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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives

The development of high-frequency MMICs (monolithic microwave integrated
circuits) has been driven by the demands for portability and increased functional
efficiency of wireless communication systems. In advanced communication systems,
MMICs are required to include a large number of circuit components, lines and inter-
connections between circuits in a compact space. The complexity imposed by these
large numbers of components and connections is extremely challenging for the de-
sign of efficient simulators that are necessary tools for MMIC development. Because
of the large amount of memory and long computation time required, conventional
computational methods prove to be insufficient means of addressing certain types
of problems. The goal of the study reported here is to formulate a practical way
of numerical modeling and characterization of such complex and large-scale electro-
magnetic circuits.

A number of full-wave frequency and time domain methods have been developed
based on the integral and partial differential representation of Maxwell’s equations.
They are: the Method of Moments (MoM), the Finite Element Method (FEM), and

the Finite Difference Time Domain (FD-TD) method.



MoM [1] is a frequency domain technique, which uses a Green'’s function-based
integral formulation for the solution of Maxwell’s equations. Due to the use of Green'’s
function, MoM is the most preferred and efficient method of the three. However, the
analytic effort to derive the complete Green’s function proves to be a very difficult
task for a large complex circuit geometry. It needs a long computation time and
significant memory resources to solve large-scale electromagnetic problems. For this
reason, MoM is limited to problems of a moderate size and complexity.

As a computer aided analysis and design technique, FEM [2. 3] has been employed
in several areas of engineering. In electromagnetic field computation, FEMI discretizes
the differential form of wave equation in the frequency domain and solves the equation
without a priori analytic effort. Hence, FEM is particularly suitable for arbitrarily
shaped electromagnetic problems: a definite advantage over MoM. The application
of the FEM does, however, lead to a large linear system that has to be solved and
unfortunately needs large amounts of memory and high computation time. Moreover,
in open boundary problems, the incorporation of absorbing boundary conditions
(ABCs) or artificial absorbers in the FEM often proves to be a source of numerical
inaccuracy for the method.

Unlike the previous two methods, the FD-TD technique [4, 5] solves the time-
domain Maxwell’s equations, which makes it simple and easy to formulate the sys-
tem equation. Furthermore, FD-TD can be applied to arbitrarily inhomogeneous
geometries, just as FEM does. The main advantage of FD-TD, which clearly is its
simplicity in implementation, is obtained at the expense of computational resources
and execution time. However, this technique provides a wideband characterization of
the simulated structure, since Fourier-transforming the time domain data provides

frequency domain quantities over a typically large bandwidth. Nevertheless, it is



important to point out that the transformation itself can introduce numerical errors.
Implementation of open boundary conditions again constitutes one more source of
inaccuracy.

As mentioned previously, MoM is an efficient method but requires analytical ef-
fort to derive a complete Green’s function, which is a very difficult task for complex
geometries, making this method impractical. Unlike MoM, FEM can be applied to
an arbitrarily shaped structure without the need for a Green’s function, but requires
large amounts of memory and high computational time. While FD-TD has demon-
strated its ease in implementation for any shape of geometry, it demands similar
computational resources when compared with FEM. All three methods need signif-
icantly large computational resources for the extraction of accurate and convergent
solutions. To circumvent the existing theoretical obstacles and the limitation of
computational resources for the treatment of large-scale electromagnetic problems,
the author has developed the hybrid MoM/FEM method and introduced the use of
multiresolution analysis (MRA) and high-performance computing (HPC).

The hybrid MoM/FEM method [6, 7] aims for combining the advantages of MoM
and FEM. In this method, FEM is applied in modeling the complex geometries and
inhomogeneous materials in one domain, while MoM is implemented in the open
space radiation domain using the available Green’s function. By doing so, we can
reduce the heavy computational load and avoid the analytical difficulties of deriving
the required Green’s functions.

The application of MRA theory [8, 9, 10] in the hybrid MoM/FEM technique
enhances the overall computational efficiency of the hybrid MoM/FEM linear sys-
tem. Since MRA diagonalizes the hybrid linear system, we can achieve highly sparse

matrices by discarding small, off-diagonal terms. This threshold process can occur



without significantly affecting the solution. As a result, we can significantly reduce
memory requirement and achieve short computational time. Furthermore, we can
employ adaptive discretization schemes in computation domains.

Parallel computing [11. 12] is an efficient alternative for addressing the need for
large computational resources, often arising in complex electromagnetic problems re-
lated to state of the art microwave applications. To achieve maximum performance
improvement in parallel computing, an effective parallelization scheme has to be
deployed for each computation step of the hybrid MoM/FEM method. Task paral-
lelization and domain decomposition are important parallelization schemes which can
be directly implemented in this numerical calculation. In the hybrid method, FEM
has to be applied repeatedly for different frequencies and excitations. Therefore,
parallel task computation is an efficient method when the required size of memory
for the FEM calculation does not exceed the allocated memory size of a single pro-
cessor. The FEM computation, though, requires not only task parallelization but
also domain decomposition. In the latter method, several processors are used to
store and solve a large FEM linear system. The task parallelization scheme can also
be utilized in MoM calculation where a sequence of numerical integrations is the
dominant process. In particular, MoM numerical integration tasks can be divided
among processors and performed in each processor independently.

In the last stage of this numerical method, the matrix decomposition method
can be used to solve the large hybrid linear system when it becomes too large to be
stored in a single processor. It is a critical part of parallel computing to measure its
efficiency in terms of scalability and determine the size of the problem that can be
solved.

The final two stages of this research first verified the hybrid MoM/FEM method



and then applied it to an antenna array structure. By solving a single aperture-
coupled patch antenna and comparing the computed results with the published mea-
surement data, the hybrid MoM/FEM method was validated along with the inte-
gration of multi-resolution analysis. Finally, the hybrid MoM/FEM method, MRA

theory, and HPC were employed for the solution of an antenna array structure.



CHAPTER 11

HYBRID METHOD OF MOMENT (MoM) / FINITE
ELEMENT METHOD (FEM)

A basic theory of a hybrid MoM/FEM method is presented in this chapter, with
a specific focus on electromagnetic scattering problems involving aperture-coupled
geometries (for example, aperture-coupled patch antennas). After providing a brief
background of this method, we describe the formulation of hybrid MoM/FEM equa-

tions, including the combining process of MoM and FEM solutions.

2.1 Background

Hybrid methods were developed in the early 1970’s by Mei [13], Silvester [14],
and McDonald [15] to solve unbounded problems involving localized inhomogeneous
media. Their basic concept was to utilize the advantages of two methods: (1) a
partial differential-equation method, such as FEM, in localized inhomogeneous or
anisotropic regions, where the integral equation method is disadvantageous; (2) an
integral equation method in the remaining unbounded region utilizing simple free-
space Green’s function. By doing so, they could solve the problems after combining
local solutions using boundary conditions between regions. This idea of hybridiza-
tion soon became popular in the electromagnetic computational community because

we can independently choose an efficient computation method for each sub-divided



computational domain. The hybrid method has been used frequently in various types
of electromagnetic problems, such as scattering problems [16]-[20], the characteriza-
tion of microwave circuits 21, 22], and printed circuit boards (PCBs) {23], whose
solutions are difficult or very costly to perform with a single computational method.

The hybridization of FEM and integral equation method has been implemented in
two different ways: (1) Finite Element - Boundary Integral (FE-BI) method; (2) hy-
brid Method of Moment and Finite Element Method (MoM/FEM) technique. Both
methods share the same hybridization idea that has been mentioned earlier, but the
way of configuring the problem is different when they are applied in electromag-
netic scattering/radiation problems. In FE-BI method, all scatterers/radiators are
included in FEM domain along the boundary between FEM and boundary integral
regions such that only the scattered or radiated electromagnetic field is considered in
boundary integral regions to satisfy the Sommerfeld radiation condition. In addition,
in the boundary of two regions, the existing FE-BI method shares the same bases for
both FEM and boundary integral computations to model and interpolate the electro-
magnetic field in this boundary. Unlike FE-BI method, hybrid MoM/FEM technique
not only can include scatterers/radiators in MoM domain but also allows the use of
different bases in MoM and FEM computations at the boundary of two regions.
With these features in hybrid MoM/FEM technique, we can reduce FEM domain
and further utilize the available Green’s function in scatterers/radiators. Moreover,
various types of basis function (such as roof-top scaling functions and wavelets) can
be employed in scatterers/radiators and the boundary region in MoM computation,
while we can utilize other basis functions (such as node basis or edge vector basis
function) in FEM domain including the boundary of FEM and MoM domains for

FEM computation. For this reason, hybrid MoM/FEM technique proves to be more



efficient in electromagnetic scattering/radiation problems that involve multi-layered
MMICs/antenna structure. Most importantly, only hybrid MoM/FEM technique
can incorporate Multi-Resolution Analysis (MRA) theory in that any type of basis

function can be employed in MoM domain that we will discuss in later chapters.

2.2 Method of Moment (MoM)

Consider an electromagnetic scattering problem shown in Fig. 2.1(a). An elec-
tromagnetic field is excited by a source in domain €, and coupled to domain
through an aperture printed on a perfect electric conductor (PEC). The coupled
electromagnetic field is finally scattered by an PEC scatterer in domain €,. To
apply hybrid MoM/FEM method to this problem, we first bound the domain
by some combination of PEC, perfect magnetic conductor (PMC), and absorbing
boundary condition (ABC) while we leave the domain €2, unbounded. Using the
equivalence principle {24], the problem can be redefined as in Fig. 2.1(b): (1) the
aperture is closed with the PEC; (2) an equivalent magnetic current is inserted just
above and under the PEC:; (3) the scatterer is replaced by a fictitious surface elec-
tric current. With this newly defined problem, we formulate a hybrid MoM/FEM
equation. The total electromagnetic field in 2, is generated by a fictitious electric

—b . N —_—
current, J , and an equivalent magnetic current, —M,. Therefore,

E'=EJ

)+ E'(—M,) (2.1)

H =H

)+ H (-M,) (2.2)
Similarly, the total electromagnetic field in €, can be expressed as

E'=E(M,) +E (M) (2.3)

H =H(M,) +H (M) (2.4)
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The electromagnetic fields in two separate domains can be coupled through the
boundary conditions imposed on the aperture and the PEC scatterer: (1) the tan-
gential magnetic field is continuous through the aperture; (2) the tangential electric

field vanishes on the surface of the PEC scatterer.

= nax H (2.5)

13
X
Sy

&
X
&
I

0 (2.6)

By substituting Eqgs. (2.1) - (2.4) into Egs. (2.5) - (2.6), we can obtain the following

coupled equations.

(8]

H (7)) +H,(-M.) = H,(M,)+H.3;) (2.7)

E,(T)+E,(-M,) = 0 (2.8)
The unknowns in this problem are the equivalent magnetic currents, M,, over the

aperture and the fictitious electric current, J, on the PEC scatterer. Thus, we

expand the unknown magnetic and electric currents as

Na

M, = ) m.AM, (2.9)
n=1
Ny

T o= 3T (2.10)
n=1

where M, and _J4,n are basis functions, m?, and jbn are unknown coefficients, N, is
the number of basis M",, and N, is the number of basis 7bn.
Now. Galerkin’s moment method [1] is applied to Egs. (2.7) - (2.8) with the expan-

sions in Egs. (2.9) - (2.10) and the inner product defined as

(Z,E),=//s?4‘-§ds (2.11)
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The resulting equations are expressed by

(T, H (T )W) + (M, H, (-BL))Me] = (M, H, (A) (M) + (3T, He (3 )

(2.12)
(Tos Be TN + (T, B (-FT,) (M) = 0 (2.13)
Using the following notations,
Yon = (—m,_ﬁ:(m)) N. x N, matrix (2.14)
e = (T Ee(@))  No x N, matrix (2.15)
b b —=l,55a - .
tn = (I E, (M) Ny x N, matrix (2.16)
b —a —1 —=b - - .
Coin = (M,.,H,(J,)) N, x N, matrix (2.17)
Yo = (—Mo, H/(ML)) Na x N, matrix (2.18)
Vinem = (—m,ﬁf(_ﬁf)) N, X 1 column vector (2.19)
Egs. (2.12) - (2.13) can be simply written as
(COUP) + YIM] = —[Y[M] = [Vind] (2.20)
—[Z2°)J°] = [T*|[M°] = o (2.21)

Finally, the unknown coefficients of the magnetic and electric currents can be solved

as

o (Vi
M= e - - (222)

] = -2 M) (2.23)

For large-scale problems, however, the size of the sub-matrices in Egs. (2.21) — (2.22)

become so large that the equations (Egs. (2.21) - (2.22)) cannot be solved with the
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direct inversion method. Therefore, we solve the following form of the linear equation

with iterative and domain decomposition methods instead.

2w | [w] [ o 22
(€] e+ [Y*] | | [M] ~ [Vind]
The sub-matrices [Y?], [Z*], [T*], and [C?] contain information about the fields gen-
erated by the electric and magnetic currents in domain ;, which can be calculated
using the available Green’s function. On the other hand, [Y°] and [V;,.] concern field
characteristics in domain Q,, where the required Green’s function is not available
or is difficult to derive. Thus, we apply FEM in domain 2, to obtain the necessary

sub-matrices. Detailed FEM computational procedures are provided in the following

sections.
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2.3 Finite Element Method (FEM)

In this section. we present the finite element method to obtain the sub-matrices,

(Y] and [V},]. in domain Q.

The time-harmonic electromagnetic fields in €2, are characterized by Maxwell’s

equations

VxE = —jwB-M
VxH = jwD+J
V-D = p.

V-B = pnm

and the appropriate constitutive relations

where

O o = wm

<

Pe

Prm

D = ¢F

ol
I

*
T

electric field [V/m]

magnetic field [A/m]

electric flux density [C/m?|
magnetic flux density [Weber/m?]
impressed magnetic current [V/m?]
impressed electric current [A/m?]
electric charge density [C/m3]

magnetic charge density [Weber/m?]
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w : angular frequency [rad/sec]
€ : permittivity [F/m]
i : permeability [H/m]

The wave equation for the magnetic field, H,, in domain Q, can be obtained from

Egs. (2.25) - (2.26) with the aid of the constitutive relations in Egs. (2.29) - (2.30).

1
Jwez

V x (- V x Hs) = jwpsHa + M (2.31)

Now, the wave equation is discretized with vector edge bases in a tetrahedral element

(Fig. 2.2). By doing so, we can approximate the electromagnetic field as

No

Hy=Y_ 6y (2.32)

i=1
where a. and ¢;; are the vector edge basis and the coefficient of the basis, respec-
tively. In this stage, ¢;; is the unknown element for which FEM will eventually
solve. Applying Galerkin’s method with the expansion in Eq. (2.32), Eq. (2.31) is

discretized as

N,
Z¢ij(v x (—.—1——V X @;) — jwitadi, @) = /TI— -¢ dS (2.33)
JWweEn s

i=1

where the inner product (A, B) is defined as follows:

(Z,E)://V/Z-de (2.34)

Equation (2.33) can be reformulated with Green’s identity as

N

1 - - - —
Z%—{(;E;V X ¢, V X @) — (wp20;.0) } = —j/M ¢ dS (2.35)

i=]

Therefore, we obtain the following simple linear equation:

(A][®] = [B] (2.36)
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where the elements of the matrices are given as

1

a;; = (we V x 6,V x ¢;) — (wp2d;,#;) Ny x Ny matrix (2.37)
2

bj = —J /-M: - ¢; dS Ny x N, matrix (2.38)

®; = oy Ng x N, matrix (2.39)

Another form of Eq. (2.37) can be given in terms of the nodes and vectors associated

with the edge bases in a tetrahedral element (Fig. 2.2) [25]:

1 — —_ —_ =
a; = (—Vx¢,Vxog;)— diy D
J (w€2 ¢l ¢]> (UJ[J2Q ¢J>
4
= Qa2(7: - G5) —wpa(PL + P2 + P3)
WeEa
where
<€ f—l'—i + gl—l xXrT F e
Qroi =
0 TEZ Q.
rd Cr—i_
7 = i1 X Ty
f‘-; 602, i1 Ti2
- CiCr—;
T—-i T o5 G
J 602,
- Ti2 — Ti1
€e; =
c;
¢ = IFQ—F,'II, fori=1~6
Q. = volume of an element.
Pl = <7i7 T])

P = (7:"_9__1' X T) + (g; x F’?j)

P = (g, XT,g; X T)
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X

Figure 2.2: Tetrahedral element and associated nodes and edges. N| ~ Ny : node numbers.
E; ~ E¢ : edge numbers. 7;; and 72 : vectors associated with ith edge. T is
an arbitrary vector which lies in the tetrahedral element.
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2.4 Integration of FEM solutions into MoM Formulations

Once the FEM linear equation (Eq. (2.36)) is solved, we can incorporate FEM
solutions into MoM formulations. Specifically, the sub-matrices. [Y¢] and [V;,.] can

be computed with the obtained coefficient, ¢;;, as follows

Ny
Y = (=M, Hy (M) = Y bun( 3, &) (2.40)
k=1
Ng
Vinen = (=M, Hi (M) = Y é14(—M . 3;) (2.41)
k=1

where M is the basis function for the magnetic current, @ is the edge vector basis,
and N, is the number of @. Therefore, Eq. (2.24) is finally solved with the known

sub-matrices in Egs. (2.40) — (2.41).



CHAPTER III

MULTI-RESOLUTION ANALYSIS (MRA) THEORY

The hybrid MoM/FEM method developed in Chapter II can more efficiently solve
aperture-coupled electromagnetic problems than other existing methods. Neverthe-
less, as the scale of the problems is increased to some degree, this method essentially
suffers from the demand for large amounts of memory and high computational time.
To overcome these difficulties, we propose the incorporation of multiresolution anal-
ysis (MRA) theory into the hybrid MoM/FEM method.

In this chapter, we present MRA theory with an emphasis on the application
to the hybrid MoM/FEM method. Starting with a brief historical review of MRA,
we provide detailed explanations of MRA, including a simple example with one di-
mensional Harr basis functions. Next, we present wavelet basis functions for the
aperture-coupled electromagnetic problem described in Fig. 2.1. Lastly, we discuss

the computational efficiency achieved by MRA.
3.1 Background

Wavelets are a special group of basis functions originated from approximation
theory in mathematics [26]. Since MRA theory was established in the early 1980’s

with the pioneer work of such mathematicians as Meyer, Daubechies, Chui, and oth-

ers, MRA theory has been widely applied not only in the mathematical field but

18
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also in other areas such as signal processing [27], image processing [28]. and com-
puter graphics [29]. An interest in wavelets also occurred in the electromagnetic
community when Beylkin et al. [30] first proposed the use of wavelets in solving
integral equations, and Alpert et al. [31] used “wavelet-like” basis functions to solve
second-kind integral equations in the early 1990’s. Fortunately, it did not take long
for them to recognize the potential utility of wavelets in the electromagnetic area.
Beginning with the application to the method of moments in electromagnetic wave
interaction problems [32], a variety of electromagnetic problems have been explored
using this special basis function. Particularly, various types of electromagnetic cir-
cuits are efficiently characterized utilizing wavelets: printed circuit antenna arrays
[33]. microstrip open stubs [34], dielectric resonators [35], waveguides [36], microstrip
floating line structures [37], multiconductor transmission lines [38], microstrip patch
antennas [39], and loop antenna arrays [40]. In addition, efforts have been made to
develop faster and more efficient algorithms using wavelets in numerical electromag-
netic computation. The developed techniques, as a result, include: (1) application
of MRA theory to electromagnetic integral equations with oscillatory kernels for
sparsely populated matrices [41]; (2) use of adaptive wavelet packet transforms for
fast solutions of oscillating integral equations in electrodynamics and for maximum
sparsity of system matrices {42]; (3) development of the impedance matrix compres-
sion (IMC) methods for adaptive selection of wavelets and better sparsity of system
matrices [43]; (4) use of adaptive wavelets for non-uniform grids [44] and high spar-
sity. Interestingly, all the developed wavelet techniques have demonstrated a common
powerful feature in their EM applications. namely, the generation of highly sparse
linear systems [32]-[44]. In fact, the resultant matrix is dense, even with wavelets, be-

cause of the nature of the integral operator. However, primarily because of the local
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support and vanishing moment properties of wavelets, many of the matrix elements
are very small compared to the largest element, and therefore they can be tailored
without significantly affecting the solution [45]. With the resultant sparse linear sys-
tem, we can achieve: (1) significant savings in memory using a sparse matrix storage

scheme, and (2) short computation time.

3.2 Wavelets and Multi-resolution Analysis (MRA)

A multiresolution analysis (MRA) of L2(R) is defined as a nested sequence of

subspaces {Si}rez, with the following properties [46], [47]:

1. S, C Sk-,Ll, VkeZ

N

. Ukez Sk is dense in L2(R)

[X]

- MNkez S =0

NON

. For any f(z) € L2(R) and any k € Z, f(z) € Sk & f(2z) € Ska1

. For any f(z) € L3(R) and any k € Z, f(z) € Sk & f(z — 27 *m) € St

T

where Z denotes the set of integers. In MRA, an arbitrary square-integrable function
f(z) € L*(R) can be approximated by a function that belongs to any of the subspaces
Sk which can be derived from a central space S, through dilation by integral powers
of 2.

It has been shown that there exists a scaling function ¢ € L2?(R), such that
{Ok.m(T)}mez = {2%/2¢(2¥z — m) },nez is an orthogonal basis of Si. Therefore, using
the scaling function ¢, the function f(r) can be approximated onto the subspace S,
at a resolution of 2%, by the projection operator defined as:

P(f) (@) =D drm(@){Bkm . f) € Vi (3.1)

meZ
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where (a, b) denotes the inner product of a(z) and b(z). Note that the fine details
smaller in resolution than 2% will be lost during the approximation. These lost fine
details may be thought of as resting in the orthogonal complement of Sk, say Wi, in

Sk+1 defined as
Sk+1 = S © Wi (3.2)

It has been shown that there exists a function ¥(z), referred to as the wavelet

function, such that the set
{im}mez = {2¥/% ¥(2°2 — m)} ez (3.3)

is an orthogonal basis of subspace W; and the set {tx m}t.mez is a complete orthog-
onal basis of L*(R):
L*(R) = P W.
keZ
Therefore, the wavelet functions can be used in preserving the lost fine details for
the next higher-level approximation subspace. From Egs. (3.1) - (3.3), a function
f(z) in subspace Sis can be obtained from the crude approximation of f(z) in S,

and the wavelets of the intermediate subspaces as follows:

ka—1

Po(f)(@) = Py (F)(@) + D Y Umn(@)@mn f), k2> Kl (3:4)

n m=k;
Another form of Eq. (3.4) can be written as
S=5, @ W (3.5)
ki <k<kz—1

Schematic view of Eq. (3.5) is shown in Fig. 3.1.
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Figure 3.1: Multiresolution Analysis

An example of multi-resolution analysis (MRA) is shown in Fig. 3.2 using Harr
scaling functions and wavelets. When the highest level scaling function is projected
into lower resolution levels using MRA, the averages and derivatives of the highest
scaling function are preserved in the lower level scaling functions and wavelets, re-
spectively. Note that averages of Harr wavelets are zero in all resolution levels. The
highest level scaling function can be constructed from its lower level scaling function

and wavelets by the relation

O3 = @2+ U2+ U1+ Yo (3.6)

One-dimensional B-spline linear scaling functions and wavelets are shown in
Fig. 3.3. Zero degree scaling function and wavelet, often called Harr bases, are
used to model the transverse profile of current. The first-degree bases are used to
expand the horizontal profile of current. We can directly employ the first-degree
bases to an aperture-coupled electromagnetic problem in Fig. 2.1 that includes in-
finitely extended scatterers and apertures. On the other hand, for finite scatterers
and apertures, the first-degree bases have to be modified accordingly to meet certain
bouudary conditions imposed on the scatterers and apertures. For instance, the edge
currents in a patch antenna have to vanish along the normal direction of the current.
The modification of the first-degree bases can be accomplished by: (1) removing
the edge bases (half triangulars) in the first-degree scaling function, and (2) forcing

both ends of the first-degree edge wavelet to zero. Other bases, zero-degree bases
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Figure 3.2: Multiresolution Analysis for Harr Scaling Function and Wavelet. (a) ¢3 Scaling
function, (b) ¢2 Scaling function, (c) ¥2 Wavelet, (d) ¢; Scaling function, (e)
Y1 Wavelet, (f) ¢o Scaling function, (g) o Wavelet.
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Figure 3.3: B-Spline Scaling and Wavelet Bases: (a) First-Degree Scaling Function, (b)
First-Degree Right Edge Wavelet (c)-(d) First-Degree Normal Wavelet, (e)
First-Degree Left Edge Wavelet (f) Zero-Degree Scaling Function, (g) Zero-
Degree Wavelet
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and first-degree wavelets, can be used without any modification. The modified one-

dimensional B-spline linear scaling functions and wavelets are depicted in Fig. 3.4.

Since most practical electromagnetic problems include various types of two-dimensional
finite structures, it is desired to produce two-dimensional scaling and wavelet bases
for the application of MAR theory to arbitrary shaped plannar geometries. To this
end, we construct two-dimensional bases from the modified one-dimensional bases in

Fig. 3.4 by multiplying:
e zero-degree with first-degree scaling function — Fig. 3.5(a)

e first-degree scaling function with zero-order normal wavelet - Fig. 3.5(b)

zero-order scaling function with zero-order normal wavelet — Fig. 3.5(c)

first-order wavelet with zero-order wavelet — Fig. 3.5(d)

zero-order scaling function with first-order edge wavelet — Fig. 3.5(e)

zero-degree wavelet with first-degree wavelet — Fig. 3.5(e)

The edge wavelets (Fig. 3.5(e) and (f)) and their mirror images are used at the left
and right end of the terminating boundaries, respectively.

Now, using these two-dimensional scaling and wavelet bases, we consider the
incorporation of MRA into the aperture-coupled electromagnetic problem described
earlier in Fig. 2.1. In the hybrid MoM/FEM method, we expanded the unknown

magnetic and electric currents as

Na

o S T
n=1
Ny

7 =3 T
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Figure 3.4: Modified B-Spline Scaling and Wavelet Bases: (a) First-Degree Scaling Func-
tion. (b) First-Degree Normal Wavelet (c) First-Degree Left Edge Wavelet, (d)
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where R_'[a,, and 76,, are basis functions, m?®,, and jb,, are unknown coefficients, NV, is
the number of basis M ,, and N, is the number of basis 7bn. Therefore, the incor-
poration can be accomplished by expanding M, and jb,, with the two-dimensional
scaling and wavelet bases and computing the hybrid sub-matrices defined in Chapter

Il as

¥ (~Me, H,(32))

Yom = (=M, H,(T,))
2 = (T E,(T0)
. = (T E.(T2)
¢ = (M., H,(J)

Vinem = (—m’ﬁf(ﬁf))

b tb

mn?! ‘mn?

Note that the sub-matrices y2,,, = and c},,, are computed using MoM, while
Y5, and Vi,. ., are solved by FEM.

The integration of MRA theory into the hybrid MoM/FEM method enhances
the computational efficiency of the hybrid linear system. As shown in the above
equations, computations of the hybrid sub-matrices involve integrations of Green’s
function with scaling functions and wavelets. Due to the vanishing moment prop-
erties of wavelets, many of the resultant sub-matrices’ elements become very small
compared to the largest element, and can be discarded without significantly affecting
the solution (often called threshold) [31] - [45]. This threshold process is applied to
the sub-matrices which consist of the system matrix shown in the following equation.
They are: [Z°], [T*], [C?], [Y?], and [Y?].

(27 (1] [7*] 0

[C*] [Ye]+ [Y?] [Me] — [Vine]
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[t is important to emphasize that the threshold must be performed in each sub-
matrix independently. This is because the system information in each sub-matrix
has different order of magnitude and, therefore, the largest element varies among
the sub-matrices. If we choose the single largest element from all sub-matrices and
use the same largest element in the threshold, some of the sub-matrices will loose
critical system information, leading to an inaccurate solution of the problem. For
this reason. the implementation of local thresholds plays a key role in achieving
a sparse linear system that guarantees an accurate solution. The resultant highly
sparse matrices will not only enhance the solution time of the hybrid linear system
but also will result in huge memory savings by using sparse-matrix storage schemes.
This subject has been rigorously investigated for aperture-coupled patch antenna

problems in Chapter V and Chapter V1.



CHAPTER IV

HIGH PERFORMANCE COMPUTING (HPC)

Throughout the previous two chapters, we have focused on solving aperture-
coupled electromagnetic problems efficiently by developing the hybrid MoM/FEM
method and incorporating multiresolution analysis. Specifically, by effectively com-
bining FEM and MoM, the hybrid MoM/FEM method has minimized computational
loads for the problem and eliminated analytical difficulties of deriving the required
Green’s functions in FEM domain. Moreover, the hybrid MoM/FEM method be-
comes computationally very efficient with the integration of MRA theory (significant
decrease in storage requirement and execution time due to a highly sparse hybrid
linear system), making it more attractive and competitive. In spite of these theoret-
ical and numerical improvements, we still suffer computational difficulties in many
practical large-scale electromagnetic problems. Such difficulties include large mem-
ory requirement for FEM linear systems, long computation times from the many
repeated FEM and MoM computations for frequency points and magnetic sources.
In addition, a significant amount of memory is often required to store the large sparse
hybrid linear system.

To circumvent those computational obstacles, we have considered the use of High-

Performance Computing (HPC) in the wavelet hybrid MoM/FEM method. In par-

30
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ticular, we use a task parallelization to accelerate the many repeated FEM and MoM
computations for excitations and frequencies, while we employ a matrix decompo-
sition scheme to deal with the large FEM and hybrid linear systems [48]. This
study is supported by a number of examples to provide adequate justification for the

presented arguments.

4.1 Background

HPC environments offer computers with the highest available computing power,
usually achieved by means of a large memory and large number of processors collab-
orating to solve one (or at most a few) computationally intense problems at a time.
Historically, HPC has advanced not only by the growth of hardware technology but
also by the development of software that support parallel computation. Parallel sys-
tems matured and entered the commercial production between 1975 and 1990 [49].
At that time, however, it was difficult to implement full parallelism and achieve the
high potential performance levels because the software of the time performed poorly
and was difficult to use. The software has since been improved to correct these
weaknesses and broaden the scope of HPC. Nevertheless, it has not yet matured
enough to be used in as friendly and convenient a manner as the personal computer
or ordinary workstation [50]. One of the major hindrances to the development of
appropriate software is the broad range of different parallel systems dedicated to cer-
tain classes of research. As a result of lack of standardization, early HPC users could
not have software portability across different types of parallel machines [51, 52]. It
was not until the early 90s that vendors agreed to develop a standard parallel lan-
guage, the MPI (Message Passing Interface) standard [53]-[55], as a part of HPC

standardization. Along with the vendors’ own software for their systems, MPI has
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been developed continuously among the vendors to support various kinds of parallel
systems [56, 57]. In comparison to software development for HPC systems, even
greater progress has been made on the hardware side over the past 20 years, due
to the fast-growing VLSI technology. Hundreds of processors with giga-hertz clock
speeds, giga-bytes of memory, and tera-bytes of hard disk space, become standard
hardware features of today’s state-of-the-art parallel computers [58]- such as the
IBM Blue Horizon [59], IBM SP2 [60], and HP V2500 [61]. To take full advantage of
such advanced hardware systems and stay competitive with sequential computing,
HPC has yet to clear many unresolved issues, such as programming familiarity, per-
formance stability, and performance portability [62]. Nevertheless, HPC has been
regarded as a powerful and attractive computing resource because it can deliver a
large amount of memory and fast computation capability. It has greatly contributed
to many scientific areas (for example, biology - mapping the chemical sequences for
human DNA [63], graphics and visualization - constructing digital astronomical mod-
els that re-create the Milky Way, and, eventually, the universe [64]) by dealing with

large-scale problems which typically have millions of unknowns.

4.2 The Architecture of a Parallel Computer

Parallel computers can be classified according to memory structure as either no-
shared memory systems or shared memory systems. In a no-shared system, each
processor is connected to the other processors by high speed switches or through
network connection (ethernet), and, as the name implies, has a private memory
which is not shared with other processors. As a result, data is transferred between
processors by message passing communications. For this reason, it is often referred to

as a message passing system. Due to the need to explicitly encode all communications
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between processors, it is difficult to create a initial program. However, a no-shared
memory machine is still attractive because of its scalable performance. A schematic
diagram is shown in Fig. 4.1(a) [65].

Unlike the previous case, a shared memory system has global memories that can
be accessed by all processors. The shared memory model has been implemented in
two different systems: (1) Uniform Memory Access (UMA) system; and (2) Non-
Uniform Memory Access (NUMA) system. An UMA system is characterized by the
constant memory access time for all processors. This has been realized by connecting
processors to a system bus and making them equally distanced from the global
memories - Fig. 4.1(b). Due to the limited bandwidth of the shared system bus,
the UMA system may suffer bottlenecks coming from the congestion of access to
the global memory in the system bus. Thus, the UMA system does not scale well
as a number of processors increase. As shown in Fig. 4.1(c), NUMA system has
global memories which are physically distributed and virtually shared. Therefore,
processors can access their local memory faster than remote memory. This type of
structure offers ease of shared-memory programming and scalability at the cost of
non-uniform memory access time.

In general it is easier to create an initial program for a shared memory system
than for a no-shared memory systems because the shared memory system allows
the programmer to ignore the communications between processors and concentrate
on dividing the program into tasks that can be performed in parallel. However,
shared memory systems require other programming efforts as a result of their unique
architecture. Effective manipulations of multiple simultaneous accesses to a single
memory location caused by more than a single processor is one such effort required

in shared memory systems.
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The best choice of a parallel architecture depends on the application runs that
need to be executed, the programming model which needs to be supported, and the

required costs.
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System. The systems depicted in (b) and (c) are of the shared memory type.
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4.3 FEM Task Parallelization

In the hybrid MoM/FEM method. FEM is applied repeatedly over different ex-
citations and frequency points to compute the sub-matrices (Y] and [Vi,.] defined

in Egs. (2.40) - (2.41) as

No
Y = (=M H, (M) = ¢en(—M,,. 81) (4.1)
k=1
Ne
e =2, — —a —
Vinem = (=M H,(Mp)) = _ éus(—M,,, %) (42)
k=1

where m and H, are magnetic sources, ¢ is the FEM edge vector basis, and Ny is
the number of ¢. It has been clearly shown in Chapter II that the sub-matrices can

be computed from ¢ by solving a FEM linear system expressed as:
[Al[®] = [B]

where ¢ is the element of the vector [®]. Note that the overall memory size required
for FEM computation is determined by the dimension of a FEM linear system.

To speed up the sub-matrix computations over the desired frequency points, we
have applied task parallelization schemes in FEM computations. It is important to
mention that for this task parallelization, the size of a FEM linear system should
not exceed the memory assigned to a single processor. Otherwise, the FEM linear
system has to be divided in a number of processors using the matrix decomposition
method which will be discussed later.

Task parallelization is a simple and easily implementable method that can be
utilized in FEM calculations. Figure 4.2 shows how this parallelization performs
the required tasks in a multi-processor environment. As seen from the figure, the
tasks are first distributed to processors and then executed in these processors simul-

taneously. Assuming that the tasks are independent of each other. as it happens in
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moderately sized FEM computation, each processor can carry out its assigned tasks
with minimum communication overhead. As a result, we can achieve almost lin-
early scalable performance. It is worthwhile to emphasize again that each processor
should be provided the memory required to perform its assigned task in order to be
computationally independent from other processors and achieve maximum scalabil-
ity. Otherwise, the communication overhead among processors grows and the overall
computation slows considerably. Among the available parallel systems, the no-shared
memory system has the most suitable architecture for effectively handling FEM task
parallelization and can alleviate the above problem because all FEM computations
can be executed independently among processors using their large local memory.

Since FEM can be independently applied for each source and frequency point, we
have considered three possible task parallelizations in the hybrid FEM computation:
(1) frequency parallelization; (2) source parallelization; and (3) frequency-source
parallelization (the combination of the frequency and source parallelization).

In frequency parallelization, frequency points are processed in parallel but sources
are processed serially. As shown in Fig. 4.3, FEM computations over different fre-
quency points are distributed to the processors and performed simultaneously to
solve Egs. (4.1) and (4.2). Each processor performs the identical FEM routine with
same magnetic sources, but for a different set of frequency data. This parallelization
and execution strategy is called the SIMD (Single Instruction Multiple Data Stream)
model when the processors are synchronized to execute the same instruction at the
same time. Several early parallel computers (eq., Illiac IV, Maspar) were tailored to
support this parallel execution model. In modern multiprocessor computer systems,
each processor can execute its own copy of the program and synchronization need

not be enforced; this generalization results in the SPMD (Single Process Multiple
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Data Stream) model.

Another way of implementing task parallelization is the reverse case of the previ-
ous parallelization : (1) frequency points - serial processing; (2) magnetic sources -
parallel processing. In this way, Eqs. (4.1) and (4.2) are computed over all magnetic
sources at a single frequency point simultaneously, but frequency points are processed
one after another. Figure 4.4 shows this source parallelization. This scheme affords
more parallelism when the number of sources is greater than the number of frequency
points. Increased parallelism is advantageous in that it allows more processors to
participate, resulting in a proportional speedup.

Frequency-source parallelization is the most efficient scheme of three in that both
frequency points and sources are processed in parallel way. As shown in Fig. 4.5,
the frequency-source parallelization assigns a distinct range of frequency points and
sources to each processor while only a range of frequencies or a range of sources is
assigned to each processor in the previous two methods. In this manner, we can
have more flexibility in distributing computational tasks according to the number
of available processors. This combined parallelization method can use all available
processors while neither of the previous two methods can use more processors than
the maximum number of frequency points or the maximum number of sources, re-
spectively. The combination can use a number of processors equal to the product of
the number of frequency points and the number of sources.

For a simple demonstration of task parallelization, the computation of an electro-
magnetic circuit shown in Fig. 4.6 is considered. This type of geometry is commonly
found in a packaged high-frequency electromagnetic circuit. The center conductor
is used to send electromagnetic signals while the surrounding via fences are used to

support a metal package which provides shielding against electromagnetic interfer-
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ence and physical protection from hostile environments. The circuit is filled with a
dielectric material (¢, = 2.5) and covered at the top and bottom with perfect electric
conductors. The via fences are located 0.25 mm from the center conductor and each
via has a diameter of 0.25 mm. The via-to-via spacing is 1.3 times the via diameter.
Utilizing frequency parallelization, FEM computation is performed over 32 frequency
points to solve 160.000 unknowns in this geometry.

Figure 4.7(a) shows the computed total electric field distribution in the substrate
of the circuit at 25GHz. Since the via holes are closely spaced for the electromag-
netic field at this frequency, the field is confined around the center conductor. Thus,
these via fences can be used to isolate the electromagnetic field and reduce electric
couplings in high density circuit regions. The performance of the applied task par-
allelization is shown in Figure 4.7(b). As expected, we have achieved almost linearly

scalable performance for frequency parallelization over the 32 frequency points.
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Schematic view, (b) Cross-section view
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4.4 Matrix Decomposition Method

The matrix decomposition method is a parallelization paradigm used to solve a
large linear system which can not be stored in a single processor. This technique
can be utilized to handle any type of linear system which has the form [A]{z] = [B]
and is solved by iterative methods [66]. It is well known that non-iterative methods
such as gaussian elimination are not efficient for solving large linear systems because
of their long computation time and large memory requirements. We use matrix
decomposition to solve two large linear systems in an hybrid MoM/FEM method:

(1) an FEM linear system (Fig. 4.8) in Eq. 4.3;
[A][@] = [B] (4.3)

and (2) a hybrid linear system in Eq. 2.24;

2w e[ o ] s
(€] o1+ [v*] | | (M) — [Vind]
We have considered two matrix decomposition scenarios [67], [68] and present them
below in detail.

The first scenario is shown in Fig. 4.9. In the initial stage, portions of a large linear
system. [A;], are generated in a master processor and transferred to slave processors
(step 1). Once the slave processors have received sections of the linear systems, they
all start an iterative solution process. There are two critical operations in the itera-
tive solution routine that have to be carefully parallelized: (1) renewal of a solution
vector, [z], in each processor, and (2) matrix-vector operation, [A] - [z}, using the
partial linear system stored in the processors. With this parallelization algorithm,

these tasks are accomplished by broadcasting a new [z] to all processors (step 2),

performing partial matrix-vector products in each processor (step 3). and gathering
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[ Case Order of unknowns (N) | Matrix dimension |
FEM linear system 10° 25 x 107 (25 x N)
Hybrid linear system 104 108 (N?)

Table 4.1: The estimated dimension of the matrix [A] in the FEM and hybrid linear sys-
tems.

and combining the results from each processor (step 4), as shown in Fig. 4.9. Note
that the communication processes, broadcasting and gathering, are limited by the
bandwidth of the interconnection network of the parallel system which may be a
simple ethernet, high speed bus, very high speed multistage switch, or hypercube.
Moreover, they are limited by software overhead for generating messages if a message
passing paradigm is used for communications. The particular interconnection net-
work used considerably affects the overall computation time of the iterative solution
routine, as well as the cost of the parallel computer system.

The first matrix decomposition method is simple and easily implementable. But
the cost paid is a communication latency between the master and slave processors
caused by the transfer of the matrix [A] and the vector [z]. The distribution of
matrix [A] to processors occurs only once at the beginning of the solution process.
Even so, and even though a sparse matrix storage scheme is used, the transfer takes a
considerable portion of the total run time because of the large dimension of the matrix
[A]. To address this argument quantitatively, we have estimated the dimension of the
matrix [A] in the FEM and hybrid linear systems in Table 4.1. In both cases, an order
of 10 million matrix elements is involved in the distribution of the matrix [A]. The
unknown coefficient vector [z], on the other hand, is updated in every iteration as the
master processor broadcasts the [z] to the slave processors. Considering that about
90% of the total run time is spent in an iterative solution process, this broadcasting

communications leads to the major computational delay. Therefore, the first method
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proves to be inefficient for large-scale electromagnetic problems. For this reason, we
have considered the second scenario to minimize the overall communication cost in
the solution process.

The main interest in the second scenario is how to distribute matrix [A] and
update vector [z] in the least communication time. Since the generation of matrix
[A] takes less than 10% of the total run time, we have considered the generation of
the partial matrix, [A4;], in each processor - Fig. 4.10(a). instead of generating it in
the master processor and sending the appropriate portion to each slave processor. By
generating [A;] directly in the slave processors, while we skip only one communication
process, we can save much communication time. In this partitioning, it is important
to balance the dimensions of the partial matrices among the processors in order to
maximize the computational speed and efficiency. The major saving can be achieved
in the updating of vector [r] when matrix [A] is sparse. In this case, we need not
send the entire vector [z] to every slave processor. Using the indices of the non-zero
elements in the partial matrix associated with each particular slave processor, we
can send that processor a portion of vector [z] which has values only at these indices
(step 2). Since this reduction of [z] occurs in every iteration, we can considerably
reduce the communications between processors that occur during each iteration,
which eventually will save a significant amount of the total execution time of an
iterative solution process. The saving becomes ever more significant as the number
of unknowns in a problem reaches to the order of 107 and the number of iterations is
proportionally increased. After the matrix-vector multiplication is carried out, using
indirect indexing of the partial [A] and [x] (step 3) in each processor, the results are
collected by the master processor and combined to give a final result of [A] - [x] (step

4).
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As an example of this matrix decomposition method, we have applied the second
matrix decomposition method to a simple, but large microstrip structure (Fig. 4.11(a)).
Artificial absorbers (AA) have been used in the substrate and free space region to
terminate the infinite section of microstrip. This problem has 67 x 211 x 85 grid
points and a total of 7,100,411 unknowns (each rectangular block is subdivided into
tetrahedral elements) . The 2G-Bytes of memory required for FEM computation has
been provide by dividing it over more than 9 processors (each processor has 256 M-
Bytes of memory). The run time for 9 to 16 processors was measured, as shown
Fig. 4.11(b). Because of the communication overhead among processors, the perfor-
mance is not as scalable as for the task parallelization case. However, this parallel
scheme can handle and solve a large linear system in reasonable amount of time. The

computed return loss is shown in Fig. 4.11(a).
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Figure 4.9: Matrix-Decomposition and Matrix-Vector Multiplication: Scheme I, where
4] = fi;l[A,-], Step 1 - send a partial linear system to each slave proces-
sor, Step 2 - broadcast renewed [z], Step 3 - perform partial matrix-vector
multiplication in processors simultaneously, Step 4 - collect the results and

give the final result of [A] - [x]
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Figure 4.10: Matrix-Decomposition and Matrix-Vector Multiplication: Scheme II, where
[A4] = U;’il[A,-] and [z] = U,-Iil[:ti], (a) Step 1 - generate a partial linear
system in each processor. (b) Matrix-vector multiplication ( [A] - [x] ), Step
2 - send renewed [r;] which is banded to a partial linear system, Step 3 -
perform partial matrix-vector multiplication, Step 4 - gather the results and
give the final result of [A] - [x].
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Figure 4.11: Example of matrix decomposition method : microstirp through line, €, for
substrate = 2.54. €44 for substrate = 2.54 — j8, €44 for air = 1 - j5, substrate
thickness = 1.6 mm, PEC width = 4.95 mm, grid = 67 x 211 x 85, total
number of unknowns = 7,100,411. (a) schematic diagram and the computed
return loss, (b) Performance measurement.
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4.5 Task and Matrix Decomposition Method

Frequency parallelization, source parallelization, and the matrix decomposition
method can be combined together to fully utilize their advantages simultaneously.
As shown in Figure 4.12, sources and frequency points are processed serially in a pro-
cessors group using matrix decomposition method. But they are processed in parallel
as other source and frequency points are assigned to the rest processors groups. In
this way, all available processors can perform large FEM computations for numerous

frequency points.

(A [Ad Avid (A [A)] (Axi] (Ad [A) (Al

Figure 4.12: Combination of frequency and source parallelization and matrix decomposi-
tion method, where [A] = UY5![A/]
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4.6 MoM Task Parallelization

The dominant process in MoM computation is the computation of the impedance
matrix elements, which is a series of numerical integrations of free space Green'’s func-
tion with bases in the MoM domain, asshown in Egs.( 2.14) - (2.17). Mathematically.
these numerical integrations are not associated with each other and, therefore. can be
carried out independently. For this reason, we apply task parallelization to speedup
the MoM computations. Shown in Fig. 4.13 is the implementation of task paralleliza-
tion scheme in MoM matrix generation. In the first stage, each processor generates
a partial MoM matrix, [Z;] where i=0 - -- n-1 (stage 1). Then, the computed partial
matrices are collected by the master processor to give a full MoM impedance matrix
(stage 2). To achieve maximum speedup in MoM task parallelization, it is impor-
tant to assign each processor a similar amount of computational tasks (number of
matrix elements). Unlike the FEM case, MoM computation does not require a large
independent memory for each processor. Thus, we can use both the no-shared and

the shared memory type of machine in MoM parallel computation.
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CHAPTER V

VALIDATION

In this chapter we validate the hybrid MoM/FEM technique for aperture-coupled
types of electromagnetic problems. As a validation model we have chosen a slot-
coupled patch antenna with double layers, a widely known problem with an analytic
solution. We first validate the developed hybrid MoM/FEM technique with this
structure using scaling functions expanded on a patch and a slot. Second, we in-
corporate wavelets and explore its numerical strength. The microstrip feed region
is discretized as is usual with tetrahedral elements for FEM computation. This dis-
cretization remains unchanged throughout all computations. We verify the computed
results by comparing them with the measurement data [69]. In addition, threshold

effects of a wavelet hybrid matrix and the savings in memory are closely examined.

5.1 Scaling Function Expansion (Zero Level Expansion)

Fig. 5.1 shows a double-layered slot-coupled microstrip patch antenna system
proposed by Pozar [70]. A radiating patch and a microstrip feedline are printed
on the top and bottom substrate, respectively, while a ground plane with a small
nonresonant aperture is placed between them. The electromagnetic field is fed by
the microstrip feeding line and coupled to the patch antenna through the aperture

in the ground plane.
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To expand electric currents on the patch and magnetic currents on the slot,
we have used roof-top scaling functions on the patch in z and y directions and
horizontally on the slot along the aperture (z direction). It is reasonable to consider
the variation of magnetic current only in the longitudinal direction of the aperture
because the width of an aperture is much narrower than the guided wavelength near
resonant frequency. In the application of multi-resolution analysis (MRA) theory,
the highest resolution of mesh is used in this scaling-function-only expansion (zero
level expansion), while other lower resolutions of mesh are used in expanding scaling
functions and wavelets (first and second level expansions), as shown in Fig. 5.2.
Using a roof-top scaling function expansion in the highest resolution of mesh on
a patch and a slot, a MoM solution is computed utilizing the available free space
Green’s functions. The microstrip feeding domain, on the other hand, is discretized
with vector tetrahedral elements and solved by FEM. We have expanded equivalent
magnetic currents on a slot in FEM domain with roof-top scaling functions. The
final solution of this problem is obtained by combining the MoM and FEM solution
and solving the combined equation as described in Chapter II.

We have calculated the input impedance of the circuit (Fig. 5.1) utilizing the
solution according to the method shown in Appendix A. The results show good
agreement with the measurement data over the computed frequency range (Fig. 5.3).
Additionally. we have shown the radiating electric field and the current distribution

on a patch in Fig. 5.4.
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Figure5.1: A Double-Layered Slot-Coupled Microstrip Patch Antenna System (a)
Schematic view (b) Top view : d, = 0.16cm, L, = 4.0cm, W, = 3.0cm,
T = 0.0cm, yoo = 0.0cm, Lop = 1.12cm, Wy, = 0.155¢m, Ly = 2.0cm. Feeding
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Figure 5.2: An example of multi-resolution meshing scheme on a patch and a slot. Patch
: (a) Zero level grid - scaling functions only, (b) First level grid — scaling
functions and wavelets, (c) Second level grid - scaling functions and wavelets.
Slot : (d) Zero level grid - scaling functions only, (e) First level grid - scaling
functions and wavelets, (f) Second level grid — scaling functions and wavelets.
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Figure 5.4: (a) Current distribution on a patch, Radiating electric field: (b) E4 (observation
angle : ¢ = 180°, § = 0°), (c) Eg (observation angle : ¢ = 90°, § = 0°), (d)
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5.2 Scaling Functions and Wavelets Expansion

In this section, we verify the integration of MRA theory into the hybrid method
with the same geometry used in the previous section (Fig. 5.1). The patch antenna
and the coupling aperture are now modeled using scaling and wavelet bases while the
microstrip feeding line is discretized with tetrahedral elements as before. We have
considered two different expansions of the zero level scaling function space, using
multi-resolution analysis. One is first level expansion, which gives scaling functions
and wavelets in the first level grid — Fig. 5.2 (b). (e). The other is second level
expansion, which gives wavelets in the first level grid - Fig. 5.2 (b) and (e), and
scaling functions and wavelets in the second level grid - Fig. 5.2 (c) and (f). In both
cases, the resolution levels are equal to zero level scaling-only expansion according
to MRA theory. Figure 5.5 shows the equivalence of all these expansions along with
their respective calculated input impedances.

In the following sections, a slot-coupled antenna patch problem is thoroughly
studied with first and second level expansions. Specifically, we present in detail the
effect on the numerical solutions caused by thresholding the hybrid linear system

and the resulting saving in memory.

5.2.1 First Level Expansion

As mentioned previously, first level expansion produces scaling functions and
wavelets in a first level grid. We have expanded the electric currents on a patch
and the equivalent magnetic current on a slot with these basis sets and solved the
problem (Fig. 5.5) using the hybrid MoM/FEM method. The discretization of the
microstrip feeding region remains unchanged with the same vector tetrahedral ele-

ments as before.
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We have computed the single patch antenna problem (Fig. 5.5) with various
threshold levels and closely examined its effect on the accuracy of the solutions. As
mentioned in Chapter III, thresholding is performed locally for each sub-matrix in
the hybrid MoM/FEM matrix by discarding small off-diagonal wavelet elements less
than a certain fraction of the largest element. Figure 5.6 shows the calculated input
impedance for different threshold levels from 107> to 6x10~5. As one can see, input
impedance is close to that of the exact solution when threshold tolerance is equal to
or less than 10~>. The input impedance starts to deviate as threshold tolerance is in-
creased to 2x1073. At the tolerance of 6 x10~5, the input impedance becomes totally
different from that of the exact solution. Therefore, for this single patch antenna
problem, the threshold tolerance should not be greater than 10~°. We have observed
the variations of electric current distribution on a patch as we change the threshold
tolerance. A one-dimensional view of electric current distribution across the center
of a patch is shown in Fig. 5.7 for various threshold tolerances. Interestingly, as the
tolerance increases from 2x10~°, not only does the shape of the current change but
also the amplitude of the current becomes small. This phenomenon can be more
clearly observed in the two-dimensional view shown in Fig. 5.8. As the tolerance
is changed up to 2x107°, there is not much variation in the shape of the current;
it is only a little rough. An apparently different shape of the current, sharp and
rough, appears at a tolerance of 6x10~° and the current becomes unrecognizable at
a tolerance of 4x107%, as shown in Figs. 5.8 (d) and (e), respectively. It is interesting
to note that at the tolerance of 4x10~* the overall shape of the current is mostly
destroyed (Fig. 5.8) but the envelope of center current in Fig. 5.7 is similar to that
of the exact solution except for smaller edges and magnitude. Lastly, we studied the

effect of threshold on the radiation pattern of this patch antenna system. Figures 5.9,
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5.10, and 5.11 show each radiating electric field component for different threshold
levels. As expected. less electric field is radiating with the increment of threshold
tolerance. This is because the edge electric currents on a patch, a major component
that makes the radiating electric field, become smaller as the threshold tolerance is

increased, as shown in Fig. 5.7.
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Figure 5.8: Current distribution on a patch for various threshold levels — First level expan-
sion : (a) Tolerance < 1075, (b) Tolerance = 10~3, (c) Tolerance = 2x10~3,
(d) Tolerance = 6x10~3, (e) Tolerance = 2x 104, (f) Tolerance = 4x10~4.
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Figure 5.9: Radiating electric field, E,, for various threshold levels : Observation angle (¢
= 180°, 8 = 0°) - First level expansion.



Tolerance <2 x 107°

Tolerance = 6 x 10”°

e ——— e
—— = —

Tolerance =2 x 10
Tolerance = 4 x 10™ ‘

»
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5.2.2 Second Level Expansion

The second level expansion of zero level scaling function space (wavelets in the
first level grid, and scaling functions and wavelets in the second level grid) can
be used to model electric and magnetic current on a patch and slot, respectively,
with the same tetrahedron mesh in the microstrip feed region as before. In this
expansion, we can make the hybrid linear system more sparse than the previous first
level expansion. This is possible because the resulting hybrid linear system has more
wavelet terms (whose values are much smaller than other terms and can be treated
as zero) than other linear systems generated by the previous two expansions. In
other words, this process, called matrix diagonalization, concentrates most of the
system’s information near diagonal scaling function terms, making the hybrid linear
system compact and sparse. We have shown the sparse hybrid linear systems and
investigated the threshold effects on the numerical solutions of the hybrid MoM/FEM
method.

Figure 5.12 shows the computed input impedance of a single patch antenna system
(Fig. 5.1) for three threshold levels. As one can see, the input impedance does
not change up to the tolerance of 5x107°, but it becomes very different as the
tolerance increases to 5x10™*. The same trend of threshold effect is observed in
the cross-section view of the electric current distribution shown in Fig. 5.13; it does
not change much below the tolerance of 5x10~° but becomes very different beyond
the tolerance of 5x10™%. Shown in Fig. 5.14 is the two-dimensional distribution
of electric current on a patch for different threshold levels. The changes of the
current distribution with respect to the threshold level are similar to that of first
level expansion (Fig 5.14). However, they have a different numerical property coming

from different expansions of scaling functions and wavelets. For example, the current
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distribution in Fig. 5.14 (b), second level expansion with tolerance of 5x10~>. and
in Fig. 5.8, first level expansion with tolerance of 6x107°, are very similar to each
other. But they give different input impedance; the former’s is correct (Fig. 5.12)
and the latter’s is incorrect (Fig. 5.6). This difference is attributed to the higher
diagonalization of the hybrid linear system by additional wavelets in the second level
expansion. To put it differently, the system information is more concentrated in near
diagonal scaling function terms for a higher-level expansion. As a result, the solution
of a higher-level expansion is relatively less affected by threshold value than that of a
lower-level expansion. Shown in Figs. 5.15 — 5.17 are radiating electric field patterns
in each component for various threshold levels. As we have observed in the case
of first level expansion, the strength of all radiating field components is reduced as
the threshold tolerance is increased. Similar to the variation of the input impedance
with respect to the threshold tolerance, the radiation pattern remains unchanged
at the tolerance of 5x107° but is significantly reduced when the tolerance becomes
larger than 5x107*. Figures 5.18 (a) and (b) show the resulting sparse matrices for
the threshold tolerance of 5x10~° and 1072, respectively. Surprisingly, the sparsity
reached to 73.7% with the tolerance of 5x10~3. This means that, with this value
of threshold, we can solve the problem exactly using only 26.7% of the memory
required in an ordinarily MoM computation. To observe the change of sparsity in
further case, we performed threshold with tolerance of 10~2 and presented a resulting
matrix having 95.87% of sparsity, even though the numerical results in this range
of threshold tolerance are not correct and, indeed, are unacceptable. Because of the
non-symmetric nature of the hybrid matrix, as can be noticed in Fig. 5.18, only a CG
(conjugate gradient) type of iterative solver [66] can be used as a solution routine of

the hybrid matrix.
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(c)

Figure 5.14: Current distribution on a patch for various threshold levels — Second level
expansion : (a) Tolerance < 5x10~3, (b) Tolerance = 5x10~3, (c) Tolerance
= 5x107%,
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CHAPTER VI

APPLICATION

Having verified the developed hybrid method along with its wavelet application,
we now apply this method to a large-scale electromagnetic problem, specifically a
4x8 patch antenna array system. In this application, we numerically solve the ar-
ray problem by integrating all three techniques and characterize the electromagnetic
performance of the array system. This work includes: (1) multi-level expansions of
scaling functions and wavelets on an array of patch and slot; (2) the use of parallel
computing to supply the large memory required and carry out heavy computations.
We present numerical results of this problem, including the return loss, the current
distribution, the magnetic field distribution over the feeding network and the radi-
ation pattern of the antenna array. Lastly, we discuss the threshold effect on the
numerical solution of the problem in multi-level wavelet expansions and its resulting

numerical features in detail.

6.1 4x8 Patch Antenna Array System

The hybrid MoM/FEM method, wavelet, and HPC are applied to an aperture
coupled 4x8 patch antenna array system as shown in Fig. 6.1. To investigate a
numerical feature of multi-level wavelet expansion the problem is solved with three

different basis expansions on patches and apertures: (1) zero level scaling-only ex-
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pansion; (2) first level expansion (scaling functions and wavelets in first level grid);
and (3) second level expansion (wavelets in first level grid, and scaling functions and
wavelets in second level grid). Bases are expanded in both horizontal and perpen-
dicular directions on patches, whereas we place bases for aperture only horizontally
along the aperture, as before. The microstrip feeding network is again discretized
with tetrahedron. A total of 1.7 million unknowns are generated in this problem
and 99% of unknowns are located in the microstrip feeding network. The solution
procedures are: (1) obtain the FEM solution in the feeding network domain and
the MoM solution in the array antenna domain; (2) combine the FEM and MoM
solutions; and (3) solve a combined hybrid equation.

All computations are performed on a distributed memory machine, IBM SP2
with 256M-Bytes of memory and 160MHz of clock speed. Task parallelization is
used in MoM while task parallelization and domain decomposition method are used
in FEM. The parallel MoM code shows about 50% of speedup with 32 processors on
both the distributed and the shared memory machine. The parallel FEM code can

solve problems on the order of 10 unknowns.

6.1.1 Scaling Function Expansion (Zero Level Expansion)

In a zero level expansion, using only scaling function on patches and slots, we
calculated the current distribution on patch antenna array using Eq. (2.21) and
plotted its result in Fig. 6.3. Figure 6.2 shows the total magnetic field distribution
over the feeding network obtained by Eq. (A.1). The resonance of the system can be
seen from the low standing wave ratio of the magnetic field in Fig. 6.3. Finally, the
radiating total electric field from the 4 x 8 patch array is shown in Fig. 6.4. Note

that in this scaling-only expansion a full hybrid matrix must be used for the solution
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of the problem, which requires approximately 4G-Bytes of memory. We separately
stored the full hybrid linear system in 16 nodes which have 256M-Bytes of memory in
each, and solved it using the matrix-decomposition scheme mentioned in Chapter IV.

We computed a normalized reflection coefficient of the array system using Eq. (A.2)

and presented it in Fig. 6.5 along with those from lower levels of resolution.
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Figure 6.1: Microstrip-feed slot-coupled patch antenna array with double layers
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Figure 6.2: Computed current distribution on patch antenna array
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Figure 6.3: Computed total magnetic field distribution on feeding network near resonant
frequency
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Figure 6.4: Radiating total electric field from 4x8 antenna array
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6.1.2 First Level Expansion

First level scaling functions and wavelets were deployed on slots and patches to
expand the magnetic and electric current, respectively. Using this expansion, we
calculated the input impedance of the array system for various threshold levels and
presented them in Fig. 6.6. Thresholding is performed locally for each sub-matrix
in the hybrid MoM/FEM matrix by discarding terms less than a certain fraction
of the maximum element’s value. As can be seen in Figs. 6.5 and 6.6, under the
tolerance of 2x107% the computed input impedance is consistent with that of zero
level expansion, but it starts to change at the tolerance of 4x10~¢. Comparing to
the case of second level expansion shown in Fig. 6.7, the input impedance in this
expansion shows more sensitivity to threshold tolerance. This is true because first
level expansion has fewer wavelet terms and, therefore, the resulting hybrid linear

system is less diagonalized than that of second level expansion.
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6.1.3 Second Level Expansion

The array problem is now solved with second level scaling and wavelet expansions
using the same solution procedure as previously. The calculated return loss of the
array system is shown in Fig. 6.5 for three threshold tolerances. As we have observed
in the previous expansion case, the accuracy of input impedance is degraded as the
threshold rate is increased. Specifically. a threshold of 10~¢ hardly affects the input
impedance of the array system, as shown in Fig. 6.5, and there is only small variation
between 10~¢ and 1075. Significant change in input impedance comes as the threshold
level is raised to 107%. This variation can be graphically observed in the comparison
of total magnetic field distributions on the feeding network as presented in Fig. 6.3.
Reasonably enough, the magnetic field in the slot region is vanishing as the threshold
tolerance is increased, indicating the decrease of magnetic field coupling through the
slot. In addition, a larger standing wave ratio of the magnetic field at the feeding
section of microstrip explains the inaccurate return loss in a higher threshold level
condition. The electric current in the antenna array in Figs. 6.9 — 6.12 demonstrates
the effect of threshold similar to those of the magnetic field on the microstrip feeding
network. To show even a small variation on current distribution, which is difficult
in an overall current-array distribution for some threshold cases, we also presented a
magnified plot, a single cut of a current array. The current has a negligible variation
for the tolerances between 10~ and 10~3. At 10~%, however, the overall current
profile is similar to the previous one, but the current becomes crumpled and rough
in detail. Finally, even the overall current shape is totally destroyed as the threshold
level increases to 1072,

From MRA. the number of meshes and bases on patches and slots in the array

system can be calculated using Egs. 6.1 ~ 6.7 in each expansion level. The number
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of grids (Tmesh: Ymesh, aNd STmesn) is reduced by half as the order of expansion level
is increased, while the number of bases remains the same regardless of expansion
levels. Since all the bases in each expansion level span the same solution space,
according to MRA theory, the solution can be computed at any level of expansion.
The amount of required memory for the hybrid MoM/FEM linear system can be
estimated by Eq.(6.8). Table 6.1 shows an example of memory size for a second
level expansion with a 4x4 grid per patch and a 2x1 grid per slot in a 4x8 array
system. This problem can be solved using only scaling functions with a 16x16 grid
per patch and an 8x1 grid per slot as an ordinarily MoM computation. However, in
this case, almost 4G-bytes of memory are required to store the hybrid MoM/FEM
linear system. Alternatively, we can solve the problem using much less memory in
the second level expansion. In fact, this expansion also needs the same amount of
memory, 4G-bytes, for the hybrid linear system. But the savings in memory come
only after thresholding the hybrid linear system and storing only significant terms
using sparse matrix storage scheme. We have accurately solved this array problem
with threshold tolerance < 107°, as shown in Fig. 6.7, using as small as 111.98M-
bytes of memory, saving 97.13% of memory. Further thresholding with the tolerance
larger than 107> does not vary the sparsity more than 3% and, more importantly, the
computation result is not accurate. Therefore, for this array problem, it is desirable
to keep the threshold tolerance under 10~°. Shown in Fig. 6.13 is a structure of the
hybrid linear system thresholded by 10~3, where only diagonal elements are remained.
For the lower threshold levels, we expect many small off-diagonal elements in the

hybrid linear system.
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Tmesh = Idiy/25tevet (6.1)
Ymesh = Ydiv/ 2% (6.2)
Niy = (Tmesh X 27! ) (Ymesn X 29 — 1) (6.3)
Noz: = (Ymesh X 2Y*!)(Zpnesh X 27w — 1) (6.4)
STmesh = SZTdiy (6.5)
Nyz = STmesh X 2%Ftevet — ] (6.6)
Nioe = (Noy+ Npz + Ngz) X Az X A, (6.7)
M = ((Noy+ Nor + Nyz) X A x A,)? x 16 (6.8)

where

® Ig..Yqiv: Dumber of divisions in x and y directions at zero level expansion on

a single patch.

® Toesh.Ymesnh: Dumber of divisions in x and y directions at any expansion level

on a single patch.
® Tievel. Ylevel . €Xpansion level of patch in x and y directions

® Ny, Vp: : number of bases expanding electric current, J, and J., on a single

patch.
® 5zg4;,: number of divisions in x direction at zero level expansion on a slot.
® STn,.sn: number of divisions in x direction at any expansion level on a slot.
® STi..ei: €xpansion level of slot in x direction.

e N,;: number of bases expanding magnetic current, M?°, on a slot in x direction.
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e A., A,: number of patches in x and y directions.
® Ny : total number of unknowns in slots and patch array.

e 1\, : the required memory size for storing a hybrid linear system (Byte).

[ Threshold level Sparsity (%) | Num. of non-zero element | Memory (Bytes) |
N/A (Ordinarily MoM) 0 15616 x 15616 39G
10— 95.33 11388236 182 M
10~° 97.13 6998766 111.98 M
10— 97.69 5633153 90.13 M
10-3 99.43 1397314 22.35 M
10~2 99.81 462113 739 M

Table 6.1: Comparison of sparsity of the hybrid MoM/FEM linear system for various
threshold levels. — Second level expansion.
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Figure 6.8: Computed total magnetic field distributions on feeding network near resonant
frequency - Second level expansion for threshold levels of : (a) 10~>, (b) 1074,
(c) 102



(b)

Figure 6.9: Computed current distribution on antenna array for second level expansion and
threshold level of 1078: (a) overall view, (b) an enlarged view.
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(b)

Figure 6.10: Computed current distribution on antenna array for second level expansion
and threshold level of 1073: (a) overall view, (b) an enlarged view.
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(b)

Figure 6.11: Computed current distribution on antenna array for second level expansion
and threshold level of 1074: (a) overall view, (b) an enlarged view.
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Figure 6.13: A sparse hybrid MoM/FEM linear system generated by second level expansion
and a threshold tolerance of 1073 in a 4x8 antenna array problem, showing
99.43% of sparsity.



CHAPTER VII

CONCLUSIONS

7.1 Summary of Achievements

Our effort in this study focused on the development of a fast and accurate compu-
tational technique for the large-scale electromagnetic (EM) problems which may in-
clude large scattering domains and complex circuit geometries. We have successfully
accomplished this task through three stages of development: (1) the development of
a hybrid MoM/FEM technique; (2) the application of wavelet theory; and (3) the
incorporation of High Performance Computing (HPC).

By effectively combining FEM and MoM, the developed hybrid MoM/FEM tech-
nique can selectively utilize the advantage of FEM and MoM according to the charac-
teristics of sub-divided computational domains. For example, an arbitrarily shaped
complex circuit geometry filled with homogeneous/inhomogeneous materials can be
formulated with FEM, and the radiating free space domain can be solved with MoM
utilizing the available free space Green'’s function. Therefore, we can solve the given
EM problem with a smaller cost of analytical effort and computing resources than
other existing numerical methods.

The successful application of wavelets on the hybrid MoM/FEM technique has

significantly reduced memory and accelerated the computation speed in another way.
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Because of a highly sparse linear system rendered by this special basis function
(wavelet), we can achieve a huge saving in memory and reduce the time required to
solve the hybrid linear system.

While previous efforts primarily concerned theoretical/numerical (software) im-
provement, HPC emphasizes resolving the computing hardware requirement of the
large-scale EM problems — a system that can perform massive/fast computation
and has very large memory. Utilizing parallel machines with efficient parallelization
strategies, the parallelized hybrid technique not only demonstrates scalable perfor-
mance (task parallelization) but also can deal with the problems which have on the
order of 107 unknowns (matrix decomposition method).

The hybrid MoM/FEM technique and its wavelet application have been validated
with the single aperture-coupled patch antenna structure: excellent agreement has
been achieved between the computed result and the published experimental data. We
have further investigated the detailed thresholding mechanism at various expansion
levels and thresholding tolerances, and shown how the numerical solutions (such
as input impedance, current distribution on patch, and radiation pattern) and the
sparsity of the hybrid linear system are affected by them.

Finally, this technique has been applied to a large aperture-coupled patch antenna
array system which has on the order of a million unknowns and requires several giga-
bytes of memory to solve with the conventional methods. As presented in Chapter VI,
this large problem is solved using a remarkably small volume of memory (only 5%
of memory required for the ordinary technique) in a short time without losing the
accuracy of solution. This study, we believe. suggests a strong possibility of the
real time design/characterization of large and complex microwave/millimeter-wave

devices and circuits.



104
7.2 Suggested Future Work

The techniques developed throughout this research can be further investigated in

several directions:

e Enhancement of wavelet hybrid MoM/FEM technique.

e Application of the developed technique to various large-scale electromagnetic

problems that are not amenable to solution with other techniques.

e Improvement and optimization of parallel computation and its application to

various parallel platforms.

The wavelet hybrid MoM/FEM technique itself can be enhanced in diverse ways:
(1) Incorporation/development of Graphical Users Interface (GUI) for accurate and
flexible modeling of complex geometries; (2) rigorous and systematic study of wavelets’
thresholding scheme for higher sparsity: (3) fast numerical integration algorithm for
short overall MoM computation time; and (4) efficient iterative algorithm for the
minimum use of memory and the short solution time of FEM linear system and a
hybrid linear system. Furthermore. incorporation of a hybrid MoM/FEM technique
with other numerical methods, such as the finite difference time domain (FDTD)
method, can provide more methodological flexibility in solving sub-divided compu-
tational domains.

The developed wavelet hybrid MoM/FEM technique can be applied to other in-
teresting electromagnetic scattering and high-speed high-frequency circuit problems
which can utilize the advantages of this technique. This type of EM problems is
often encountered in most of today’s advanced communication systems.

Lastly, efficient parallel schemes can improve the overall performance of wavelet

hybrid technique in terms of memory and speed. In particular, we can effectively
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decompose FEM and hybrid linear systems into processors for optimum load bal-
ancing and memory management. I[n addition, efficient parallelization of repeated
matrix-vector multiplication can speed up the iterative solution process. Utilization
of appropriate parallel platforms for various parallel schemes is another possible way

to enhance HPC capability.
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APPENDIX A

Calculation of the Actual Magnetic Field and Input
Impedance in Hybrid MoM /FEM Technique

The actual magnetic field in the feeding domain can be calculated from the linear
combination of solutions of hybrid equations and magnetic field excited by each

magnetic current on apertures and the feeding domain.

Na
Hy = Hy(My) + ) m®, Hy(M®,) (A.1)

n=1

where H,(M;) is the magnetic field excited by magnetic current on the feeding do-
main (M), N, is the total number of magnetic currents on apertures, m® is the
calculated coefficients of magnetic currents on apertures computed from Eq. (2.22),
and H,(M?®) is the magnetic field excited by magnetic currents in aperture (Af?).
The normalized input impedance of the system can be obtained from the actual

magnetic field in Eq. (A.1) using the following relation [71].
1~ De™7%5!
1+ De 755!

where [ is the length of the microstrip from the reference plane to the open end of

(A.2)

Zin

feeding line, and A, is the guided wavelength measured from the magnetic field in

Eq. (A.1). T is the reflection coefficient computed as follows.

Imaz —1
lmin

U= oy (A.3)
I"‘llfl

where [na: and /mi, are maximum and minimum value of magnetic field in Eq. (A.1).
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APPENDIX B

Calculation of Impedance Matrix Elements

Computation of impedance matrix elements in Eqs. (2.14) - (2.19) requires elab-
orate mathematical handling to simplify and accelerate multi-fold integrations. This
appendix shows how these complex integrations are dealt with spectral domain tech-
nique, a polar coordinate system, and a pole extraction method {72].

Suppose a conductor-backed dielectric slab, where the dielectric layer is parallel
to the x-y plane with a height of d in z direction and the conductor sheet is placed
on the x-y plane, as shown in Fig. B.1. The interactions between currents located at

z=z; (either O or d) produce the following form of impedance matrix element.

Ground Plane

Figure B.1: Conductor-backed dielectric slab.
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zi; = (Si, F(S;))

- // // Si(z.y) - S;(&.y) - Clzy, 22y, n) de dy de' dy’  (B.1)

where S; ; is the electric or magnetic current at z;, and G is the Green’s function
associated with current at (z’,y’. z;) and its generated field at (z,y, z;).

Using the spectral domain representation of Green’s function [69]
G(z,y,z1;2',y, z1) = // 5(13::, ky) - k(2= oiky(y=v) g dk, (B.2)

we can convert Eq.( B.1) into
zij = // / Si(z,y) - S;(='.y) - / / Gky, ky) - 5E==) ho=Y) dk._ dk, dz dy dz' dy’

= [ Btk - Bk - Glhky) di ab, (B.3)
where

Su= [[ Suay) - et gy (B-4)

and “*” is the conjugate operator. The complete spectral domain forms, G, of the

Green’s function are shown in Appendix C. If S; and S; are real and can be separated

as
Sig(ke ky) = S%(kz) S¥;(ky) (B.5)

we can write Eq.( B.3) as
s [ 50 (k) - Sk Sk, - Glkak) dboak,  (B)

We can further facilitate the solution of integrals in Eq.( B.6) by changing Eq.( B.6)

to polar coordinates 3, @ using the following relations:
k; = [ cos 6 (B.7)

k, = (3 sin 6 (B.8)
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which leads to
2T oc . - -
z,-,.=/0 /0 §3r .53 -G -pdsds (B.9)

Utilizing the even and odd properties of the integrand with respect to k. and k,, we

can reduce integration over 6 from 27« to 7/4. That is
/2 oo - _ _ - -
Zij =4/ / Re(St* S7° - S5 57) - G - BdBdé (B.10)
0 0
for even functions of é, and
/2 oo - — - -
z,-,-=4/ / Im(Sf S7° - S SY) - G - BdBd (B.11)
0 0

for odd functions of G, where Re and I'm denote real and imaginary parts of its
enclosing functions, respectively.

Finally, we remove singularities, namely, the surface wave poles, in the Green'’s
function, using a pole extraction technique. Let (y be a surface wave pole and

Egs.( B.10) - ( B.11) be

"2 [ q(8,0)8 _
2 = 4/ / O - BdB df, where r(B) =0 (B.12)

We remove the pole G; in the integrand of Eq.( B.12) by subtracting the integrand
by a function that approximates the integrand near B,. This approximated function

is obtained by

9(8.6)8 _ lim q(8.0)8 (B — Bo)
-8  1(B) B—po (B — Bo) 7(B) — r(Bo)
q(8,0)8 1

= G5 7B
- lim q(60,0)  bo
= d ) - )

- lim q(5o, ) 2065
" 8= (Bo) (B — Bo)(Bo+ Bo)
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o a(B0,6) 2063
= ) - &

Therefore, after pole extraction, Eq.( B.12) can be integrated with the following

(B.13)

expression.

[T [4B.0)8  a(Bo,8) 283 ] 1 q(6o,0) 268 o0
“”“‘/o / [ rB) ) BF-& dﬁ‘”’”/o /o (G F -3 %P

q(5o, 6)
' (Bo)

(B.14)

dé

_ L [ [4(8.6)8  a(Bo.6) 283
=[]

/2
rB)  r(B) P —/33] apds + 4/0 ki

Note that the infinite integration can generally be terminated at 8 =~ 150kq [72].



APPENDIX C

Spectral Domain Green’s Functions for Conductor-backed
Dielectric Slab

Presented are the spectral domain Green’s functions for the conductor-backed
dielectric slab structure in Fig. B.1.

The components of the Green'’s function are

G%; = E, at (z,y,d) due to y-directed electric current at (z’.y’, d)
¥y = E; at (z,y,d) due to x-directed electric current at (z/,y’, d)
2y = E; at (z,y,d) due to y-directed electric current at (z’,y’, d)

G}y = H: at (z,y,0) due to y-directed electric current at (z’, ', d)
4, = Hy at (z,y,0) due to x-directed electric current at (z’, 3y, d)
vy = H: at (z,y,0) due to x-directed magnetic current at (z',y’,0)
iy = H: at (z,y,0) due to x-directed electric current at (z/,y’, d)

s = E, at (z,y,d) due to x-directed electric current at (z’,7/, d)

GEa = E, at (z,y,d) due to x-directed magnetic current at (z’,y’, 0)

Far = E; at (z,y,d) due to x-directed magnetic current at (z/,%,0)
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and their spectral domain representations, é, are

Zo sin(k;d)

) %%k, T.T.
~ . Zo sin(k,d)
EJ =) ok, TT.T.

[(e k3 — kg)kg cos(kyd) + j (k3 — ki)kl sin(kd)] (C.1)

[(erk§ — k2)kz cos(kid) + j(k§ — k3)kysin(kid)]  (C.2)

G, = é%o #}ig sin(k1d) [ka cos(kid) + jk; sin(k,d)] (C.3)
Gty = 1 o [—erkikacos(hud) + 5K} er — 1) — k) sin(kid)] (C.4)
s = 1 T (ke cos(kid) = (R (e, — 1) = k) sin(kid)] (C5)
T

[ikzkL(er — 1) + (e-kg — K2)

HM = 4W2k()Zo le;Tm
x {kikz(er + 1) sin(k,d) cos(kid) + j(e-k3 sin(kid) — k3 cos®(kid)}] (C.6)

~STT - 1 ]kzky - H .
= 5 T (& = 1) sin(kid) (C.7)
5yEIJ = éz,yj (C.8)
é‘?M = "5?1 (C.9)
Gev = -G (C.10)

where G and G are related to
Glz.y,z2132°,9, z1) = // Glke ky) - %) gh=Y) gp dk,. (C.11)

The following definitions are used in the expressions:

k§ = w?poco (C.12)

ky = \/e-k§ — 82, Re[ki] >0, Im[k,] <0 (C.13)
ky = \/ k3 — B2, Relks] >0, Im[k;] <0 (C.14)
B =kl+ k2 (C.15)

Te = kl COS(kld) +]k2 sin(kld) (016)
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T, = €:kacos(k1d) + jk; sin(k,d) (C.17)

Zo= /2 (C.18)
€0
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