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CHAPTER 1

Introduction

1.1 Background and Motivation

This dissertation is motivated by numerous applications of microwave remote sensing

of layered random media with rough interfaces. Such a structure exists widely in natural

settings and manmade objects, for example, soil fields with or without vegetation, multi-

year ice, human skin-tissue interface, civil infrastructure, and solid state components with

deposited metal or dielectrics. Electromagnetic scattering at various bands from these ob-

jects usually contains information about their geometry and dielectric properties, which

can be exploited by microwave remote sensing. As a noninvasive technique, microwave

remote sensing is extremely attractive for this purpose since it can be used for soil moisture

and biomass estimation, facility construction monitoring, warning of landslide, permafrost

characterization, glacier monitoring, medical imaging, infrastructure defect detection, com-

ponent quality control, etc. In this dissertation, we focus on remote sensing application to

soil moisture evaluation.

Soil moisture is one of the entities closely related to both our daily lives and long-term

environmental dynamics of the Earth. Importance of soil moisture is evident in many areas:

directly affecting vegetation growth, soil moisture is one of the first-order determinants of

agricultural production. Monitoring changes in soil moisture can assist in risk reduction
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Figure 1.1: Conceptualization of global water cycle [2]

strategies. Water stored in soil plays an important role in water cycling and top soil degra-

dation. Due to its control on soil evaporation and transpiration, surface soil moisture is a

key parameter in modeling the heat and mass transfer in the global water and energy cycle

(Figure 1.1). Knowledge of temporal and spatial distribution of soil moisture on a global

scale is critical for weather forecast and climate prediction [1]. This list can go on.

Despite its importance, global distribution of soil moisture, especially the root-zone

soil moisture, is currently one of the least observed quantities. The ground in-situ measure-

ment of soil moisture requires dense or local optimized sampling to meet the resolution

requirements by the global circulation models (<50 to 100 km) and hydrologic models

(<10 to 20 km) [3]; this can be hardly achieved with sufficient spatial and temporal fre-

quency, especially at a global scale. Microwave remote sensing may be the only feasible

approach for providing these observations since the soil dielectric properties are directly

related to its moisture content. In particular, active microwave remote sensing technology

has the advantages of high resolution, large area coverage, and all-weather operating capa-
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Figure 1.2: Radar remote sensing of soil moisture

bility without disturbing the ground. Moreover, low-frequency (P-band: 216 to 450 MHz

and VHF: 30 to 300 MHz) radar systems are preferred for subsurface and root-zone mois-

ture detection for their large depth of ground penetration (Figure 1.2).

Missions and experimental systems for global or regional soil moisture determination

have been proposed and implemented since the 1980s. Various platforms have been consid-

ered, such as spaceborne, airborne, and near-ground systems. The most recent spaceborne

system is the Soil Moisture and Ocean Salinity (SMOS) mission launched by European

Space Agency (ESA) in 2009 which provides global soil moisture radiometric observation

at L-band, but with low resolution of 50 km [3] [4]. The RADARSAT-2 launched by Cana-

dian Space Agency (CSA) in 2007 operates at C-band [5] and have been used to produce

estimations of soil moisture with high resolution but for sparsely vegetated area and short

crops. Besides spaceborne systems, which have the advantage of large-area coverage with

regular repeat observations, airborne systems are also used but localized for regional mea-

surements. For example, the National Aeronautics and Space Administration / Jet Propul-

sion Laboratory (NASA/JPL) AIRSAR operating at C-, L-, and P-bands flew from 1988

to 2004 and was used in a limited capacity to develop methods for retrival of soil mois-

ture, and in particular for estimating subcanopy soil moisture [6]. The NASA Uninhabited
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Figure 1.3: Backscattering in low frequency measurement of vegetated ground

Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a state-of-the-art reconfigurable,

polarimetric L-band SAR that has been used recently in support of soil moisture retrieval

validations [7]. Operating at lower altitude, tower-based systems have been used for small

area measurements and proof-of-concept experiments. One example is the Microwave Ob-

servatory of Subcanopy and Subsurface (MOSS) tower radar [8], which has been used for

subsurface soil moisture measurements.

Recently, NASA has initiated the spaceborne Soil Moisture Active and Passive (SMAP)

mission and the Airborne Microwave Observatory of Subcanopy and Subsurface (Air-

MOSS) mission. SMAP will be launched in 2014 equipped with a SAR operating at L-band

measuring the global soil moisture at resolutions of 1-3 km [9] and an L-band radiometer

with a resolution of 40 km. And the AirMOSS will start to fly an airborne SAR at P-band

over several locations in North America in 2012 for subsurface and root-zone soil moisture

characterization.

For the purpose of feasibility analysis, radar system design optimization and develop-

ment of retrieval algorithms for geophysical quantities using the radar measurements, for-
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Figure 1.4: Layered structure in ground with vegetation roots and other inhomogeneities [10]

ward modeling of electromagnetic scattering from the ground provides us an indispensable

tool. It computes the expected radar scattering cross section from given ground charac-

teristics including soil profile, moisture content, and soil surface statistics. Such a model

is required to be computationally efficient, capable of simulating realistic scenarios, and

applicable to large variety of soil conditions, including surface roughnesses, soil moisture

profiles, existence of subsurfaces and inhomogeneous sublayer media (Figure 1.3 and 1.4).

1.2 Overview of Related Studies and Previous Work

In the past several decades, much work has been dedicated to modeling and prediction

of electromagnetic scattering from the ground. The existing modeling methods can be gen-

erally categorized into empirical regression techniques and theoretical scattering models.

The empirical or semi-empirical solutions [11] [12] are based on large sets of measure-

ment data at specific locations and with specific sensors, and therefore have a generally

small domain of validity. The theoretical approaches are based on physical models and can

be applied to more general ground conditions and sensor characteristics. The theoretical
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scattering models can be further classified into analytical, numerical, and semi-numerical

solutions. The analytical solutions may involve limiting assumptions in, for example, sur-

face roughness, to allow the derivation of a closed form expression. Therefore, they usually

have the highest computational efficiency among theoretical scattering models, yet their va-

lidity is limited to smoother surfaces. On the other hand, numerical methods can solve for

surfaces with large roughnesses with very high computational cost. Semi-numerical ap-

proaches are a good trade-off between the validity domain and the computational cost, by

transforming to discrete spectral domain representation and by making use of the physical

properties of the problem. The methods we developed in this dissertation are in this cate-

gory.

For scattering from rough surfaces, studies can be traced back to 1950s starting with

single rough surface scattering [13] [14] [15], which evolved into analytical solutions such

as the small perturbation method (SPM) [16] [17], small-slope approximation (SSA) [18]

[19], and Kirchhoff approximation (KA) [16]. With the advent of digital computers, nu-

merical approaches were later developed, which can be grouped into time-domain methods

[20] [21] and frequency-domain methods [20] [22] [23] [24], for example, method of mo-

ments (MoM), integral equation method (IEM), and advanced integral equation method

(AIEM). As a semi-numerical method, the extended boundary condition method (EBCM),

which was first proposed in [25], was applied to the problem of electromagnetic scattering

from rough surfaces [16] [26]. However, its solution was found to be unstable for larger

roughnesses, resulting in a validity regime only a bit larger than the analytical methods.

Among these approaches, SPM and MoM have been extended to multilayer structures [17]

[27].

Numerous works have focused on solving the problem of wave propagation through

and scattering from random media. One approximate technique is the radiative transfer

equation (RTE), which was first proposed in [28], and became a classical method when

describing the wave propagation through a sparse medium. However, this method is an in-

coherent approach based on power conservation without considering the interaction among
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particles. Another approximate technique is to treat the random medium as a mixture of

disconnected particles and find its effective permittivity [29] [16]. The models based on this

technique usually take account of only dipole-dipole interactions among particles, and can

be viewed as a low frequency approximation. For dense media, many multiple scattering

solutions are developed since the work in [30], such as the quasi-crystalline approximation

(QCA) [31], the coherent-potential approximation (CPA) [32], and the strong fluctuation

theory [33] [34]. Though these methods take into account higher-order interactions in the

media, they neglect the multipole coupling among particles in the process of statistical av-

eraging. On the contrary, the recursive T-matrix method [35] [26] gives the exact solution

of the multiple scattering by particles considering all orders of interaction, and is one of the

most computationally efficient numerical methods. This approach is ideal for disconnected

particles, for example, buried rocks and ice particles in the ground. Nevertheless, it is less

accurate when describing the scattering from root-like clusters in the soil volume, which

we would like to handle in conjunction with the study of soil moisture.

The solution for combinations of the rough surface scattering and discrete random me-

dia scattering exist only for two-dimensional (2D) case [36]. Even there, the solution in

[36] still manifests the instability due to surface roughness, and only handles simple circu-

lar particles. No solution for scattering from rough surfaces with buried root-like clusters

exists.

1.3 Thesis Objectives and Contribution

The objective of this dissertation is to construct a computationally efficient model of the

electromagnetic scattering from layered ground with vertical dielectric profiles and buried

vegetation roots and other inhomogeneities. Such complexity in modeling soil structure

scattering has never been fully solved to-date. The contribution details of this dissertation

are summarized below:

• Stabilized extended boundary condition method (SEBCM): The extended boundary
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condition method is developed for 3D vector scattering and is stabilized to become

a powerful approach for solving the scattering from arbitrarily random rough sur-

faces. It provides accurate solutions over large surface roughnesses at much higher

computational efficiency than fully numerical techniques.

• 3D scattering model of multilayer random rough surfaces: This is the only known prac-

tically applicable multilayer rough surface scattering model valid for large surface

roughnesses to-date. It can serve as the forward model in subsurface soil moisture

retrievals in the future.

• 3D scattering model from the buried root structures: This is the first time that scat-

tering contribution of vegetation roots have been investigated in the remote sensing

of subsurface soil moisture.

• Experimental Validation: Experimental validation of random medium scattering has

never been reported elsewhere as far as we known. And the compact remotely con-

trolled radar system does not exist to-date. As well, measurements and analysis of

data from a stand-alone remotely-controlled low-altitude radar are novel and open up

a new area of future investigation.

1.4 Dissertation Overview

This dissertation consists of four main chapters in addition to the introduction and con-

clusion chapters. Chapter 2 presents a solution to 3D electromagnetic scattering from a

single arbitrary random rough surface using the stabilized extended boundary condition

method (SEBCM). It solves the vector scattered fields in regions both above and below

the surface, and thereby calculates the bistatic scattering coefficients of the rough surface.

This method addresses the long-existing problem of instability of the classical EBCM and

largely improves the validity domain over roughness. Meanwhile, it keeps the high com-

putational efficiency compared to the fully numerical methods, such as the method of mo-
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ments (MoM). Theory, formulation and validation with other model results and experimen-

tal measurement will be shown in this chapter. The SEBCM also forms one of the basics

in the solution of the layered problem, which will be presented in Chapter 3.

Chapter 3 focuses on the solution of 3D scattering from layered rough surfaces with

homogeneous media or dielectric profiles. This soluation is based on the scattering matrix

approach. By knowing the single rough surface scattering matrix using the SEBCM and

the propagation matrix inside the layer medium, the bistatic scattering coefficients of the

layered structure are calculated. After extensive validation, a sensitivity study has been

performed to understand the model behavior as a function of geophysical parameters, such

as layer separation, subsurface roughness, and sublayer dielectric property.

Chapter 4 completes the definition of the ground by considering buried inhomogeneities

among layered rough surfaces, such as rocks and vegetation roots. These inhomogeneities

are considered as either discrete random media or clusters of scatterers with given pat-

terns. Depending on the scatterers in the clusters, the recursive transition matrix (T-matrix)

method or the generalized iterative extended boundary condition method (GIEBCM) is

used. The scattering matrix is then found from the transition matrix and included in the

layered-medium scattering computation.

With all the theories discussed in the above chapters, Chapter 5 is dedicated to describe

our work on a tower-based radar system and the experiments done with it. This system is a

prototype for future low-altitude mobile soil moisture retrieval system. We have tested the

system and carried out measurements in actual fields with and without vegetation. Primary

results will be shown in this chapter. Chapter 6 concludes this dissertation and presents

recommendations on future work.
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CHAPTER 2

Three-dimensional Bistatic Electromagnetic Scattering

from Single Surface with Arbitrary Roughness

In this chapter, we develop the Stabilized Extended Boundary Condition method (SE-

BCM) based on the classical EBCM to solve the three-dimensional vector electromagnetic

scattering problem from arbitrary random rough surfaces. Similar to the classical EBCM,

we expand the fields in terms of Floquet modes and match the extended boundary condi-

tions at test surfaces away from the actual rough surface to retrieve the surface currents

and therefore the scattered fields. However, to solve long-standing stability problems of

the classical EBCM, we introduce a z-coordinate transformation to restrict and control the

test surface locations explicitly. We also introduce the concepts of moderated test surface

locations and balanced k-charts for further stabilization and optimization of the solutions.

The computational efficiency is optimized by judicious sub-matrix decomposition. The

resulting bistatic scattering cross-sections are validated by comparing with analytical and

numerical solutions. Specifically, the solutions are compared with those from the small

perturbation method and small-slope approximation within their validity region, and with

those from the method of moments outside the validity domains of analytical solutions.

It is shown that SEBCM gives accurate, numerically efficient, full-wave solutions over a

large range of surface roughnesses and medium losses, which are far beyond the validity

range of analytical methods. These properties are expected to make SEBCM a competitive
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forward solver for soil moisture retrieval from radar measurements.

2.1 Introduction

The problem of electromagnetic scattering from arbitrarily random rough surfaces has

been a subject of numerous studies over the past several decades for its important appli-

cations in microwave remote sensing. Being representative of many naturally occurring

surface and subsurface structures such as soil, snow, and ice, the model of electromag-

netic scattering from single or multiple-layered random rough surfaces characterizes of the

interaction between electromagnetic waves and these remote sensing targets. Currently,

one of the major applications of the radar technology is microwave remote sensing of soil

moisture where the objective is to map the distributions of soil moisture whose temporal

and spatial variations are influential parameters in both climatic and hydrologic models.

To provide global measurements of soil moisture, NASA is developing the Soil Moisture

Active/Passive (SMAP) [9] mission, which will map the global soil moisture with unprece-

dented resolution, sensitivity, and area coverage. As one of the main SMAP instruments, a

synthetic aperture radar (SAR) operating at L-band will provide measurements with ground

resolutions of 1-3 km, sensing the soil conditions for bare to moderately vegetated surfaces.

To retrieve the soil properties from radar measurements, accurate and highly efficient in-

verse algorithms are necessary, which in turn require accurate and efficient radar forward

scattering models.

To date, many approaches have been investigated to solve the rough surface scattering

problem, including analytical, numerical, and empirical methods. The analytical methods

are based on approximation techniques [16], among which the small perturbation method

(SPM) and the Kirchhoff approximation (KA) are two of the most widely used. However,

although these methods have the highest computational efficiency, their combination can-

not cover the entire range of practical problems. The small perturbation method, which is

often referred as a low frequency approach, is limited to surfaces with rather small height
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variations (k0hrms < 0.3) and relatively small slopes (k0lc ∼ 1), where k0 is the free space

wavenumber, hrms is the surface root-mean-squared (rms) height, and lc is the surface

correlation length. Also, the first-order SPM solutions only predict for the co-polarized

backscattering cross section. On the other hand, the Kirchhoff approximation, which is

referred to as a high frequency method, requires that every point on the rough surface have

a large radius of curvature relative to the wavelength (k1hrms < 0.3 and
√

2hrms/lc < 0.3

[29], where k1 is the wavenumber in the medium). Another approach that extends SPM

and KA is the small-slope approximation (SSA) [18]. Still, it is limited to surfaces with

roughness hrms/lc < min(1/ tanθi,1/ tanθs) (θi and θs are incidence angle and scattering

angle respectively) and tends to underestimate the scattering cross sections at large angles

[19].

The numerical solutions typically use differential equation formulations for time-domain

approaches ([20, 21]) and surface integral equation formulations for frequency-domain

approaches, including method of moments (MoM) ([22–24]), Integral Equation Method

(IEM) [37], and Advanced Integral Equation Method (AIEM) [38]. These numerical meth-

ods are capable of simulating surfaces with arbitrary roughness; however, their compu-

tational cost is typically high, especially for the three-dimensional problem. Besides the

methods mentioned above, the empirical formulas are used as well [39] which are based

on curve-fitting of experimental data. They are accurate for the particular location used but

usually not elsewhere, and lack physical insight.

Having features of both analytical and numerical methods, the extended boundary con-

dition method (EBCM) is an attractive approach due to its expected accuracy and compu-

tational efficiency. The 2D EBCM has been developed in [16]. It gives accurate full wave

solutions including co-pol and cross-pol components in a fraction of the time needed by

numerical methods such as MoM. A preliminary version of the 3D EBCM has been re-

ported in [40] but only used to compute the periodic surface problem. The classical EBCM

[16],[40] has not been practically used as a main approach to solve the rough surface scat-

tering problem due to its much smaller validity domain than that being theoretically pre-
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dicted. The EBCM matrix system tends to be unstable and ill conditioned when applied to

surfaces with large height variations or highly lossy media. This limits the classical EBCM

to a practical domain only slightly larger than that of approximate techniques, which give

faster analytical solutions.

In this work, based on the classical EBCM, the three-dimensional scattering model

named as stabilized EBCM (SEBCM) is developed and stabilized. Using similar principles

to the classical EBCM, SEBCM expands the fields in terms of a superposition of Floquet

modes and matches the extended boundary conditions (EBC) at test surfaces away from

the actual rough surface to retrieve the surface currents, from which the scattered fields

are computed. In the classical EBCM formulations, locations of the test surfaces are not

explicitly defined. This causes the EBCM matrix system to become unstable, since more

and more points of the actual surface may cross the test surfaces as the standard devia-

tion of the surface height increases. To stabilize the classical EBCM, SEBCM introduces

a z-coordinate transformation to restrict and control the test surface locations explicitly.

Moreover, a significantly enhanced numerical solution for the resulting system is devel-

oped to further stabilize and optimize the computations. As a result, the SEBCM can be

applied to surfaces with a large range of roughnesses.

Results of SEBCM are compared with the SPM solutions for slightly rough surfaces

and the KA solutions for surfaces with large curvature, as well as the SSA solutions for

surfaces with larger roughnesses and moderate loss. Additionally, SEBCM solutions are

validated by comparing to results given by the method of moments (MoM) for 2D surface

with both 2D and 1D roughnesses. All of the comparisons show the agreement of this 3D

SEBCM model with other approaches within their limits of validity. The model results are

also verified with field observations with very good agreement.

The SEBCM developed here will form the basis of the solution to scattering from

layered arbitrary rough surfaces. Also, its large validity range for roughnesses and high

computational efficiency make SEBCM a competitive forward solver for soil moisture and

roughness retrieval from radar measurements.
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2.2 Problem Geometry and Analysis

2.2.1 Problem Geometry

Figure 2.1: Geometry of the problem: scattering from single 2D rough surface

The problem considered here is the 3D bistatic scattering from an arbitrary random

rough surface as shown in Figure 2.1. The 2D rough surface f with rms height hrms and

correlation length lc separates free space (region 0, ε0, µ0) from a homogenous medium

(region 1, ε1, µ1 = µ0). The z-axis is perpendicular to the mean-plane of the surface. The

incidence plane is coincident with the x-z plane and the projection of the incident wave

vector points to the positive x-direction. The polarization is defined to be horizontal (H)

or TE polarized when the electric field is directed along the y-axis and vertical (V) or TM

polarized when the magnetic field is directed along the y-axis. To apply EBCM, the rough

surface is assumed to be periodic with a period that is much larger than the correlation

length of the surface roughness. The surface profile satisfies

f (x,y) = f (x+nLx,y+mLy), ∀ m,n ∈ Z

where Lx and Ly are periods along the x- and y-directions, respectively. Its maximum

and minimum heights are denoted as fmax = max{f} and fmin = min{f}. The differential
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surface area and the normal vector to the surface at each point are,

dS′ = dxdy
√

1+ f 2
x + f 2

y

n̂ =
−x̂ fx− ŷ fy + ẑ√

1+ f 2
x + f 2

y

= x̂nx + ŷny + ẑnz

where fx and fy are partial derivatives of the surface profile with respect to the x and y

directions, respectively.

2.2.2 Analysis and Formulation

Generation of two-dimensional random rough surface

To implement EBCM, a numerical model for the 2D random rough surface is required.

The numerical model of a one-dimensional random rough surface is developed in [41]. It

generates the surface by constructing its spectrum. This model is extended to a 2D rough

surface and summarized here, the numerical details can be found in Appendix A.

A 2D random rough surface z = f (x,y) is obtained by

• generating an M×N random number array with standard normal distribution and

rearranging it to be a complex array {cmn} with real values at cross points of rows

M/2, M and columns N/2, N;

• calculating spectral density W (Km,Kn) and the matrix of Fmn = 2π
√

LxLyW (Km,Kn) ·
cmn;

• computing the rough surface by 2D IFFT from the Fmn matrix.

where Km = 2πm/Lx and Kn = 2πn/Ly.

For the soil rough surfaces, the exponential correlation function with its spectral density,

C(r̄⊥) = exp
(
−|r̄⊥|

l

)
(2.1)

15



Figure 2.2: Examples of Gaussian random rough surface (dimension of 50λ): (a) with ex-
ponential correlation function (k0lc = 3 and k0hrms = 0.1); (b) with Gaussian
correlation function (k0lc = 3 and k0hrms = 0.1; (c) cross-cut of the surface in
(b); (d) the histogram of the surface in (b).

W (k̄⊥) =
h2l2

2π
(
1+ k̄2

⊥l2
) 3

2
(2.2)

appear to better match experimental data than the Gaussian correlation function [42]. Ex-

amples of 2D rough surfaces with Gaussian correlation function are shown in Figure 2.2.

Scattering matrix formulation

Scalar solutions to the electromagnetic scattering from 1D periodic single rough sur-

face based on EBCM have been discussed in [16]. In this work, the 3D vector solution

to the scattering from a 2D periodic rough surface f (x,y) is developed. The formulation

for TE (H-pol) waves is presented here, and the TM (V-pol) wave solution can be obtained
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through duality. The incident wave with horizontal polarization is Ei(r̄) = ŷE0eiki·r, where

the propagation vector ki = kixx̂ + kiyŷ− kizẑ. The subscript i denotes the incidence direc-

tion.

i. 3D periodic Green’s function

The plane wave illuminating one period of the 2D rough surface is

Ey(r′+ x̂nLx + ŷmLy) = Ey(r′)eikixnLxeikiymLy (2.3)

where Lx and Ly are periods along x- and y-directions, respectively. The periodic scalar

Green’s function in region 0 or 1 is obtained as [16]

g jp(r,r′) = ∑
m,n

g j(r,r′+ x̂nLx + ŷmLy)eikixnLxeikiymLy

=
i

2LxLy
∑
m,n

1
k jzmn

eikxn(x−x′)+ikym(y−y′)+ik jzmn|z−z′| (2.4)

where k jzmn =
√

k2
j − k2

xn− k2
ym, kxn = kix + nKx and kym = kiy + mKy. From the periodic

Green’s function, it can be seen that the scattered waves are propagating in discrete Floquet

modes with directions determined by kxn, kym and k jzmn.

ii. Scattering matrix derivation from the extended boundary conditions

Using Green’s theorem, the electric field in a source-free region can be obtained by,

E(r) =©
∫∫

s′
dS′{iωµg(r,r′)

[
n̂×H(r′)

]
+∇g(r,r′)× [

n̂×E(r′)
]} (2.5)

Utilizing the 3D periodic scalar Green’s function and based on the extinction theorem, the

total electric fields in region 0 and 1 are as follows:
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In region 0,

Ei(r)+Es
0(r) = Ei +

∫

p
dS′{iωµg0p(r,r′)

[
n̂×H0(r′)

]

+∇′g0p(r,r′)×
[
n̂×E0(r′)

]}=





E0(r), z > f (x,y)

0, z < f (x,y)
(2.6)

In region 1,

Es
1(r) =−

∫

p
dS′{iωµg1p(r,r′)

[
n̂×H1(r′)

]

+∇′g1p(r,r′)×
[
n̂×E1(r′)

]}=





0, z > f (x,y)

E1(r), z < f (x,y)
(2.7)

Considering the fields at test surfaces where z is larger than the maximum surface height

fmax or smaller than the minimum surface height fmin, |z− z′| becomes z− z′ for z > fmax

and −(z− z′) for z < fmin. We express the scattered fields as the summation of Floquet

modes using the periodic Green’s function in Eq.2.4.

In region 0, this gives

E0(r)=Ei(r)+ ∑
m,n

b(0)
mn

eik+
0mn·r

k2
0mnz

z > fmax (2.8)

0=Ei(r)−∑
m,n

a(0)
mn

eik−0mn·r

k2
0mnz

z < fmin (2.9)

In region 1, we have

0=−∑
m,n

b(1)
mn

eik+
1mn·r

k2
1mnz

z > fmax (2.10)

E1(r)=∑
m,n

a(1)
mn

eik−1mn·r

k2
1mnz

z < fmin (2.11)

where a( j)
mn and b( j)

mn are the Floquet mode coefficients in region j = 0,1, and the propagation
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vector k±jmn = x̂kxn + ŷkym± ẑk jzmn. Eq.(2.9) and Eq.(2.10) are referred to as the extended

boundary conditions. With dS′∇′e−ik±jmn·r′ × n̂×E(r′) = −idS′
(

k±jmn× n̂×E
)

e−ik±jmn·r′ ,

we find

b( j)
mnx =

ik jzmn

2LxLy
·
∫

p
dS′

{
−i[kymẑ · (n̂×E j)− k jzmnŷ · (n̂×E j)]e

−ik+
jmn·r′

+e−ik+
jmn·r′ x̂ · [n̂×∇′×E j]

}
(2.12)

b( j)
mny =

ik jzmn

2LxLy
·
∫

p
dS′

{
−i[k jzmnx̂ · (n̂×E j)− kxnẑ · (n̂×E j)]e

−ik+
jmn·r′

+e−ik+
jmn·r′ ŷ · [n̂×∇′×E j]

}
(2.13)

b( j)
mnz =

ik jzmn

2LxLy
·
∫

p
dS′

{
−i[kxnŷ · (n̂×E j)− kymx̂ · (n̂×E j)]e

−ik+
jmn·r′

+e−ik+
jmn·r′ ẑ · [n̂×∇′×E j]

}
(2.14)

and

a( j)
mnx =− ik jzmn

2LxLy
·
∫

p
dS′

{
−i[kymẑ · (n̂×E j)+ k jzmnŷ · (n̂×E j)]e

−ik−jmn·r′

+e−ik−jmn·r′ x̂ · [n̂×∇′×E j]
}

(2.15)

a( j)
mny =− ik jzmn

2LxLy
·
∫

p
dS′

{
i[k jzmnx̂ · (n̂×E j)+ kxnẑ · (n̂×E j)]e

−ik−jmn·r′

+e−ik−jmn·r′ ŷ · [n̂×∇′×E j]
}

(2.16)

a( j)
mnz =− ik jzmn

2LxLy
·
∫

p
dS′

{
−i[kxnŷ · (n̂×E j)− kymx̂ · (n̂×E j)]e

−ik−jmn·r′

+e−ik−jmn·r′ ẑ · [n̂×∇′×E j]
}

(2.17)
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We now perform a z-transformation to ensure the solutions obtained from the extended

boundary conditions are physical. To impose the restriction of test surface locations, we let

u = z− fmin and v = z− fmax, therefore, u < 0 when z < fmin and v > 0 when z > fmax. The

transformed expressions of the fields are:

In region 0,

E0(r)=Ei(r)+ ∑
m,n

B(0)
mn

eik+
0mn·r

k2
0mnz

v > 0 (2.18)

0=Ei(r)−∑
m,n

A(0)
mn

eik−0mn·r

k2
0mnz

u < 0 (2.19)

In region 1,

0=−∑
m,n

B(1)
mn

eik+
1mn·r

k2
1mnz

v > 0 (2.20)

E1(r)=∑
m,n

A(1)
mn

eik−1mn·r

k2
1mnz

u < 0 (2.21)

where the propagation vector k±jmn = x̂kxn + ŷkym± ẑk jzmn, and

B(0)
mn = b(0)

mneik0nz fmax

A(0)
mn = a(0)

mne−ik0nz fmin

B(1)
mn = b(1)

mneik1nz fmax

A(1)
mn = a(1)

mne−ik1nz fmin

The surface fields can be written in terms of Fourier series as follows, with the Fourier

coefficients are unknowns to be solved:

dS′
(
n̂×E j(r′)

)
= dxdy∑

p,q
2ααα( j)

pq ei(kxqx+kypy) (2.22)

dS′
[
n̂× (

∇′×E j(r′)
)]

= dxdy∑
p,q

2βββ( j)
pq ei(kxqx+kypy) (2.23)
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where ααα( j)
pq = x̂α( j)

pqx + ŷα( j)
pqy + ẑα( j)

pqz and βββ( j)
pq = x̂β( j)

pqx + ŷβ( j)
pqy + ẑβ( j)

pqz. The continuity of

the tangential electric and magnetic fields implies that ααα(0)
pq = ααα(1)

pq = αααpq and βββ(0)
pq = βββ(1)

pq =

βββpq. Moreover, components of the unknown ᾱαα and β̄ββ are not totally independent; their

z-components can be expressed as:

ᾱz = fxᾱx + fyᾱy

β̄z = fxβ̄x + fyβ̄y

The extended boundary conditions and the known incident wave Ei = ŷE0eiki·r restrict

the Floquet mode coefficients to be





A(0)
mnx = 0

A(0)
mny = δm0δnik2

0izE0e−ik0iz fmin

A(0)
mnz = 0





B(1)
mnx = 0

B(1)
mny = 0

B(1)
mnz = 0

With the diagonal matrices

D(0)
a =

[
e−ik0nz fmin

]

D(0)
b =

[
eik0nz fmax

]

D(1)
a =

[
e−ik1nz fmin

]

D(1)
b =

[
eik1nz fmax

]

the surface fields can be obtained by solving for α and β from:




D(0)
a 0 0 0

0 D(0)
a 0 0

0 0 D(1)
b 0

0 0 0 D(1)
b



· ¯̄T ·




ᾱx

ᾱy

β̄x

β̄y




=




Ā(0)
x

Ā(0)
y

B̄(1)
x

B̄(1)
y




(2.24)
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where

¯̄T =
1

LxLy




¯̄Q−
0Nxx

¯̄Q−
0Nxy

¯̄Q−
0Dxx 0

¯̄Q−
0Nyx

¯̄Q−
0Nyy 0 ¯̄Q−

0Dyy

¯̄Q+
1Nxx

¯̄Q+
1Nxy

¯̄Q+
1Dxx 0

¯̄Q+
1Nyx

¯̄Q+
1Nyy 0 ¯̄Q+

1Dyy




(2.25)

The scattered and transmitted fields can be obtained by evaluating,




B̄(0)
x

B̄(0)
y

B̄(0)
z

Ā(1)
x

Ā(1)
y

Ā(1)
z




=




D(0)
b 0 0 0 0 0

0 D(0)
b 0 0 0 0

0 0 D(0)
b 0 0 0

0 0 0 D(1)
a 0 0

0 0 0 0 D(1)
a 0

0 0 0 0 0 D(1)
a




· ¯̄P ·




ᾱx

ᾱy

β̄x

β̄y




(2.26)

where

¯̄P =
1

LxLy




¯̄Q+
0Nxx

¯̄Q+
0Nxy

¯̄Q+
0Dxx 0

¯̄Q+
0Nyx

¯̄Q+
0Nyy 0 ¯̄Q+

0Dyy

¯̄Q+
0Nzx

¯̄Q+
0Nzy

¯̄Q+
0Dzx

¯̄Q+
0Dzy

¯̄Q−
1Nxx

¯̄Q−
1Nxy

¯̄Q−
1Dxx 0

¯̄Q−
1Nyx

¯̄Q−
1Nyy 0 ¯̄Q−

1Dyy

¯̄Q−
1Nzx

¯̄Q−
1Nzy

¯̄Q−
1Dzx

¯̄Q−
1Dzy




(2.27)

The matrix entries in each sub-matrix block are shown in Eq.(2.28) and Eq.(2.29), where

I±j =
∫

p
dxdye−i[(kxn−kxq)x′+(kym−kyp)y′±k jzmn f (x′,y′)] (2.30)

Details of this derivation are shown in Appendix B. The scattering matrix is the matrix

product shown in Eq.(2.31). Direct derivation of the matrix ¯̄T suggests that it has dimen-

sions of 6×4 ¯̄Q sub-matrix blocks. However, the rows of sub-matrix blocks are related by

the divergence-free condition in the source-free region. Therefore, the matrix ¯̄T is repre-
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sented uniquely of four blocks by four independent blocks of sub-matrices as in expression

(2.25).

iii. Computation of bistatic scattering cross section

In [41], the relationship between bistatic scattering cross section and the Floquet mode

coefficients of the upward-propagating fields is derived for the two-dimensional scattering

problem. The bistatic scattering cross section for the three-dimensional scenario is derived

here.

Considering the incident wave to be h-polarized (TE wave), the incident power density

is

Sinc =
|E i

y0|2
2η

cosθi =
cosθi

2η
for E i

y0 = 1 (2.32)

Q±
0Nxx,
mnpq

=−kym(kxn− kxq)I±0 , Q±
0Nxy,
mnpq

=−(
kym(kym− kyp)+ k2

0zmn
)

I±0 , Q±
0Dxx,
mnpq

=±ik0zmn

(
k0Z0

k1Z1

)
I±0

Q±
0Nyx,
mnpq

=
(
kxn(kxn− kxq)+ k2

0zmn
)

I±0 , Q±
0Nyy,
mnpq

= kxn(kym− kyp)I±0 , Q±
0Dyy,
mnpq

=±ik0zmn

(
k0Z0

k1Z1

)
I±0 (2.28)

Q±
0Nzx,
mnpq

=∓kymk0zmnI±0 , Q±
0Nzy,
mnpq

=±kxnk0zmnI±0 , Q±
0Dzx,
mnpq

=−i(kxn− kxq) I±0 , Q±
0Dzy,
mnpq

=−i(kym− kyp) I±0

Q±
1Nxx,
mnpq

=−kym(kxn− kxq)I±1 , Q±
1Nxy,
mnpq

=−(
kym(kym− kyp)+ k2

1zmn
)

I±1 , Q±
1Dxx,
mnpq

=±ik1zmnI±1

Q±
1Nyx,
mnpq

=
(
kxn(kxn− kxq)+ k2

1zmn
)

I±1 , Q±
1Nyy,
mnpq

= kxn(kym− kyp)I±1 , Q±
1Dyy,
mnpq

=±ik1zmnI±1 (2.29)

Q±
1Nzx,
mnpq

=∓kymk1zmnI±1 , Q±
1Nzy,
mnpq

=±kxnk1zmnI±1 , Q±
1Dzx,
mnpq

=−i(kxn− kxq) I±1 , Q±
1Dzy,
mnpq

=−i(kym− kyp) I±1

¯̄S =




D(0)
b 0 0 0 0 0
0 D(0)

b 0 0 0 0
0 0 D(0)

b 0 0 0
0 0 0 D(1)

a 0 0
0 0 0 0 D(1)

a 0
0 0 0 0 0 D(1)

a




· ¯̄P · ¯̄T−1 ·




D(0)
a 0 0 0
0 D(0)

a 0 0
0 0 D(1)

b 0
0 0 0 D(1)

b




−1

(2.31)
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At the observation direction (φs,θs), the h-polarized scattered field is

Es
hh=Es

φ = φ̂ · (x̂Es
x + ŷEs

y + ẑEs
z) =−Es

x sinφs +Es
y cosφs (2.33)

and the v-polarized scattered wave is

Es
vh=Es

θ = θ̂ · (x̂Es
x + ŷEs

y + ẑEs
z) = Es

x cosθs cosφs +Es
y cosθs sinφs−Es

z sinθs (2.34)

From Eq.2.9, we let Es
hh = ∑

m,n
b(h)

mnφeik+
0mn·r and Es

vh = ∑
m,n

b(h)
mnθeik+

0mn·r, where

b(h)
mnφ = − bmnx

k2
0mnz

sinφs +
bmny

k2
0mnz

cosφs (2.35)

b(h)
mnθ =

bmnx

k2
0mnz

cosθs cosφs +
bmny

k2
0mnz

cosθs sinφs− bmnz

k2
0mnz

sinθs (2.36)

Then the time-averaged fractional powers contained in the scattered wave are

Phh
mn = |b(h)

mnφ|2
k0zmn

k0
and Pvh

mn = |b(h)
mnθ|2

k0zmn

k0

Using the transformation between discrete and continuous domains[41], we have

LxLy

4π2

∫∫
dkxndkym(·) =

LxLy

4π2

∫∫
dθsdφs

∣∣∣∣∣∣

∂kxn
∂φs

∂kxn
∂θs

∂kym
∂φs

∂kym
∂θs

∣∣∣∣∣∣
(·) (2.37)

The total scattered power of HH is

∑
m,n

Phh
mn =

LxLy

4π2 cosθi

∫∫
dθsdφsk2

0 sinθs cos2 θs|bmnφ|2

=
∫∫

dθsdφs sinθsσhh(θs,φs) (2.38)

Therefore,

σhh(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(h)
mnφ|2 (2.39)
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Similarly,

σvh(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(h)
mnθ|2 (2.40)

Same derivation can be applied for the incident TM wave (v-pol). The 3D bistatic

scattering cross sections are

σhv(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(v)
mnφ|2 (2.41)

σvv(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(v)
mnθ|2 (2.42)

with

b(v)
mnφ =

bmnx

k2
0mnz

cosθs cosφs +
bmny

k2
0mnz

cosθs sinφs− bmnz

k2
0mnz

sinθs (2.43)

b(v)
mnθ = − bmnx

k2
0mnz

sinφs +
bmny

k2
0mnz

cosφs (2.44)

2.2.3 Numerical Stabilization

In addition to modifying the classical EBCM formulation to explicitly impose con-

ditions at the test surfaces, we have developed techniques for stabilizing the numerical

solution of EBCM. This further extends the validity regime of SEBCM.

Moderated test surface locations

In the classical EBCM formulation, the ill-conditioning is caused by the behavior of

the matrix ¯̄T , which is directly computed from the actual rough surface. As shown in

above SEBCM formulation ( Eq.(2.31) ), we impose the test surface conditions on the ma-

trix ¯̄T by operating on it with ¯̄D, resulting in the product ¯̄D · ¯̄T , where ¯̄D is the diagonal

matrix containing the test surface conditions. Instead of inverting the ill-conditioned ma-

trix ¯̄T , the matrix ¯̄D · ¯̄T is inverted. This can be thought of as a regularization scheme:

when the classical EBCM system becomes ill-conditioned, there is mathematically more
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than one solution to the system. By explicitly defining the test surfaces, the solution space

is constrained to make the solution unique, thereby, the matrix system ( ¯̄D · ¯̄T ) is stabi-

lized. Moreover, though the condition is imposed that the test surfaces should be outside

( fmin, fmax), large distances between test surfaces and the actual surface will also cause ill-

conditioning of the matrix ¯̄T , especially in a lossy medium, since more and more modes

fail to reach the test surfaces. Thus, a coordinate transformation margin ∆ is defined as

∆ < min{| fmax−hrms|, | fmin−hrms|}. The test surfaces will be outside ( fmin +∆, fmax−∆),

which postpones the occurrence of ill-conditioning.

Balanced k-chart with controllable k-boundary

In standard EBCM algorithms, the Floquet modes used to expand the fields are defined

symmetrically with respect to the incident field, i.e, mode 0 of the incoming wave is in the

direction of the incident field. In terms of a k-chart, this means an unbalanced arrangement

of the Floquet modes in k-space. Many evanescent modes are (unnecessarily) included in

the matrix computation, which causes the matrix to become rapidly ill-conditioned as the

roughness increases. To avoid this, the k-chart is balanced as illustrated in Figure 2.3 (in

2D) and Figure 2.4 (in 3D) where the 0-mode is along the kz axis. As a trade-off for this

balancing, the back-scattering direction will not exactly coincide with one of the Floquet

modes. Therefore, an ‘angle tolerance’ is defined as one of the criteria in computing the

surface periods and the number of Floquet modes, which is the largest allowable angle

difference between back-scattering direction and its nearest mode.

In addition, as shown in Figure 2.3(b) which is in 2D for illustration, a k-boundary

is set to determine the Floquet modes involved in the computation. The k-boundary can

be used to exclude the modes at large transmitting angles that are not able to reach the

test surfaces due to the loss in region 1. This effectively stabilizes the system for lossy

cases. In the lossy cases, the contraction of the k-boundary is related to the medium loss

and surface roughness as shown in Figure 2.5. The more lossy the medium is, the less

information can arrive at test surfaces. The k-boundary is set to exclude those attenuated
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Figure 2.3: k-chart in 2D problem, where circle- and cross-markers indicate the real and
imaginary parts of the mode propagation coefficients. The scattered modes
on the upper half circle with the radius k0 are propagation modes in region
0; and the lower half circle with the radius Re{k1} indicates the propagating
transmitted modes in region 1. Evanescent modes in region 0 fall on the kx-axis
outside the upper half circle. (a) shows the unbalanced k-chart with 0-mode
being at the specular direction; (b) shows the balanced k-chart; the 0-mode is at
kz-axis, i.e. the mode distribution is symmetric, based on which the k-boundary
determines the modes included in the computation.

modes vanishing at the test surfaces, which happen to the higher order modes first. Hence,

the new k-boundary is defined as a function of the media loss and the distance between

test surfaces and the actual surface, for which, we introduce the linear product of these

two factors as Dt = 2Im{k1} ·Re{k1} · fmin, where Im{k1} represents the media loss and

Re{k1}fmin describes the distance to the test surface appearing in medium 1. The new k-
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Figure 2.4: Balanced k-chart in 3D: similar as in the 2D case (Figure 2.3), in the 3D k-chart,
the propagation modes in both regions are indicated by the upper half sphere
(radius is k0) and the lower half sphere (radius is Re{k1}). The k-boundary
becomes a circle in kx-ky plane.

Figure 2.5: The relation between k-boundary and Dt is illustrated in 2D. In the case of lossy
medium, the k-boundary is determined considering the medium loss (in Dt).

boundary used in the computation is kbdry =
√

Re{k1}2−D2
t . However, since the kbdry

is required to determine the surface, i.e, fmin, instead of Re{k1}fmin, a modified quantity

Re{k1}hrms ·α is used, where α is the estimated ratio between fmin and the rms height.
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Other numerical improvements

Besides the above considerations, when setting an angle tolerance for the back-scattering

calculation a variable total number of Floquet modes can be used in computation, so that

depending on the available computing power, solutions with a pre-specified (larger) error

can still be obtained with relatively small computational resources.

Moreover, a ‘corner margin’ is introduced as one of the criteria in the determination of

the surface periods. The ‘corner margin’ is used to remove the singularity caused by the

Floquet modes at the transition edge from propagating modes to evanescent modes. In the

3D case, the singularity occurs at the propagating modes having the largest k2
0mnx + k2

0mny

and k2
1mnx + k2

1mny.

Additionally, when determining the surface periods and the number of Floquet modes

used in computation, there are many pairs of values satisfying a given angle tolerance and

corner margin. Therefore, a limit on the number of Floquet modes Nlimit is introduced de-

pending on the computational resources available. The more Floquet modes are allowed,

the larger the resulting surface periods will be, and therefore the better accuracy the solu-

tions will have. For a given Nlimit , solutions with less accuracy can still be calculated if

desired, with moderate computing power.

Optimization for computational efficiency

One of the challenges in implementing the EBCM algorithm for 3D scattering prob-

lems is the large computational load for both memory and computing time. In this work,

the computation efficiency is improved by decomposition of loop operations into matrix

operations and the matrix operation is further broken down into operations based on sub-

matrix blocks of small size.

Firstly, the integral (2.30) is usually calculated through Fourier transformation of the

power series expansion of the exponential term e±ik jzmn f (x,y). This approach can be further

decomposed into a matrix operation by observing that the integral term of the entry Q±
mnpq
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is

I±j,mnpq =
Ntr

∑
h=0

FFT
(

(±ik jzmn f (x,y))h

h!

)

=
Ntr

∑
h=0

(±ik jzmn)h

h!
FFT ( f h(x,y)) (2.45)

where Ntr is the number of terms in the truncated power series. Let N denote the number

of Floquet modes. The first expression in Eq.(2.45) requires (2N + 1)2 FFT operations.

However, as implied by the second expression in Eq.(2.45), we can construct a Ntr×(4N +

1)2 matrix ¯̄F as

¯̄F =




FFT ( f 0(x,y))

FFT ( f 1(x,y))

FFT ( f 2(x,y))
...

FFT ( f Ntr(x,y))




(2.46)

where each row is the Fourier transform expressed in a row vector. We can also construct a

(2N +1)2×Ntr matrix ¯̄K±
j as

¯̄K±
j =




(±ik jz(−N)(−N))0

0!
(±ik jz(−N)(−N))1

1! · · · (±ik jz(−N)(−N))Ntr

Ntr!
...

...
...

...
(±ik jzmn)0

0!
(±ik jzmn)1

1! · · · (±ik jzmn)Ntr

Ntr!
...

...
...

...
(±ik jzNN)0

0!
(±ik jzNN)1

1! · · · (±ik jzNN)Ntr

Ntr!




(2.47)

Then the integral term of the entry Q±
mnpq can be obtained as the (n−q,m− p)-entry of the

matrix product ¯̄K±
j · ¯̄F . The computation of this product involves only Ntr Fourier trans-

forms and the number of Fourier transform operations will not increase with the number of

Floquet modes included.

As the size of the matrix ¯̄T increases by a factor of four from the 2D problem to the 3D
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Figure 2.6: Comparison of 3D SEBCM and classical EBCM results for ε1 = 5.46 +0.37i,
exponential rough surface with k0hrms = 0.094, lc/hrms = 10 (SPM results are
shown as a reference). SEBCM results of lc/hrms = 5 and lc/hrms = 2 are
presented as well: (a) σhh; (b) σvv.

problem, the filling procedure of the matrix ¯̄T and ¯̄P also slows down the computation. By

observing the matrix expressions (2.25) and (2.27), this procedure can be reduced to fill-

ing only six sub-matrix blocks, [I±j,mnpq], [(kxn− kxq)I±j,mnpq] and [(kym− kyp)I±j,mnpq]. The

remaining sub-matrix blocks can be obtained by left or right multiplication of the diagonal

matrices [kxn], [kym] and [k jzmn] with these six sub-matrices. This results in a similar effi-

ciency for matrix filling as in the 2D EBCM.

The matrix ¯̄T , which requires the matrix inverse operation, is of dimension 2(2N +
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1)2 × 2(2N + 1)2. Its size increases as the 4th power of the number of Floquet modes.

Hence, it is usually difficult to include a large number of Floquet modes. However, when

considering scattering from a single surface, the knowledge of only one column in the in-

verse matrix corresponding to the propagation vector of the incident wave is sufficient.

Therefore, finding the matrix inverse reduces to solving a linear system. Additionally, rows

in the matrix ¯̄T can be grouped and an algorithm based on row operations can be used

to solve the linear system with modest memory resources. Moreover, the structure of the

matrix ¯̄T involving zero sub-matrices is also utilized for speed enhancement. When full

inverse of the matrix ¯̄T is required for further work involving multiple surfaces, matrix in-

version based on sub-matrices can be utilized.

Using a single 2.4 GHz processor and 2 GB memory, simulating the 3D problem of

scattering from a Lx = Ly ≈ 15λ rough surface including 30 Floquet modes takes 3 hours

in Matlab for one realization. Having similar accuracy in the results shown in Figure 2.11

and Figure 2.12 in the next section, the number of unknowns to be solved in 3D SEBCM

for an given incident field is on the order of 16N2, which is much less than the number of

unknowns required in MoM [43].

2.3 Model Validation

2.3.1 Stabilization Results

As shown in Figure 2.6, in the case of lossy medium (ε1 = 5.46+0.37i, usually in the

case of very low soil moisture content), the classical EBCM solutions are not valid any

more for surface roughness of only k0hrms ≈ 0.1 with lc/hrms = 10, indicating a validity

domain no larger than the analytical solutions. Presented in the same figure, the SEBCM

gives very stable results (SPM results of this case are plotted as a reference). Moreover,

stable SEBCM results for even larger hrms/lc ratios are shown as well.
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Figure 2.7: Comparison of co-pol SCSs of SEBCM and SPM (ε0 = 1, ε1 = 5, Gaussian
rough surface with k0lc = 1, k0h = 0.15, θi = 40◦, over 50 realizations): (a) σhh
in x-z plane; (b) σhh in y-z plane; (c) σvv in x-z plane; (d) σvv in y-z plane.

2.3.2 Validation with Analytical Solutions for Surfaces

with 2D Roughness

The validity of the 3D SEBCM solutions for scattering from random rough surfaces

is verified first by comparison with the small perturbation method results for surfaces with

slight roughnesses that are within the SPM validity domain, as shown in Figure 2.7 - Figure

2.9. The Gaussian rough surface has statistics of k0lc = 1 and k0hrms = 0.15 with periods

of Lx = Ly = 14.78λ0, ε0 = 1 and ε1 = 5. Results shown are computed over 50 realizations

with kbdry = k1 and ∆ = 0. The co-pol scattering cross section (SCS) comparisons in the

x-z and y-z planes are shown in Figure 2.7, and the cross-pol SCS comparisons in y-z plane
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Figure 2.8: Comparison of cross-pol SCSs of SEBCM and SPM in y-z plane (ε0 = 1,
ε1 = 5, Gaussian rough surface with k0lc = 1, k0h = 0.15, θi = 40◦, over 50
realizations): (a) σvh; (b) σhv.

Figure 2.9: Comparison of two cross-pol SCSs of 3D SEBCM (ε0 = 1, ε1 = 5, Gaussian
rough surface with k0lc = 1, k0h = 0.15, θi = 40◦, over 50 realizations) in x-z
plane of section.

is shown in Figure 2.8. As can be seen, the SEBCM and SPM solutions agree with each

other very well. Disagreement appears at large scattering angles where SPM is not valid.

Figure 2.9 verifies the reciprocity in the cross-pol components of the 3D SEBCM results.

A good agreement can be seen in y-z plane. Their values in x-z plane are expected to be

zero.

For larger roughnesses, the SEBCM solutions are verified with small slope approxima-

tion results for surfaces with ε1 = 5, k0hrms = 0.5, k0lc = 2.5 as shown in Figure 2.10 (a) and
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Figure 2.10: Comparison of SEBCM and SSA solutions: (a) and (b) are SCSs in x-z plane
for lossless medium (ε1 = 5, exponential rough surface with k0hrms = 0.5,
k0lc = 2.5); (c) and (d) are SCSs in x-z plane for lossy medium (ε1 = 5.46 +
0.37i, exponential rough surface with k0hrms = 0.5, k0lc = 2.5).

(b). The results are computed over 50 realizations with incidence angle of 40◦, kbdry = k1,

∆ = 0, and the limit of the number of Floquet modes Nlimit of 20. Very good agreement can

be seen. For this roughness (hrms/lc = 1/5), the SSA solutions tend to underestimate the

scattering at angles larger than ∼ 78◦ [19]. Figure 2.10 (c) and (d) compares SEBCM and

SSA solutions for a lossy medium (ε1 = 5.46+0.37i) and same surface statistics.

2.3.3 Validation with MoM and AIEM

As shown in Figure 2.11 and Figure 2.12, SEBCM results of scattering from surfaces

with both small and large roughnesses are compared to the solutions from MoM [43]. The

simulations use Gaussian random rough surfaces with exponential correlation functions.
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Figure 2.11: Comparison between SEBCM and MoM solutions for (a) HH with rms height
of 0.0084λ0; (b) VV with rms height of 0.0084λ0. (ε1 = 5.46 + i0.37, expo-
nential rough surface with lc/h = 10). Reference: [43].

Figure 2.11 compares HH and VV results for the surface with hrms = 0.0084λ0, and Figure

2.12 shows comparisons of HH and VV for the surface with hrms = 0.105λ0. Both cases

are using lc/hrms = 10 and ε1 = 5.46 + i0.37. Good agreements can be observed. Results

of MoM were not available for HV.

Moreover, simulations are carried out for various other heights and the same lc/hrms

ratio, as shown in Figure 2.13 for HH and Figure 2.14 for VV, where comparisons between

SEBCM and several other method including MoM, AIEM, and an empirical model [43] can

be seen. SEBCM gives larger backscattering coefficients for large rms heights compared

to MoM. Simulations show that the SEBCM extends the range of validity of solutions as
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Figure 2.12: Comparison between SEBCM and MoM solutions for (a) HH with rms height
of 0.105λ0; (b) VV with rms height of 0.105λ0. (ε1 = 5.46+ i0.37, exponen-
tial rough surface with lc/h = 10). Reference: [43].

a function of surface roughness to at least khrms = 1 as opposed to k0hrms < 0.2 (lossless

cases) for classical EBCM.

Simulation results as a function of the real part of permittivity are shown in Figure 2.15

for HH-pol and Figure 2.16 for VV-pol, where solutions from the other models [43] are

also shown for comparison. These results were generated for lc/hrms = 6. As seen from

the resutls, no two methods completely agree but the solution is stable and consistent.
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Figure 2.13: Comparison of backscattering coefficients in decibel as a function of rms height be-
tween SEBCM and other model solutions for HH (ε1 = 5.46 + i0.37, exponential
rough surface with lc/hrms = 10). Reference: [43]

Figure 2.14: Comparison of backscattering coefficients in decibel as a function of rms height be-
tween SEBCM and other model solutions for VV (ε1 = 5.46 + i0.37, exponential
rough surface with lc/hrms = 10). Reference: [43]

Figure 2.15: Comparison of backscattering coefficients in decibel as a function of real part of per-
mittivity between SEBCM and other model solutions for HH (hrms = 0.063λ0, expo-
nential rough surface with lc/hrms = 6). Reference: [43]
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Figure 2.16: Comparison of backscattering coefficients in decibel as a function of real part of per-
mittivity between SEBCM and other model solutions for VV (hrms = 0.063λ0, expo-
nential rough surface with lc/hrms = 6). Reference: [43]

Figure 2.17: Comparison of 2D SCSs computed (over 50 realizations) using 3D SEBCM
and MoM (only for hh) (ε0 = 1, θi = 40◦, Gaussian rough surface): (a) σhh
for surface with ε1 = 5, k0hrms = 2 and k0lc = 10; (b) σhh for surface with
ε1 = 10, k0hrms = 1 and k0lc = 5.

2.3.4 Validation with MoM solutions for 2D surfaces with 1D rough-

nesses

The 3D SEBCM solutions are also compared with MoM for 2D surfaces with 1D rough-

ness as shown in Figure 2.17, where k0hrms = 2, k0lc = 10 in (a) for ε1 = 5 and k0hrms = 1,

k0lc = 5 in (b) for ε1 = 10. Good agreements can be seen in these comparisons. In these

cases, the 3D SEBCM degenerates into 2D SEBCM and shows significant improvement

in its validity range as a function of surface roughnesses compared to classical EBCM.
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Figure 2.18: Comparison of VV- and HH-pol. backscattering coefficients between SEBCM
and Michigan measurement data (as in Table 2.1).

Detailed analysis of the 2D cases is included in [44].

2.3.5 Comparison with Measurement Data

Michigan’s L-band POLARSCAT data [11] and its comparison with other model results

[43] are further used to verify the SEBCM solutions. The incidence angle is 40◦ and the

surface and medium properties are listed in Table 2.1. Figure 2.18 shows the comparisons

of SEBCM with the observation data. Good agreement can be seen between SEBCM

results and the measurement data. The mean absolute error in VV-pol. is 1.30 dB, and the

mean absolute error in HH-pol is 1.20 dB.

2.4 Summary and Conclusion

The stabilized extended boundary condition method (SEBCM) for solving the three-

dimensional bistatic scattering from arbitrary random rough surfaces is developed based

on the classical EBCM. This method retrieves the surface sources by matching the ex-

tended boundary conditions of the Floquet-mode expanded fields at the test surfaces away

from the actual rough surface, then stabilizes the solutions by explicitly restricting and

controlling the test surface locations. The numerical computation is further stabilized by
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Table 2.1: COMPARISON BETWEEN THEORETICAL RESULTS AND MICHIGAN OBSERVATION DATA. (in dB) [43]

Table 2.1: (a) RMS height = 0.55 cm, correlation length = 9.40 cm.
Real Imag Michigan Data SEBCM NMM3D
3.61 0.24 VV -23.56, HH -25.39 VV -26.01, HH -27.10 VV -25.47, HH -28.50
3.73 0.26 VV -26.14, HH -27.08 VV -25.78, HH -26.91 VV -25.31, HH -28.34
3.76 0.26 VV -23.76, HH -25.39 VV -25.61, HH -26.94 VV -25.27, HH -28.30
4.31 0.32 VV -22.30, HH -24.00 VV -25.49, HH -27.45 VV -24.60, HH -27.66
5.40 0.44 VV -23.51, HH -25.49 VV -22.67, HH -24.41 VV -23.46, HH -26.66
6.42 0.55 VV -23.74, HH -25.63 VV -21.95, HH -24.43 VV -22.60, HH -26.01
12.39 1.10 VV -19.80, HH -22.21 VV -19.90, HH -23.14 VV -19.91, HH -24.14
12.39 1.10 VV -19.46, HH -21.85 VV -19.90, HH -23.14 VV -19.91, HH -24.14
12.39 1.10 VV -20.45, HH -23.25 VV -19.90, HH -23.14 VV -19.91, HH -24.14
12.39 1.10 VV -20.07, HH -22.81 VV -19.90, HH -23.14 VV -19.91, HH -24.14

Table 2.1: (b) RMS height = 0.94 cm, correlation length = 6.90 cm.
Real Imag Michigan Data SEBCM NMM3D
2.89 0.15 VV -23.84, HH -24.87 VV -23.32, HH -24.37 VV -21.01, HH -24.32
3.61 0.24 VV -20.94, HH -21.68 VV -20.70, HH -21.74 VV -20.12, HH -23.08
4.18 0.31 VV -22.54, HH -22.81 VV -19.60, HH -21.22 VV -19.47, HH -22.29
4.31 0.32 VV -20.35, HH -21.80 VV -20.08, HH -21.86 VV -19.34, HH -22.14
5.40 0.44 VV -19.34, HH -22.06 VV -17.34, HH -18.84 VV -18.30, HH -21.10
6.42 0.55 VV -20.49, HH -22.58 VV -16.62, HH -18.80 VV -17.49, HH -20.50

Table 2.1: (c) RMS height = 1.78 cm, correlation length = 8.30 cm.
Real Imag Michigan Data SEBCM NMM3D
2.94 0.16 VV -16.07, HH -16.92 VV -18.29, HH -19.33 VV -16.97, HH -20.22
3.32 0.20 VV -16.18, HH -17.73 VV -17.14, HH -18.58 VV -16.50, HH -19.50
3.64 0.24 VV -17.55, HH -17.52 VV -15.96, HH -16.67 VV -16.13, HH -18.95
3.82 0.27 VV -17.08, HH -18.57 VV -15.60, HH -16.58 VV -15.93, HH -18.67
4.15 0.30 VV -15.94, HH -16.93 VV -15.08, HH -16.22 VV -15.59, HH -18.20
11.27 1.00 VV -12.22, HH -14.20 VV -11.83, HH -14.73 VV -11.59, HH -14.82
13.68 1.21 VV -12.38, HH -15.29 VV -10.90, HH -13.95 VV -10.94, HH -14.35
13.68 1.21 VV -12.26, HH -15.12 VV -10.90, HH -13.95 VV -10.94, HH -14.35
13.68 1.21 VV -12.72, HH -15.09 VV -10.90, HH -13.95 VV -10.94, HH -14.35
13.68 1.21 VV -13.57, HH -15.77 VV -10.90, HH -13.95 VV -10.94, HH -14.35
14.19 1.26 VV -11.65, HH -15.13 VV -10.80, HH -13.77 VV -10.82, HH -14.27

Table 2.1: (d) RMS height = 3.47 cm, correlation length = 11.00 cm.
Real Imag Michigan Data SEBCM NMM3D
2.94 0.16 VV -15.14, HH -14.44 VV -13.68, HH -13.95 VV -15.93, HH -15.05
3.34 0.21 VV -12.51, HH -12.10 VV -11.85, HH -12.85 VV -14.59, HH -14.39
3.64 0.24 VV -11.98, HH -12.51 VV -12.66, HH -12.51 VV -13.70, HH -13.94
4.15 0.30 VV -11.85, HH -12.25 VV -12.25, HH -12.10 VV -12.43, HH -13.28
4.63 0.36 VV -10.35, HH -10.80 VV -11.42, HH -11.28 VV -11.46, HH -12.75
11.27 1.00 VV -10.29, HH -10.02 VV -8.01, HH -8.13 VV -8.30, HH -9.47
14.19 1.26 VV -7.98, HH -9.65 VV -7.71, HH -7.80 VV -7.85, HH -8.40
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balancing the Floquet mode distribution in k-space and introducing a k-boundary to elim-

inate the evanescent modes and attenuated modes that are unnecessarily involved in the

calculation. Meanwhile, by introducing a tolerance in the computation, this method can

be applied with moderate computing power as well. Additional to the development of 3D

SEBCM, for numerical implementation, a model for two-dimensional rough surfaces with

arbitrary statistical properties is developed, and the relationship between bistatic scattering

cross section and upward-propagating Floquet modes is extended into three-dimensions.

The simulation results of SEBCM are compared with the SPM solutions for slightly

rough surfaces. Results are also verified with the SSA solutions for lossy surfaces and sur-

faces with larger roughnesses outside the validity regimes of SPM. These comparisons val-

idate the 3D SEBCM solutions within the validity domains of above analytical approaches

respectively. Moreover, further validation of the 3D SEBCM is done using the 3D MoM

results for 2D surfaces with 2D and 1D roughness, as well as with field observations.

Compared to the classical EBCM, the 3D SEBCM improves the surface roughness va-

lidity region for k0hrms from less than 0.2 (with lossless medium) to at least 1. This range

of roughnesses makes SEBCM an appropriate method for realistic soil moisture applica-

tions. Much more significant improvement can be seen when the method is applied to 2D

surfaces with 1D roughness, where its validity range up to k0hrms = 2.
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CHAPTER 3

Three-dimensional Bistatic Electromagnetic Scattering

from Multi-Layer Surfaces with Arbitrary Roughness

A model of three-dimensional electromagnetic scattering from multiple rough surfaces

within homogeneous-layered or vertically inhomogeneous media is developed in this chap-

ter. This model, aimed at radar remote sensing of surface-to-depth profiles of soil moisture,

computes total bistatic radar cross sections from the multilayer structure based on the scat-

tering matrix approach, cascading the scattering matrices of individual rough interfaces and

the layer propagation matrices. We have developed the single-surface scattering matrix ob-

tained using the stabilized extended boundary condition method (SEBCM) providing both

large validity range over the surface roughness and higher computational efficiency com-

pared to fully numerical solutions in the previous chapter. In the presence of a vertical

dielectric profile, the aggregate scattering matrix of the profile is obtained from the model

of stratified homogeneous layers. Results of this multilayer SEBCM model are validated

with small perturbation method (SPM) of up to third order and the method of moments

(MoM). Additionally, the model is used to perform a sensitivity analysis of the scattering

cross section with respect to perturbations in ground parameters such as subsurface layer

separation, roughness of surface and subsurface layers, and moisture content of subsurface

layers. The multilayer SEBCM model developed here presents a realistic and computa-

tionally feasible method for solving scattering from multilayer rough surfaces of realistic
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roughness, providing an accurate and efficient tool for future retrievals of soil moisture

profiles.

3.1 Introduction

Multilayer media with random rough interfaces represent many natural structures such

as soil profiles, snow-covered ground, and multilayer ice. Remote sensing of these struc-

tures is of increasing importance in scientific and operational applications. Soil moisture

profiles, in particular, are of special interest for their prominent role in both climatic and

hydrologic modeling. Monitoring subsurface and root-zone soil moisture on a global scale

will provide better understanding of the global hydrologic cycle, and could result in better

short-term weather and long-term climate predictions. Despite its importance, subsurface

and root-zone soil moisture is still one of the least observed geophysical quantities. Ac-

tive and passive microwave remote sensing at L-band (∼1.26 GHz - 1.4 GHz) and higher

frequencies has long been recognized as the most suitable way for large-scale observations

of surface soil moisture [9], evidenced by the development of missions such as the NASA

Soil Moisture Active and passive (SMAP) mission and the European Space Agency (ESA)

Soil Moisture and Ocean Salinity (SMOS) mission. The SMAP mission [9], in particular,

will map the global soil moisture with a synthetic aperture radar (SAR) and a radiometer

operating at L-band with ground resolutions of 1-3 km and 36 km, respectively. It will

allow retrieval of soil moisture for bare to moderately vegetated surfaces.

To remotely sense the subsurface and root-zone soil moisture, lower-frequency mea-

surement systems are needed for their capability of deeper penetration. The NASA Earth

Ventures 1 (EV-1) Airborne Microwave Observatory of Subcanopy and Subsurface (Ari-

MOSS) mission, currently under development, is such a system and will be equipped with

an airborne P-band synthetic aperture radar (SAR) for observations of subsurface and root-

zone soil moisture with multi-looked resolution of a few tens of meters over several repre-

sentative biomes in north America. To retrieve subsurface soil properties, radar scattering
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models of layered media representing soil profiles are needed, which must also include

random rough boundaries. Typically, these forward scattering models are the most time-

and resource-consuming component of retrieval algorithms, highlighting the need for an

accurate and efficient forward model of electromagnetic (EM) scattering from multilayer

rough surfaces.

In the past, several works have been dedicated to solving the multilayer rough surface

scattering problem. In [45], the problem has been solved for the two-dimensional (2D)

case - or the 1D rough surface - using the classical extended boundary condition method

(EBCM). For the same problem in 3D, [17] gives the solution using small perturbation

method (SPM) for interfaces having small roughnesses (k0lc ∼ 1, k0h < 0.3, where k0 is the

free space wave number, h and lc are the rms height and correlation length of the surface

[46]). SPM solutions up to 4th order are discussed in [47]. For a fully numerical solution

for the two-rough-surface problem, the steepest descent fast multipole method (SDFMM)

has been presented in [48], though the surface is assumed to be deterministic in that a sin-

gle specific surface realization has been considered. Other numerical approaches based on

the method of moments (MoM) have also been developed and are currently under evalu-

ation [27]. The fully numerical methods require extremely large computational resources

and cannot easily be extended to cases involving more than two surfaces. An alternative is

offered in this work for the electromagnetic scattering from multilayer random rough sur-

faces, using the scattering matrix approach and the stabilized extended boundary condition

method (SEBCM). This model, which we call the multilayer SEBCM, provides both valid-

ity over large surface roughnesses and high computational efficiency. It is also not limited

to two surfaces, and can be readily extended to multiple (>2) layers.

The multilayer SEBCM computes the scattering cross section from the multiple-layered

media with rough interfaces by cascading the scattering matrices of all interfaces and the

propagation matrices of all intervening layers, which together can represent arbitrary pro-

files and any number of rough interfaces. Single-surface scattering matrix of each random

rough interface is found using the stabilized extended boundary condition method (SE-
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BCM) we developed and discussed in the last chapter. With much higher computational

efficiency than the numerical methods, it gives accurate full wave solutions to the vec-

tor scattered fields over all directions from a single surface with large roughness range

(k0h < 1.0). Besides the EM scattering occurring at each medium interface, wave propa-

gation within every profile layer is described by the propagation matrix. In this work, two

types of profile layers are considered: (1) homogeneous and (2) inhomogeneous consisting

of a vertical dielectric profile. The latter is modeled as stacked homogeneous differential

layers with small layer thickness compared to the wavelength. The reflection and trans-

mission matrices of this arrangement are calculated by recursively cascading those of the

differential layers.

Validation of the multilayer SEBCM model is performed by comparisons with other

available solutions. First, results are compared with small perturbation method solutions

for multilayer surfaces of small roughnesses using the 1st order (SPM1) and large rough-

nesses using the 3rd order (SPM3) solutions. Moreover, the incoherent components of the

solutions are compared with the method of moments (MoM) results for the two-rough-

surface case with good agreements.

Once validated, we use the multilayer SEBCM to carry out a sensitivity study of the

bistatic radar scattering cross section to variations in the ground parameters of interest in

soil moisture detection, such as the depth of the subsurface layer, subsurface layer rough-

ness, and subsurface layer moisture content, for both L-band and P-band frequencies. As

shown from the results, while P-band scattering cross section shows up to ∼10 dB varia-

tion in the backscattering direction as a function of the subsurface and sublayer properties

investigated, L-band scattering cross section is much less sensitive to these parameters.
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Figure 3.1: Geometry of 3D scattering from multiple rough surfaces (a) and its cross-
section (b)

3.2 Problem Geometry and Formulation

3.2.1 Problem Geometry

Geometry of the 3D scattering from multilayer rough surfaces is illustrated in Figure

3.1, where j surfaces f1, f2, . . . , f j divide the space into j + 1 regions. The upper region

(region 0) is free space with ε0 = 1 and µ0 = 1. The lower j regions are layers with homo-

geneous or depth-varying dielectric properties described by ε j(z), µ j(z). Thickness of the

jth layer is denoted by d j. To apply EBCM, we assume periodic boundary conditions for
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the rough surfaces, such that each surface profile satisfies

f j(x,y) = f j(x+nLx,y+mLy), ∀ m,n ∈ Z

where Lx and Ly are periods along x- and y-directions respectively.

The incidence plane is coincident with the x-z plane and the projection of the incident

wave vector points towards the positive x-direction. Polarization of the incident field is

defined to be horizontal (H) or TE polarized when the electric field is parallel with the x-y

plane and vertical (V) or TM polarized when the magnetic field is parallel to the x-y plane.

3.2.2 Single-Surface Scattering Matrix

Scattering matrix of a single rough surface is obtained using the stabilized extended

boundary condition method (SEBCM) we presented in Chapter 2. Here we summarize its

formulation of scattering matrix as

¯̄S =




D(0)
b 0 0 0 0 0

0 D(0)
b 0 0 0 0

0 0 D(0)
b 0 0 0

0 0 0 D(1)
a 0 0

0 0 0 0 D(1)
a 0

0 0 0 0 0 D(1)
a




· ¯̄P · ¯̄T−1 ·




D(0)
a 0 0 0

0 D(0)
a 0 0

0 0 D(1)
b 0

0 0 0 D(1)
b




−1

(3.1)

where the matrix ¯̄T relates the surface electric and magnetic currents to the incoming wave,

while the matrix ¯̄P relates the outgoing wave, i.e., the scattered fields, with the surface

currents. They are expressed as in Eq.(2.25) and Eq.(2.27). The matrix entries in each

sub-matrix block are shown in Eq.(2.28) and Eq.(2.29).

Diagonal matrices in Eq.(3.1) are from the z-coordinate transformation in SEBCM,

which ensures that the extended boundaries are away from the actual rough surface, and

therefore stabilizes the solution.
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3.2.3 Reflection and Transmission Matrices of Homogeneous and Ver-

tical Dielectric Profiles

Through a homogeneous layer, wave propagation can be described by the matrix,

¯̄Φ+
d j =




φ+
d j 0 · · · 0

0 φ+
d j · · · 0

...
... . . . ...

0 0 · · · φ+
d j




(3.2)

where φ+
d j = e+ik jzmn∆d and ∆d is the layer thickness. In the case of a layer with rough

interfaces at the top and the bottom, ∆d = d j−| fmax, j|− | fmin, j−1|, where d j is the separa-

tion between the interface mean-planes, fmax, j is the deviation of the highest point on the

bottom interface and | fmin, j−1| is the deviation of the lowest point of the upper interface.

For an inhomogeneous medium with a dielectric profile along depth, the profile can be

stratified and discretized into a stack of homogeneous differential layers as in [26]. With

the differential layer thicknesses being sufficiently small compared with the wavelength

(e.g., λ/10) and the profile gradient, the original inhomogeneous layer can be modeled

accurately. By knowing the reflection and transmission matrices obeying Fresnel’s law at

each planar interface between the differential layers, we can write:

RT E
j, j+1 =

kz, j− kz, j+1

kz, j + kz, j+1
(3.3)

T T E
j, j+1 =

2kz, j

kz, j + kz, j+1
(3.4)

RT M
j, j+1 =

ε j+1kz, j− ε jkz, j+1

ε j+1kz, j + ε jkz, j+1
(3.5)

T T M
j, j+1 =

2ε j+1kz, j

ε j+1kz, j + ε jkz, j+1
(3.6)

As discussed in [26], the total reflection and transmission matrices of the stratified layers
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Figure 3.2: Cascading of reflection and transmission matrices of the jth interface with that
of the ( j + 1) to Nth interfaces underneath through the propagation matrix of
the jth medium.

can be obtained by recursively cascading the single-interface reflection and transmission

matrices from bottom to top with the propagation matrix in each layer, as illustrated in

Fig.3.2, where the scenario of cascading the jth interface with the ( j + 1)th to Nth inter-

faces is shown. In this figure, every arrow indicates a direction of wave propagation. R j, j+1

and R j+1, j are reflection coefficients when wave propagating from the ( j + 1)th medium

to the jth medium and vice versa respectively. Tj, j+1 and Tj+1, j are the transmission co-

efficients of the jth interface in both directions. The total reflection coefficient Rtot
j, j+1 can

be found by summation of two propagation paths R j, j+1 and Tj+1, jΦ+
d j

Rtot
j+1, j+2Φ+

d j
Tj, j+1;

the latter path needs to be divided by the loop R j+1, jΦ+
d j

Rtot
j+1, j+2Φ+

d j
that describes the

interaction between the jth interface and the rest interfaces below it. Similarly, the total

transmission coefficient T tot
j, j+1 can be found from the path Tj, j+1Φ+

d j
T tot

j+1, j+2 being divided

by the interaction loop. With ¯̄R j, j+1 = diag
{

R j, j+1
}

and ¯̄Tj, j+1 = diag
{

Tj, j+1
}

for all prop-

agation modes, we can write,

¯̄Rtot
j, j+1 = ¯̄R j, j+1 +

¯̄Tj, j+1
¯̄Φ+

d j
¯̄Rtot

j+1, j+2
¯̄Φ+

d j
¯̄Tj+1, j

¯̄I− ¯̄R j+1, j
¯̄Φ+

d j
¯̄Rtot

j+1, j+2
¯̄Φ+

d j

(3.7)

¯̄T tot
j, j+1 =

¯̄Tj, j+1
¯̄Φ+

d j
¯̄T tot
j+1, j+2

¯̄I− ¯̄R j+1, j
¯̄Φ+

d j
¯̄Rtot

j+1, j+2
¯̄Φ+

d j

(3.8)

where ¯̄Rtot
j, j+1 and ¯̄T tot

j, j+1 are the total reflection and transmission matrices for layers below

the jth layer.
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Figure 3.3: Cascading of scattering matrix of the jth rough surface with that of the ( j +1)
to Nth surfaces underneath through the propagation matrix of the jth medium
region. The total scattering matrix of the entire layered structure can be found
by recursively repeating this cascading.

3.2.4 Scattering Matrix Approach

Knowing single-surface scattering matrix of every rough interface and the propagation

matrix in each layer of the medium, the aggregate scattering matrix of the multilayer struc-

ture is obtained using the scattering matrix approach illustrated in Figure 3.3.

Similar to the computation of the reflection and transmission matrices of the stratified

layers, we recursively cascade the scattering matrices of all rough surfaces from bottom to

top through medium propagation matrices. Hence, the aggregate scattering matrix is,

¯̄Stot
11, j = ¯̄S11, j +

¯̄S21, j
¯̄Φ+

d j
¯̄Stot
11, j+1

¯̄Φ+
d j

¯̄S12, j

¯̄I− ¯̄S22, j
¯̄Φ+

d j
¯̄Stot
11, j+1

¯̄Φ+
d j

(3.9)

¯̄Stot
21, j =

¯̄S21, j
¯̄Φ+

d j
¯̄Stot
21, j+1

¯̄I− ¯̄S22, j
¯̄Φ+

d j
¯̄Stot
11, j+1

¯̄Φ+
d j

(3.10)

¯̄Stot
22, j and ¯̄Stot

12, j can be computed similarly by cascading recursively from top to bottom.

3.2.5 Computation of Scattering Cross Section

From the aggregate scattering matrix of the multilayer rough surface structure, Floquet

mode coefficients of the scattered fields corresponding to any given incident wave can be

found, from which the bistatic scattering cross section can be calculated from the following
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relations derived in chapter 2:

σhh(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(h)
mnφ|2 (3.11)

σvh(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(h)
mnθ|2 (3.12)

σhv(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(v)
mnφ|2 (3.13)

σvv(θs,φs) =
LxLyk2

0
4π2 cosθi

cos2 θs|b(v)
mnθ|2 (3.14)

with

b(h)
mnφ = − bmnx

k2
0mnz

sinφs +
bmny

k2
0mnz

cosφs (3.15)

b(h)
mnθ =

bmnx

k2
0mnz

cosθs cosφs +
bmny

k2
0mnz

cosθs sinφs− bmnz

k2
0mnz

sinθs (3.16)

b(v)
mnφ =

bmnx

k2
0mnz

cosθs cosφs +
bmny

k2
0mnz

cosθs sinφs− bmnz

k2
0mnz

sinθs (3.17)

b(v)
mnθ = − bmnx

k2
0mnz

sinφs +
bmny

k2
0mnz

cosφs (3.18)

where (φs,θs) defines the observation direction.

3.3 Model Validation

To validate the multilayer SEBCM solutions, comparisons with both approximate an-

alytical solutions and accurate full-wave numerical methods are performed. Numerical

simulations of multilayer rough surfaces of small roughnesses are performed first, whose

1st-order small perturbation method (SPM1) solutions are available.

Two cases are shown here for comparisons with SPM1. The first one includes two rough
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Table 3.1: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR VALIDATION WITH SPM1.

kh1 klc1 kh2 klc2 ε1 ε2 d Surf. Type
0.15 1.5 0.05 1.5 4 7 λ0/5 Gauss. corr.

Figure 3.4: Comparison of co-pol scattering cross sections between SEBCM and SPM1 for
two-rough-surfaces with parameters in Table 3.1.

surfaces bounding homogeneous lossless media. Statistics of each interface as well as the

dielectric properties in every medium layer are listed in Table 3.1. Surface separation for

this case is d = λ0/5. The co-polarized scattering cross section results in Figure 3.4 show

very good agreement between SEBCM and SPM1 solutions.

The second case of small roughnesses has three rough interfaces and lossy media in
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Table 3.2: SIMULATION PARAMETERS FOR THREE-ROUGH-SURFACE CASE FOR VALIDATION WITH SPM1.

kh1 klc1 kh2 klc2 kh3 klc3 Surf. Type
0.15 1.0 0.1 1.0 0.05 1.0 Gauss. corr.

ε1 ε2 ε3 d
5.4+ i0.44 11.27+ i1.0 4.31+ i0.32 λ0/5

Figure 3.5: Comparison of co-pol scattering cross sections between SEBCM and SPM1 for
three-rough-surfaces with parameters in Table 3.2.

between. As shown from the values listed in Table 3.2, the middle two layers are assumed to

have higher permittivities than the bottom layer, which is a typical soil moisture distribution

after rain events. Roughnesses of the surface and subsurfaces decrease downwards, and
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the surface separations are both λ0/5. Very good agreement between SEBCM and SPM1

results can be seen in Figure 3.5.

Table 3.3: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR VALIDATION WITH SPM AND

MOM.

kh1 klc1 kh2 klc2 ε1 ε2 d Surf. Type
π/5 2π π/10 π 5.4+0.44i 11.27+i λ0/5 Gauss. corr.

Figure 3.6: Comparison of co-pol scattering cross sections between SEBCM and SPM3 for
two-rough-surfaces with parameters in Table 3.3.

For larger roughnesses, we compared two-rough-surface results with SPM3 (1st to 3rd

order small perturbation method) and method of moments (MoM) solutions recently avail-

able to us [27]. Table 3.3 lists the simulation parameters. Figure 3.6 shows the comparisons
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among SEBCM, SPM1, and SPM3. As can be seen, SPM1 is not valid any more for this

case of large roughness. SEBCM and SPM3 agree for the most part except at large angles

in the backward directions. It is unclear whether the discrepancies are due to inaccuracies

of SEBCM, SPM3, or both.

With increased surface separation, d = 0.8λ0, Figure 3.7 compares the incoherent com-

ponents of the scattered fields obtained from SEBCM, SPM, and MoM. In the backward

directions with large angles, SEBCM agrees well with SPM1; MoM and SPM3 predict

higher values in these directions. In the backscattering direction (monostatic case) as well

as the entire forward scattering directions, the agreement between SEBCM and MoM is

very good.

The case of a smoother surface is also compared for the incoherent components of the

scattered fields as shown in Figure 3.8. The simulation parameters are shown in Table 3.4.

Good agreements can be seen between SEBCM, SPM3, and MoM.

Comparing these three solutions in the computational aspect, SPM3 has the highest ef-

Table 3.4: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR VALIDATION WITH SPM AND

MOM.

kh1 klc1 kh2 klc2 ε1 ε2 d Surf. Type
π/25 π π/25 π 5.4+0.44i 11.27+i λ0/5 Gauss. corr.

ficiency as an analytical approach but with limited validity over roughness. While SEBCM

and MoM can both be applied to large roughnesses, MoM needs to solve a much larger

number of unknowns for the same problem geometry than SEBCM, since MoM unknowns

represent spacial discretization and the segment is usually one tenth of the wavelength.

Particularly, the advantage of SEBCM in computational efficiency becomes more obvious

when the number of layers increases.
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Figure 3.7: Comparison of incoherent scattering cross sections between SEBCM, SPM and
MoM for two-rough-surfaces with d = 0.8λ0 and the rest parameters in Table
3.3.

3.4 Simulation Results

The validated multilayer SEBCM model is further utilized for studying the scattering

cross section sensitivity to variations of the geophysical parameters in the subsurface with

the goal of investigating soil moisture. These parameters include surface separation, sub-

surface roughness, and subsurface layer soil moisture content. Simulations are performed

at both L-band (1.2GHz) and P-band (435MHz) frequencies. All results shown in this sec-

tion are for incidence angle of 40◦ and use Gaussian surfaces with exponential correlation
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Figure 3.8: Comparison of incoherent scattering cross sections between SEBCM, SPM and
MoM for two-rough-surfaces with parameters in Table 3.4.

function, which are generated by constructing their spectrum and using inverse Fourier

transform (Appendix A). The results are obtained by averaging 20 realizations.

3.4.1 Perturbations in Layer Separation

First, we simulated two-rough-surface cases with various surface separations: d = 30

cm, 50 cm, and 100 cm. As can be seen from the parameters listed in Table 3.5, with the

same correlation length, the top surface is rougher than the bottom one; and the lower-most

layer is assumed to have higher moisture content than the middle layer.

Figure 3.9 shows the results of the co-polarized scattered fields at P-band. The zoomed-

in views are presented in the lower part of the figure, from which ∼2 dB difference can be
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Table 3.5: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR PERTURBATIONS IN SURFACE
SEPARATION.

frequency kh1 klc1 kh2 klc2

435MHz 0.15 1.0 0.1 1.0

ε1 ε2 d

5.4+ i0.44 11.27+ i1.0 30 cm, 50 cm, 100 cm
(0.435λ0, 0.726λ0, 1.451λ0)

Figure 3.9: Scattering from two-rough-surfaces at P-band as a function of the surface sep-
aration: (a) σhh; (b) σvv; (c) zoomed-in view of σhh; (d) zoomed-in view of σvv.
(Table 3.5)
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Figure 3.10: Cross-pol scattering from two-rough-surfaces at P-band as a function of the
surface separation. (Table 3.5)

seen between results of 30 cm and 50 cm separations in the backscattering direction. Only

a small difference appears between results of 50 cm and 100 cm separations, which is due

to the limited penetration depth at P-band. The penetration depth can be estimated from

[29] using,

δp =
λ0
√

ε′

2πε′′
(3.19)

when ε′′/ε′ < 0.1. At P-band, δp ≈ 57.97 cm, meaning that, in both the 50 cm and 100

cm separation cases, the subsurface is barely detected, and therefore their backscattering

coefficients appear similar.

At L-band, simulation results do not show observable differences for these surface sep-

arations due to the small penetration depth of this frequency, which is estimated to be ∼21

cm.

The cross-polarized fields are shown in Figure 3.10, their sensitivity to the layer sepa-

ration change is small.

3.4.2 Perturbations in Subsurface Roughness

Fixing the layer separation to be 10 cm, scattered fields from the two-rough-surface

structure are simulated for both P-band and L-band as a function of subsurface statistics
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to study the scattering sensitivity to the subsurface roughnesses. In these simulations, the

sand/clay composition is assumed to be 0.66/0.1 in the middle layer, and 0.36/0.4 in the

bottom layer. Values of 5% and 20% moisture contents are assumed in the middle and

bottom layers, respectively. The dielectric permittivities in each layer at every frequency

are calculated and listed in Table 3.6 and 3.7, using the model in [49] and [50].

Keeping the top surface statistics and the subsurface correlation-length-to-standard-

deviation ratio lc2/h2 = 10 constant, simulations with increasing subsurface roughness

standard deviation h2 (h2 = 0.25 cm, 1 cm, 2 cm, and 3 cm) are done at both 1.2GHz

and 435MHz.

Table 3.6: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR PERTURBATIONS IN
SUBSURFACE ROUGHNESS AT L-BAND.

frequency mv1 mv2 d

1.2GHz 5% 20% 10 cm
(6.15+ i0.44) (14.16+ i1.6) (0.4λ0)

h1 lc1/h1 h2 lc2/h2

1.5cm 6 0.25cm, 1cm, 2cm, 3cm 10
(0.06λ0) (0.01λ0,0.04λ0,0.08λ0,0.12λ0)

Table 3.7: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR PERTURBATIONS IN
SUBSURFACE ROUGHNESS AT P-BAND.

frequency mv1 mv2 d

435MHz 5% 20% 10 cm
(6.15+ i0.95) (14.23+ i3.14) (0.145λ0)

h1 lc1/h1 h2 lc2/h2

1.5cm 6 0.25cm, 1cm, 2cm, 3cm 10
(0.02λ0) (0.004λ0,0.015λ0,0.03λ0,0.044λ0)

Results in L-band show very small difference (< 0.1 dB) between cases of h2 = 0.25

cm and h2 = 3 cm. Whereas, the P-band results shown in Figure 3.11 appear difference

of ∼ 9 dB in both HH and VV backscattering cross sections for the subsurface roughness

changing from 0.25 cm to 3 cm.
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Table 3.8: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR PERTURBATIONS IN
SUBSURFACE ROUGHNESS AT P-BAND WITH LARGER LAYER SEPARATION.

frequency mv1 mv2 d

435MHz 5% 20% 30 cm
(6.15+ i0.95) (14.23+ i3.14) (0.435λ0)

h1 lc1/h1 h2 lc2/h2

1.5cm 6 0.25cm, 1cm, 2cm, 3cm 10
(0.02λ0) (0.004λ0,0.015λ0,0.03λ0,0.044λ0)

Figure 3.11: Scattering from two-rough-surface at P-band as a function of the subsurface
roughness with layer separation of 10 cm: (a) σhh; (b) σvv. (Table 3.7)

Moreover, at P-band, another case with the same roughness parameters but an increased

surface separation (30 cm) is further simulated to examine its effect on the scattering sen-

sitivity to the subsurface roughness. The simulation parameters are shown in Table 3.8.

As expected, increasing the layer separation reduces the difference to ∼5 dB for the same

range of roughness change as shown in Figure 3.12.

3.4.3 Perturbations in Subsurface Layer Soil Moisture

Sensitivity of the total scattering cross section to the subsurface layer moisture content

relates directly to the requirements of radar system design for subsurface soil moisture
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Figure 3.12: Scattering from two-rough-surface at P-band as a function of the subsurface
roughness with layer separation of 30 cm: (a) σhh; (b) σvv. (Table 3.8)

Figure 3.13: Soil moisture in subsurface layers.

sensing. Using the multilayer SEBCM model, we are capable of simulating the scattering

from the two-rough-surface structure as a function of the bottom layer moisture content at

P-band (shown in Figure 3.13). Same sand/clay compositions are used as above; surface

separation is 10 cm. Simulations are done for the middle layer moisture content being 5%

and 15% respectively. In either case, the bottom layer moisture is increased from 5% to

30% to observe changes in the scattered field. Corresponding permittivities, as well as the

surface and subsurface roughness statistics, are listed in Table 3.9 and 3.10.

Results are shown in Figure 3.14 and Figure 3.15 for the middle layer moisture content

being 5% and 15% respectively. In Figure 3.14, as mv2 increases from 5% to 30%, ∼6 dB

difference can be observed, whereas in Figure 3.15, this difference is reduced to ∼2 dB.
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Table 3.9: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR PERTURBATIONS IN
SUBSURFACE LAYER MOISTURE CONTENT AT P-BAND WITH LOWER MOISTURE CONTENT IN THE
MIDDLE LAYER.

frequency h1 lc1/h1 h2 lc2/h2 d

435MHz 2cm 10 1cm 10 cm
(0.029λ0) (0.015λ0) (0.145λ0)

mv1 mv2

5% 5%, 10%, 15%, 20%, 25%, 30%
(6.17+ i0.95) (5.15+ i1.26, 7.8+ i1.98, 10.85+ i2.59,

14.23+ i3.14, 17.94+ i3.67, 21.95+ i4.17)

Table 3.10: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE FOR PERTURBATIONS IN
SUBSURFACE LAYER MOISTURE CONTENT AT P-BAND WITH HIGHER MOISTURE CONTENT IN
THE MIDDLE LAYER.

frequency h1 lc1/h1 h2 lc2/h2 d

435MHz 2cm 10 1cm 10 10 cm
(0.029λ0) (0.015λ0) (0.145λ0)

mv1 mv2

15% 5%, 10%, 15%, 20%, 25%, 30%
(13.24+ i1.63) (5.15+ i1.26, 7.8+ i1.98, 10.85+ i2.59,

14.23+ i3.14, 17.94+ i3.67, 21.95+ i4.17)

This is consistent with the expectation that since the increased moisture content raises the

middle layer loss, a small amount of energy from the subsurface can propagate through the

middle layer, i.e., the scattered fields are less sensitive to changes in the bottom layer.

3.4.4 Media with Dielectric Profiles

Subsurface soil moisture typically has a depth-varying profile. Hence, instead of as-

suming homogeneous medium layers, media with dielectric profiles provide a more realis-

tic model of soil moisture below the surface. With the multilayer SEBCM, we are able to

solve the scattering from multilayer rough surfaces within arbitrary depth-varying dielec-

tric profiles.

An example of soil moisture profile is shown in Figure 3.16 (a), where the subsurface

64



Figure 3.14: Scattering from two-interface layers at P-band as a function of the bottom
layer soil moisture with the middle layer soil moisture of 5 %: (a) σhh; (b)
σvv; (c) zoomed view of σhh; (d) zoomed view of σvv. (Table 3.9)

interface location is marked at 30 cm below the top surface. This subsurface is, for exam-

ple, a result of soil composition change, that is, where the sand/clay composition changes

from 0.66/0.1 in the upper layer to 0.36/0.4 in the lower layer. Figure 3.16 (b) plots the

corresponding real and imaginary parts of the relative permittivity profile using the model

in [49] and [50], where sharper changes can be seen at -30 cm for both curves. Statistics of

both surfaces are shown in Table 3.11.

Figure 3.16 (c) and (d) show the multilayer SEBCM solutions of the total scattering.

The co-polarized radar cross sections are plotted in Figure 3.16 (c), and the cross-polarized
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Figure 3.15: Scattering from two-interface layers at P-band as a function of the bottom
layer soil moisture with the middle layer soil moisture being increased to 15
%: (a) σhh; (b) σvv. (Table 3.10)

Table 3.11: SIMULATION PARAMETERS FOR TWO-ROUGH-SURFACE CASE WITH A DIELECTRIC PROFILE IN
THE MEDIA.

frequency h1 lc1 h2 lc2

435MHz 3cm 50cm 3cm 50cm

(0.044λ0) (0.725λ0) (0.044λ0) (0.725λ0)

middle soil composition bottom soil composition d

sand = 0.66, clay = 0.1 sand = 0.36, clay = 0.4 30 cm
(0.145λ0)

components are shown in Figure 3.16 (c), from which the reciprocity of σhv and σvh can be

seen.

Another example of scattering from soil moisture profile is shown in Figure 3.17,

where all parameters keep the same except that a different moisture profile is used (Figure

3.17(a)). This profile has enhanced water content in the top layer, which results in a little

larger RCS. The difference between σhh and σvv is small (as well as in the previous exam-

ple). However, their coherent phase different in backscattering is observable as shown in

Figure 3.18.
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Figure 3.16: Scattering from media with a depth-varying dielectric profile and two rough
surfaces at P-band: (a) volumetric soil moisture content, where the line indi-
cates the location of the subsurface; (b) the correspondent profile of dielectric
constant; (c) co-polarized RCS; (d) cross-polarized RCS. (Table 3.11)

3.5 Summary and Conclusion

A solution to three-dimensional electromagnetic scattering from multilayer rough sur-

faces within homogeneous or inhomogeneous media is developed and presented in this

chapter using the scattering matrix approach and the stabilized extend boundary condition

method (SEBCM). The SEBCM is applied to compute the single-surface scattering ma-

trix of every rough surface in the geometry. Its large validity domain over surface rough-

ness allows the application of the multilayer model to cases involving very rough surfaces.

Through the scattering matrix approach, surface scattering matrices and medium propaga-

tion matrices are cascaded to obtain the total scattering from the multilayer structure. This
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Figure 3.17: Scattering from media with a depth-varying dielectric profile and two rough
surfaces at P-band: (a) volumetric soil moisture content, where the line indi-
cates the location of the subsurface; (b) the correspondent profile of dielectric
constant; (c) co-polarized RCS; (d) cross-polarized RCS. (Table 3.11)

approach enables us to efficiently extend the model to more subsurface layers. With high

computational efficiency of the SEBCM compared to the numerical methods, this multi-

layer SEBCM may be the most feasible approach currently available for solving multilayer

rough surface scattering problem involving large roughnesses.

Besides the model validation with SPM and MoM, we presented in this work a sensi-

tivity study utilizing the multilayer SEBCM model. In this study, total scattering cross sec-

tions at P-band and L-band are simulated with variations in the ground parameters includ-

ing surface separation, subsurface roughness, and sublayer moisture content. Simulation

results provide new and helpful information for applications of subsurface soil moisture

68



Figure 3.18: Copolarized coherent phase difference in the case of the moisture profile in
Figure 3.17.

remote sensing. As expected, the L-band EM scattering is not very sensitive to changes in

the subsurface and sublayer properties appearing lower than its limited penetration depth

of approximately 10 cm. On the other hand, sensitivity of the P-band wave scattering de-

pends greatly on the moisture content of the top layer and the subsurface layers. Within the

penetration depth and with relatively dry soil on top, the P-band scattering cross sections

appear quite sensitive to the subsurface roughness and sublayer moisture content. This sen-

sitivity is largely reduced by increasing the top layer soil. We also showed the capability

of solving scattering from multilayer surfaces within media with depth-varying dielectric

properties using the multilayer SEBCM, which simulates the soil with a moisture profile

distribution. The multilayer SEBCM model developed here can provide important infor-

mation for radar system design for subsurface remote sensing. Moreover, once combined

with volume scattering contributions of random media within the soil layers, this model

can further be used to study the role of vegetation roots and other inclusions in enhanced

sensing of soil moisture, which will be presented in next chapter.
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CHAPTER 4

Scattering from Random Media in Multilayer Rough

Surfaces

In this chapter, a 3D scattering model from layered arbitrarily random rough surfaces

with embedded discrete random scatterers is constructed based on the scattering matrix

approach, which is discussed in the previous chapter. Scattering matrix of a single rough

surface is found using the stabilized extended boundary condition method (SEBCM) pre-

sented in Chapter 2. Meanwhile, by finding the T-matrices of discrete scatterers using

analytical or numerical methods, the random medium scattering solution is found based

on the recursive T-matrix approach or generalized iterative extended boundary condition

method (GIEBCM), and near-to-far field transformed numerical plane wave expansion of

the vector spherical harmonics. Solutions provided in this work include multiple scattering

effects among the medium scatterers and between subsurfaces and sublayers. The high

computational efficiency and accuracy of this method enable it to serve as a powerful tool

for studying the role of vegetation roots and other sublayer inhomogeneities in retrieval of

subsurface and root-zone soil moisture from radar measurements.
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4.1 Introduction

Subsurface remote sensing provides important information in many applications, such

as monitoring the changes in the subsurface structures for facility constructions and land-

slide warning, locating the permafrost depth to assess the impact of global warming causing

loss of wetlands and civil infrastructure damage, as well as mapping of the soil moisture

profiles in bare or vegetated areas. The latter is one of the critical components in modeling

the global water and energy cycle in support of global climate change studies as well as

improving long-term weather forecasts.

For subsurface remote sensing, low frequency radar systems need to be used; their

large penetration depth enables the measurement of electromagnetic scattering from deep

soil layers. However, media comprising the subsurfaces in nature are usually inhomoge-

neous; soils typically have buried rocks, ice particles, or vegetation roots. Hence, impact of

these buried objects on the total radar signal needs to be understood and calculated. In par-

ticular, for retrieval of soil moisture profiles in the root zone of vegetated areas, the effect

of vegetation roots on radar measurements needs to be accurately modeled. Assessment

of the scattering contribution from the vegetation roots and incorporation of their effect

in root-zone soil moisture retrieval algorithms demand an efficient and accurate forward

scattering model of layered rough surfaces with buried discrete random media, which is the

focus of this chapter.

To simulate the sublayer inhomogeneities, we consider three types of scatterers as ex-

amples: spheres, short-cylinders, and root-structured cylinder clusters. Spherical scatterers

are good models of rocks and ice particles, which usually have small dielectric constant

(< 10) [29]. Cylinders and cylinder clusters are used to simulate the tree roots as shown in

Figure 4.2. Properties of the vegetation roots having impact on the radar measurements are

highly influenced by soil conditions. From few studies of low frequency dielectric proper-

ties of the vegetation roots, the dielectric constant of the root is estimated to vary largely

from ∼ 5 to ∼ 40 depending on the temperature and water content [29][51][52]. A basic

cylinder cluster can be constructed according to the natural tree root pattern [53].
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The random medium scattering solutions required in subsurface sensing applications

should include the coherent and high-order effects within the medium, which is critical for

getting accurate predictions of backscattering coefficients. During the past several decades,

several approaches have been developed for solving scattering from random media. For ex-

ample, methods based on radiative transfer equations, which are derived based on power

conservation and field intensity tracking through the media, are commonly applied. How-

ever, these methods are incoherent approaches ignoring coherent interactions among scat-

terers. Other methods, including those based on analytical derivations (e.g., the effective

field approximation and the quasi-crystalline approximation) and those based on wave the-

ory, consider only low-order scattering.

In this work, scattering from discrete random media consisting of spheres or short-

cylinders is solved using the recursive Transition matrix (T-matrix) method, which was

developed two decades ago [35] but has never been efficiently used for random media ap-

plications and especially in the field of microwave remote sensing. The T-matrix approach

has high computational efficiency and includes higher order interactions among scatterers,

providing rather accurate solutions. As required by this method, the T-matrix of every

single scatterer within the medium needs to be obtained first: the T-matrix of a spheri-

cal scatterer can be found from the Mie-scattering coefficients [16]; and the T-matrix of a

short-cylinder is calculated using the extended boundary condition method (EBCM) [26],

which gives very efficient solution compared to the available numerical solutions such as

method of moments (MoM).

The above methodology has its limitations when applying to the root-like cylindrical

clusters: 1) the recursive T-matrix method requires the external circumscribed spheres of

the scatterers not being overlapped; 2) the T-matrix solution of a single cylinder using

EBCM is not accurate when the length-to-diameter ratio of the cylinder being much larger

than 1. Both limitations are encountered in solving scattering from the root-like cylindrical

clusters. Therefore, we developed the generalized iterative extended boundary condition

method (GIEBCM), based on the work in [54] that solves only the horizontally or verti-
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cally arranged long cylinders.

The T-matrix describing the total scattering from the medium needs to be further trans-

formed to scattering matrix (S-matrix) for incorporation to the layered media scattering

model. An efficient way of transforming T-matrix to S-matrix exists in 2D, but has never

been reported in 3D. This requires knowing both the multipole expansion of plane waves

and the plane wave expansion of vector spherical harmonics. The former expansion has

been developed already in an analytical form, while the latter one does not exist analyt-

ically, but a numerical plane wave expansion of the scalar spherical harmonics has been

shown in [55]. However, the far field calculation using this method would lose accuracy

due to the computational errors. In this work, we expanded the vector spherical harmonics

numerically in terms of plane waves based on further development of the work in [55], and

combined it with a near-to-far field transformation. This makes the T-matrix to S-matrix

conversion feasible and therefore useful for remote sensing applications for the first time.

For scattering from rough surfaces, the stabilized extended boundary condition method

(SEBCM) we discussed in chapter 2 is used, which is capable of solving scattering from

surfaces with large roughnesses at high efficiency. From the scattering matrices derived

above, scattering from the overall multilayered structure with buried random media can be

found by scattering matrix cascading. Validation of the random media scattering is done by

comparing with the experimental measurements; and results of the scattering from rough

surfaces with the buried random media will be shown.

The model constructed in this work can be used to estimate the impact of the tree and

crop roots or other buried inhomogeneities on the radar measurement of subsurface soil

moisture. It can therefore incorporate the vegetation roots as one of the parameters in the

algorithms for root-zone soil moisture retrieval. It is important to note that the effects of

above-ground vegetation are not the subject of investigation in this dissertation. The radar

response of vegetation has been studied extensively in the past, and will be assume to be

available independently of the subsurface model developed here. This work, therefore, is

concerned with investigating the effects of subsurface scatterers and layering structure on
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altering the radar response from the ground.

4.2 Problem Geometry

Figure 4.1: Scattering from rough surfaces with buried random spheres

For inhomogeneities other than roots buried in the ground sublayer, such as rocks, ice

particles, and so on, spherical scatterers can be used as a basic model. Geometry of scatter-

ing from multiple spherical scatterers between surface and subsurface is shown in Figure

4.1. Every sphere has dielectric property defined by its permittivity εs and permeability µs.

Size of the sphere is determined by the radius a. The dielectric properties and dimensions

can vary among the scatterers. These spherical scatterers can distributed randomly or with

certain pre-defined pattern. The distribution can be fully described by the sphere center

locations.

The background medium has dielectric property of (εbg,µbg); it simulates the soil with

given water content.

When the area is vegetated, the problem geometry becomes more complex. As shown

in Figure 4.2, root of a single plant can be viewed as a cluster of cylinders distributed in a

certain pattern. This is a good root model when the plants are away from each other with

sufficient distances, such as a sparse woods/forest. However, for an area with higher vege-

74



Figure 4.2: Simulating roots with cylinders

tation density, randomly distributed cylinders are better modeling the situation as shown in

Figure 4.3.

The cylindrical scatterer has dielectric property defined by its permittivity εs and per-

Figure 4.3: Scattering from rough surfaces with buried random cylinders

meability µs. Size of the cylinder is determined by the length L and the radius a of its

cross section. The dielectric properties and dimensions can vary among the scatterers. Dis-

tribution of the scatterers is random, and can be described by their center locations and

orientation angles (θs,φs). The background medium has dielectric property of (εbg,µbg).
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4.3 Analysis and Formulation

The total scattering from the layered structure of rough surfaces with buried media is

solved by cascading their scattering matrices as discussed in Chapter 3. Here we will focus

on solving the scattering matrix from the buried inhomogeneities.

For media of spherical and cylindrical scatterers, we obtain its scattering matrix from

the transition matrix, which is found by using the recursive T-matrix method for spheri-

cal and short-cylindrical scatterers, and generalized iterative extended boundary condition

method for long- or root-like cylindrical clusters. Details of the computation are given as

following.

4.3.1 Single Scatterer T-matrix

Single spherical scatterer T-matrix

The T-matrix of a single sphere can be found from the Mie-scattering coefficients ex-

pressed as [16],

¯̄T1(1) =




¯̄TM 0

0 ¯̄TN


 (4.1)

¯̄TM = diag
{
− jn(ksa)[ka jn(ka)]′−jn(ka)[ksa jn(ksa)]′

jn(ksa)[kahn(ka)]′−hn(ka)[ksa jn(ksa)]′

}
(4.2)

¯̄TN = diag
{
− k2

sa
2jn(ksa)[kajn(ka)]′−k2a2jn(ka)[ksajn(ksa)]′

k2
sa2 jn(ksa)[kahn(ka)]′−k2a2hn(ka)[ksajn(ksa)]′

}
(4.3)

b. Single Short Cylindrical Scatterer T-matrix

T-matrix of a short-length (length-to-diameter ratio < 3.5) can be found using the ex-

tended boundary condition method (EBCM) in [26] as,

¯̄T =−Rg ¯̄Q · ¯̄Q−1 (4.4)
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where

¯̄Q =




[
QMM

nm,lk

] [
QMN

nm,lk

]
[
QNM

nm,lk

] [
QNN

nm,lk

]

 (4.5)

Matrix Rg ¯̄Q relates the surface unknowns with the scattered field, while matrix ¯̄Q relates

the incident waves with the surface unknowns. The surface unknowns and the fields are

all expanded in terms of vector spherical harmonics denoted as M̄ and N̄. The matrix

elements QMM
nm,lk, QMN

nm,lk, QNM
nm,lk, and QNN

nm,lk can be obtained from the surface integral of

vector spherical harmonics as

QMM
nm,lk=

(−1)mk2
0

n(n+1)

∫

S
ds′n̂′·

[(
µ0k1

µ1k0

)
·RgN̄k

l (k1,r̄′)×M̄−m
n (k0,r̄′)

−RgM̄k
l (k1,r̄′)×N̄−m

n (k0,r̄′)
]

(4.6)

QMN
nm,lk=

(−1)mk2
0

n(n+1)

∫

S
ds′n̂′·

[(
µ0k1

µ1k0

)
·RgM̄k

l (k1,r̄′)×M̄−m
n (k0,r̄′)

−RgN̄k
l (k1,r̄′)×N̄−m

n (k0,r̄′)
]

(4.7)

QNM
nm,lk=

(−1)mk2
0

n(n+1)

∫

S
ds′n̂′·

[(
µ0k1

µ1k0

)
·RgN̄k

l (k1,r̄′)×N̄−m
n (k0,r̄′)

−RgM̄k
l (k1,r̄′)×M̄−m

n (k0,r̄′)
]

(4.8)

QNN
nm,lk=

(−1)mk2
0

n(n+1)

∫

S
ds′n̂′·

[(
µ0k1

µ1k0

)
·RgM̄k

l (k1,r̄′)×N̄−m
n (k0,r̄′)

−RgN̄k
l (k1,r̄′)×M̄−m

n (k0,r̄′)
]

(4.9)

where k0 and k1 are the wave numbers in the exterior and interior regions of the cylinder

respectively; µ0 and µ1 denote permeability in these two regions. Rg ¯̄Q replaces the M̄n,−m

and N̄n,−m with the regular form RgM̄n,−m and RgN̄n,−m.
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Figure 4.4: Modeling the basic root structure according to (a) [53].

Root-structured cylinder clusters

To simulate the tree roots, a basic structure is built as shown in Figure 4.4. According

to [53], instead of growing downward at steep angles from the base of the tree trunk, most

trees spread their roots near the surface, where soil conditions provide nutrients and mois-

ture (∼ 85% tree roots are within the top 0.5 m of soil). Usually the roots extend the range

of one (at least) to three times of the radius of the canopy spread or two or three times the

height of the tree. Therefore, we confine the root cylinders in the depth dr and range Rr,

starting from the range rt , which is the diameter of the trunk. Uniformly distributing in the

azimuth plane at φi, every root branch has N root cylinders counting from nadir. The eleva-

tion angle of the ith cylinder is defined as θi = π− tan−1(i ·d1/dr) to have increasing density

near the surface. The lower end is at (i ·d1/sinθi,θi,φi), if θi > θt = π− tan−1(Rr/dr), oth-

erwise, the cylinder end is at (Rr/sinθi,θi,φi). Top ends of the cylinders are at (rt ,θi,φi).

In this model, d1 determines the root density, which is a function of soil moisture.
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Its T-matrix is found using the generalized iterative extended boundary condition method

that will be presented in Section 4.3.3.

4.3.2 Recursive T-matrix Method

The recursive T-matrix method is used to solve electromagnetic scattering from mul-

tiple scatterers. Details of this approach are discussed in [26], here the solution is briefly

summarized here.

For a cluster of multiple spheres, the recursive process starts from the T-matrix of a sin-

gle scatterer, and deduce the (n+1)-scatterer T-matrix from the n-scatterer T-matrix using

the following translational matrices for coordinate transformation,

¯̄α ji =




¯̄A(h)
ji

¯̄B(h)
ji

¯̄B(h)
ji

¯̄A(h)
ji


 (4.10) ¯̄β ji =




¯̄A( j)
ji

¯̄B( j)
ji

¯̄B( j)
ji

¯̄A( j)
ji


 (4.11)

the recursive procedure can be described using Eq.(4.12) and Eq.(4.13),

¯̄Tn+1(n+1)·¯̄βn+1,0=
[

¯̄I− ¯̄Tn+1(1)·¯̄αn+1,0·̄̄τ(n)·¯̄α0,n+1

]−1
· ¯̄Tn+1(1)·

[
¯̄βn+1,0 + ¯̄αn+1,0·̄̄τ(n)

]
(4.12)

¯̄τ(n+1)=¯̄τ(n)+
[

¯̄β0,n+1+¯̄τ(n)·¯̄α0,n+1

]
· ¯̄Tn+1(n+1)·¯̄βn+1,0 (4.13)

where the subscript m(n) of ¯̄T denotes that the T-matrix is for n scatterers in the presence

of m scatterers. The aggregate T-matrix of n scatterers is

¯̄τ(n) =
n

∑
i=1

¯̄β0i · ¯̄Ti(n) · ¯̄βi0 (4.14)

This method takes into account higher order interactions among scatterers, and provides

accurate solutions at very high computational efficiency.
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4.3.3 Generalized Iterative Extended Boundary Condition Method

When solving the transition matrix (T-matrix) of a root-like cylindrical cluster, we en-

counter with two limitations with methods mentioned above. First of all, the extended

boundary condition method can solve T-matrix of a cylinder with only limited length-to-

diameter ratio, which cannot be applied to those slender cylinders in the root-like cluster.

Meanwhile, the recursive T-matrix method can only be applied when the external circum-

scribed spheres of the scatterers are not overlapped, which is not the case in the root-model

either. In order to solve the T-matrix of the root-like cluster, we developed the generalized

iterative extended boundary condition method.

The basic idea of this method has been discussed in [54], where it is only be developed

for horizontally or vertically arranged cylinders. With the three-dimensional frame trans-

formation, we are able to generalize and implement the method for arbitrary distributed

cylinders.

To model the scattering from the cylindrical cluster, we treat the structure as cascaded

Figure 4.5: Cascaded sub-cylinders

short-length sub-cylinders (Figure 4.5), whose T-matrix is found using EBCM. We divide

the long cylinders into a series of shorter ones to ensure convergence of the multipole ex-

pansions. The scattering from the cascaded subcylinders can be found using an iterative
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technique [54], which is summarized below.


 a(M)

ex, j

a(N)
ex, j


 =


 a(M)

inc, j

a(N)
inc, j


+ ∑

i6= j,1≤i≤N

¯̄α ji ·

 a(M)

sca,i

a(N)
sca,i


 (4.15)


 a(M)

sca, j

a(N)
sca, j


 = T ( j) ·


 a(M)

ex, j

a(N)
ex, j


 (4.16)

The process starts with assumption of no scattering from other sub-cylinders (a(M)
sca,i = 0,

a(N)
sca,i = 0). Therefore, the exciting field on every sub-cylinder is the incident field under its

coordinate frame as indicated in Eq.4.15. The scattered field from every sub-cylinders can

be found using its T-matrix as in Eq.4.16. The exciting fields all sub-cylinders are updated

by the calculated scattered fields through frame transformations using the translational ma-

trices noted as ¯̄α ji in Eq.4.15. This process is repeated until the scattered fields from all

sub-cylinders converge. Therefore, the total scattering from the cluster is obtained from the

superposition of scattering from all sub-cylinders as


 a(M)

sca, tot

a(N)
sca, tot


 = ∑

1≤i≤N

¯̄α0i ·

 a(M)

sca,i

a(N)
sca,i


 (4.17)

Translation between the main frame and the arbitrary cylinder frame is the key of ap-

plying this method to random distributed cylinders. To do this, we use two zxz-rotations

and one z-axis translation. In Figure 4.6, the translation from the sub-cylinder frame to

the main frame is illustrated. In the first zxz-rotation, the two z-rotations do nothing, but

the x-rotation points the cylinder axis ẑc to the main origin O. The cylinder axis ẑc is

(sinθc cosφc,sinθc sinφc,cosθc), where θc and φc are the angles determining the cylin-

der orientation referring to the main frame. Therefore, the rotated frame (x′c,y′c,z′c) has

its z′c to be d̂oc = (sinθoc cosφoc,sinθoc sinφoc,cosθoc). Note that, since cylinder is axis-

symmetric, we can define x̂c = ẑc× d̂oc. After the z-axis translation, we need to rotate the

frame (x′′c ,y′′c ,z′′c ) to be parallel to the main frame (x0,y0,z0). This is done by rotating first
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Figure 4.6: Translation from the sub-cylinder frame to the main frame

Table 4.1: EULER ANGLES FOR ROTATIONS OF THE TRANSLATION FROM THE SUB-CYLINDER FRAME TO THE
MAIN FRAME.

Rotation description α β γ
Rotate the cylinder axis point-
ing to the main frame origin

0 cos−1 (
ẑc · d̂oc

)
0

Rotate the cylinder frame to
be parallel to the main frame

5π
2 −φoc θoc

cos−1 (x̂′′c · x̂′′′c ) x̂′′c · ẑ0 ≥ 0
2π− cos−1 (x̂′′c · x̂′′′c ) x̂′′c · ẑ0 < 0

∗x̂′′′c = ẑ′′c × ẑ0

around ẑ′′c -axis to align x̂′′c to x̂′′′c = ẑ′′c × ẑ0; then rotating around x̂′′′c to point ẑ′′c to ẑ0. The

Euler angles used in these two rotations are listed in Table 4.1.

Similarly, with two zxz-rotations and one z-axis translation, we can transform from the

main frame to the sub-cylinder frame as illustrated in Figure 4.7. Euler angles used in this

process are listed in Table 4.2.

Above generalized extended boundary condition method developed will only solve

the scattered field for one given incident field. In order to solve the T-matrix of the object,

we need multiple independent incidence. Note that, the process discussed above does not

require the plane wave incidence. Therefore, we can construct arbitrary incidence with any

composition of spherical harmonics; and for better computational efficiency and stability,

the identity matrix is used as the incidence matrix, that is, every column of the matrix is
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Figure 4.7: Translation from the main frame to the sub-cylinder frame

Table 4.2: EULER ANGLES FOR ROTATIONS OF THE TRANSLATION FROM THE MAIN FRAME TO THE SUB-
CYLINDER FRAME.

Rotation description α β γ
Rotate z0 axis pointing to the
sub-cylinder frame origin

0 θco
π
2 +φco

Rotate to be parallel to the sub-
cylinder frame

0 cos−1 (
ẑc · d̂co

) cos−1 (
x̂′′0 · x̂′′′0

)
x̂′′′0 · ŷ′′0 ≥ 0

2π− cos−1 (
x̂′′0 · x̂′′′0

)
x̂′′′0 · ŷ′′0 < 0

∗x̂′′′0 = ẑ′′0× ẑc

used as the multipole expansion coefficients of the incident field.

Assuming unknown T-matrix ¯̄T cluster
total , for every incidence, there is


 a(M)

sca

a(N)
sca


 = ¯̄T cluster

total ·

 a(M)

inc

a(N)
inc


 (4.18)

Therefore, for the identity incidence matrix, the scattering solutions form a matrix ¯̄Csca as

¯̄Csca = ¯̄T cluster
total · ¯̄I (4.19)

Hence, the T-matrix ¯̄T cluster
total can be found as ¯̄Csca.
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4.3.4 T-matrix to S-matrix Transformation

The efficient way of obtaining scattering matrix from transition matrix is using trans-

formation of basis, i.e., finding the multipole expansion of plane waves and the plane wave

expansion of spherical harmonics. The former one has been found in an analytical ex-

pression [26] [16]; however, the analytical form of the latter one has not been deduced. In

[55], the numerical plane wave expansion of scalar spherical harmonics has been presented.

Here, we expanded the vector spherical harmonics M̄ and N̄ numerically in terms of plane

waves as

RgMnm
θ =

−i jn(k0r)
N ∑

p,l
eim 2π

N l
{

cosθp

2
Bm+1

np

+
cosθp

2
(n+m)(n−m+1)Bm−1

np −msinθpBm
np

}
eik̄(θp,φl)·r̄ (4.20)

RgMnm
φ =

− jn(k0r)
2N ∑

p,l
eim 2π

N l {Bm+1
np −(n+m)(n−m+1)Bm−1

np
}

eik̄(θp,φl)·r̄

RgNnm
θ =

1
N(2n+1)

·
{

jn+1(k0r)∑
p,l

eim 2π
N l·

[
cosθp

2

[
n(n−m+1)(n−m+2)Bm−1

n+1,p−nBm+1
n+1,p

]

−sinθpn(n−m+1)Bm
n+1,p

]
eik̄(θp,φl)·r̄+ jn−1(k0r)∑

pl
eim 2π

N l·
[

cosθp

2

[
(n+1)Bm+1

n−1,p−(n+1)(n+m)(n+m−1)Bm−1
n−1,p

]

−sinθp(n+1)(n+m)Bm
n−1,p

]
eik̄(θp,φl)·r̄

}
(4.21)
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RgNnm
φ =

i
2N(2n+1)

·
{

jn+1(k0r)∑
p,l

eim 2π
N l·

[
n(n−m+1)(n−m+2)Bm−1

n+1,p+nBm+1
n+1,p

]
eik̄(θp,φl)·r̄

− jn−1(k0r)∑
pl

eim 2π
N l·

[
(n+1)(n+m)(n+m−1)Bm−1

n−1,p

+(n+1)Bm+1
n−1,p

]
eik̄(θp,φl)·r̄

}
(4.22)

where

¯̄B = ¯̄R−1 =
[
Bm

np
]
=




Bm
|m|,1 Bm

|m|,2 · · · Bm
|m|,N̄+1

Bm
|m|+1,1 Bm

|m|+1,2 · · · Bm
|m|+1,N̄+1

...
... . . . ...

Bm
|m|+N̄,1 Bm

|m|+N̄,2 · · · Bm
|m|+N̄,N̄+1




(4.23)

and

¯̄R =
[
Rm

np
]
=




Rm
|m|,1 Rm

|m|+1,1 · · · Rm
|m|+N̄,1

Rm
|m|,2 Rm

|m|+1,2 · · · Rm
|m|+N̄,2

...
... . . . ...

Rm
|m|,N̄+1 Rm

|m|+1,N̄+1 · · · Rm
|m|+N̄,N̄+1




(4.24)

with

Rm
np = Rm

n (θp) = in (2n+1)
(n−m)!
n+m)!

Pm
n (cosθp) (4.25)

Since the expansion is valid based on the fact that the Bessel functions jn(kr)≈ 0 when

k0r < N̄−N0, where N̄ is the truncation number in the expansion and N0 is a small integer

relaxation constant for a given range of n,m,r, the validity of the expansion is limited

to near field due to a non-arbitrarily large N caused by the numerical error. To address

this problem, we expand the spherical harmonics in the near-field and obtain the far-field

expansions through the near-to-far field transformation by mode-matching, which replaces

systematically the spherical Bessel functions in the near-field with the spherical Hankel

functions in far-field. Hence, the matrix transforming the vector spherical harmonics to the

far-field plane waves is constructed as ¯̄U .
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Note the matrix transforming the incident plane wave to spherical waves as ¯̄P, which is

formed using the multipole expansion coefficients of the incident plane wave and Addition

theorem. The scattering matrix ¯̄S can be obtained from the T-matrix ¯̄T by

¯̄S = ¯̄U · ¯̄T · ¯̄P (4.26)

Validation of this transformation can be seen in Figure 4.8, where we show the com-

parison of the scattering patterns using the T-to-S matrix transformation and the direct

computation. The far field we simulated here is for two spheres located along x-axis with

two wavelength separation and 0.01 wavelength radius and dielectric constant of 3. And

for this case, where the spherical harmonics up to 5th order and up to 20th order harmonics

in translation are used, computational time is saved by 4 order of magnitude.

Figure 4.8: Validation of the T-to-S matrix transformation.
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4.4 Experimental Validation of Scattering from Randomly

Distributed Spheres and Cylinders

4.4.1 Measurement Setup

Experimental validation of our random media scattering solution has been done. The

measurement setup is shown in Figure 4.9 (a). This setup is based on vector network an-

alyzer and switching matrix with operation frequency range of 2.2 GHz to 2.8 GHz. As

illustrated in Figure 4.9 (b), 14 receivers and 1 transmitter are mounted on an octagon. At

every transmitter or receiver, an ’E’-shape patch antenna (Figure 4.10) is used.

After the system calibration, the switching matrix connects each receiver in turn and

Figure 4.9: Measurement setup and top view

the transmitter to the network analyzer as a two-port network, the scattering parameters of

which are measured. Therefore, sensitivity of this setup is limited by the switch isolation,

which is 30 dB. By rotating the antennas, measurements are done for HH and VV polariza-

tions.

During experiments, measurement objects are placed in the center of the octagon. Posi-

tion of the object platform is well recorded. Examples of the objects can be found in figures
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Figure 4.10: ‘E’-shape patch antenna

in Section 4.4.3 and 4.4.4. Both PEC and plastic spheres are used as scatterers, as well as

PEC cylinders. They are arranged ‘randomly’ on a grid at different heights or orientations,

which are recorded as simulation inputs.

4.4.2 Simulation using Propagation Model

As mentioned above, the measured values in the experiments are scattering parameters

(S-parameters), which are voltage ratios. However, the object scattering solved by the

recursive T-matrix algorithm is in T-matrix. Therefore, for comparison, further processing

is needed to obtain the S-parameter from the T-matrix.

As seen from the experimental setup, the transmission parameter S ji between antennas

Figure 4.11: Propagation model
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j and i in the presence of the object (Figure 4.11) is the one needed and can be obtained

using the antenna model in [56] as

S ji =


 u j

c

u j
d




T 
 D j

r 0

0 D j
r





 A js B js

B js A js





 DT

s 0

0 DT
s




·T ·

 Ds 0

0 Ds





 Asi Bsi

Bsi Asi





 Di

t 0

0 Di
t




T 
 t i

a

t i
b


 (4.27)

where the transmit coefficients t i
a and t i

b convert the outgoing waves ai
o in the transmission

line to the multipole expansion coefficients ai
lm and bi

lm of the radiated fields at the transmit

antenna; and the receive coefficients u j
c and u j

d convert the field coefficients c j
lm and d j

lm at

the receive antenna to the incoming waves b j
o. The transmit and receive coefficients of the

patch antennas are determined from the CAD model [56].

4.4.3 Validation Results - Spherical Scatterers

The simulation predicted S21 and the measured S21 between every receiver and the

transmitter are compared over the frequency range of 2.2 GHz to 2.8 GHz. Examples

of these comparisons can be seen in Figure 4.13, offering a direct and close view of the

validation results at individual receivers. To overview the results at all 14 receivers, we

further interpolate the measurement data over frequency and estimate deviations of the

predicted values from the measured ones. Deviation in magnitude of S21 between one

receiver and the transmitter is calculated as

σ =

√√√√ 1
N f

N f

∑
i=1

(
Ssim

21,i−Smeas
21,i

Smeas
21,i

)2

(4.28)

where N f is the number of interpolation points along frequency. Phase deviation is cal-

culated as the difference between the predicted and measured phase of S21. Results at all

receivers are compiled and presented below for different object setups.
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Incidence Field without Objects

Before validating the predictions of scattering, we first measure S21 between every re-

ceiver and the transmitter in the absence of objects (i.e., incident field alone) to, on one

hand, calibrate the measurements later taken with the objects, and on the other hand, vali-

date the propagation model Eq.(4.27).

Validation results of the propagation model is shown in Figure 4.12, presenting the

Figure 4.12: Comparison of the measured and predicted incident field

comparison between the predicted S21 and measured S21 of incident field alone. Less than

0.1 and 15◦ deviations can be observed in magnitude and phase respectively, indicating

very good agreements between the simulation predication and the measurement.

Spherical Scatterers

For objects of spherical scatterers, PEC and plastic spheres with the same size of diam-

eter of 2.54 cm are used. Dielectric constant of the plastic ones is ∼3.7. Locations of all

spheres in the setup are recorded as one of the inputs to the simulation predicting the object

scattering.

i. PEC spheres:

We start with the symmetric setup in one horizontal plane as shown in the left side
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of Figure 4.14. As examples of observations at individual receivers, Figure 4.13 shows

comparisons over frequency at receiver (RX) #9 and #14. Good agreement can be seen

in magnitude comparisons of both S21s with or without the object. Slightly larger phase

deviation (∼25◦) appears in the results with the object. Especially at the low frequency

end at RX #14, the phase cannot be determined due to a signal level lower than the system

sensitivity. This results a large deviation in phase as can be seen in Figure 4.14.

In the compiled results in Figure 4.14, average of 0.2 and 30◦ deviations can be seen in

Figure 4.13: Comparison of predicted and measured S21 over frequency at RX#9 and
RX#14 in the setup of Figure 4.14.

magnitude and phase respectively, showing the validation of the scattered field prediction.

Meanwhile, large deviations can also be seen at certain receivers. There are mainly two

causes: 1) a low signal level that cannot be measured accurately by the system; 2) interac-

tions among antennas, which are not considered in the simulation.

The second setup is shown in Figure 4.15, where the spheres are randomly located in

one horizontal plane (2D randomness). Results are presented in the same figure: average

of 0.2 and ∼40◦ deviations can be seen in magnitude and phase respectively.

Then we create 3D ‘randomness’ as shown in Figure 4.16 and Figure 4.17 for five and

ten spheres respectively. A general agreement indicates the validation of the predications.

i. Dielectric spheres:

With the same setups of above PEC spheres, we repeat the measurements using dielec-
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Figure 4.14: PEC spheres: deviations of the predicted S21 from the measured S21 for sym-
metric arrangement in a plane.

Figure 4.15: PEC spheres: deviations of the predicted S21 from the measured S21 for 2D
randomness.

Figure 4.16: PEC spheres: deviations of the predicted S21 from the measured S21 for 3D
randomness of 5 spheres.

tric ones. Results are shown in Figure 4.18 to Figure 4.21, from which we can tell that the

transmission prediction using the recursive T-matrix method is valid for dielectric cases as

well.
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Figure 4.17: PEC spheres: deviations of the predicted S21 from the measured S21 for 3D
randomness of 10 spheres

Figure 4.18: Dielectric spheres: deviations of the predicted S21 from the measured S21 for
symmetric arrangement in a plane.

Figure 4.19: Dielectric spheres: deviations of the predicted S21 from the measured S21 for
2D randomness.

4.4.4 Validation Results - Cylindrical Scatterers

The predicted results using the recursive T-matrix method is compared with the mea-

surements first for evaluating the improvement of the generalized iterative extended bound-
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Figure 4.20: Dielectric spheres: deviations of the predicted S21 from the measured S21 for
3D randomness of 5 spheres.

Figure 4.21: Dielectric spheres: deviations of the predicted S21 from the measured S21 for
3D randomness of 10 spheres.

ary condition method (GIEBCM). In the setup, cylinders with length of 5.08 cm and 7.62

cm are used. Diameters of all cylinders are 2.06 cm (13/16 inch). Center location and the

orientation angle of every cylinder are recorded.

Validation result is presented in Figure 4.22 for the setup shown in the same figure.

Comparison in magnitude indicates general agreement between the predicted and mea-

sured fields, however, larger deviation appears in the phase comparison. There are several

explanations for this: in the aspect of simulation, T-matrix of a single cylinder can be less

accurate due to larger length-to-diameter ratio, also, the number of modes used in the re-

cursive T-matrix method may be inadequate since the scatterer is bigger; meanwhile, in the

aspect of the measurement, bigger error can exist in recording locations and orientations of

the cylinders.
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Figure 4.22: PEC cylinders (diameter: 2.06 cm): deviations of the predicted S21 from the
measured S21 using the recursive T-matrix method

For the same setup, the results the generalized iterative extended boundary condition

method (GIEBCM) is shown in Figure 4.23, where a better agreement can be seen, espe-

cially in phase.

Figure 4.23: PEC cylinders (diameter: 2.06 cm): deviations of the predicted S21 from the
measured S21 using the GIEBCM

Besides, several setups of PEC cylinders of varied diameters are measured and com-

pared with the simulation predictions.

The thinnest cylinders used have diameter of 0.95 cm (3/8 inches), with lengths of 5.08

cm or 7.62 cm. The comparisons started with the simplest setup of a single cylinder as

shown in Figure 4.24. Then, more cylinders are added to the setup as shown in Figure 4.25

to Figure 4.27. Results show good agreements in general, especially in phase comparisons.
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Figure 4.24: PEC cylinders (diameter: 0.95 cm), case 1: deviations of the predicted S21
from the measured S21 using the GIEBCM.

Figure 4.25: PEC cylinders (diameter: 0.95 cm), case 2: deviations of the predicted S21
from the measured S21 using the GIEBCM.

Figure 4.26: PEC cylinders (diameter: 0.95 cm), case 3: deviations of the predicted S21
from the measured S21 using the GIEBCM.

Similar comparisons are done for cylinders with diameter of 1.59 cm (5/8 inch) as

shown in Figure 4.28 to Figure 4.30. As more cylinders are added into the setup, deviations

of the predications from the measurements increase, however, validation of the predications
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can still be seen.

Figure 4.27: PEC cylinders (diameter: 0.95 cm), case 4: deviations of the predicted S21
from the measured S21 using the GIEBCM.

Figure 4.28: PEC cylinders (diameter: 1.59 cm), case 1: deviations of the predicted S21
from the measured S21 using the GIEBCM.

Figure 4.29: PEC cylinders (diameter: 1.59 cm), case 2: deviations of the predicted S21
from the measured S21 using the GIEBCM.
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Figure 4.30: PEC cylinders (diameter: 1.59 cm), case 3: deviations of the predicted S21
from the measured S21 using the GIEBCM.

4.5 Results of Scattering from Random Media in Multi-

layer Rough Surfaces

Scattering from the buried inhomogeneities is combined with the scattering from rough

surfaces. Here we show the results of scattering from single rough surface with different

buried media.

Figure 4.31 illustrates the geometry of a single rough surface with random distributed

spherical scatterers underneath. The simulation parameters for this case is in Table 4.3,

where h and lc are the rms height and correlation length of the surface respectively. The

volumetric fraction of the media is 5%, with spherical scatterers of radius a and dielectric

constant εs. εbg is the background dielectric constant of the media, and dsep denotes the

separation between the surface mean and the upper boundary of the media region.

Simulation results of this case is shown in Figure 4.31, where the scattering from the

Table 4.3: SIMULATION PARAMETERS FOR SINGLE ROUGH SURFACE WITH BURIED SPHERICAL RANDOM

MEDIA (Figure 4.31).

frequency k0h lc/h fv media region a εs εbg dsep

435MHz 0.046 10 5% 8λ×8λ×λ 0.08λ 10 6.17+ i0.95 0.03λ

surface alone is plotted for comparison. Enhancement can be seen in all scattered field

components, especially in the cross-pol component.
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Figure 4.31: Scattering from single rough surface with buried spherical random media.

Table 4.4: SIMULATION PARAMETERS FOR SINGLE ROUGH SURFACE WITH BURIED CYLINDRICAL RANDOM

MEDIA (Figure 4.33).

frequency k0h lc/h fv media region a L εcyl εbg dsep

435MHz 0.046 10 5% 8λ×8λ×λ 0.1λ 0.4λ 15 6.17+ i0.95 0.03λ

Keeping the rough surface on top, we change the media to randomly distributed short

cylinders. The orientations of the cylindrical scatterers are shown in Figure 4.33, where we

only present the media part.

Table 4.4 lists the simulation parameters for this geometry. The surface statistics are

the same as the previous case; and the random media keeps the same volumetric fraction.

The cylinders have radius a of 0.1λ and length L of 0.4λ. Contrast of the media to the

background is enhanced by increasing the dielectric constant of the scatterers to be 15.

Simulation results are shown in Figure 4.34. More enhancement can be seen than the

spherical media, likely due to the larger contrast.

Besides the random media simulated above, the simple root model is constructed as

presented in section 4.3.1. The orientations of the sub-cylinders are shown in Figure 4.35.

This structure replaces the above random media as the buried inhomogeneities underneath

the surface for simulation.

The root structure parameters are shown in Table 4.5, the meanings of which are illus-
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Figure 4.32: Results of scattering from single rough surface with buried spherical random
media (Figure 4.31).

Figure 4.33: Scattering from single rough surface with buried cylindrical random media.
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Table 4.5: SIMULATION PARAMETERS FOR SINGLE ROUGH SURFACE WITH BURIED SINGLE ROOT-LIKE

CLUSTER (Figure 4.35).

frequency k0h lc/h εbg dsep

435MHz 0.046 10 6.17+ i0.95 0.03λ

root area #root root distr. subcyl.info

Rr = 0.73λ Nφ = 6 dt = 0.43λ rr = 0.045λ, L = 0.09λ
dr = 0.725λ Nθ = 2 rt = 0.29λ εroot = 15

Figure 4.34: Results of scattering from single rough surface with buried cylindrical random
media (Figure 4.33).

trated in Figure 4.4. With the same rough surface on top, the scattering is computed and

shown in Figure 4.36. As can be seen from the comparisons, there is little change in the

copol results. The enhancement in cross-pol result is much more observable.

To involve more root structures under the top surface, we arrange the root clusters
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Figure 4.35: Scattering from single rough surface with single root-like cluster.

Figure 4.36: Results of scattering from single rough surface with single root-like cluster
(Figure 4.35).

102



Figure 4.37: Scattering from single rough surface with multiple root-like cluster.

horizontally with separation dmg of 0.06λ as shown in Figure 4.37. The parameters of the

root cluster is same as in above single root case. All parameters can be found in Table 4.6.

Table 4.6: SIMULATION PARAMETERS FOR SINGLE ROUGH SURFACE WITH BURIED MULTIPLE ROOT-LIKE

CLUSTER (Figure 4.37).

frequency k0h lc/h εbg dsep

435MHz 0.046 10 6.17+ i0.95 0.03λ

root area #root root distr. subcyl.info

Rr = 0.73λ Nφ = 6 dt = 0.43λ rr = 0.045λ, L = 0.09λ
dr = 0.73λ, dmg = 0.06λ Nθ = 2 rt = 0.29λ εroot = 15

Simulation results shown in Figure 4.37 indicate larger change in co-pol and cross-pol

components. A scattering pattern of the periodic arrangement of the root structure can be

seen from the cross-pol plot.

In above simulations involving single rough surface, the results are valid if the surface

is located outside the external sphere of the random media, since the scattering matrix

of the random media (which is computed from its transition matrix) is only valid outside

its external sphere. This sphere can be extremely large depending on the location of the

coordinate origin. Therefore, the surface can be very close to the top of the random media.

The result validity region will be studied in the future work.
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Figure 4.38: Results of scattering from single rough surface with multiple root-like cluster
(Figure 4.37).

Figure 4.39: Illustration of the cross section of the two rough surface with buried root-like
clusters

For the case of two rough surfaces with buried roots in the middle, where both rough

surfaces need to be outside the external sphere of the multiple roots while maintaining
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Table 4.7: SIMULATION PARAMETERS FOR TWO ROUGH SURFACES WITH BURIED ROOT-LIKE CLUSTER

(Figure 4.39).

frequency h1 = h2 lc1 = lc2 ε1 ε2 d(1)
sep d(2)

sep

435MHz 0.02λ 0.5λ 5.4+ i0.44 11.27+ i 0.06 m 0.414 m

root area #root root distr. subcyl.info

Rr = 0.2 m Nφ = 6 dt = 0.15 m rr = 0.016 m, L = 0.032 m
dr = 0.2 m, dmg = 0.2 m Nθ = 2 rt = 0.1 m εroot = 15

reasonable layer separations, superposition of single-root scattering matrices with phase

corrections of the incident and scattered fields can be used. Here we simulated one case

that is illustrated in Figure 4.39.

The root has similar pattern as the one in the previous case but with smaller dimensions,

so that the external sphere of each root will not be overlapped with either the neighbor ones

or the rough surfaces above and below the roots. The detailed parameters can be found in

Table 4.7.

Results of scattering from the two rough surfaces without the roots, with one single

root, and with multiple roots are simulated and compared. As shown in the copol results in

Figure 4.40, existence of multiple roots between the two rough surfaces enhances largely

the scattering in the backward directions, while the existence of a single root does little

change to the scattering pattern. Enhancement due to the existence of both the single and

multiple root(s) can be observed in the crosspol results.

4.6 Summary and Conclusion

In this chapter, a solution to three-dimensional electromagnetic scattering from rough

surfaces with buried inhomogeneous media is developed and presented using scattering ma-

trix approach. The scattering of the inhomogeneities is solved using the recursive T-matrix

method for spherical and short-cylindrical scatterers, and generalized iterative extended

boundary condition method (GIEBCM) for long or root-like cylinder clusters. The scat-
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Figure 4.40: Results of the scattering cross section of the two rough surface with buried
root-like clusters

tering solution obtained in T-matrix format is further transformed to scattering matrix for

solving the layered problem. Both GIEBCM and the transformation from T-matrix to S-

matrix are the contribution of this dissertation. The scattering matrix of the rough surface

is found using the stabilized extend boundary condition method (SEBCM). This method-

ology has high computational efficiency and takes account of all interactions among the

media and layers. The solution of the scattering from the inhomogeneities is validated ex-

perimentally. Results of the combinations of scattering from the rough surface and random

media or root structures are shown in this chapter.

This is the first time that the volumetric scattering of the buried random media is consid-

ered in the 3D scattering from the ground; particularly, the vegetation roots are taken into

account. As can be seen from the results, these inhomogeneities will have impacts on all

scattering components, especially cross-pol components, depending on their contrast and

106



volumetric fraction. Further verification of the scattering from the combination of rough

surfaces with random media will be done as our future work. The model constructed in this

chapter can be used for study of the role of vegetation roots in the root-zone soil moisture

retrieval.
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CHAPTER 5

Investigation of Soil Moisture Dynamics with a

Tower-Mounted Radar

This chapter describes an experimental tower-based multiple-low-frequency radar sys-

tem and its applications in field measurements of soil moisture. This system is intended

for surface, subsurface/root-zone, and subcanopy soil moisture detection, and may also be

suitable for measurements of depth of fresh water from low altitudes. Its unique features

are compact, remotely-controlled design and high output power. The sensitivity of this

radar is further enhanced by forming a vertical synthetic aperture. Field measurements

using this radar have been done in several locations. We will describe one of the main

field experiments in this chapter - observation of the corn field over its growing season in

Gainesville, FL. The results show the sensitivity of radar to soil moisture (even in the pres-

ence of vegetation) and roughness. Signal signature changes of the crop growth are also

observed.

5.1 Introduction

Previous chapters covered the theoretical modeling of electromagnetic scattering from

the ground surface and subsurface with or without buried inhomogeneities for soil moisture

sensing. The utility of this model can be demonstrated by performing actual radar measure-
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ments for soil moisture detection. Therefore, a new experimental multiple-low-frequency

radar system is designed and built in this work, with which several field measurements have

been carried out. As with any major hardware development, parts of this effort benefited

from the collaboration of other group members.

Radar systems for soil moisture detection have been designed for spaceborne and air-

borne platforms, such as the Soil Moisture and Ocean Salinity (SMOS) mission [3] [4],

RADARSAT-2 [5], the upcoming Soil Moisture Active and Passive (SMAP) [9] mission,

and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission.

Comparing to these orbital or high-altitude systems, near-ground radar systems operating at

lower altitudes are less expensive, less complex, and flexible to deploy. Hence, they could

offer an attractive option for small area measurements and experiments. The Microwave

Observatory of Subcanopy and Subsurface (MOSS) tower radar is a good example of such

systems [8].

The MOSS radar system is a pulsed polarimetric radar. It was designed for subsurface

soil moisture measurements operating at VHF, UHF, and L-band using a log-periodic an-

tenna. Our new tower-mounted radar is based on the concept and preliminary design of the

MOSS radar, with many key changes to improve performance:

• Compact Design: With a bistatic system design, internal RF source, and efficient me-

chanical structure, the entire system is confined within only dimensions of 30×30×
60 cm. This enhances the system reliability (especially during deployment and trans-

portation), and allows it to be a stand-alone system mounted on the tower-top without

the need to use very long RF and digital cables.

• Higher Output Power: By having a stand-alone system on the tower-top, signal power

loss in the transmission between tower-top and ground modules is avoided. With a

high gain power amplifier, the radar output power is enhanced to 2 watts (much more

than twice of the MOSS radar). This increases the radar sensitivity to the ground

return signal.
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• Auxiliary Capability: Additional microcontroller and analog-to-digital converters (ADC)

allow antenna position control, multi-spot temperature monitoring, and cooling/heating

module operation. This largely simplifies the radar operation procedure, and extends

the radar operating conditions. The radar status can be monitored under hot/cold

environments to avoid potential damage.

• Ease of Operation: Wireless control of radar and antenna position from a laptop located

on the ground improves the radar operational efficiency.

This system is tested and used in several field measurements such as surface and subsurface

measurements at the Matthaei Botanical Gardens (Ann Arbor, MI), the seasonal soil mois-

ture measurement at the Institute of Food and Agricultural Sciences (IFAS) (Gainesville,

FL), as well as the subcanopy soil moisture detection at the University of Michigan Bio-

logical Station (Pellston, MI). In this chapter, the application of this radar at the IFAS of

the University of Florida is mainly described, and its primary results are presented. As

shown from the measurements, good radar stability and sensitivity to soil moisture and sur-

face roughness are observed. The measurements of calibration targets (corner reflectors) of

different sizes indicate the accuracy of differential measurements. For model validation, a

ground structure consisting of a single rough surface with a dielectric profile using ground

collected data has been simulated. The comparison with the radar measurements show the

same trend of change in the measurement as the model predicted, however, an overestima-

tion can be seen in the backscattering cross section from the radar measurements. This bias

primarily points to the need for a more accurate near-field target calibration method and a

near-ground scattering model, which will be addressed in future work.

5.2 System Design

This newly designed and built tower-based radar system covers three frequency bands:

L-band (1000 MHz), P-band (430 MHz), and VHF (137 MHz). As shown in the system

diagram (Figure 5.1), this is a PC-based, FPGA-controlled pulsed radar system. During ev-
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Figure 5.1: Radar system diagram

ery measurement, the radar sends a pulsed continuous wave (CW) signal toward the object

and receives the scattered signal from it. The bandwidth of the radar at each center fre-

quency is determined by the time-domain pulse width, typically around 50 ns (∼ 20 MHz

bandwidth).

The radar electronics are designed for a bi-static system but can be adapted to operate

as a mono-static system. This radar system has four subsystems: control module, radio

frequency (RF) module, auxiliary module, and power module.

The control module consists of a main microcomputer (including CPU, motherboard,

memory, and hard drive), a field-programmable gate array (FPGA) sub-module, and a wire-

less network sub-module. The microcomputer runs a Windows operating system, allow-

ing user remote access through the wireless connection. According to user’s request, the

microcomputer sends commands to the FPGA sub-module for execution. The FPGA sub-

module has direct connections to all control wires and programming interfaces of switches
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Figure 5.2: Radar system

and programmable sub-modules within the RF module. It interprets the commands from

the microcomputer to control the logic signals and activates them with appropriate timing.

The RF module comprises the radio-frequency signal source, transmit chain, antennas,

calibration loop, and receive chain RF electronics. The signal source is a frequency synthe-

sizer with programming interface. It produces the CW signal at a programmed frequency

covering from 100 MHz to 1.5 GHz. An external RF source can be used as well. Signal

from the source goes through a coupler. One portion of the signal continues to the transmit

chain, and the other portion acts as the local oscillator (LO) input to the in-phase/quadrature

(I/Q)-demodulator in the receive chain. The signal continuing in the transmit chain passes

a programmable attenuator and a switch that time-gates this CW signal to a pulse with a

width of tens of nanoseconds. Width and timing of this pulse are programmable and con-

trolled by the FPGA. The pulsed CW is amplified by a power amplifier. This signal goes

either to the transmit antenna for radiation or to the calibration loop bypassing the antennas

for internal calibration.

The signal collected from the object or the calibration signal is the input to the receive

chain. The first stage of the receive chain is a low-loss protect switch. It turns on the receive

path right before the expected arrival time of the return signal to protect the receive chain

from the interference caused by the antenna cross-coupling and/or resonance. Received

signal is amplified by a multiple-stage low-noise amplifier (LNA) and cleaned by the cor-

responding band-pass filter in the switchable filter bank. Then this signal is demodulated
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to a baseband signal by an I/Q demodulator. The I/Q demodulator is a type of frequency

down-converter mixing its input signal with the LO signal (coupled from the signal source

in this system) and the 90-degree phase shifted LO signal to have both the real and the

imaginary parts of the down-converted signal. Outputs from the I/Q demodulator are dig-

itized by a fast sampling two-channel analog-to-digital converter (ADC) controlled by the

main microcomputer and recorded to the hard drive. Traditionally, the digitizer is part of

the digital subsystem, but for simplicity, I keep it under RF module.

Auxiliary module of this radar system has functions of temperature monitoring and an-

tenna position control. It is based on a microcomputer with multiple ADCs and digital

inputs/outputs (IOs). It reads voltage signals from temperature sensors through ADCs. The

digital IOs switch the high-current relays for motor control of the antenna. This module

communicates directly with the main microcomputer.

The power module of the radar transforms AC to DC and provides all voltages needed

in the system through regulators.

The radar control software (using LabVIEW) runs on the main microcomputer. It builds

the user interface for measurement control, data display, and radar status indication. For

measurement control, it allows the user to switch between the calibration and measurement

modes respectively, and to define pulse width, pulse timing, attenuation in transmit chain

and calibration loop, receive chain switch-on timing, number of samples to average, param-

eters of the digitizer, and the data storage path. The software displays the on-site calibration

and measurement results, and indicates the internal temperature and antenna look angles.

The subsystems described above are panel-mounted. The entire system (except anten-

nas) fits into a space smaller than 50 cubic decimeters (1×1×2 feet) with weight less than

12 kg. This system provides a strong advantage in terms of cost, complexity, weight, and

flexibility compared to network-analyzer based tower-mounted scatterometer systems. The

radar can operate with any wide-band antenna in the 100-1200 MHz range, or alternately

with multiple narrow-band antennas in the desired frequency ranges of operation. The an-

tennas we used in the measurements are log-periodic antennas covering 105 to 1300 MHz
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with gain of 11 to 13 dBi. The half power beamwidth is 70◦ to 60◦ in E-plane and 130◦ to

110◦ in H-plane.

5.3 Calibration

5.3.1 Internal Electronic Calibration

The internal electronic calibration provides system diagnostics before the antennas. The

signal for this calibration goes through the calibration loop indicated in Figure 5.1. The

typical internal calibration results are shown in Figure 5.3 and 5.4 for L-band and P-band

respectively.

Figure 5.3: L-band internal electronic calibration

5.3.2 Sky Calibration

The sky calibration is to remove the spurious signal generated by the antennas from

the measurements. Particularly, it is used to remove the cross-coupling between the trans-

mit and receive antennas in this bistatic system as well as signal reflected due to antenna

mismatch. The sky measurements are shown in Figure 5.5 and 5.6 for L- and P-band re-

spectively. In L-band measurements, the protect switch is used to switch on the receive

chain right before the arrival of the expected signal at the RX antenna, so that the antenna
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Figure 5.4: P-band internal electronic calibration

cross-coupling can be avoided. This switch is not used in P-band measurements due to

the resonance problem caused by it. Therefore, the cross-coupling can be seen clearly in

Figure 5.6. The sky measurements will be subtracted from the actual ground measurements

(plotted as well in Figure 5.5 and 5.6) to complete the sky calibration.

Figure 5.5: L-band sky measurement (with comparison to a ground measurement)

5.3.3 Corner Reflector (CR) Calibration

The measurements of targets with known radar cross section (RCS) calibrate the mea-

sured radar cross section RCSs of the unknown targets. In our measurements, we use a

triangular trihedral corner-reflector (Figure 5.7).

There are several ways of calculating the corner reflector RCS. When the corner re-
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Figure 5.6: P-band sky measurement (with comparison to a ground measurement)

Figure 5.7: Corner reflector calibration

flector is sufficiently large (its dimension > 10λ) and located in the far-field of the antenna,

the effective area can be found from [57]

Ae f f = A · (cosαcosφsinθ+ sinαcosθ) (5.1)

where A =
√

3
2 l2, θbs is the boresight angle from radar antenna, α = arctan 1√

2
is as defined

in Figure 5.8, and φ is the azimuth tilt angle.

Therefore, the RCS of the corner reflector is computed by

σCR =
4πA2

e f f

λ2 = (cosαcosφsinθ+ sinαcosθ)
3πl4

λ2 (5.2)
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Figure 5.8: Corner reflector calibration geometry

A corrected expression for this geography optics (GO) solution predicts the maximum

RCS of the CR as σCR = 4πl4

3λ2 [57]. The corner reflector we used in the experiment has

l = 2.4157m, which is sufficiently large for L-band. Without azimuth tilting (φ = 0) and

with elevation tilting θbs +8◦ = 48◦, σCR = 30.7 dB for L-band.

The above approximation ignores the scattering from the edges of the reflector and

assumes the plane wave incidence, which is not valid when the corner reflector is close

to the antenna or in its near-field (true for P-band measurement). For more accurate RCS

computation, numerical solutions must be used [58][59].

The focused signal return from the ground is compared with the focused measurement

of the CR. As the CR RCS is known, the RCS from the ground can be estimated.

5.4 Radar Operation

The radar is mounted on a telescoping tower as shown in Figure 5.9. It is controlled

through wireless connection from the ground laptop. The auxiliary module inside the radar

controls the motor to rotate the antennas to the required angles for ground measurements

and sky calibration.
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Figure 5.9: Tower based measurements (left) and sky calibration (right)

To achieve better resolution and signal to noise ratio for ground measurements, a larger

aperture is synthesized vertically by taking measurements at points of different antenna

positions forming the elements of an array (Figure 5.10). This synthetic aperture is usually

formed by 15 altitudes (recorded for signal processing) with step size of 10 cm and 20 cm

for L-band (wavelength: 30 cm) and P-band (wavelength: 69.0 cm), respectively.

At each altitude, besides a set of internal calibration pulses, a large number of CW

pulses (usually more than 300) are transmitted and received to average out the background

noise. Measurement data are recorded to files and stored to the system hard drive.

5.5 Signal Processing

The stored raw data are the time domain real values of the I and Q channels at the out-

puts of the quad demodulator, which can be combined to form the complex datapoints. The

sky measurement is subtracted from the ground measurements to remove system biases

118



Figure 5.10: Focusing of the synthetic aperture

and antenna cross-coupling. The background measurement is subtracted from the corner-

reflector (CR) measurements to keep only the signal returning from the CR. These datasets

are then further processed to focus the beam.

To focus the beam, the middle point of the aperture is chosen as the reference point.

Time shifts of different altitudes in reference to this point are calculated from the altitude

records and the look angle. To perform the focusing, the signal envelops at different alti-

tudes are used to reconstruct the full time-domain waveforms. The time shifts are applied

to these full frequency waveforms, and the signals from all altitudes are superposed to give

the focused array waveform. The results is effectively a constructive addition at the focus

point of the array on the ground and a destructive addition at all other points. This way,

we achieve an effective high gain from the synthesized array. Path loss correction can be

applied to the measurements before performing the superposition.

Similar processing is done for CR measurements. When the CR used is small, pythagorean

theorem can be used to calculate the time shift; the antenna pattern correction will be nec-

essary.
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Figure 5.11: Data processing flow chart

Ground return signal power is determined from integrating the signal magnitude within

the footprint corresponding to the estimated time interval of the focused pulse. Similarly,

the CR return signal is determined, which is linearly related to its radar cross section (RCS).

Since the CR RCS can be predicted theoretically, the RCS of the ground is obtained.

5.6 Field Measurement at UF IFAS

Measurements using this radar system have been performed at several locations for

system testing and application. One of the main field measurements is carried out during

the summer 2011 at the Institute of Food and Agricultural Sciences (IFAS), University of

Florida, in Gainesville, FL (Figure 5.12), which is one of the field campaigns in the Mi-

croWEX series [60].
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Figure 5.12: Field measurement location

The objective of this series of field campaigns is to understand the relationship between

the microwave signatures and the soil moisture as the field conditions (e.g., temperature,

water content, etc.) and biomass vary in a dynamic agricultural canopy throughout the

growing season. During the summer 2011, a ∼ 200×200 square meters corn field was ob-

served by multiple microwave remote sensing systems, including both radar and radiome-

ter, from planting in June through harvest in September. Our radar is one of the remote

observing sensors.

The radar measurements were taken every month during the period before-planting

(bare soil) till harvest. The corresponding ground conditions, including soil moisture

profile, soil temperature, precipitation, surface roughness, crop properties, are measured

and collected using different sensors and approaches (such as time-domain reflectometer

(TDR), thermistor, rain gauge, meshboard, etc.) at multiple locations by our collaborators

from University of Florida. The ground data are the inputs to the scattering models for

comparisons of model predictions and measurements. Moreover, as multiple systems were
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observing the same field, comparison among different systems is of interest as well as the

data from all systems become available in the future.

5.7 Primary Results

5.7.1 Repeatability Test

Figure 5.13: Repeatability test of the system

The repeatability of the radar system was tested by taking non-stop measurements se-

quentially. Two repeated measurement results can be seen in Figure 5.13, indicating the

measurement stability of the system.

5.7.2 Corner Reflector Measurements

The radar measurements of the corner-reflectors are shown in Figure 5.14 for small

CR (l = 91.57cm) and Figure 5.15 for large CR (l = 241.57cm). The measurements show

difference between HH and VV components, which does not agree with the theoretical

prediction. This can be caused by the misalignment of the CRs and the scattering from the

edge of the reflectors. Nevertheless, the magnitude differences between the small and large
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Figure 5.14: L-band Measurements of the small corner reflector

Figure 5.15: L-band Measurements of the big corner reflector

CRs are 5.5 dB in HH and 8.0 dB in VV. The theoretical predicted difference is 8.4 dB.

The results of large CR will be used to calibrate the field measurements.

5.7.3 Bare Soil Measurements

Before planting the corn, four days of measurement were done to the bare soil under

different conditions (unplowed and plowed, dry and wet). We will first show the measure-

ment results, and compared them with the model predictions simulated using the ground

truth that is determined from the ground sensors and meshboard measurements.
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Figure 5.16: L-band Measurements of the unplowed dry field

Radar measurements

The radar measurements started on the day 2011/06/08 when the field was unplowed

and dry. The field was plowed at the noon of 2011/06/09 and irrigated during the night of

2011/06/10. The radar measurement and focusing results under these conditions are shown

in Figure 5.16, Figure 5.17, and Figure 5.18, where the unfocused signals are plotted in

colored lines, and the focused signal is plotted using dashed line. By focusing the beam, the

enhancement of the return signal from the ground can be seen clearly from these figures.

Figure 5.16 and Figure 5.17 plot the results of the dry field before and after being

plowed. Compared with Figure 5.16, a signal appears more prominently in the plowed dry

surface results (Figure 5.17) between 510 ns to 560 ns, which corresponds to the expected

arrival time of the ground return. This return signal is increased even more in the plowed

wet soil measurement (Figure 5.18).

Being calibrated with the CR measurements and the estimated footprint area, the

RCSs of the field of bare soil under above different conditions are calculated from the radar

measurements. They are compared with our model predictions in the next subsection.
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Figure 5.17: L-band Measurements of the plowed dry field

Comparison with model prediction

Model prediction of the RCS of the bare field requires the knowledge of the ground pa-

rameters including surface profile and soil moisture content at the surface and subsurface.
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Figure 5.18: L-band Measurements of the plowed wet field

Since the corn field has a pattern that is generally smooth in the direction perpendicular to

the radar pointing direction, the field is viewed as a surface with 1D roughness (varying

along the radar look direction). The roughness was measured using a meshboard as shown

in Figure 5.19 and Figure 5.20 for unplowed and plowed fields. Estimated surface rough-

nesses from these meshboard measurements are listed in Table 5.1.

The soil consists of 89.4% sand, 7.1% clay, and 3.5% silt. Volumetric water con-

Figure 5.19: Unplowed dry surface

tent of the soil was measured at different depths by ground sensors. Sensor locations are

illustrated in Figure 5.22, denoted by ‘NE’, ‘SW’, and ‘SE’. Measurements of sensor ‘NE’

at North Station are used for simulation here. The soil moisture results during these four-

day (DOY159 to DOY162) measurements are plotted in Figure 5.21 at sensors of different
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Figure 5.20: Plowed dry surface

Table 5.1: SOIL ROUGHNESS

field condition h lc
unplowed (06/09) 7.83 mm 73.97 mm

(h = 0.026λ0, kh = 0.16) (lc = 0.25λ0, klc = 1.55)

plowed (06/09) 12.96 mm 69.13 mm
(h = 0.043λ0, kh = 0.27) (lc = 0.23λ0, klc = 1.45)

plowed (06/11) 16.04 mm 76.23 mm
(h = 0.054λ0, kh = 0.34) (lc = 0.25λ0, klc = 1.60)

Figure 5.21: Ground measurement of soil moisture

depths (2 cm, 4 cm, and 8 cm). Values of all three sensors are used to form a dielectric

profile for model simulation shown in Figure 5.23.

With the estimated surface roughnesses and the soil moisture profiles, we simulated

the scattering from a single surface with 1D roughness and a dielectric profile underneath
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Figure 5.22: Ground measurement layout

Figure 5.23: Soil moisture profiles used in model simulations

as illustrated in Figure 5.24. The model predictions of backscattering cross sections are

listed in Table 5.2, while the backscattering cross sections estimated from measurements

are shown in Table 5.3. Figure 5.25 plots both results for comparison.

The comparison of the predicted and measured backscattering cross sections shows

an overestimation bias of ∼6.20 dB in the measured values, with deviation of ∼5.5 dB.

The measured RCSs as a function of measurement time are plotted in Figure 5.26. As
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Figure 5.24: Simulated geometry for comparison with measurement (d = 20 cm)

Table 5.2: SIMULATION PREDICATED BACKSCATTERING CROSS SECTION (AM: MORNING SET; PM: AFTER-
NOON SET)

Date (DOY) HH (AM) VV (AM) HH (PM) VV (PM)

2011-06-08 (159) NA NA -28.64 dB -24.18 dB

2011-06-09 (160) -28.70 dB -24.25 dB -24.34 dB -20.11 dB

2011-06-10 (161) -24.41 dB -20.19 dB -23.30 dB -18.87 dB

2011-06-11 (162) -21.65 dB -17.40 dB NA NA

Table 5.3: MEASURED BACKSCATTERING CROSS SECTION

Date (DOY) HH (AM) VV (AM) HH (PM) VV (PM)

2011-06-08 (159) NA NA -20.54 dB -17.44 dB

2011-06-09 (160) -18.67 dB -21.12 dB -13.76 dB -16.43 dB

2011-06-10 (161) -18.02 dB -14.88 dB -13.98 dB -13.11 dB

2011-06-11 (162) -17.83 dB -10.66 dB NA NA

can be seen, the measured values are larger than the model predictions in general. Several

datasets show larger HH measurement values than the VV results, which is different from

what we expected based on the theoretical solution. The measured VV values show a gen-

erally increasing trend as the field condition changes, which can also be observed from the

simulation results.

To further understand the causes of the error, we did a sensitivity analysis of the

backscattering cross section to the variations in the simulation parameters.
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Figure 5.25: Comparison of the L-band measured data (Table 5.3) and model predications
(Table 5.2).

Figure 5.26: Measured RCSs as a function of measurement time

Analysis of error sources

i. Error in surface roughness measurement

To study the impact of the error in the roughness measurement, we increases the rms

height of the simulated surface to 150%, 200%, and 250% of the original rms height, while

maintaining the ratio between the rms height and the correlation length.
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Table 5.4 and Figure 5.27 show the improvement in the comparisons between the

Table 5.4: SENSITIVITY OF THE COMPARISON BETWEEN MEASUREMENTS AND MODEL PREDICTIONS TO THE
SURFACE ROUGHNESS

rms height increment 0 150% 200% 250%

Bias 6.2 dB 3.84 dB 2.15 dB 0.68 dB

Std. Dev. 5.5 dB 4.8 dB 4.32 dB 3.91 dB

Figure 5.27: Comparison of the L-band measured data with the model predications of in-
creased rms heights (Table 5.4)

measurement and model predictions using increased surface roughnesses. Note that even

increasing the roughness to 200% of the measured values still means a rms height range of

∼1 to ∼3 cm. Therefore, the roughness measurement error can have large impact on the

comparison between the predicted and measured backscattering cross sections. Enhance-

ment in the accuracy of such measurements is important for the experimental validation of

the rough surface scattering model.

ii. Error in soil moisture profile determination

To study the impact of the error in the soil moisture profile determination on the com-

parison between the measurements and the model predictions, we increase the overall soil

moisture profile by 6%, 10%, and 15%. Comparisons between the measurements and the

simulations using the enhanced soil moisture profiles show improvement in the agreement
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of the results (Table 5.5). This improvement is smaller compared to that in the above study

of increasing surface roughness.

Table 5.5: SENSITIVITY OF THE COMPARISON BETWEEN MEASUREMENTS AND MODEL PREDICTIONS TO THE
SOIL MOISTURE

soil moisture increment 0 6% 10% 15%

Bias 6.2 dB 4.97 dB 4.86 dB 4.5 dB

Std. Dev. 5.5 dB 5.37 dB 5.35 dB 5.3 dB

Additionally, besides the moisture profile in depth, the soil water content also varies

horizontally depending on the ground topography. In our simulations, we use one sensor

location to represent the moisture of the whole footprint, which can cause errors in the pre-

dicted results as well.

iii. Error in surface profile

In our model simulations performed for above comparisons, the surface is assumed to

have only 1D roughness along the look direction of the radar, i.e., a 2D scattering solution

is used to predict the theoretical scattering values. However, due to the large beamwidth

of the radar antenna, the validity of the 2D scattering model is limited and becomes less

accurate, which causes error in our comparisons as well. To estimate the impact of this

error, we create a 2D rough surface with the 1D roughness parameters and simulate its

scattering cross section. The comparison between the measurements and the predictions

from the 3D scattering model show both smaller bias of 3.05 dB and smaller standard devi-

ation of 4.12 dB. Accurate comparison between the measured and predicted backscattering

cross sections requires the knowledge of the 2D surface profile, which is not available to us.

iv. CR measurement and RCS computation

Misalignment of the calibration target can cause error in the measurement results. Using

the GO model for the CR RCS computation, the impact of the CR misalignments in both

elevation and azimuth directions is studied. As can be seen from Figure 5.28, the error
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caused by the CR misalignment is smaller than 1 dB.

Besides the misalignment of the CR, performing low frequency measurement in the

Figure 5.28: RCS changes due to misalignment in (a) elevation direction (theta: elevation
angle) and (b) azimuth direction (phi: azimuth angle)

near field range of the CR can cause overestimated CR RCS. In this case, the validity of

the high frequency approximation becomes limited, and the scattering from the CR edges,

as well as the interactions between the CR and the ground need to be taken into account

[57]. More precise numerical solutions based on the near-field calculations are required for

more accurate calibration.

iv. Other error sources

Besides the error sources discussed above, there are other factors that could cause error

in the comparison between the model simulations and the radar measurements.

• Speckle: The inherent presence of speckles in the measurements causes large deviations

in the results, whose remedy is taking more samples at different looks.

• Focused footprint area determination: The error in the focused footprint area determi-

nation can result in larger backscattering cross sections if the area is underestimated.

• Antenna pattern and absolute gain determination: The antenna pattern and absolute

gain need to be precisely measured for accurate determination of the footprint area

and the calibration with the targets.
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• Radio frequency interference The interference from the tower body, or the neighboring

systems operating concurrently in the field can cause larger measured RCS as well.

5.7.4 Measurement Signature Change Over the Growing Season

The radar measurements were taken every month during the growing season of the

corn field (Figure 5.29). Though we don’t have a combined vegetation scattering model

to predict the signal return, we would like to show the signature of the return signal as the

corn grew.

The first row in Figure 5.30 shows the measurements of the field of germinating corn

Figure 5.29: Growing season of corn field: germinating (left), growing ∼1 meter tall (cen-
ter), and before harvest (right)

corresponding to Figure 5.29 left. The signature of the return signal does not change much

from the bare soil measurements, as expected. The second row in Figure 5.30 presents the

measurements of the field when the corn grew approximately 1 meter tall before earing

(Figure 5.29 center). More features appear in the return signals even after 600 ns. Both

the HH and VV measurements show larger ground return signals. The cross polarization

components are also measured, showing similar signature as the copol components. This

becomes more clear in the third row of Figure 5.30, showing the measurements of the corn

field right before harvest (Figure 5.29 right).

134



Fi
gu

re
5.

30
:G

ro
w

in
g

se
as

on
of

co
rn

fie
ld

:g
er

m
in

at
in

g
(r

ow
1)

,g
ro

w
in

g
∼1

m
et

er
ta

ll
(r

ow
2)

,a
nd

be
fo

re
ha

rv
es

t(
ro

w
3)

135



5.7.5 P-band Measurements

Figure 5.31: P-band Measurements of the unplowed dry field

Besides the L-band measurements, P-band (435 MHz) measurements are performed as

well. Results of the bare soil are shown in Figure 5.31 (for unplowed, dry field), Figure

5.32 (for plowed, dry field), and Figure 5.33 (for plowed, wet field). Compared to the L-

band measurement results, the P-band results show more features/noises. They can be due

to the larger interference caused by the antenna cross coupling, since the protect switch in

the receive chain is deactivated to avoid the ringing effect. The interference from the tower

body could also add more noise to the measurements. Quantitative evaluation of the P-band

results requires the P-band calibration of known targets. However, our CR is too small to

be a good target for P-band; and a large enough P-band target would need near-field RCS

prediction model as well. These are the problems needed to be addressed in the future

work.

5.8 Summary and Conclusion

A newly designed and built tower-based multiple-low-frequency radar system is intro-

duced in this chapter. This radar is a compact, remote-controlled, stand-alone system with

larger output power. It has been used in several field campaigns for surface, subsurface, and
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Figure 5.32: P-band Measurements of the plowed dry field

subcanopy soil moisture detection. In this chapter, primary results from the field measure-

ments of the corn field over the growing season are shown and analyzed. The results show

the radar sensitivity to soil roughness and moisture. Signal signature changes can also be

seen over the growing season of the corn.
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Figure 5.33: P-band Measurements of the plowed wet field

Meanwhile, measurements from this radar system also indicate problems need to be ad-

dressed in near-field radar measurement, data processing, and model validation. First of all,

accurate data processing and error analysis require further numerical modeling of the near-

field backscattering of the calibration targets (e.g., corner-reflectors). Precise determination

of the footprint area is also critical and should be done based on the system sensitivity. For

model validation, a methodology of backscattering aggregation within the footprint based

on the model predicted scattering from sub-areas need to be used, considering different

field illumination angles in the footprint.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

To summarize, Chapters 2 to 4 of this dissertation presented a set of increasing com-

plex forward models predicting the three-dimensional electromagnetic scattering from the

layered rough surfaces with buried inhomogeneities. These were followed by Chapter 5,

which introduced a tower-based low-frequency radar system newly designed and built for

surface, subsurface, and subcanopy soil moisture detection.

Starting with single rough surface scattering, Chapter 2 described a solution using sta-

bilized extended boundary condition method (SEBCM). We solved the long standing in-

stability issue of the classical EBCM. The SEBCM gives a full-wave surface scattering

solution that is valid over a large range of surface roughness. It computes the same size

problem more efficiently than spatial domain fully numerical approaches. This SEBCM so-

lution we developed was validated by comparing with solutions provided by several other

analytical and numerical models, as well as with actual measurements.

The problem involving multi-layer rough surfaces was solved in Chapter 3 based on the

scattering matrix approach and single rough surface solution using SEBCM. This solution

is able to simulate dielectric profiles between subsurfaces, representing a more realistic

scenario of ground scattering. For multilayer surfaces of large roughness, this is the only
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known method that is practically applicable to realistic soil profile scenarios.

Random or root-like media were added to the multi-layered rough surface structure to

represent the sublayer inhomogeneities and vegetation roots. Chapter 4 presented the so-

lutions to include the random media in the multilayer rough surface scattering model. The

problem was solved using the recursive transition matrix (T-matrix) method for spherical

or short-cylindrical scatterers, and the generalized iterative extended boundary condition

method was developed for long or root-like cylindrical clusters. Both methods compute

efficiently the scattering of these random media, taking into account of the interactions

among scatterers. The transition matrix (T-matrix) to scattering matrix (S-matrix) trans-

formation we developed further enables the integration of media scattering with layered

rough surface scattering. This completes our model of three-dimensional electromagnetic

scattering from layered media with rough interfaces, which is the first ground scattering

model having comprehensive subsurface structural definition.

In the last part of this dissertation, we also showed results from experiments aimed

at surface, subsurface, and subcanopy soil moisture detection using a tower-based low-

frequency radar system.This system is a compact remote-controlled and easily deployed

stand-alone high power radar. Field experiment results proved its sensitivity to soil mois-

ture, and paved the way for future experiments and analyses under more varied field con-

ditions.

6.2 Future Work

6.2.1 Scattering Modeling - combination with vegetation scattering

model

The solution we developed to the scattering from layered rough surfaces with buried

root-like inhomogeneities considers only the structure below the ground surface; the veg-

etation, because of which the roots exist, is not taken into account. Although this was a

140



deliberate choice - in that the purpose was to focus only on soil and factors impacting the

scattering properties from subsurface features - a complete solution from vegetated ground

needs to combine scattering from both above- and below-ground regions. One approach

is to combine with one of the commonly used vegetation scattering model such as that in

[61]. Such models use Stokes matrices to define the scattering contributions of the vege-

tation layers, then add them and their interactions with the ground layer. We can convert

our scattering matrix to Stokes matrix as well. The Stokes matrices of the above- and

below-ground regions can be combined to have the complete scattering solution. The more

accurate way of having the complete solution is to solve the scattering from vegetation in a

similar way as we did to the scattering from the vegetation roots, which gives the scattering

matrix of the vegetation layer. The scattering matrices of the vegetation layer and below-

ground layer can be cascaded to describe the total scattering. This approach would yield a

much more accurate solution, at the cost of added computational complexity.

6.2.2 Scattering Modeling - computational efficiency enhancement

Though our solution to the ground scattering problem has higher computational effi-

ciency than the pure numerical methods for the problem of the same size, there is still

much room for improvement of the computational speed. The results we presented in this

dissertation are all simulated using matlab on a desktop PC with a Intel Duo Core processor

and 4GB memory. This limits the number of Floquet modes included in the solution, i.e.,

limits the length of the surface period. The solution should be implemented in FORTRAN

to allow larger memory usage and added speed, and parallelized using OpenMP for multi-

processing on a computation cluster. The parallelization of the multi-surface algorithm can

be performed with respect to surface layers, surface realizations, matrix filling process,

and matrix multiplication. The random media scattering solution can be parallelized in

sub-cylinder T-matrix computations, cluster T-matrix computation, as well as the matrix

multiplications. Enhanced computational efficiency will make these forward models more

applicable for the construction of solution spaces as a function of the ground properties,
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which can be further used for soil moisture retrieval.

6.2.3 Radar System and Measurements

The tower-based low-frequency radar system is a prototype compact systems for on-

demand low-cost soil moisture detection. The hardware system can be significantly im-

proved through several layers of integration: the structure of PC motherboard, FPGA,

and solid-state switches can be combined to be a dedicated radar control unit based on

MPGA (Microcomputer-FPGA) with switch banks; the RF synthesizer, digitizer, and quad-

demodulator are all integrable to be single/multiple compact units. This will result in a

lighter, smaller, and less expensive system, which can be put onto other mobile low-altitude

platforms. Moreover, a better antenna solution is needed for more directivity and higher

gain, especially for lower frequencies (VHF and UHF). This not only reduces the power

requirement of the radar system, it also enhances the radar sensitivity to allow the radar

operation without the need for synthetic aperture processing, which expands the radar ap-

plication environments and enables automated radar observation. In the data processing

aspect, more precise modeling of the radar cross section of the calibration targets (e.g.,

CR) is necessary, especially in the near field range. Solving the absolute calibration prob-

lem for low-altitude low-frequency radars will have a major positive impact on achieving

accurate soil moisture retrievals with such systems.

6.2.4 On-Board Processing

The tower-mounted or future version of the low-altitude compact radar system will

be most beneficial in the future if they can integrate processing, calibration, and retrieval

algorithms into the radar system. Essentially this will be an additional piece of the digital

electronics subsystem, but one that could substantially add to the utility of low-frequency

radar systems for scientific and operational use.
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APPENDIX A

Numerical Generation of 2D Random Rough Surface

Considering a 2D randomly rough surface, z = f (r̄⊥), where r̄⊥ = (x,y), its Fourier

transform is

F(k̄⊥) =
1

4π2

∫ ∞

−∞
f (r̄⊥)e−ik̄⊥·r̄⊥dr̄⊥ (A.1)

where k̄⊥ = (kx,ky). For every two points on the surface, (x1,y1) and (x2,y2), we have

〈 f (r̄⊥)〉= 0 (A.2)

〈 f (r̄1⊥) f (r̄2⊥)〉= h2C(r̄1⊥− r̄2⊥) (A.3)

where C(r̄⊥) is the correlation function, which is related to the spectral density W (k̄⊥) by

h2C(r̄⊥) =
∫ ∞

−∞
W (k̄⊥)eik̄⊥·r̄⊥dk̄⊥ (A.4)

Two correlation functions are commonly used, the Gaussian correlation function with

the corresponding spectral density,

C(r̄⊥) = exp
(
−|r̄⊥|

2

l2

)
(A.5)

W (k̄⊥) =
h2l2

2
exp

(
−|k̄⊥|

2l2

4

)
(A.6)
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and the exponential correlation function with its spectral density,

C(r̄⊥) = exp
(
−|r̄⊥|

l

)
(A.7)

W (k̄⊥) =
h2l2

2π
(
1+ k̄2

⊥l2
) 3

2
(A.8)

To generate the rough surface numerically, the 2D rough surface can be represented by

its Fourier series

f (x,y) =
1

LxLy

+∞

∑
m=−∞

+∞

∑
n=−∞

Fmnei(mKxx+nKyy) (A.9)

where Kx = 2π/Lx and Ky = 2π/Ly. By comparing the following two representations of the

correlation function,

〈 f (x1,y1) f (x2,y2)〉=
1

L2
xL2

y

+∞

∑
m,n,p,q
=−∞

〈FmnF∗pq〉ei(mKxx+nKyy)ei(pKxx+qKyy) (A.10)

and

〈 f (x1,y1) f (x2,y2)〉= h2C(x1− x2,y1− y2)

=
∫∫ +∞

−∞
dkxdkyW (kx,ky)eikx(x1−x2)eiky(y1−y2) (A.11)

it can be seen that 〈FmnF∗pq〉 = δmpδnqXmn, where Xmn = 4π2LxLy ·W (Km,Kn) = 〈|Fmn|2〉.

Here we have used dkx = ∆kx = Kx and dky = ∆ky = Ky to get

2π
Lx

2π
Ly

+∞

∑
m,n

=−∞

eiKm(x1−x2)eiKn(y1−y2)W (Km,Kn)

=
1

L2
xL2

y

+∞

∑
m,n

=−∞

XmneiKm(x1−x2)eiKn(y1−y2) (A.12)

where Km = mKx and Kn = nKy.
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Utilizing above relations, the 2D random rough surface with dimensions M×N samples

can be obtained by constructing a matrix Fmn in the spectral domain. Denoting the matrices

of the rough surface and its Fourier series by
[

fpq
]

and [Fmn], we can write:

fpq =
1

LxLy

M/2

∑
m=

−M/2+1

N/2

∑
n=

−N/2+1

Fmnei 2πm
M pei 2πn

N q (A.13)

Fmn =
LxLy

MN

M/2

∑
p=

−M/2+1

N/2

∑
q=

−N/2+1

fpqe−i 2πm
M pe−i 2πn

N q (A.14)

Since f (x,y) is real, the matrix [Fmn] has the structure of Fmn = F∗−m,−n, FM/2,n = F∗M/2,−n

and Fm,N/2 = F∗−m,N/2. Hence, entries F0,0, FM/2,0, F0,N/2 and FM/2,N/2 are real. Therefore,

by generating an M×N array of random numbers [cmn] with standard normal distribution

and rearranging them according to the above structure, [Fmn] can be obtained by weigh-

ing the rearranged array as Fmn = 2π
√

LxLyW (Km,Kn) · cmn. The rough surface f (x,y) is

then the 2D inverse Fourier transform of the Fmn matrix. Depending on the specific IFFT

algorithm, rearrangement or re-indexing of arrays may be necessary.
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APPENDIX B

Derivation of Floquet Mode Coefficients

As shown in Eq.(2.12) to Eq.(2.17), the expressions for the Floquet mode coefficients

of the scattered fields can be further written as Eq.(B.1) to Eq.(B.6).

b( j)
mnx =

k jzmn

LxLy
∑
p,q

∫

p
dxdykym fxe−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]αpqx

+
k jzmn

LxLy
∑
p,q

∫

p
dxdy(kym fy− k jzmn)e−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]αpqy

+
ik jzmn

LxLy
∑
p,q

∫

p
dxdye−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]βpqx (B.1)

b( j)
mny =

k jzmn

LxLy
∑
p,q

∫

p
dxdy(k jzmn− kxn fx)e−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]αpqx

+
−k jzmn

LxLy
∑
p,q

∫

p
dxdykxn fye−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]αpqy

+
ik jzmn

LxLy
∑
p,q

∫

p
dxdye−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]βpqy (B.2)
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b( j)
mnz =

−k jzmn

LxLy
∑
p,q

∫

p
dxdykyme−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]αpqx

+
k jzmn

LxLy
∑
p,q

∫

p
dxdykxne−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]αpqy

+
ik jzmn

LxLy
∑
p,q

∫

p
dxdy fxe−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]βpqx

+
ik jzmn

LxLy
∑
p,q

∫

p
dxdy fye−i[(kxn−kxq)x′+(kym−kyp)y′+k jzmn f (x′,y′)]βpqy (B.3)

a( j)
mnx =

−k jzmn

LxLy
∑
p,q

∫

p
dxdykym fxe−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]αpqx

+
−k jzmn

LxLy
∑
p,q

∫

p
dxdy(kym fy + k jzmn)e−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]αpqy

+
−ik jzmn

LxLy
∑
p,q

∫

p
dxdye−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]βpqx (B.4)

a( j)
mny =

k jzmn

LxLy
∑
p,q

∫

p
dxdy(k jzmn + kxn fx)e−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]αpqx

+
k jzmn

LxLy
∑
p,q

∫

p
dxdykxn fye−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]αpqy

+
−ik jzmn

LxLy
∑
p,q

∫

p
dxdye−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]βpqy (B.5)

a( j)
mnz =

k jzmn

LxLy
∑
p,q

∫

p
dxdykyme−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]αpqx

+
−k jzmn

LxLy
∑
p,q

∫

p
dxdykxne−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]αpqy

+
−ik jzmn

LxLy
∑
p,q

∫

p
dxdy fxe−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]βpqx

+
−ik jzmn

LxLy
∑
p,q

∫

p
dxdy fye−i[(kxn−kxq)x′+(kym−kyp)y′−k jzmn f (x′,y′)]βpqy (B.6)
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Since e−i[(kxn−kxq)x′+(kym−kyp)y′±k jzmn f (x′,y′) is periodic, there are

∫

p
dxdy fxe−i[(kxn−kxq)x′+(kym−kyp)y′±k jzmn f (x′,y′)]

=∓kxn− kxq

kzmn
I±j (B.7)

∫

p
dxdy fye−i[(kxn−kxq)x′+(kym−kyp)y′±k jzmn f (x′,y′)]

=∓kym− kyp

k jzmn
I±j (B.8)

where I±j =
∫

p
dxdye−i[(kxn−kxq)x′+(kym−kyp)y′±k jzmn f (x′,y′)]. Then the coefficients in the expres-

sions of [bmn] and [amn] in terms of the surface fields can be derived as shown in Eq.(2.28)

and Eq.(2.29).
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