used to compute the elements of the density Jacobian
∂�n
∂�V

(1-D

cylindrical implementation) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Numerically stable evaluation of quadratic root . . . . . . . . . . . . . . . 61

3 Dynamic step size control . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Relaxation of relative quadrature tolerance . . . . . . . . . . . . . . . . . . 86

5 General mesh refinement strategy . . . . . . . . . . . . . . . . . . . . . . 87

xxiii



LIST OF APPENDICES

APPENDIX

A Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

B Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

C 2-D Poisson Solver: Detailed Expression of the Loading Matrix Elements . 265

D Adaptive Integration Using Trapezoidal Quadrature . . . . . . . . . . . . . 267

E Linearization of the 2-D Vlasov Solver . . . . . . . . . . . . . . . . . . . . 268

F Langmuir Probe Analysis for the Experimental Assessment of Density,
Temperature, and Flow Speed . . . . . . . . . . . . . . . . . . . . . . . . 273

xxiv



CHAPTER 1

Introduction, Background and Previous Research

1.1 Motivation and Definition of the Problem

Long conductive structures immersed in flowing plasmas have several applications in

science and engineering. Among them are propellantless in-orbit spacecraft propulsion [1,

2] and high-energy charge precipitation from the Earth’s radiation belts [3–5], also known

as remediation of radiation belts. Another common application is the Langmuir probe, a

device that is widely used for laboratory and in-space plasma diagnostics [6, 7].

Unfortunately, the existing models commonly used as design tools for these applica-

tions are limited in terms of one or more of the following:

• the cross-sectional geometries they can address;

• the regimes of operation they can support (e.g. voltage bias, plasma flow speed);

• the validity and accuracy of their treatment (self-consistency of the fields and space

charge).

As it turns out, the design parameters of some of the applications of present interest, namely

propellantless propulsion and high-energy charge precipitation, simply fall outside of the

scope of existing models, as will be explained later.
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In the following paragraphs, the engineering applications that have motivated this re-

search will be described in more detail, and a generic problem will be defined along with

the regimes of interest applicable to these applications. This will demonstrate the need

for a more capable model of the plasma sheath structure and current collection properties

of conductive structures in ionospheric plasmas. For the moment however, let us outline

the scientific contributions provided by this thesis in order to address the need for such a

model:

1. definition and validation of an accurate 2-D steady-state plasma model based on a

fully kinetic description of the plasma species, applicable to cylinders of various

cross-section geometries immersed in stationary or flowing unmagnetized plasmas;

2. elaboration of a 1-D cylindrical version of the model useful for determining plasma

sheath dimensions for round cylindrical conductors in stationary plasmas; this model

expands the domain of applicability of a similar existing 1-D model [8] to very large

voltages (∼ 10,000 times the electron temperature);

3. acquisition and analysis of new experimental vacuum chamber simulation data per-

taining to simulated tether samples in high-speed plasmas, in support of the 2-D

model.

The need for these new capabilities will become obvious in the following descriptions of

the engineering applications of interest.

1.1.1 Bare Electrodynamic Tethers for Space Propulsion

Space electrodynamic tethers offer the opportunity for propellantless propulsion of

spacecraft in orbit around any planet with a magnetic field and plasmasphere, based on

the conversion of the geomagnetic force on an electric current along a conducting tether
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Figure 1.1: Example of an application of the electrodynamic space tether concept for use
as a station keeping device for the International Space Station. This image is a courtesy of
NASA.

into a propulsive force [2,9]. The electric current flow along the tether is generated through

either one of these mechanisms:

• the motional electromotive force (emf) experienced by the tether-bound charge car-

riers as they move at orbital speed through the Earth’s magnetic field;

• an on-board voltage source, which can either add to the motional emf or counter it.

The motional emf and the on-board voltage source can be used to drive current in either

direction, resulting in an increase or decrease of the orbital energy. Figure 1.1 shows an

example of the use of the propulsive force of an electrodynamic tether for station keeping

purposes on the International Space Station (ISS). The accelerating thrust provided by the

electrodynamic tether could be used to counter the atmospheric drag on the space station,

without the need for propellant that presently must be hauled periodically to the ISS by the

Space Shuttle [10]. One of the key parameters affecting thrust is the amount of electrical

current flowing through the tether, which in turn is limited by the amount of electron current
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collected from the ionosphere.

Some authors have proposed the use of bare conductive tethers as an alternative to con-

figurations using an insulated tether combined with an end collector [1,2]. Bare tethers are

believed to be efficient electron collectors provided that electrons are collected in a quasi

orbital-motion-limited (OML) regime. In a stationary unmagnetized plasma, the electron

collection process can reach the orbital motion limit, provided that the cylindrical collec-

tor is sufficiently thin [11, 12] with respect to a Debye length, the characteristic shielding

distance in a plasma. However, space tethers are moving through the ionosphere at orbital

velocities, effectively adding a flow component to the surrounding plasma. It is desirable

to assess how the electron collection capability of a cylindrical bare tether immersed in a

flowing plasma departs from that predicted by the orbital motion limit.

Past bare tether designs used a small, closely packed cross-section of wires or even a

single wire as the anode [13]. In future designs, addressing concerns such as survivability

from collisions with micro-meteoroids and space debris will require the use of distributed or

sparse tether cross-section geometries, which could span tens of Debye lengths, depending

on plasma density [14]. Since the merits of bare tethers are closely related to the efficiency

of the orbital-motion-limited regime, one needs to consider how these new distributed or

sparse geometries will perform in terms of current collection, as compared to thin cylinders.

To summarize, a better understanding of the effects of plasma flow and collector ge-

ometry on electron collection is necessary in order to enable efficient design techniques for

future propulsive space tether designs.
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Figure 1.2: Geometry of the interaction of the electrodynamic tether and the radiation
belt. Figure reproduced with permission [15]. The term “electrostatic tether”, used in
this figure, is often used to refer to the specific application of particle precipitation using
electrodynamic tethers and distinguish it from their original use for spacecraft propulsion.

1.1.2 Bare Electrodynamic Tethers for Ionospheric High-Energy
Charge Precipitation (“Electrostatic” Tethers)

Another emerging application for bare electrodynamic tethers is the ionospheric high-

energy charge precipitation.1 Sometimes called space remediation, its aim is to provide

a means to precipitate high-energy (MeV) electrons from the Earth’s radiation belts [3–5,

15]. Such high-energy particles could be born out of a single low-yield (10–20 kilotons),

high-altitude (125–300 km) nuclear explosion and could potentially “disable — in weeks

to months — all low-Earth-orbit satellites not specifically hardened to withstand radia-

tion” [16]. Figure 1.2 illustrates the interaction between a bare tether used as a scattering

device (the “electrostatic” tether) and a trapped population of high-energy electrons that

are bouncing back and forth along the Earth’s magnetic field lines. A large sheath forming

1The expression “Electrostatic Tether” is sometimes used to distinguish the use of electrodynamic tethers
for charge precipitation applications from their use as space propulsion devices.
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around this high-voltage tether is meant to act as a scattering structure for the high-energy

electrons, causing some of them to fall prematurely into the loss cone of an Earth-bound

“leaky magnetic bottle” [4]. In this application, the bare tether is biased negatively, creating

an ion-attracting, electron-repelling plasma sheath around it. This allows for the scattering

of high-energy electrons by the electric field, while minimizing the amount of collected

current, due to the heavy mass of the collected ions as compared to electrons.

In the present application, the collected current is directly linked to the power expen-

diture necessary for maintaining the plasma sheath, and one therefore seeks to minimize

current collection. Interestingly, this goal of minimizing current collection is the opposite

of that demanded of bare tethers in the propulsive electrodynamic systems, in which the

propulsive force is proportional to the amount of current flowing on the tether. The two

quantities of interest are thus:

• the sheath dimension, which determine the “cross-section” of the particle scatterer;

• the collected ion current, which is an undesired secondary effect that translates into

expended power.

Designers of charge-precipitation tether systems will need to consider various tether

cross-section geometries in order to maximize sheath dimensions, while minimizing cur-

rent collection. In addition, the ionospheric flow plays a role in the determination of the

plasma sheath dimensions and current collection. Both the flow and geometry effects thus

need to be assessed in order to provide the tools necessary for the development of this

emerging technology.

1.1.3 Plasma Diagnostics Probes

Langmuir probes are widely used as plasma diagnostic devices, both in vacuum cham-

ber experiments and in on-board spacecraft instruments [6, 7]. They allow for the determi-
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nation of plasma parameters such as the electron temperature, extracted from the electron

retardation regime, and the ion and electron densities, extracted from the ion and electron

saturation regimes. Analytical expressions for current characteristics to conductive cylin-

ders only exist for the two extreme geometrical cases, that is, for probes with very large

radii (hundreds of Debye lengths) or small radii (one Debye length or less). In order to min-

imize perturbations and optimize the spatial resolution of the measurement, however, small

probes are usually preferred, in which case the analytical expression for the orbital-motion-

limited current can be used for both electron and ion collection. The orbital-motion-limited

result only applies in stationary plasmas, but is still widely used for plasma diagnostics

of flowing plasmas, which may lead to errors in the extracted plasma densities, especially

when the electron saturation data are used for density extraction.

A new model that accounts for the effects of the plasma flow on current collection is

needed to allow for the development of improved plasma-parameter extraction algorithms

for use in the analysis of the current characteristics of Langmuir probes in flowing plasmas.

1.1.4 Other Applications

Although the applications outlined above define our requirements for the 2-D steady-

state plasma model developed here, a multitude of other potential applications exist. For

instance, this model could be adapted for the analysis of the interaction of a spacecraft

with the surrounding ionospheric plasma, including spacecraft charging effects. Other pos-

sible applications include plasma processing, plasma screens, plasma-based thrusters for

space propulsion, charge transport in solid-state materials (e.g., semiconductors), and space

charge effects in solid or fluid dielectrics.

7



1.1.5 Description of the Problem & Regimes of interest

The three applications described above (propellantless propulsion, charge precipitation,

and plasma diagnostics using Langmuir probes) require a detailed model of the plasma ki-

netics in order to allow for the accurate prediction of sheath structures and current collec-

tion.

For the propellantless propulsion application, electron current collection is the most

important parameter of interest because it relates directly to the amount of thrust available

to the system; electrodynamic tether designers are thus interested in maximizing current

collection.

For the charge precipitation application, sheath size is of primary concern since it re-

lates directly to the overall cross-section of the system and, therefore, its scattering effi-

ciency. Ion current collection, however, must be minimized because it translates directly

into expended power.

In addition, both of these applications will require designs that are survivable to colli-

sions with small orbiting debris. This may involve multi-wire or similar concepts spreading

the tether structure over several parallel elements.

The geometries encountered in those applications are somewhat similar, allowing for

the definition of a generic problem applicable to all three technologies. The basic geom-

etry under consideration is an arbitrarily-shaped 2-dimensional conductive object, i.e., a

cylinder of arbitrary cross-section geometry and infinite length. Figure 1.3 illustrates some

examples of geometries that are considered in this thesis either through the use of the pro-

posed kinetic model or via experimental measurements. We describe them below.

Single Round Circular Cylinder The round cylinder is the most standard geometry for

tethers as well as for Langmuir probes; we investigate it here using both simulations

and experiments. We will use results for this geometry in order to validate our mod-
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eling approach with existing results at low voltages, which are available for both the

stationary [8] and flowing [17] cases.

Two Parallel Circular Cylinders Using multiple parallel wires as a tether structure is of

interest both from the standpoint of collision survivability, applicable to both propul-

sion and charge precipitation, and from the standpoint of reducing the collected ion

current in the electrostatic tether application.

The first logical step in the analysis of the multi-wire geometry is to seek an under-

standing of the physics involved in the two-wire geometry, which we develop using

our kinetic model. We assess the scaling of the sheath around the two wires, as

well as study interference effects involved in current collection. Results are validated

against an existing model for wire interference [18] and qualitative comparisons are

made with some of our experimental results involving slotted tapes, which basically

were equivalent to 4 parallel wires.

Thin Tape Cylinder The thin tape cylinder is another fairly simple geometry that is an

example of the geometries that could be considered for improved survivability from

collisions. We are primarily interested in determining the effect of the tape width

and plasma flow on collected electron current. Simulation results will be compared

against our own experimental data and against existing models for tapes in stationary

plasmas [11].

Slotted tape This geometry was investigated experimentally. It consists of a flat tape out

of which slots were cut out, and is equivalent to a set of four parallel narrow tapes,

as seen on Figure 1.3(d). The experimental results will help our understanding of

sheath interference effects on current collection.

Even though we consider only a limited set of geometries as part of this thesis, our kinetic
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(a) Single Circular
Cylinder

(b) Two Parallel
Circular Cylinders

(c) Solid Tape (d) Slotted Tape

Figure 1.3: Four examples of the cylinder geometries under consideration.

model was developed for problems involving conductive cylinders with arbitrary cross-

section geometries (i.e., any 2-D conductive object), as will become obvious in Chapter 2.

For each of the conductive cylinder geometries under consideration, the 2-D object

is immersed in a 2-species, unmagnetized plasma (flowing or stationary), and biased at

a specified potential V0−Vp with respect to the background plasma potential Vp. When

considering a flowing plasma, the flow will always be directed along the x axis.

Table 1.1 lists some estimated representative values for the parameters of interest corre-

sponding to the propulsion and charge precipitation applications, along with corresponding

estimates for the vacuum chamber experiment described in Chapter 3 and used in compar-

ison with our kinetic model. It is seen that all forms of collisions play a very minor role in

these plasmas, so that they can safely be modeled as collisionless plasmas (more detail on

our assumptions can be found in Section 2.1). Another common feature among the three

sets of parameters is that the effective plasma flow is much lower than the electron thermal

velocity (U ≪ vthe), which allows some simplifications for the treatment of the electron

species. Such simplifications are not possible for ions, because the ion thermal velocity

is seen to take on values that are alternatively smaller, larger, or on the order of the flow

velocity. The implications of the Larmor gyroradius are discussed in Section 2.1.
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Vac. Chamber Propellantless Charge
Experiments Propulsion Precipitation

Main Plasma Parameters
Altitude (km) – 300 km 1500 km
Dominant ion species Xe+ O+ H+

Ion mass (kg) 2.18×10−25 2.7×10−26 1.7×10−27

Plasma density n0 (m−3) 5×1014–5×1015 1011 1.8×1010

Electron/ion temperature (eV) 1.5–1.8 0.1 0.4
Ion thermal velocity (m/s) 1049–1194 644 6136
Electron thermal velocity (m/s) 5.1–5.6×105 1.3×105 2.7×105

Orbital or flow velocity (m/s) 6000 7700 7100
Ion flow energy (eV) 25 5 0.27
Electron Debye length (m) 1.3–4.5×10−4 7.4×10−3 3.5×10−2

Collision MFP (m)
Electron-neutral (elastic) 8.5 103−104 104−105

Ion–neutral (elastic) 28 3×103 108

Ion–neutral charge-exchange 2.5
Electron–electron 5–32.6 106 107

Electron–ion 4.9–31.9 106 107

Ion–ion 3.3–23.5 106 107

Ion–electron 7.5–64.3 103 105

Ion Larmor gyroradius (m) 26–28.5 5 7.4
Electron Larmor gyroradius (m) 0.53–0.58 0.03 0.09

Table 1.1: Approximate plasma parameters for the main applications of interest [19–24]
and for our vacuum chamber experiments described in Chapter 3. MFP is an acronym for
Mean Free Paths.

1.2 Cylindrical Plasma Probes: Background and Litera-
ture Review

In the following we summarize the present state of research for the modeling of cylin-

drical conductive cylinders immersed in plasmas. Existing theories are described for the

current collection and sheath structure that are applicable to a limited range of bias poten-

tials, geometries and flow regimes.
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1.2.1 Stationary plasmas

When considering the problem of a round cylindrical probe immersed in a stationary

plasma, there are two key parameters for the applications of interest:

• Current Collection (electron or ion current) is of concern in all three applications.

For propellantless propulsion, the tether bias potential is primarily positive, and we

seek to maximize electron current collection because it translates directly into avail-

able thrust. For charge precipitation, the tether is biased negatively, and we seek to

minimize the amount of ion current collected, because it translates into expended

power. In plasma diagnostics using Langmuir probes, expected current characteris-

tics as a function of plasma parameters must be precisely known in order to allow for

parameter extraction;

• Plasma sheath size and structure is a determining factor in the charge precipitation

application of electrostatic tethers. It determines the effective dimensions of the par-

ticle scatterer and thus its efficiency at precipitating high-energy electrons into the

loss cone [4].

The sheath structure and dimensions are closely linked to the particle kinetics, and can-

not be obtained by direct calculation for small and moderate-sized probes, even in the most

simple case of a round cylindrical probe in a stationary plasma. The Child Law sheath [25]

analytical expression, for example, is only applicable to probes with large dimensions as a

function of the Debye length, i.e., it is only valid in the thin-sheath limit, which is outside

of our regimes of interest.

Whereas sheath sizes cannot be computed directly for any probe size, exact analytical

expressions have been derived for the collected current to an attracting round conductive

cylinder immersed in a stationary, Maxwellian plasma. These expressions are only appli-
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cable to two extreme regimes: the thin-sheath (infinite cylinder radius) and orbital-motion

(vanishing cylinder radius) limits. In the following, we provide a derivation of these limits.

1.2.1.1 Thin Sheath Limit

When the cylinder radius becomes sufficiently large, the current density collected to

the cylinder approaches that which would be collected on an infinite plate: this is the thin-

sheath limit.

Let us assume that an infinite plate, normal to the x axis, is the rightmost bound of

a 2-species Maxwellian plasma, with the velocity distribution functions of either plasma

species given by

fe,i (vx,vy) =
n0me,i

2πeTe,i
exp

{
−

me,i

2eTe,i

(
v2

x+ v2
y

)}
, (1.1)

where n0 is the background plasma number density in m−3, me,i is the electron or ion mass

in kg, Te,i is the electron or ion temperature in eV, and the velocity components vx and vy

are in m/s. First, note that the background density n0 is recovered by simply integrating

over velocity space:

ne,i =
∫ +∞

vx=−∞

∫ +∞

vy=−∞
fe,i (vx,vy)dvxdvy = n0. (1.2)

Now, let us assume that the infinite plate is biased at a potential V0 with respect to the

plasma potential (i.e., Vplate−Vplasma =V0). For either population (electrons and ions), the

current density collected on the infinite plate can be obtained by integrating the accelerated

or decelerated particle flux over all rightward-directed velocities on the plate’s left-side

surface, i.e.

Je,i = qe,iΓe,i

= qe,i
n0me,i

2πeTe,i
×

+∞∫
vx=

√
max

(
0,−

2qe,iV0
me,i

)
vy=+∞∫

vy=−∞

vx exp

{
−

me,i

2eTe,i

[(
v2

x+
2qe,iV0

me,i

)
+ v2

y

]}
dvxdvy.

(1.3)
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Performing the integral over vy, we get

Je,i = qe,in0

√
me,i

2πeTe,i

+∞∫
vx=

√
max

(
0,−

2qe,iV0
me,i

) vx exp

{
−

me,i

2eTe,i

(
v2

x+
2qe,iV0

me,i

)}
dvx. (1.4)

Finally, we integrate over vx and obtain

Je,i = qe,in0

√
eTe,i

2πme,i︸ ︷︷ ︸
Jth

×

{
1 qe,iV0 ≤ 0,

exp
{
−

qe,iV0
eTe,i

}
qe,iV0 > 0.

(1.5)

In Equation (1.5), Jth is simply the thermal current density, i.e., the average random current

density one finds at any location within the background plasma. This result shows that the

current density varies exponentially under a repelling bias and saturates to a constant value,

the thermal current Jth, for an attracting bias. The reason why the current density is limited

to the thermal current is that the sheath only extends in a single dimension, which precludes

any particle focusing.

1.2.1.2 Orbital-Motion Limit (“Thick” Sheath Limit)

We now consider the opposite limit, corresponding to a vanishing cylinder radius. In

practice, this limit is achieved when the cylinder radius falls below the Debye length. An

analytical expression for the OML current was first derived by Mott–Smith and Lang-

muir [26], based on conservation of energy and angular momentum in a central force

field. The orbital-motion-limit (OML) regime is attained when the cylinder radius is small

enough that all particle trajectories terminated on the cylinder’s surface are connected to

the background plasma, regardless of their angular momentum (i.e., none are connected to

another location on the probe’s surface). Since, in a collisionless plasma, the distribution

function is conserved along particle orbits, having all “directions of arrival” populated cor-

responds to an upper limit on the collected current. In the following, we derive the OML

current based on the precedent argument, similar to the approach used by Laframboise [6].
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Using the alternative, but equivalent representation of velocity space in the form of

kinetic energy κ = me,i(v2
x+v2

y)
2eTe,i

in units of electron-volts and angular direction α in units of

radians, the energy distribution function of any given species at the surface of the probe

may be written:

ge,i (κ,α) =

{
n0

2πTe,i
exp

{
−

eκ+qe,iV
eTe,i

}
κ >max(0,−qe,i

e V )

0 κ ≤max(0,−qe,i
e V )

, (1.6)

where V is the local electric potential. The number density ne,i at the probe’s surface is

recovered by simply integrating over all of kinetic energy space and half of the angular

directions (since the probe blocks half of velocity space):

ne,i =

+∞∫
κ=0

α=α ′+ 3π
2∫

α=α ′+π/2

ge,i (κ,α)dκdα

=
1
2

n0

{
exp

(
−

qe,iV
eTe,i

)
, qe,iV ≤ 0

1, qe,iV > 0
,

(1.7)

where α ′ is the angle between the outward surface normal and the x axis. Likewise, the

OML current density can be obtained by integrating the normal flux to the surface:

Je,i = qe,iΓe,i

= qe,i

+∞∫
κ=0

α=α ′+ 3π
2∫

α=α ′+π/2

√
2eκ
me,i

cos
(
α−α ′

)
︸ ︷︷ ︸

v⊥

fe,i (κ,α)dκdα

= qe,in0

√
eTe,i

2πme,i︸ ︷︷ ︸
Jthe,i

⎧⎨
⎩

2√
π

√
−

qe,iV
eTe,i
+ exp

(
−

qe,iV
eTe,i

)
erfc

(√
−

qe,iV
eTe,i

)
, qe,iV ≤ 0

exp
(
−

qe,iV
eTe,i

)
, qe,iV > 0

.

(1.8)

Jth is the thermal current density and the complementary error function erfc(x) is given

by erfc(x) = 2√
π
∫ ∞

x e−t2
dt. The repelled-species current is the same in the thin sheath and

OML limits, as can be seen by comparing (1.5) and (1.8) — this is called the retardation

region of the current characteristic and is valid in all regimes. The attracted-species current

is constant and equal to the thermal current in the thin-sheath limit, whereas in the OML

15



−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

−qV/eT

I ts
/I th

Thin−Sheath       
Saturation Region 

Retardation 
Region      

(a) Thin Sheath Normalized Current Character-
istic (Eq. 1.5)

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

−qV/eT

I om
l/I th

Retardation 
Region      

OML Saturation
Region        

(b) OML Normalized Current Characteristic
(Eq. 1.8)

Figure 1.4: Normalized current characteristics in the thin sheath limit and orbital motion
limit.

regime, it grows without limit with the effective applied bias potential qe,iV
eTe,i

; this region is

called the saturation region of the current characteristic. Figure 1.4 depicts the limits ob-

tained in (1.5) and (1.8) for both the retardation (repelled particles) and saturation (attracted

particles) regimes.

1.2.1.3 Numerical Approaches for Arbitrary Probe Sizes

To address cases other than the thin-sheath and OML limits, a consistent solution to

the problem of the stationary ion-attracting round cylindrical probe was first provided by

Bernstein and Rabinowitz [27], who developed a Poisson–Vlasov consistent, cylindrical

1-D model based on approximations of mono-energetic ions and negligible electron current.

The computations consisted of numerically integrating an ordinary differential equation

of one variable. Laframboise [8] later developed a consistent iterative numerical scheme

that allowed for Maxwellian distributions (far from the probe) for both the attracted and

repelled species. This theory involves the iterative resolution of a nonlinear system of

integral equations, and is applicable to all temperatures, probe sizes with respect to the
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Debye length and potential values, although results were only given for relatively small

bias potentials.

In addition to providing results for the current collected to round cylindrical probes of

arbitrary sizes, these numerical schemes were the first to provide self-consistent results for

the density profiles of the attracted and repelled species.

1.2.2 Flowing Plasmas

1.2.2.1 Treatments Based on a Symmetric Potential Profile Assumption

Several authors have addressed, in a first-order sense, the problem of ion collection by

a round cylindrical probe immersed in a flowing plasma, using the crucial assumption of a

radially symmetric potential profile unaffected by any flow effects. Mott–Smith and Lang-

muir [26] derived an asymptotic formula valid in the limit of large speed ratios (relative to

the ion thermal velocity) for the current characteristic in the large-sheath limit (orbital mo-

tion limit). Kanal [28] derived similar expressions valid in the limit of small speed ratios.

Hoegy and Wharton [29] generalized those results by providing expressions valid for all

speed ratios, for the limiting cases of thin-sheath, large-sheath (orbital-motion-limit), and

retarding regimes.

Godard and Laframboise [30] went further by developing a numerical model that al-

lowed for all probe radii to be considered in the flowing case by using the 1-D cylindrically

symmetric potential profiles obtained by Laframboise [8] as the assumed electric potential.

In the case of the mesosonic regime, where the velocity of the flow is much larger

than the ion thermal velocity but much smaller than the electron thermal velocity, only

ion collection can be addressed by an approximate solution based on an assumed symmet-

ric potential profile. Such an approximation would show virtually no departure from the

stationary results in the case of electron collection, due to their large thermal velocity as

compared to the speed of the flow for the regimes of interest here. The effects of the flow
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on the collection of the light species — the electrons— are thus only indirect. That is, these

effects only occur due to the asymmetries in the potential profile around the probe that are

induced by the heavier ion species. However indirect, these effects can be significant, as

will be seen in Chapter 4.

Even for the ion-attracting case, the assumption of a symmetric profile could fail to

provide a correct answer at least in cases showing one or more of these two conditions [30]:

• the probe radius is not small with respect to the Debye length, implying a non negli-

gible and likely asymmetric ion space-charge distribution near the collector;

• the ratio of flow energy to bias potential is neither very small (a small flow could

only cause small asymmetries) nor very large (in which case the bias potential could

not significantly affect the flow).

1.2.2.2 Consistent Numerical Treatments

A few numerical treatments have been performed to consistently model flow effects

on the sheath structure (i.e., asymmetries) and current collection to a round cylinder. In

the following we discuss some of the work that has been done using steady-state kinetic

approaches or particle-in-cell implementations.

1.2.2.2.1 Steady-State Kinetic Treatments Xu [17] and McMahon [22] have worked

on consistent steady-state kinetic models to address the problem of ion collection to a round

cylinder in a flowing plasma. The main difference between their approaches is that Xu uses

an inside-out trajectory tracking procedure whereas McMahon uses an outside-in strategy.

The outside-in steady-state method used by McMahon [22] bears some similarity with

the popular particle-in-cell plasma modeling techniques [25], in part due to the manner

in which the discrete charges are assigned to a fixed set of grid nodes. This approach is
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intrinsically more efficient computationally, at the expense of some added numerical noise

associated with the charge assignment.

The inside-out approach used by Xu [17] and in the present work, although not as

efficient computationally, is based on a direct sampling of the velocity distribution function

at the nodes of a mesh.

1.2.2.2.2 Particle-in-Cell Treatment Onishi [31] has performed simulations of a single

electron-attracting cylinder immersed in a flowing unmagnetized plasma using a particle-

in-cell approach. His findings indicate that a population of trapped electrons, upstream

of the cylinder, is necessary for the plasma to reach a steady state. This requirement is

attributed to the fact that the local increase of the ion density on the ram side of the cylinder,

beyond the ambient density, must be matched by an increased electron density to satisfy

the quasi-neutrality condition. Limitations on the computational zone size may be in part

responsible for this computational requirement, and it is not clear whether or not this is a

physical requirement.

1.3 Summary of Research Contributions

The general aim of the research that has led to this thesis was to improve the understand-

ing of the steady-state perturbations caused in a two-species plasma (flowing or stationary)

by the introduction of a long conductive cylinder (e.g., an electrodynamic tether) of arbi-

trary cross-section geometry, biased at a specified potential. Specifically, our main interests

were to determine

• the structure of the plasma sheath/pre-sheath, and

• the amount of collected current
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as a function of cylinder geometry, bias potential, and plasma flow speed. These objectives

have required both the development of a new computer model capable of accurately sim-

ulating the general problem of interest, and an experimental investigation using a vacuum

chamber. Consequently, the contributions of the research presented in this thesis fall in one

of three major categories:

1. a computational model for the self-consistent modeling of arbitrary 2-D conductive

structures immersed in flowing plasmas;

2. new computer simulation results for regimes (combination of biases, geometries, and

plasma flow) not addressed in previous research;

3. new experimental results pertaining to the effects of plasma flow and geometry on

electron collection.

We describe these contributions in more detail in the following three sub-sections corre-

sponding to the three major categories outlined above.

1.3.1 A Self-Consistent Steady-State Kinetic Model for Arbitrary 2-D
Conductive Structures in Flowing Plasmas

A new computational model was created for the self-consistent kinetic modeling of the

charge-imbalance structure forming around arbitrary two-dimensional conductive objects

immersed in stationary and flowing two-species plasmas. The following are some new

contributions brought about by this new model.

1. A dynamic, adaptive, unstructured meshing strategy that allows support for arbitrary

2-D geometries and can accurately resolve features with widely disparate scales, such

as very small probes together with very large sheath structures. Another typical

plasma feature that requires this dynamic resolution capability is the narrow surge
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of the net charge density found at the sheath edge (a location not known a priori) in

the case of high-voltage biases, which is attributed to the combination of the density

profiles of the counter-streaming attracted and repelled species.

2. A new approach based on a Tikhonov-regularized Newton method for the efficient

minimization of the nonlinear least-squares problem, which provides a numerical

approximation for the fixed point of the Poisson–Vlasov operator. This approach is

robust to numerical instabilities and numerical noise as well as very versatile, in that

it can successfully solve a wide class of 2-D problems without the need for empirical

tuning of parameters such as is required by overrelaxation techniques [17].

3. Support for the kinetic treatment of both ions and electrons, even in the case of a

flowing plasma. Previous treatments of the flowing plasma case, applied for ion

collection only, have assumed “Boltzmann” electrons [17, 22].

4. A parallel implementation of the 2-D Vlasov solver based on the PVM library [32],

which enables a very accurate representation of plasmas extending over large do-

mains within reasonable computing times. The parallel code is a coarse-grained

MPMD (Multiple Processors, Multiple Data) implementation that runs efficiently on

a dynamically-configured scattered network of workstations, using their idle com-

puting time. The code was developed and tested on scattered networks of Sun™

and Linux workstations, and also has been tested successfully on a standard Linux

cluster.

1.3.2 New Simulation Results

Using this new steady-state kinetic model, a collection of new results applicable to

the problems of interest have been obtained via computer simulation. These new results
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provide:

1. an extension of the operating regimes covered by Laframboise [8], Xu [17] and

McMahon [22] to a wider range of bias potentials. Bias potentials from an arbitrary

small fraction of the plasma temperature T up to 10,000T have been successfully

covered by the cylindrical 1-D model. The full 2-D model has reached 640Te.

2. an assessment of wire interference effects on sheath structure and current collection

based on two parallel round cylinders with various center-to-center spacings in a

stationary plasma.

3. an assesment of the sheath structure and current collection for the case of a thin tape

cylinder.

4. an assessment of plasma flow effects on sheath structure and current collection for

both ion- and electron-attracting round cylinders. The electron-collecting case has

not been previously successfully analyzed in an unmagnetized plasma.2 As for the

ion-collecting case, it has previously been addressed by Xu [17] and McMahon [22]

using a Boltzmann approximation for the electrons. The present research contains the

first results of simulations using a non-PIC fully kinetic treatment for both species in

a flowing plasma.

To the author’s knowledge, items 2 and 3 constitute the first fully self-consistent kinetic

simulation results for cylinder geometries other than circular cylinders.

1.3.3 New Experimental Results

Experimental testing of electron collection to tether samples of various geometries in

a mesosonic xenon plasma were performed using the Large Vacuum Test Facility at the

2Onishi [31] has reported that his particle-in-cell code could not reach a steady state when simulating a
flowing, collisionless, unmagnetized plasma.
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University of Michigan’s Plasmadynamics and Electric Propulsion Laboratory. New ex-

perimental results were obtained pertaining to

• the effect of plasma flow on the electron collection to round cylinders (a significant

enhancement was observed); and

• a comparison of electron current collection efficiencies of solid and slotted tape tether

samples, oriented parallel and perpendicular to plasma flow.

The geometry effects observed during these experiments are in general agreement with

those predicted by our kinetic model. As for the electron current enhancement associated

with the mesosonic plasma flow, it cannot be predicted by our collisionless plasma model.

However, the sheath structures obtained via simulation give some indication as to how

pre-sheath collisions may have caused the observed enhancement.

1.4 Dissertation Overview

The five chapters of this dissertation are structured as follows:

Chapter 1 provides motivation, defines the problem of interest, reviews previous relevant

research, and summarizes research contributions.

Chapter 2 develops the theory and describes the computer implementation of a steady-

state Poisson–Vlasov self-consistent computational model based on kinetic theory.

The model is applicable to a wide range of 2-D objects immersed in stationary and

flowing plasmas. Both a 1-D cylindrical implementation and a full 2-D implementa-

tion are presented side-by-side.

Chapter 3 describes the experimental testing of electron-collecting tether samples in a

mesosonic flowing plasma. The sample geometries tested include a round cylinder,

thin solid tapes, and thin slotted tapes.
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Chapter 4 presents and discusses the results and analyses of the kinetic simulations per-

formed using the computer model defined in Chapter 2. Comparisons with our ex-

perimental results are also shown.

Chapter 5 discusses the conclusions of this dissertation and provides suggestions for fu-

ture research.
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CHAPTER 2

Steady-State Poisson–Vlasov Model: Theory and
Implementation

We present the theory and software implementation of a consistent, steady-state, elec-

trodynamic plasma model based on kinetic theory. The solver presented here is best clas-

sified as a Vlasov code based on a kinetic description of plasmas [33]. It differs from

particle-in-cell methods in that the Vlasov equation is solved directly instead of resorting

to a set of discrete macro-particles. It is also distinct from Eulerian Vlasov implemen-

tations [34], owing primarily to the fact that a steady-state “non time-varying” solution is

sought directly, without resorting to incremental time stepping. The steady-state solver pre-

sented here bears some similarity with previous work addressing other geometries [35–37],

and may be regarded as a 2-D extension of the 1-D cylindrical model developed by Lafram-

boise [8].

The general aim of this model is to numerically solve, in a self-consistent manner, the

Poisson and Vlasov equations in a steady state over a large computational region around an

arbitrarily-shaped 2-D conductive body in a collisionless, unmagnetized, flowing 2-species

plasma. The implementation of the 2-D solver, called KiPS-2D (Kinetic Plasma Solver,

2-dimensional) consists of successive linearizations of the nonlinear Poisson–Vlasov op-

erator, within a Tikhonov-regularized Newton iterative process. Following are listed the

main features of the proposed model and solver:
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• it allows for the representation of the complete, arbitrary velocity distribution of both

plasma species at all sampled locations in the computational domain;

• it can model plasma cross flow in all speed regimes with respect to the ion thermal

velocity;

• it includes a finite-element-based Poisson solver incorporating a background plasma

boundary condition based on asymptotic analytical results [27];

• it provides a dynamic, adaptive, unstructured meshing strategy, allowing for the res-

olution of sheath asymmetries induced by the plasma flow and the support of con-

ductive objects with arbitrary 2-D geometries;

• it allows for the simulation of very large computational domains in order to accom-

modate the pronounced pre-sheath elongation along the direction of plasma flow. The

variable grid size is tailored locally to efficiently accommodate potential variations.

Numerical instabilities resulting from large grid sizes are handled using a Tikhonov

regularization process;

• its steady-state Vlasov solver features a parallel implementation based on the PVM

library [32], allowing it to run on either a single host, a parallel architecture, or a

scattered network of workstations based on a MPMD (Multiple Processors, Multiple

Data) scheme.

Although the primary purpose of this work was to provide a 2-D solver, a 1-D cylin-

drical implementation of this model, called KiPS-1D, was also developed. This 1-D code

has been validated against results from Laframboise [8], and extends the covered range of

probe bias potentials from 25Te to 10,000Te. In addition, it serves as a validation tool for

the 2-D implementation of the code. In the following sections, the general formulation will
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be described consistent with the 2-D implementation. However, where necessary, specific

derivations will be presented pertaining to the 1-D and 2-D implementations of each com-

ponent. Note that the main symbols used throughout this chapter and others are listed in

Appendix A for convenience.

2.1 Basic Assumptions

The aim of the steady-state, consistent kinetic plasma model presented in this thesis is

to provide an accurate representation of the dominant physical mechanisms involved in the

formation of a steady-state sheath as well as in current collection to 2-D conductive bodies.

In setting up the basic physics underlying the model, we make the following assumptions

regarding the physical mechanisms involved in the sheath–plasma system:

• the plasma is collisionless;

• a steady state exists;

• the plasma is unmagnetized;

• the background plasma is a drifting Maxwellian;

• end effects are negligible;and

• trapped orbits are unpopulated.

Let us now describe in more detail each of these assumptions.

The Plasma is Collisionless Several types of collisions can be considered. Based on the

very long mean free paths given in Table 1.1, we can certainly neglect the elastic

ion–neutral and electron–neutral collisions for all three cases (vacuum chamber ex-

periment, electrodynamic tethers, and electrostatic tethers), because they are much

larger than the typical sheath sizes we are interested in.
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Coulomb collisions are also neglected, i.e., we assume that the forces experienced

by any of the charged particles forming the plasma are entirely due to the collective

effect of the charge density contributed by all particles, not to their individual ef-

fect. This assumption is accurate for sufficiently low plasma densities (such as space

plasmas), in which any given particle very rarely “meets” another particle in a close

encounter. In other words, the number of particles contained within the “sphere of

influence” (Debye sphere) of a given particle is so large that the overall forces are

overwhelmingly attributable to the bulk of the plasma.

A Steady State Exists We assume that there exists a steady state of the plasma density and

potential distributions in the frame of reference of the moving tether or probe. By

“steady state” we imply a state in which there are no time variations of the plasma

density or electric potential anywhere in the frame of reference of the moving object.

Our definition of the steady state allows for a steady flow of plasma particles in any

directions where applicable, including a net drift component of the plasma bulk due

to the orbital motion of the tether. This implies that time variations may be perceived

as seen from other frames of reference.

The existence of a steady state will be proved a posteriori by showing that we can

find a self-consistent, steady-state solution satisfying both the steady-state Vlasov

and Poisson equations. Proving the existence of a steady state is not, however, a

guarantee that no time variations can exist even in the absence of transients and ex-

ternal excitations. Nonetheless, the steady-state solution that we provide here can be

regarded as a lowest energy state that the electrodynamic forces will seek to attain in

order to minimize the system energy.

The Plasma is Unmagnetized We assume that the effect of the magnetic field on the so-
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lution is negligible, and therefore choose to neglect the magnetic field force in our

computational model. To qualify this approximation, let us consider the effect of

the magnetic field for the main applications of interest. This effect can be gaged by

comparing the typical gyroradius of the attracted species within the computational

domain to the size of the computational zone, which is typically on the order of the

sheath dimensions. The effect of the magnetic field on the repelled species’ density

is unimportant as long as the said species does not have a sizable drift component

as compared to its thermal distribution, because then the local densities are solely

determined by the local potential for all practical purposes. This applies to the elec-

trons when using a negative bias potential, since their drift velocity is negligible in

the regimes of interest.

For charge precipitation, the magnetic field effect on the repelled electrons is there-

fore negligible for the reason just mentioned. As for the attracted ions, Table 1.1 lists

for their gyroradius in the background plasma a value of 7.4 m, which is admittedly

smaller than the typical sheath diameters of interest for tether bias potentials in the

vicinity of 100,000 volts. However, this relatively small value of the Larmor gyrora-

dius should be put into perspective, because it only applies in the background plasma

where particle velocities are on the order of the thermal velocity. Within the acceler-

ating potential of the sheath structure however, the attracted particles are accelerated

to velocities that can be up to a few hundred times the thermal velocities, for tether

bias potentials of a few tens of thousands of volts. The gyroradius rG is proportional

to the ratio of the particle velocity to the magnetic field intensity [38],

rG =
miv
eB
, (2.1)

where the magnetic field B is in units of Tesla and v is the local ion velocity. Inside the

sheath the accelerated species’ gyroradius scales proportional to particle velocities,
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to values much larger than the corresponding sheath size. For example, consider a

one-Debye-length-radius ion-attracting tether, used for charge precipitation, biased

at 100,000 volts. Scaling the ion Larmor gyroradius proportional to the ratio of in-

sheath velocity to the thermal velocity, the ion gyroradius close to the probe is given

by

rG ≈

√
100000eV

0.4eV
rGL

∣∣∣∣∣
rGL=7.4 m

=
√

250000×7.4 m= 3700 m. (2.2)

This result is significantly larger than any practical sheath size, and emphasizes the

fact that the magnetic field should not play a significant role in this application. For

this specific bias potential and a tether radius of one Debye length, the sheath diame-

ter is about 92 meters according to the asymptotic expressions derived in Chapter 4.

For propellantless propulsion applications, the electrons are the attracted species.

Their relatively small Larmor gyroradius of 3 cm would be scaled up, within a sheath

created by a typical 1 kV-biased tether, to a value of

rG ≈

√
1000
0.1

rGL

∣∣∣∣∣
rGL=0.03 m

=
√

10000×0.03 m= 3 m, (2.3)

which is also significantly larger than the approximate sheath diameter of 0.5 m.

In general, we can therefore say that attracted species can be expected to have large

gyroradii for most of the sheath as compared to the sheath’s dimensions. This means

that the magnetic field is playing a relatively minor role in the sheath formation and

current collection processes, and may thus be safely ignored for these purposes, es-

pecially for the charge precipitation application where bias voltages are typically

larger than in the propulsion application. A similar reasoning can be made based on

a comparison of the magnitudes of the electrostatic and magnetic forces acting on the

particles: the electrostatic field forces can be as much as a few orders of magnitude

larger than the magnetic field forces.
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Our kinetic model therefore assumes that no magnetic fields are present, resulting in

a purely electrostatic solution of the plasma sheath.

The Background Plasma is a Drifting Maxwellian Although no assumptions are made

with regards to the velocity distributions within the computational domain, the source

of the plasma entering the computational domain must be known and is defined as a

boundary condition. The computational domain must be made sufficiently large to

include all of the major perturbations on the plasma caused by the presence of a con-

ductive object. The velocity distribution of the incoming plasma particles entering

the simulation domain is thus assumed to closely correspond to the ambient veloc-

ity distribution that exists in the background (undisturbed) plasma. In a stationary

plasma, the 2-D velocity distribution is assumed to be Maxwellian (see equation 1.1).

For a moving plasma, the background velocity distribution function for both electron

and ion species becomes

fe,i (vx,vy) =
n0me,i

2πeTe,i
exp

{
−

me,i

2eTe,i

[
(vx−U)2+ v2

y

]}
, (2.4)

where we assume that the plasma is moving along the direction of the x axis with

velocity U . Note that the vz dependence of the 3-D velocity distribution function

has been integrated out into a constant in front of equations (1.1) and (2.4) since

we only consider 2-D structures in unmagnetized plasma, which implies that the vz

Maxwellian dependence of the plasma is unchanged throughout the computational

domain. Section 2.4.2.2 provides more detail regarding the method used to account

for the small perturbations to this distribution function that occur between the back-

ground plasma (at r→ ∞) and the outer boundary of the computational domain.

End Effects are Negligible Probe end effects are neglected in this treatment. This is

hardly an approximation in the case of bare, space borne electrodynamic tethers,
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which are typically several kilometers long, corresponding to lengths of tens of thou-

sands of Debye lengths and beyond. In the case of laboratory probes of more modest

lengths, the end effect can be neglected provided that the cylinder is of sufficient

length. The typical probes considered here are several hundred to a few thousand

Debye lengths long. In addition, it has been shown, at least for ion-attracting probes,

that end effects are negligible provided that the probe is oriented perpendicular to the

direction of plasma flow. [39]

Trapped Orbits are Unpopulated In our analysis, we assume that trapped particle or-

bits are unpopulated, which is consistent with the treatments described by Lafram-

boise [8] and Xu [17] (more detail is given in Section 2.4). This assumption fol-

lows from the previous “collisionless” and “steady-state” assumptions. When both

of these assumptions hold, all particles present anywhere in the vicinity of the 2-D

object can be traced back to the background plasma (the “source”) on collisionless

orbits. Therefore closed orbits cannot be populated because they have no source.

Collisions, when they occur, may be regarded as scattering events that can displace

a particle from one “collisionless orbit” to another. The present assumption, based

on a “conservation of orbits” argument, is appropriate for the plasmas of interest (see

Table 1.1), because they feature very few collisions, implying that the “paths” con-

necting two points in the background plasma or connecting the background plasma

to the tether can be traversed by a particle with virtually no collision events. Time

variations, which could be induced by external perturbations such as variations in the

plasma environment, can also be regarded as scattering events, similar to collisions.

The present treatment does not account for any “filling” of the trapped orbits that

could result from such time variations. The impact of collisional and time-varying

effects on the level of filling of trapped orbits will be assessed as part of future re-
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search. Some authors have provided indications as to how this may be done [40,41].

As pointed out by Prof.Laframboise3 in recent discussions, trapped orbits could also

potentially be filled by some of the particles entering through the ends of the cylindri-

cal sheath of a tether, since some of the so-called “trapped“ collisionless orbits may

actually be connected to the background plasma through the hemispherical end caps

of the long, but finite, cylindrical sheath enclosing the tether. The level of “steady-

state filling” of trapped orbits attained through this mechanism should be assessed as

part of future research but is beyond the scope of the present work.

2.2 Poisson–Vlasov Representation of Collisionless Plas-
mas

Obtaining a simultaneous solution in two dimensions for the asymmetric steady-state

electric potential distribution and charge density distributions of both plasma species (ions

and electrons) requires the ability to solve, self-consistently, Vlasov’s equation for each

species and Poisson’s equation for the electric potential and charges, while satisfying ap-

propriate boundary conditions.

Both the electric potential and charge densities are sampled on a piecewise-triangular

mesh, which is generated using the Bidimensional Anisotropic Mesh Generator (BAMG)

developed at INRIA, France [42]. An adaptive process was implemented whereby the

BAMG mesher is used to periodically refine the mesh based on the best available approxi-

mation of the net charge density and potential distributions.

In charged media such as a plasma, the steady state of the potential distribution and net

charge distribution obeys Poisson’s equation [43],

∇2V (x,y) =−
ρ(x,y)

ε0
, (2.5)

3Prof. James G. Laframboise, York University, Ontario, Canada.
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at any point within the plasma. In addition, each species comprising the plasma, that is,

electrons and ions, is composed of particles with a distribution of velocities at any point

in space f3d (x,y,z,vx,vy,vz). In an unmagnetized electrostatic plasma bounded with 2-

dimensional boundaries, the distribution of velocities along the third dimension is inde-

pendent of position, such that we only need to keep track of the 2-dimensional velocity

distribution function obtained by integrating along vz

f2d (x,y,vx,vy) =

vz=+∞∫
vz=−∞

dvz f3d (x,y,vx,vy,vz) , (2.6)

where the z variable was dropped because the 2-D boundary conditions preclude any de-

pendence on z. The number density of each species is obtained by integrating the velocity

distribution function over all velocity space,

ne,i =

∫ ∫
fe,i(x,y,vx,vy) dvxdvy, (2.7)

where the indices e and i refer to electrons and ions, respectively. The net charge density

results from

ρ(x,y) = qini(x,y)+qene(x,y), (2.8)

where qe and qi are the electron and ion particle charge.

In a collisionless, unmagnetized plasma at the steady state, the velocity distribution

functions f (x,y,vx,vy) of each species is conserved along particle orbits. This is stated by

Vlasov’s equation in the steady state (
∂ f
∂ t
= 0) [25],

d fe,i

dt
= vx

∂ fe,i

∂x
+ vy

∂ fe,i

∂y
−

qe,i

me,i

∂V
∂x

∂ fe,i

∂vx
−

qe,i

me,i

∂V
∂y

∂ fe,i

∂vy
= 0, (2.9)

where we substituted the electric field components with the gradient of the electric poten-

tial, i.e., �E =−∇V . Given a known potential distribution and a boundary condition for the

incoming particles at the outer boundary of the computational domain, the method of char-

acteristics can be used to solve (2.9) for the velocity distributions fe,i(x,y,vx,vy) of both the

electrons and ions, at all positions and for all velocities.

34



The use of the method of characteristics for the resolution of Vlasov’s equation in

plasma problems was reported early on [36], and was referred to as the inside-out proce-

dure. It consists of tracking a particle’s trajectory back in time until it intersects the “source

boundary” (which in our case is the outer boundary) of computational space, where the ve-

locity distribution function is sampled. Any trajectory not originating from the outer shell

is deemed unpopulated [8]. Such is the case for trajectories originating from the tether

itself, which we assume does not emit charged particles, as well as trapped trajectories,

which have no sources in the collisionless case.

The steady-state of the plasma must simultaneously satisfy Poisson’s equation (2.5) and

Vlasov’s equation (2.9), subject to boundary conditions on the potential and the incoming

particles. To find the steady-state solution, both a Poisson and a Vlasov operator are needed:

• the Poisson operator solves for the potential distribution V (x,y), given a net charge

distribution ρ(x,y) together with boundary conditions on the potential distribution,

consistent with Poisson’s equation (2.5);

• the Vlasov operator solves for the charge distribution ρ(x,y), given a potential distri-

bution V (x,y), consistent with Vlasov’s equation equation (2.9) as well as equations

(2.7) and (2.8).

Let the Poisson operator be defined by the functional

fP : V (x,y) = fP {ρin(x,y)} , (2.10)

and the Vlasov operator be defined by the functional

fV : ρout(x,y) = fV {V (x,y)} . (2.11)

Then the solution of the problem lies at the fixed point of the Poisson–Vlasov functional,
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defined as a composition of the Poisson and Vlasov functionals:

fPV : ρout(x,y) = fPV {ρin(x,y)}= fV { fP {ρin(x,y)}} . (2.12)

That is, the solution for the net charge distribution ρ(x,y) is that which, when given at the

input of the Poisson–Vlasov operator, yields an identical output (ρout(x,y) = ρin(x,y)). A

Vlasov-Poisson operator could also be considered that would have V (x,y) as its input and

output. The Poisson–Vlasov operator was chosen because of a stability advantage inherent

to the regularization process discussed later.

In the following, we present the specific Poisson and Vlasov solvers used in both our

1-D and 2-D implementations. We then proceed to define an algorithm for finding a best

approximation to the fixed point of the Poisson–Vlasov operator, i.e., the steady state of the

plasma.

2.3 Finite-Element Poisson Solver

Here we derive the Poisson solver, a numerical approximation for the Poisson operator

defined above by the functional fP. The Poisson solver will provide the capability to obtain

a numerical approximation for the potential distribution satisfying Poisson’s equation and

boundary conditions for a given net charge density distribution. We have chosen to use

the finite-element method to implement our Poisson solver, due to its relative simplicity

and mathematical compactness. In addition, it does not present any of the numerical issues

associated with the poles generated with techniques such as the method of moments.

The approximate character of the Poisson solver is due to the finite discretization em-

ployed to solve Poisson’s differential equation (2.5). Both the potential and charge distri-

butions are assumed piecewise-linear, and the accuracy of this representation improves as

the mesh density increases.

In the following, we show two separate derivations for the 1-D cylindrical Poisson
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Solver, used in KiPS-1D, and for the full 2-D Poisson Solver, used in KiPS-2D.

2.3.1 1-D Cylindrical Implementation

In the absence of any azimuthal variation of either the charge distribution or boundary

conditions on the potential, Poisson’s equation (2.5) simplifies to

1
r

d
dr

(
r

dV
dr

)
=−

1
ε0

ρ (r) . (2.13)

Finding a unique solution for this differential equation requires boundary conditions on

V (r). At the surface of the probe, located at r= r0, we require that the potential be equal to

the applied bias voltage, i.e., V (r = r0) =V0. Now, our computational domain is finite and

terminates at a large radius r = rM. We have found that the most suitable boundary condi-

tion to represent an open-ended plasma domain is a floating boundary condition based on

the asymptotic potential profile V (r) ∝ 1/r derived by Bernstein and Rabinowitz [27] and

also used by Laframboise [8]. This asymptotic behavior, together with the bias potential,

results in the following boundary conditions for the potential:

V (r = r0) =V0, (2.14)

dV
dr

∣∣∣∣
r=rM

=−
V
r

∣∣∣∣
r=rM

. (2.15)

According to variational principles [44, 45], which are the foundation of the finite-

element method, the solution of (2.13), subject to boundary conditions defined in (2.14)–

(2.15), is equivalent to the stationary point (or minimum energy point) of the following

functional:

Π=
∫ rM

r0

dr

[
1
2

rV ′2(r)−
rρ(r)V (r)

ε0

]
+

V 2

2

∣∣∣∣
r=rM

. (2.16)
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This can be verified by deriving the variation of Π [45],

δΠ=−
∫ rM

r0

dr

[
rρ(r)

ε0
+

d (rV ′)
dr

]
+ rV ′δV

∣∣rM

r0
+ V δV |r=rM

= 0 (2.17)

δΠ=−
∫ rM

r0

dr

[
rρ(r)

ε0
+

d (rV ′)
dr

]
+
{

rV ′+V
}

δV
∣∣
r=rM
− rV ′δV

∣∣
r0

= 0, (2.18)

and finding the stationary point corresponding to δΠ = 0. The physical solution thus cor-

responds to the minimum energy state for Π. Since all 3 terms in (2.18) are independent of

each other, each must vanish independently. Setting the integrand of the first term equal to

0 yields Poisson’s equation (2.13), while setting the second term equal to 0 yields the outer

boundary condition given in (2.15). The third term vanishes simply because δV |r=r0
= 0,

i.e., there is no variation of the potential at r= r0, since it is forced to a fixed value, namely

V0.

Thus, our Poisson solver must minimize Π as given by (2.16). To accomplish this,

we first approximate (2.16) by discretizing the potential V (r) and the charge distribution

ρ(r) and assuming a linear variation between the samples. The resulting piecewise repre-

sentations of V (r) and ρ(r) can be used to write the following approximate equation for

Π:

Πdiscrete =
V 2

N

2
+

N−1

∑
i=1

1

(ri+1− ri)
2 ×

[(
r2

i+1− r2
i

)
4

(Vi+1−Vi)
2

−

(
r2

i+1− r2
i

)
2ε0

(ri+1ρi− riρi+1)(ri+1Vi− riVi+1)

−

(
r3

i+1− r3
i

)
3ε0

[Vi (riρi+1−2ri+1ρi+ ri+1ρi+1)

+ Vi+1 (ri+1ρi−2riρi+1+ riρi)]

−

(
r4

i+1− r4
i

)
4ε0

(ρi+1−ρi)(Vi+1−Vi)

]
, (2.19)

where ri, i= 1, ...,N are appropriately chosen sample locations in the interval r ∈ [r0,rM],

and the potential and charge density samples correspond to Vi =V (r = ri) and ρi = ρ(r =
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ri). The equivalent matrix-form expression is:

Π≈Πdiscrete =
1
2
�V T KN×N�V −

1
ε0

�V T QN×N�ρ, (2.20)

where K and Q are N×N matrices, and the elements of the vectors �V and �ρ correspond to

the potential and charge density samples Vi and ρi for i ∈ [1,N]. The non-zero elements of

matrix K are given by

1st row: K1,1 =
r2

2− r2
1

2(r2− r1)
2 , K1,2 =−

r2
2− r2

1

2(r2− r1)
2

ith row: Ki,i−1 =
r2

i−1− r2
i

2(ri− ri−1)
2 , Ki,i =

r2
i − r2

i−1

2(ri− ri−1)
2 +

r2
i+1− r2

i

2(ri+1− ri)
2

and Ki,i+1 =
r2

i − r2
i+1

2(ri+1− ri)
2 , i ∈ [2,N−1]

Nth row: KN,N−1 =−
r2

N− r2
N−1

2(rN− rN−1)
2 , KN,N = 1+

r2
N− r2

N−1

2(rN− rN−1)
2 .

(2.21)

With regards to matrix Q, the non-zero elements of its first row are given by

Q1,1 =
1

(r2− r1)
2

[
1
2

r2
2

(
r2

2− r2
1

)
−

2
3

r2
(
r3

2− r3
1

)
+

1
4

(
r4

2− r4
1

)]
and

Q1,2 =
1

(r2− r1)
2

[
−

1
2

r1r2
(
r2

2− r2
1

)
+

1
3
(r1+ r2)

(
r3

2− r3
1

)
−

1
4

(
r4

2− r4
1

)]
,

(2.22)

the non-zero elements of rows 2 through N−1 are given by

Qi,i−1 =
1

(ri− ri−1)
2

[
−

1
2

ri−1ri
(
r2

i − r2
i−1

)
+

1
3
(ri−1+ ri)

(
r3

i − r3
i−1

)
−

1
4

(
r4

i − r4
i−1

)]
,

Qi,i =
1

(ri− ri−1)
2

[
1
2

r2
i−1

(
r2

i − r2
i−1

)
−

2
3

ri−1
(
r3

i − r3
i−1

)
+

1
4

(
r4

i − r4
i−1

)]

+
1

(ri+1− ri)
2

[
1
2

r2
i+1

(
r2

i+1− r2
i

)
−

2
3

ri+1
(
r3

i+1− r3
i

)
+

1
4

(
r4

i+1− r4
i

)]
, and

Qi,i+1 =
1

(ri+1− ri)
2

[
−

1
2

riri+1
(
r2

i+1− r2
i

)
+

1
3
(ri+ ri+1)

(
r3

i+1− r3
i

)
−

1
4

(
r4

i+1− r4
i

)]
,

(2.23)
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and the non-zero elements of its N th row are given by

QN,N−1 =
1

(rN− rN−1)
2

[
−

1
2

rN−1rN
(
r2

N− r2
N−1

)
+

1
3
(rN−1+ rN)

(
r3

N− r3
N−1

)
−

1
4

(
r4

N− r4
N−1

)]
and

QN,N =
1

(rN− rN−1)
2

[
1
2

r2
N−1

(
r2

N− r2
N−1

)
−

2
3

rN−1
(
r3

N− r3
N−1

)
+

1
4

(
r4

N− r4
N−1

)]
,

(2.24)

with all the unspecified matrix elements equal to zero.

Now, the best approximation to the physical solution, i.e., the stationary point of Π,

which is also the root of δΠ as specified in (2.18), is obtained by setting to zero the partial

derivatives of Πdiscrete with respect to the unknown potential samples Vi, i = 2, ...,N. This

operation yields the following linear system of equations:

K2:N,2:N�V2:N =
1
ε0

Q2:N,1:N�ρ−V0K2:N,1. (2.25)

This system is then solved for the unknown potential samples Vi, i ∈ [2,N]:

�V2:N =

[
1
ε0
(K2:N,2:N)

−1 Q2:N,1:N

]
︸ ︷︷ ︸

JP
′
N−1×N

�ρ −V0 (K2:N,2:N)
−1 K2:N,1︸ ︷︷ ︸

�V cst′

, (2.26)

where we have defined an (N−1)×N matrix JP
′ and a vector�V cst′ with (N−1) elements.

Based on this result and the potential boundary condition at r = r0, we can form the com-

plete Poisson solver as follows:

�V = JP�ρ+�V cst, (2.27)

with

JP2:N,1:N = JP
′, (2.28)

JP1,1:N =�0, (2.29)

�V cst
2:N =�V

cst′, and (2.30)

V cst
1 =V0. (2.31)
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The expression given by (2.27) is the final compact form of our finite element-based cylin-

drical 1-D Poisson solver. It is obviously a linear operator, and only needs to be computed

once upon generating a new grid.

2.3.2 2-D Implementation

For the 2-D implementation of our Poisson solver, we wish to approximately solve, in

two dimensions, Poisson’s equation (2.5), with appropriate boundary conditions. We will

first focus on the boundary conditions, and then proceed to derive the finite element solver

itself.

2.3.2.1 Poisson Boundary Conditions

At the surface of the conductive object(s) (e.g., probe), we simply enforce a fixed bias

potential V =V0, with the potential V being measured from infinity.

The question of the outer boundary condition is significantly more difficult to address.

Since the computational domain must be finite, an appropriate outer boundary condition

should be selected that will help keep the required extent of the computational domain at a

reasonable size. In its undisturbed state, the plasma is neutral, and it therefore acts to shield

any perturbations in the electric potential caused by a biased conductive object inserted

within that plasma. For that reason, we can make the argument that the potential profile,

beyond the circular outer edge of the computational domain, must fall off faster than it

would in free space.

In free space, we drop the space charge term ρ(x,y) on the right-hand side of Pois-

son’s equation (eq. (2.5)), and recover Laplace’s equation. In 2-D cylindrical coordinates,

Laplace’s equation can be written as

∇2V =
1
r

∂
∂ r

(
r

∂V
∂ r

)
+

1
r2

∂ 2V
∂θ 2 = 0 (2.32)
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Free Space Plasma
mode # Ern ∝ Ern ∝

0 1/r 1/r2 [27]
1 1/r2 1/r3

2 1/r3 1/r4

...
...

...
n 1/rn+1 1/rn+2

Table 2.1: Decay rates of the radial electric field Ern = −
∂Vxn

∂ r
for various circular har-

monic modes. The exact rates are given for free space [46], while in a plasma only the 0th

order mode has an asymptotic rate. The rates in bold are assumed, based on a qualitative
argument.

and can be solved by separation of variables. The solutions are circular harmonics of the

form [46]

Vx0 =C0 lnr+D0, (2.33)

Vxn = (An cosnθ +Bn sinnθ)( Cn︸︷︷︸
=0

rn+Dnr−n), n= 1,2,3, ... (2.34)

Since we are looking for solutions that vanish as r→ ∞, we must set Cn = 0. It is thus

seen that the potential for the circular harmonics decays as 1/rn for n≥ 1. Table 2.1 lists

the decay rates of the radial electric field Ern = −
∂Vxn

∂ r
for each circular harmonic mode

in free space, along with the corresponding assumed decay rates in a plasma. Following

the asymptotic result derived for the 1-D cylindrical case [27], we assume that the 0th order

mode decays as Ern ∝ 1/r2 (Vxn ∝ 1/r) in a plasma, a faster decay rate than that obtained

in free space. Without further demonstration, we generalize the shielding effect of the

plasma observed in the 0th order mode to higher-order modes by assuming a decay rate of

Ern ∝ 1/rn+2, or Vxn ∝ 1/rn+1.

Furthermore, we will assume these decay rates to be appropriate in flowing plasmas

as well. Future work should focus on seeking asymptotic analytical expressions for these

modes in stationary as well as flowing plasma; such results would very likely contribute
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to reducing the computational domain size requirements in the flowing plasma case, in a

similar fashion as the improvement obtained in the 1-D cylindrical case upon replacing the

hard outer boundary condition V = 0 with a boundary condition based on the asymptotic

behavior V ∝ 1/r.

The decay rates for each mode were not hard-coded into the program. Instead, those

rates are given as an input parameter by the user, such that one may provide the best-suited

decay rates for the application of interest.

2.3.2.2 Finite-Element Formulation

We proceed by fully discretizing Poisson’s equation in two dimensions (2.5) using a

piecewise-bilinear representation of the potential and charge density distributions. The 2-

D domain is subdivided into triangular elements.4 The formulation of the linear Poisson

solver is based on that found in chapter 2 of Tong’s finite-element textbook [44]. Anal-

ogous to (2.16), we choose the functional for which the stationary point corresponds to

the solution of (2.5), subject to the boundary conditions defined in Section 2.3.2.1. This

functional is given by

Π=
1
2

∫∫
A

dA(∇V )2

︸ ︷︷ ︸
Π1

+
1
2

∫∫
A∞

dA∞

[
(∇V )2+

(
∇2V

)
V
]

︸ ︷︷ ︸
Π2

−
1
ε0

∫∫
A

dAρ(x,y)V

︸ ︷︷ ︸
Π3

, (2.35)

where (∇V )2 ≡ (∇V ) · (∇V ), the area A refers to the full area of the computational domain,

and A∞ represents the area extending beyond the computational domain, all the way to

infinity (r ≥ rM).

2.3.2.2.1 Formulation of the Outer Boundary Condition We hereby derive an ap-

proximation for Π2, the energy outside of the computational domain, in terms of the sam-

ples of the potential profile at the outer boundary r = rM of the computational domain, to

4Section 2.6 describes the mesh construction process.
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serve as an outer boundary condition, consistent with the assumptions on the decay rates of

circular harmonics described in Section 2.3.2.1.

Using Green’s 1st formula [47], the second term of (2.35) can be re-written as a contour

integral on the outer circular boundary at r = rM:

Π2 =−
1
2

2π∫
θ=0

V
∂V
∂ r

rMdθ . (2.36)

Outside of the computational domain (r ≥ rM), an expansion of the 2-D potential profile in

circular harmonics yields, for the potential and its first radial derivative:

V (θ ,r) = A0
rM

r
+

Nmodes

∑
n=1

(rM

r

)γ(n)
(An cosnθ +Bn sinnθ) (2.37)

−
∂V
∂ r
= A0

rM

r2 +
Nmodes

∑
n=1

γ(n)

(
rγ(n)

M

rγ(n)+1

)
(An cosnθ +Bn sinnθ) , (2.38)

where γ(n) is the specified decay rate for the nth circular harmonic of the potential and is

usually set to γ(n) = n+ 1, consistent with the arguments given in Section 2.3.2.1. The

Fourier series coefficients are given by Euler formulas [47]:

A0 =
1

2π

∫ 2π

0
dθ V (rM,θ) (2.39)

An =
1
π

∫ 2π

0
dθ V (rM,θ)cosnθ , n= 1,2, ... (2.40)

Bn =
1
π

∫ 2π

0
dθ V (rM,θ)sinnθ , n= 1,2, ... (2.41)

where the potential is integrated over the outer circular boundary. These formulas are

discretized based on a bilinear variation of the edge potential between its samples V (rM,θi):

A0 ≈
1

2π

Nob

∑
i=1

a0iV (rM,θi) (2.42)

An ≈
1
π

Nob

∑
i=1

aniV (rM,θi) n= 1,2, ... (2.43)

Bn ≈
1
π

Nob

∑
i=1

bniV (rM,θi) n= 1,2, ... (2.44)
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where Nob is the number of potential samples on the outer boundary. The coefficients a0i,

ani and bni are obtained by integrating the piecewise-linear representation of the boundary

potential profile along with either 1, cosnθ , or sinnθ over each sub-interval defined by the

outer boundary sample locations, yielding:

a0i =
1
2
[mod(θi+1−θi,2π)+mod(θi−θi−1,2π)] (2.45)

ani =
(cosnθi− cosnθi−1)

n2mod(θi−θi−1,2π)
−
(cosnθi+1− cosnθi)

n2mod(θi+1−θi,2π)
, (2.46)

bni =
(sinnθi− sinnθi−1)

n2mod(θi−θi−1,2π)
−
(sinnθi+1− sinnθi)

n2mod(θi+1−θi,2π)
(2.47)

where mod() is the modulo function, and the θi samples are assumed to be ordered in

counter-clockwise (increasing) order. These coefficients are computed for modes n =

0,1,2, ...Nmodes, where Nmodes is chosen sufficiently large to accurately represent the az-

imuthal modes that the outer boundary sampling can support. Typically, Nmodes is chosen

as a few times (10 times, for example) the approximate Nyquist limit, i.e.,

Nmodes = ceil

(
10

π
min |mod(θi+1−θi,2π)|

)
. (2.48)

where the function ceil(·) rounds its argument up to the next integer. In contrast with the

discrete Fourier transform, which gives rise to aliasing when the Nyquist limit is exceeded,

there is no concern for aliasing here, since we have defined the coefficients a0i, ani and

bni based on the continuous Fourier transform of a piecewise-linear boundary potential,

as opposed to having discretized the Fourier integrands, as is done in the discrete Fourier

transform.

We may now put the pieces together to obtain a discrete representation of Π2. Insert-

ing (2.37)–(2.38) into (2.36), we obtain for Π2:

Π2 = π

{
A2

0+
1
2

Nmodes

∑
n=1

γ(n)
(
A2

n+B2
n

)}
. (2.49)
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Using (2.45)–(2.47), we insert (2.42)–(2.44) into (2.49), and re-write the resulting expres-

sion in vector form,

Π2 =
1
2
�V T

b

[
1

2π
�a0�a

T
0 +

1
π

Nmodes

∑
n=1

γ(n)
(
�an�a

T
n +�bn�b

T
n

)]
︸ ︷︷ ︸

K′2

�Vb, (2.50)

where �Vb is a vector containing the potential samples at the outer boundary,
(
�Vb

)
i
=

V (rM,θi), and the vectors �a0, �an, and �bn are made up of the elements given by (2.45)–

(2.47). The matrix K′2 is a stiffness matrix that constitutes the outer boundary condition

and will contribute to the global stiffness matrix defined in what follows.

2.3.2.2.2 Formulation of the Internal Finite Elements Analogous to the 1-D cylin-

drical case given by (2.19), both surface integrals in the energy contributions Π1 and Π3

in (2.35) are approximated by sums of sub-functionals πn1 and πn3 (n = 1,2, ...,Nt) that

each operate on a sub-domain defined by triangle n:

Π=
Nt

∑
n=1

πn1︸ ︷︷ ︸
Π1

+ Π2 +
Nt

∑
n=1

πn3︸ ︷︷ ︸
Π3

(2.51)

with

πn1 =
1
2

∫∫
An

[(
∂V
∂x

)2

+

(
∂V
∂y

)2
]

dxdy and πn3 =−
1
ε0

∫∫
An

ρ(x,y)V (x,y)dxdy,

(2.52)

where Nt is the number of triangles, and An defines the surface of the nth triangle.

The potential and charge density distributions are assumed piecewise-bilinear over the

set of triangular elements. Within triangle n, the potential and charge density profiles are

given by

V (x,y) =Vi(n,1) f1(x,y)+Vi(n,2) f2(x,y)+Vi(n,3) f3(x,y) and (2.53)

ρ(x,y) = ρi(n,1) f1(x,y)+ρi(n,2) f2(x,y)+ρi(n,3) f3(x,y), (2.54)

46



where the Vi’s and ρi’s are samples of the potential and charge density distributions, and

i(n, :) is a lookup table mapping each of the 3 vertices of triangle n to the corresponding

indices within the vectors of samples �V and �ρ . The fi’s are bilinear interpolation functions

given by

fi(x,y) =
(ai+bix+ ciy)

2∆
, i= 1,2,3, (2.55)

with coefficients [44]

∆=
1
2
|x2y3− x3y2+ x3y1− x1y3+ x1y2− x2y1| ,

a1 = x2y3− x3y2, b1 = y2− y3, c1 = x3− x2,

a2 = x3y1− x1y3, b2 = y3− y1, c2 = x1− x3,

a3 = x1y2− x2y1, b3 = y1− y2, c3 = x2− x1,

(2.56)

where the xi’s and yi’s are the coordinates of the 3 vertices for triangle n and ∆ is the

triangle area. Based on the piecewise-linear description of the potential and charge density

distributions specified by (2.53)–(2.56), approximations for πn1 and πn3 can be written in

matrix form as

πn1 ≈
1
2
�V T

i(n,1:3)kn1�Vi(n,1:3) and πn3 ≈−
1
ε0

�V T
i(n,1:3)Qn�ρi(n,1:3), (2.57)

where kn1, and Qn are both 3×3 matrices. The elements of kn1 are obtained from [44]

(kn1)i j =
∫
An

(
∂ fi

∂x

∂ f j

∂x
+

∂ fi

∂y

∂ f j

∂y

)
dxdy

=
1

4∆
(
bib j+ cic j

)
,

(2.58)

where ∆, the bi’s, and the ci’s are defined by (2.56) for triangle n.

Now, finding an expression for the elements of the 3×3 loading matrix Qn is a bit more

involved. The following expression is consistent with πn3 in (2.52), (2.54), and (2.57):

(Qn)i j =
1

4∆2

∫
An

(
a j+b jx+ c jy

)
(ai+bix+ ciy) dxdy, (2.59)
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where the ai’s and bi’s are given by (2.56) for triangle n. Using Green’s theorem [47], we

can substitute this surface integral, performed over triangle n’s area An, with a counter-

clockwise contour integral over the triangle’s three edges:

(Qn)i j =
1

4∆2

∮
Cn

F1(x,y)dx+F2(x,y)dy (2.60)

with F1(x,y) =−
1
2

∫
dy
(
a j+b jx+ c jy

)
(ai+bix+ ciy) (2.61)

and F2(x,y) = +
1
2

∫
dx
(
a j+b jx+ c jy

)
(ai+bix+ ciy) . (2.62)

Now, the contour integral is based on 3 line integrals over the edges of triangle n. This re-

quires parameterizing F1 and F2 over each edge:

{
x
y

}
=

{
x0

y0

}
+s

{
x1− x0

y1− y0

}
, where

the coordinates (x0,y0) and (x1,y1) represent the coordinates of the starting and ending

vertices for each edge, respectively. Using this parametrization yields

(Qn)i j =±
1

4∆2

3

∑
ie=1

1∫
s=0

{
F1(s)

dx
ds
+F2(s)

dy
ds

}
ds

=±
3

∑
ie=1

1
4∆2

⎡
⎣(x1− x0)

1∫
s=0

F1(s)ds+(y1− y0)

1∫
s=0

F2(s)ds

⎤
⎦

︸ ︷︷ ︸
((Qn)i j)ie

,
(2.63)

where the plus or minus sign is used depending upon whether the three edges are ordered in

counter-clockwise or clockwise order, respectively. The indefinite integrals given by (2.61)

and (2.62), as well as the definite integral given in (2.63) can all be performed analytically.

Equation (C.1) in appendix C gives a detailed analytical expression for
(
(Qn)i j

)
ie

, which

can be used directly to compute the elements of matrix Qb, without resorting to numerical

integration.

The approximate expressions for the energies πn1 and πn3 given by (2.57) can be com-

bined to form approximate expressions for the energy contributions Π1 and Π3 in (2.51):

Π1 ≈
1
2
�V T K1︸︷︷︸

N×N

�V and Π3 ≈−
1
ε0

�V T Q︸︷︷︸
N×N

�ρ, (2.64)
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where N is the total number of samples (vertices) in the computational domain, and the

N×N matrices K1 and Q are obtained by combining the contributions of the kn1’s and and

Qn’s given by (2.58) and (C.1). The “decay rates” outer boundary condition, embedded in

Π2 and defined in (2.50), can now be added to (2.64) to obtain the complete approximation

for the functional Π:

Π≈Πdiscrete =
1
2
�V T K1+K2︸ ︷︷ ︸

K

�V

︸ ︷︷ ︸
Π1+Π2

−
1
ε0

�V T Q �ρ︸ ︷︷ ︸
Π3

, (2.65)

where the N×N matrix K2 is built by filling some of its entries with elements from the

Nb×Nb matrix K′2, with N the total number of vertices and Nb the number of outer boundary

vertices. This is done according to K2(�ib,�ib) = K′2, where�ib is an index vector listing the

indices of the vertices located on the outer boundary, sorted in a counter-clockwise order.

The stationary point of (2.65), corresponding to the minimum energy state of the sys-

tem and providing an approximation to Poisson’s equation in two dimensions, is obtained

by equating to zero the gradient of the approximate energy Πdiscrete with respect to the un-

known potential samples. This process, similar to that which lead to (2.25), results in the

following linear system of equations:

K�u,�u�V�u =
1
ε0

Q�u,:�ρ−V0K
�u,�k
�1, (2.66)

where �1 represents a vector with all elements equal to 1, and where we introduced the

following subsets of potential sample indices:

• the subset�k designates all sample indices located on the conductor surface, for which

the value is known (this is the bias potential);

• the subset �u designates all sample indices not located on the conductor surface, for

which the value is unknown;
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• the use of the colon “:” as a matrix index designates the complete set of potential

samples (same notation as in the Matlab™ scripting language).

We can then solve for the unknown potential samples, analogous to (2.26):

�V�u =

[
1
ε0

(
K�u,�u

)−1 Q�u,:

]
︸ ︷︷ ︸

JP
′
Nu×N

�ρ −V0
(
K�u,�u

)−1 K
�u,�k
�1︸ ︷︷ ︸

�V cst′

, (2.67)

where Nu is the number of unknown samples (i.e., the length of �u), and �V cst′ has Nu el-

ements. Finally, we combine this resulting operator with the known potential samples to

form the complete 2-D Poisson solver as follows:

�V = JP�ρ+�V cst, (2.68)

with

JP�u,: = JP
′, (2.69)

JP�k,: = [0]Nk×N , (2.70)

�V cst
�u =

�V cst′, and (2.71)

�V cst
�k
=V0�1, (2.72)

where [0]Nk×N is an Nk×N zero matrix. (2.68) gives the final compact form of our finite

element-based 2-D Poisson solver. Just like its 1-D counterpart, it is a linear operator and

only needs to be computed once upon generating a new triangular mesh.

2.4 Steady-State Vlasov Solver

We now derive the Vlasov solver, that is, a numerical approximation for the Vlasov

operator defined above by the functional fV . The Vlasov solver will provide the capability

to find a numerical approximation for the net charge density distribution satisfying Vlasov’s

equation and boundary conditions for the inbound particles.
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The Vlasov solver described here allows each species to express the full kinetic nature

of its 2-D velocity distribution. This feature allows for the realistic and accurate modeling

of non-thermal plasmas, that is, plasmas that are not at thermal equilibrium due to large

electric fields and high velocity flows. It accounts for the largest part of the computational

complexity of the technique presented in this work.

The approximate character of the Vlasov solver is due to the following:

• the finite discretization of the potential mesh: the potential distribution is approxi-

mated by a piecewise-bilinear representation, which limits the accuracy of the trajec-

tory tracking procedure (2-D implementation only);

• the finite precision of the quadrature technique employed to integrate over velocity

space (both 1-D and 2-D implementations).

The Vlasov functional fV , and therefore the Vlasov solver, are nonlinear operators. In

this section, we will derive, in addition to the Vlasov nonlinear operator itself, a technique

for the extraction of the linearized behavior of the Vlasov operator about a given “operating

point” corresponding to a potential profile. The resulting linearized Vlasov operator will be

required in Section 2.5 when we formulate our regularized Newton iterative scheme for the

resolution of the nonlinear fixed point problem involving the Poisson–Vlasov functional

fPV , defined in (2.12).

Following are two separate derivations: one for the 1-D cylindrical Vlasov solver, used

in KiPS-1D, and one for the full 2-D Vlasov solver, used in KiPS-2D.

2.4.1 1-D Cylindrical Implementation

Our 1-D formulation of the Vlasov solver is based on equations provided by San-

martı́n [11], and is equivalent to the procedure used by Laframboise [8].
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2.4.1.1 Approximating the Vlasov Functional fV in 1-D

The potential profile is symmetric about the center of the round cylindrical probe. Since

the only force present is that due to the electrostatic field, we have a central force field.

Because there are no azimuthal forces, the angular momentum L = mrvθ of any particle

is conserved along its trajectory. In addition, the transverse energy of a particle, E =

me,i
2

(
v2

∞− v2
z

)
, is conserved5:

me,i

2

(
v2

r + v2
θ
)
+qV ≡ E, (2.73)

where V is the electric potential, and m and q are the mass and charge of the particle. In

this 1-D formulation, the cylindrical symmetry of the electric field and particle distribu-

tions only allows us to consider the “stationary plasma” case. Both the ion and electron

populations are assumed to have Maxwellian velocity distributions far from the probe, as

r→ ∞:

fe,i (r→ ∞,E,L) =
n0 me,i

2π eTe,i
exp

(
−

E
eTe,i

)
, (2.74)

where we use the invariants E and L as the independent variables for simplicity and to be

consistent with Sanmartı́n.6 At any given location in space, the velocity distribution is equal

to that given by (2.74) for all energy and angular momentum values (E,L) corresponding

to a trajectory that is connected to infinity, and is assumed unpopulated otherwise. Let us

define L2
r (E)≡ 2me,ir2 [E−qe,iV (r)] and recognize that L2

r (E) = L2+m2
e,ir

2v2
r . We repeat

here, for completeness, the criteria given in [11] for a trajectory to be connected to infinity:

• owing to conservation of energy, only particles with a total energy sufficient to over-

come any electric potential barriers, i.e., particles with an energy

E ≥ Emin =max
(
0,max

{
qV (r′); r ≤ r′ < ∞

})
, (2.75)

5v∞ is the particle’s velocity when it is far removed from the probe, i.e., as r −→ ∞.
6In this text, the variable L is used for angular momentum, whereas Sanmartı́n [11] uses the notation J.
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are connected to infinity;

• an incoming particle can only reach r if its angular momentum L is sufficiently small

to allow v2
r to have stayed positive from r′ = ∞ to r′ = r. This specifies an allowed

range that the angular momentum of an incoming particle can have at r:

0< L< L∗r (E) =min
{

Lr′(E); r ≤ r′ < ∞
}
. (2.76)

Particles with a larger angular momentum L> L∗r (E) are thus “reflected” by what is

sometimes described as an effective potential barrier;

• for outgoing particles there is, in addition to an upper bound L∗r (E) on the angular

momentum, a lower bound L∗r0
(E) = min{Lr′(E);r0 ≤ r′ < ∞}. Particles having a

lower angular momentum are collected on the probe at r= r0 and thus do not return.

Based on these bounds for the angular momentum, the velocity distribution is given by:

fe,i (r,E,L) =

⎧⎪⎨
⎪⎩

fe,i (r→ ∞,E,L) if vr < 0 and 0< L< L∗r (E)

fe,i (r→ ∞,E,L) if vr > 0 and L∗r0
(E)< L< L∗r (E)

0 otherwise.

(2.77)

The number density is then obtained by integrating the velocity distribution function over

velocity space, or alternatively, over the 2-D space defined by E and L. The change of

variables (vr,vθ )→ (E,L) implies the following Jacobian:

∂ (vr,vθ )

∂ (E,L)
=

∣∣∣∣∣∣∣∣∣
∂vr

∂E
∂vr

∂L

∂vθ
∂E

∂vθ
∂L

∣∣∣∣∣∣∣∣∣
=

1

m
√

L2
r (E)−L2

. (2.78)
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Using this Jacobian and accounting for both positive and negative values of the angular

momentum L, we obtain

ne,i(r) =
n0

π eTe,i

∞∫
E=Emin

dE exp

(
−

E
eTe,i

)
⎡
⎢⎢⎢⎢⎢⎢⎣

L∗r (E)∫
L=0

dL√
L2

r (E)−L2︸ ︷︷ ︸
vr<0

+

L=Lr∗(E)∫
L=L∗r0

(E)

dL√
L2

r (E)−L2

︸ ︷︷ ︸
vr>0

⎤
⎥⎥⎥⎥⎥⎥⎦

=
n0

π eTe,i

∞∫
E=Emin

dE exp

(
−

E
eTe,i

)
⎡
⎢⎢⎢⎢⎣sin−1

(
L

Lr(E)

)∣∣∣∣L
∗
r (E)

0︸ ︷︷ ︸
vr<0

+sin−1
(

L
Lr(E)

)∣∣∣∣L
∗
r (E)

L∗r0
(E)︸ ︷︷ ︸

vr>0

⎤
⎥⎥⎥⎥⎦

=
n0

π eTe,i

∞∫
E=Emin

dE exp

(
−

E
eTe,i

)[
2sin−1 L∗r (E)

Lr(E)
− sin−1 L∗r0

(E)

Lr(E)

]
,

(2.79)

with Emin as defined in (2.75), and L∗r (E) as defined in (2.76). The integral in (2.79) cannot,

in general, be performed analytically, because of the dependence of L∗r (E) and L∗r0
(E) on

part or all of the potential profile through (2.76). This is true even in the case of the orbital

motion limit, a regime in which all trajectories hitting the probe surface at r = r0 are con-

nected to infinity, except for n(r= r0). In the case of OML, L∗r0
(E)= Lr0(E) applies, so that

the bracketed expression in (2.79) goes to π/2, resulting in n(r0) = n0/2. However, even

in OML, L∗r (E) < Lr(E) for some positions r, which means that, at several positions, es-

pecially further out from the probe, the integral cannot be performed analytically to obtain

the number density.

In general, it suffices to integrate the exponentially-decaying integrand up to a finite en-

ergy value E = κrangeeTe,i, with a sufficiently large value for κrange, to obtain an acceptable

accuracy on the integral. A value of κrange = 5 is typically chosen, corresponding to an in-

tegrand exp
(
− E

eTe,i

)∣∣∣
E=5eTe,i

= 0.0067, and yielding integration accuracies on the order of

1%. Our 1-D Vlasov solver computes an approximation for this integral to a given relative
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accuracy εr using a numerical integration technique. We have implemented an adaptive

scheme using the trapezoidal quadrature rule [48] to that effect, which is discussed in Ap-

pendix D. This adaptive quadrature scheme selects a set of abscissa Ek,k = 1,2, ..,Nk,

where the integrand is evaluated, along with associated weights, resulting in the following

approximation for the density profile at locations r = r j, j = 1,2, ...,N:

ne,i(r j)≈ (ne,i) j =
n0

π eTe,i

Nk

∑
k=1

wk exp

(
−

Ek

eTe,i

)[
2sin−1

L∗r j
(Ek)

Lr j(Ek)
− sin−1 L∗r1

(Ek)

Lr j(Ek)

]

with E1 < E2 < ... < Ek < ... < EN−1 < EN,

E1 =max
(
0,max

{
qe,iVj′ ; j ≤ j′ ≤ N

})
,

Lr j(Ek) =

{√
2me,ir2

j

[
Ek−qe,iVj

]
Ek ≥ qe,iVj

0 Ek < qe,iVj

, and

L∗r j
(Ek) =min

{
Lr j′

; j ≤ j′ ≤ N
}
.

(2.80)

The complete 1-D Vlasov solver computes both density profiles ne(r) and ni(r) by

numerically evaluating (2.80) at a set of radial positions in computational space within the

range r0 < r < rM . It then combines both results to obtain the “output” net charge density

at all sampled locations r j, j = 1,2, ...,N:

ρ(r j)≈ (�ρout) j = qe (ne) j+qi (ni) j , (2.81)

where qe and qi are the electron and ion charge, respectively. The term “output” is used

here to designate the output of the Vlasov solver.

2.4.1.2 Linearizing the 1-D Vlasov Solver

We now proceed to find expressions for the linearized behavior of the discrete Vlasov

operator specified by (2.81) and (2.80), with respect to the samples of the potential profile.

Let us define
∂�ρ
∂�V

, an N ×N matrix, as the Jacobian of the Vlasov solver, i.e., a matrix

containing the linearized behavior of each net charge density sample as a function of all the
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potential samples: (
∂�ρ
∂�V

)
jk
≡

∂ρ j

∂Vk
, j,k = 1,2, ...,N. (2.82)

Based on (2.81) we can define
∂�ni

∂�V
and

∂�ne

∂�V
such that

∂�ρ
∂�V
= qe

∂�ne

∂�V
+qi

∂�ni

∂�V
as follows:

(
∂�ne

∂�V

)
j,k
≡

∂ (ne) j

∂Vk
, j,k= 1,2, ...,N, and (2.83)(

∂�ni

∂�V

)
j,k
≡

∂ (ni) j

∂Vk
, j,k = 1,2, ...,N. (2.84)

Analytical expressions for the elements of these two N×N matrices are fairly compli-

cated and therefore difficult to write in compact form. However, they can be written in a

fairly compact form as an algorithm used to fill the elements, which is done in Algorithm 1,

consistent with (2.80). It should be noted that the Ek’s are samples of the independent vari-

able (the energy), and therefore have no dependence on the potential.

Finally, considering a Vlasov “input” potential profile �Vin, a Vlasov “output” net charge

profile �ρout, and the Jacobian expression JV =
∂�ρ
∂�V

, the linearized behavior of the Vlasov

solver can be described as

�ρ ∼=�ρout+
∂�ρ
∂�V

(
�V −�Vin

)
(2.85)

for any input potential profile �V in the vicinity of �Vin. This linearized behavior will be used

in Section 2.5 for the implementation of the regularized Newton iterative scheme used for

the resolution of the nonlinear fixed point Poisson–Vlasov problem.

2.4.2 Full 2-D Implementation

2.4.2.1 Orbit Tracking and Analysis

The crucial difference between the 1-D Vlasov solver and its 2-D counterpart is that

the latter requires explicit tracking of particle trajectories in order to sample the velocity

distribution function in 2-D velocity space. This requirement is born out of the fact that,

generally speaking, the 2-D potential profile is not rotationally symmetric, i.e., there are
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Algorithm 1 Algorithm used to compute the elements of the density Jacobian
∂�n
∂�V

(1-D

cylindrical implementation)

Initialize Jacobian:
∂�n
∂�V
= [0]N×N

for k = 1 to N do
if k �= k∗ and L∗rk

(Ek)> 0 then(
∂�n
∂�V

)
k,k
=

(
∂�n
∂�V

)
k,k
+

qe,in0

π eTe,i
wk exp

(
−

Ek

eTe,i

)
γ

√
u

(Ek−qVk)
√

1− γ2u
,(

∂�n
∂�V

)
k,k∗
=

(
∂�n
∂�V

)
k,k∗
−

qe,in0

π eTe,i
wk exp

(
−

Ek

eTe,i

)
γ

1

(Ek−qVk)
√

u(1− γ2u)
,

with γ =
r∗k
rk

and u= 1+q
Vk−V ∗k
Ek−qVk

.

end if
if k �= 1∗ and L∗r1

(Ek)> 0 then(
∂�n
∂�V

)
k,1∗
=

(
∂�n
∂�V

)
k,1∗
+

qe,in0

2π eTe,i
wk exp

(
−

Ek

eTe,i

)
γ ′

√
u′

(Ek−qVk)
√

1− γ ′2u′
,

(
∂�n
∂�V

)
k,1∗
=

(
∂�n
∂�V

)
k,1∗
−

qe,in0

2π eTe,i
wk exp

(
−

Ek

eTe,i

)
γ ′

1

(Ek−qVk)
√

u′
(
1− γ ′2u′

) ,

with γ ′ =
r∗1
rk

and u′ = 1+q
Vk−V ∗1
Ek−qVk

.

end if
end for
where k∗, r∗k and 1∗, r∗1 are such that:
L∗rk
(Ek)≡ Lr∗k

(Ek)≡ Lrk∗
(Ek) =minimum

{
Lrk′
(Ek) : k ≤ k′ ≤ N

}
L∗r1
(Ek)≡ Lr∗1

(Ek)≡ Lr1∗
(Ek) =minimum

{
Lrk′
(Ek) : 1≤ k′ ≤ N

}

azimuthal variations of the potential and net charge density distributions. Any particle

trajectory belongs to one of three states:

plasma-bounded trajectories are trajectories originating from the background plasma;

conductor-bounded trajectories are trajectories originating from the surface of a con-

ductor, such as a probe;

trapped trajectories are trajectories of indefinite length, which typically orbit around the

probe.
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In our basic implementation, only plasma-bounded trajectories are populated. Conductor-

bounded trajectories are left empty, consistent with our assumption of non-emitting con-

ductors; accounting for thermionic emission would require populating those trajectories.

Trapped trajectories are deemed unpopulated because of the absence of collisions to scat-

ter bounded particles into trapped states.7

In the 1-D cylindrical case, conservation of angular momentum L allows for the direct

determination of the state of a particle’s trajectory based solely on its energy E and angular

momentum L, as described in Section 2.4.1. However, since the angular momentum L is not

conserved in the more general 2-D case, an “inside-out” [36] trajectory tracking procedure

is employed in order to determine the origin of each trajectory and therefore its state.

Figure 2.1 illustrates the particle tracking process, which is similar to that used by

Xu [17]. The trajectories are tracked analytically backward in time from one edge of the

mesh to another, assuming a constant electric field within any given triangle of the mesh;

this is consistent with the assumption of a piecewise-bilinear potential distribution. Every

sub-trajectory is resolved by computing the intersection of a quadratic parametric curve

with a segment on the mesh.

Within a given triangle of the mesh, a particle’s trajectory is described by

x= xi+ vixt+
1
2

axt
2 and (2.86)

y= yi+ viyt+
1
2

ayt
2, (2.87)

where (xi,yi) and (vix,viy) are the initial position and velocity of the particle upon entering

the triangle, t < 0 is the negative time-of-flight8 from the triangle entry, and the constant

7Under certain conditions, however, even very low collision rates can lead to substantial accumulation of
particles in trapped states [41].

8The time-of-flight is negative since we are tracking trajectories backward in time.
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Figure 2.1: Example of the semi-analytical particle tracking process through the potential
mesh on a grid with normalized coordinates. The normalized coordinates of the density
interrogation point for the case shown are (40.7,15.2).
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acceleration�a=

{
ax

ay

}
is obtained from the potential samples at the triangle’s vertices using

�a=
q
m
�E =−

q
m

∇V

=−
q
m
[(V1b1+V2b2+V3b3) x̂+(V1c1+V2c2+V3c3) ŷ]

2∆
,

(2.88)

where V1, V2, and V3 are the potential samples at the three vertices of the triangle under

consideration and the bi, ci, and ∆ constants are given by (2.56) as a function of the triangle

vertex coordinates. This trajectory is intersected with each of the three segments, and

the intersection resulting in the shortest time-of-flight is selected as the origin of this sub-

trajectory. Each triangle’s segment can be represented in one of two forms:

z(x,y) = s(y− px−q) = 0 (2.89)

for segments oriented within 45 degrees of the x axis, and

z′(x,y) = s
(
x− p′y−q′

)
= 0 (2.90)

for other segments. In both (2.89) and (2.90), s is chosen as either +1 or −1, such that

z(x,y) or z′(x,y) is made positive inside the triangle and negative outside. Inserting (2.86)

and (2.87) into either (2.89) or (2.90), we obtain

z(t) =
s
2
(ay− pax)︸ ︷︷ ︸

zA

t2+ s(viy− pvix)︸ ︷︷ ︸
zB

t+ s(yi− pxi−q)︸ ︷︷ ︸
zC

= 0 (2.91)

or

z(t) =
s
2

(
ax− p′ay

)
︸ ︷︷ ︸

zA

t2+ s
(
vix− p′viy

)︸ ︷︷ ︸
zB

t+ s
(
xi− p′yi−q′

)︸ ︷︷ ︸
zC

= 0, (2.92)

respectively. Only one of the two roots of z(t), which we define as z(t) = zAt2+ zBt+ zC in

either cases, corresponds to an intersection where the particle is entering the triangle. This

“entering” intersection must satisfy dz
dt > 0, since z(t)< 0 outside the triangle and z(t)< 0

inside the triangle. The unique solution that is both a root of z(t) and satisfies dz
dt > 0 can
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Algorithm 2 Numerically stable evaluation of quadratic root

if z2
B−4zAzC < 0 then

No real root: trajectory does not intersect segment
else if zB ≤ 0 and zA ≥ 0 then

No past “entering” root for t < 0
else if zB ≤ 0 and zA < 0 then

t←
−zB+

√
z2

B−4zAzC

2zA
else if zB > 0 then

t←
−2zC

zB+
√

z2
B−4zAzC

end if

be written in two equivalent forms. For numerical stability [48], the roots are evaluated

according to Algorithm 2.

Although both expressions for t in Algorithm 2 are mathematically equivalent, either

one can become numerically unstable, and we must therefore choose the most stable ex-

pression on every evaluation. Our condition on
dz
dt

is easily verified for both expressions:

dz
dt
= 2zAt + zB =

√
z2

B−4zAzC > 0. The first expression is numerically unstable when

zB > 0, especially when zA is small, due to near cancellation of the two terms in the nu-

merator; a pathological example is that when zA = 0, which leads to t ← −zB+zB
0 = 0

0 , an

indeterminate state, while the second expression yields the correct result, t = − zC
zB

. The

second expression is numerically unstable when zB ≤ 0, especially when zC is small, due to

near cancellation of the two terms in the denominator; a pathological example is that when

zc = 0, leading to the indeterminate state t← 0
zB−zB

= 0
0 .

This semi-analytical trajectory-tracking technique is much more efficient than using

a fixed time step particle pusher, since the number of computations necessary for each

trajectory depends on the number of edges being crossed rather than the number of time

steps necessary to reach a boundary. This is a highly desirable feature, in light of the fact

that our typical applications (small probes at high voltage) require multi-scale resolution.
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In addition, given the assumption of a piecewise-bilinear potential distribution, it provides

exact (nearly exact if we account for roundoff errors) conservation of energy along orbits,

which contributes to the accuracy of the overall approach.

2.4.2.1.1 A Note on Segment-bound Trajectories Under certain conditions of the ac-

celerating electric fields in the two triangles surrounding a given mesh segment, some tra-

jectories become bound to that segment, which can give rise to a large number of intersec-

tions with the segment due to tiny oscillations of the trajectory from one side of the segment

to the other. Because this large number of intersections can significantly slow down com-

putations, this case is treated as an exception. When such infinitesimal oscillations are

detected, the oscillating portion of the trajectory is resolved using only the tangential ve-

locity and acceleration along the segment. This process does not reduce the accuracy of the

trajectory tracking in any way.

2.4.2.2 Sampling the Velocity Distribution Function

In collisionless plasmas, the velocity distribution function f (x,y,vx,vy) is conserved

along particle orbits [25], which allows one to infer the value of f (x f ,y f ,vx f ,vy f ) at a

final position (x f ,y f ) and velocity (vx f ,vy f ), based on its initial value f (xi,yi,vxi,vyi) at the

origin of the particle’s trajectory, at a position (xi,yi) and velocity (vxi,vyi).

Using the semi-analytical trajectory-tracking procedure just described, we may deter-

mine the origin of a given particle trajectory, and thus sample the velocity distribution

function. This is typically referred to as the inside-out technique [36] in plasma modeling

and, more generally, as the method of characteristics [49] for solving partial differential

equations (here, the collisionless Vlasov equation).

For plasma-bounded trajectories, the reverse-time tracking procedure eventually gets

to the outer boundary of the computational domain (its origin), at a position (xi,yi) with
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an “initial” velocity (vxi,vyi). The velocity distribution at the “final” position (x f ,y f ) and

velocity (vx f ,vy f ) can therefore be sampled based on the known velocity distribution on the

outer boundary. The fact that the potential is floating on the outer boundary implies that the

velocity distribution function at that location, f i(vxi,vyi) = f (xi,yi,vxi,vyi), is different than

the velocity distribution function f∞(vx∞,vy∞) at infinity. Since the electric fields are not

modeled from r=∞ to the outer boundary of the computational domain, an approximation

must be made to infer fi from f∞.

For this purpose, we use the “straight-line approximation”. This approximation con-

sists of assuming straight-line trajectories from infinity to the outer boundary of the com-

putational domain. Particles in the drifting Maxwellian population at r = ∞ are assumed

to be accelerated along straight lines in the direction pointed to by their initial velocity, all

the way to the point where they intersect the outer boundary of the computational domain.

Based on this assumption, a drifting Maxwellian at infinity, given by

f∞ (vx∞,vy∞) =
n0me,i

2πeTe,i
exp

{
−

me,i

2eTe,i

(
(vx∞−U)2+ v2

y∞

)}
, (2.93)

where U is the flow speed of the background plasma, would be mapped to the following

distribution on the outer boundary of the computational domain:

fi (xi,yi,vxi,vyi) =
n0me,i

2πeTe,i
exp

{
−

me,i

2eTe,i

(
2

qe,i

me,i
Vedge+ v2

xi+ v2
yi+U2

−2Uvxi

√√√√v2
xi+ v2

yi+2 qe,i
me,i

Vedge

v2
xi+ v2

yi

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , (2.94)

where Vedge is the potential at the entry point on the outer boundary of the computational

domain. This method was used for the calculations performed by Godard and Lafram-

boise [30]. Its main advantage is that it provides a smooth transition to the stationary case

where U = 0, in which case we simply recover the exact accelerated Maxwellian distribu-

tion. The expression given by (2.94) is no longer an approximation when U = 0 because,
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in this case, the velocity distribution function samples do not depends on trajectories, they

simply depend on total energy, just like in the 1-D model.

The reverse-time tracking procedure eventually traces the origin of conductor-bounded

trajectories back to the surface of the probe or other conducting surfaces. Since the con-

ductors are not emitting particles, we assume that these trajectories are unpopulated and set

fe,i
(
x f ,y f ,vx f ,vy f

)
= 0.

Trapped trajectories, defined earlier in this section, are deemed unpopulated just like

conductor-bounded trajectories. Thus, the velocity distribution function sample for tra-

jectories identified as trapped is set to zero. The main difficulty with these trajectories,

however, resides in the determination of the trapped state. Since, by definition, trapped tra-

jectories orbit indefinitely, a set of criteria must be used to determine whether a trajectory

being followed is actually trapped:

Maximum angular displacement The angular displacement of the particle is integrated

over time, i.e.,

θvar =

t f∫
t=ti

∣∣∣∣dθ(t)
dt

∣∣∣∣dt. (2.95)

When this quantity goes beyond 2πMorb, the trajectory is deemed trapped. Typically,

Morb is set to 3, which, for a trajectory orbiting in a constant orientation along θ ,

corresponds to 3 full orbits about the origin.

Maximum number of radial oscillations Beyond a given number Mrosc of significant os-

cillations of the particle’s radial coordinate r, the trajectory is assumed trapped. Typ-

ically, Mrosc is set to 5. This parameter is discussed in more detail in Section 4.3.2.1.

Maximum number of intersections of any single edge When the trajectory intersects a

given edge, within the mesh, more than a given number Msegcross of times, the trajec-

tory is assumed trapped. Typically, Msegcross is set to 100.
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2.4.2.3 Velocity Space Integration

Having defined a mechanism for sampling the velocity distribution function, we now

turn to the method used to compute the particle number density at any given point in com-

putational space. This requires integrating f (x,y,vx,vy) over all of velocity space.

2.4.2.3.1 Defining “Directional-Energy” Space For convenience, we map all of the

2-D velocity space onto directional-energy space, a 2-D space defined as follows:

Ev =
qe,i

e
V (x,y)+

me,i

2e

(
v2

x+ v2
y

)
, (2.96)

cosα =
vx√

v2
x+ v2

y

, (2.97)

sinα =
vy√

v2
x+ v2

y

, (2.98)

where the total (kinetic+potential) particle energy Ev is in units of electron-volts. Using

the (Ev,α) domain of integration instead of the velocity domain of integration, i.e. (vx,vy),

simplifies the integration process and facilitates the graphical representation, in cylindri-

cal coordinates, of velocity distributions. In this new domain, the density integral (2.7)

becomes:

ne,i (x,y) =
∫ ∫

ge,i(x,y,Ev,α) dEv dα, (2.99)

where ge,i(x,y,Ev,α) is the directional-energy distribution function defined as

ge,i(x,y,Ev,α) =
e

me,i
fe,i

(
x,y,

√
2e

me,i

(
Ev−

qe,i

e
V
)

cos(α),

√
2e

me,i

(
Ev−

qe,i

e
V
)

sin(α)

)
.

(2.100)

In this domain, the drifting Maxwellian velocity distribution becomes:

ge,i (x,y,Ev,α) = ge,i (xi,yi,Ev,αi)

=
n0

2π Te,i
exp

{
−

1
Te,i

(
Ev−U

√
2me,iEv

e
cosαi+

me,iU2

2e

)}
,

(2.101)
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where the index i refers to the entry (or “initial”) point of the particle at the outer boundary

of computational space, and the total energy Ev is conserved all along the trajectory from

(xi,yi) to (x,y).

To limit the computational task, we restrict the domain of integration to a finite annular

region within directional-energy space, outside of which ge,i(x,y,Ev,α) is known to be very

low:

Ev,min =max

(
qe,i

e
V (x,y),

(√
me,i

2e
U−

√
κrangeTe,i

)2
)

(2.102)

Ev,max =

(√
me,i

2e
U+

√
κrangeTe,i

)2

. (2.103)

Outside of those bounds for the energy Ev, the exponential factor in (2.101) is guaran-

teed to be lower than exp{−κrange}. We typically choose κrange = 5, corresponding to

exp{−κrange}
∣∣
κrange=5 = 0.0067. This means that we are neglecting the integrand wherever

its value goes below 0.67% of its maximum value (see discussion on page 54).

2.4.2.3.2 Numerical Integration in “Directional-Energy” Space Based on the new

directional-energy space defined above, we numerically integrate ge,i(x,y,Ev,α) within the

rectangular domain given by:

Ev,min ≤Ev ≤ Ev,max (2.104)

0≤α ≤ 2π. (2.105)

Several numerical quadrature schemes were considered, such as an adaptive cubature of

triangular elements [50,51]. As it turns out, however, this technique, as well as other high-

order automatic quadrature routines available, are most suitable for smooth integrands.

Even though (2.101) does appear to be a smooth function, the directional-energy do-

main defined above is only partly covered with plasma-bounded trajectories. Some sub-
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domains are populated with conductor-bounded and trapped trajectories, for which the dis-

tribution function ge,i(x,y,Ev,α) is set to zero. This creates major discontinuities in the

integrand, which are best represented and integrated using simple first-order polynomials.

Consistent with those findings, a low-order numerical scheme was implemented using

a 2-D iterated integral, based on a single-variable adaptive trapezoidal quadrature [48]. The

outer integral is performed along the direction α:

n(x,y) =

2π∫
α=0

I1(x,y,α)dα ≈
Nα

∑
kα=1

wkα I1(x,y,αkα )≡ nest(x,y), (2.106)

with the integrand I1(x,y,αkα ) obtained by integrating along the energy Ev (inner inte-

grand),

Ev,max∫
Ev=Ev,min

ge,i (x,y,Ev,αkα )dEv ≈
NE(kα)

∑
kE=1

wkα ,kE ge,i
(
x,y,Ekα ,kE ,αkα

)
= I1(x,y,αkα ), (2.107)

where we have explicitly indicated the dependence of the inner quadrature coefficients

wkα ,kE , the energy samples Ekα ,kE = Ev (kα ,kE) and the number of energy samples NE(kα)

on the azimuthal sample number kα .

For each one-dimensional quadrature, the domain of integration is sub-divided into a set

number of sub-intervals, typically 25 along Ev and 45 along α . The integral over each sub-

interval is then initially performed using both 2-point and 3-point trapezoidal rules [48].

The difference between the 2-point and 3-point quadratures is used as an estimate of the

quadrature error. The sub-integrals are then refined by increasing the number of points

used with the trapezoidal rule, providing improved sub-integrals and error estimates. This

refinement is performed on the sub-integrals in decreasing order of quadrature error, until

the total estimated error δnest over the collection of sub-intervals is small enough that

δnest ≤ τrelnest, where δnest is the estimated error on nest, and τrel is a relative tolerance

on the integration error.
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Let us consider the outer quadrature given by (2.106). In addition to the error caused by

this quadrature approximation, there is a second error term caused by the error δ I1(x,y,αkα )

on the integrand I1(x,y,αkα ), which stems from the error generated by the inner quadrature

given by (2.107). However, if we assume that the errors δ I1(x,y,αkα ), kα = 1, ...,Nα are not

correlated and use the same relative error τrel for the inner quadrature as we do for the outer

quadrature, then the total error term contributed by those integrand errors can be considered

small as compared to the quadrature error δnest = τrelnest on the outer quadrature:

Nα

∑
kα=1

wkα δ I1(x,y,αkα ) =
Nα

∑
kα=1

wkα pkα τrelI1(x,y,αkα )<< τrelnest, (2.108)

where pkα = ±1 is a random phase factor. This justifies using the same relative tolerance

for both the inner and outer quadratures.

In addition to the use of a relative error tolerance, an absolute error tolerance is also

used, in order to prevent excessive refinements of the inner quadrature. For some values of

kα , the integrand I1(x,y,αkα ) can take on relatively small values, contributing very little to

nest, and therefore need not be computed with an accuracy as good as that specified by the

relative tolerance. Let us assume that we can tolerate an additional error term to nest, on the

same order of magnitude as δnest = τrelnest, which, if we spread it out over the integrand

I1(x,y,α), determines an absolute tolerance on the values computed for I1(x,y,αkα ):

τabs,E =
τrelnest

2π
. (2.109)

Since the value for τabs,E is required in advance, i.e., before having computed a value for

nest, we use our best available estimate for nest to compute τabs,E , that is, the value obtained

at the previous iteration of the iterative process (see Section 2.5). Finally, for the same

reasons mentioned earlier, the non-correlated addition of the error terms caused by the

use of this absolute error tolerance actually contributes much less than the outer-integral

quadrature error δnest = τrelnest. Therefore, for all practical purposes, we need not account
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for this error term within δnest.

We hereby summarize the complete quadrature process:

• The inner quadrature dynamically selects, using adaptive trapezoidal rules on a set

of sub-intervals, the energy samples Ekα ,kE , kE = 1, ...,NE(kα) and corresponding

weights wkα ,kE that are required in order to compute I1(x,y,αkα ) with a relative accu-

racy τrel such that

δ I1(x,y,αkα )≤ τrelI1(x,y,αkα )+ τrel
nest,prev

2π
(2.110)

with nest,prev an estimate for the density based on the previous iteration.

• The outer quadrature dynamically selects, using adaptive trapezoidal rules on a set of

sub-intervals, the direction samples αkα , kα = 1, ...,Nα and corresponding weights

wkα that are required in order to compute the estimate nest(x,y) for the density n(x,y)

with an accuracy

δnest ≤ τrelnest. (2.111)

• The net result of those two embedded quadratures is an approximate number density

n j ≡ n(x j,y j) =
Nα

∑
kα=1

wkα

NE(kα )

∑
kE=1

wkα ,kE ge,i(x,y,Ekα ,kE ,αkα ), (2.112)

where wkα and αkα are selected by the α-quadrature, while wkα ,kE and Ekα ,kE are

selected by the E-quadrature. Finally, both the electron and ion number density

estimates at all node locations are combined into the net charge density �ρ through

the expression

ρ(x j,y j) = (�ρout) j = qe (ne) j+qi (ni) j . (2.113)
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2.4.2.4 Linearizing the 2-D Vlasov Solver

The linearization of the 2-D Vlasov operator is similar to that of the 1-D Vlasov opera-

tor. It provides a Jacobian matrix JV =
∂�fV

∂�V
=

∂�ρout

∂�V
that describes the linear dependence

of the output charge distribution onto the potential distribution.

Appendix E details the linearization process used for the 2-D Vlasov solver. It describes

two different techniques that are used alternatively for stationary and flowing problems,

respectively, along with sources of error in the calculation of the Jacobian.

2.5 Regularized Newton Iterative Poisson–Vlasov Scheme

Using the Poisson and Vlasov solvers, we now seek to find a solution for the poten-

tial and charge distributions that satisfies both the Poisson and Vlasov equations. We have

seen that this task is equivalent to finding the fixed point of the Poisson–Vlasov functional

defined in (2.12) and illustrated in Figure 2.2. In Sections 2.3 and 2.4, we have defined

Poisson and Vlasov solvers that are numerical approximations of the Poisson (2.10) and

Vlasov (2.11) operators, respectively. In Table 2.2, we show the correspondence between

the functional and associated numerical solver for the Poisson, Vlasov, and Poisson–Vlasov

operators. As can be seen in that table, we distinguish the functionals from their corre-

sponding numerical solvers by putting an arrow on top of the symbols used for the opera-

tors, which were defined in Section 2.2. The newly defined functions �fP, �fV and �fPV are

thus all multi-valued functions of multiple variables.

There are known difficulties arising in finding the fixed point of a multivalued, multi-

variate function [8]. Simple iteration of the fixed point operator does not in general yield

convergence, since it is a non-contractive mapping [52]. Laframboise [8], Xu [17], and

McMahon [22] use a method consisting of mixing consecutive iterates using empirically-

determined mixing functions. Because of the breadth of regimes sought as part of this
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Operator Functional Numerical Solver

Poisson V (x,y) = fP {ρ(x,y} �V = �fP {�ρin}

Vlasov ρ(x,y) = fV {V (x,y)} �ρout = �fV
{
�V
}

Poisson–Vlasov ρout(x,y) = fPV {ρin(x,y)} �ρout = �fPV {�ρin}

Table 2.2: Functional operators and corresponding numerical solvers. The Poisson–Vlasov
functional is defined as a composition of the Poisson and Vlasov functionals, so that
�fPV {·}= �fV

{
�fP {·}

}
.

research (low and high voltages, arbitrary geometries, plasma flow), we found that the it-

erate mixing method could not provide a repeatable and reliable automated technique for

finding accurate approximations to the fixed point of the Poisson–Vlasov operator in a rea-

sonable number of iterations. This is especially true when modeling two kinetic species

and in regimes comprising high voltages and various probe geometries.

2.5.1 Top-level Iterative Scheme

To address these difficulties, we have chosen to implement a procedure based on New-

ton’s method for nonlinear systems of equations [53]. This technique, which we desig-

nate as the Progressive Tikhonov-regularized Newton iterative Poisson–Vlasov procedure,

is depicted in Figure 2.3. It consists of progressively improving a solution vector �ρin, i.e.,

reducing the residual norm ‖�ρin−�ρout‖, by successively linearizing the Poisson–Vlasov

Poisson
Solver

Vlasov
Solver

�ρin

�V

�ρout

Poisson-Vlasov Operator �fPV

Figure 2.2: Poisson–Vlasov operator comprised of both the Poisson and Vlasov solvers.
This operator is an approximation of the Poisson–Vlasov functional defined in (2.12).

71



Poisson
Solver

Vlasov
Solver

�ρin �V �ρout

Poisson-Vlasov Operator �fPV

Tikhonov-Regularized Inversion

�ρ ≈ �ρout + JPV (�ρ − �ρin)

�ρin + β (JPV − I)† (�ρin − �ρout)

Step Size Control

Figure 2.3: Tikhonov-regularized Newton iterative Poisson–Vlasov procedure.

operator and finding a regularized solution for the resulting linearized system of equations.

This process relaxes the solution vector �ρin and has the global effect of reducing the Eu-

clidean distance between�ρin and�ρout. The iterative process continues until the solution can

no longer be improved with the specified quadrature accuracy used in the Vlasov solver.

In practice, a suitable quadrature accuracy is chosen that allows the iterates to reach a rea-

sonably low residual norm ‖�ρin−�ρout‖∞, on the order of one percent of the background

plasma density.

This iterative procedure requires the N×N Jacobian matrix JPV of the Poisson–Vlasov

operator, which is defined as

JPV =
∂�fPV

∂�ρ

∣∣∣∣∣
�ρ=�ρin

(2.114)

and can be obtained, using the chain rule, as a combination of the Jacobian matrices of the
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Poisson and Vlasov operators, following

JPV =
∂�fV

∂�V
×

∂�fP

∂�ρ

∣∣∣∣∣
�ρ=�ρin

=
∂�ρout

∂�V︸ ︷︷ ︸
JV

∂�V
∂�ρin︸︷︷︸

JP

= JV JP, (2.115)

where the Jacobian of the Poisson operator was simply recognized as the matrix in the

linear Poisson operator, as obtained for KiPS-1D in (2.27) and for KiPS-2D in (2.68). The

Jacobian of the Vlasov solver, JV , was derived in Sections 2.4.1.2 and 2.4.2.4, where we

discussed the linearization of the Vlasov operator in the 1-D and 2-D solvers, respectively.

In its simplest form, the Newton method [53] attempts to use the linearized behavior

of a multivalued function of several variables to solve a nonlinear system of equations. In

the present case, we are looking for the fixed point of the Poisson–Vlasov operator or, put

differently, we are looking for the vectorial root of the vectorial equation

�g(�ρ) = �fPV (�ρ)−�ρ = 0, (2.116)

which, upon approximating �fPV by its first-order Taylor expansion

�fPV (�ρ)≈�ρout+JPV (�ρ−�ρin) , (2.117)

yields a linear system of N equations in N variables,

[JPV − I] (�ρ−�ρin) =�ρin−�ρout, (2.118)

where the unknown vector �ρ−�ρin is an incremental improvement that will be added to the

present guess �ρin of the charge density distribution, and I is the N×N identity matrix.

2.5.2 Conditioning and Quadrature Noise Issues

One is first tempted to simply invert the system matrix and compute the corrected charge

density distribution according to

�ρin←�ρin+[JPV − I]−1 (�ρin−�ρout) , (2.119)
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which can be performed using standard linear algebra algorithms such as the LU decompo-

sition [54]. Such an attempt, however, is in general met with wild, non-physical variations

in the charge density distribution �ρin at some point during the iterative process, and al-

most never leads to a convergence of the result to a low ‖�ρin−�ρout‖∞ error state. This

diverging behavior is generally due to the ill-conditioning of the system matrix [JPV − I]

for some iterates, which can greatly amplify any quadrature noise present in the error vec-

tor (�ρin−�ρout). The ill-conditioning of the system matrix can be due to a combination of

several causes, some of which we identify here.

Ill-conditioning of the Vlasov operator, which can be due to the weak or inexistent de-

pendence of most particle trajectories upon some samples of the potential, at various

“operating points” of the potential solution vector �V (near or far from the physical

solution).

Ill-conditioning of the Poisson operator due to a high mesh density in some locations

that creates very similar dependences to some of the densely packed charge samples,

thereby causing highly similar lines in the Poisson matrix JP, defined in Section 2.3.

Incomplete entries in the Vlasov Jacobian JV due to the fact that some components of

the linearized dependence upon the potential samples �V could not be fully accounted

for by the approximate gradient calculation (this only applies to the 2-D version —

see Section 2.4.2.4).

Because of the ill-posedness of this problem, the standard Newton method turns out to

be impractical for the resolution of this nonlinear system of equations. In the following, we

will describe a diagonal scaling technique and a nonlinear regularization method to address

this conditioning issue.
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Even though our nonlinear system (2.116) does not contain any noisy data per se, the

right-hand side of the linearized system (2.118) is noisy due to the finite precision used in

calculating the output charge profile �ρout = �fPV (�ρin), which we emphasize here:

[JPV − I] (�ρ−�ρin) =�ρin− �ρout︸︷︷︸
�ρout+δ�ρout

, (2.120)

where δ�ρout is the quadrature noise term. Recall that the output charge profile �ρout is

computed based on subtracting the electron and ion charge profiles,

�ρout = e(�ni−�ne) , (2.121)

which implies that any numerical quadrature error in the calculation of the density profiles

�ni and�ne can lead to a large relative error ‖δ�ρout‖
‖�ρout‖

wherever the electron and ion densities are

very similar, leading to a subtraction of like terms. This situation arises close to the outer

boundary of the computational domain, which is typically sized large enough to enclose all

of the significant charge imbalance, that is, all of the sheath and some of the pre-sheath.

2.5.3 Diagonal Preconditioning

One of the simplest measures that can be taken in order to mitigate the propagation of

the quadrature errors present on the RHS of (2.120) to the incremental solution�ρ−�ρin is to

perform a diagonal preconditioning of the linear system, in an effort to reduce the condition

number of the system matrix. Let us first re-cast the linearized system of interest (2.120)

into the following standard form:

A�x=�b=�b+δ�b, (2.122)

where A ≡ [JPV − I], �b ≡ �ρin−�ρout, �x ≡ (�ρ−�ρin) and the quadrature noise is given by

δ�b≡ −δ�ρout. The vector�x thus constitutes an increment to the present state of the charge

profile�ρin. We choose to use a diagonal right preconditioner [54] Dp that must approximate
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A−1 as best as possible without actually inverting A, in such a manner as to make the

product ADp closer to the identity matrix. Inserting DpD−1
p into (2.122), we write:

ADp︸︷︷︸
A′

(
D−1

p �x
)︸ ︷︷ ︸

�x ′

=�b. (2.123)

To solve (2.122), we will therefore first solve A′�x ′ =�b, and then compute�x using�x=Dp�x ′.

For the class of problems at hand, it was found that setting the entries of the diagonal

matrix Dp equal to the inverse of the norm of the corresponding column vectors of A

yielded the best results:

Dp :

{
i= j (Dp)i j =

1
‖A:,i‖2

i �= j (Dp)i j = 0,
(2.124)

where ‖A:,i‖2 is the Euclidean norm of the ith column of the system matrix A. Using this

preconditioner, the scaled solution vector �x ′ has its elements scaled proportional to the

level of dependence of the system matrix A on each element of �x, thereby improving the

signal-to-noise ratio on the elements of�x upon which the system is most dependent.

Even though preconditioning is essential and improves the condition of the linearized

system, it is simply not sufficient to fully prevent quadrature noise from entering the solu-

tion vector. The regularization process described below will complete the required set of

tools for an accurate resolution of the nonlinear systems at hand.

2.5.4 Tikhonov “Progressive” Regularization

In this section we will describe the complete regularization procedure, which we repre-

sent as a “Tikhonov-regularized inversion” in Figure 2.3.

The topic of regularization of linear systems of equations has attained a very good

maturity level [55–60] and is extensively used for inverse linear problems involving noisy

data in applications such as ionospheric characterizations [61]. A typical linear inverse

problem involving noisy data is of the form A�x=�y=�y0+�δ , where�y contains some noisy
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data and�x is a set of unknown parameters.

Nonlinear inversion has also seen significant progress [62–66]. It consists of looking

for a solution�x to a nonlinear system of equations of the form

�F(�x) =�y=�y0+�δ , (2.125)

where �F is a nonlinear multivalued function of several variables,�y contains noisy data, and

�x is the set of unknown parameters.

Our problem of interest is different from nonlinear inversion in that we are not trying

to “invert” a nonlinear function given a specified noisy data set. Instead, we are looking for

the fixed point of a nonlinear function �fPV (�ρ), i.e., the root of the nonlinear function �g(�ρ)

as specified by (2.116). This is equivalent to solving a nonlinear system of the form given

by (2.125) with�y= 0.

We therefore seek a method to limit the amount of quadrature noise entering the so-

lution vector �ρin at every iteration, while still allowing a significant improvement of the

solution. Instead of directly solving the preconditioned linear system of equations (2.123),

we seek a compromise between the reduction of the error ‖A′�x ′ −�b‖ and the amount of

noise “creeping into” the solution. A useful compromise is one that would prevent any

significant magnification of the noise present in �b by the inversion of the ill-conditioned

system matrix A′, while still significantly reducing the error ‖A′�x ′ −�b‖. This can be ac-

complished by solving only for the “modes” in �x ′ upon which the preconditioned system

matrix A′ is most dependent, effectively filtering out the more independent, higher-order

“modes” that are very sensitive to any noise in�b.

The “modes” we refer to here correspond to the set of singular values of the precondi-

tioned system matrix A′. Using the singular value decomposition [54], the N×N matrix
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A′ can be factorized to the form:

A′ =U diag(�σ) VT , (2.126)

where diag(�σ) is a diagonal matrix whose diagonal is formed by the N elements of the

vector�σ , which are the singular values of A′ numbered in descending order, σ1≥σ2≥ ...≥

σn ≥ 0. U and V are both N×N unitary matrices. Recasting the system equation (2.123)

based on this transformation yields:

diag(�σ) VT�x ′ = UT�b (2.127)

or

diag(�σ)x̃= b̃, (2.128)

with

x̃=VT�x ′ and b̃=UT�b. (2.129)

The linearized system has been re-written in a vector space corresponding to the singular

values of the system matrix A, yielding a set of uncoupled linear relationships between the

corresponding components of x̃ and b̃:

σ1x̃1 = b̃1

σ2x̃2 = b̃2

...

σNx̃N = b̃N.

(2.130)

In this transformed vector space, a direct inversion of the linearized system is performed

by simply solving each mode separately using

x̃i =
b̃i

σi
. (2.131)

Now, an ill-conditioned matrix A has some extremely small singular values σ i for large i,

potentially resulting in extremely large amplitudes for some of the x̃i’s, along with signifi-

cant amplification of the noise present in the corresponding b̃i’s.
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Setting an appropriate “low-pass” filter to allow the lowest-order modes corresponding

to the largest singular values of σi while blocking the high-order modes corresponding to

the smallest singular values of σi would accomplish our goal of somewhat improving upon

the current guess �ρin while limiting the amount of noise creeping into the solution. The

Tikhonov regularization [56, 58] implements such a continuous “low-pass” filter. Instead

of directly solving for x̃ using (2.131), the Tikhonov-regularized inversion is implemented

as

x̃i =
σi

σ 2
i +λ 2

b̃i, (2.132)

effectively shutting down the high-order modes corresponding to small singular values for

which σi < λ . A mathematically equivalent form of the Tikhonov regularization exists in

the non-transformed domain, as a replacement for the simple inversion�x ′ = [A′]−1�b:

�x ′ =
[
A′T A′+λ 2I

]−1
A′T�b. (2.133)

For our application, the Tikhonov-regularization parameter λ is tuned according to the

following criteria: the targeted error is to be equal to half of the present error, in order to

achieve some progress while limiting the amount of noise creeping into the solution. This

prudent requirement constitutes the basis of the proposed progressive Tikhonov regulariza-

tion. It has been shown in practice to prevent divergence due to the ill-conditioning of the

system matrix, while allowing for significant reduction of the present error ‖�ρin−�ρout‖2.

This criteria can be written as

‖�b−A′�x ′λ‖2 = 0.5‖�b‖2 (2.134)

or, using the original notation,

‖(�ρin−�ρout)− [JPV − I]�xλ‖2 = 0.5‖�ρin−�ρout‖2 . (2.135)

In these two expressions,�x ′λ and�xλ both correspond to the result from (2.133) for a given
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value of the regularization parameter λ , and are related through �xλ = Dp�x ′λ . At each it-

eration, an optimal value for λ must be determined that satisfies the equivalent expres-

sions (2.134) and (2.135). This is done in one of two ways:

• If the dimension of the system matrix, N, is not too large (say N < 1000), A′ is

first factored into a set of singular values and corresponding unitary matrices U and

V, consistent with (2.126), using the singular value decomposition algorithm [54].

(2.134) is then solved by numerically solving for λ the equivalent expression

N

∑
i=1

λ 4(
σ 2

i +λ 2
)2 b̃2

i =
1
4

N

∑
i=1

b̃2
i , (2.136)

using an appropriate numerical root-finding algorithm (we use the function fminnbd()

provided as part of the Matlab™ software package).

• If the dimension of the system matrix N is too large (N > 1000) for the singular

value decomposition to be performed quickly, then equations (2.134) and (2.133)

are used to numerically solve for λ with reasonable accuracy. This method is more

computationally economical than the previous one since, by using the optimal value

of λ obtained at the previous iteration, as few as 10 trials are typically necessary

to re-optimize for λ . For large N, 10 linear system resolutions of an N×N system

as performed in (2.133) are done much faster than one singular value decomposi-

tion (e.g., for N = 1000, it takes about 65 times longer to perform a singular value

decomposition than to perform an LU decomposition.9)

This progressive regularization strategy enables the iterative refinement procedure to safely

get through the highly singular iterates, that is, the iterates for which the system ma-

trix A= [JPV − I] is quasi-singular, without diverging. The net effect of the progressive

9Based on a benchmark performed on a Linux-based Matlab ™ 6.0 engine.
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Tikhonov regularization is that the incremental correction of the solution vector dominates

over the addition of quadrature noise, resulting in a net improvement of the solution.

The combination of the diagonal preconditioner, described in Section 2.5.3 and the reg-

ularized inversion described in this section constitute the “Tikhonov-regularized inversion”

and are represented using the symbol † in Figure 2.3. The complete Tikhonov-regularized

inversion referred to in Figure 2.3 can thus be written as

∆�ρin = β (JPV − I)† (�ρin−�ρout)≡ βDp

[
(ADp)

T ADp+λ 2I
]−1
(ADp)

T (�ρin−�ρout) ,

(2.137)

where A = (JPV − I), λ is determined according to (2.135), Dp is the diagonal precon-

ditioner described in Section 2.5.3, and β is the step length determined by the step size

control procedure described in Section 2.5.6.

2.5.5 Discrepancy Principle as Stopping Criteria

As the algorithm approaches the solution, the error �b = �ρin−�ρout goes down signifi-

cantly while the quadrature error δ�b=−δ�ρout on the RHS of (2.122) and (2.123) increases

due to the fact that the densities for both species have reached similar values close to the

outer computational boundary, that is, in the pre-sheath (see discussion in Section 2.5.2).

For a given quadrature accuracy, there is a point at which the magnitude of the quadra-

ture error will become comparable to that of the residual norm of the solution, i.e., ‖�b‖2 ≈

‖δ�b‖2. According to the discrepancy principle [57], [67, §26], [64], this corresponds to

the ideal level of regularization, an optimal compromise between the minimization of the

residual norm ‖�ρin−�ρout‖2 and the penetration of quadrature noise in the solution �ρin.

We therefore set as a stopping criteria that the iterations must stop when the ratio of

quadrature noise over residual norm goes beyond unity:

Stopping Criteria:
‖δ�b‖2

‖�b‖2
=
‖δ�ρout‖2

‖�ρin−�ρout‖2
≥ 1. (2.138)
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Continuing the iterations further would “oversolve” the problem (or under-regularize) and

stopping any earlier would “undersolve” the problem (or over-regularize). Of course,

this stopping criteria is dependent upon computing a sufficiently accurate estimate of the

quadrature error as part of the quadrature algorithms for KiPS-1D and KiPS-2D, presented

in Sections 2.4.1.1 and 2.4.2.3 respectively.

The quadrature accuracy estimates used as part of this work are conservative, i.e., they

tend to overestimate the quadrature error, which means that most of the time we may be

somewhat “undersolving” (or over-regularizing) the solution. The only consequence of

this is that a better quadrature accuracy may be required in order to reduce the residual

norm to a given desired level as compared to the ideal situation where one has an infinitely

accurate evaluation of the quadrature error. We choose to stay on the “safe” side and risk

undersolving the problem rather than to risk letting any quadrature noise degrade the quality

of the solution and possibly generate a nonphysical solution.

2.5.6 Dynamic Step Size Control

We hereby describe the step size control procedure represented by the constant β in

Figure 2.3. The standard Newton method simply uses β = 1. This is not suitable, in

general, for our problems of interest, for several reasons:

• For some iterates, the local curvature of the “solution path” in N-dimensional space

is sufficiently pronounced that the local linearization of the Poisson–Vlasov operator

�fPV , represented by the Jacobian JPV , cannot be trusted to represent �fPV for a full

unit step.

• Even though the analytical Poisson–Vlasov functional fPV (see Table 2.2) has a fixed

point corresponding to the physical solution, its approximate numerical representa-

tion �fPV may not actually have an exact fixed point due to the discrete representation
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of the numerical solver. Therefore, the Poisson–Vlasov operator �fPV can be singu-

lar at the optimum solution point, i.e., the linearized system can be ill-conditioned

near the optimum solution. The optimal solution in this case corresponds to a least-

squares solution.

• The Jacobian can in some cases be incomplete for some N-dimensional space direc-

tions, as mentioned in Section 2.5.2.

In order to ensure a fault-tolerant step size control algorithm (i.e., tolerant to an in-

complete Jacobian), we cannot use any implicit step size formula that would be based on

the Jacobian. In addition, we cannot afford to perform an explicit line search that would

involve evaluating the Poisson–Vlasov operator along the search direction. Instead, we

seek to control the progress of the iterations by enforcing a specified “angle” αc between

successive search directions, as defined by

cos(αc)k =

[
(∆�ρin)k
‖(∆�ρin)k‖

]T
[
(∆�ρin)k−1∥∥(∆�ρin)k−1

∥∥
]
, (2.139)

where (∆�ρin)k
‖(∆�ρin)k‖

is the present search direction (iteration k) and
(∆�ρin)k−1

‖(∆�ρin)k−1‖
is the previous

iteration’s search direction (iteration k−1).

The guarded tangent control algorithm that we present here seeks to control the step

size β in such a way as to stabilize the change in successive directions to a target value

αc = αt
c. Let us first define an a posteriori formula that applies a correction to the present

step length β based on the present value of αc and the target value α t
c,

β desired
k = βk−1×min

{
1
2
,
1+ cos(αc)k

1+ cosα t
c

}
, (2.140)

where we enforce a minimum step size compression of 1
2 to improve the stability of the

algorithm. This correction formula provides a simple correction based on two successive

search directions. However, using it directly may cause the step size to oscillate as a func-

tion of the iteration number k. For additional stability, controls are included that mix the
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Algorithm 3 Dynamic step size control
Initialize step size: set β = 1;
Initialize mixing factor: set µmix = 0.1;
Initialize iteration number: set k = 0;
while Solution has not converged do

k⇐ k+1;
Compute search direction;
if Not first iteration then

Compute angle (αc)k between (k−1)th and kth search directions using (2.139);
Compute desired step size β desired based on present step size β and αc using (2.140);
if (αc)k is below a threshold value αmax

c then
Mix the present step size with the desired step size using the mixing factor µmix:
β ⇐ β +µmix

(
β desired−β

)
Enforce maximum step size (a prudent value is βmax = 1): β ⇐min(βmax,β );
if the step size has changed in the opposite direction from the previous iteration
then

Decrease the mixing factor (within bounds)
µmix⇐max(0.01,0.5 µmix)

else
Increase the mixing factor (within bounds)
µmix⇐min(1.0,1.1 µmix)

end if
else

Use the desired step size directly: set βk = β desired
k ;

Resume the previous solution vector : set (�ρin)k = (�ρin)k−1;
end if

end if
end while

previous step size βk−1 with the “desired” step size β desired
k , and dynamically adjust the

mixing factor in order to stabilize the step size. This is shown in Algorithm 3. Note that

the stabilizing effect comes from the contrast between the increasing (1.1) and decreasing

(0.5) multipliers used to modify the mixing factor µmix: the mixing factor drops sharply

to dampen any detected oscillations, and then slowly ramps up as long as no oscillations

are detected. In addition to attempting to maintain αc near a target value αt
c, the algorithm

features a “guard” value αmax
c that it is not allowed to exceed. Whenever successive search

directions differ so much that αmax
c is exceeded, the previous incremental adjustment to the

solution vector�ρin is canceled and the iterations resume starting with the previous guess for
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�ρin and an appropriately reduced step size. This adds some stability to the whole procedure

by guarding against excessive step sizes that would bring the solution vector too far off

from the linearized behavior of the Poisson–Vlasov operator.

2.5.7 Dynamic Adaptive Quadrature Tolerance

In Section 2.5.5, we have seen that the iterative process is allowed to continue as long

as the quadrature error is smaller than the residual norm (see (2.138)). On the other hand,

for the early iterates the residual norm is so large that it would be acceptable to use a larger

quadrature tolerance for these iterates. Setting the quadrature tolerance in a dynamic fash-

ion at every iteration allows great savings on computing time. In order to include margin

with the stopping criteria, however, our dynamic adaptive quadrature tolerance strategy is

based on the requirement

‖∆�ρout‖2

‖�ρin−�ρout‖2
≤ 0.5, (2.141)

which is equal to half of the level set for the stopping criteria defined in (2.138).

Now, the output charge density profile is computed from �ρout = e(�ni−�ne), where e is

the magnitude of the electron and ion charge, and �ni,�ne are the ion and electron number

density profiles. Thus, the error on the net output charge density profile relates to the

relative quadrature tolerance on densities τrel through

∆�ρout = e τrel (�ni+�ne) . (2.142)

Combining the requirement given by (2.141) with (2.142), the relative quadrature tolerance

τrel for a given iteration can be set based on the previous iteration’s residual norm using

τgoal
rel =

1
2
‖�ρin−�ρout‖2

e‖(�ni+�ne)|2
. (2.143)

Now, in order to prevent oscillations of the tolerance from one iterate to another, we in-

troduce asymmetric mixing factors that favor a reduction rather than an increase of the
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tolerance. The actual tolerance is computed based on the present tolerance and the “goal”

tolerance given by (2.143) following Algorithm 4.

Algorithm 4 Relaxation of relative quadrature tolerance

if τgoal
rel ≤ τrel then

τrel⇐ τgoal
rel

else
τrel⇐ τrel+0.1

(
τgoal

rel − τrel

)
end if

2.6 Dynamic Adaptive Mesh Refinement

For both the 1-D and 2-D implementations, a dynamic adaptive grid refinement strategy

is necessary in order to efficiently resolve not only the geometrical features of the conduc-

tive structure (in the 2-D case), but also the natural features of the density and net charge

density profile. For example, in the case of high-voltage probes a sharply-defined ring

forms in the net charge density profile, as a result of the combinations of the density drops

of both the electron and ion species. The location of this sharp peak is not known a priori,

which is why mesh refinements are necessary to accurately resolve this important feature.

The general mesh refinement strategy used in both KiPS-1D and KiPS-2D is shown in

Algorithm 5. The mesh is refined a set number of times, typically anywhere from 3 to 5

times, which we have found sufficient to capture all of the important features of the plasma

for the cases of interest, based on observing the convergence of the plasma profiles.

In the following we describe the particular details of the mesh refinement strategies

pertaining to both the 1-D and 2-D implementations of KiPS.

2.6.1 KiPS Cylindrical 1-D Implementation

The grid used in the 1-D implementation is fairly simple. We start with an initial set of

samples spaced logarithmically along the radial direction between the round cylinder and
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an outer boundary located at a specified radius Rmax, which is typically set to be about three

times the expected sheath size. This has been found to be more than sufficient to capture all

of the important features of the density profiles that cannot be accurately accounted for by

the floating outer boundary condition used for the Poisson solver and specified in (2.14)–

(2.15).

The grid refinement is implemented as follows using Matlab™. For a given absolute

tolerance τmesh,abs specifying the acceptable errors on the electron, ion, and net charge

density profiles, we first compute the desired local grid spacings hgoal(ri) based on their

local second derivatives,

hgoal(ri) =

√√√√√√
τmesh,abs

max

(
1
n0

d2ne

dr2

∣∣∣∣
r=ri

,
1
n0

d2ni

dr2

∣∣∣∣
r=ri

,
1

en0

d2ρ
dr2

∣∣∣∣
r=ri

) , (2.144)

for all radial samples r = ri, with the second derivatives approximated using finite differ-

ences. This relationship is based on assuming a piecewise linear variation for all three

quantities, which is consistent with a local error given by δn(ri)≈ h(ri)
d2n
dr2

∣∣∣∣
r=ri

.

The dynamic grid refinement simply consists of sub-dividing the intervals for which the

the desired local grid spacing is smaller than the present local grid spacing, i.e., for which

hgoal(ri) < h(ri). Those said intervals are divided into a number of sub-intervals given by

Ndiv = ceil
(

h(ri)
hgoal(ri)

)
.

Algorithm 5 General mesh refinement strategy
Generate initial mesh from given geometry.
Initialize the solution vector with some “guessed” charge distribution (typically we as-
sume zero net charge everywhere, i.e., no disturbance of the plasma);
for a pre-determined number of refinement steps Nr do

–Refine the present mesh based on the present best estimate of the solution and a given
set of criteria pertaining to the electron density distribution, ion density distribution,
net charge distribution, and potential distribution;
–Improve the solution using the regularized Newton iterative Poisson–Vlasov scheme
until convergence;

end for
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In the 1-D implementation, the grid intervals are always refined, never coarsened. A

more efficient mesh refinement procedure would both refine and coarsen as needed. Chap-

ter 4 shows some KiPS-1D simulation results that illustrate the result of the grid refinement

described here.

2.6.2 KiPS 2-D Implementation

The 2-D implementation was designed to allow the analysis of any 2-D geometry im-

mersed in a flowing plasma. As mentioned in Section 2.3.2.2, the 2-D implementation

of the finite-element formulation is performed over a set of triangular elements filling the

complete 2-D domain occupied by the plasma.

2.6.2.1 Meshing Software

In order to generate the meshes for arbitrarily-defined geometries, we use an unstruc-

tured mesh generator, a freely available copyrighted software called the Bidimensional

Anisotropic Mesh Generator (BAMG) developed at the INRIA (France). The BAMG man-

ual [68] describes the software in detail, and related publications [69, 70] provide its theo-

retical basis.

The mesh generation and refinement process is performed based on a file-based inter-

face. KiPS-2D generates the initial geometry input file required by BAMG, and calls to

BAMG are made to both generate the initial mesh and perform mesh refinements.

2.6.2.2 Mesh Symmetry Axes

KiPS-2D implements 2 optional symmetry axes that can be used wherever applicable.

Horizontal (y = 0) and vertical (x = 0) symmetry axes can be defined that apply to both

the electrostatic fields (Poisson solver) and kinetic plasma flow (Vlasov solver). These

allow for major savings in terms of computational effort and memory requirements. The
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following are the typical cases where savings can be made based on using symmetry axes:

1. In a stationary plasma, for any structure that has 2 symmetry axes (x= 0 and y= 0),

we generate a “single quadrant” mesh and perform the kinetic simulation in this

quadrant only. This results in a reduction of the Vlasov computational effort by a

factor 4, and a reduction of the Poisson computational effort by a factor 42.64 ≈ 39,

an estimate based on the measured computational work for the LU decomposition,

which scales as N2.64. The Poisson savings becomes significant when the number of

samples N is on the order of 2000 and beyond;

2. In a flowing plasma with an x-directed flow, for any structure having at least a hor-

izontal symmetry axis, we generate a “two-quadrant” mesh and perform the kinetic

simulation in those two quadrants. In this case, we must simulate two quadrants even

with structures having two symmetry axes, because of the asymmetry introduced by

the horizontal flow.

A minor modification was made to the metric construction routine within the BAMG

software to allow for the correct mesh refinement near the computational zones bounded

by one of the symmetry axes. Whereas the original version of the code assumes vanishing

second derivatives on all boundaries for the quantity being refined, with our modification

it accounts for non-zero second derivatives consistent with a “mirroring” of the quantity

being refined at the boundary.

2.6.2.3 Mesh Refinement: Strategy & Metrics

Mesh refinement is driven by the state of the best-available consistent simulation results

at any of the refinement stages as shown in Algorithm 5. The mesh refinement is performed

based on the criteria of the equidistribution of error [68] for several quantities of interest

(single-species number density, charge density, and potential distributions). Several metrics
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are used in conjunction to determine the best set of anisometric triangles that should be used

based on the best-known consistent plasma solution. Using several calls to BAMG’s metric

construction routine, a single anisometric metric is generated that seeks to satisfy all of the

following set criteria:

• the absolute error on the electric potential distribution V (r,θ) must be no larger

than min
{
(∆V )max ,τmesh,V × [max{V (r,θ)}−min{V (r,θ)}]

}
, where (∆V )max and

τmesh,V are absolute and relative tolerances, respectively;

• the absolute error on the net charge density distribution ρ(r,θ) must be no higher

than a set fraction τmesh,ρ of the full range of the charge density distribution ∆ρ =

max{ρ(r,θ)}−min{ρ(r,θ)}, i.e., δρ ≤ τmesh,ρ∆ρ;

• the absolute error on each single-species number density distribution ne(r,θ) and

ni(r,θ) must be no higher than a set fraction τmesh,n of the full range of each of the

number density distributions ∆ne,i = max{ne,i(r,θ)}−min{ne,i(r,θ)}, i.e., δne,i ≤

τmesh,n∆ne,i.

The resulting metric satisfying all these criteria specifies the desired 2-D dimensions and

orientations of the triangle elements. The metric is then fed into the mesh refinement

routine from BAMG to construct a refined mesh. Typical values used for the tolerances

defined above are as follows:

Tolerance Parameter Typical Value
(∆V )max 2.0
τmesh,V 0.025−0.05
τmesh,ρ 0.025−0.05
τmesh,n 0.025−0.05

These values were chosen based on a reasonable compromise between the accuracy of the

results and the required computational effort. Since these specified tolerances apply to nor-

malized quantities (as opposed to physical ones), they are not application-dependent. It is
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generally recognized in the finite-element community that using several different redun-

dant tolerance criteria based on the physical quantities of interest, as we have done here,

improves the accuracy of the macroscopic results.

2.6.2.4 Examples of Mesh Geometries Under Consideration

The 2-D implementation of our solver generally supports any 2-D conductor geome-

try. Three basic geometries have been tested as part of this thesis and are described in

this section. Support for additional geometries can be implemented through the addition

of a fairly simple geometry-construction routine along with an associated routine for the

interpretation of collected currents.

The three geometries shown here all use two symmetry axes, such that their meshes

were computed for a single quadrant and then replicated in the 3 other quadrants. In addi-

tion, since all three of these cases correspond to stationary situations, the symmetry of the

plasma and electric fields is conserved; therefore, the actual simulations were all performed

within a single quadrant only. However, four-quadrant meshes are shown to illustrate more

clearly the actual geometries under consideration. Note that an independent mesh refine-

ment for all four quadrants is also possible for cases not featuring either symmetry axes.

2.6.2.4.1 Single Round Cylinder The simplest geometry of interest is the single round

cylinder, which is a case that can be compared directly against the KiPS-1D simulation

results (see Chapter 4 for detailed comparisons). Figure 2.4 shows the evolution of the

mesh structure from the initial mesh to the fourth refinement step for a typical single one-

Debye-length-radius round cylinder simulation. It is seen that the fourth and fifth mesh

are quite similar, which is an indication that a sufficient number of refinements have been

performed. It is seen that a strong mesh density is required near the sheath edge (which is

well within the computational domain) to satisfy all of the metric requirements outlined in
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(e) Fourth Refinement

Figure 2.4: Initial mesh shown together with a set of four refined meshes obtained for a
single one-Debye-length-radius round cylinder biased negatively at a voltage of −640Te

and immersed in a stationary plasma. Two symmetry axes were used in this simulation.
Scales represent the x and y coordinates in units of the Debye length.

Section 2.6.2.3.

2.6.2.4.2 Tape Cylinder In Figure 2.5 we show a sequence of five meshes obtained for

the simulation of a thin tape cylinder of dimensions 20.4λDe×0.7λDe, biased at a positive

potential of 180Te. Again, we observe a convergence of the mesh structure, which empha-

sizes the concentration of charge on the circular sheath edge that is well contained within

the simulation domain. Note that the tape geometry of the cylinder is filtered out by the

Laplacian fields within the sheath. This occurs with sufficiently large biases for which the

space charge in the vicinity of the tape is negligible as compared to the amount of surface
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Figure 2.5: Initial mesh shown together with a set of four refined meshes obtained for a
tape cylinder with a width of 20.4λDe and a thickness of 0.7λDe. The tape was biased at a
positive voltage of 180Te and immersed in a stationary plasma. Two symmetry axes were
used in this simulation. Scales represent the x and y coordinates in units of the Debye
length.

charge on the conducting tape itself.

2.6.2.4.3 Two Round Cylinders In Figure 2.6 we show a sequence of five meshes per-

taining to the 2-wire configuration. Two parallel one-Debye-length-radius round cylinders

are spaced 10λDe apart (center-to-center distance) and are both biased at a negative voltage

of −320Te. Here again, mesh convergence is observed after the fifth refinement step. De-

spite the asymmetric geometry of the structure, a circular charge-rich sheath structure still

forms on a circle of radius ∼ 30λDe and is resolved by the mesh refinement procedure.
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Figure 2.6: Initial mesh shown together with a set of four refined meshes obtained for 2
parallel one-Debye-length-radius cylinders with a center-to-center spacing of 10λDe. Both
cylinders were biased at a negative voltage of−320Te and immersed in a stationary plasma.
Two symmetry axes were used in this simulation. Scales represent the x and y coordinates
in units of the Debye length.

2.7 Computer Implementation

In the following we explain the general approach used for implementing the algorithms

described in this chapter, for both the cylindrical 1-D and full 2-D cases.

2.7.1 General Philosophy

Our general scientific programming philosophy is to use a high-level scripting language

wherever possible (Matlab™ scripts were implemented for that purpose, which could be
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easily ported to functionally similar platforms such as Scilab or Octave), because it speeds

up development time and is less error prone. Where necessary, specific routines can then be

optimized through a different implementation using a lower-level language such as Fortran

90, a very standard platform in the scientific computing community. Appropriate interfaces

must then be used to dynamically link the Fortran 90 routines with Matlab™ at run time

when called from high-level Matlab™ scripts. Building Matlab™ EXecutable (MEX)

files using Fortran routines allows such interfacing.

2.7.2 Optimizing & Parallelizing the Vlasov Solver

At the early stages of development, it soon became apparent that the Vlasov solvers

(both 1-D and 2-D versions) were so computationally demanding that they required opti-

mization for any practical use.

The numerous numerical integrations performed in the 1-D Vlasov solver can actu-

ally be performed from within Matlab™, but it is much more efficient to implement the

numerical quadrature in Fortran 90.

In the case of the 2-D Vlasov solver, the computational requirements are much more

severe for the following three reasons in decreasing order of importance:

1. in KiPS-2D, each sample of the velocity distribution function that is being integrated

as part of the quadrature integration involves tracking a particle trajectory through the

potential structure, whereas in the case of KiPS-1D no particle tracking is required;

2. in KiPS-2D, the numerical quadrature integrations need to be performed in 2-D

velocity space, whereas in KiPS-1D one of the integrals is performed analytically,

which means that only a single-variable quadrature is required;

3. in KiPS-2D, the number of density samples that need to be computed, using numeri-

cal quadrature, is an order of magnitude larger than that which is required in the 1-D
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implementation (∼ N2 as compared to N).

For these reasons, implementing a Vlasov solver that would be both efficient and accurate

mandated the use of parallel computing resources. To accomplish this, the 2-D version of

the Vlasov solver was thus implemented in Fortran 90 using an MPMD10 parallel process-

ing scheme based on the Parallel Virtual Machine library [32]. Since the Vlasov solver

consists of computing a fixed number (say M) of plasma density samples throughout the

computational domain based on a given potential profile, it can be divided easily into M

independent sub-tasks. These sub-tasks can be distributed to the slave nodes on a parallel

platform in what constitutes a coarse-grained parallel algorithm.

2.7.3 Present Parallel Computing Platform

The primary computing platform that we have used for this purpose consists of:

• A Linux-based master node,11 running the top-level Matlab™ scripts, the Matlab™-

based Poisson solver, and the top-level part of the Fortran 90-based Vlasov solver that

distributes sub-tasks to slave nodes.

• A dynamically-configured pool of about 150 Sun Blade 1000/1500 workstations,

each running a Fortran 90-based slave node and forming part of the Vlasov solver. A

total of 250 workstations are being used on an opportunistic basis, being swapped in

and out of the 150-workstation slave node pool according to their availability.12

2.7.4 Alternative Parallel Computing Platforms

Other parallel computing platforms were used as part of this project:

10Multiple Program, Multiple Data.
11Dual-CPU Intel-based system running at a clock speed of 2.4 GHz with 4 GB of random-access memory.
12A workstation is removed from the slave node pool when a console user logs in, and only moved back in

when no console users are logged in.
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• An opportunistic pool of around 10 to 20 Linux workstations (based on 3.0-GHz

CPU’s) was used. Although the computing power of these nodes surpassed that of

the Sun Blade workstations, the number of Linux nodes accessible on campus could

not rival the shear number of existing Sun workstations;

• Dedicated Linux clusters, such as those operated by the University of Michigan’s

Computer Aided Engineering Network (CAEN) as part of the National Partnership

for Advanced Computer Infrastructure (NPACI), were used and shown to provide

very efficient computing power due to a better interconnection speed between the

slave and master nodes. However, the number of nodes and level of availability of

these queue-managed systems could not compare to that provided by the opportunis-

tic pooling of workstations for purposes of developing the code. Future production

runs requiring less user interaction and changes may be more suited for this kind of

platform.

Ultimately, the ideal computing platform is a dedicated Linux cluster comprised of

about 20 dual-CPU nodes. This would provide simulation times on par with our present

pool of 150 Sun workstations with a much higher degree of availability than pooled parallel

computing resources.
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CHAPTER 3

Experimental Investigation of Electron-Collecting Tether
Samples in a Mesosonic Xenon Plasma

3.1 Background

In this chapter, we present the results of an experimental investigation of the electron

current collection to tether samples of various cross-section geometries: round cylinder,

solid tape and slotted tape. These results were submitted for publication [71]. A compar-

ison of some of these results with kinetic simulation results obtained using KiPS-2D are

performed in Chapter 4 as part of the kinetic model validation.

The orbital-motion limit will be used as a baseline to compare the current collection

results for the various sample geometries and sizes. Recall that the OML electron current

collected by a thin cylinder is given by (1.8), which we re-write here for clarity:

I = Apnee

√
eTe

2πme︸ ︷︷ ︸
Ithe

{
2
√

π

√
V0−Vp

Te
+ exp

(
V0−Vp

Te

)
erfc

(√
V0−Vp

Te

)}
, (3.1)

with erfc(x) = 2√
π
∫ ∞

x e−t2
dt. (3.1) is approximated, for V0−Vp > 2Te, by

I = Apnee

√
eTe

2πme︸ ︷︷ ︸
Ithe

2
√

π

√
1+

V0−Vp

Te
, (3.2)

where V0 is the applied voltage, Vp is the plasma potential, Te is the electron temperature in

eV, Ap is the cylinder area, and Ithe is the electron thermal current given as a function of the
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electron number density ne (in m−3), electron mass me, and electron charge magnitude e. In

an effort to facilitate comparisons with OML theory, results are presented in a normalized

format, showing the normalized current In = I/Ithe as a function of the normalized voltage

φ0 = (V0−Vp)/Te, which in the case of OML yields the simple equation:

In =
2
√

π
√

φ0+ exp(φ0)erfc
(√

φ0

)
≈

2
√

π
√

1+φ0 . (3.3)

For large voltages, (3.3) is independent of the temperature Te, since both the right-hand side

and left-hand side are then proportional to 1/
√

Te. This normalization allows us to directly

compare the OML theory, which only applies to thin cylinders in stationary plasmas, with

our experimental results involving a flowing plasma and various tether geometries.

In a previous investigation [72], it was concluded that tape tethers with widths up to

10 Debye lengths would perform close to an equal-area reference cylinder and that the

perpendicular tape orientation, with respect to plasma flow, would consistently outperform

the parallel orientation in terms of collected current.

In this chapter, we describe the results of a new set of chamber tests that were in-

tended to address questions of end effects and plasma source current limitations discussed

by Gilchrist et al [72], in addition to testing a larger breadth of “solid tape” widths and

a new “slotted tape” geometry with various porosities. The issue of end effects was ad-

dressed by adding guards to the tether samples, which are described below. The question

of possible plasma source current limitations, raised by Gilchrist et al [72], was resolved

by modifying the plasma source parameters, as discussed in Section 3.3.

3.2 Design and Assembly of Solid and Slotted Tape Tether
Guarded Samples

The tether samples tested here, in addition to a thin cylindrical reference sample, in-

cluded solid tape samples in three different widths, and slotted samples of equivalent widths
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Sample Description Width Feature Description
(mm)

A 4 lines, 3 slots, 28% porosity 1.95 Slot gap: 0.20 mm
Line width: 0.34 mm

B 4 lines, 3 slots, 50% porosity 2.89 Slot gap: 0.51 mm
Line width: 0.34 mm

C 4 lines, 3 slots, 75% porosity 5.95 Slot gap: 1.53 mm
Line width: 0.34 mm

G Narrow Solid Tape 1.95 N/A
H Medium Solid Tape 2.89 N/A
I Wide Solid Tape 5.95 N/A

Figure 3.1: Drawing and description of the six guarded tether samples shown before as-
sembly. The lengths indicated in the drawing are in mm (30-mm probe, 60-mm guards)

and corresponding to three different porosity levels. The details of these designs, as well

as a drawing of the samples and their characteristic sizes, are shown in Figure 3.1. Each of

the 6 solid and slotted tapes were tested in two different orientations, parallel and perpen-

dicular to the plasma flow, and, along with the reference sample, at three different distances

from the plasma source. Tungsten metal was used for all samples to ensure that they would

endure the expected high temperatures that are caused by the collection of high-energy

electrons to the samples’ surfaces. Nonetheless, a low duty cycle pulsing of the applied

voltages was necessary to allow the samples to cool off, thus preventing melting; details of

this procedure are reported by Gilchrist et al [72].

The effective diameter of the reference cylinder and effective widths of the three tape

samples, for the plasma densities tested here, are given in Table 3.1 in terms of the Lang-
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Ref. Solid Tape
Pos. Cyl. Narrow Medium Wide

75 cm 2.0 13.7 20.4 41.9
160 cm 1.1 7.4 11.0 22.6
300 cm 0.7 4.9 7.2 14.9

Table 3.1: Effective diameter of the reference cylinder and effective widths of the three
solid tapes at all three locations, in terms of the local Debye length.

muir probe-measured local Debye length for the three chamber positions that were used

in these tests. The reference cylinder’s diameter, spanning from 0.7 to 2.0 Debye lengths

depending on position, is sufficiently thin to collect electron current under conditions close

to that of the OML regime in a stationary plasma. The effective solid tape widths spanned

from 4.9 to 41.9 Debye lengths, which extends the previous range of tested widths [72].

As for the three slotted samples, they were designed with the same overall widths as

their solid counterparts; this strategy allowed us to compare solid and porous samples span-

ning equivalent widths. In addition, the design is such that each of the four lines on every

slotted sample has the same perimeter as the reference cylinder, allowing one to consider

the effects and measure the extent of sheath interactions. The effective center-to-center

spacings of the slotted samples are given in Table 3.2.

Since our primary interest is very long electrodynamic tethers, a technique was sought

to mitigate any probe end effects. For this purpose, guards were included in all of our tether

sample assemblies. Each guard is essentially identical to the center section and is biased at

the same potential. The guards, which are each 6 cm in length while the center probe itself

Slotted Tapes by Porosity
Position 28% 50% 75%

75 cm 3.8 6.0 13.2
160 cm 2.1 3.2 7.1
300 cm 1.4 2.1 4.7

Table 3.2: Effective center-to-center line spacing as a function of sample porosity at all
three locations, in terms of the local Debye length.

101



Vacuum Epoxy
at all joints

CIRCULAR
CERAMIC TUBING

outer dia: 0.64 mm
Inner dia: 0.3 mm

6 cm

3 cm

6 cm

Probe connector
(SHV)

8 cm

Tungsten wire
0.28 mm dia

Guard connector
(SHV)

(a) Reference Cylinder

Vacuum Epoxy
at all joints

CIRCULAR
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outer dia: 0.64 mm
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Tungsten wire
0.28 mm dia

OVAL 
CERAMIC TUBING

Tungsten Tape, 
Solid or Slotted

Probe connector
(SHV)

Guard connector
(SHV)

(b) Tape

Figure 3.2: Assemblies of the reference cylinder (a) and tape (b) guarded tether samples.

is 3 cm long, are shown in Figures 3.1 and 3.2 together with the probes. The effect of the

guards is to extend the cylindrical sheath to the full length of the sample, that is, five times

the length of the center probe on which current is measured.

Schematics of the full assemblies of the guarded tether samples are shown in Figure 3.2.

Due to the very small thickness of the tungsten samples under consideration here (0.1-mm

thick), it was not physically possible to feed the center probe using a feeding wire that

would have been inserted in one of the guards, as is typically done on some larger tri-

axial Langmuir probes. Instead, the center feed wire runs through an oblique ceramic tube

and connects to the center probe at one of its ends. On all samples, the feed wires to

both the guards and the probe were both soldered to the center conductor of a bulk-head

SHV (safe high voltage) connector; the connector-sample interfaces were then covered
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Figure 3.3: Example of the ceramic attachment used on all solid and slotted tape samples
to attach the probe and guards while preserving electrical isolation.

with vacuum epoxy. The aluminum support structure for the SHV connectors provided a

localized ground.

The probe and guards also had to be physically attached but electrically insulated from

each other. Ceramic joints were used to this effect, an example of which is shown in Fig-

ure 3.3, and were attached to the tungsten probes and guards using stainless-steel machine

screws that were then carefully sanded down into a flat surface, in order to best emulate

the surface of the sample. The portion of the surface area of the ceramic joint covering the

tungsten probe and not covered by the screw head was accounted for in the calculation of

the total area of each probe.

Figure 3.4 shows pictures of three of our tether sample assemblies: the reference cylin-

der, the wide solid tape, and the 75%-porous wide slotted tape. The solid and slotted sam-

ples are shown with both SHV connectors installed, while the reference cylinder sample is

shown prior to the installation of the connectors.
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(a)

(b)

(c)

Figure 3.4: Pictures of three typical tether samples: (a) the 0.28 mm-diameter reference
cylinder, (b) the 5.95-mm wide solid tape, and (c) the 75%-porous wide slotted tape.
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3.3 Vacuum Chamber Setup and Plasma Source Charac-
teristics

The vacuum chamber tests were performed in the Large Vacuum Test Facility (LVTF), a

9-meter by 6-meter cylindrical stainless-steel-clad tank located within the Plasmadynamics

and Electric Propulsion Laboratory at the University of Michigan. For this experiment,

four of the seven available nude cryopumps were used to reach a high vacuum.

Figure 3.5 shows a diagram of the experimental setup within the LVTF. Two positioning

tables were used to change the separation distance between the thruster and sample plane

and to locate the sample under test directly along the thruster’s centerline. The thruster was

mounted on an x-y table that could move axially over a 1.0-m range and over sufficient ra-

dial range to cover all samples. The samples were mounted on an aluminum frame that was

connected to an axial table that could span a 1.5-m axial range. Combined table movement

allowed thruster–sample separation distance to change from 0.75 m to 3 m; our tests were

performed at 0.75 m, 1.60 m and 3.00 m from the thruster. Changing separation distance

was the primary mechanism for changing the plasma density seen at the sample plane.

Figure 3.6 shows an overall picture of the aluminum structure supporting the tether

samples and Langmuir probes, together with the Hall thruster used as a plasma source. The

latter is a 5 kW-class Hall thruster named “P5”, which was developed by the Plasmadynam-

ics and Electric Propulsion Laboratory and the Air Force Research Laboratory; more detail

is given by Haas et al. [73]. For these tests, the thruster was set at off-nominal conditions in

order to lower the plasma velocity and density seen along the thruster’s axial direction. Its

operating conditions are given in Table 3.3. The primary changes in those settings from the

ones used previously [72] are the discharge current, which was raised to 12.5 A, up from

5.3 A and 4 A and, consequently, the anode flow rate, which had to be raised to 112.1 sccm

to support the increased discharge current.
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Figure 3.5: Experimental setup in the Large Vacuum Test Facility (LVTF) at the Plasma-
dynamics and Electric Propulsion Laboratory (PEPL).

Assessment of the emitted beam energy was estimated using two different techniques.

Laser-induced fluorescence (LIF) measurements have provided an estimate of 43 eV [74],

whereas Langmuir probe (LP) measurements in the ion saturation regime (discussed in

Appendix F) have yielded a value of 25.0 eV. More detail regarding the LIF measurements

is given by Gilchrist et al [72] and Williams et al [75]. It should be noted that the LP value

of 25.0 eV is close to, if not within, the bounds of the error on the LIF-determined beam

energy value, which is about 40%, given that the reported typical error on the velocity
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Figure 3.6: Picture of the guarded sample support structure and the P5 Hall thruster used
as a high-speed plasma source.

determined using the multiplex technique is 20% [76].

The values given for both the LIF and LP measurements were measured 75 cm away

from the thruster on its centerline axis. According to the LIF measurement, the ions have an

offset Maxwellian distribution, with a directed energy as given above, and a temperature of

about 0.4 eV at 75 cm. The electron temperature, as determined by the LP measurements,

varied as a function of position between 1.4 eV and 1.8 eV (see Table 3.4).

Maximum Chamber Pressure 9.1 µtorr
Discharge Voltage, Vd 100 V
Discharge Current, Id 12.5 A
Inner Magnet Current, Iim 3.0 A
Outer Magnet Current, Iom 2.0 A
Cathode Voltage, Vc [−17,−18] V
Heather Voltage, Vhtr 8.3 V
Anode Flow rate, ṁa 112.1 sccm
Cathode Flow rate, ṁc 6.0 sccm

Table 3.3: Operating parameters of the plasma source (P5 Hall thruster).

107



ne Te λDe µb

Position (m−3) (eV) (mm)

75 cm 4.95×1015 1.80 0.14 95%
160 cm 1.37×1015 1.72 0.26 53%
300 cm 0.51×1015 1.47 0.40 32%

Table 3.4: Variation of the measured plasma parameters as a function of distance from
the Hall thruster. Measurements were performed using the ion saturation and electron
retardation data from a transverse LP. The beam energy value determined using the LP is
25 eV. The “beam fraction”, µb, indicates the fraction of all ions that are believed to be
beam (high-speed) ions. Density, temperature and Debye length estimates have about 6%,
1% and 3.5% accuracy, as discussed in F.1.

A schematic of the current–voltage measurement system is given in Figure 3.7. We

connected a Universal Voltronics BRC 20 000 HV power supply to the tether samples

through a high-voltage relay box inside the chamber. The HV power supply was controlled

via RS–232 by the computer controller running a custom virtual instrument (VI) under

LabVIEWTM. The computer commanded the HV power supply to a specified voltage and

then quickly back to zero (within 50 to 100 ms), followed by several seconds of cool-down

to minimize sample heating. Current measurement on the sample probes was achieved

using an American Aerospace Controls 835–2–10 current sensor; increased current sensi-

tivity was obtained by looping the HV supply line ten times through the sensor. The current

to the sample guards was measured separately using a F.W. Bell ma-2000 current sensor.

An HP 34970 data acquisition unit was used to measure the voltage signals generated by

both current sensors. The data were recorded as triplets containing the applied voltage, the

probe current, and the guard current.

3.4 Plasma Parameter Measurements Using Negatively-
Biased Langmuir Probes

Plasma density, temperature, flow speed, and the fraction of beam ions to background

ions were determined using a 4-cm long, vertically oriented (i.e., perpendicular to the flow)
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Figure 3.7: Schematic of the computer-controlled high-voltage test equipment setup.

Langmuir Probe (LP) with a diameter of 0.28 mm (same diameter as for the reference

cylinder sample). All LP sweeps were performed using a Keithley 2410 source electrometer

controlled via a custom LabVIEWTM script running on a personal computer.

The plasma parameters, shown in Table 3.4, were extracted from the ion saturation

(OML regime) and electron retardation regions of the I–V characteristics using a LP ori-

ented transverse to the direction of the flow. In the OML regime, there are several ad-

vantages to selecting the ion saturation as opposed to the electron saturation region for

parameter extraction. A cylindrical probe oriented transverse to the flow in a high-speed

plasma is known to be virtually free of end effects [39]. In addition, a simple but fairly

accurate collection model is available that accounts for the velocity of the flow in that

regime [29]. By contrast, there are currently no accurate models for the electron collec-

tion to an electron-attracting probe that can account for the plasma flow. In the mesosonic

regime, where the plasma flow is much faster than the thermal ion velocity yet much smaller

than the electron thermal velocity, important sheath asymmetries and elongations exist in
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the electron-attracting mode that get stronger with the applied bias, which makes this a

complex problem. One of the aims of the experimental work presented here is in fact to

improve the understanding of the macroscopic effect of plasma flow on electron collection.

Finally, using a negatively-biased LP provides an independent assessment of the plasma

parameters, since all the test samples are biased positively.

The procedure that was used for the plasma parameter extraction from the Langmuir

probe current characteristics is detailed in Appendix F. In addition to providing plasma

density and temperature readings, this analysis quantifies the ion “beam fraction” and de-

scribes what appears to be effective workfunction variations.

The results of this analysis indicate the existence of a population of thermal ions far

from the high-speed plasma source, which is born out of cumulative charge-exchange col-

lisions between the incident high-speed ions and the neutral background xenon gas. The

number-density ratio of high-speed ions to thermal ions is quantified in Table 3.4 and ranges

from an assumed 95% at the closest distance (75 cm) to a calculated 32% at the farthest dis-

tance (300 cm). This fall-off of the fraction of beam ions can be best-fitted to an equivalent

“beam ion survival characteristic distance” of 2.14 m, which is just short of the theoretical

charge-exchange mean free path of 2.6 m corresponding to the measured background pres-

sure, ion energy, and assuming a background neutral temperature of 350 K. The fall-off is

likely due to a combination of effects, such as the beam loss through charge-exchange col-

lisions and the geometrical divergence of the beam, which may explain the smaller value

obtained.

3.5 Experimental Results & Analysis

Our results are presented here in four parts: the reference cylinder, the solid tapes, the

slotted tapes, and, finally, a comparison of the solid and slotted tapes. All results are pre-
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sented in normalized form. The collected current is normalized to the electron thermal

current Ithe collected at the plasma potential, as defined in (3.1). All probes should collect

this amount of current when biased at the plasma potential. The normalization of potential

consists of a translation corresponding to the plasma potential, followed by a scaling by the

inverse of the electron temperature, Te. An OML theoretical plot, scaled this way, would

result in (3.3) and would be independent of temperature, as discussed in the introduction.

This normalization provides a means of evaluating the performance of various probes by

comparing them to OML theory as well as by comparing their respective “electron collec-

tion efficiencies.” Note, however, that the extent of the normalized voltage axis varies from

one graph to another, due to changes in the electron temperature used in the normalization

of this axis, and from variations in the collected data range.

3.5.1 Reference Cylinder

Figure 3.8 shows the normalized results for the reference cylinder at the three distances

from the plasma source (Figure 3.9 shows identical information for the reference cylinder).

The reference cylinder at 75 cm is seen to collect much more current than that predicted by

OML theory, by as much as 40% at a bias of 100 Te. This enhancement is seen to decrease

as we move away from the thruster to 160 cm and 300 cm. In fact, there is no enhancement

at 300 cm. Since the fraction of beam ions was also determined to fall off with distance

(95% at 75 cm, 53% at 160 cm, and 32% at 300 cm), this observed enhancement could be

linked to the effects of the high-speed flow. This change in enhancement level is most likely

not due to the change in the effective size of the reference cylinder (2.0, 1.1, and 0.7 Debye

lengths) since decreasing the size would theoretically have the opposite effect, that is, to

increase the collection efficiency rather than to decrease it as observed here. In addition,

even if there were any residual end effects despite the use of our guard structures, we
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believe that the enhancement could not be attributed to those end effects, since the stronger

end effects should occur at the location where the cylinder is the shortest in terms of the

local Debye length (at 300 cm), whereas the observed enhancement is strongest where the

effective cylinder length is the longest (at 75 cm).

3.5.2 Solid Tapes

Figure 3.8 presents results for all solid tape samples and the reference cylinder at all

three distances from the plasma source (75 cm, 160 cm, and 300 cm). The effective tape

widths, shown in terms of the Debye lengths in the legend as well as in Table 3.1, span

from 4.9 to 41.9 electron Debye lengths. Three major observations are noted from these

results:

1. All samples collect electrons less efficiently than the reference cylinder, as is ex-

pected because of their larger sizes. Likewise, all samples are seen to collect less

efficiently as the effective width of the tape is increased, regardless of their orienta-

tion. This is true whether we are looking at a mostly high-speed plasma (at 75 cm)

or a mostly quiescent plasma (at 300 cm). When compared to the reference cylin-

der, the relative collection efficiency of all solid tapes decreases with increasing tape

width, similar to the “current ratio” characteristic reported by Estes et al [12, Figure

4(b)] based on an effective circular cylinder radius equal to four times the tape width

(Req = 4wtape [11]). The overall relative efficiency is seen to be somewhat lower than

that predicted by Estes and Sanmartı́n [12] and is closer to, although still lower than,

our steady-state kinetic simulation results (see Chapter 4). This reduced efficiency

may be explained by the reduction in collection efficiency due to the presence of

mounting screws that account for a small fraction of the total collecting area.

2. At both the 75-cm and 160-cm distances, all solid tape samples collected more cur-
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Figure 3.8: Normalized I–V characteristics of parallel and perpendicular solid tapes at (a)
75 cm, (b) 160 cm and (c) 300 cm.

rent when oriented perpendicular (transverse) rather than parallel to the flow. In

addition, the contrast between perpendicular and parallel results is observed to get

stronger as the effective width of the tape increases. However, such a clear distinction

is not evident in the measurements taken at 300 cm, which is likely a consequence of

the low fraction of beam ions that was measured at that location, combined with the

lower effective widths of the tapes (the Debye length was highest at that location) as

compared to the two other locations. The near-overlapping of the perpendicular and

parallel results at 300 cm also serves as qualitative confirmation that the measured
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fraction of beam ions has dropped down as compared to that measured at 75 cm.

3. The previous observation of the increase of collected current from parallel to perpen-

dicular is seen to occur when the probes are biased above a certain threshold, which

varies from about 25 to 40 volts. This level is on the order of the estimated ion beam

energy (somewhere between 25 eV, according to the LP results, and 43 eV, according

to the LIF results). At this threshold bias, the parallel results are seen to present a

“knee”, which is most apparent in the widest effective tape at 75 cm. These observa-

tions are in agreement with previous results based on a similar experiment [72].

3.5.3 Slotted Tapes

Figure 3.9 presents results for all slotted tape samples and the reference cylinder at

all three distances from the plasma source. The effective center-to-center line spacings,

shown in terms of the Debye lengths in the legend as well as in Table 3.2, span from 1.4

to 13.2 Debye lengths. It should be emphasized that the overall widths of the slotted tapes,

including the gap spacings, are the same as the solid tape widths (1.95 mm, 2.89 mm, and

5.95 mm). The following are some observations regarding these results:

• Similar to the tape results, the slotted samples collected electrons less efficiently,

on a per-area basis, than the reference cylinder at all three distances, although they

were more efficient than the solid tapes. This is an indication that the individual-line

sheaths were strongly interacting.

• The contrast between the results in the parallel and perpendicular orientations has a

similar character as that observed for the solid tapes: the perpendicular slotted tapes

collect more current than their parallel counterparts. However, distinct from the solid

tape results is the smaller variation between the responses of the three perpendicular
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Figure 3.9: Normalized I–V characteristics of parallel and perpendicular slotted tapes at
(a) 75 cm, (b) 160 cm and (c) 300 cm.

slotted tapes widths (especially at 75 cm and 160 cm) as compared to the parallel

slotted ones. Specifically, the efficiency of the widest (and most porous) slotted tape,

with a line spacing of 13.2 Debye lengths at 75 cm, is roughly on par with that of

the medium slotted tape (6.0 Debye lengths at 75 cm), and even goes above it at

the highest bias potentials. This may indicate that the widest line spacing was close

to a critical value, corresponding to the minimum efficiency, and beyond which the

collection efficiency would start increasing again, up to the very wide spacing limit

where all four lines become independent and collect as efficiently as the reference
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cylinder. We seem to have attained this limit only in the perpendicular orientation,

which can be explained by the fact that the sheath elongations in the direction of the

flow [77,78] would cause the sheath interactions to grow stronger when aligned with

(i.e., parallel to) the flow, thereby moving the critical spacing to a higher value for

the parallel case. Clearly, testing of wider line spacings will be required to determine

those critical values and relate them to the flow energy.

• A “knee” is most apparent in the results for the widest parallel slotted tapes at 75 cm

and 160 cm, around 29 and 21 volts, respectively (note that the positions of the knees

on the graphs need to be scaled with their respective electron temperatures), which

is close to the estimated ion beam energy. The parallel and perpendicular results

separate at the potential bias corresponding to the location of this knee.

3.5.4 Comparison of the Solid and Slotted Tapes

Figs. 3.10–3.12 show the same sets of results shown earlier, but with the solid and

slotted tapes plotted on common graphs to facilitate their comparison. The absolute amount

of current collected by the solid tape samples was higher than that collected by the slotted

tape samples in all cases, as expected, and is not shown here. The slotted samples were

somewhat more efficient on a per-area basis than their solid counterparts. This is true at all

positions, and does not seem to be a function of the fraction of beam ions present. Hence,

the slotted samples are always more efficient on a per-area basis, regardless of whether in a

stationary or flowing plasma. For example, at 75 cm the parallel wide slotted tape collected

about 37% of the current collected by the parallel wide solid tape at a normalized bias of

80Te, a somewhat higher fraction than the porosity of the sample, which was 28%.
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Figure 3.10: Comparison of the I–V characteristics of solid and slotted tapes at 75 cm.
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Figure 3.11: Comparison of the I–V characteristics of solid and slotted tapes at 160 cm.
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Figure 3.12: Comparison of the I–V characteristics of solid and slotted tapes at 300 cm.
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3.6 Present Status and Conclusions

Several conclusions can be drawn from the analysis of these experimental results:

1. the plasma flow leads to significant current enhancements over that predicted by the

orbital-motion-limited theory;

2. the electron collection efficiency of solid tapes (on a per area basis) decreases as the

width of the tape is increased;

3. beyond a threshold bias close to the beam energy, solid and slotted tapes both collect

more current when oriented transverse (perpendicular) to the flow;

4. equivalent-width slotted tapes are more efficient electron collectors than solid tapes

on a per-area basis;

5. our data suggests the electron collection efficiency of slotted tapes decreases with

increasing line spacing until a possible minimum efficiency is attained, beyond which

it is expected to start increasing again. The minimum may have been attained in

the case of the samples oriented transverse to the flow, but not in the case of the

samples aligned with the flow, for which the critical spacing is likely higher due to

an increased sheath interaction radius of each line caused by the elongation of the

sheath associated with plasma flow.

Further experiments are needed to more completely quantify the observed effects. In

addition, larger line spacings should be tested in both the parallel and perpendicular ori-

entations to verify the existence of and quantify the critical spacing that corresponds to a

minimum collection efficiency.

A lower background pressure might help improve the survival of the ion beam out to 3

meters, and could possibly be achieved with the use of additional cryopumps. For example,
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using 7 cryopumps instead of 4, we could expect a drop of the background pressure by a

factor 4/7, and consequently an increase of the charge-exchange mean-free-path length by

a factor 7/4. Since the value shown for the high-speed beam fraction (µb = 32%) at 300 cm

in Table 3.4 is consistent with a mean free path of about 2.6 meters, this additional pumping

power could be expected to increase the mean free path to 2.6 m×7/4≈ 4.6 m. This would

therefore improve the beam survival at 300 cm from 32% to 52% (exp
(
−3.0 m

4.6 m

)
= 0.52).

Finally, in future experiments one should consider shifting the entire hardware setup

further away from the downstream end of the vacuum chamber, which might reduce a

possible accumulation of neutrals near that end of the chamber, since the cryopumps are

located on the upstream end.
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CHAPTER 4

Simulation Results and Validation

In this chapter we present and analyze our simulation results, and proceed to validations

with other published results wherever possible. Section 4.1 describes the normalizations

used throughout this chapter. Section 4.2 discusses the simulation results applicable to a

round cylinder in a stationary plasma. Sections 4.3 and 4.4 discuss probe geometry effects

using simulation results pertaining to the two-wire and thin tape cylinder, respectively.

Finally, Sections 4.5 and 4.6 discuss the effects of plasma flow on sheath structure and

current collection for ion- and electron-attracting round cylinders.

Note that for all of the simulations presented in this chapter, the electron and ion pop-

ulations are at thermal equilibrium (Ti = Te), because this setting is most representative

of the ionospheric environments of interest. Although they were not tested as part of this

analysis of results, the model does allow for settings of the temperature ratio Ti/Te other

than 1.13

4.1 Definition of Normalized Physical Quantities

All simulation parameters and results are presented in a normalized form in order to

make them as general as possible. The normalizations used in this chapter are consistent

13Results shown in Ref. [8] indicate that, for temperature ratios Ti/Te below unity, we should expect a
reduction of the sheath dimensions as well as the collected ion current for ion-attracting bias potentials as
compared to the case where Ti = Te.
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with those used to present our experimental results in normalized form in Chapter 3. The

following is a description of the normalized parameters used throughout this chapter:

• The number densities are normalized with respect to the number density of the back-

ground plasma (the ambient density). The normalized density nn is the ratio of the

actual density n (in m−3) to the background number density n0 of the plasma: nn=
n
n0

.

• Similarly, the net charge density is normalized in terms of the ambient density and

the electron charge e. At any location in space, the normalized net charge density ρn

is given by

ρn =
ρ

en0
=

ni−ne

n0
, (4.1)

where ρ is the actual net charge density.

• The electric potentials are normalized in terms of the electron plasma temperature

Te (units of eV) and the plasma potential Vp (in volts). At any location in space the

normalized potential is thus given by

φ =
V −Vp

Te
, (4.2)

where V is the local electric potential and Vp is the background plasma potential. The

bias potential is similarly normalized according to φ0 =
V0−Vp

Te
, where V0 is the bias

potential in volts.

• All coordinates and dimensions are normalized in terms of the electron Debye length

in the ambient plasma. The normalized coordinates (xn,yn) are given by

xn =
x

λDe
and yn =

y
λDe
, (4.3)

where (x,y) are the physical coordinates and λDe is the electron Debye length, both

given in units of meters.
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• The velocities are normalized with respect to the electron thermal velocity vthe =√
eTe
me

. The normalized velocity components vx,n and vy,n are given by

vx,n =
vx

vthe
and vy,n =

vy

vthe
. (4.4)

• collected current is normalized with respect to the electron or ion thermal current,

depending upon whether electrons or ions are being collected. In most situations that

we will consider, the magnitude of the bias potential is large enough that only a single

species is being collected at any given time. For positive bias potentials (collecting

electrons), we use the normalized collected electron current Ine, whereas for negative

bias potentials (collecting ions), we use the normalized collected ion current Ini. Both

quantities relate to the physical currents Ie and Ii through the expressions

Ine,i =
Ie,i

Jthe,iAp
Jthe,i = en0

√
eTe,i

2πme,i
, (4.5)

where Ie/Ii is the physical electron/ion collected current in units of amperes and A p is

the total collecting area of the probe or tether. The thermal current densities Jthe,i are

given in terms of the temperatures Te,i (in eV), the masses me,i and the magnitude of

the electron charge e.

• The linear charge density Q, given in Coulombs per meter (C/m) of cylinder length,

is normalized consistent with the normalizations used for the net (volume) charge

density ρn =
ρ

en0
. The linear charge density Q contributed by a constant volume

charge density ρ over a 2-D zone with area A is given by Q= ρA. Correspondingly,

when using a normalized charge density ρn =
ρ

en0
and normalized area An =

A
λ 2

De
, we

obtain for the normalized linear surface charge

Qn = ρnAn =Q
1

en0λ 2
De

=
Q

ε0Te
. (4.6)
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• The ion and electron temperatures Ti and Te are normalized to the electron tempera-

ture Te, resulting in

Ti,n =
Ti

Te
and Te,n =

Te

Te
= 1, (4.7)

which yields a trivial result of unity for the normalized electron temperature.

• The particle masses mi and me are normalized to the electron mass me, i.e.

mi,n =
mi

me
and me,n =

me

me
= 1, (4.8)

which yields a trivial result for the normalized electron mass.

• Similar to the masses, the particle charges qi and qe are normalized to the electron

charge qe, i.e.

qi,n =
qi

qe
and qe,n =

qe

qe
= 1. (4.9)

The normalizations above are consistent with the following normalization of Poisson’s

equation (2.5):

∇2V ≡
d2V
dx2 +

d2V
dy2 =−

ρ
ε0

⇐⇒ ∇2
nφ ≡

d2φ
dx2

n
+

d2φ
dy2

n
=−ρn︸ ︷︷ ︸,normalized form (4.10)

where ρn ≡
ρ

ε0Te
and ∇n is the Laplacian applied on the normalized space coordinates

(xn,yn). In addition, Vlasov’s equation (2.9) can be recast in terms of the normalized

quantities:

vx,n
∂ fn

∂xn
+ vy,n

∂ fn

∂yn
−

qn

mn

∂φ
∂xn

∂ fn

∂vx,n
−

qn

mn

∂φ
∂yn

∂ fn

∂vy,n
= 0, (4.11)

where fn, qn and mn are normalized quantities that apply to either electrons or ions, i.e.,

fn =

{
fe/n0

fi/n0

}
, qn =

{
qe,n

qi,n

}
, and mn =

{
me,n

mi,n

}
. (4.12)

Because both of the fundamental equations used in the computational model can be

recast in normalized form as given by (4.10) and (4.11), any solutions that we obtain based
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on the simulations can be applied to a vast number of practical cases based on the proper

scaling of the normalized quantities using the physical values for the parameters n0, Te, me,

and qe.

4.2 Single Round Cylinder in Stationary Plasma

The most simple configuration that can be analyzed using both the KiPS-1D and KiPS-

2D models is that of the single round cylinder immersed in a stationary plasma. Although

basic, this configuration allows for validations to be performed against previous publica-

tions, as well as validations of the more sophisticated KiPS-2D model against the simpler

KiPS-1D model.

We should note that, because there is no plasma flow, all of the normalized results

presented in this section can be applied to either ion or electron collection. That is, the nor-

malized density profiles of the attracted and repelled species are independent of mass and

therefore a change in the polarity of the bias potential simply has the effect of interchanging

the density profiles of the electrons and ions, knowing that the ions are singly charged and

that the electron and ion temperatures are equal, Ti/Te = 1.

In addition to validations, the results from these simulation runs will allow us to answer

an important question that was not addressed in previous works: how do the sheath dimen-

sions scale at large bias potentials? To the author’s knowledge, large bias potentials (up to

10,000Te) were not addressed using any self-consistent kinetic treatment before this work.

4.2.1 Validation of Potential & Density Profiles at Low Bias Voltages

We first present a validation of our simulation results against the widely accepted sim-

ulation results obtained by Laframboise [8] for low bias voltages. Figures 4.1–4.3 show a

comparison of some of our KiPS simulation results against Laframboise’s results for four
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Figure 4.1: Normalized ion(top) and electron(bottom) charge densities as a function of
normalized distance from the surface of a round cylindrical probe immersed in a stationary
plasma, with φ0=

V0−Vp
Te
=−25 and Ti= Te. Results obtained using the KiPS-1D and KiPS-

2D solvers are shown for various probe sizes (r0/λDe = 1,2,5, and 10) and compared
with results computed by Laframboise [8, 79]. All of the reference data were obtained
from Laframboise’s thesis [8], except for the r0 = λDe data which include a minor, recent
correction [79].
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Figure 4.2: Normalized net charge density as a function of normalized distance from the
surface of a round cylindrical probe immersed in a stationary plasma, with a bias potential
V0−Vp=−25Te and Ti= Te. Results obtained using the KiPS-1D and KiPS-2D solvers are
shown for various probe sizes (r0/λDe = 1,2,5 and 10) and compared with the simulation
results computed by Laframboise [8, 79].

different cylinder radii: 1, 2, 5 and 10 Debye lengths. Results are shown for both KiPS-

1D and KiPS-2D, and for both kinetic and Boltzmann14 electrons. Excellent agreement is

seen between the reference data and both our KiPS-1D and KiPS-2D simulation results.

The Boltzmann approximation for the repelled electrons is also seen to be very accurate

when compared to the results obtained using kinetic electrons. The attracted ion density

at the probe surface is seen to be maximized for the smaller probe radius, with a maxi-

mum value of half the ambient density. This is expected, as is shown by (1.7): for small

probe radii, the OML is attained and the surface density reaches its maximum value of half

the ambient density. The net charge density shown in Figure 4.2 shows a large region of

quasi-neutrality, indicating that a sufficiently large computational domain was selected.

14The Boltzmann approximation consists of approximating the repelled electron density using n e ≈
n0 exp((V −Vp)/Te), or simply ne ≈ n0 exp(V/Te) if we assume Vp = 0.
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Figure 4.3: Normalized electric potential (V −Vp)/Te as a function of normalized distance
from the surface of a round cylindrical probe immersed in a stationary plasma, with a bias
potential V0−Vp =−25Te and Ti = Te, shown in both linear and semi-logarithmic formats.
Results obtained using the KiPS-1D and KiPS-2D solvers are shown for two probes sizes
(r0/λDe = 1,2,510), some of which (r0/λDe = 1,10) compared with the simulation results
computed by Laframboise [8].
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Another interesting observation regards the potential distribution shown on the semilog

plot on the bottom of Figure 4.3. The behavior of the graphs close to the probe is seen

to follow a linear dependence on the semilog scale, which simply is a result of the fact

that space charge only starts to significantly affect the potential profile at a sufficient dis-

tance from the probe for cumulative space charge to amount to a significant fraction of the

surface charge held by the probe. The region of logarithmic dependence of the potential

extends with increasing bias potential, as will become obvious when we consider large bias

potentials.

Unfortunately, the author has not found in the literature any appropriate experimental

data set that could be used for the validation of these potential and density profiles in

stationary plasmas. Obtaining some sort of experimental validation of these profiles would

be very valuable.

4.2.2 Validation of Collected Current at Low Bias Voltages

In addition to validating the potential and density profiles, we now proceed to validate

the collected currents computed using KiPS-1D and KiPS-2D for a round cylinder in a

stationary plasma. Figure 4.4 shows a comparison of the collected current characteristics

for various probe radii. The agreement is excellent between the KiPS results and the results

obtained by Laframboise [8], although our results appear to be somewhat higher by about

0.5%. This slight discrepancy could be explained by a combination of a number of factors

such as:

• the quadrature tolerance used in the current calculation performed using our model,

which was set to 1%; and

• the error involved in manually copying data points off of Laframboise’s graphs [8].
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and 10 and compared with the simulation results computed by Laframboise [8].

The excellent agreement between KiPS-1D and KiPS-2D collected current results provides

further confirmation of the validity of both models.

It is observed, as a “sanity check”, that the collected current approaches the thermal

current as the probe bias potential approaches the plasma potential, i.e., in Figure 4.4, the

normalized current goes to 1 as the normalized bias potential approaches zero. In addition,

we can see that as the probe radius becomes smaller, the collected current approaches the

orbital motion limit current, i.e., the current collection efficiency is maximized on a “per

area” basis.

4.2.3 Assessment of Collected Current at High Bias Voltages

Figure 4.5 shows the simulated current collection efficiency to 3 high-voltage cylinders,

biased at 300Te, 1000Te and 3000Te as a function of the cylinder radius. We define the
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Figure 4.5: Current ratio I/Ioml (“current collection efficiency”) as a function of the radius
of a round conductive cylinder immersed in a stationary plasma. Results obtained using
the KiPS-1D and KiPS-2D solvers are shown for two bias potential values of |φ0| = 300
and |φ0| = 1000. A comparison is shown with calculations published by Estes and San-
martı́n [12] for Ti = Te.
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“current collection efficiency” as the ratio of the collected current over the orbital motion

limit current Ioml.

As expected, our results show a decrease in collection efficiency as the cylinder radius

increases, because it results in a gradual breakdown of the orbital motion limit conditions.

As the probe radius becomes larger, an increasing number of attracted-particle orbits con-

nect two points on the probe surface. These unpopulated orbits create voids in the velocity

distribution function of the inbound particles at the probe surface which grow as the probe

radius increases.

Our results are compared against an approximate current calculation performed by

Estes and Sanmartı́n [12]. The agreement with our simulation results is good, although

not excellent. The source of the discrepancy is most likely the approximations used by

Estes and Sanmartı́n [12], where an asymptotic approach is used that is only exact in the

limit of thin cylinders. Our kinetic results allow us to confirm that, as observed by Estes

and Sanmartı́n [12], the collection efficiency appears to be mostly dependent on the cylin-

der radius, and is only a weak function of the bias potential. This behavior provides a fairly

simple rule that could be used by the designer of an electrodynamic tether system in the

determination of an appropriate tether radius.

4.2.4 Plasma Profiles at High Voltages

Having validated our kinetic model in the low voltage regimes for which independent

simulation data are available, we now turn to an important question that was not resolved

by previous work in the field: how does sheath radius generally scale as a function of probe

radius and bias potential?
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Figure 4.6: Typical high-voltage cylindrical sheath structure shown on a semilog scale.
These profiles were obtained using KiPS-1D with a cylinder radius r0 = λDe and a bias
potential φ0 =

V0−Vp
Te
=−5000.

4.2.4.1 Typical Plasma Profile from KiPS-1D

Figure 4.6 shows a typical self-consistent high-voltage plasma profile obtained using

KiPS-1D for a one-Debye-length-radius probe negatively biased at φ0 = −5000 (5000

times the electron temperature). Note that the profiles are shown on a semilog scale to

facilitate their interpretation.

The potential profile shown on the top half of Figure 4.6 is seen to follow a logarithmic

trend out to a radius near 70 Debye lengths, which indicates that space charge effects are

unimportant for smaller radii. To illustrate this, a plot of the “cumulative charge” is shown

on the same figure which confirms that the amount of space charge due to the plasma is

unimportant until we reach a sizable distance from the probe’s surface. The total amount of
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negative linear surface charge on the cylinder Qn =−6800 (unit-less, normalized value) is

only neutralized by the plasma charge once we reach a radius of about 175 Debye lengths,

at which point the cumulative space charge has reached a value very close to 6800, precisely

balancing out the cylinder surface charge. Much of the charge neutralization thus seems

to occur within an annular region of inner radius rinner = 70λDe and outer radius router =

175λDe.

Because the potential profile has a logarithmic behavior for a sizable portion of the

sheath, a useful approximation for the potential profile can be obtained using linear regres-

sion over its logarithmic portion. This best-fit approximation takes the form

φ = φ0

(
1−

ln(r/r0)

ln(rs/r0)

)
, (4.13)

where r0 is the cylinder radius, and rs is defined as the effective sheath radius. The term

“effective” refers to the fact that the potential profile is effectively the same as that which

would exist if all of the space charge were lumped into a thin cylinder of charge located

at a radius r = rs. This can be thought of as an analogy to a coaxial capacitor, for which

all of the outer charge is located on the outer conductor. Another reason for using the

term “effective sheath radius” instead of simply “sheath radius” is to avoid any confusion

with the classical notion of sheath edge, which is typically defined as the minimum radius

at which the plasma is deemed quasi-neutral based on a somewhat arbitrary definition of

quasi-neutrality [22]. For the present case shown in Figure 4.6, we find for the effective

sheath radius a value of about 100 Debye length, which corresponds to the radius where the

best-fit approximation intercepts a potential of zero. This definition of the sheath radius,

which is based on the specific needs of the charge precipitation application, is believed to

provide a better measure of the effective region of influence of the sheath than the classical

definition and is most appropriate for high voltages, which cause the space charge to lump

within an annular region of limited extent.
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Now let us consider the density profiles shown on the bottom portion of Figure 4.6.

First, the density of the repelled electrons is, not surprisingly, negligible over the vast ma-

jority of the sheath, having dropped sharply together with the ion density drop. Another ob-

servation of interest is that, as was observed at lower voltages, the ion density here reaches

the orbital motion limit of half of the ambient density (ni/n0 = 0.5), because the cylinder

radius is sufficiently small.

Now, one feature of crucial importance is the very low ion density that exists within

the sheath. The minimum density seen on this particular profile is about 0.05, that is, 5%

of the ambient density. This relatively low value of the minimum ion density is key to

obtaining large sheath sizes because it represents a limitation in the shielding capability of

the ambient plasma.

The very low minimum ion density observed within the sheath extends over a sizable

range at high voltages (keep in mind that the scale used in Figure 4.6 is semi-logarithmic).

This can be interpreted in one of two equivalent ways, which we state here:

Current conservation The quasi-conservation of the radial ion current forces the inward-

directed component of the ion density to drop as the ions accelerate into the potential

well of the sheath. The same reasoning applies equally well to the “outward-directed”

component of the ion density, which must increase as the ions decelerate as they

come out of the potential well. Although simplistic, this explanation can qualitatively

explain the sudden drop of the ion density near a radius r ≈ 150 λDe. The validity

of this reasoning is based on the fact that the vast portion of the incoming ions at the

sheath edge will miss the small probe, so that we may assume that the inward and

outward populations contribute equivalent amounts to the local density. In addition,

most inward ions do not “turn back” before they get in relatively close range from

the cylinder, which allows us to use the argument of conservation of current for the
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inward and outward populations separately.

Angular Momentum limitations In the region just within the sheath but still far enough

from the cylinder, the ion population is mostly radially-directed because of the ac-

celeration it has experienced as it entered the sheath. In these locations, a large range

of directions with relatively large angular momentum are therefore not populated be-

cause they are located on collisionless “trapped” orbits, i.e., orbits that are closed

onto themselves and do not originate from the background plasma.

The reasons for these reduced ion densities will become more evident as we discuss the

variation of the ion velocity distributions throughout the sheath in Section 4.2.4.4.

4.2.4.2 Typical Two-Dimensional Plasma Structure from KiPS-2D

Figures 4.7 and 4.8 illustrate the 2-D structure of the plasma surrounding the conduc-

tive cylinder, as computed using KiPS-2D, along with corresponding x-axis cross-sectional

profiles. The dynamic meshing capability of KiPS-2D is shown by the high mesh density

near the sheath edge, where a surge in the net charge density is observed. The obtained

profiles are in agreement with results obtained using KiPS-1D.

4.2.4.3 Profile dependence on Bias Potential and Cylinder Radius

It turns out that the value of the minimum ion density goes down as the magnitude of

the bias potential increases, which contributes to a further increase in sheath dimensions.

This is seen in Figures 4.9 and 4.11, which show a set of various density and potential

profiles corresponding to various bias settings for a cylinder of radius r0 = λDe. Similar

families of curves are shown in Figures 4.10 and 4.12 for a much smaller cylinder radius

r0 = 0.001λDe. Although both sets of curves behave somewhat similarly at large radii, the

main difference with the smaller cylinder radius is that the ion density is allowed to ramp
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Figure 4.7: Poisson–Vlasov consistent solution for the single-cylinder configuration with
a cylinder radius r0 = λDe and normalized bias φ0 = −320. Self-consistency is shown by
the similarity of ρin and ρout. 2-D solutions are shown on the left, and corresponding x-axis
cross-section profiles are shown on the right. Ion and Electron density dist. are shown in
Figure 4.8.

138



−50
0

50 0

20

40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y n
=y

/λ D
e

 

n e/n
0 

x
n
=x/λ

De
 

−50 −30 −10 10 30 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x/λ
De

n e/n
0

(a) Normalized Electron Number Density ne/n0.

−50
0

50 0

20

40

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
n
=x/λ

De
 

y n
=y

/λ D
e

 

n i/n
0 

−50 −30 −10 10 30 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

x/λ
De

n i/n
0

(b) Normalized Ion Number Density ni/n0.

Figure 4.8: Poisson–Vlasov consistent electron and ion density distributions corresponding
to the single-cylinder solution shown in Figure 4.7 (r0 = λDe, φ0 = −320). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile �ρout = e(ni−ne) shown in Figure 4.7(c).

139



10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
Normalized Electron Density Profile

Normalized Position r/λ
De

N
or

m
al

iz
ed

 N
um

be
r 

D
en

si
ty

 n
/n

0

KiPS−1D, Boltzmann Electrons
KiPS−2D, Boltzmann Electrons

φ
0
=−10 

−20 
−40 

−80 
−160 

−320 −640 −1280 −2560 −5120 

10
0

10
1

10
2

0.2

0.4

0.6

0.8

1
Normalized Ion Density Profile

Normalized Position r/λ
De

N
or

m
al

iz
ed

 N
um

be
r 

D
en

si
ty

 n
/n

0

KiPS−1D, Boltzmann Electrons
KiPS−2D, Boltzmann Electrons

φ
0
=−10 

−40 

−80 

−160 

−320 
−640 

−1280 
−2560 −5120 

−20 
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back up to the ambient density due to an improved geometric convergence at smaller radii,

before dropping back to half of the ambient density at the probe surface, the orbital motion

limit.

4.2.4.4 Variation of the Ion Velocity Distribution Throughout the Sheath

In order to better understand the nature of the pronounced ion density drop in the sheath,

we now inspect the ion velocity distribution functions throughout the sheath. Since within

the potential well, the velocity distributions are getting compressed onto a thin annulus, a

perhaps better graphical representation of the velocity distribution function can be obtained

using the concept of directional-energy distribution, which we now define. Let E be the

total particle energy, including both potential and kinetic energy components. At a given

location in the plasma, we may write E as

E = qiV +
mi

2

(
v2

r + v2
θ
)

(4.14)

where V is the local potential, qi = e is the ion charge, mi is the ion mass, and the instanta-

neous velocity components in cylindrical coordinates are vr and vθ . In the ambient plasma

(as r→ ∞), the total energy distribution of the ions is a Maxwellian:

fE(E) =
n0

eT
exp

(
−

E
T

)
. (4.15)

As we get closer to the sheath, the total energy distribution is no longer isotropic, so we

introduce the concept of “directional-energy” f (Er,Eθ ), where Er and Eθ are defined as

Er = E
vr√

v2
r + v2

θ

, and Eθ = E
vθ√

v2
r + v2

θ

. (4.16)

The directional distribution of particles can thus be given as a function of the two variables

Er and Eθ .

Figure 4.13 depicts the directional-energy distributions at various locations along the

ion density profile.
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Figure 4.13: Ion “directional-energy” distributions in the high-voltage cylindrical sheath.
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In the following we describe the nature of the velocity distributions as applicable to

the various distributions labeled from 1 to 22 in Figure 4.13, going from the largest radius

(point 1, farthest location) to the probe surface (point 22):

Locations No. 1–2 The inbound ions are Maxwellian. The outbound ions are only par-

tially blocked out by the probe (probe shadow effect).

Location No. 3 The probe shadow grows as we get closer to the probe, just outside the

sheath. Some very small unpopulated trapped orbits start to appear, due to some

angular momentum limitations.

Location No. 4 The probe shadow is unchanged. The zone of unpopulated trapped orbits

is rapidly expanding as we enter the sheath and ions are radially accelerated.

Location No. 5 The probe shadow now starts shrinking as we enter the sheath, since the

“shadowed trajectories” are also being radially accelerated. The zone of unpopulated

trapped orbits continues to expand significantly, and the directional-energy distribu-

tion appears to be increasingly radially-directed.

Locations No. 6–13 The probe shadow is fairly small within the sheath since shadowed

trajectories are very radially directed. The ions are almost exclusively radially di-

rected. The ion density has dropped significantly because of the radial acceleration

as we enter the sheath, leaving the inaccessible large-angular-momentum orbits un-

populated. The ion density reaches its minimum at location No.7. Beyond this point,

geometrical concentration of current will overcome the sheath acceleration effects

and gradually populate the depleted zones, causing the density to increase.

Locations No. 14–20 The probe shadow is now growing as we near the probe. Geomet-

rical concentration of current has overcome the sheath acceleration effects and the
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depleted zones are gradually getting filled as we near the probe.

Location No. 21 There are virtually no unpopulated trapped zones anymore. This is be-

cause we have reached a small enough radius for geometrical concentration to have

re-populated the depleted zones.

Location No. 22 We are now at the surface of this one-Debye-length-radius probe. Half

of the directions are blocked by the probe, and consequently the density is half the

ambient density. There are no unpopulated incoming directions at the surface of this

small probe, which is why the surface ion density achieves its maximum possible

value of half the ambient density; this is the orbital motion limit. A larger probe

would result in a lower ion density because it would feature depleted zones which

would correspond to a set of orbits linking two points on the probe’s surface.

4.2.5 Sheath Radius at High Voltages

Having defined an effective sheath radius rs consistent with an asymptotic best-fit of

the potential profile given by (4.13), we now consider the effect of the bias potential φ0

and probe radius r0 on the effective sheath radius rs. The top part of Figure 4.14 shows

the variation of the normalized effective sheath radius rs as a function of the normalized

bias potential φ0, for several values of the cylinder radius r0. Not surprisingly, the effective

sheath radius grows for increasing bias potential magnitudes and also grows monotonically

as a function of the cylinder radius r0.

As we have discussed before, at large voltages the space charge in the immediate vicin-

ity of the probe should have a negligible effect on the local potential which is overwhelm-

ingly dominated by the effect of the cylinder surface charge. For sufficiently thin cylinders,

which cause little shadowing effect on outbound trajectories over most of the sheath, the

electrodynamic processes in the bulk of the sheath should become nearly independent of
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the cylinder radius for a given cylinder surface charge. Instead of plotting the sheath radius

as a function of bias potential, on the bottom part of Figure 4.14 we now plot it against

the magnitude of the negative linear charge present on the cylinder’s surface, which can be

obtained through one of two equivalent methods:

• by integrating the positive total plasma space charge surrounding the cylinder, which

is equal and opposite to the total negative charge held by the cylinder;

• by inferring it from the knowledge of the cylinder radius r0, bias φ0 and effective

sheath radius rs using the linear capacitance formula for a coaxial capacitor [43],

Qn =
2πφ0

ln rs
r0

. (4.17)

All of the plots shown on the top part of Figure 4.14 now align over each other on the bot-

tom part, except for the plot corresponding to the largest tested cylinder radius of r0 = λDe.

This remaining discrepancy is due to the fact that this cylinder radius is sufficiently large

to cause significant shadowing of some outbound ion trajectories which are left unpopu-

lated, causing a reduction of the ion density throughout the sheath and a reduced shielding

capability consistent with the observed larger sheath size as compared to cases with equal

surface charge but smaller cylinder radius r0.

As is shown on the bottom part of Figure 4.14, an asymptotic best-fit of the rs-vs-Qn

relationship was performed over the highest values of the linear wire charge Qn, which

applies accurately for |Qn| ≥ 200 and r0 ≤ 0.1λDe. This best-fit asymptotic relationship is

given by

rs

λDe
= 0.123 |Qn|

0.755 . (4.18)

Although this equation is not accurate for larger cylinder radii as is seen for r0 = λDe

on the bottom part of Figure 4.14, it may still be used for purposes of determining a lower
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bound. This asymptotic equation can now be combined with (4.17) to determine an implicit

asymptotic equation for the effective sheath radius rs as a function of the bias potential φ0:

2.554

(
rs

λDe

)1.325

ln
rs

r0
=−φ0. (4.19)

Although this equation cannot be solved analytically for rs, it can be inverted numerically

or computed directly for a given set of negative values for the bias potential φ0. Consistent

with the restrictions mentioned above, it can be used to accurately predict sheath radii for

cylinder radii of a tenth of a Debye length or less (r0 <= 0.1λDe) and for bias potentials φ0

with a magnitude such that

|φ0| ≥
200
2π

ln
rs

r0
≈ 31.8ln

rs

r0
. (4.20)

For values of the bias potential φ0 and cylinder radius r0 beyond these limits, the sheath

dimensions given by numerically solving (4.19) should be regarded as lower bounds.

4.3 Interference of Parallel Round Cylinders in a Station-
ary Plasma

In an effort to gain a basic understanding of the physics of plasma-immersed multi-

wire conductive structures, we consider a structure consisting of two parallel, identical

round cylinders with equal bias potential (see Figure 1.3(b)). The geometrical parameters

are the cylinder radius r0 and the center-to-center spacing ∆x. All of the simulation results

presented in this section were performed using a cylinder radius r0 = λDe and a normalized

bias potential φ0 =
V0−Vp

Te
=−320.

We consider the effect of the center-to-center spacing on sheath structure and current

collection, always comparing performances to those of a single round cylinder with radius

r0 = λDe and bias potential φ0 = −320. The value of the center-to-center spacing ∆x will

vary from ∆x = λDe (cylinders touching) all the way to ∆x = 200λDe. This maximum
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spacing corresponds to about 10.5 times the single-wire effective sheath radius of 19λDe

(see Figure 4.14).

In the negative bias potential situation under consideration, the ions are the attracted

species. Since the plasma is not moving (no flow), the results we obtain are also directly

applicable to the electron-attracting situation with equal and opposite bias potential, pro-

vided that we swap the ion and electron density profiles.

4.3.1 Treatment of Repelled Electrons

Our model allows for the full kinetic representation of both species. However, in a

stationary situation we know that the electric potential will have the same sign as the bias

potential, everywhere in space around the perturbation, and certainly everywhere within

the computational zone. For a repelling bias potential of such a large magnitude as that

considered here (φ0 = −320), we can affirm that, for all practical purposes, none of the

electron trajectories which contribute to the electron density intersect the conductive cylin-

ders. This means that all electron trajectories are connected to the background plasma, and

allows us to use with excellent accuracy the Boltzmann equation for the electron density:

ne = n0 exp
V
Te
, (4.21)

where we assume that V < 0 everywhere in space, and arbitrarily set the plasma potential

to zero. This approach results in significant computational savings, due to the fact that only

the ions need to be treated kinetically.

4.3.2 Orbits of the Attracted Ions

We now turn our attention to the orbits of the attracted ions. In the following we discuss

the existence of complex ion orbits which do not exist in the single-cylinder case, and

explain that the criteria used to determine whether an orbit is trapped (and unpopulated)
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must be less restrictive than in the case of the single cylinder. We then show some examples

of these complex orbits.

4.3.2.1 Criteria for Trapped Orbits

The symmetric potential structure which exists in the simple single-cylinder case does

not allow any of the non-trapped trajectories to feature more than one change of “radial

direction”, that is, one change of sign of the radial component of velocity, vr. In other

words, any orbit originating from the background plasma will either:

• approach the conductive cylinder (vr < 0), miss it due to an excessive angular mo-

mentum and return to the background plasma (vr > 0);

• approach the conductive cylinder and get collected onto it (vr < 0 all along).

When two parallel cylinders immersed in a plasma are placed sufficiently close to one

another (i.e., when the individual sheath radius is a non-negligible fraction of the center-to-

center spacing ∆x), the shadow effect created by one cylinder can affect the space charge

surrounding the other sufficiently to create asymmetries in the potential structure. Those

asymmetries, in turn, could allow for the existence of collisionless trajectories of an in-

creased complexity, featuring for example several “radial oscillations” about a given cylin-

der, or even “figure eight” trajectories orbiting about both cylinders. At any given location,

some of the directions in velocity space that were unpopulated when there was no neigh-

boring cylinder may now be populated through relatively complex paths originating from

the background plasma, while other directions that were previously populated may now be

unpopulated due to the existence of new types of trapped orbits, such as the “figure eight”.

As a consequence, the simulation parameters used to determine whether a trajectory is

trapped or not will be especially important for this asymmetric structure. We need to set a

sufficiently large radial oscillation limit to allow for the existence of these more complex
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orbits (described in Section 2.4.2.2), while at the same time keeping it down to a reason-

able value to obtain reasonable simulation times. We have found that allowing for up to

20 radial oscillations (Mrosc = 20) provided such a compromise. The maximum angular

displacement Morb (see Section 2.4.2.2) was not used to impose further restrictions on the

orbits, and Msegcross was set to 100.

4.3.2.2 Examples of Ion Orbits

In Figure 4.15 we show a few typical examples of ion orbits across the self-consistent

potential structure of the two-cylinder configuration with a center-to-center spacing ∆x =

20λDe, a bias potential φ0=−320Te and a cylinder radius r0= λDe. The circle shown at one

end of each trajectory indicates the location of the interrogation point where the velocity

distribution function is being sampled. Following the trajectory from this point backward

in time leads us to the “source” point of the trajectory, indicated by a square.

The source point can be either the background plasma, a cylinder’s surface (in which

case the orbit is unpopulated since the cylinder is not a source), or it may be undetermined

in the case of a trapped orbit.

Figures 4.15(a)–4.15(c) have a common interrogation point, located on a node on the

right side of the mesh. Figure 4.15(a) shows an example of an unpopulated orbit originating

from the surface of the rightmost cylinder; this orbit is not populated because the cylinder

is not a plasma source. Figure 4.15(b) depicts a populated orbit that undergoes two loops

around the rightmost cylinder before reaching the interrogation point, on the outer edge of

the computational zone. Figure 4.15(c) depicts a very complex but populated ion orbit that

originates from the background plasma, undergoes several loops around both cylinders, and

finally reaches the interrogation point.

Figure 4.15(d) corresponds to a different interrogation point. It is shown here to illus-

trate one example of an unpopulated orbit that was deemed “trapped”, having exceeded the
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Figure 4.15: Examples of some typical ion orbits within the self-consistent potential struc-
ture of a two-cylinder system. The square and circle indicate the source and interrogation
points of the orbits, respectively. The total ion energy (potential plus kinetic) is indicated
above each plot in terms of the electron temperature (in units of eV). Intersections with the
background mesh are marked with small dots.
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maximum number of radial oscillations set for this simulation, which was Mrosc = 20.

4.3.3 Inspection of the 2-D Sheath Structure

We now consider the general aspect of the sheath structure surrounding both cylinders

for a few values of the center-to-center spacing: ∆x = 2λDe,10λDe,20λDe,40λDe,80λDe,

and 160λDe. First, we note that all of the two-cylinder simulations presented here were

performed using two axes of symmetry, as described in Section 2.6.2.2. In other words,

only a single quadrant had to be simulated, thanks to the symmetry of the two-cylinder

geometry and the fact that the plasma is not flowing. The distributions are shown over two

quadrants, in order to clearly illustrate the two-cylinder geometry under consideration. The

simulation results, performed in the quadrant θ ∈ [0,π/2], were simply “mirrored” to the

second quadrant in θ ∈ [π/2,π]. We have opted to only show the results in the half-space

θ ∈ [0,π], so that the features of interest near the cylinders can be clearly seen. All of the

distributions shown in Figures 4.16 through 4.25 are given in the following two formats:

• 2-D distributions are shown on the left, over the half-space θ ∈ [0,π];

• profiles of cross-sections performed along the x axis are shown on the right.

The self-consistency of the solutions that we show here can be verified by comparing the

distributions for �ρin and �ρout, which correspond to the input and output of the Poisson–

Vlasov operator as specified in Figure 2.3. The distributions for �ρin and �ρout shown in

Figures 4.16, 4.18, 4.20, 4.22, 4.24, and 4.26, are very close to one another, which proves

the self-consistent nature of the solutions.

Figures 4.16 and 4.17 show the distributions pertaining to the smallest center-to-center

spacing, ∆x = 2λDe (cylinders touching). Due to the proximity of the two cylinders, the

profiles obtained are very close to what would be obtained with a single cylinder. The

ion density, shown in Figure 4.17(b), is seen to drop to half the ambient density on the
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Figure 4.16: Poisson–Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 2λDe, and normalized bias φ0 =
−320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on the right. Ion and Electron density dist. are shown in Figure 4.17.
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Figure 4.17: Poisson–Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.16 (r0 = λDe, φ0 =−320, ∆x= 2λDe). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile �ρout = e(ni−ne) shown in Figure 4.16(c).
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external surfaces of both cylinders, as is expected. Angular momentum limitations/ion

radial acceleration are responsible for the significant drop in density as the ions enter the

sheath, similar to what was seen in the single-cylinder case.

Figures 4.18 and 4.19 pertain to the spacing ∆x= 10λDe. The potential is seen to drop

in magnitude in between the two cylinders, to a potential φ ≈ −235 from a bias potential

of φ0 =−320. A similar drop of the ion density is seen in Figure 4.19(b) as the ions enter

the sheath, with a minimum density of about 0.2n0. A relatively large ion density is seen

to exist in between the two cylinders, which reaches a maximum of about 0.7n0 but only

has limited extent. The ion density at the surfaces of the cylinders is seen to be much lower

here than what was seen for the case where the cylinders are touching. The ion densities on

the external and internal surfaces of the cylinders are about 0.27n0 and 0.19n0, respectively.

This is an indication that the orbital-motion-limit was not achieved for current collection,

due to the overall extent of this “two-cylinder” probe. The center-to-center spacing is not

quite large enough for the two sheaths to have separated, so that the two cylinders are in

effect emulating a larger structure, leading to reduced current collection, similar to what

was seen for large cylinder radii in Figure 4.5.

Figures 4.20 and 4.21 pertain to the spacing ∆x = 20λDe. Here the potential is seen to

drop down in magnitude to φ ≈−150 in between the two cylinders; the electric fields from

both cylinders are still strongly coupling. The ion density profile presents various “bumps”

as we enter the sheath, which may be due to the partial filling of some of the velocity space’s

directions that were left empty in the single-cylinder case due to angular momentum restric-

tions. Some of these directions are being populated by the complex trajectories described in

Section 4.3.2. Those “bumps” may also be attributed, in part, to some momentum inaccura-

cies on some of the convoluted ion trajectories, due to the piecewise-linear approximation

used for the potential structure. The ion acceleration through the sheath still results in a
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Figure 4.18: Poisson–Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 10λDe, and normalized bias φ0 =
−320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on the right. Ion and Electron density dist. are shown in Figure 4.19.
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Figure 4.19: Poisson–Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.18 (r0= λDe, φ0 =−320, ∆x= 10λDe). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile �ρout = e(ni−ne) shown in Figure 4.18(c).
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Figure 4.20: Poisson–Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 20λDe, and normalized bias φ0 =
−320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on the right. Ion and Electron density dist. are shown in Figure 4.21.
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Figure 4.21: Poisson–Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.20 (r0= λDe, φ0 =−320, ∆x= 20λDe). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile �ρout = e(ni−ne) shown in Figure 4.20(c).

161



significant drop of the ion density, albeit for a somewhat smaller range of distances from

the cylinder’s surface. The ion density at the surface is still well below the orbital motion

limit: we have ni ≈ 0.2n0 on the inside surface and ni ≈ 0.3n0 on the outside surface. We

can therefore still expect a significant current reduction as compared to the OML limit. The

peak in ion density previously seen for ∆x = 10λDe has dropped to about ni ≈ 0.58n0, as

the sheath has begun to separate into two separate sheaths, which causes some restrictions

of the angular momentum with respect to each cylinder’s axis.

Figures 4.22 and 4.23 pertain to the spacing ∆x= 40λDe. The magnitude of the potential

in between both cylinders has now dropped significantly, to φ ≈ −24, which is still suffi-

cient to fully blow away the electrons from a large region formed by the accretion of two

overlapping disk-shaped sheaths. The ion density has similar features as those observed for

∆x= 20λDe, i.e., the density has some “bumps” as we enter the sheath.

Figures 4.24 and 4.25 pertain to the spacing ∆x = 80λDe. At this large spacing, the

two cylindrical sheaths have now separated, and the electron density now peaks at above

half of the ambient density in between the two cylinders. We begin to distinguish a net

charge distribution which features two structures resembling the net charge distribution

around a single independent cylinder, except for some remaining strong asymmetry. This

asymmetry remains in spite of the fact that the surface charges located on one cylinder

practically no longer contribute to the electric fields within the sheath around the other

cylinder. Rather than being due to a direct field coupling, the remaining asymmetry is

due to the fact that some velocity space directions in the sheath around one cylinder are

left unpopulated because their corresponding trajectories originate from the surface of the

other cylinder. This effect can be significant because of the focusing effect between the

two sheaths which concentrates trajectories toward the inside of the sheath even as they

are moved apart significantly. The asymmetries are also amplified by the changes that
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Figure 4.22: Poisson–Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 40λDe, and normalized bias φ0 =
−320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on the right. Ion and Electron density dist. are shown in Figure 4.23.
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Figure 4.23: Poisson–Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.22 (r0= λDe, φ0 =−320, ∆x= 40λDe). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile �ρout = e(ni−ne) shown in Figure 4.22(c).
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Figure 4.24: Poisson–Vlasov consistent solution for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 80λDe, and normalized bias φ0 =
−320. 2-D solutions are shown on the left, and corresponding x-axis cross-section profiles
are shown on the right. Ion and Electron density dist. are shown in Figure 4.25.
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Figure 4.25: Poisson–Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.24 (r0= λDe, φ0 =−320, ∆x= 80λDe). These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net
charge density profile �ρout = e(ni−ne) shown in Figure 4.24(c).
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they induce in the population of the orbits that are normally “trapped and unpopulated”

in the case of an independent cylinder. The ion density profile seen in Figure 4.25 shows

two familiar patterns resembling the ion density profile that we have found for a single

independent cylinder, albeit with some asymmetry. The ion density reaches a value of about

0.54n0 on the x axis in between the two cylinders. We observe that this is a significantly

lower density than would be observed at such a large distance from an independent cylinder

(about 0.75n0). The asymmetry however causes some increase of the “outside” density

profile, where we observe a “bump”.

Figures 4.26 and 4.27 pertain to the spacing ∆x = 160λDe. Now the two sheaths are

definitely not coupling through electric fields as can be seen from the potential profile

which goes to virtually zero for a distance of almost 100 Debye lengths. The asymmetry

however still remains. It is attributed, as discussed before, to the voids created in the ion

densities in one sheath by the shadowing effect of the cylinder in the other sheath, amplified

by its effect on unpopulated orbits.

The observations that we have made concerning the wider separations can be summa-

rized as follows:

1. the ion densities on the outermost side of a given cylinder are somewhat increased by

the potential asymmetries caused by the trajectory connections among both sheaths;

2. the ion densities on the innermost side of a given cylinder are somewhat decreased

due to the unpopulated trajectories originating from the surface of the other cylinder.

While the first observation may lead to a decrease of the effective sheath radius as measured

on the outermost side as compared to that of an independent cylinder, the second observa-

tion may cause an increase of the “inner” effective sheath radius. The overall outcome of

these two competing effects is difficult to predict. We will assess it in the following two
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Figure 4.26: Poisson–Vlasov consistent solution for the two-cylinder configuration with
a cylinder radius r0 = λDe, center-to-center spacing ∆x = 160λDe, and normalized bias
φ0 = −320. 2-D solutions are shown on the left, and corresponding x-axis cross-section
profiles are shown on the right. Ion and Electron density dist. are shown in Figure 4.27.
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Figure 4.27: Poisson–Vlasov consistent electron and ion density distributions correspond-
ing to the solution shown in Figure 4.26 (r0 = λDe, φ0 = −320, ∆x = 160λDe). These
density profiles constitute the output of the Vlasov solver and are subtracted to form the
output net charge density profile �ρout = e(ni−ne) shown in Figure 4.26(c).
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sections based on a more general measure of the sheath dimensions, the effective sheath

area.

4.3.4 Definition of an Effective Sheath Area Concept

In Section 4.2.4.1 we have defined a metric for the effective sheath radius rs consistent

with the asymptotic form of the potential profile given by (4.13), which applies for the

symmetric sheath structure in the vicinity of a round cylinder. We now seek to generalize

the concept of effective sheath radius for use with non-symmetric sheaths, while providing

a metric consistent with that used for round cylinders.

Let us first consider a sheath with circular symmetry, for which (4.13) applies. We may

define an effective sheath area As consistent with our previous definition of the effective

sheath radius rs based on the relationship

As = πr2
s , (4.22)

where we include the area of the cylinder itself as part of the effective sheath area. Simi-

larly, we define

A= πr2 and A0 = πr2
0, (4.23)

where A is the area enclosed by any equipotential circle of radius r, and A0 is the cylin-

der’s cross sectional area. Using (4.22) and (4.23), we re-write the potential profile given

by (4.13) in terms of As, A and A0:

φ = φ0

(
1−

ln(A/A0)

ln(As/A0)

)
. (4.24)

This asymptotic relationship, relating the potential on any contour level to the area it en-

closes, holds from the surface of the cylinder out to a fairly large radius r (or area A). In the

case shown in Figure 4.6, the asymptotic approximation is a good approximation until we

reach a radius of about r= 175λDe, or until the enclosed area reaches about A= 1752π2λ 2
De.
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We may now generalize (4.24) to any type of sheath structure, by considering the varia-

tion of the potential φ as a function of the area A enclosed within the corresponding contour

level, and finding an appropriate measure of the sheath area As based on some asymptotic

behavior of the φ -vs-A plot. As was just demonstrated, in the case of the single round cylin-

der, this definition will provide us with a measure for the effective sheath area As consistent

with the effective sheath radius rs that was defined in Section 4.2.4.1, i.e., As = πr2
s .

4.3.5 Determination of the Effective Sheath Area of the Two-Cylinder
Configuration

Figures 4.28–4.33 graphically illustrate, for a subset of 6 different center-to-center spac-

ings (∆x∈ [2,10,20,40,80,160]), the process that was used to determine an effective sheath

area As, consistent with the definition given in Section 4.3.4. On each of these figures, part

(a) shows a set of equipotential contour levels and part (b) shows a plot of the potential φ

as a function of the surface area A enclosed by the corresponding contour level. Consis-

tent with the method used for the determination of the effective sheath radius performed

in Section 4.2.4.1, the effective sheath area As is determined by the A-intercept15 of the

extrapolated asymptotic behavior of the φ -vs-A data. Values for both the single-cylinder

effective sheath area As,1 = πr2
s and two-cylinder effective sheath area As are given in Fig-

ures 4.28–4.33.

The results for the smallest spacing, ∆x = 2, are shown in Figure 4.28. The contours

quickly become circular as the potential drops from the cylinders’ surfaces. As a conse-

quence, the φ -vs-A data shown in Figure 4.28(b) almost immediately follows a logarithmic

pattern (which shows as a linear variation on this semi-logarithmic scale), just like would

be expected of a single-cylinder structure. This logarithmic relationship is consistent with

a negligible effect of the space charge in the vicinity of the two-cylinder structure, and is

15The A-intercept is defined as the value of A at which the linear graph intersects the A axis.
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Figure 4.28: Potential contour levels (a) along with a plot of the contour level as a function
of the area enclosed by a given contour (b), for two cylinders with a center-to-center spacing
∆x = 2λDe. The cylinder radius is r0 = λDe and both cylinders are biased at a normalized
potential φ0 =−320.
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Figure 4.29: Potential contour levels (a) along with a plot of the contour level as a function
of the area enclosed by a given contour (b), for two cylinders with a center-to-center spacing
∆x= 10λDe. The cylinder radius is r0 = λDe and both cylinders are biased at a normalized
potential φ0 =−320.
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Figure 4.30: Potential contour levels (a) along with a plot of the contour level as a function
of the area enclosed by a given contour (b), for two cylinders with a center-to-center spacing
∆x= 20λDe. The cylinder radius is r0 = λDe and both cylinders are biased at a normalized
potential φ0 =−320.
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Figure 4.31: Potential contour levels (a) along with a plot of the contour level as a function
of the area enclosed by a given contour (b), for two cylinders with a center-to-center spacing
∆x= 40λDe. The cylinder radius is r0 = λDe and both cylinders are biased at a normalized
potential φ0 =−320.
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Figure 4.32: Potential contour levels (a) along with a plot of the contour level as a function
of the area enclosed by a given contour (b), for two cylinders with a center-to-center spacing
∆x= 80λDe. The cylinder radius is r0 = λDe and both cylinders are biased at a normalized
potential φ0 =−320.
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Figure 4.33: Potential contour levels (a) along with a plot of the contour level as a function
of the area enclosed by a given contour (b), for two cylinders with a center-to-center spacing
∆x= 160λDe. The cylinder radius is r0 = λDe and both cylinders are biased at a normalized
potential φ0 =−320.
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followed by a “tail” attributed to space charge effects, as was seen in the single-cylinder

case. The effective sheath area corresponding to the graphed asymptote is larger than that

of a single cylinder, for which the φ -vs-A would have fallen logarithmically immediately

starting at the cylinder’s surface. In the present case, the physical extent of the touching

cylinders is sufficiently large to allow them to hold a larger total surface charge than a sin-

gle cylinder would at that same bias potential, resulting in a 55% increase of the effective

sheath size over that of a single cylinder:

As

As,1
=

1744.8λ 2
De

1128.6λ 2
De

≈ 1.55. (4.25)

The effective sheath area is however smaller than the combined sheath area of two inde-

pendent cylinders.

Upon increasing the center-to-center spacing to ∆x = 10, as shown in Figure 4.29, the

semilog graph of the φ -vs-A data now shows two distinct linear regions, indicated by sep-

arate linear “best fits”. The first linear region (on the left) corresponds to the set of circular

contour levels enclosing each cylinder separately. The slope associated with this first region

is not as steep as that which would be expected of an independent cylinder, and is consistent

with the observed lower amount of normalized surface charge Qn held separately by each

of the cylinders as compared with the surface charge held by an independent cylinder.16

This lower charge can be attributed to a “virtual” effective sheath edge enclosing an area

As,virtual (shown on the figure to be further out on the right of the graph) that is much larger

than the effective sheath area of an independent cylinder. The fact that each cylinder holds

a lower amount of surface charge than an independent cylinder is consistent with the large

area As,virtual, as is evidenced by the following equation applicable to coaxial capacitors:

Qn,1 = 4π
φ0

ln(As,1/A0)
, (4.26)

16Note that even though the surface charge Qn = 1052.5 shown in Figure 4.29 is larger than the surface
charge held by an independent cylinder Q n,1= 683.4, the amount of charge held individually by each cylinder,
1
2 Qn = 526.25, is lower.
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where Qn,1 is the normalized surface charge held by a cylinder and A0 = πr2
0 is the single-

cylinder area. The expression given by (4.26) clearly shows that the surface charge Qn,1

goes down with increasing sheath area As.

The leftmost linear region extends until we approach a critical point where the equipo-

tential contours of both cylinders connect together to form a single contiguous contour. The

φ -vs-A data then rapidly switches to the rightmost linear region corresponding to the set of

circular contour levels enclosing both cylinders. The effective sheath area of the system is

defined as the A-intercept of the rightmost linear fit. In this particular case, it turns out that

the sheath area As is almost exactly equal to the combined sheath areas of two independent

cylinders, i.e., As ≈ 2As,1.

Space charge effects can be seen at two different locations in Figure 4.29. The first one

occurs near the inflection point between both linear regimes, where the φ -vs-A data is seen

to momentarily drop below the leftmost linear best-fit before it starts growing faster toward

the rightmost linear best-fit. This momentary slope reduction is attributed to the shielding

effect of space charge, which is having a detectable effect because of the sufficient spacing

between the cylinders, where some space charge exists. Beyond the turning point of this

graph, the effect of space charge becomes negligible again for a large portion of this outer

sheath, until we reach beyond an area A ≈ 1000λ 2
De, where we notice the typical tail-like

behavior of the potential associated with space charge shielding.

For a center-to-center spacing of ∆x = 20λDe, we still observe two linear regimes, as

seen in Figure 4.30. The inflection point between both linear regions now occurs at a much

larger area, in the vicinity of A= 500λ 2
De. The system capacitance has increased such that

the total amount of charge held by both cylinders is now almost equal to that held by two

completely independent cylinders, i.e., Qn
2Qn,1
∼= 0.94. This explains why the slope of the first

linear region has gotten closer to the dashed line which applies to 2 fully independent cylin-
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ders. One might observe that the effective area As is essentially unchanged from that seen

in the case where ∆x= 10λDe, in spite of the significant increase of the surface charge held

by the cylinders. This apparent contradiction is resolved when one considers the “virtual”

effective sheath area As,virtual, which relates to the potential drop in close proximity of each

cylinder, and is much lower for ∆x= 20λDe as compared to the ∆x= 10λDe case, consistent

with the observed increase in capacitance and with (4.26) as applied to each cylinder taken

separately.

The results for a center-to-center spacing of ∆x = 40λDe are shown in Figure 4.31.

Interestingly, the total sheath area is now a smaller fraction of the independent-cylinder

sheath area: As
2As,1
∼= 0.61. This is consistent with the fact that the system capacitance has

gone above the combined capacitance of two single independent cylinders, i.e., Qn
2Qn,1

∼=

1.11. This reduced sheath area is explained by the ion density increase on the outermost

side of each cylinder, as explained earlier in Section 4.3.3.

The results shown in Figures 4.32 and 4.33, which apply to ∆x = 80λDe and ∆x =

160λDe, correspond to a regime where both sheaths have become “Poisson-uncoupled“

while still being “Vlasov-coupled”. What we mean by this is that the charges present

in one sheath do not significantly contribute to the fields in the other sheath (“Poisson-

uncoupled”), but shadow effects and asymmetry-induced effects on unpopulated orbits

(discussed in Section 4.3.3) create connections between both sheaths (“Vlasov-coupled”).

Results for both of these spacings show that in both cases the cylinders hold a total surface

charge slightly above the surface charge that would be held by two independent cylinders,

and that their total sheath area is correspondingly slightly smaller than the total sheath area

created by two independent cylinders.
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Figure 4.34: Effective sheath area ratio as a function of the center-to-center spacing of
two parallel cylinders. The results shown here apply to the case of two cylinders of radius
r0 = λDe with normalized bias φ0 =−320. The effective sheath area ratio is the ratio of the
two-cylinder sheath area to the single-cylinder sheath area.

4.3.6 Parametric Analysis of the Sheath Structure

Using the definitions given in the previous section, we can now consider an analysis of

the effects of center-to-center spacing on the effective sheath area and total surface charge

held by the cylinders.

First we define the effective sheath area ratio as the ratio of the total effective sheath

area As of a two-cylinder system to the effective sheath area As,1 of a single independent

cylinder, i.e.,

RAs ≡
As

As,1
. (4.27)

Figure 4.34 depicts the variation of the effective sheath area ratio RAs as a function of the

center-to-center spacing ∆x of the two parallel cylinders.

The leftmost data point in Figure 4.34 corresponds to a spacing of ∆x = 2λDe and
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applies to “touching” cylinders since they both have a radius r0 = λDe. RAs is seen to start

at about 1.55 when the cylinders are touching, indicating a total sheath area 55% larger than

that of a single cylinder. For a smaller cylinder radius, we would expect to obtain RAs = 1

when the cylinders are touching because the full extent of the two touching cylinders would

be small enough for the shadowing effect to be negligible on the density of outward-moving

ions throughout the sheath (see a discussion on this topic in Section 4.2.5).

The ratio RAs rises above 2.0 for spacings of ∆x = 5λDe and ∆x = 20λDe, indicating

that the effective sheath area is on par with the sheath area expected of two independent

cylinders. This represents an optimal spacing for purposes of maximizing the total sheath

area, as is desired for the high-energy particle precipitation application. The ratio RAs then

drops sharply to a minimum value at a spacing of about ∆x = 40λDe, and goes back up

relatively quickly until the spacing reaches ∆x = 60λDe, beyond which it follows a slow

upward slope for the remainder of the graph. It is seen that the total effective sheath area

has only reached about 1.5 times the sheath area of a single independent cylinder at a

spacing of ∆x= 200λDe, whereas we expect it to reach a ratio RAs = 2.0 when the spacing

is sufficient for the two sheaths to be fully independent of each other. An extrapolation of

a linear fit performed on this slow increase indicates that “full independence” would only

be reached at an approximate spacing ∆x ≈ 660λDe, which corresponds to about 35 times

the independent cylinder sheath radius of Rs ≈ 19λDe.

An alternative measure of the sheath dimensions can be obtained by considering the

“outward” effective sheath radius, which is measured from the center of the rightmost

cylinder toward increasing values of x on the x axis. This radius is determined based on the

cross section of the potential, consistent with the effective sheath concept used for single

cylinders. Figure 4.35 shows a plot of the ratio of the outward effective sheath radius to

the effective sheath radius of a single independent cylinder as a function of the center-to-
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Figure 4.35: Ratio of the outward sheath radius to the single independent cylinder sheath
radius rs,1 as a function of the center-to-center spacing of two parallel cylinders. The results
shown here apply to the case of two cylinders of radius r0 = λDe with normalized bias
φ0 =−320.

center spacing. It shows, as expected, an enhancement of the sheath radius for very small

spacings, with an optimal spacing of ∆x = 5λDe. The minimum effective sheath radius is

obtained for a spacing ∆x= 40λDe, a result which coincides with the spacing corresponding

to the minimum effective sheath area, as seen in Figure 4.34. The outward effective sheath

radius is then seen to slowly increase with increasing spacing, and is expected to reach the

independent sheath radius at a sufficiently large spacing (ratio of 1 on the graph).

The surface charge ratio is shown in Figure 4.36. This ratio is defined as the ratio of

the total surface charge held by both cylinders to the surface charge held by a single inde-

pendent cylinder. As discussed before, thinner cylinders allowing reduced spacings would

carry the same amount of charge as a single thin cylinder when approached sufficiently

close to one another. Since here we are considering relatively large cylinders with a ra-

dius of one Debye length (r0 = λDe), they cannot be brought sufficiently close together to
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Figure 4.36: Ratio of the total surface charge on both cylinders to the surface charge held
by a single independent cylinder. The results shown here apply to the case of two cylinders
of radius r0 = λDe with normalized bias φ0 =−320.

achieve as low a capacitance as a single wire. This is why the graph shown in Figure 4.36

starts above 1.0, at a ratio of about 1.15 for a spacing ∆x = 2λDe. As the cylinders are

spaced apart, their combined capacitance increases so that the amount of charge they hold

grows to a value of about 2.25 times the single-wire surface charge at ∆x= 40λDe. This is

actually more than two independent cylinders could hold (2.0), and is consistent with the

observed reduced effective sheath area seen in Figure 4.34 as compared to the total sheath

area of two independent cylinders. The total charge then slowly ramps down as the spacing

increases beyond ∆x= 40λDe, and the graphed ratio should eventually reach 2.0.

Figure 4.37 is an alternative representation of the information shown in Figure 4.34.

It shows the “equivalent bias potential” for a single cylinder. This is the bias potential

required on a single cylinder to generate an effective sheath area equal to that generated by

our two-cylinder system biased at φ0 =−320Te. It is seen that one could create a sheath as
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Figure 4.37: Equivalent bias potential of a single cylinder as a function of the center-to-
center spacing of two parallel cylinders. The results shown here apply to the case of two
cylinders of radius r0 = λDe with normalized bias φ0 =−320. The equivalent bias potential
is that which would be necessary for a single cylinder to yield the same sheath area as the
combination of the two cylinders.

large as that which is created by a single cylinder of radius r0 = λDe biased at φ0 =−570Te

by using two cylinders of equal radius r0 = λDe biased at φ0 =−320Te and spaced 5λDe or

20λDe apart.

Figure 4.38 is another alternative representation of the same information. It shows the

“equivalent radius” of the two-cylinder system as a function of center-to-center spacing.

This is the cylinder radius r0 required of a single cylinder biased at the same bias potential

φ0 = −320Te to generate the same equivalent sheath area as that generated by the two-

cylinder system. At the optimal spacings ∆x= 5λDe and ∆x= 20λDe, the equivalent radius

is about 2.85λDe.
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Figure 4.38: Equivalent radius of a single cylinder as a function of the center-to-center
spacing of two parallel cylinders. The results shown here apply to the case of two cylinders
of radius r0 = λDe with normalized bias potential φ0 =−320. The equivalent bias potential
is that which would be necessary for a single cylinder to yield the same sheath area as the
combination of the two cylinders.

4.3.7 Interference Effect on Collected Current

Figure 4.39 depicts the variation of collected ion current as a function of center-to-

center spacing. The graph is normalized to the current that would be collected by two

independent cylinders, Iindep. In the present case, which involves cylinders with a relatively

small radius r0 = λDe, Iindep is very close to the orbital motion limit, as can be seen in

Figure 4.5.

When the cylinders are touching (∆x = 2λDe), the current ratio I/Iindep is about 0.79.

This reduced ratio is attributable primarily to the concave structure formed by the two cylin-

ders, which prevents many incoming directions from reaching the facing internal surfaces

of the two cylinders. In fact, one can approximate the current that should be collected

based on the current entering a convex envelope enclosing both cylinders, as is shown in
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Figure 4.39: Current ratio as a function of center-to-center spacing for the two-cylinder
configuration. The current ratio is defined as the ratio of the total collected current to the
current that would be collected by two independent cylinders.

Figure 4.40. If we assume that the overall two-cylinder structure is still sufficiently small

for orbital motion limit collection to apply, we can compute the expected collected cur-

rent based on the ratio of the convex envelope’s perimeter to the concave perimeter [18] as

follows:

Iexpected = Ioml×
convex perimeter
concave perimeter

=
4r0+2πr0

4πr0
≈ 0.82. (4.28)

This value (0.82) is just above our result of 0.79. The remaining discrepancy can be at-

tributed to a mild departure from the OML limit due to the overall size of the collecting

structure. This is supported by the fact that the ion density at the external surface of the

cylinders is slightly lower than half the ambient density, as seen on the x axis cross-section

profile of Figure 4.17(b).

As the cylinder spacing is increased, the collected ion current is seen to drop to a min-

imum of half of the independent cylinder current near an optimal spacing of ∆x = 10λDe.
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Figure 4.40: Illustration of the convex envelope surrounding both cylinders. The current
collection to the concave portion of the perimeter is limited to some directions.

The current then rises sharply at a spacing ∆x= 30λDe, when two separate sheaths have be-

gun to form. The remainder of the graph shows a rather steady increase of collected current

with increasing spacing. This steady increase occurs once the sheaths have completely sep-

arated and are primarily coupled through the empty ion orbits connecting both cylinders’

surfaces. The observed current increase is attributed to the gradual reduction of the number

of connected ion orbits, which are not populated and therefore do not contribute current at

the cylinders’ surfaces. It is interesting to note that a similar observation was made in Sec-

tion 3.6 concerning the experimentally measured current collected by slotted tape samples.

The correlation between the experimentally observed decrease in the collection efficiency

of the perpendicular slotted tapes with increasing gap widths and our simulation results

indicate that the gap spacings sampled during our experiments were all located on the left

of the expected minimum point on the current-vs-spacing graph.
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4.4 Solid Tape Cylinder in Stationary Plasma: Current
Collection

The solid tape geometry is of interest primarily for the spacecraft propulsion application

of electrodynamic tethers. This geometry presents a few advantages over that of the circular

cylinder wire:

• the orbital-motion-limited regime has been shown to hold for tape widths twice that

of round cylinders, resulting in a maximum OML current collection 27% higher [11];

• a tape geometry is both lighter and more flexible [11];

• a wider tape structure would allow for improved collision survivability with orbiting

debris.

In this section we consider the current collection capability of the solid tape geometry.

The calculations were performed for electron-attracting bias potentials, but the normalized

collected currents are equally applicable to ion-attracting bias potentials. In the following,

we first make some comparisons with theoretical predictions given by Sanmartı́n et al [11]

and Estes and Sanmartı́n [12], and then compare our simulation results with experimental

data shown in Chapter 3.

4.4.1 Equivalent Cylinder Radius and Collected Current: Theoretical
Comparisons

Using asymptotic analyses for both the circular cylinder and tape cylinder, Sanmartı́n

and Estes [11] have identified a simple relationship between the tape width w and equivalent

circular cylinder radius Req, given by Req=
w
4 for sufficiently thin tapes where the thickness

does not play a significant role. Their asymptotic analysis shows that, at a sufficiently large

distance from the surface of a thin tape of width w but well within the Laplace-potential
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region,17 the potential structure varies identically as in the vicinity of a circular cylinder of

radius Req =
w
4 , that is,

φ ≈ φ0

[
1−α1 ln

r
Req

]
, (4.29)

where α1=
Cn
2π is a function of the normalized linear capacitance Cn =Qn/φ0, and Qn is the

normalized linear charge held at the surface of the cylinder. Recall that we had identified

the same asymptotic form in (4.13) based on our numerical simulations and had chosen to

write α1 in terms of an effective sheath radius rs, α1 =
1

ln(rs/Req)
.

For a given bias potential φ0, α1 simply relates to the normalized linear charge Qn

located on the cylinder’s surface. Thus, the identification process that has led to the result

Req =
w
4 obtained by Sanmartı́n et al [11] is equivalent to finding the cylinder radius Req

that would hold the same amount of linear charge Qn as a solid tape of width w for a given

bias potential φ0.

We may therefore independently determine an equivalent radius based on equal linear

charge Qn that is equivalent to the method used by Sanmartı́n et al [11], but is based on our

consistent kinetic simulation results for tape and circular cylinder collectors. Figure 4.41

shows a comparison between the equal-charge probe radius as determined from our simu-

lation results and the equivalent probe radius predicted by Sanmartı́n et al [11]. These sim-

ulations were performed with a bias φ0= 300 and tape widths spanning from 1 to 50 Debye

lengths. Our results show a somewhat larger equivalent radius than predicted by Sanmartı́n

et al [11]. A best-fit linear relationship extracted from our simulation data and shown on the

legend indicates an equivalent radius Req ≈ 0.29w. The small discrepancy between these

results is most likely due to the approximations used by Sanmartin and Estes [11] in calcu-

lating the electron space charge using an asymptotic approach that does not provide a fully

17For a cylinder (of any cross-section) biased at a large potential, we define the Laplace-potential region
as the region in the immediate vicinity of the cylinder in which space charge effects do not have significant
effects on the potential profile.
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Figure 4.41: Equivalent circular probe radius as a function of width for a solid tape electron
collector biased at φ0 =

V0−Vp
Te
= 300. The equivalent probe radius Req is computed based

on equal surface charge. Results are compared against the theoretical prediction Req =
w/4 [11].

self-consistent Poisson–Vlasov solution. In fact, the relatively close agreement between

our self-consistent 2-D simulation and their asymptotic calculation confirms the validity of

Sanmartı́n and Estes’ asymptotic analysis as a first-order tool.

The main parameter of interest for propulsion applications is the efficiency of electron

collection as a function of tape width. As we have seen in Figure 4.5, the efficiency of

current collection, with respect to the orbital motion limit, decreases with the radius of a

round cylinder. In Figure 4.42, we show the results of a similar evaluation of the current ra-

tio I/Ioml as a function of solid tape width. As expected, the current ratio is seen to decrease

with increasing tape width, a fact that is attributed to the existence of unpopulated orbits

bounded on both ends by the tape’s surface (same as for circular cylinders). Our 2-D simu-

lation results for the tape, performed for a bias potential φ0= 300, are compared against the

results of a 1-D simulation of a circular cylinder with equivalent radius Req= 0.29w+0.09.
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Figure 4.42: Current ratio I/Ioml as a function of tape width for a solid tape biased at
φ0 =

V0−Vp
Te
= 300. KiPS-2D simulation results for the tape are compared against KiPS-1D

simulation results based on the equal-charge equivalent radius determined in Figure 4.41.

The comparison clearly shows that a tape current collector has a lesser current-collection

efficiency than its equal-charge circular counterpart. From the same graph, one finds that

the maximum width of a thin tape for the OML current expression to hold within about

1% is approximately wmax ≈ 2.5λDe, which is just shy of the maximum width predicted by

Sanmartı́n and Estes [11] at this bias potential. 18

4.4.2 Collected Current: Comparisons with Experimental Results

Here we consider comparisons of our simulation results with some of the experimental

data pertaining to solid tapes that were shown in Chapter 3.

Figure 4.43 shows a plot of the current ratio I/Ioml, similar to that shown in Figure 4.42

but pertaining to a lower bias potential, φ0 = 100. Our simulation results are compared

against three different sets of experimental data which were obtained at three distances

18According to Sanmartı́n and Estes. [11, Figure 6], w max = 4Rmax ≈ 4×0.75λDe= 3λDe.

192



0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Current Ratio I/I
oml

Normalized Tape Width, w/λ
De

I/I
om

l

KiPS−2D, tape : h=0.25 λ
De

, φ
0
=100

Exp. Data, Parallel Tape, 75 cm
Exp. Data, Parallel Tape, 160 cm
Exp. Data, Parallel Tape, 300 cm

Figure 4.43: Simulated current ratio I/Ioml as a function of tape width for a solid tape biased
at φ0 =

V0−Vp
Te
= 100, along with experimental data. Simulations were done assuming a

thin tape with finite thickness h = 0.25λDe. Simulation results are compared against our
experimental results (detailed in Chapter 3) obtained for a solid tape at three test locations
from the plasma source: 75 cm (mostly flowing plasma), 160 cm and 300 cm (mostly
stationary plasma). Note that the experimental data was calibrated using the round cylinder
reference probe data instead of Ioml, in order to remove any flow enhancement effects for
this comparison.

from a high-speed plasma source (see details in Chapter 3): 75 cm, 160 cm, and 300cm.

Since these experiments were performed in a flowing plasma, we have attempted to “nor-

malize out” any flow enhancement factors in order to compare with our stationary simu-

lation results. Thus, instead of being normalized to the orbital-motion-limit current Ioml,

the experimental data curves shown in Figure 4.43 are normalized to the reference cylinder

data. In other words, we have plotted the following ratio in Figure 4.43 for the experimental

data curves:

Ratio≡
Itape/Itape,thermal

Irefcyl/Irefcyl,thermal
. (4.30)

Note that the reference cylinder is sufficiently thin to collect current at the OML level in a
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stationary plasma.

We observe a general qualitative agreement of the data with our simulation results at

all 3 locations (75 cm, 160 cm, and 300 cm). We note that the experimental error in the

determination of the ambient density and electron temperature could explain the existing

discrepancies. Error boxes are shown in Figure 4.43 for the normalized experimental data.

The sizes of these error boxes are determined based on three types of error sources:

1. current and voltage measurement errors on the tape samples themselves, which are

estimated to amount to less than 1%;

2. systematic errors associated with the finite accuracy of the plasma parameters used

as part of the normalization process. The plasma density n0 and temperature Te,

obtained from our Langmuir Probe sweeps, were estimated to have 8% and 5% ac-

curacy, respectively, as discussed in Appendix F;

3. a systematic error associated with the finite accuracy of the total tape sample electron-

collecting area Ap, which is estimated to be on the order of 6%, similiar to the error

on the Langmuir probe area discussed in Appendix F.

So, using the 8% and 5% error estimates for density and temperature, we can infer a 6.5%

error on the Debye length, since λDe ∝
√

Te/n0. Now, since Ioml is proportional to n0×

Ap×
√

V , where V is the applied tether voltage and Ap is the total area of the tape sample,

the 1% error on voltage measurements and 6% error on tape area Ap combine with the 8%

error on density to yield for Ioml an error of 8%+ 6%+ 0.5 ∗ 1%= 14.5%. Therefore, in

Figure 4.43, the error boxes surrounding the normalized data points have a relative height

of 1%+14.5%=15.5%, corresponding to the sum of the error on measured current I and

the error on Ioml , and a relative width of 6.5% corresponding to the relative error on the

normalized width w/λDe, where we assume that the bulk of the error is contributed by
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the error on λDe while the actual widths w have a much better precision due to use of an

electrical discharge machining process for tape sample fabrication.

Having first observed the dependence of collected current on tape width, we now con-

sider the complete current characteristics (Current vs Voltage) of several tape configura-

tions, which we compare against our experimental results. Figures 4.44 through 4.46 show

the simulation/experiment comparisons pertaining to the three sample positions that were

tested: 75 cm, 160 cm and 300 cm from the plasma source (see Chapter 3 for details).

Only the parallel tape data were used, since they featured less flow effects than the

perpendicular tape data and were therefore more appropriate for comparison with our sta-

tionary plasma computer simulations. It should be emphasized that the experimental data

were processed in such a way as to remove the remaining flow effects. This was done

by multiplying all normalized tape current data by the ratio of the normalized reference

cylinder data Irefcyl/Irefcyl,thermal to the theoretical normalized OML current Ioml:

Iwithout flow(V )≈ Iwith flow(V )×
Ioml(V )

Irefcyl(V )/Irefcyl,thermal(V )
. (4.31)

This is thought to remove much of the flow-induced current enhancement, since the refer-

ence cylinder experiences a similar enhancement. However, we must still keep in mind that

some of the flow enhancement could still be present in the experimental data, especially at

the closest range of 75 cm, since the correction above is only approximate. At the farthest

range however (300 cm) we have determined that the plasma was mostly stationary, and

therefore the normalization performed by (4.31) only had a minor effect.

The simulation and experimental results shown in Figures 4.44 through 4.46 are in good

agreement for the widest tape configuration, whereas for the medium and narrow tapes the

experimental data is less efficient than predicted by our simulations. The reduction of the

current collection efficiency caused by the screw attachments is thought to be the most

likely cause for this discrepancy, since the fraction of the collecting area contributed by the
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Figure 4.44: Normalized current characteristics of solid tapes: comparison of simulation
results with experimental data obtained at 75 cm. Three different tape widths are compared.
Tape widths w and thicknesses h are indicated in terms of the local Debye length.

screws is significantly more important in the case of a narrow tape than it is in the case of

a wide tape. Note that the screw areas were accounted for in the calculation of the total

sample area, as discussed in Chapter 3.

4.5 Flow Effects on Ion-Attracting Round Cylinder

We now consider the effects of plasma flow on the sheath structure and current collec-

tion of ion-attracting round cylinders. We will consider flow speeds U that are very small

with respect to the electron thermal velocity vthe, i.e., U << vthe. Therefore, the electrons

are essentially a stationary species that only respond to the asymmetries in the potential

structure. Those asymmetries are introduced by the ions, whose thermal velocity is on the

order or even slower than the flow speed U .

Throughout this section, we designate the flow speed using three alternate notations:
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Figure 4.45: Normalized current characteristics of solid tapes: comparison of simulation
results with experimental data obtained at 160 cm. Three different tape widths are com-
pared. Tape widths w and thicknesses h are indicated in terms of the local Debye length.
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Figure 4.46: Normalized current characteristics of solid tapes: comparison of simulation
results with experimental data obtained at 300 cm. Three different tape widths are com-
pared. Tape widths w and thicknesses h are indicated in terms of the local Debye length.
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• the flow velocity U , given in m/s;

• the flow energy Uev, given in eV, which relates to the velocity U through the expres-

sion

Uev =
miU2

2e
, (4.32)

where mi is the ion atomic mass, and e= 1.6×10−19 C;

• the ion speed ratio Sd , which is the ratio of the flow velocity to the ion thermal

velocity, given by

Sd =
U
vthi
=

√
Uev

Ti
, (4.33)

where Ti is the ion temperature in eV. The ratio Sd is used in section 4.5.3 when

making comparisons with a publication using that notation.

In the following, we first describe the trapped orbit criteria, and the various treatments

of electrons that were used here. In Section 4.5.3, we perform a few validations with

the simulation results obtained by Xu [17]. Finally, in Section 4.5.4, we perform a detailed

analysis of the impact of the ionospheric flow on the sheath structure and ion current collec-

tion at an altitude that is representative of the high-energy particle precipitation application.

4.5.1 Criteria for Trapped Orbits

The asymmetry introduced by the plasma flow allows for the existence of some orbits

of increased complexity, although not quite as complex as in the two-cylinder case. To

accommodate for these relatively complex trajectories, we have set the maximum number

of orbits to Morb = 3, which corresponds to a maximum angular displacement of 6π (see

definition for Morb in Section 2.4.2.2) beyond which a trajectory will be deemed trapped.

A maximum number of radial oscillations was not necessary for these simulations, since it

would be redundant.

198



4.5.2 Treatment of Electrons

For similar reasons as in the case of the two-cylinder electron-repelling configuration

described in Section 4.3.1, the treatment of electrons can be greatly simplified in the present

case, because the electron population is not effectively drifting. Since in the flowing case

the potential can get slightly positive at some locations (on the ram side of the cylinder)

even when applying a negative bias potential, an accurate collisionless treatment for elec-

trons that provides excellent accuracy is based on the following “clipped” Boltzmann equa-

tion:

ne =

{
n0 exp V

Te
V ≤ 0

n0 V > 0.
(4.34)

This treatment is actually exact for a stationary species if all collisionless orbits are con-

nected to the background plasma, which is the case here because the electrons are repelled,

implying that no electron orbit intersects the probe for all practical purposes. Using a “full

Boltzmann” approximation for electrons, i.e., setting ne = n0 exp V
Te

for both negative (re-

pelling) and positive (attracting) potentials, is also appropriate as long as potentials do not

significantly exceed zero. Doing so actually provides a feedback mechanism in the simu-

lation which improves the convergence rate, and does not unduly impact the quality of the

solution as long as the final potential profile does not significantly exceed zero.

Three different types of treatments were used to compute the electron density in the

simulations presented in Section 4.5.3. They are:

Boltzmann Electrons This is the same approximation as was used by Xu [17], and is

designated above as the “full Boltzmann” approximation.

“Clipped” Boltzmann Electrons This approximation is appropriate for low speeds only.

It does not allow for any negative-energy electrons, and therefore could not be used

for some combinations of high-voltage and/or high-speed settings due to numerical

199



stability issues.

Kinetic Electrons This is the same kinetic treatment as is used for the ions, and involves

tracking thousands of trajectories in order to compute the density at a given interro-

gation point.

The last two methods, the “clipped” Boltzmann and kinetic electrons, have not reached

convergence for all combinations of voltage and speed settings, due to the non-smoothness

of the electrons’ Vlasov Jacobian matrix. For this reason and due also to time constraints,

some of the graphs shown throughout Section 4.5.3 only contain simulation data for a

subset of the three electron treatments just mentionned. All data points shown, however,

are based on adequately converged, self-consistent simulations.

4.5.3 Validation with Existing Simulation Results

Before using our model for the analysis of our application of interest, we consider some

comparisons with simulations performed by Xu [17]. Ion density profiles and collected ion

current are compared below.

4.5.3.1 Ion Density Profile Validations

Figures 4.47 and 4.48 illustrate the cross-sectional ion density profiles obtained for

various flow speeds along the axis of plasma flow (x axis) for a round conductive cylinder

(r0 = λDe) biased at a normalized potential φ0 = −25. Four different flow speed settings

are shown corresponding to speed ratios Sd = 0.5, 1, 3, and 6 or, alternatively, flow energies

Uev = 0.25Te, Te, 9Te and 36Te.

The agreement between our results and Xu’s results [17] is very good, except perhaps

for some minor discrepancies on the ram side of the cylinders at low speed (Sd = 0.5 and

1).
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Figure 4.47: Ion normalized density profile along the central axis of a round conductive
cylinder (r0 = λDe) biased at a potential of −25Te and immersed in a plasma flowing at
speed ratios Sd = 0.5 and Sd = 1, with corresponding flow energies of Uev = 0.25Te and
Uev = Te. Results are compared against the simulation results published by Xu [17], which
used the Boltzmann approximation for the electrons.
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Figure 4.48: Ion normalized density profile along the central axis of a round conductive
cylinder (r0 = λDe) biased at a potential of −25Te and immersed in a plasma flowing at
speed ratios Sd = 3 and Sd = 6, with corresponding flow energies of Uev = 9Te and Uev =
36Te. Results are compared against the simulation results published by Xu [17], which
used the Boltzmann approximation for the electrons.
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The ion density on the ram-side surface of the cylinder is seen to stay close to the

ambient density up to a relatively close distance from the cylinder. The density then drops

to a value which, for sufficiently large flow speeds (Sd = 3 and Sd = 6), is larger than the

orbital-motion limit of half the ambient density. This is of course attributable to the average

drift velocity of the ion population. In the limit of very high speeds, practically all of the

ion population would be moving to the right at a uniform velocity and would “ram” the

cylinder without having been deflected by its surrounding electric fields, translating into a

density equal to the ambient density on the ram-side of the cylinder’s surface.

On the wake side of the cylinder, the depletion of ions due to plasma flow is seen to

occur very quickly: the wake-side surface density has already dropped to around one-fifth

of the ambient density for a speed ratio Sd = 0.5, and is zero for the three other speed

settings.

4.5.3.2 Ion Current Collection Validations

Figures 4.49 and 4.50 show some comparisons of the ion current dependence on the

flow speed ratio Sd for various probe radii: r0 = 0.2λDe, λDe, 5λDe and 10λDe. Agree-

ment between our simulation data and Xu’s results [17] is very good. Our results show a

similar departure from Godard and Laframboise’s symmetric-profile as was observed by

Xu at intermediate values of the speed ratio. However, they indicate a less pronounced

dip of the current at the critical speed corresponding to the minimum current collection.

This observation is most obvious on the lower graph in Figure 4.49 at the highest bias po-

tential setting, φ0 = −25: Xu’s data goes down to a minimum of 4.4, while our KiPS-2D

simulation results do not go much lower than 5.0.

The non-monotonic nature of these current curves can be explained by the combination

of two opposite phenomena: the decrease of the wake-side current and the increase of the

ram-side current. As the flow speed is increased from zero, the wake-side density drops
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Figure 4.49: Collected ion current as a function of the ion speed ratio Sd , for a round con-
ductive cylinder with probe radii r0 = 0.2λDe and r0 = λDe, immersed in a flowing plasma
with Ti = Te. KiPS-2D results for three different bias potentials (φ0 = −5,−15,−25) are
compared with simulation results published by Xu [17] (asymmetric profile, kinetic code)
and Godard and Laframboise [30] (symmetric sheath approximation).
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Figure 4.50: Collected ion current as a function of the ion speed ratio Sd , for a round con-
ductive cylinder with probe radii r0 = 5λDe and r0 = 10λDe, immersed in a flowing plasma
with Ti = Te. KiPS-2D results for three different bias potentials (φ0 = −5,−15,−25) are
compared with simulation results published by Xu [17] (asymmetric profile, kinetic code)
and Godard and Laframboise [30] (symmetric sheath approximation).
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dramatically, as was seen on the ion density profiles shown in Figures 4.47 and 4.48. The

relatively slow increase in ram-side current collection initially does not suffice to counter

the decrease in wake-side current, which leads to a net decrease of the collected current. As

the plasma speed increases further, the wake-side current eventually reaches zero. Beyond

this point, the net current starts increasing again because its sole contribution is now the

ram-side current, which increases with the incoming beam velocity.

4.5.4 Ionospheric Flow Effects at High Altitudes (H=1500 km)

For the energetic particle precipitation application (also known as the remediation of

radiation belts), we are primarily interested in whether or not we should expect the orbital

velocity of a tether, which can be interpreted as plasma flow as seen from the frame of

reference of the tether, to affect the overall sheath dimensions and ion current collection

properties as determined for a stationary plasma in Section 4.2. For the following study,

we will consider a representative altitude of 1500 km for the operation of an electrodynamic

tether as a scattering device. If the tether were located on an equatorial orbit, placing it at

this particular altitude would allow for remediation of radiation belts in the vicinity of the

L= 1.24 magnetic field shell 19.

4.5.4.1 Flow Energy at Altitude of Interest

At an altitude of 1500 km, Hydrogen is the dominant ion species. If we assume a

circular orbit, and further assume that the orbital velocity U = 7113 m/s [80] completely

translates into plasma motion relative to the spacecraft,20 we may compute the flow energy

19The L-shell level on the equatorial plane is computed as the ratio of the distance from the Earth’s center
to the Earth’s radius. In this case, L= 1500km+6370km

6370km ≈ 1.24.
20This is not rigorously accurate, since the ionosphere rotates around the Earth in the opposite direction,

somewhat reducing the net relative velocity.
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Uev to be

Uev =
miv2

2e
= 0.265 eV, (4.35)

where we have used Hydrogen’s atomic mass mi = 1.67× 10−27 kg, the orbital velocity

U = 7113 m/s, and the constant e= 1.6×10−19 J/eV. Since we assume for the electron and

ion temperature Ti= Te = 0.4 eV (see Table 1.1), the normalized flow energy is Uev
Te
≈ 0.66,

and corresponds to a speed ratio Sd =
√

0.66= 0.81 with respect to the ion thermal velocity.

4.5.4.2 Inspection of the Sheath Structure

In order to address the question of the importance of flow effects, we set the flow

speed at a fixed value Uev = 0.66Te and observe the changes in the structure of the plasma

as we gradually increase the bias potential on the cylinder. Figures 4.51 through 4.64

show some 2-D distributions along with corresponding x-axis cross sections of the net

charge, potential, and density distributions corresponding to cylinder bias potentials of

φ0 = −5,−10,−20,−50,−100,−200 and −300. In addition, overlays of all of the po-

tential and density cross-section profiles are provided in Figures 4.65 and 4.66. Note that

the “clipped Boltzmann” treatment was used for electrons for all these simulations.

One immediately notices that the asymmetries present at low bias potentials do not fade

away as the bias potential increases to values as large as φ0 = −300, a bias potential over

450 times the flow energy. This may be regarded as contrary to “common wisdom”, ac-

cording to which an impinging flow energy as small as Uev
Te
= 0.66 should have a negligible

effect on the sheath structure with bias potentials a few orders of magnitude larger. As Fig-

ure 4.66 shows, the asymmetry in the ion and electron density profiles only gets stronger as

the bias potential is increased. As far as the potential profile is concerned, it only shows vis-

ible signs of asymmetry as one gets closer to the pre-sheath, with the wake-side pre-sheath

zone showing a slightly negative potential, offset from the ram-side pre-sheath potential by
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an amount on the order of the beam energy. This “tail” in the potential profile is still clearly

visible with a bias potential φ0 =−300.

A flow energy equal to 66% of the thermal energy (Uev = 0.66Te) introduces a signifi-

cant asymmetry in the ion population’s Maxwellian velocity distribution in the background

plasma. The resulting asymmetry in the ionic density distribution causes a corresponding

asymmetry in the potential distribution, breaking the conservation of angular momentum

associated with a central force. This has two effects:

• the unpopulated trapped orbits are compressed to the right, away from the cylinder

on the wake side and closer to the cylinder on the ram side;

• the ion-depleting effect of the cylinder’s shadow becomes less important on the ram

side and more important on the wake side.

Both of these effects cause the ion density to keep to the ambient value up to a much closer

distance on the ram side of the cylinder, while stretching the depletion zone further out on

the wake side. One observes that, even though the bias potential is large, the “ion source”

feeding the high-voltage sheath is located in the background plasma, where the potential is

zero. Thus, when assessing whether asymmetries should be expected or not, the important

parameter to compare against flow energy is not the bias potential, but the ion temperature

at the source, in the background plasma. An ion source which has a significant offset (≡

flow speed) in its velocity distribution function will cause significant asymmetries in the

ionic density profiles, especially as the bias potential increases.

Another aspect of interest that is noted from the ionic density profiles is the significant

drop of the ion density on the wake side’s surface of the cylinder, down to a value near

0.15n0 for a bias potential of φ0 = −300. As we will see in what follows, this causes a

reduction of the collected current as compared to the stationary case.
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Figure 4.51: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0 =−5 and immersed in a flowing plasma with flow energy Uev = 0.66Te. Self-
consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the left,
and corresponding x-axis cross-section profiles are shown on the right. Corresponding ion
and electron density distributions are shown in Figure 4.52.
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Figure 4.52: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 = −5 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.51(c).
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Figure 4.53: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0=−10 and immersed in a flowing plasma with flow energy Uev = 0.66Te. Self-
consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the left,
and corresponding x-axis cross-section profiles are shown on the right. Corresponding ion
and electron density distributions are shown in Figure 4.54.

211



−15 −10 −5 0 5 10 15 0

5

10

15
0.2

0.4

0.6

0.8

1

n e/n
0

x/λ
De

 

y/
λ D

e
 −15 −10 −5 0 5 10 15

0.2

0.4

0.6

0.8

1

x/λ
De

n e/n
0

(a) Normalized Electron Number Density ne/n0.

−15 −10 −5 0 5 10 15 0

5

10

15

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/λ
De

 

y/
λ D

e
 

n i/n
0

−15 −10 −5 0 5 10 15
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/λ
De

n i/n
0

(b) Normalized Ion Number Density ni/n0.

Figure 4.54: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 = −10 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.53(c).
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Figure 4.55: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0=−20 and immersed in a flowing plasma with flow energy Uev = 0.66Te. Self-
consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the left,
and corresponding x-axis cross-section profiles are shown on the right. Corresponding ion
and electron density distributions are shown in Figure 4.56.
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Figure 4.56: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 = −20 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.55(c).
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Figure 4.57: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0=−50 and immersed in a flowing plasma with flow energy Uev = 0.66Te. Self-
consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the left,
and corresponding x-axis cross-section profiles are shown on the right. Corresponding ion
and electron density distributions are shown in Figure 4.58.
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Figure 4.58: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 = −50 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.57(c).
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Figure 4.59: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0 = −100 and immersed in a flowing plasma with flow energy Uev = 0.66Te.
Self-consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the
left, and corresponding x-axis cross-section profiles are shown on the right. Corresponding
ion and electron density distributions are shown in Figure 4.60.

217



−40 −20 0 20 40 0

10

20

30

40
0.2

0.4

0.6

0.8

1

y/
λ D

e
 

x/λ
De

 

n e/n
0

−40 −20 0 20 40

0.2

0.4

0.6

0.8

1

x/λ
De

n e/n
0

(a) Normalized Electron Number Density ne/n0.

−40 −20 0 20 40 0

10

20

30

40
0.4

0.6

0.8

1

y/
λ D

e
 

x/λ
De

 

n i/n
0

−40 −20 0 20 40

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x/λ
De

n i/n
0

(b) Normalized Ion Number Density ni/n0.

Figure 4.60: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−100 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.59(c).
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Figure 4.61: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0 = −200 and immersed in a flowing plasma with flow energy Uev = 0.66Te.
Self-consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the
left, and corresponding x-axis cross-section profiles are shown on the right. Corresponding
ion and electron density distributions are shown in Figure 4.62.
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Figure 4.62: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−200 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.61(c).
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Figure 4.63: Poisson–Vlasov consistent solution for an ion-attracting cylinder (r0 = λDe)
biased at φ0 = −300 and immersed in a flowing plasma with flow energy Uev = 0.66Te.
Self-consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the
left, and corresponding x-axis cross-section profiles are shown on the right. Corresponding
ion and electron density distributions are shown in Figure 4.64.
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Figure 4.64: Poisson–Vlasov consistent electron and ion density distributions for an ion-
attracting cylinder (r0 = λDe) biased at φ0 =−300 and immersed in a flowing plasma with
flow energy Uev = 0.66Te. These density profiles constitute the output of the Vlasov solver
and are subtracted to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.63(c).
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Figure 4.65: Set of curves of the axial potential profiles corresponding to various bias
potentials for a one-Debye-length-radius round cylinder immersed in a flowing plasma with
flow energy Uev = 0.66Te. The profiles are taken along the axis of the flow.

4.5.4.3 Plasma Flow Effects on Sheath Structure and Dimensions

One wonders what the overall effect of this asymmetric distribution will be on the

sheath structure and size, since the main parameter of interest for charge precipitation ap-

plications is the overall sheath size. Using the concept of effective sheath area As which we

defined in Section 4.3.5, we now proceed to a similar analysis as that which was performed

in Section 4.3.6 for the two-cylinder configuration.

Figure 4.67 depicts the variation of the effective sheath area ratio, defined by (4.27), as a

function of bias potential, for a round cylinder with a radius r0= λDe immersed in a flowing

plasma with flow energy Uev = 0.66Te. The plot suggests that the effective sheath ratio

stabilizes near half (50%) of the stationary effective sheath area, and there is no indication

that this ratio would increase back to higher levels at larger bias potentials. However,

simulations should be performed at higher bias potentials to confirm the observed trend. It
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Figure 4.66: Set of curves of the electron and ion axial density profiles corresponding to
various bias potentials for a one-Debye-length-radius round cylinder immersed in a flowing
plasma with flow energy Uev = 0.66Te. The profiles are taken along the axis of the flow.
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Figure 4.67: Effective sheath area ratio RAs as a function of normalized bias potential for
an ion-attracting single round cylinder immersed in a flowing plasma with flow energy
Uev = 0.66Te. The cylinder has a radius r0 = λDe. The effective sheath area ratio is the
ratio of the sheath area obtained with a flowing plasma to that obtained at the same bias
potential in a stationary plasma.

should be noted that this 50% reduction of the effective sheath area really corresponds to

about a 30% reduction of the effective sheath radius, as compared to the non-flowing case

(1−
√

0.5≈ 0.3).

Figure 4.68 depicts the variation of the cylinder’s surface charge as a function of bias

potential. The displayed graph is normalized with respect to the surface charge held by an

identical cylinder immersed in a stationary plasma. The excess surface charge is consistent

with the reduced effective sheath areas shown in Figure 4.67, since they are directly related

through (4.26), our definition of the effective sheath area. The surface charge peaks to a

value of about 13.2% above the stationary surface charge at φ0 = −250, and then starts

decreasing slowly.
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Figure 4.68: Ratio of surface charge to the “stationary” surface charge as a function of
normalized bias potential, for an ion-attracting single round cylinder immersed in a flowing
plasma with flow energy Uev = 0.66Te. The cylinder has a radius r0 = λDe.

4.5.4.4 Plasma Flow Effect on Ion Current Collection

Figure 4.69 depicts the variation of the ion current ratio as a function of normalized bias

potential φ0. This “current ratio” is simply the ratio of the current collected with flow, Iflow,

to the current collected without flow, Inoflow, for a given bias potential. The ratio is seen

to drop below 0.7 and possibly follows an asymptotic behavior with an asymptote of about

0.65. This is consistent with the very low ionic density observed in Section 4.5.4.2 on the

wake side of the cylinder’s surface. This current reduction is actually a unique feature of

low flow energies, since as the lower graph in Figure 4.49 shows, a current reduction only

occurs for a limited range of flow speeds, beyond which current enhancement becomes the

norm.

For the particle precipitation application, the reduction of the sheath area observed in

Section 4.5.4.3 will therefore be somewhat compensated by a reduction of the collected ion

current. This implies that, for a given power budget, the bias potential could be set higher
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Figure 4.69: Current ratio as a function of normalized bias potential for an ion-attracting
single round cylinder immersed in a flowing plasma with flow energy Uev = 0.66Te. The
current ratio is defined as the ratio of the collected current to the current that would be
collected by an identical cylinder immersed in a stationary plasma. The cylinder has a
radius r0 = λDe.

in a flowing plasma than in a stationary plasma for equal current collection. The higher bias

potential setting in the flowing plasma might help gaining back some or all of the “lost”

sheath area.

4.6 Flow Effects on Electron-Attracting Round Cylinder

In this section, we discuss the effect of plasma flow on sheath structure and current

collection to electron-attracting round cylinders. We concentrate on the same speed regime

as in Section 4.5, that is, velocities U much smaller than the electron thermal velocity. Thus,

any flow effect on the electron current collection is indirect, since the electron population is

not drifting for all practical purposes. The electron density distribution and electron current

collection can only be affected indirectly by the potential asymmetries induced by the ion
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flow.

In the following analysis, we will only consider a single value of the normalized bias

potential, φ0 = 20, and study the effect of flow speed on the sheath structure and current

collection. We will then compare the simulated electron current collection to that observed

experimentally in Chapter 3.

4.6.1 Potential and Density Profiles

In Figures 4.70 through 4.77, we show some examples of plasma profiles pertaining to

an electron-attracting round cylinder biased at φ0 = 20 for various flow energies spanning

from Uev = 0.2Te to Uev = 1.5Te. The self-consistency of the results is illustrated by the

fact that the input and output net charge density distributions �ρin and �ρout are very close to

one another.

Although the potential profile corresponding to the lowest flow setting of Uev = 0.2Te

(shown in Figure 4.70) only shows what appears to be a minor asymmetry, a significant

effect is seen on both density profiles, but especially on the electron density profile (the

attracted species). The latter shows, on the ram side of the cylinder, a quasi-absence of

the usual density drop associated with the shadowing effect and angular momentum limi-

tations, and a deepening of the density drop on the wake side. The asymmetry allows more

electrons to penetrate closer to the cylinder on the ram side, while increasing the shadowing

effect of the cylinder on the wake side due to an increased focusing of the shadowed tra-

jectories. At Uev = 0.2Te, the plasma flow is not sufficiently energetic to prevent electrons

from reaching the wake-side surface of the cylinder, which is why a near-OML electron

density (just short of half the ambient density) is seen in Figure 4.71 for both the ram and

wake sides of the cylinder.

As the flow speed increases to higher values, several observations can be made:
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Figure 4.70: Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0 =
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy Uev = 0.2 Te.
Self-consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on
the left, and corresponding x-axis cross-section profiles are shown on the right. Ion and
Electron density dist. are shown in Figure 4.71.
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Figure 4.71: Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in a flowing plasma
with flow energy Uev = 0.2 Te. These density profiles constitute the output of the Vlasov
solver and are combined to form the output net charge density profile �ρout = e(�ni−�ne)
shown in Figure 4.70(c).
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Figure 4.72: Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0 =
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy Uev = 0.5 Te.
Self-consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on
the left, and corresponding x-axis cross-section profiles are shown on the right. Ion and
Electron density dist. are shown in Figure 4.73.
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Figure 4.73: Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in a flowing plasma
with flow energy Uev = 0.5 Te. These density profiles constitute the output of the Vlasov
solver and are combined to form the output net charge density profile �ρout = e(�ni−�ne)
shown in Figure 4.72(c).
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Figure 4.74: Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0 =
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy Uev = Te. Self-
consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on the left,
and corresponding x-axis cross-section profiles are shown on the right. Ion and Electron
density dist. are shown in Figure 4.75.
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Figure 4.75: Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in a flowing plasma
with flow energy Uev= Te. These density profiles constitute the output of the Vlasov solver
and are combined to form the output net charge density profile �ρout = e(�ni−�ne) shown in
Figure 4.74(c).
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Figure 4.76: Poisson–Vlasov consistent solution for an electron-attracting cylinder (r0 =
λDe) biased at φ0 = 20 and immersed in a flowing plasma with flow energy Uev = 1.5 Te.
Self-consistency is shown by the similarity of ρin and ρout. 2-D solutions are shown on
the left, and corresponding x-axis cross-section profiles are shown on the right. Ion and
Electron density dist. are shown in Figure 4.77.
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Figure 4.77: Poisson–Vlasov consistent electron and ion density distributions for an
electron-attracting cylinder (r0 = λDe) biased at φ0 = 20 and immersed in a flowing plasma
with flow energy Uev = 1.5 Te. These density profiles constitute the output of the Vlasov
solver and are combined to form the output net charge density profile �ρout = e(�ni−�ne)
shown in Figure 4.76(c).
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• A potential depression (below 0 V) appears on the wake side of the cylinder, which

gets deeper with increasing flow energy. This acts as a potential barrier which pre-

vents some electrons coming from the right from reaching close to the cylinder.

• The ion number density plateaus longer on the ram side, due to its increased inertia

associated with the increasing flow energy.

• Since quasi-neutrality must be satisfied at sufficiently large distances from the cylin-

der’s surface, the electron number density also plateaus longer on the ram side, before

dropping to half the ambient density on the ram-side of the cylinder’s surface. The

mechanism that allows this is the focusing of leftward-directed electrons onto the

ram-side potential “bump”.

• The bottom level of the wake-side dip in the electron number density goes deeper

as the flow energy increases, which is due to the repelling effect of the wake-side

potential depression, preventing some electrons from approaching the cylinder from

the wake side.

• The wake-side surface electron density drops below the OML value to values below

half the ambient density. This effect does not occur as quickly as the decrease of

the previously described “wake-side dip level density” because it is countered by the

geometrical concentration of electron current.

4.6.2 Electron Current Collection

We now turn to the analysis of electron current collection in a flowing plasma. Fig-

ure 4.78 shows the dependence of electron current on flow energy. It can be seen that

the amount of collected electron current goes down with increasing flow energy. This can

be explained by the action of the previously described wake-side potential barrier which
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Figure 4.78: Collected Electron Current Ratio Ie/Ioml as a function of the normalized flow
energy Uev/Te (φ0 = 20, r0 = λDe).

blocks electrons with insufficient energy from accessing the vicinity of the cylinder from

the wake side. Since the potential barrier grows with increasing flow energy, the collected

current drops accordingly. On the ram side, the electron current is just below the OML

level (as can be inferred from the electron density profiles), so that the decrease in electron

current is wholly attributed to the growth of the wake-side potential barrier.

Now, as the reader may recall from Chapter 3, our experimental measurements have led

us to conclude that there is a significant enhancement of the electron current with respect to

the orbital motion limit, contrary to what our simulation results indicate here. Figure 3.8 (a)

indeed indicates strong enhancements of about 25% at φ0 = 20 and 40% at φ0 = 100 for

the reference cylinder’s collected electron current with respect to OML, when placed at

the closest position with respect to the plasma source, where a large fraction of the ion

population was determined to be high speed ions with an energy of about 25 eV, or 13.9Te.

The reduced enhancement seen at 160 cm, along with the absence of any enhancement

at 300 cm, re-enforce our confidence that the strong enhancement observed at 75 cm is
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indeed a consequence of the plasma flow, as opposed to an artifact of the measurement

errors involved in the determination of the plasma density for example.

If we assume that the observed enhancement was real, then there must be some addi-

tional important physics not included in our kinetic model that could potentially explain it.

Let us first ask the question of how much electron collection is possible given the assump-

tions used in our kinetic model. Following are two key facts for this discussion:

1. the plasma is assumed collisionless, and therefore only collisionless trajectories con-

nect the electron velocity distribution at a given point (r,θ) in space with a normal-

ized potential φ = V−Vp
Te

to the background plasma (r→ ∞ and φ = 0);

2. the electron population has no drift component in the background plasma, for all

practical purposes, because the electron thermal velocity vthe is much larger than

the drift velocity U . The background electron population (the source) can therefore

be accurately represented by a pure Maxwellian distribution, as given by (2.4) with

U = 0.

Given the collisionless assumption and the fact that the electrons are a stationary species,

we conclude that, in our kinetic simulations, the electron density at any position within

the potential structure cannot exceed the ambient density n0, nor can the collected electron

current to a probe exceed the orbital motion limit, as we show in Chapter 1 in accordance

with a proof given by Laframboise [6].

We hereby propose a possible mechanism for the experimentally observed current en-

hancement. As was seen in the collisionless self-consistent potential structures shown in

Figures 4.70 through 4.76, the electric potential stabilizes to a relatively large value on the

ram-side edge of the computational domain, which is on the order of the beam energy Uev.

The potential must therefore slowly drop from this relatively large potential down to zero
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(the plasma potential) over a very large distance, since the electric field appears to already

be very low at the outer boundary of the computational domain, as expected within the

pre-sheath zone. Out at some distance on the x axis in the ram direction, the electric field

will have dropped to such a low level that some collisional forces would start dominating

electron behavior, even though the local potential would still be at a non-negligible fraction

of the electron temperature. This is unlike the symmetric stationary problem, in which the

electric potential drops sufficiently fast that it reaches a very small fraction of Te before

the electric field has dropped to a sufficiently low level to allow some collisional forces to

dominate electron trajectories.

Mathematically speaking, we may compare the stationary and flowing cases by consid-

ering the asymptotic forms that the potential profile may take along the x axis, on the ram

side. In the stationary case, we have the asymptotic result φ = φ(Rref)
Rref

r , for sufficiently

large values of r (see Section 2.3.2.1), where Rref is some reference radius. Our flowing

results seem to indicate a slower asymptotic drop of the potential on the ram side, i.e.,

φ = φ(Rref)
(

Rref
r

)k
, with k < 1. The normalized radial component of the electric field is

thus given by

Enr =−
∂φ
∂ r
= φ(Rref) k

Rk
ref

rk+1 , (4.36)

which should be compared against the stationary electric field Enr,n f = φ(Rref)
Rref
r2 . The

ratio of the “flowing” to “stationary” electric field expressions is given by

Enr(r)
Enr,n f (r)

= k

(
Rref

r

)k−1

< 1 for r > Rref and k < 1, (4.37)

which is clearly less than one as indicated, meaning that the radial component of the electric

field is weaker in the case of a flowing plasma.

In the collisional zone of the pre-sheath, where collision forces dominate electric field

forces, collisions gradually re-thermalize the electron population as it is accelerated down
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the shallow potential well leading to the “collision-free” zone. In the process, the electron

temperature may rise by a small amount (i.e., collisional heating), but, more importantly,

there is an increased concentration of electrons on the ram-side of the collisional zone,

where the potential is positive (and electron-attracting). In other words, the incoming elec-

tron density at the outer boundary of the collision-free zone is larger than the ambient

density by an amount that depends primarily on the potential level on that boundary.21 A

fair approximation for this potential dependence is given by the Boltzmann approximation

ne≈ n0 exp(φ(r)), where n0 is the ambient plasma density, φ is the local normalized poten-

tial V/Te, and Te is the electron temperature, which we assume here has not changed, i.e.,

no significant heating has occurred. This collisional concentration process would thus lead

to an increased influx of electrons on the ram side of the sheath, and therefore an increased

collected current primarily on the ram side of the cylinder. If we estimate that the electron

flux to the ram side of the cylinder’s surface will increase by a factor corresponding to the

increased electron density at the outer edge of the collision-free zone, and further assume

that no electron collection takes place on the wake side at sufficiently large flow energies

due to the repelling effect of the wake-side potential depression, we may approximate the

enhanced electron current collection to a small cylinder by

Ie,flowing

Ie,stationary
≈

1
2

exp
(
φcollision boundary

)
. (4.38)

According to this crude model, a 40% enhancement such as we have observed experi-

mentally for a bias potential φ0 = 100 and flow energy Uev = 25Te would correspond to

a normalized potential at the frontier between the collisional and collision-free zones of

φcollision boundary ≈ 1, that is, a potential on the order of electron temperature. Given the

ram-side pre-sheath potentials that were obtained in the simulation results shown in Fig-

21Note that we should more generally refer to a transitional zone between the collisional and collision-free
zones rather than a well-defined boundary.
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ures 4.70 through 4.77 which were applicable to low-speed flows from Uev = 0.1Te to

Uev = 1.5Te, a value of 1 for the ram-side pre-sheath potential does seem quite reasonable

for such a large flow energy as Uev = 13.9Te.

The implementation of a dual model which includes both collision-free and collisional

zones has previously been presented [77] and will require further refinement to accurately

predict the observed enhancements.

4.7 Outline of Simulation Resource Requirements

In this section we give a coarse overview of the costs, in terms of computer resources

and computing time, of the kinetic simulations that were performed as part of this work.

A detailed “operation count” has yet to be performed for both the 1-D cylindrical imple-

mentation (KiPS-1D solver) and full 2-D implementation (KiPS-2D solver), but we can

nonetheless provide an overall description of the resource costs involved.

4.7.1 1-D Cylindrical Implementation (KiPS-1D)

The KiPS-1D solver was implemented using Matlab™ and Fortran 90, as described

in Section 2.7. It runs on a single computer using a single processor, and uses a relatively

small amount of random-access memory (RAM), on the order of a few tens of megabytes,

well below the amount of available RAM on our Linux workstation, which has 4 GB of

RAM.

In order to illustrate the computing time requirements for KiPS-1D, we have run KiPS-

1D with r0 = λDe for several bias potential values from φ0 = −10 to φ0 = −12800. The

number of unknowns (samples) required to properly sample the problem increases with the

value of the bias potential. Figure 4.79 shows a plot of the number of iterations required for

convergence as a function of the number of unknowns, along with a plot of the CPU pro-
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Figure 4.79: Number of iterations required for convergence and CPU time as a function
of the number of unknowns in KiPS-1D simulations involving a cylinder radius of r0 =
λDe. The number of unknowns was modulated by changing the bias potential, since higher
potentials demand a larger number of grid samples.

cessing time required on our Linux workstation as a function of the number of unknowns.

One can see that the type of 1-D simulations that we have run as part of this project only

has modest computing time requirements, since the longest simulation on this graph took

less than 150 seconds.

Figure 4.80 shows that, when the number of unknowns is sufficiently low, the comput-

ing time scales roughly linearly with the number of iterations required for a given problem.

It appears that this behavior breaks down when the number of unknowns becomes larger,

which is likely a consequence of the increased time required to invert the linearized system

at each iteration.
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in KiPS-1D simulations involving a cylinder of radius r0 = λDe. The number of unknowns
was modulated by changing the bias potential, since higher potentials demand a larger
number of grid samples.

4.7.2 2-D Cylindrical Implementation (KiPS-2D)

As was discussed in Section 2.7, the KiPS-2D solver is much more computationally

demanding. As the reader may recall from Section 2.7, the Poisson solver and Tikhonov-

regularized Newton iterative processes run on a single Linux workstation (2.4 GHz dual-

Xeon), while the Vlasov solver uses a collection of about 150 slave nodes running on a

dynamically-configured pool of Sun Blade™ 1000/1500 workstations in order to compute

the plasma density samples.

4.7.2.1 Processing Time

Although a detailed, careful analysis of the computing time requirements has not been

performed for KiPS-2D, we present in Figure 4.81 some timing data pertaining to the simu-
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Figure 4.81: Simulation time required as a function of the magnitude of the normalized
bias φ0, for the KiPS-2D simulations shown in Section 4.5.4, with r0 = λDe, Uev = 0.66Te,
and one mesh refinement.

lation results shown in Section 4.5.4. Bare in mind that at least two other KiPS-2D simula-

tions were running simultaneously, competing for resources. Thus, the actual time spent for

these simulations would correspond to about one third of the values shown in Figure 4.81

or even less.

Generally speaking, the primary parts of the algorithm that contribute to the computing

time in KiPS-2D are the following (not necessarily in that order):

1. the Vlasov solver, which uses all 150 slave workstations to compute the density sam-

ples based on several thousand particle trajectories;

2. building the Poisson-Vlasov Jacobian matrix, as described by equation (2.115);

3. performing the Tikhonov regularization, which includes the selection of the regular-
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ization parameter λ in (2.133).

A future thorough assessment of the computing requirements should include separate tim-

ings for each of those three major computational hurdles.

For the time being, we have been able to determine that the computational bottleneck

for KiPS-2D is different depending on the regime of operation. When the number of mesh

nodes is relatively small (i.e. 500 or less), the bulk of the time is spent in the Vlasov solver

(step 1), while steps 2 and 3 amount to a small fraction of the computing time; this is the

most efficient mode of operation. On the other hand, when the number of mesh nodes

becomes somewhat larger (1000 and above), the matrix manipulations involved in steps

2 and 3 now require the most computing time. The shift between these two regimes is

apparent in Figure 4.81, and seems to occur around a bias potential |φ0| = 100. The larger

bias potential values require more mesh refinement near the cylinder and therefore cause

a dramatic surge in the number of mesh nodes. For example, at |φ0| = 250 about 1800

mesh nodes are required, which implies the manipulation of matrices with dimensions of

1800×1800.

Thus, in its current state the 2-D solver is optimal for use at moderate bias voltages.

Future modifications should seek to minimize the bottleneck associated with high mesh

density in the vicinity of biased conductors. This could be done by using alternate rep-

resentations for the Poisson solver, over small areas near high-voltage conductors, which

are not based on a full discretization, but instead only discretize the perimeters surround-

ing those high-field areas. Such an approach would assume a negligible effect of the local

space charge in high-field areas near high-voltage conductors.

Another, rather simple improvement could be done to reduce the computing time in-

volved in step 2 above. The present implementation uses full matrices for JV when comput-

ing the Poisson-Vlasov Jacobian matrix JPV , which results in a pure matrix-matrix product
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involving full matrices. However, as is explained in Appendix E, the approximation used

for the Vlasov Jacobian JV is merely a diagonal matrix. One could take advantage of this

fact in order to significantly speed up the matrix-matrix product involved in computing the

Poisson-Vlasov Jacobian matrix.

4.7.2.2 Random-Access Memory Requirements

The RAM requirement on slave nodes is very reasonable, typically on the order of ten

to a few tens of megabytes, and therefore does not constitute a bottleneck. On the master

workstation, RAM requirements can sometimes reach as high as 2 gigabytes, when building

very large matrices in problems involving high voltages probes, as described above. This

requirement should be relaxed significantly when the optimizations discussed above are

implemented. However, should the simulation of problems involving tens of thousands

of mesh nodes be required, one would have to consider moving to a 64-bit computing

platform, in order to reach beyond the memory addressing limit of 4 gigabytes 22 imposed

by 32-bit platforms such as the one that was used for this thesis.

22The practical limit is 3 gigabytes on a properly configured Linux kernel due to the operating system
overhead.
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CHAPTER 5

Conclusions and Recommendations for Future Research

Designing bare electrodynamic tethers for propellantless space propulsion or radiation

belt remediation will demand a detailed understanding of the impact of tether geometry

and ionospheric flow on plasma sheath structure and current collection. Geometries are

being sought that improve structural merits and survivability from collisions with microm-

eteroids, while optimizing sheath structure and current collection. Previous research on

sheath structure and current collection has only addressed low-voltage regimes and simple

round cylinders as collectors, whether it be in stationary or flowing plasmas.

5.1 Summary and Conclusions of Research

This research has sought to fill the gaps in the existing literature by investigating,

through both simulation and experimentation, the sheath structure physics and current col-

lection properties of cylindrical collectors with various cross-sectional geometries in sta-

tionary and flowing plasmas.

5.1.1 Self-Consistent Steady-State Kinetic Model

Because no suitable existing model could adequately support the structures and regimes

of interest, a novel computational model was devised to address the problems under con-

sideration. Using kinetic theory, a steady-state kinetic computational model was developed
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which allows for the self-consistent modeling of collisionless, unmagnetized two-species

plasmas in a vast region surrounding an arbitrarily-shaped 2-D conductive object. This

model allows for both stationary and flowing plasmas. Following are some of its main

features:

• it can provide kinetic treatment for both species based on the dynamic sampling of

the velocity distribution function at a finite set of nodes;

• it provides a dynamic, adaptive, unstructured meshing strategy, allowing for the sup-

port of arbitrary 2-D geometries and the adequate resolution of plasma sheath fea-

tures, such as the narrow surge of the net charge density which exists near the sheath

edge in the case of high-voltage biases;

• it allows for the simulation of very large computational domains, based on tailoring

the variable grid size to efficiently accommodate potential and density variations;

• it uses a new approach, called the Progressive Tikhonov-Regularized Newton Method,

to efficiently minimize the Poisson–Vlasov residual in order to approximate the fixed

point of the Poisson–Vlasov operator. This approach is robust to numerical instabili-

ties and quadrature noise and has successfully been used to solve a wide class of 2-D

problems without the need for empirical adjustments;

• it includes a coarse-grained parallel implementation for its Vlasov solver, allowing it

to run on MPMD (Multiple Processors, Multiple Data) parallel architectures.

Based on this model, two solvers were developed: a 1-D cylindrical model, implemented

in a solver called KiPS-1D, and a full 2-D model, implemented in KiPS-2D. The relative

computational simplicity of the 1-D cylindrical model has allowed it to be used exten-

sively to develop a basic set of sheath profiles for high-voltage circular cylinders, after an
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initial validation was performed based on the available literature that covers low bias po-

tential regimes. This also provided a reference for the validation of the more complex 2-D

solver, in addition to the available literature. Several asymmetric problems were simulated

in KiPS-2D, allowing for the characterization of the two-cylinder and solid tape config-

urations, as well as an assessment of flow effects on ion- and electron-attracting round

cylinders.

5.1.2 Experimental Investigation of Electron-Collecting Tether Sam-
ples

An experimental investigation was performed which consisted of measuring electron

current collection to cylindrical, solid tape, and slotted tape electrodynamic-tether samples

in a mesosonic flowing xenon plasma. A Hall thruster was used to simulate a flowing

unmagnetized space plasma in a large 6-m × 9-m vacuum chamber. Solid tape samples

with effective widths spanning from 4.9 to 41.9 Debye lengths, and slotted tapes with

center-to-center line spacings spanning from 1.4 to 13.2 Debye lengths were tested. Several

conclusions were drawn from the analysis of the results:

• plasma flow leads to significant current enhancements over that predicted by the

orbital-motion-limited theory;

• the electron collection efficiency of solid tapes (on a per area basis) decreases as the

width of the tape is increased, consistent with our computer simulations;

• beyond a threshold bias potential close to the beam energy, solid and slotted tapes

both collect more current when oriented transverse to the flow;

• equivalent-width slotted tapes are more efficient electron collectors than solid tapes

on a per area basis;
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• the data suggests that the electron collection efficiency of slotted tapes decreases

with increasing line spacing until a minimum efficiency is attained, beyond which

it is expected to increase monotonically up to the orbital-motion limit expected of

independent lines.

5.1.3 Important Simulation and Experimental Results

Kinetic simulations and experimental investigations have allowed several new results

to be obtained. We describe the major results in the following.

5.1.3.1 Ion-Attracting High-Voltage Single Cylinder in Stationary Plasma

Acceleration of attracted ions into the high-voltage sheath results in a significant deple-

tion of ions within a large portion of the sheath, primarily as a result of flux conservation.

This is the primary mechanism allowing for the creation of relatively large sheath radii,

as compared to what may have been expected from a uniform ion density assumption, for

example. An asymptotic equation relating the normalized bias potential φ0 and cylinder

radius r0 to the effective sheath radius rs was obtained in (4.19) and is repeated here:

2.554

(
rs

λDe

)1.325

ln
rs

r0
=−φ0. (5.1)

5.1.3.2 Interference Effects of Parallel Cylinders

Interference effects between two parallel cylinders were shown to exist for spacings

upward of 20 times the single-cylinder sheath radius, and an optimal spacing equal to the

single-cylinder sheath radius was seen to maximize the overall sheath area to a value equal

to twice the independent single-cylinder effective sheath area (for one value of the bias

potential, φ0 = −320). In addition, for a spacing of half the single-cylinder sheath ra-

dius, current collection is reduced to a minimum of half of the current collected by two

independent cylinders. This is attributed to the existing set of unpopulated collisionless
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paths connecting both cylinders which create voids in the incoming velocity distribution

at the cylinders’ surfaces, thereby reducing the collected current. This particular spacing

is thought to maximize the number of such unpopulated orbits bounded by the cylinders,

hence the minimal current collection.

5.1.3.3 Geometry Effects of the Solid Tape Cylinder

The capacitance-based equivalent circular radius of a solid tape biased at a normalized

bias potential φ0 = −320 was shown to be approximately equal to 0.29w, where w is the

tape width. This result was verified over a large range of tape widths spanning from 1 to

50 Debye lengths, and is slightly higher than a previous asymptotic result of 0.25w [11].

On a per-area basis, solid tapes have a reduced current collection capability as compared

to that of an equal-capacitance circular cylinder. The general character of the departure

of collected current from the orbital motion limit value has been shown to agree, within

experimental uncertainties, with experimental current measurements on solid tapes after

normalizing out flow enhancement effects using data from a reference cylinder.

5.1.3.4 Plasma Flow Effects on Ion-Attracting Cylinder

Flow effects on ion-attracting cylinders were investigated through kinetic simulations

using KiPS-2D. Results indicate that flow energies representing any significant fraction of

the plasma temperature are sufficient to cause significant sheath asymmetries, regardless

of the bias potential applied on the cylinder. In fact, asymmetries were seen to grow with

increasing applied bias potential. For a flow energy of 66% of the thermal energy of the

plasma, results indicate a reduction of the effective sheath radius by about 30% (the sheath

area was reduced by about 50%) at large bias potentials with respect to the stationary case.

The collected current was also reduced by about 30%, which translates into a 30% savings

in terms of power expenditure for a given bias voltage.
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5.1.3.5 Plasma Flow Effects on Electron-Attracting Cylinder

Flow effects on electron-attracting cylinders were investigated through both kinetic sim-

ulations and experimental investigations. Kinetic simulations have shown strong sheath

asymmetries with flow energies on the order of the plasma temperature, along with a re-

duction of the collected electron current attributed to the buildup of a potential barrier for

electrons downstream of the cylinder. Our experimental results, however, have shown a

clear enhancement of electron current collection over the orbital-motion limit for a cylin-

der immersed in a flowing plasma.

Even though this measured current enhancement could not be predicted by our colli-

sionless simulations, the obtained simulated plasma profiles can help interpreting the cause

for the enhancement. The strong elongation of the pre-sheath potential structure, upstream

of the cylinder, points to the possible existence of a collisional zone for electrons with non

vanishing potentials, far upstream from the cylinder, where even weak collisional forces

would dominate electric field forces. The thermalizing effect of these weak collisions over

an extended range where the electric potential is still above zero would cause a concen-

tration of electrons with densities exceeding the ambient density upstream of the cylinder,

providing an increased influx of electrons on the ram side and thereby enhancing the col-

lected electron current. A somewhat analogous explanation of electron current enhance-

ment, which applies in the case of magnetized plasmas, is given by Cooke and Katz [81].

5.2 Recommendations for Future Research

Suggestions for future research can be categorized into 1) computational modeling and

2) experimental testing efforts.
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5.2.1 Computational Modeling

Several problems of interest that have not yet been addressed should be simulated using

KiPS-2D:

1. The two-cylinder configuration should be generalized to allow for the simulation of

an arrangement of N cylinders, and to allow for the comparison of the merits of var-

ious arrangements with the goals of minimizing current collection and maximizing

sheath cross-section, two objectives pertaining to the particle precipitation applica-

tion.

2. Similarly, the slotted tape samples that were investigated experimentally as part of

this thesis should be simulated. This structure consists of a “fence” of four parallel

narrow tapes.

3. The study of ionospheric flow effects on ion-attracting cylinders should be extended

to include larger bias potentials, to verify the apparent asymptotic character of the

sheath area ratio.

Following are some key fundamental improvements to the kinetic model that should be

considered.

1. A more thorough study of the several “trapped” state criteria used for determining

whether a given trajectory is populated should be performed. A more general crite-

ria should be sought, if possible, that would be independent of the geometry under

consideration.

2. At large negative bias voltages it is possible that the ion bombardment to a tether

might cause secondary emission of electrons, causing an increase in the net collected

current. In order to study the possible impact of this effect, support should be added
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in KiPS-1D and KiPS-2D for particle emission from conductive surfaces. A sepa-

rate, first-order initial analysis [82] has shown that, even though secondary electron

emission can contribute a significant amount of electron density near the cylinder’s

surface, its overall effect on the sheath structure should be negligible. The outward

acceleration of the repelled electrons is so important that, due to current conservation,

the secondary-electron density drops very quickly as we move away from the cylin-

der’s surface, to a degree such that the area over which significant electron density

can exist is very small and therefore cannot contribute significantly to space charge.

3. In an effort to better understand and characterize the flow-induced electron cur-

rent enhancement that was observed experimentally, support for weak thermaliz-

ing collisions based on a Krook model should be implemented or, alternatively, a

dynamically-defined collisional zone should be included based upon the local mag-

nitude of the electric field. Some work toward these tasks has already been initiated.

4. Support for periodic time variations could be added to the 1-D cylindrical implemen-

tation, in order to perform a self-consistent study of the effect of periodic excitations

of tether bias potentials. Such excitations may be used to affect the sheath struc-

ture and current collection properties, using the ponderomotive force for example, as

suggested by some analyses of the Oedipus C tethered payload experiment [83].

5. The computationally tractable range of the bias potential in the 2-D model could be

expanded by either one of the following two additions.

• Since the sheath solution is virtually independent of the density samples lo-

cated sufficiently close to a high-voltage conductive surface, one could signifi-

cantly reduce the computational cost of each iteration by excluding such nodes

from the Vlasov density calculations for all iterations but the last one (that is, if
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knowledge of those densities is required at all). This procedure would alleviate

the steep increase in computational cost that results from the stringent require-

ments on mesh density near high-voltage surfaces, which are necessary for the

accurate tracking of trajectories transiting through those zones.

• The implementation of a second-order, piecewise quadratic approximation for

the potential and charge density distribution should be considered. It would en-

tail a re-formulation of the finite-element Poisson solver and a re-formulation

of the semi-analytical trajectory tracking process. This higher-order implemen-

tation would relax the meshing requirements for accurate trajectory tracking,

and thereby enable the solution of more complex problems.

6. Support for magnetic fields should be implemented. Depending on the field’s orien-

tation, this may however imply the need for the representation of three-dimensional

velocity space, which would come at a significant computational cost, but is nev-

ertheless foreseeable for the near future, assuming that the exponential growth of

computing power predicted by Moore’s law [84] continues to hold...

5.2.2 Experimental Testing

Continued experimental testing is necessary for the validation and refinement of the

analytical and computational models that will be used by designers. Following are sugges-

tions of future experimental tests that should be considered.

1. Although our experimental tests of slotted tape samples have allowed us to sample a

few effective gap spacings, they were not sufficient to adequately sample the current

ratio curve shown on Figure 4.39, for example. An ideal test setup to validate this

simulated data would consist of two thin cylinders (wires) which could be mechani-

cally moved to dynamically adjust the spacing between them, therefore providing a
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means to adequately sample the relationship of current ratio as a function of spacing

using a dynamic selection of the spacing.

2. The sheath structure forming around one or several thin cylinders biased at a high

voltage is of primary interest for this research, and has only been investigated through

simulations as part of this thesis. The experimental validation of the sheath profiles

obtained in this thesis is instrumental for the future use of our kinetic model for

design purposes. A low-voltage bias probe could be used to sample the electron

density structure around such a high-voltage system in order to determine a measure

of the sheath structure and dimensions. This could then be used to validate the model.

One of the difficulties in devising such a system would be to minimize the perturbing

effect of the probe, but such a perturbation should not be critical in regard of the high

voltages involved in the sheaths under study.

3. The existence of the sheath asymmetries which have been identified through simula-

tions even with moderate flow energies (66% of thermal energy) should be assessed

experimentally. This could be done by measuring the electron density profile using

the low-voltage bias probe system described above, or, preferably, using a different

measurement method that would obtain a more direct measurement of the ion density.
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APPENDIX A

Nomenclature

The mksA (meter–kilogram–second-Ampère) units are used throughout this work, ra-

ther than cgs (centimeter–gram–second). The following is a listing of the major symbols

and variables used in this work, along with a brief description and the appropriate unit.

Nomenclature Description (Unit)

α Direction of particle velocity vector (rad)
αc Angle between successive search directions (rad)
αt

c Target value for αc (rad)
β Step size of iterative resolution procedure
αi Direction of particle velocity vector upon entry into the compu-

tational domain (rad)
γ(n) Specified decay rate of the nth circular harmonic of the exterior

potential
Γe,i Electron/ion particle flux (s−1m−2)
(∆V )max Absolute mesh error tolerance on electric potential
∆x Center-to-center spacing between two cylinders (m)
ε0 Vacuum permittivity (F/m)
θvar Angular displacement (rad)
κ Particle kinetic energy (eV)
κrange Kinetic energy integration range (in terms of temperature T)
λ Tikhonov regularization parameter
λDe Debye length (m)
µb Fraction of high-speed ions
Π Energy functional of FEM-based Poisson solver
Π1 Energy functional associated with Laplace fields
Π2 Energy functional associated with exterior fields
Π3 Energy functional associated with space charge
Πdiscrete Numerical approximation of Π
ρ Net charge density (C/m3)
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Nomenclature Description (Unit)

ρn Normalized net charge density
�ρ Vector containing the net charge density samples at all mesh

nodes (C/m3)
ρin(x,y) Input charge density distribution (input of Poisson functional)
ρout(x,y) Output charge density distribution (output of Vlasov functional)
�ρin Vector form of the input charge density distribution
�ρout Vector form of the output charge density distribution
σi ith singular value of the preconditioned system matrix A′

�σ Vector containing the singular values of the preconditioned sys-
tem matrix A′

τrel Relative quadrature tolerance on number densities
τabs,E Absolute tolerance on energy-quadrature error
τmesh,abs Absolute mesh error tolerance
τmesh,n Absolute mesh error tolerance on the density distribution, rela-

tive to its total range
τmesh,V Absolute mesh error tolerance on the electric potential distribu-

tion V (r,θ), relative to its total range
τmesh,ρ Absolute mesh error tolerance on the net charge density distri-

bution ρ(r,θ), relative to its total range
φ Normalized potential
φ0 Normalized bias potential
φcollision boundary Normalized potential at the frontier between collisional and

collision-free zones
a0i,ani,bni Quadrature coefficients used to approximate the Fourier series

coefficients of the potential profile on the outer boundary
�a0,�an,�bn Vector form of the quadrature coefficients a0i,ani,bni

A0 Cylinder’s cross sectional area (m2)
An Normalized area (in terms of λ 2

De)
As Effective sheath area (m2)
As,1 Single-cylinder effective sheath area (m2)
As,virtual Virtual effective sheath area (m2)
A∞ Surface of the domain exterior to the computational zone
A System matrix
A′ Preconditioned system matrix
�b Right-hand side of the linearized system of equations
b̃ Transformed Poisson–Vlasov residual
B Magnetic field intensity (Tesla)
Dp Diagonal right preconditioner
e Constant (1.6×10−19 J/eV)
E Transverse energy of a particle (J)
Ekα ,kE = Ev(kα ,kE) Total energy of quadrature samples (eV)
Emin Minimum transverse particle energy (J)
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Nomenclature Description (Unit)

Enr Normalized radial component of the electric field under flowing
conditions

Enr,n f Normalized radial component of the electric field for a non-
flowing plasma

Er,Eθ Directional total energy components (eV)
Ern nth azimuthal mode of the radial electric field on the outer

boundary
Ev Total particle energy (eV)
Ev,min,Ev,max Minimum and maximum total particle energies in quadrature

integration (eV)
fE(E) 1-D total energy distribution
f (vx,vy) 2-D velocity distribution
fi(vxi,vyi) 2-D velocity distribution at the entry point on the outer bound-

ary of the computational domain
fP Poisson functional
fPV Poisson–Vlasov functional
fV Vlasov functional
g(κ,α) 2-D directional kinetic energy distribution
g(Ev,α) 2-D directional total energy distribution
h Local grid size for 1-D model
hgoal Target local grid size for 1-D model
H Altitude (m)
I Total collected current (A)
Id Hall thruster discharge voltage (volts)
Ie Collected electron current (A)
Ii Collected ion current (A)
Iim Hall thruster inner magnet current (A)
Iindep Current collected on a single independent cylinder (A)
Iom Hall thruster outer magnet current (A)
In Normalized collected current
Ioml Orbital motion limited current (A)
Irefcyl Current collected to the reference cylinder (A)
Itape Current collected to a thin tape (A)
Itether Current flowing along tether (A)
Ith Thermal current (A)
Je,i Electron/ion current density (A/m2)
Jth Thermal current density (A/m2)
JP Jacobian matrix of the Poisson solver
JV Jacobian matrix of the Vlasov Solver
JPV Poisson–Vlasov Jacobian matrix
K Stiffness matrix of the FEM-based Poisson formulation
L Angular momentum (kg m2/s)
Lr Special Definition given on page 52 (kg m2/s)
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Nomenclature Description (Unit)

ṁa Hall thruster anode flow rate (sccm)
ṁc Hall thruster cathode flow rate (sccm)
me,i Electron/ion mass (kg)
me,n,mi,n Normalized electron/ion mass
mod() Modulo function
Morb Maximum angular displacement (number of multiples of 2π)
Mrosc Maximum number of radial oscillations
Msegcross Maximum number of intersections of any single edge
n0 Background plasma number density (m−3)
ne,i Electron/ion number density (m−3)
nest Numerical estimate of number density (m−3)
�ne,i Vector containing the Electron/ion number density samples at

all mesh nodes (m−3)
N Number of mesh nodes (also the number of unknowns)
NE(kα) Number of energy quadrature samples for the kth

α α-integral
Nmodes Number of azimuthal modes used to represent the outer bound-

ary potential profile
Nob Number of potential samples on the outer boundary
Nr Number of mesh refinement steps
qe,i Electron/ion charge (C)
qe,n,qi,n Normalized electron/ion charge
Q Loading matrix of the FEM-based Poisson formulation
Q Linear surface charge (C/m)
Qn Normalized surface charge
Qn,1 Single-cylinder normalized surface charge
r0 Round cylinder radius (m)
rG Gyroradius (m)
rGL Larmor gyroradius (m)
rM Radius of the outer boundary of the computational domain (m)
rs Effective sheath radius (m)
rs,1 Effective sheath radius of a single independent cylinder (m)
RAs Effective sheath area ratio
Req Equal-charge equivalent circular cylinder radius (m)
Sd Ion speed ratio
Te,i Ambient electron/ion temperature (eV)
Te,n,Ti,n Normalized ion/electron temperature
Tslow Temperature of a low-energy, non-flowing ion population (eV)
U Plasma flow velocity (m/s)
Uev Plasma flow energy (eV)
vr,vθ Particle velocity components in cylindrical coordinates (m/s)
vx,vy Particle velocity components in Cartesian coordinates (m/s)
vxi,vyi Particle velocity components upon entry intro the computa-

tional domain (m/s)
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Nomenclature Description (Unit)

vx f ,vy f Particle velocity components at the interrogation point within
the computational domain (m/s)

vxn,vyn Normalized particle velocity components
vx∞,vy∞ Particle velocity components in the background plasma, away

from the perturbation as r→ ∞ (m/s)
V Potential (volts)
V0 Bias potential (volts)
�V Vector containing the potential samples at all mesh nodes (volts)
�Vb Vector containing the potential samples on the outer boundary

(volts)
Vavg,fit Average bias potential over which the ion saturation best fit is

performed as part of the Langmuir probe data analysis
Vc Hall thruster cathode voltage (volts)
Vd Hall thruster discharge voltage (volts)
Vedge Electric potential at the entry point of the particle on the outer

boundary
Vemf Potential drop along an electrodynamic tether due to the net ef-

fect of motional electromotive force combined with an on-board
voltage source (volts)

Vhtr Hall thruster Heather voltage (volts)
Vp Plasma potential (volts)
Vxn nth azimuthal mode of the electric potential on the outer bound-

ary (volts)
�x Linearized system unknowns
x̃ Transformed system unknowns
xi,yi Particle coordinates upon entry into the computational domain

(m)
x f ,y f Coordinates of the interrogation point within the computational

domain (m)
xn,yn Normalized coordinates (in terms of the Debye length)
wk Quadrature weights, 1-D Vlasov solver
wkα ,kE Quadrature weights, 2-D Vlasov solver
z(t) = zAt2+ zBt+ zC Quadratic equation of the intersection of a sub-trajectory with a

mesh segment
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APPENDIX B

Acronyms

Although most of the acronyms used are defined in the text, we have listed them here

for convenience.

Acronym Description

BAMG Bidimensional Anisotropic Mesh Generator
CAEN Computer Aided Engineering Network
CPU Central Processing Unit
FEM Finite Element Method
HV High Voltage
INRIA Institut National de Recherche en Informatique et en Automatique
ISS International Space Station
LIF Laser Induced Fluorescence
LP Langmuir Probe
LVTF Large Vacuum Test Facility
NPACI National Partnership for Advanced Computational Infrastructure
PEPL Plasmadynamics and Electric Propulsion Laboratory
RHS Right-Hand Side
KiPS-1D Kinetic Plasma Solver, 1-D
KiPS-2D Kinetic Plasma Solver, 2-D
OML Orbital Motion Limit
MFP Mean Free Path
MPMD Multiple Processors, Multiple Data
PIC Particle-In-Cell
PVM Parallel Virtual Machine
SHV Super High Voltage
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APPENDIX C

2-D Poisson Solver: Detailed Expression of the Loading
Matrix Elements

Section 2.3.2.2.2 includes a derivation of the 2-D finite element method used for our

Poisson solver. The definite integral given by (2.63) was performed using Matlab™, which

allowed us to obtain an analytical expression for each of the 3 components of Qn’s matrix

elements. The resulting expression is(
(Qn)i j

)
ie
=
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96∆2×{(
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where the coordinates of the vertices corresponding to edge ie are simply noted as (x0,y0)

and (x1,y1) to avoid making the expression any heavier.
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APPENDIX D

Adaptive Integration Using Trapezoidal Quadrature

Both the 1-D and 2-D implementations of the Vlasov solver use a common adaptive

quadrature algorithm in order to numerically evaluate integrals with a given finite accuracy.

We describe here the implementation of this adaptive quadrature technique.

A low-order quadrature integration scheme, the trapezoidal rule [48], was chosen in-

stead of higher-order quadrature schemes, because it is more suitable for the integration of

functions comprising discontinuities, as discussed in Section 2.4.2.3.2.

In order to adequately capture most existing discontinuities in the functions of interest,

the 1-D domain of integration is first sub-divided into a set number of of sub-intervals The

integral over each sub-interval is then performed using both 2-point and 3-point trapezoidal

rules [48], and the difference between the two results is retained as an estimate for the local

quadrature error.

The sub-intervals are then refined, in decreasing order of their respective quadrature

error estimates, by doubling the number of samples and re-evaluating the sub-integral us-

ing trapezoidal quadrature applied to the new set of samples. This refinement procedure

continues until the total absolute error estimate (the sum of the errors on each sub-interval)

becomes smaller than a given absolute tolerance τabs, or until the total relative error esti-

mate becomes smaller than a given relative tolerance τrel.
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APPENDIX E

Linearization of the 2-D Vlasov Solver

The basic philosophy underlying the linearization of the 2-D Vlasov operator is very

similar to that presented in Section 2.4.1.2 for the one-dimensional Vlasov operator. How-

ever, approximations must be made in the process that were not necessary in the 1-D case.

The reason for that is that no information can be inferred regarding the potential depen-

dence of the “shadow” boundaries of the directional-energy distribution function, i.e., the

boundaries at the interface between the populated regions and the regions that are unpopu-

lated due to obstruction (shadowing) by conductive surfaces.

Nonetheless, even partial information on the gradient can be sufficient to provide proper

search directions that can be used in order to reduce the residual term and eventually lead

to a self-consistent solution. Two alternative approaches have been successfully used in

approximating the gradient and are described in the following. The first method, presented

in section E.1, is appropriate for use with stationary plasmas, regardless of geometry. The

second method, presented in section E.2, can be used for both stationary and flowing plas-

mas. Although the second method can provides a continuum of results from the stationary

regime through high-speed regimes, the first method leads to faster convergence for sta-

tionary cases.
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E.1 Gradient Approximation for Stationary Plasmas

In stationary plasmas, each sample of the directional-energy distribution function only

depends on total energy. Since energy is the dependent variable in the integral given

by (2.99), the total value of the integral is only a function of the bounds of the domain

over which the integrand is non-zero. The α-dependence of those bounds cannot be ac-

counted for, because no information is available on the potential dependence of the origin

of each collisionless trajectory. However, the dependence of the integral on the minimum

total energy Emin is well defined and can be approximated as

∂ne,i

∂Emin
≈−

2π∫
α=0

ge,i (Emin,α)dα (E.1)

where Emin is determined from (2.102), the directional-energy distribution ge,i was defined

in (2.100), and we have omitted the position variables x and y for compactness. The depen-

dence of Emin on the local potential V can be determined from (2.102) to be

∂Emin

∂V
=

⎧⎨
⎩

qe,i
e ,

qe,i
e V (x,y)>

(√
me,i
2e U−

√
κrangeTe,i

)2
∣∣∣∣
U=0
= κrangeTe,i

0, otherwise
(E.2)

The chain rule can then be used to infer the gradient of the local density with respect to the

local potential, following

∂ne,i

∂V
=

∂ne,i

∂Emin

∂Emin

∂V
(E.3)

In this approximation, the local density is assumed to only depend on the local potential.

The Jacobian
∂�ne,i

∂�V
is therefore a diagonal matrix with diagonal entries computed according

to (E.3) and all other entries set to zero.

E.2 Gradient Approximation for Flowing Plasmas

For flowing plasmas, the bulk contributions to the integral in (2.99) by the integrand

given by (2.100) is no longer located near the minimum energy Emin, provided that the flow
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energy is a sizeable fraction of the temperature. It was determined that the best available

approximation for the gradient would instead be obtained by summing the contributions of

the integrand’s gradient in directional-kinetic-energy space, instead of directional-energy

(i.e. total energy) space. This entails re-writing the integral given by (2.99) in terms of the

kinetic energy in electron-Volts, denoted here by κ:

ne,i (x,y) =
∫ ∫

ge,i(x,y,κ,α) dκ dα (E.4)

where ge,i(x,y,κ,α) is the directional, kinetic energy distribution function defined as

ge,i(x,y,κ,α) =
e

me,i
fe,i

(
x,y,

√
2e

me,i
κ cos(α),

√
2e

me,i
κ sin(α)

)
(E.5)

Consistent with (2.101), a sample of the kinetic-energy distribution ge,i(x,y,κ,α) at a given

location (x,y) within the computational domain is given by

ge,i(x,y,κ,α) =

n0

2π Te,i
exp
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⎩− 1
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⎭ , (E.6)

where αi specifies the orientation of the velocity vector upon entry into the computational

space. Re-writing this expression in a more suitable form, we obtain

ge,i(x,y,κ,α) =
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(E.7)

where vxi is the x-component of the velocity at the entry point and Vi is the electric potential

at the entry point (xi,yi). It can now be seen that the value of a given sample ge,i(x,y,κ,α)

not only depends on the local potential V , but also depends on the entry potential Vi and on

all potential samples that affect the trajectory connecting the “entry” point of the trajectory
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at (xi,yi,κi,αi) and the interrogation point (x,y,κ,α), through the dependence on vxi in the

term denoted by �.

In order to simplify the gradient expression, we recognize that the potential values on

the outer boundary are very close to zero, at least upon reaching a solution. This means that

the expression under the square root in (E.7) will be very close to 1 and that its dependence

upon the entry potential Vi as well as the local potential V is weak, and can therefore

be neglected. Furthermore, the dependence upon all the potential samples affecting the

trajectory and by extension the value of vxi could be computed using a chain rule combining

sub-trajectory coordinate Jacobians. However, an attempt at this calculation showed that

the numerical errors generated during such a lengthy chain rule can generate noise that

hinders convergence under certain conditions.

In light of the above two observations, it was decided for the gradient calculation to

drop any dependence upon the mesh potential samples of the term given by � in (E.7).

Extensive testing under various conditions has shown that this doesn’t prevent convergence

of the simulation. For the purpose of computing the gradient
∂ge,i

∂�V
, the only term deemed to

represent a significant dependence upon potential mesh samples is the first term within the

parentheses in (E.7), which contains the local potential V . Our first-order approximation

for the gradient of ge,i with respect to the local potential V is therefore given by

∂ge,i

∂V
≈−

qe,i

eTe,i
ge,i. (E.8)

Due to the simplicity of this expression, it is seen that a corresponding first-order approxi-

mation for the gradient of the local density ne,i as obtained from (E.4) is given by

∂ne,i

∂V
≈−

qe,i

eTe,i
ne,i. (E.9)

Again, as in the case of stationary plasmas, we observe that the local density only depends

on the local potential in our first-order approximation of the gradient. The Jacobian
∂�ne,i

∂�V
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will therefore take the form of a diagonal matrix with the diagonal entries computed ac-

cording to (E.9) and all other entries set to zero.

Although the resulting Jacobian expression is only approximate, it has been shown in

practice to be quite sufficient to obtain convergence to low-error self-consistent solutions.

As noted above, the accuracy of the approximation improves as we get closer to the solution

due to the fact that the edge potentials tend to go down to very small values, which helps

providing better search directions as we get closer to a solution.

In closing, we should emphasize that the approximation used for the Jacobian only

affects the intermediate search directions, not the actual specified plasma source, for which

all the terms in (E.6) or (E.7) are fully accounted for. The approximations used in the

gradient calculations are therefore of no consequence to the accuracy of any obtained self-

consistent solution.
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APPENDIX F

Langmuir Probe Analysis for the Experimental
Assessment of Density, Temperature, and Flow Speed

The plasma parameter extraction is an iterative procedure that requires several iterations

of the “ion saturation analysis” and “electron retardation analysis”, described below, to

reach convergence. At every step, the electron retardation analysis is performed on the

electron current exclusively, by removing the ion saturation best fit from the current data.

Conversely, the ion saturation analysis is performed on the ion current alone by removing

the latest best fit to the electron retardation region from the measured current.

F.1 Ion Saturation Analysis: Density ne = ni, Flow Energy
Uev, and High-Speed Fraction µb

The OML ion current to a cylindrical probe biased negatively, V0−Vp < 0, in a plasma

flowing at a velocity U and a corresponding “flow energy” Uev =
miU2

2e is given by [29]

Ii =
√

2
Ape1.5

π√mi
ni

√√√√√ 1
2

Ti︸︷︷︸
≈0

+Uev+Vp−V0, (F.1)

where Vp −V0 >> Uev. The slope of the best fit to the I2
i -vs.-V LP data can be used

to determine the plasma density ne = ni (quasi-neutrality is strongly enforced within the

plasma beam), while the offset allows one to determine an estimate for the quantity 1
2Ti+

Uev. An example of this procedure is shown in Figure F.1. In our calculations of the flow
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Figure F.1: Best fit of the I2
i -vs.-V data in the ion saturation regime. This is used to deter-

mine the density, flow energy, and fraction of beam ions.

energy Uev, we have neglected the first term 1
2Ti since the ion temperature is very low (on

the order of 1 eV).

An additional feature was added to the analysis in order to account for the presence of

a background of low-energy ions that have only thermal energy (i.e., they are not flowing),

in addition to the beam of directed ions. If we suppose that a fraction µb of the ions are

beam ions and that the low-energy ions have a temperature Tslow, then the total ion current

collected is given by

Ii =
√

2
Ape1.5

π√mi
ni

{
µb

√
1
2

Ti+Uev+Vp−V0+(1−µb)
√

Tslow+Vp−V0

}
. (F.2)

Now, the slope of the resulting I2
i -vs.-V graph only varies slowly, as evidenced in Figure F.1,

which clearly shows the linear behavior in the ion saturation region. We may still perform
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a best fit of the collected I2
i vs. V , and determine the “apparent” ion density ni,app and flow

energy Uevapp <Uev. Assuming the flow energy Uev of the high-speed ion population is

known, the actual ion density ni and the “high-speed fraction” µb both can be determined

accurately, using the following set of formulas that were devised based on (F.2):

A=
√

Tslow+Vp−Vavg,fit, (F.3)

B=
√

Uev+Vp−Vavg,fit, (F.4)

C =Uevapp+Vp−Vavg,fit, (F.5)

D=
1
B
−

1
A
, (F.6)

µb =
A−C/A

CD+A−B
, (F.7)

ni = ni,app

√
AB√

(µbB+(1−µb)A)(µbA+(1−µb)B)
, (F.8)

where Vavg,fit is the average bias potential over which the best fit was performed to obtain

the values for ni,app and Uevapp. There is a one-to-one map between the apparent flow

energy Uevapp and the actual high-speed ion fraction µb for a given value of the high-speed

energy Uev.

The value of the high-speed energy Uev was selected such that the high-speed ion frac-

tion µb is equal to 0.95 at the closest position to the thruster (75 cm), which is approx-

imately in agreement with the energy distributions obtained using laser-induced fluores-

cence (LIF) at the same position. This procedure has yielded a beam energy of Uev= 25 eV,

which is within the bounds of the error of the LIF result (43 eV), as discussed earlier. The

high-speed fractions obtained for all three positions are shown in Table 3.4: 95% at 75 cm,

53% at 160 cm, and 32% at 300 cm.
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F.1.1 Evaluation of the Error on Density Estimates

Typically, the error on Langmuir probe density measurement is estimated as the discrep-

ancy between the electron and ion densities. However, in the case of a flowing plasma, elec-

tron current collection is significantly enhanced, as is shown in chapter 3, a phenomenon

that no existing model can quantitatively predict, as discussed in Section 4.6. On the other

hand, the effect of flow on ion current collection is very well understood, which means that

plasma flow does not cause significant errors in the ion density estimates. Thus, the quan-

tity |ne−ni|would merely provide a measure of the error on the electron density introduced

by the plasma flow.

Given that plasma flow does not contribute a significant error to the ion density estimate,

the primary source of error in the determination of plasma density estimates is the error

on the Langmuir probe area estimate. We estimate the error on the length of the 4-cm

Langmuir probe to be about 1 mm. As for the Langmuir probe’s diameter of 0.28-mm, it

is much more accurate due to precision manufacturing; it is estimated to have a 0.01-mm

tolerance (actual tolerance could not be obtained from the manufacturer). Based on these

two errors, the relative error on the probe area can be computed as 1/40+0.01/0.28≈ 6%.

Now, the collected ion current is proportional to the product of the probe area and

plasma density. Thus, the 6% relative error on probe area contributes a 6% relative error

on our density estimates. Other, secondary sources of error, such as voltage and current

measurement errors, should certainly amount to less than 2%. A conservative error estimate

would thus be obtained by the sum of 6% and 2%, for a total of 8%.
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F.2 Electron Retardation Analysis: Plasma Potential Vp

and Electron Temperature Te

Variations in the effective work function on the surface of our Langmuir probe (referred

to as work function patchiness by Brace [7]) has turned out to be an area of concern in our

experimental data. Our results appear to suggest a total effective work function variation

of several eV. Figure F.2 illustrates that effect, which leads to a departure from exponential

behavior before the plasma potential is attained. Possible explanations for this variation

could include polycrystalline workfunction variations of the Tungsten probes (on the order

of 1 eV, the Tungsten workfunction being on the order of 4.5 eV), and possible surface

contaminants, such as adsorbed residual gases and adsorbed xenon ions. A quantitative

assessment of the contamination sources is outside of the scope of the present paper, but

we note here that several authors have linked effective work function variations to surface

adsorbates [85–91].

A simple numerical experiment on the theoretical current collection curves was per-

formed in order to emulate the “blurring” effect of the work function variation. Figure F.3

shows the results of this numerical experiment in the “thin sheath” and “OML” limits. The

dashed curves, shown in both linear and semi-logarithmic formats, is the result of “blur-

ring” the theoretical curves using a local averaging window of width equal to 4.8 times

the electron temperature. The blurred thin sheath curve is shown to collect less than the

thermal current Ith at the plasma potential (V/Te=0 here), while on the blurred OML curve,

the collected current at plasma potential is still equal to the thermal current Ith. It turns out

that it will stay within 3% of Ith as long as the work function variation is under 6.7 times

the thermal temperature.

We use this feature of the OML blurring in our determination of the plasma potential.

In other words, we locate the plasma potential by finding the potential where the collected
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current is equal to the electron thermal current. The cross-hair in Figure F.2 illustrates that

result. As for the electron temperature, we may safely determine it based on the inverse

of the slope of the retardation region within the linear part of FigureF.3(b), that is, beyond

the reach of the blurring effect of the work function variation, as the rightmost linear fit

shows in Figure F.2. The leftmost linear fit shown on the same figure is identified with a

population of warmer electrons, which account for just a few percent of the total electron

population.
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Figure F.3: Theoretical “blurring” of the current collection to probes in the (a) thin sheath
and (b) OML limits.

279



F.2.1 Evaluation of the Error on Temperature Estimates

The temperature determination from the exponential fit of the retardation data is inde-

pendent of the probe area, and as a consequence, the error on the Langmuir probe area

estimate has no bearing on the accuracy of the temperature estimate. The primary sources

of error in the temperature determination are thus

• the relative accuracy of the voltages measured by the Keithley 2410 sourcemeter that

was used for the LP measurements, which is better than 1%; and

• the empirical process used to select the voltage range over which a best fit of the

retardation regime is performed.

In order to be conservative in accounting for both of these error terms, we will assume an

overall accuracy of 5% for our temperature estimates.

Because the Debye length estimate is determined based on the estimated density and

temperature values through the relationship λDe =
√

ε0Te
en0

, the relative accuracy on Debye

length, consistent with the 5% and 8% relative accuracy estimates for temperature and

density, is obtained from:

∆λDe

λDe
=

1
2

(
∆Te

Te
+

∆n
n

)
=

1
2
(5%+8%) = 6.5% (F.9)
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