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CHAPTER 1

Introduction

One of the primary goals in this dissertation is concerned with the development
of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling
and design of conformal antennas of arbitrary shape. Both the finite element and
integral equation methods will be first overviewed in this chapter with an emphasis
on recently developed hybrid FE-BI methodologies for antennas, microwave and
millimeter wave applications. The structure of the dissertation is then outlined. We
conclude the chapter with discussions of certain fundamental concepts and methods

in electromagnetics, which are important to this study.

1.1 Overview

The development of simulation techniques for conformal antennas typically mounted
on vehicles is a challenging task. By and large. existing analysis and design meth-
ods are restricted to planar and mostly rectangular patch antennas. These tech-
niques have difficulty in being extended to non-rectangular/non-planar configurations
loaded with dielectrics and comprised of intricate shapes to attain larger bandwidth
and gain performance [1-4]. Moreover. practical antenna designs may also require

a sophisticated feeding structure. such as coaxial cable. microstrip line. stripline.
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proximity or aperture coupled circuit network, etc. and integral equation methods
are not easily adaptable tn modeling these structures. especially in the presence
of finitely sized dielectric loadings. Partial differential equation (PDE) techniques
(e.g. finite element and finite difference methods) may also experience difficulties in
modeling unbounded field problems. such as those found in antenna radiation and
scattering. The motivation of this dissertation is therefore based on the need to de-
velop general-purpose analysis techniques which can accurately simulate conformal
antennas of arbitrary shape with diverse feeding schemes. With the rapid growth of
personal cellular GPS and other communication systems. there is an increasing need
for such techniques since even traditional and protruding low frequency antennas
are being re-designed for conformality and to meet requirements for a host of new
applications [3,6]. Besides, most development of computational electromagnetics in
this subject can be applied to medical diagnosis and treatment which have shown a
tremendous research and application potential [7.38].

The complexity of new antennas demands that analysis and design software be de-
veloped based on methodologies that are robust, versatile. and geometrically adapt-
able. Recently it has been demonstrated that the finite element method when cou-
pled with the more traditional integral equation approach becomes quite attractive
for modeling a wide variety of existing and emerging antenna configurations [9]. The
finite element method is indeed ideal for modeling the interior volume of the an-
tenna structure (multi-layer substrate. finite size dielectric loading. stacked element
design. feed network and cavity volume, etc.) and is one of the most celebrated
analysis methods in engineering. On the other hand. the boundary integral offers
the most accurate representation of the fields exterior to the antenna. Thus the com-

bination of the finite element and the boundary integral (FE-BI) methods provides



for the handling of the geometrical complexity without compromising accuracy. This
hybrid methodology appears to be very attractive for conformal antenna modeling.
However, its development and application to more practical and emerging antennas
presents us with many theoretical and numerical challenges. which will be extensively
investigated in the work.

Specifically. mesh termination plays an important role in FEM simulations and.
in many cases. the accuracy is subject to the performance of the domain truncation
scheme. For conformal antenna modeling, a boundary integral (BI) equation has
been employed in this dissertation for terminating the antenna’s radiating surface
and this method is theoretically free of approximation. Thus. a desired accuracy can
be achieved without fundamental limitations. Antenna configurations of arbitrary
shape can be readily tessellated using mesh generation packages in the context of
the FE-BI technique. In modeling the interior region or the feed network. a superior
artificial absorbing material — perfectly matched layer (PML) — has been used to
ensure a minimum impact due to truncation walls. An intensive study of the PML's
performance has been carried out and the optimal selection of PML parameters has
been designed and emploved herewith in shielded structure modeling.

Frequency domain methods provide the necessary information for engineering
design. However, when wideband responses are needed. they can quickly become
expensive compared to time domain techniques. A method. referred to as the asymp-
totic waveform evaluation (AWE). can be used to alleviate this issue. It has already
been successfully used in VLSI and circuit analysis. In the context of the FEM. we
shall investigate the suitability and validity of AWE for simulating MMIC devices.

One of the important issues in antenna analysis is the feed design. Modeling a

feed using the finite element method is indeed a challenging problem. and a sim-



plified probe feed model fails to accurately predict the input impedance. On the
other hand. the numerical system can become ill-conditioned when a feed network
is modeled without careful considerations. In this dissertation various feed models
will be investigated in consideration of accuracy and efficiency. They include current
and voltage gap generators. stripline. microstrip line. coaxial cable. aperture coupled
microstrip. etc. |

In regards to the development and applications of the simulation techniques. the
test and design benchmark models of particular interest are microstrip (rectangular
and circular) patch antennas. dual-stacked patch antenna. ring slot antenna. and
cone antenna. etc. It is noted that some of them are not necessarily planar or
conformal.

Referring to the dissertation structure. we begin with a description of electro-
magnetic fundamentals and then proceed to discuss the boundary conditions. equiv-
alence principle. Dyvadic Green's functions and the related theorems. The finite
element method as applied to time-harmonic electromagnetic fields and waves is
subsequently described and the basic FEM equations are derived from both varia-
tional and Galerkin techniques. The derivation is given in algebraic form allowing
the inclusion of general anisotropy. The emphasis of the discussion is on the gen-
eralization of the variational functional and Galerkin techniques when anisotropic
and lossy materials are present. Chapter 3.4,5 and 6 discuss the development of
edge-based FE-BI techniques with significant efficiency improvement for antennas
and feed network modeling. The emphasis in these chapters is on developing novel
methodologies to minimize the required computing resources.

Chapter 7 is devoted to circuit modeling where specialized truncations suited

for guide wave structures are presented. The perfectly matched laver (PML). an



anisotropic artificial absorber used for mesh truncation, is investigated in terms of
performance and applications.

Wideband system responses prompt us to look at more efficient analysis tools
to replace the current brute force frequency domain analysis approaches. Chapter 8
discusses a preliminary development of the FEM in connection with the AWE.

In the last chapter, we summarize and discuss the anticipated future research
work to extend the capability and applications of the robust FEM development. A

list of suggested topics is included with specific recommendations.

1.2 Fundamentals of Electromagnetic Theory

Since many fundamental concepts and theorems of electromagnetics will be em-
ployed. we will describe the pertinent ones in this section for reference purpose.
This will also ensure consistency in nomenclature and conventions throughout the
dissertation.

The vector wave equation — the only partial differential equation (PDE) con-
sidered in this research — will be first derived from Maxwell equations. Various
boundary conditions will be studied to establish the general mathematical models of
boundary value problems (BVP). The equivalence principle, uniqueness theorem and
the half-space dvadic Green'’s functions are then briefly discussed for EM solutions

in radiation and scattering problems.



1.2.1 Maxwell Equations

Time-harmonic Maxwell equations of differential form in a linear, anisotropic and

uniform medium are given by [10]

VxE = —jui-H—M; (1.1)
VxH = jwi-E+7, (1.2)
V-e-E = p. (1.3)
V-i-H = pn (1.4)

where E and H are the electric and magnetic field intensity, respectively. w is the
radian frequency and the factor e/“* is assumed and suppressed throughout this
dissertation: M; and J; are the impressed magnetic and electric current. respectively.
to serve as possible sources in the medium under consideration; finally p. and pn,
denote the electric and magnetic charge density. Both M; and p,, are fictitious and
non-physical quantities. which facilitate the formulation of physical problems when
the equivalence principle is employed. The material tensors € and [ represent the

permittivity and permeability, respectively. and may be written. in general. as

€11 €12 €3

€= €& = € €21 €22 €23 (1.5)

€31 €32 €33

Hi1 K12 K13
(1.6)

i
I
=
o
R
I

Ho | a1 a2 Ma3

H31 32 #33J

with €y and po being the free space permittivity and permeability.
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The procedure to derive the vector wave equation begins by eliminating one of
the two field quantities from (1.1) and (1.2). To do so. we first take a dot product

of (1.1) with the tensor il and then take the curl on both sides of (1.1) to obtain
Vxa ' -VxE=—jupV xH-VxT,  -M; (1.7)
Substitution of (1.2) into (1.7) yields
v x (ﬁ;‘ LV x E) = «2oees. - E — jupedi — V x (ﬁ‘ -M,—)
or
Vx(ﬁ:l-VxE)—kga-Ez —jwyoJ,--vX(i‘.M.-) (1.8)

where kg = w,/lgé€p is the free space wave number. The dual of (1.8) is given by

—

Vx(E,l-VxH)—kgﬁ,-Hz—jweoM,-+Vx(Zl-J,-) (1.9)

and can be similarly derived starting with (1.2). Equations (1.3) and (1.9) are the

vector wave equations of the desired form.

1.2.2 Boundary Conditions and Boundary Value Problems

Three types of boundary conditions are typically encountered, and in the context
of the finite element method, these boundary conditions must be considered and
carefully treated. In what follows we shall discuss these conditions.

Dirichlet Boundary Condition

Consider two media separated by a surface I' whose unit normal 7 points from

medium 1 to medium 2. The fields on two sides of the interface satisfyv the relation

A x (E; —E,) = -M, (1.10)
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where M, is a fictitious magnetic surface current and E; and E, are the electric field
inside medium 1 and medium 2. respectively. If medium 1 is a perfectly magnetic
conductor (PMC), then E, vanishes and (1.10) becomes 2 x E; = —M,. The surface
magnetic current M, can either be an impressed source (excitation) or may represent
a secondary (induced) current. If medium 1 is a perfectly electric conductor (PEC).
n X E, also vanishes and thus M, = 0 on the PEC surface.

Similarly, for the magnetic field.
nx(H,—H)=J, (1.11)

where J,; denotes an electric surface current. The PEC surface can support electric
currents. given by n x Hy = J,. since H; is zero within the conductor. By duality.
the PMC surface does not support electric currents. i.e. V x Hj.

The relations (1.10) and (1.11) are inhomogeneous Dirichlet boundary conditions.
They become homogeneous when M = 0 and J, = 0, and in those cases they imply
the tangential field continuity across the dielectric interfaces. Often. J, and M; are
introduced as fictitious currents when applying the equivalence principle (except in
special cases where they are specified a priori). The implication of this issue will be
discussed later in the development.

Neumann and Mixed Boundary Condition

In formulating a physical problem using hybrid finite element methods, we usually
work with either E or H field. If, for instance, we chocse E as the working quantity.

then (1.11) must be rewritten as
. =1 (=1 o = —iw 2
A x [(# V><E)2 (p VXE)J jwd, (1.12)

where (fz_l -V x E) [ = 1.2 are evaluated just inside the ith medium approaching

the boundary (from the ith medium). If medium 1 is a PEC. then ¥V x E; = 0. and



(1.12) reduces to a standard Neumann boundary condition, by which a constraint

on the derivative of E at the interface is defined. The dual of (1.12) is given by
- =1 =1 . P
n x [(e -VXH)Z—(C -VXH)I] = —jwM;, (1.13)

and this condition is used when working with the H field. In many applications, the
single field formulation is often desired since the system size may be kept minimum
in this manner. However. it is already seen that the single field formulation implies
use of the second order conditions referred to as ratural conditions. Fortunately. it
is rather straightforward to impose this type of conditions in regard to finite element
simulations.

As for mixed boundary conditions, an example is the resistive surface where the

electric and magnetic fields satisfy the condition

+
=0 (1.14)

@ x n x E+ Ra x [H]

+

with R being the effective resistivity of the surface and [H]| = H* — H™ the field

difference above and below the surface. This is a typical mixed (third type) homo-
geneous boundary condition. Another example of a mixed condition occurs in trans-
mission line problem (e.g. a coax cable. or other guided wave structures). where the

electric and magnetic fields at a cross—section of the line are given by

E = E‘e™ 4+TE¢™ (1.15)
H = H'e ™ —TH'e* (1.16)
and
A x B =-ZH (1.17)
where i = —Z and (E', H') are the incoming fields before encountering a discontinuity

or load along the transmission line. Also. Z is the wave impedance associated with
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the transmission line mode of the guide wave structure. Eliminating [’ from (1.13)

and (1.16) in view of (1.17) vields the relation
AxE—-ZH =2h x E'e™™ (1.18)

which is an example of inhomogeneous mixed (third type) boundary condition. This
becomes apparent when H is expressed in terms of the derivative (curl) of E.! and
therefore the left hand side contains both differentiated and undifferentiated quan-
tities. (In this case. the right hand side is usually considered as a known function.)
The mixed boundary condition (1.18) is found very useful when applying the FEM to
guided wave structures for truncation and excitation simultaneously. It is basically

a form of absorbing boundary condition (ABC).

1.2.3 Uniqueness Theorem and Equivalence Principle

The uniqueness theorem and the equivalence principle will be explicitly or implic-
itly applied to this work when dealing with integral equations to terminate the FEM
mesh and when evaluating the far-field pattern. Together with dyadic Green’s func-
tions, it becomes convenient to apply these concepts to construct integral equations
associated with various geometries in radiation and scattering problems. It is our
intent to discuss the theorem and the principle (without proof) for later applications.

Uniqueness Theorem

Partial differential equations (PDE) can be solved using various approaches and
the corresponding results can also be represented in numerous forms given certain
boundary conditions. Moreover, many (boundary. initial. natural. essential. radi-

ation, etc.) conditions of PDE models can be extracted from the mathematical

ICare must be taken when a curl operation is performed at a boundary discontinuity. It should
be appropriate to evaluate the field derivative at a distance from a discontinuity and then let the
distance tend to zero.
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specifications of well defined physical problems. The question then arises as to how
to relate the solutions and how many conditions are sufficient to achieve the “cor-
rect’ solution. Uniqueness theorems offer the answer to this question. Specifically in
electromagnetics, the EM solutions are uniquely determined by the sources in a given
region plus the tangential components of the electric field on boundaries. or plus the
2

tangential components of the magnetic field on boundaries.

Equivalence Principle

From the uniqueness theorem. an EM problem can be uniquely solved if the
tangential (either the electric or magnetic) field component at the boundary is pre-
scribed. In this work. of interest is an EM problem where a dielectric inhomogeneous
region exists in the presence of a large PEC platform. probably coated with a dielec-
tric slab. The typical geometries are shown in fig. 1.1, where we consider the upper
half space to be the exterior region and the cavity the interior region.

In EM analysis, the fields in the exterior region can be represented in integral
form containing the equivalent current sources. From (1.10) or (1.11) the tangen-
tial electric or magnetic field near the aperture (or the discontinuity region) may be
equivalently expressed in terms of the surface currents M; and/or J;. By ‘equiva-
lence’, we demand the field distribution remain the same when the fictitious surface
currents are used to replace the interior region (cavity volume). It can be shown
through the uniqueness theorem that this substitution indeed ensures an identical
EM field distribution in the exterior region.

When the interior region is excluded from consideration. the current sources in
(1.10) and (1.11) may be arbitrarily chosen leading to an infinite number of choices

for the equivalent currents. However, in our work the field behavior in the interior

2See the proof in reference [10].
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Figure 1.1: (a) Recessed cavity in a PEC ground plane. (b) Recessed cavity in a
dielectrically coated PEC ground plane.
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region is also needed. and most specifically, the coupling of the fields in the inner and
outer cavity regions is desired. It is therefore convenient to select the total tangential

electric or magnetic field to specify the equivalent currents as
M,=Exn and J,=n x H. (1.19)

This choice implies the assumption of zero interior fields when the exterior region
is considered, and zero exterior fields when the interior region is needed. Fig. (1.2)
and (1.3) illustrate the details of applying the principle, where the fictitious currents
affect the region of interest (ROI) only with zero EM fields outside of the ROL. It is
observed that this choice of equivalent currents permits a convenient interior/exterior

system coupling for the “total field formulation™ in hybrid FEM applications.

1.2.4 Integral Equation and Dyadic Green’s Function

The Dyadic Green's functions are particularly convenient for constructing integral
equations in the presence of certain canonical platforms. For a planar structure. the
platform of particular interest is the PEC infinite ground plane in which a cavity is
recessed with dielectric loading or absorption depending on applications.

The choice of the dvadic Green's function varies depending on the FEM formu-
lations. For the electric field formulation. we are seeking an appropriate integral
representation to find the magnetic field in the exterior region using the information
on or near the region of the aperture. To this end. let us start with the structure
containing a possible protrusion as shown in fig. 1.4. where the equivalence princi-
ple has been used on the outer contours of the structures to obtain the equivalent
currents.

Consider the wave equation

V x V x G(r.r') — P oeeG(r.v') = =I8(r — 1) (1.20)
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equivalent currents

(E.H)=(0,0) \

ground plane

Region of Interest (ROI): Exterior
(a)

equivalent currents

T~a (E,H)=(0,0)

cavity

Region of Interest (ROI): Interior
(b)

Figure 1.2: Illustrations of equivalence principle when applied to the structure shown
in fig. 1.1a.
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cavity

Figure 1.3: Illustrations of equivalence principle when applied to the structure shown
in fig. 1.1b.



(b)

Figure 1.4: Examples of protruding configurations (a) on a planar platform (b) on a

curved platform in consideration of the equivalence principle.

where G is the dyadic Green's function G in association with (1.9) (assuming M; =

0). and I is the idem factor defined as I = Z# + § + 32. Also. note the identity

//[»{P’(VXVX-Q)—(VXVxP)'Q—} dv
*//Sf"[ x Vx Q+(V x P) x Q] d

and upon setting P = H and Q = G, we get
// {H-(VxVxG)—(VxVxH) -G} dV
‘/

—//ﬁ-[HxVxE—\L(VxH)xm ds
s

From (1.9) and (1.20). the left hand side (LHS) of (1.22) reduces to

LHS // V x J - G(r|r') dV
‘f

and the right hand side can be rearranged as

HS = //H nxVxG|+(VxH)- [nx_G—]d
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Equating the LHS and RHS yields

r —
—// V' x J-G(r'|r)dV’
V’

_/ (H-[Ax V' xG]+(V' xH)-[A x G|} dS'  (1.23)
5

where r and r’ have been interchanged without loss of generality. As can be realized.
V" is the volume containing the distributed electric current source and S’ is the
surface enclosing the entire upper half space.

To eliminate the curl on J, we use the dyadic identity.
V-IxG)=(VxJ)-G=T-(VxG)

and the divergence theorem to get

It votume = ~/// J-(V'xG) dV’—// i (T x G) dS' (1.24)
rr SI

where the Sommerfeld radiation condition was invoked to eliminate the integral at
infinity. Therefore. S’ is only over the outer surface of the body.

[t remains to represent the surface integrals in terms of the electric field near the
cavity since this field is typically the computable quantity. This is carried out by

inserting (1.24) into (1.23). vielding

H(r) = //[H V' x G)dV'

—/ (H-(AxV' xG)+ (V' xH=-J)- (A x G)} dS’

= // J- (V' x G)dV’
‘,I

- // {H- (2 x V' x G) + jweE - (7 x G)} dS’ (1.25)
S

where the Maxwell equation (1.2) has been used. It should be remarked that the

above field representation is general. i.e. not restrictive to planar or conformal cases.
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For instance. in the presence of a PEC platform, (1.25) is valid for protruding con-
figurations as shown in fig. 1.4. In these cases, the surface integrations are carried
out over the platform plus the outer contours of the structures.

The field representation (1.25) shall be examined and compared for conformal
and protruding structures. To this end, we rewrite the surface integral as

Intowrfoce = — Vx@) (A xH)dS' + LV x (V' xG)T - (A x E) } dS"
fi

WHo

= VX// {H-(fzxE)dS'—L(ﬁxE)-(V'xﬁ)}ds’ (1.26)

wio
where T denotes a transpose operation of the dyadic and the integral in the last
step is proportional to the electric field. If G(r|r’) is the electric dyadic Green's
function of the first kind defined as 2 x G = 0. the first term in the integrand
of (1.26) vanishes on the platform, provided S’ is coincident with the platform. For
dielectric protrusion, this term reduces to the integration only over the outer contour
not conformal to the platform. An alternative is to define an electric dvadic Green's
function which satisfies the condition 7 x (V' x G)T = 0. As can be seen. this
definition of the Green’s function equivalently leads to the same vanishing term in
(1.26). G is referred to as the dyadic Green's function of first kind. The equivalence
of both definitions can be proved from the symmetry properties of the dvadic Green's
functions [11].

For a planar PEC platform, G reduces to
G(r|r') = Go(r|r’) — Go(r|r}) + 222Go(r|r}) (1.27)

where G is the free space Green’s function given by

e=ikolr=T"]

Go(r|r') =

47|r — r/|
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and
ral ’ T ]‘ 4 !/
Go(r|r') = (I-{- FVV) Go(r|r")
0
Inserting (1.26) and (1.27) into (1.25), we obtain
H(r) = H™(r)+H*(r) + 2jky;,/ Go(rlr') - (A x E)dS"  (1.28)
SI

This is the desired form of the magnetic field representation used to establish the

boundary integral equation for a planar platform.



CHAPTER I1

Finite Element Analysis in Electromagnetics

The finite element method (FEM) has been applied to electromagnetics (EM)
since several decades ago [12]. Especially in the late eighties and early nineties.
it is observed that the publication volume associated with the FEM in electrical
engineering grew in a fairly rapid pace [13]. This is primarily because electromag-
netic problems in engineering designs become increasingly complex and analytical
approaches or other numerical techniques no longer meet practical needs. With its
numerous attractive features over other numerical techniques. the FEM has been
extensively investigated and exploited for various EM applications [13].

This chapter is organized as follows. Section 1 and 2 describe the theoretical
formulations to construct the FEM equations. These are usually considered the
indispensable fundamentals of the technique, even though some interesting issues
associated with these basics are still in development stage, especially in terms of nu-
merical implemeﬁtation. Of interest in this context is the discussion of the variational
functional and Galerkin's techniques when applied to general anisotropic and lossy
electromagnetic problems. This topic is one of the least studied and documented
in the literature related to computational electromagnetics. Anisotropic materials

have been used for domain truncations (refer to Chapter 7) and therefore the general

20
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vector or tensor form will be used whenever possible in the necessary derivations
for the FEM. With this type of formulations, isotropic systems may be regarded as
special cases.

The chapter is concluded with the discussion of the physical quantities for antenna
analysis in association with the computation of electromagnetic fields. The formulas

given in this context require minimum amount of effort for computations.

2.1 Functional Formulation

The FEM was first developed with the aid of functional analysis. Tradition-
ally, many standard boundary value problems (BVP) encountered in practice can be
equivalently related to the extremization of a certain variational functional. With
the Rayleigh—Ritz procedure to project a continuous function space onto a discrete
finite expansion space, the variational functional method can be used to solve those
physical problems and therefore becomes one of the two important approaches to
formulate the FEM. A functional version of the FEM for the vector wave equations
(1.8) or (1.9) is discussed in this section, which can readily incorporate boundary
conditions, sources, resistive cards and other constraints into the formulation. It is
regarded as a natural, convenient and sometimes physically meaningful approach.
Furthermore, the functional may represent a true physical quantity (e.g. in low
frequency, power transmission applications) and hence this formulation provides a
feature of merit for its evaluation. Also, as can be seen in this chapter, the varia-
tional method in general non-self-adjoint cases may be rigorously treated to result
in a final symmetric system. a subset of which is identical to that obtained from

Galerkin's technique. Last, but not the least. the variational functional formulation

can be used to validate the expressions based on Galerkin's method.
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Consider a typical radiation or scattering problem shown in fig. 2.1. where the

Radiating element
Ground plane

Aperture

Figure 2.1: [llustration of a typical conformal antenna configuration.

radiating elements (or array) are enclosed in a region €. The platform surrounding
the radiation/scattering geometry can be a planar ground plane. certain canonical
shape (cylinder/sphere). or even a doubly curved surface in which case the Green’s
function is not available. In Q, electromagnetic fields satisfy the wave equation (1.8)

or (1.9). which can be concisely described using a linear operator £ given by
Ld =K, (2.1)
where ¢ denotes the field E or H, and

L = (V x - Vx) — (k3E-) for electric field (2.2)

L = (\7 x &' Vx) — (K¢E,-) for magnetic field (2.3)

K, is the source term associated with the impressed electric and magnetic currents

and may be explicitly given by

=1

K: = —jwped; =V x (,Tt . M,-) for electric field (2.4)

r

=1

K; = —jweM; +V x (‘e’ . J,-) for magnetic field (2.5)

r
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As already mentioned. £ is a linear operator and one can readily show that for
symmetric dielectric tensors 7 and €. the pertinent functional of the original PDE

has the form

F(P)==<d.LD>-<DK; > (2.6)

| =

where the inner product <. > is defined as

o
-~1
~

<A.B>=/A-B'clV (2.
Q

(with B™ being the complex conjugate of B) for lossless media. or more generally as

(8]

.

[07]
=

<A,B>=/A-BdV (
Q

for both lossless and lossy media.

The equivalent variational problem can now be stated as the extremization of the
functional (2.6) in conjunction with the essential boundary conditions (e.g. Dirich-
let BC’s). Specifically. the boundary value problem is equivalent to the following

variational model

OF(®)=0

(2.9)

Essential Boundary Conditions
Because the effect of complex materials on the resultant system is of primary
interest to us, we restrict most of our discussions in this chapter to homogeneous
Dirichlet boundary conditions unless otherwise specified. Therefore. the variational
approach of (2.9) ensures a symmetric numerical system. This is significant since
many physical problems retain a certain symmetry property and the corresponding
mathematical models should therefore reflect this property. Moreover. the symmetry

of a numerical system is always desirable since it leads to more efficient solution and

less storage requirements.
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The existence of the functional (2.6) requires the operator £ be self-adjoint. a

property usually defined to satisfv

<LO V¥ >=<P. LY > (2.10)

where ® and ¥ represent any two admissible functions. If (2.10) holds. not only
does the numerical system derived from the functional (2.6) remain symmetric. the
minimization/maximization becomes physically meaningful.

Of most concern is the situation where the partial differential operator of a system
is no longer self-adjoint. Mathematically there exists no such a natural functional in
the case similar to (2.6). A typical example is the presence of a lossy and anisotropic
medium, whose dielectric material tensors are not svmmetric or Hermitian. and this
type of problems is more often seen nowadays. The development of finite element
methods for those problems is still at an early stage because it involves numerous
challenges.

Traditionally. these physical problems were fictitiously simplified and dealt with
using available numerical approaches. Konrad [14] first tried to formulate a 3-D FEM
with three vector components to represent electromagnetic fields in anisotropic but
loss-free media. The tensors were therefore assumed to be Hermitian in his study.
A few vears later in 1980’s, the number of publications in this subject increased
typically with applications to waveguide structures. Unfortunately, the variational
approaches reported by different authors during that period consistently led to non-
standard and non-Hermitian eigenvalue systems (even with the aid of an adjoint
system [13, 16]). Even worse. the numerical systems derived in this manner were
usually doubled in size. As indicated in [17], when a non-standard eigenvalue system

was manipulated to reduce to the standard form. the size of the system was doubled
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again. Similar reports were also seen in later papers [18-23] for the problems of wave
propagation inside anisotropic media. No radiation and scattering analysis has been
reported in this context.

In what follows. we generalize the FEM formulation to lossy and anisotropic
electromagnetic problems. Specifically. we show that two different methods. one with
the aid of an adjoint auxiliary system and the other with the Lagrange multiplier. can
be used to construct the pertinent functional. Galerkin’s method is then compared

to these two variational techniques.
2.1.1 Pertinent Functional For Lossy/Anisotropic Media — I

As is known. the natural variational functional no longer exists for non-Hermitian
operators since no matter what definition is given for inner products (see (2.7) or

(2.8)), one cannot obtain a self-adjoint operator necessary for natural functional

design. In these cases. we consider a generalized functional
F=<LOPU>-<dK,>-< VK> (2.11)

where ® is the unknown solution function of the original PDE problem and K is
the right-hand-side function as in (2.1). Similarly. ¥ is the solution function of the

adjoint PDE such that

where L, can be derived from
< LD VU >=<d. L,V > (2.13)

with £ # £,.
[t should be remarked that the functional (2.11) reduces to (2.6) (except for a

possible constant coefficient) if £ is self-adjoint. Also. the original PDE and its
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adjoint counterpart (2.12) can be recovered through the variational process with
respect to the functions ® and W. respectively (the simple derivation is omitted
here). After discretization is carried out. the final numerical system is symmetric.

This can be shown as follows. Let

o= &V U= yV; (2.14)
i i

where V; is the basis function used for both unknown functions and r;. y; are the

corresponding expansion coefficients. Inserting (2.14) into (2.11) yields
F=) 3z <LViV;>=> 5 <V.Ka>-)» y; <V, K> (215)
P i B

Upon performing the differentiation with respect to r; and y; individually. we get
the two decoupled systems of linear equations

0 QF X K~

Qv 0 y K

where the matrices Q. Q¥ and the column vectors K*. K¥ are given by

Q:’; = <[.:V_,',Vg>
QL = <LV.V;>
Kfi = <V, K>

T

Ky; = < V,‘.Ka >

In general. QF; # QF. Q! # Q}; and QF; # Q. However, Qf, = Q¥ = (QIHT.
These relations indicate a loss of symmetry of the original problem, but the symmetry
holds for the overall system!

The storage requirement is a function of .V/2. where \V is the dimension of (2.16).

Even though there is an auxiliary system needed to complete the analysis. in practice

this system does not require storage.
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2.1.2 Pertinent Functional For Lossy/Anisotropic Media — II

An alternative to using an adjoint system is to employ the Lagrange multiplier
technique in constructing the pertinent functional. The Lagrange multiplieris usually
used to incorporate additional constraints to a system. To illustrate the technique.

consider the same PDE model as described in (2.1). and we first rewrite it as
L®-K;=0 (2.17)

Next, we assume an expansion space where the solution is defined and solved. The
unknown function ® and the multiplier function A are expanded in the same space.
[f (2.17) is regarded as a “constraint”, we try to add the constraint to a “null” system

and get
F(®.A)=< A, LO-K; > (2.18)

This functional is now used to formulate the FEM. As described above. on applying
the Rayleigh-Ritz procedure to both ® and A using the same set of basis functions.

viz.
®=) V.. A= AL (2.19)
¢ J

we obtain

(£
SV
(=]
~

F(@.0) =) Y zy; <V, LV,-K;> (2.
iy
Carrying out differentiation with respect to r; and y;. individually, vields

0 QF X K~
= (2.21)
Q¥ 0 y 0
where QF; = QY% as in (2.16). We observe that {2.21) is similar to (2.16) with two

decoupled subsystems of the same size. The properties of the subsystems are also
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similar to those in (2.16). We further observe that the Lagrange multiplier technique
may be regarded as a special case to (2.11) where a homogeneous adjoint PDE is
now virtually assumed (i.e. K, = 0). Again, it should be remarked that when a
self-adjoint problem is considered. the above formulations (both the adjoint system
approach and the Lagrange multiplier technique) will result in a symmetric system
and the auxiliary subsystem becomes either redundant (for adjoint approach) or un-
necessary (for the multiplier technique). In the later case. the multiplier can be
considered identical to the unknown function ® expanded using the same basis func-
tions. This results in an interesting coincidence with Galerkin technique described

next.

2.2 Galerkin Formulation

Galerkin’s method is now considered to formulate the finite element method. Tra-
ditionally. Galerkin’s technique used in conjunction with integral equation employs
the same testing and expansion functions to obtain a symmetric dense numerical
system. However. in the case of the FEM., Galerkin's method does not always lead
to a symmetric system. Apart from boundary conditions. the linear operator of a
PDE problem determines the symmetry feature of the resulting system.

Also. unlike the variational approach. Galerkin's method solves the weighted PDE

by a testing process as
<VU. LD >=< V.K; > (2.22)

where ® and W are both defined in the same function space. Specifically. in Galerkin’s
method one seeks the solution for the unknown function ® which satisfies certain

prescribed constraints and (2.22). with the aid of another arbitrarily chosen function

.
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Similarly to the variational approach. the Rayleigh-Ritz procedure may also be
used to project the continuous space onto a finite discrete separable Hilbert space.
The mathematical problem is then rephrased to seek a discrete solution set whose
entries are the coefficients of the expansion. The testing function ¥ must. of course.
be defined in the same discrete space to ensure that the original PDE is solved with
proper boundary conditions.

It is obvious that if the linear operator £ is self-adjoint. the choice of the testing
function ¥ = @ results in a symmetric numerical system. Otherwise. no matter how
the inner product is defined, the final discrete system in general does not exhibit
symmetry property.

We observe that Galerkin’s method can usually be applied to any linear operators
even when the corresponding natural functional does not exist. Also in the general
cases (as considered when describing the functional approach). Galerkin's method
leads to the same numerical system as the desired portion in (2.16) and (2.21). This

can be demonstrated as follows. Inserting (2.14) into (2.22). we readily obtain

YN iy <ViLVi>=) y<V.Ki>
i J

or

Zy,-{zx,-<v,-.z:v,->—<V,-,K,->}=o (2.23)
7 i

As assumed, ¥ is an arbitrary function. Thus the term in the curly bracket should

vanish. vielding
Qx =K~ (2.24)

which is exactly the same as the subsystem derived from the variational approach.
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[t is noted that if one chose the Lagrange multiplier (in the variational approach)
as the testing function ¥, the same numerical system would result. Analytically,
though. the entire system is twice the size of that derived via Galerkin's method.
This is due to the fundamental difference of the two techniques. Regardless, as

expected, the obtained numerical systems of interest are virtually identical'

2.3 Total Field and Scattered Field Formulations

In this section, we focus on a general scattering problem as illustrated in fig. 2.2,
where a perfectly conducting electric (PEC) body is coated with a dielectric layer

whose relative permeability and permittivity are &z, and &, respectively. (Note that

Qg: dielectric coated region (&4,7z,)

Qy: free space (¢; =p; = 1)

Q,: absorbing layer (¢,,%,)

[,: boundary of the PEC body

[4: boundary of the dielectric coating and free space region
['s: boundary of the absorber and free space region

[¢: PEC boundary of the outer absorber

Figure 2.2: Illustration of a scattering problem setup for scattered field formulation.

for the purpose of generality, the medium is assumed anisotropic.)
The situation with absorbing boundary conditions for truncating the FEM do-

main has been analyzed before (see e.g. [24] or [25]). However. two issues associated
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with this type of problems have not been carefully addressed in the literature. One
of them is the equivalence between the variational and the Gz:erkin’s method when
the scattered field is used as the working variable. Proof of this equivalence can be
tedious and cumbersome but it is nevertheless an important issue. Unfortunately,
one is used to assuming that these two formulations are equivalent without proof.
Another issue relates to the recently introduced perfectly matched absorbing mate-
rial. As it turns out, there are several advantages to use artificial absorbing materials.
including accuracy control, conformality. ease of boundary treatment, etc. However,
their inclusion introduces additional artificial conditions inside the absorber layer
and care must be taken when those conditions are enforced in the FEM formulation.
Moreover, although a metal-backed absorber layer simplifies the FEM implementa-
tion, the multilayered FEM region contains high inhomogeneity., which again requires
a careful presentation of the formulation. To this end, we extend our theoretical dis-
cussions on the FEM to scattered field representations, where the treatment of the

boundary and transition conditions will also be described.

2.3.1 Scattered/Incident Fields and Boundary Conditions

Referring to fig. 2.2. we begin with the wave equation in terms of H (the E
formulation may be readily handled by duality). To proceed with Galerkin’s method.

we first write H' as

Htat — Hacat + Hinc ( 9

[V
[\
[ 1]
-~

where H*® and H™ are the scattered and incident field, respectively. Next. weight-

ing the source free wave equation with the testing function V yields

N
(3]
(2]
~

/V-{Vx?:l-VxH—kgﬁ,-H}dQ:O (2:
Q
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where Q = Q; + Q; + €1, encompasses the entire computational region. To proceed
with the derivation of the weak form wave equation, it is necessary to introduce
certain constraints on the scattered and incident fields within Q and on the boundary.
First, since the incident field is not allowed to pass through the absorber layer as

well as the metal back wall [y, we note that

Hscat + Hinc re Qd + Qf
H"(r) = (2.27)
Heee r € otherwise
with the incident field satisfying
=1 — . =0 rec Qa + .Qf
{v x TV x -kgﬁ,-} H (2.28)
#0 r € otherwise

[t is thus evident that the scattered field satisfies the homogeneous wave equation in
regions €, + Q5 and the inhomogeneous wave equation in Q4.

The boundary conditions on H*** can be readily derived by consistently applying
the field decomposition (2.23). Note that in accordance with (2.27). the electric field

is likewise decomposed as
Etot = Escat + Einc (2.29)

However. one should be cautioned that E™ and H™ do not satisfy Maxwell equa-

tions in the dielectric region. That is,
JwegE™ £V x H™ reQy (2.30)

which conflicts with what one would intuitively assume. Conventionally, the incident
field is assumed to exist in the dielectrically coated region 1y as if there was no
dielectric there. After a quick glance. one would immediately arrive at a conclusion

that (2.30) is against Maxwell theory. In reality. it can be proved that if E™ and
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H™ indeed satisfied Maxwell equations in €. a contradictory boundary condition
would immediately result. This can be seen by taking a curl operation on both sides

of (2.23). In view of (2.29) and Maxwell equations in dielectric media. we would have

—

& VxH" =% -VxH™ 4§ -VxH™ re, (2.31)

Imposing the condition of total field tangential continuity at the boundary 'y would

yield
& x {?;1 LV x Hscatlrz. _g;l -V x Hmth_;} =0 (2.32)

which is a homogeneous Neumann boundary condition. However, if we start with
(2.27), upon taking the curl operation and imposing the condition of total field

tangential continuity at the boundary 4, we get
. =1 t =1 - t _ - =1 =1 { E
ix (G v x B Y x B = —ax (G- v ER (233)

which is an inhomogeneous Neumann boundary cendition.

This inconsistency is because (2.32) was derived on the basis of the decomposi-
tion (2.29) and the assumption that the incident field within dielectric regions also
satisfies Maxwell equations. However, the decomposition (2.29) is artificial and it
is therefore necessary to keep in mind that only (2.27) holds true when deriving
boundary conditions.

As a rule of thumb. an appropriate interpretation of the phenomenon should read:
the incident field inside dielectric media eristed in the same fashion as in free space
as if the free space was replaced with the media. Mathematically. this implies the

condition

jweE™ =3V x H™ reQy (2.34)
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Consistently one can derive the other boundary conditions required for the FEM
formulation following the same procedure. They are classified as Dirichlet and Neu-

mann conditions as follows.

e Dirichlet Conditions

Boundaries | Conditions
T, A x H* =K? — i x H™ (K, unknown current)
r, aox {H], — H*<|_} =0
I, A x {Hscnt|+ _ Hscatl—} — _h x H™
To A x H** = K® (K, unknown current)

e Neumann Conditions

Boundaries | Conditions
r, AxE \7><H3°°‘=-fzx§;‘-vXH""c
Lo [ax{&'vx H‘} IR
Ly ﬁx{?:l'\_’xH““H x& -V x H™
To n x E“ -V xH* =0

where {} If denotes {} |+— {}|_ and & and H** should take the values at

positive and negative sides of a specific boundary.

2.3.2 Galerkin’s Method

Returning to (2.26) and in view of the vector identity

A-VxB=(VxA)-B-V.(AxB) (2.3:

S
w
(1)
=

and the divergence theorem. we obtain the corresponding weak form wave equation

Inty + Inty + Int, =0 (2.36)



where

Int, = / [V. % V’al .V x (Hscut + Hinc) _ kgV .ﬁr R (Hacut + Hinc)] d0
Q

L
d

+/[_pV-(r‘zox?;1-VxH) dS+/FdV-(lex§l-V><H""c) ds

+/ Vo (x &'V x B dS 237
Cq
Intf = VXV"g;l,vascatdQ_*_/ V-(—lexal-vasm‘) ds
Q |} /
+ / V - (ﬁ2 X ?;l - V X Hscut) dS (2.38)
Uy
Int, = / VXV--E:l,VXHscatdQ_{_/ v'<—f12X€:l>VXHsmt) ds
a r!
+ / V- (fzg XE, -V x H‘) ds (2.39)
To

with Rg, A1, Az and nz being the unit normals at the boundaries [',. ['4. [y and [.
respectively. They all point away from the center of the PEC body (i.e. outwards).
[nvoking the boundary conditions as tabulated above. we observe that the surface
integrals on [, in (2.37) and on Iy in (2.39) vanish. Also. the sum of the surface

integrals on [’y in (2.38) and (2.39) reduces to

— | Vehyx& -V xH™dS (2.40)
Ty

Similarly. the sum of the surface integrals (involving H****) on [y in (2.37) and (2.33)

becomes

V- iy x (?;‘ -a‘) .V x H™ dS (2.41)
[q

Note that both integrals (2.40) and (2.41) will not contribute to the system. but to
the excitation on the right hand side. Of course. the excitation term (2.41) would
disappear if the permitivity is continuous across the boundary I'y. By duality. for

an electric field formulation. a term similar to (2.41) will appear for discontinuous
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permeability. This observation does not hold for (2.40). which arises from the inher-
ent incident field definition on the two sides of the boundary [y, as mathematically
shown in (2.27). Furthermore, the second term in (2.41) will be cancelled out with
the integral on [’y involving H'™ in (2.37). After a simple manipulation. the final

system reduces to

/(V X V,gr_l .V x Hscat_kgv_ﬁr_Hscat) dQ
Q
=_/ (vxv-?r—l-vxHinc—k§V'ﬁr'Hinc) d0
Qq

— | Vi xE -VxH™dS+ | V-iyx& -V xH™dS (2.42)
[‘d [‘f

where €, is again the relative permittivity with respect to the specific region. This
is the desired weak form of the wave equation, and a similar equation was obtained

in [24] using the functional formulation for isotropic media.

2.3.3 Variational Method

It is now of interest to employ the functional formulation to obtain the equation
corresponding to (2.42). To this end. it is intuitive to begin with the total field

representation and use the functional

f(H)=£/ (vaE‘-vXH—kgH-ﬁ,-H) dQ (2.43)
Qy+Q5+Qa

where. as before. €, and 7, denote the corresponding relative permittivity and per-
mebility. respectively. Also similar to Galerkin's method. one would now logically
proceed with the field decompostion H = H*** + H™ and express the functional
in terms of the scattered field. It is unfortunate that this approach will result in a
different form of linear system than (2.42) and the detailed mathematical proof is

presented in Appendix D.
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The discrepancy arises from the assumption of the functional (2.43), which is not
a valid expression when the corresponding PDE operator is no longer self-adjoint. Re-
call in section 2.1.1 that the presence of general anisotropic and lossy media requires
the application of an auxilary adjoint system. together with which the pertinent
functional is given by a generalized form in (2.11). It is therefore necessary to begin
with this generalized functional rather than (2.43). In a source-free region. (2.11)

explicitly takes the form
F(H,.H) = / H, - {V X&' -V xH=~kET,- H} dV’ (2.44)
Q
and the variation is imposed on the adjoint variable H, to get

§F(H,.H) =0 (2.45)

sH=0

The variational functional method of this version proves valid and identical to Galerkin’s
technique for any linear operators in electromagnetic problems. It is also interesting
to note that once compared to Galerkin's method, the adjoint field quantity H, in
(2.44) seems to take place of the testing function V in (2.11). However. H, theo-
retically differs from V in that the former is defined as a solution function for the
adjoint system of the original PDE problem. whereas the latter is just an arbitrary
admissible testing function that does not have to be a solution to the adjoint system.
Apart from the concept difference as mentioned above. the mathematical proce-
dure required to derive the FEM system is similar to that presented in the previous
subsection. and will not be discussed here to avoid repetition. One can be assured

that the final system obtained from (2.44) and (2.45) is of course identical to (2.42).



2.4 Parameter Extraction

An accurate full wave analysis can only predict the near field (for PDE type
methods) or current (for integral based techniques) distributions. which can be used
to obtain certain practical parameters depending on applications. For intricate sys-
tems. involved numerical models may be needed for output data extraction. including
far field evaluation in the presence of non-canonical platforms and a de-~embedding
process for antenna feed network or circuit simulations.

Antenna parameters can be readily evaluated after the near field distribution
is achieved via full wave analysis. The de-embedding process is required for feed
network or circuit modeling and will be discussed in chapter 7. For a non-planar
platform the far field evaluation can be obtained from the general discussion in
chapter 1. where the formulation in terms of the dvadic Green’s function must be

used to consider the equivalent currents and the free space Green's function.

2.4.1 Radiation and RCS Pattern

In the case of antennas. we are mostly interested in their radiation and scattering
patterns and other related parameters such as gain and axial ratio. (The near field
quantities such as input impedance. feedline S-parameters. etc.. will be disccussed
in later chapters). Both radiation and radar cross section (RCS) patterns can be
readily characterized with respect to the 3-D spherical coordinates § and o.

Consider the planar cavity-backed antenna as shown in fig. 2.1. Once the field
distribution on the aperture S of the conformal antenna is obtained from the full wave
analysis. we can then proceed to evaluate the far field pattern. The most straightfor-
ward approach for this computation in the presence of an infinite conducting ground

plane is use of the equivalence principle. To do so. we define the magnetic current
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as M = —2 x E°. where E° is the electric field evaluated on the aperture and ? is

normal to the aperture surface. The electric vector potential is then given by

—jkr —
F0.0) = =2 / / MekT' 4§
S

47r

-jkr 3 ’
S

47r

where the electric field is typically expanded in terms of the surface vector basis

function S;. Introducing this expansion. (2.46) becomes

—jkr .
F(6.0) = f‘f_r > Er / / S§ x 24T 4’
" e i Se

—gkr
S LR 7 (2.47)

47r

where 17 denotes the sum of the surface integral over each of the discretization

elements on the aperture. The far zone magnetic field H becomes
Hr = —juFr (2.48)

where H7 represents the transverse component of the far zone magnetic field. whose

0 and o projections are given by

foe‘jk’ e e . .
{cos 8 cos @V + cosfsin @V, —sin GV}

Ho = —jw dar

weoe T
= p
ixr (2.49)

—skr
. €e™’ . er .
{=sinoV: + cos oV, }

Hc‘, = —Jjw
iar
\ —jkr
<€g€

dar
in which Pp = —j{-} and P, = —j {-}. and {-} stands for the corresponding terms

in the curly brackets. The RCS of the ¢ (¢ = 8 or ®) component can be represented

in terms of Py and P, to vield

o | Hy |2 2e2
O’:cs—':-lTFT‘ZI t| =“‘ Olptllz

|H|? i

/\Q—ZglPJ" (2.50)
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where A and Z; = \/;zo_/eo are the free space wavelength and the intrinsic impedance.
respectively. In (2.50). the incident wave | H*| was set to unity without loss of general-
ity. In practice, it is customary to express RCS in dB, where o, is usually normalized
to A% or to squared meter first.

The radiation pattern may also be represented in the same manner as mentioned
above. The difference in procedure here is the normalization with respect to a max-
imumn radiation field value. The reason is that in radiation mode. the antenna is
excited by an interior source rather than the incident plane wave H* as in the scat-
tering case. Of interest therefore is the relative field intensity in the far zone. To get
this, we represent the far field intensity in terms of the above calculated quantity

o™ to avoid a repetition of post processing. Specifically, the formula

is used for radiation analysis.

2.4.2 Gain and Axial Ratio

Gain (G) and Axial Ratio (AR) are two important parameters which indicate the
antenna's performance. [t is also noted that these two quantities typically charac-
terize the far zone features of the antenna.

By definition. the gain G for a lossless antenna (with 100% efficiency) is given by

) 27'.Umax -
G = L max (2.
Prad

o
Ot
[
~—

for a cavity-backed structure, where [/, is the maximum power density and P4
denotes the total radiated power from the antenna in the upper half space. (It is

noted that this definition of GG is identical to that of directivity for lossless antennas.)
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Since the maximum power density Uya« can also be expressed as

.z .
Umax = 1‘3‘ (0'9 + 0’¢) (2.03)

“Tit
the antenna gain becomes

Zo(og + 05)

¢= 2Pad
Thus, the computation of G is rather trivially done once ¢ is found as given in the
previous subsection. In reality, P4 may be evaluated on an assumption that all
input at the feed is transferred to antenna element(s) and radiated. In this case. one
has Praqa = [*R;,, where [ is the known current source on the feed. and R;, is the
input resistance of the antenna measured at the reference plane.

However. this scheme may not always work since the gain (more precisely direc-
tivety) reflects the far field behavior. while the input resistance computation relies
on an accurate full wave model for near field prediction. It is well known that the
far field and the near field computations offer different accuracy. This accuracy in-
consistency arises if R, is used to determine the gain G, a far zone pattern whose
accuracy is directly governed by the near field computation without averaging effect.
To avoid this accuracy inconsistency, one may calculate the gain or the directivity by
evaluating P,.q from the far field radiation pattern. Specifically, P..q can be obtained

by integrating the radiation intensity

Paa = / / [ do
2T
- é/// (05 + 00) dO (2.55)
4 2=

over the half space. It is obvious that if a certain symmetry of the pattern remains

such as circular about the vertical Z axis. then [7(8. ¢) reduces to [7(#) and the above
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integration can be effectively evaluated. Otherwise. a numerical 2-D integration is
required.

Axial ratio (AR) is another important antenna parameter, especially when a
circular polarization (CP) of antenna’s performance is of the primary concern. Since
AR also features the far zone effect of the antenna. it is desirable to determine AR
with a minimum computational load. It is noted that given the above pre-calculated

og and o, one is again able to determine AR uniquely by

AR = Jons (2.56)

‘/;hort

with

(Mg

}
}

where 3 = 2(®y, — Py, ), the twice of the phase difference between the two magnetic

2

. 1
Viong = \/— {03 + 02+ [03 + 0} + 20302 cos 3]

(RIS

. 1 ,
Vihore = \/ 7 {03 + 02 — [o§ + o2 + 20202 cos 5]
field components. It can be obtained from the quantities P; and P, defined in

(2.30). Since these two quantities are complex numbers. the phase difference is

readily represented as

——
N
(W]
o

~—

3=—3lm {ln %}

with Im {-} being the imaginary part.



CHAPTER III

Edge-Based FE-BI Technique

3.1 Introduction

Numerical methods have been serving the engineers and researchers for many
vears in antenna analysis and design. Among them, the moment method in con-
junction with various integral equation (IE) formulations played a major role [1-3].
However, IE methods are associated with field representations in which the appro-
priate Green's function for the specific geometry must be emploved and this limits
their versatility. Moreover, [E techniques are usually formulated on the assumption
of an infinite layered (not inhomogeneous) substrate. a model which deviates from
the practical configuration and leads to inaccuracies for larger bandwidth antennas.
Furthermore. in the context of [E methods. antenna excitations are represented us-
ing simplified models that differ more or less from the actual configurations. Also.
due to the singularity of the current distribution near the feed junction(s). special
measures must be taken [26] for proper modeling. In contrast, the hybrid Finite
Element-Boundary Integral (FE-BI) technique alleviates these difficulties and this
was recently demonstrated when the method was applied to inhomogeneous objects
of canonical shape scattering [27.28] and rectangular patch antennas [9].

Based on the past success of FE-BI methods for antenna analysis. it is desirable

43
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to extend the method to antennas of arbitrary shape. In this chapter. an edge-based
hybrid finite element-boundary integral formulation is presented for the character-
ization of arbitrarily shaped cavity-backed antennas [29]. An example of such a
configuration is shown in fig. 3.1, where a cavity is recessed in a metallic ground
plane enclosing the FEM volume. The antenna elements on the aperture may be
excited by different schemes. such as a simple probe, a magnetic frill generator. a
practical coaxial cable, microstrip line. slot or a CPW line. In the context of the
FEM, the cavity is first discretized into a number of tetrahedral elements that natu-
rally reduce to triangles on the cavity’s aperture. For non-rectangular patches this
triangular gridding is. in general, non-uniform and the exact boundary integral for-
mulation based upon this mesh applies to any patch shape. As a result, the hybrid
FE-BI technique is capable of modeling arbitrarily shaped cavity-backed antenna
configurations. different substrate inhomogeneities, anisotropies. as well as various

practical excitation schemes.

3.2 Hybrid System Functional

In this section. the edge-based hybrid FE-BI method will be formulated using
the variational principle. where matrix algebra notation is employed so that one can
readily extend the formulae to the general anisotropic case. As presented in {9],
the complete functional pertinent to the scattering and radiation by a cavity-backed

configuration shown in fig. 3.1 may be written as
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Figure 3.1: Illustration of a typical radiation and scattering problem.

F(E) = %///v’{(vxE)-ﬂ%(VxE)—kge,.E-E} dv
+'2jkoZo//(E x H') - 2dS
/// (JLOZOJ + V x ——M) dv (3.1)
— 2k // {// E x 3 <I+A—2VV) Go(r.r’)dS'} dS

where J; and M; represent interior electric and magnetic current sources within
the cavity V: H' is the incident field. if any. from the exterior region: the surface
S encompasses the cavity aperture excluding the portion occupied by the antenna
elements: ¢, and u, denote, respectively. the relative permittivity and permeability:
ko is the free space wave number, I the unit dvad, and Go(r, ') the free space Green's

function with r and r’ denoting the observation and integration points.

3.2.1 FEM Subsystem

In proceeding with the discretization of (3.1). it is convenient to decompose it as

F=F+Fs (3.2)
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where Fy denotes the volume integral contributions and similarly Fs accounts for the
surface integral contributions. The cavity volume is subdivided into N tetrahedral

elements V. (e=1.2....N), and within each tetrahedron as shown in fig. 3.2 the field

nodes/vertices

Figure 3.2: A tetrahedron and its local node/edge numbering scheme

is expanded using edge-based elements as
E=[VI{E} (3-3)
with

Vle = [{VzHVHV:He
( Vi \

N "’uZ
{vi.} = . u=1zr.y.z (3.4)

\ Vs
( E

E,
{E}c =

\ £ )
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in which V,; is the u (u = z,y or z) component of the volume vector basis functions
along the ith edge. The unknown vector {E}, has six entries, one for each tetrahe-
dron edge. (Here we use square brackets for matrices and curly brackets for vectors).
Inserting (3.3) into (3.1), and taking the first variation of Fv with respect to {E£},.

vields
§Fy =Y {[Al{E}. + {K}.} (3.5)

where

= Jff {iwvunvﬁ ~ BelVIVIT | o (36)

( 3
Jir -"’[i.t
. . . 1
(K} = // VIedjkoZo | gy |+ x=| a, |} 37
Ve Hr
Jiz M;.
\ /

a ... a ...
%{V:} - E{‘/y}

[DV]] = %{v;}—é%{v;} (3.3)

R
To carry out the above integrations. it remains to introduce the volume expansion
or shape functions V.. For our implementation we emploved the linear edge-based
shape functions for tetrahedral elements given in [30.31]. The explicit finite element

matrix entries associated with a typical tetrahedron (as shown in fig. 3.2) are given

in Appendix A for reference.
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3.2.2 Boundary Integral Subsystem

To discretize the surface integrals in (3.1), the aperture is subdivided into trian-
gular elements since these correspond to the faces of the tetrahedrals. Within each

triangle. the field is represented as
E = [S|T{E.}. (3.9)
where

Sl = [{S:HS M.
[ 5 )

“ul

u=z.y (3.10)

—
(JJ
R
—
il
5]

u2

=
£ )

{Es}e = Es2

\ESS)C

in which Sy; is the u(u = z, y) component of the surface vector basis functions along

the ith edge. On substituting (3.9) into the surface integrals of (3.1) and taking the

first variation of Fs with respect to {E,},. we obtain

§Fs = {[Bl{E.}. +{L}:} (3.11)

where
) 9 ) 2
— _.),2: SeT 21==4S —_:.t —{s T_'—'::T
Bl = [[[[ {-isasr 2| s - s [0 - o] |
Golr.r')dS dS’ (3.12)
and

H,
{L}. =j2k020/y [S.] ds (3.13)
Se -H!
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Note that in (3.12) the elements of the array [S.] are functions of the observation
vector r. whereas the elements of [S.]T are with respect to the integration point r’.

A suitable set of linear edge-based surface basis functions is

li .
PR (r—r;)e(r) res.
Si(r)={ 24 (3.14)

0 otherwise

In this expression (referring to fig. 3.3). {; denotes the length of the /th edge and r; is

it edge

st S.

¥

Figure 3.3: Pair of triangles sharing the ith edge

the position vector of the vertex opposite to the ith edge. Since each edge shares two
triangles. one is defined as the plus and the other as the minus triangle. Therefore.
e(r) is given by

| re St

e(r) = ) (3.15)
-1 res;

where S. = S + 5. The constant 4. in (3.14) denotes the area of the plus or
minus triangle depending on whether r € S} or r € S7. We note that S;(r) x 3
vields the basis functions used by Rao. et al. [32] in their moment method solution

of boundary integral equations. The explicit expressions for the boundary integral

equation subsystem is given in Appendix B for reference.



3.2.3 Combined FE-BI System

To construct the final system for the solution of the electric field components we

combine (3.3) and (3.11), and after assembly we obtain the system

{[A{E} + {K}} + {[B{E.} + {L}} =0 (3.16)

In this. {A’} and {L} are the excitation vectors due to the interior current sources
and the exterior excitation, respectively. The unknown electric field vector {E£}
consists of all field expansion coeflicients with respect to the element edges except
those coinciding with perfectly electrically conducting (PEC) walls, PEC antenna
element(s) or PEC pins inside the cavity. Finally. the vector {E,} represents the
unknown surface fields whose entries are part of those in { E} with their corresponding
edges on the aperture. The explicit expressions for the matrices and vectors in (3.16)
can be readily extracted from (3.6). (3.7) and (3.12) (see also [33]). It is evident that
[A] and [B] are symmetric as a result of the assumed isotropic medium and reciprocity.
In addition. [A] exhibits high sparsity due to the FEM formulation whereas [B] is
fully populated.

Two approaches may be followed in carryving out the solution of the combined
subsystems when an iterative solver is employved such as the biconjugate gradient
(BiCG) method [34]. These approaches differ in the manner used for the evaluation of
matrix-vector products called for in the iteration steps. One could sum the coefficient
matrices [A] and [B] by adding up the corresponding matrix entries prior to the
execution of the BiCG algorithm, or instead the resulting vectors may be summed
after carrving out the individual matrix-vector products. We observe that the first
approach is more efficient in terms of computation time after reordering the combined

matrix and storing only the non-zero elements. This is because. in the context of
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this scheme, the combination of the two matrices is performed only once outside the
iteration. However, the second approach is compatible with the BiICG-FFT scheme.
where the FF'T algorithm is employed to exploit the convolutional property of the

integral operator. thus eliminating a need to explicitly store the entire BI matrix.

The BiCG-FFT technique will be discussed in chapter 4.

3.3 Numerical Implementation

Based on the above presented FE-BI formulation, the hybrid method was im-
plemented and a computer program was developed for the analysis of radiation and
scattering by cavity-backed patch antennas of arbitrary shape. The antenna geom-

etry/mesh is first generated as shown in fig. 3.4 and supplied to this program in an

Figure 3.4: A typical geometry/mesh for a cavity~backed circular patch antenna.

input file which. as a minimum. contains
(a) the nodes and their (z.y. =) coordinates;
(b) the tetrahedral elements and the corresponding nodes forming each element:

(c) the nodes identifying the cavity aperture:
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[V}

(d) the nodes identifying metallic boundaries, antenna patch(es), feed(s). and pos-

sible vertical posts.

For arbitrary antenna geometries, it is necessary to employ a sophisticated volume
mesh generation package and a number of these are available commercially. Typically
each of these packages generates a “universal file” that can be readily preprocessed to
extract the aforementioned input list. Given the above list of data. an interpretation
routine is used to convert the information from node-elements to edge-elements. We
usually refer this procedure as data preprocessing. The flow chart shown in fig. 3.5
describes the major implementation procedures from the mesh generation. a few data
preprocessors. the FE-BI kernel. to the BiCG solution and finally the data output.

One of the primary complications in the hybrid technique implementation is the
efficient treatment of combining the two separate subsystems. [t is noted that the
FEM sparse matrix is large in dimension but requires less storage space. while the
boundary integral subsystem is always small in size but can be dominant in terms
of memory demand. This is particularly true when the non-metallic portion on the
cavity aperture predominates over the antenna radiating elements. Furthermore,
the boundary integral subsystem in a general purpose hybrid FE-BI implementation
is entirely independent from that of the FEM and even the basis functions can
be independently developed. This also accounts for the two arbitrary numbering
systems and combining them is a relatively complex task. One major advantage of
the method however is that these two subsystems can be developed and validated
individually.

Once both of the subsystems are verified, the coupling of the subsystems is ac-
complished by enforcing the boundary conditions implicitly on tangential H fields via

the integral representation and explicitly on tangential E fields over the interior and



IMPLEMENTATION FLOW CHART

/MESHER //
Z v /

{ Universal File ]

I
Y ! FOR Y

FEM System BI System Feed Models Combinations

— FEM System

—— Bl System

i I

i L Feed Models
| ]

; . .— Combinations
! |

I |

Figure 3.5: A flow chart describes the major implementation procedures from the
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BiCG solution and finally the data output.
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exterior regions. A significant effort was devoted to developing a program in such a
manner so that both the storage and computational requirements can be minimized.
Specifically, the boundary conditions on the metallic surfaces are enforced a priori
to condense the system which involves only nonzero field components. To this point.
the sparse finite element matrix was stored as a single array of length N, :V,,, where
N, is the total number of unknowns within the cavity volume and N,, denotes the
maximum number of nonzero row entries. The BI matrix was stored in different
ways for the evaluation of the matrix-vector products. If the BiCG solution was to
be carried out without special treatments (such as incorporating the FFT). then the
Ny x N, Bl integral matrix is added to the FE array resulting in a 1-D array about
N, Ny, + N? long. For slot antennas, including cavity-backed spirals. and moderately
sized systems, it was found preferable to use this scheme. In that case the generation
of a single combined FE-BI matrix before execution of the BiCG algorithm reduces
the computational requirements. This is because a number of operations associated
with the repeated combinations of the FE and BI subsystems within the BiCG iter-
ation is avoided. The alternative is to carry out the matrix-vector products for the
FEM and BI subsystems separately. The advantage of the scheme becomes appar-
ent when a special treatment is performed on to the numerical system for efficiency

consideration and this will be investigated at certain depth in chapter 5.

3.4 Selected Numerical Results

We present below some representative numerical results for the purpose of vali-
dating and demonstrating the robustness of the tetrahedral formulation for scattering
and radiation by different configurations of cavity-backed antennas. In each case the

computed results via the FE-BI method are compared with reference measured or
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calculated data.
Scattering and radiation by a circular patch:

Fig. 3.6 illustrates a circular patch residing on the surface of a 0.406 cm thick
substrate having a relative dielectric constant of ¢, = 2.9. The patch’s diameter is
2.6 cm and the substrate is enclosed in a circular cavity 6.292 cm wide. This cavity
and the patch were recessed in a low cross section body for measuring its RCS. A
comparison of the measured and calculated backscatter gss RCS as a function of
frequency is also shown in fig. 3.6. For this computation the direction of the incident
plane wave was 60° from normal. and as seen the agreement between measurements
and calculations is very good throughout the 4-9 GHz band. Input impedance mea-
surements and calculations for the same patch are displayed in fig. 3.7. The probe
feed in this case was placed 0.8 cm from the patch’s center and it is again seen that
the measurements and calculations are in good agreement.

Radiation by a one-arm conical spiral:

We considered the modeling of this radiator to demonstrate the geometrical ver-
satility of the FE-BI method. Two projections of the spiral radiator and surface mesh
are illustrated in fig. 3.8. The top and bottom edges of the strip forming the spiral
follow the lines p = 0.0503A exp[0.221(6 £2.66)]. = = a4 exp(0.2219). where (p. 0. =)
denote the standard cylindrical coordinates, ay are equal to 0.0832A and 0.0257A.
respectively. and 0 < © < 27. This spiral arm resides on an inverted cone (9.24 cm
tall) whose bottom cross section has a diameter of 1.68 cm and the top cross section
has a diameter of 21.78 cm. For our calculations A = 30 cm (f = 1| GHz) and the
spiral was situated in a circular cavity 10.01 ¢m deep. The computed E, principal
plane radiation pattern taken in the @ = 90°-plane, using a probe feed at the cavity

base. is given in fig. 3.9. It is seen that this pattern is in good agreement with the
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data given in [33]. As can be expected. the Ey pattern (not shown) differed from
the measured data near the horizon because of interference from the finite circular
cavity housing the spiral which was included in the analytical model. The latter was
not part of the measurement configuration which consisted of the spiral antenna on
a large circular plate.

Annular slot impedance:

Fig. 3.10 shows a narrow circular (0.75 cm wide) annular slot situated in a cir-
cular cavity 24.7 cm wide and 3 cm deep. Because the annular slot is narrow. the
implementation of the BI subsystem is very small for this application and as a result
there is no need to invoke the FFT in the BiCG algorithm. The FE-BI method is
basically quite effective in modeling small aperture configurations without a need for
special computational considerations. Input impedance calculations as a function of
frequency for this radiator, excited by a probe placed across the slot, are shown in
fig. 3.10, and agree well with the values calculated via a modal-boundary integral
method [14]. For these calculations, the frequency was swept from 700-1000 MHz.
The dielectric constant of the material filling the cavity was set to €, = 1.35 as in [36]
and this is an effective value to account for the presence of a dielectric slot cover used
as part of the measurement model for holding the plate.

Stacked circular patch antenna:

To demonstrate the capability of the developed hybrid technique, we now present
a qualitative study and visualization of the near field distribution inside a cavity-
backed, stacked circular patch antenna as shown in fig. 3.11. Note that the similar
configuration with rectangular patch shape has been investigated and found a sig-
nificant bandwidth increase. This is because of the dual frequency resonance due

to the two stacked patches. The circular patches are more attractive than stacked



Figure 3.8: [llustration of the configuration and mesh of the one-arm conical spiral
used for the computation of fig. 3.9.
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rectangular patches because they occupy a small area when operated at the same fre-
quency [37]. Unfortunately, no sufficient research on this geometry has been reported
in the literature due to a lack of analysis tool.

It turns out that the above presented hybrid FEM technique is well suited for
this study. To show this, we chose a cavity-backed. stacked circular patch antenna
fed with an offset single vertical post underneath the lower patch to link the cavity
base (viewed as a ground plane). No direct electric contact between the upper and
the lower patches exists and thus the power transfer has to rely completely on the
electromagnetic coupling from the lower to the upper patch. This can be clearly
verified from the near field visualization, which is available and complete only via the
PDE related techniques. (The laboratory measurement may provide the image of the
field distribution above and near a microstrip [38].) Another interesting point is that
though the antenna was fed with a single offset probe, the energy is concentrated at
two distinct regions. One is around the probe feed. and the other is near the opposite
location with respect to the center of the patch. The two regions act as out-of-phase
electric pole to effectively excite the antenna. Although the patches are circular in

shape, the offset excitation ensures the linear polarization in radiated fields.

Figure 3.11: Visualization of the near field distribution at the lower layer of a stacked
circular patch antenna.



CHAPTER IV

Efficient Boundary Integral Subsystem — I

4.1 Introduction

As is known, the hybrid finite element-boundary integral method is accurate and
capable of handling a variety of conformal antennas. However, the drawback as-
sociated with this technique and any other global truncation approaches can make
it less attractive. This is especially true if one is interested in modeling large an-
tenna systems (arrays). Although the FE-BI method is particularly suited for the
configurations with relatively small aperture size and possibly complex cavity design
(including feedlines, isotropy/anisotropy, other layers of metals. etc.). it would be
much more useful to accelerate the speed and reduce the CPU requirement for the
hybrid approach. One possible solution is the CG-FFT technique discussed in this
chapter.

The boundary integral (BI) equation subsystem leads to a fully populated matrix
whose size is determined by the number of aperture mesh edges. For large apertures.
this analysis becomes impractical in terms of storage and computation time require-
ments, and to overcome this inefficiency. a uniform zoning of the aperture is required.
By resorting to the structured mesh. the boundary integral matrix can be cast into

a discrete convolutional form. thus permitting the computation of the matrix-vector

61
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products via the discrete Fourier transform (DFT) and avoiding a need to store the
full BI matrix. This memory saving scheme has already been applied to IE solutions
involving rectangular grids [39.34]. and a similar implementation was also reported
for triangular surface grids [40] involving inherent approximations. In this chapter.
we first show that the BiICG-FFT solver can be precisely implemented on uniform
triangular meshes. The differences between the rectangular and triangular meshes
are also described. For non-rectangular antenna geometries. a special treatment re-
ferred to as the overlaying scheme is proposed and discussed in section 4.3. A few

results are presented which demonstrate the method’s validity.

4.2 Application of Conjugate Gradient Algorithms

The Conjugate Gradient (CG) iterative solution of linear systems of equations has
been extensively investigated and the representative references are collected in [41].
Although the state-of-the-art CG algorithms do not lend themselves as a robust
input/output “black-box™ [42]. they are indeed capable of handling large-scale com-
putational problems which may be impossible for direct system solvers. It is espe-
cially desirable to employ the algorithms when one seeks the solutions of large-scale

numerical systems without resorting to costly computing resources.

4.2.1 BIiCG Algorithm With Preconditioning

Conjugate gradient (CG) algorithms have been developed for over forty vears
[43.44] and one of the primary applications nowadays is to solve large scale linear
svstems. as aforementioned. It is noteworthy that there exist various versions of
the CG algorithms, taking advantage of different properties of the matrix such as

symmetric and sparsity. Also. preconditioning is often used to speed up convergence.
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As suggested in [45.46], the algorithm used in this work is as follows:

Given

p1=l‘1-_—b—A’X1

For £=1,2,3....
I‘k i v

A = —/—F———
Pr-A-p;
Tri1 = Tk — oA - Py

— — A xT =
Tiv1 =Tk — a A™ - Py

Trgy " Thet
3 = Thtt Dot
rk'rk

Pi+1 = Tk + OPs

Prs1 = Tkt + 3cPs

Xkl = Tk + 0Py
where * denotes the complex conjugate and T is the transpose. This version of the
iterative algorithm is quite general in terms of the system matrix to be solved and
is usually referred to as the Biconjugate gradient (BiCG) method for unsymmetric
systems. If the matrix A is symmetric and the initial value is chosen as ¥; =
r], the algorithm can then be shortened to require only one matrix-vector product
per iteration, since in each step Ty and P, are complex conjugate of ri and p,.
respectively.

The ordinary conjugate gradient algorithm can be considered as a special case of

the BiCG when A is Hermitian (i.e. A = A"T). Again in this case, the algorithm can
be shortened to have about 50% less computational effort. The CG algorithm is also

amenable to a straightforward interpretation of its convergence principle. Basically.
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the algorithm minimizes the function

f(x)=%x-A-x—b-x

Hence x obtained from the CG algorithm after the k iteration steps becomes the

solution of the equation
Af(x)=A-x—b=0

The CG type of algorithms did not become competitive until preconditioning
was introduced to improve the original system condition and significantly reduce the
convergence rate. One simple preconditioner is the inverse of the original diagonal
matrix. In our applications this preconditioning has been quite successful and is used

in conjunction with the BiCG algorithm.

4.2.2 BiCG-FFT Algorithm For Linear System

In our work. the linear system of equations is usually large in size. partially full
and partially sparse. The conjugate gradient (CG) type of algorithms can be used
to alleviate the memory requirement since the LU decomposition requires excessive
memory and CPU time. However. the partially dense matrix due to the boundary
integral equation may still dominate the CPU demand. This is because the method
of moment (MoM) always leads to a dense system by its nature. Solving the dense
system in a traditional manner requires O(N?) order of operations per iteration.
where V is the boundary integral system dimension. Reduction of the operation
counts will of course significantly decrease the solution time and this can be accom-
plished by recasting the BI system onto a few Toeplitz submatrices and making use

of the fast Fourier transform (FFT) to carry out the matrix-vector products in the

BiCG solver.
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As described in the next section, the boundary integral equation can be cast into
a convolutional form if a uniform grid is applied for discretization. This is not sur-
prising since the Green’s function is involved in the integration. To solve the equation
using the CG algorithm, it remains to carry out the convolution at each iteration.
To this end, one may calculate the convolution by taking the Fourier Transform of
two spatial data sequences (arrays) in which the convolution becomes the product of
the two ‘frequency’ sequences. An inverse transform of the product yields the result.
[n contrast to the order of O(N?) CPU requirement for a matrix-vector product in
a traditional fashion. the scheme needs O(Vlog, V) operation counts if the FFT
algorithm is employed. The operation reduction is indeed significant and the tech-
nique has the lowest CPU demand among integral equation solvers, including the

fast multipole method (FMM) [47], thus is always preferred.

4.2.3 Convolutional Form of Boundary Integral

The boundary integral equation is discretized using the structured triangular grid.
and the relation between the unstructured and structured mesh is described in the
next section. We recognize that the triangular grid consists of equal right triangles
as shown in fig. 4.1 and thus involves three different classes of edges (class 1. 2 and
3). These include the x-directed, y-directed and the diagonal edges. all of which are
uniformly spaced. For the FFT implementation each class of edges is independently
numbered in accordance with their geometric location. Specifically. the ith class will
carry the numbering (m, n) if the edge is the mth along the r direction and the nth

along the y direction. The indices (m, n) take the values

m = 0,1.2.... M

n = 0,1.2..... N
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n:

mo 1 2 3 . . ..M

Figure 1.1: Structured mesh consists of equal right triangles

with ¢ = 1 for the y-directed edges. i = 2 for the diagonal edges and ¢ = 3 for the

z-directed edges. Consequently, we find that

[(v—2 =1 Nol i=1

M={ -1 i=2 Ni={ N_1 i=2 (4.1)
M—-1 i=3 N-2 i=3
\ \

where M and NV denote the numbers of elements along the r and y directions.
respectively.

To perform the integrations for the evaluation of the boundary integral matrix
elements. it is now convenient to rewrite the basis functions (3.14) in terms of the

new indices (m.n). We readily find that the edge-based basis functions associated
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with each of the aforementioned class of edges can be rewritten as

¢

(nAy —y)T + (z — mAz)y (z.y) € SF
N 1
Smalz.y) = =1 (y—(n+DAY)E+(m+2Az—1)j (z.y)€ S5 (42)
0 otherwise
(nAy —y)z+ (¢ —(m +1)Az)g € SF
Az)? 4+ (Ay)?
q2 — \/( y — / T / — U S (4.
mn(Z-Y) AzAy { (y—(n+1Ay)z + (mAz ~z)§ € S7(43)
0 otherwise
((n +2)Ay —y)2 + (¢ — (m+ 1)Az)y (z.y) € SF
1
Sialz.y) = Ag | W nAy)E+(mAz —2) (z.y) e Sy (44)
0 otherwise

where the superscripts refer to the edge class. After the discretization and assembly
processes. one obtains a discretized version of the BI system. from which each entry

of the boundary matrix-vector product can now be calculated as

3 [ w
{BI subsystem} = [B] {E;} = Z Z Z an .t (4.3)

j=1 | m'=0n'=0
in which (m.n) are the geometric location indices for the ith class observation edges
whereas (m’.n’) are the same for the jth class edges belonging to integration el-
ements. Thus. the specification of the indices :, m and n completely defines the

entry k; = nM' + M of the column resulting after the execution of the boundary

matrix-vector product. It is readily found that

BY

mn.m'n’ = —Zkg// // S:n . manO(r I‘)dl‘dy(ll dy (46)
A.z‘_\y //’ //, r)lil; Go(r.v') dz dy dz' dy’



with
Ay t=1
=49 V(Az)2+(Ay)? i=2 (4.7)
Al‘ I = 3

\

More importantly, it can be shown that the BI subsystem (4.6) exhibits the convo-

lutional property Bf,{m,n, = B('Ifn_m,.n_n,) and thus we can rewrite (4.5) as
3 .
[B{E} =) BY«E (4.5)
Jj=1

where the * denotes convolution. The proof will be presented in the end of this
section to ensure the smooth discussion of the remaining procedure. It is now seen
that the computation of the boundary matrix-vector product can be performed by
employing the 2-D discrete Fourier transform (DFT). thus avoiding a need to store
the BI matrix other than those entries which are unique. When the svmmetry

3]
(m-m’,

property of B nent) 1S also invoked, implying

B(‘:n—m',n—n') = B{;’—m,n'—n) (49)
it is concluded that the total non-redundant entries in the BI matrix are
3 3
Ny =D N N(ME 4 M 1) (4.10)
=1 j=1

This should be compared to the (30, M iz\/")z entries whose storage would normally
be required if the BI system was not cast in convolutional form and it is notewor-
thy that N, is much smaller in number. To avoid aliasing, it is necessary that
B

(m—m’.nen’) = Bii(m.R) be cast in a 2-D array which has the usual periodic form.

and zero padding may also be required to make use of the standard FFT routines.

Specifically. the matrix-vector product (4.3) is executed by using the MFTxNFT
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array

o 0<m< M

L I - —_ .
BY(-m.-n). 0<i< NI
o MFT - M'+1<m< MFT
2(__ —_ .
BY(-m.-n), 0<7< Ni
0O<m< M (4.11)

By (m.7) = 4 :
NFT - N/ +1 <7 < NFT

BY(m.n~1—- NFT).

MFT-M!'+1<m< MFT

BY( -1 - MFT.R—1-NFT). oo o +1<7 < NFT

0 otherwise

\

with the corresponding field vector given by

N Eim.n) 0<m<M!, 0<n<N?
Ej(m.n) = (4.12)
0 otherwise

and MFT and NFT must be powers of 2 if a radix 2 FFT algorithm is used.

In the BiCG-FFT algorithm the BI subsystem vector is symbolically computed

3
{BI subsystem} = > § {DFT~' {DFT{BY}-DFT{E2}}} (4.13)
i=1
The presence of the operator S indicates the necessary reordering of the 2-D array
which results after the inverse FFT operation into a single column with the proper
indexing for addition to the FEM subsystem. It should be remarked that in contrast
to [40] the integrals (4.6) are evaluated without introducing any approximation. This
is necessary to preserve the symmetry feature of the global combined system.

As promised. we now show (4.8). or the relation BY = BY to

mn.m'n’ (m—m'.n-n')
conclude this section. To simplify the proof. we refer to fig. 1.2 and consider only

the first integral in (4.6). The same proof can be appied to the second integral in

(4.6). In addition. with no loss of generality for the proof. the i = I class edges
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Figure 4.2: Illustration of two triangles with the corresponding indices to help to
prove the convolutional property of the boundary integral.

(v-directed) in SF for the trial function and the ¢ = 2 class edges (diagonal) in ST

for the testing function will be used. To this point. substitutng S} .(z.y) in S} and

S2%, .(z.y) in 57 into the first term in (4.6) yields

Intmnmm = C // // [(nAy — y)(n'Ay — ¥') + (z — mAz)(mAz + 2Ax - 1)]
st JUs-

Gol(z — )2 + (y — y)J] dzdy dz'dy’ (4.14)

where C is a constant coefficient and its detailed form is not of our concern for
this proof. Note that the integration limits should be set as [mAz, (m + 1)Az] and
[nAy, (n + 1)Ay] for the unprimed coordinates and similarly for the primed ones.

Therefore, (4.14) will be simplified if the following transforms are introduced, viz.

r=mAr+¢& ' =mAr+¢
(4.15)

y=nAy+n y=ndy+n

Indeed. on substituting the transforms, one obtains

ArAy Aridy
mnmn’—C// // T]T) +5)A-l'— ]Go{l’[m m Al‘-*-

EN+9lin—n")Ay+ (n —n")]} dedn d€'dn’ (4.16)
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Although this integral may not be expressible in terms of an elementary function. one
is however assured that the resulting expression must be a function of [(m —m'). (n —

n’)] no matter what form the Green’s function Gy will take. Mathematically, it means
Intmn.mms = INtm_men—nr (4.17)

This is the desired relation. From the proof. we can conclude that the convolution

n (4.8) holds.

4.3 Mesh Overlay Scheme

As described above. the BiCG-FFT solver requires uniform aperture gridding
so that the BI subsystem can be put in block circulant form. This can be always
achieved during mesh generation whenever the patches are rectangular in shape or in
case of radiators which are placed at some distance (usually small) below the aperture
as shown in fig. 1.3(a). In the latter case. one might need to add an appropriate
absorbing material around the edge/corner of the cavity near the aperture to avoid
possible edge/corner effects, especially when the aperture size is not large enough.

Fig. 4.3(b) shows the example of this implementation.

4.3.1 Field Transformations

However. for circular, triangular. or other non-rectangular patches on the aper-
ture. it is not natural to construct a uniform mesh using the mesh generator. Typ-
ically. the aperture mesh is necessary to conform to the patch shape. leading to an
unstructured free surface grid. In this case. to make use of the eflicient. low mem-
ory BiCG-FFT algorithm. an approach is proposed to overlay on the unstructured
aperture grid another coincident structured grid as shown in fig. 4.4. The boundary

integral subsystem is then constructed by using the overlaid uniform grid whose edge
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Printed circular patch antenna is modeled using the recessed scheme to
incorporate the BiCG-FFT algorithm. (a) Illustration of the configura-
tion; (b) Comparisons of the BICG-FFT result with that of the ordinary
FE-BI technique presented in chapter 3.
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Figure4.4: Overlay of a structured triangular aperture mesh over an unstructured
mesh. shown here to conform to a circular patch.

fields can be related to those on the unstructured grid via two sparse transformation

matrices. That is, it is necessary to append to the system (3.11) the relations

{Es}, = [Trl{Es},,

{Es}o = [TBl{E:}, (+.18)

where the subscripts u and nu refer to the field coefficients of the uniform and
non-uniform aperture grids. respectively. Also. [T¢] and [Tg] refer to the forward
and backward transformation matrices, respectively. with .V, and .V,, denoting the
numbers of the uniform and non-uniform mesh edges on the cavity aperture.

To derive the elements of [Tr|. we begin with the expansion (3.14) and enforce it
at three points on each edge belonging to the uniform grid. We conveniently place
these three points at the center and ends of the edge (see fig. 1.5).

Given the fields at these points. we can interpolate the field along the (m.n) edge
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Figure 4.5: Illustration of the parameters and geometry used in constructing the
transformation matrix elements between the structured and unstructured
mesh.

of the uniform grid using the weighted average

1 . end;
(Eu)imn) = 5€u Z E «(Tend,)
= "" end1
1 Nmid
+ 7 Eflu(r d)
-(Vmid kz=:l e
1 -Vend—_g
t5v Z E;,(Tend,) (4.19)

in which é, denotes the unit vector along z. y or the diagonal. depending on the class
of edge being considered. The quantities EX_ represent the fields in the non-uniform
grid triangles with the superscript k being a sum variable in case Cepd,. Fend, OF Cmid
specify a point shared by more than one triangle. Obviously. Vend,. :Vmid and Nepg,
denote the number of non-uniform grid triangles sharing the node at repd,. rmiq and
Tend,. respectively. and will typically be equal to unity.

After assembling (4.19) into (4.18) we find that the elements of the forward
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end;

> Ze.,,s (endz) (4.20)

endz k=1 f=1

’\/mxd

in which

L j=e
Cije =
0 otherwise

and the global indices { and j correspond to the ith uniform grid edge and the jth non-
uniform grid edge. The subscript j; is the global index used in numbering the non-
uniform grid edges. whereas the subscript £ (= 1. 2 or 3) is the local edge index used
in the definition of the basis functions S,. We remark that the explicit computation
and storage of the transformation matrix elements results in a substantial increase in
efficiency because it avoids the usual assembly process during each iteration step and
that the proposed overlay scheme allows the analysis of large non-rectangular patch
arrays because storage of fully populated BI system matrix is avoided. The user
needs to only provide an additional data file which flags the uniform grid edges lving
on a PEC element and this is an important user-oriented feature of the formulation.
Following the same procedure, we can obtain the expression for the entries of the
backward transformation matrix. It should be noted that assuming each uniform
grid edge traverses three or less non-uniform grid triangles, the non-zero entries in
each row of [Tr] will be 9 or less. However, they can reach a maximum of 13 if the
midpoint and endpoints reside on an edge of the non-uniform grid. The maximum

non-zero entries in each row of [Tg] will be 15. but the typical number is much less.



4.4 Results

Figure 4.6 shows a cavity-backed 2 x 2 patch array, where each patch is a right-
angled triangle. Since this geometry is adaptable to a uniform mesh with right-
angled triangles, it is used to verifv our proposed FE-BI technique incofporated
with the BICG-FFT system solver. The developed FE-BI code with the BICG-FFT
is first compared with the original version of the hybrid FE-BI technique described
in chapter 3. As shown in fig. 4.7, the monostatic radar cross section (RCS) pattern
over the space 0 < 8 < 90° at the @ = 0 plane agrees very well with that computed
using the regular BiCG solver.

[t is also informative to compare the scattered fields by the same cavity-backed
structure without the patch array to find the contribution of the array to scattering.
Figure 4.8 shows the monostatic RCS patterns by the aperture with the absence of
the patch arrav. Again. the computations were obtained using both the regular BiCG
and BiCG-FFT versions of the FE-BI methods. As can be seen. the level of the
scattered field at the normal incidence reaches above zero in dB/A? with the presence
of the patch array. whereas the scattering by the aperture at the same incidence is
about 23 dB/A? lower.

To varify the overlaying scheme for nonrectangular geometry. we evaluated a
bistatic RCS scattering as shown in fig. 4.9 by a cavity-backed circular patch an-
tenna. In this case, the dielectric fillings of ¢, = 4 and ¢, = 10 inside the cavity were
used. respectively, and the results obtained using the regular BiCG FE-BI method
are compared with those computed using the BICG-FFT with the overlaying trans-
formations. It is observed that the agreement is quite satisfactory in scattering

analysis.
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Figure 4.6: I[llustration of the cavity-backed triangular patch array.

For radiation analysis (e.g. input impedance) where an accurate prediction of
the near-zone fields may be required, the accuracy of the overlaying scheme can be
significantly enhanced by considering the trial-testing element’s interactions in the
boundary integral. Specifically. it is suggested to separate the interactions between
the closed-region elements from the far zone weak couplings. The strong close-
region couplings are treated using the normal method of moments, whereas the weak
coulings are computed using the fast algorithm. This approach has been reported
(see e.g. [17]). and once combined with the overlaying scheme. it can be used to

control the accuracy of the FE-BI technique in an adaptive manner.
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the regular BiCG FE-BI technique described in chapter 3 and using the
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Figure 4.8: Comparisons of the monostatic radar cross section scattering by an empty
aperture with the same cavity size and dielectric filling (e,=1) as the
structure shown in fig. 4.6. Again, the results were calculated using
the regular BiCG FE-BI technique described in chapter 3 and using the
BiCG-FFT proposed in this chapter.
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CHAPTER V

Efficient Finite Element Subsystem — II

5.1 Introduction

As demonstrated in the previous two chapters (also reported in [13,29.43]), a
hybrid finite element-boundary integral technique [48.13] can be employed for char-
acterizing conformal antennas of arbitrary shape [29]. Indeed. planar/non-planar.
rectangular/non-rectangular designs, ring slot or spiral slot antennas with probe.
coax cable or microstrip line feeds can be simulated with this formulation. This
is because of the geometrical adaptability of tetrahedral elements used for the im-
plementation. However. in practice, certain configurations require extremely high
sampling rates due to the presence of fine geometrical details. Among them are a
variety of slot antennas (spirals, rings. slot spirals. cross slots, log—periodic slots.
etc.), where the slot width is much smaller than the other dimensions (cavity diam-
eter or inter—distance of slots). In these cases. the mesh is extremely dense (with
over 50. 100 or even higher samples per wavelength), whereas typical discretizations
involve only 10-20 elements per wavelength. This dense sampling rate is especially
severe for 3-D tetrahedral meshes, where the geometrical details usually distort the
tetrahedrals. The numerical system assembled from this type of mesh often leads to

a large system condition due to the degraded mesh quality. Also. mesh generation is

S0



Ground Plane Thin Slot

Figure 5.1: Geometry of cavity-backed microstrip antennas

tedious and the solution CPU time is unacceptably large.

In this chapter, we propose a finite element-boundary integral formulation using
edge-based triangular prism elements. It can be shown that this element choice is
ideally suited for planar antenna configurations containing spirals. circular and trian-
gular slots. Among many advantages of the prismatic elements, the most important
is the simplicity of mesh generation. Also, much smaller number of unknowns is
required for an accurate and efficient modeling of complex geometries. Below. we
begin by first outlining the finite element-boundary integral (FE-BI) formulation for
slot antenna modeling. A new, physically meaningful. set of edge-based functions
for prisms is then presented to generate the discrete system of equations. Finally.
the applications of the proposed hybrid FE-BI method to various antenna radiation

and scattering problems are given to conclude the chapter.

5.2 Hybrid FE-BI Formulation

Consider the cavity-backed slot antenna shown in fig. 5.1 where the cavity is

recessed in a ground plane. To solve for the E-field inside and on the aperture of the
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cavity. a standard approach is to extremize the functional (3.1) which. for radiation

and scattering problems, may be generalized as
1 = 2 = .
F(E) = ;///;’{(V X E)-;?,.l -(VxE)—kE- & -E}dV

+ /// E- (jkozoJ‘+vxﬁ‘ M) dv
v,
+ JkoZo // E-(Hxn)dS (3.1)
So+5y

where € and [, denote the relative tensor constitutive parameters of the cavity
medium, Zy and kg are the free space impedance and propagation constant, respec-
tively. So represents the aperture (or slots) excluding the metallic portions and Sy
denotes the junction opening to the guided feeding structures. Also. V; is the volume
occupied by the source(s) (J* or M) and H is the corresponding magnetic field on
So and Sy whose outer normal is given by 7. As before. the explicit knowledge of H
in (3.1) is required over the surface S¢ and S (also referred to as mesh truncation
surfaces) for a unique solution of E. Specifically, the magnetic field H over S; may be
replaced in terms of E via a boundary integral (BI) or absorbing boundary condition
(ABC). whereas H on Sy is determined on the basis of the given feeding structure.
This version of the functional as compared to (3.1) allows an easy inclusion of various
feed models. such as aperture coupled slot, coax cable. etc. (see chapter 6 for details).
In this chapter since we concentrate on improving the FEM efficiency, therefore the
boundary integral method will be employed as in chapter 3. It will be seen that this
implementation indeed meets the accuracy need without extra CPU burden. In the

context of the FE-BI. H is represented by the integral

Gt

H=H"+ zjkoy;,/ Go(r.r') - (2 x E(r')) ds’ (5.2)

So

where G is the electric dvadic Green's function of the first kind such that A x G = 0 is

satisfied on the (planar. spherical or cvlindrical) metallic platform (refer to chapter 1).
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For the antenna problem shown in fig. 5.1 where the platform is a planar ground

plane, G becomes the half space dyadic Green's function

G- (14 Llyv) 5.3
‘( B )«mlr—vl’ (3)

with r and r’ being the observation and integration points. respectively. and I =
IT + yy + 22 is the unit dyad. In connection with our problem. i.e. that of a cavity
recessed in a ground plane, H*® is equal to the sum of the incident and reflected
fields for scattering computations, or zero for antenna parameter evaluations.

To discretize the functional (5.1). we choose to subdivide the volume region using
prismatic elements as shown in fig. 5.2 and fig. 5.3. The field in each of the prisms

can be approximated using the linear edge-based expansion [19-51]
Z Esve = [VIT{E®}. (5.4)

where [V]e = [{V:}. {V,}.{V.}].and {E®} = {Et. E%,... . ES}T. The vectors {V,}.u =
r.y.z, are of dimension m = 9 and they simply represent the r.y. > components of
V7 associated with the jth edge of the eth element. Since V¢ are chosen to be edge-
based functions. the unknown coefficients EY represent the average field along the
Jth edge of the eth element. A corresponding representation for the aperture fields

is

(1)
(1)
~—

E(r) = 2 EsSi(r) = [S]T{E"}). (5.

where [S]; = [S:.S,], and V(r) reduces to S°(r) when the position vector is on the
slot.
To generate the discrete system for E¢. (53.4) and (5.3) are substituted into (5.1)

and subsequently F(E) is differentiated with respect to each unknown E%. With the
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Figure 5.3: Right angled prism
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- understanding that the surface field coefficients E? are a subset of Ef. we obtain

(o] = S LHE + SIBUEY + Y (6 + (L =0 (59)

e=1 e=1 s
where the sums are over the total number of volume or surface elements. In this. the

matrix elements are given by

/// [VxVi B VXV, -V %V} de (

K = jkozo/// V;‘[Ji+VxZ‘[Tl-VxMi] dv (5.
Ve

B, = —// //3, 2k3S;(r) - S5(r')Go(r. 1) ds ds’
+2 //b //b [V x SY(r)].[V' x SXr')|-Go(r.r') dsds'  (5.9)

L = 2jk020/ S:-(H' x 2)ds (5.10)
S,

Ay

(W)
-~
~—

it
(v]
~—

where the subscript = in Bj; denotes to take the z component. It is noted that L}
is removed in case of radiation problems and that the same holds for Af when the

scattering problem is considered.

5.3 Edge—Based Prismatic Elements

Consider the right angled prism shown in fig. 5.3 whose vertical (z-directed) sides

are parallel (right-angled prism). We now design two geometric quantities as
.. e i .
hi=¢&-2x(r—r;). 5§ =3h,- (3.11)

where r; denotes the location of the ith node. é; is the unit vector along the ith
triangular edge opposite to the ith node, {; denotes the length of this edge and r
is any position vector terminated inside the triangle. One way to obtain an edge-

based field representation for the prism is to utilize the nodal basis functions [52]
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and then apply the procedure discussed in [49.53,54]. However. an alternative and
more physically meaningful approach can be employed for the construction of the
edge elements. Referring to fig. 5.2, it is evident that if r is in the x-y plane. then
Ste in (5.11) gives the area of another triangle 12’3’ such that the lengths of edges
joining the nodes 2 — 3 and 2’ — 3’ are equal. With this definition of r. we define a

vector a vector

li . -
S; = e X (r —r;) (5.12)
ge
where é; - S; = 'Q_L That is. the vector component along é; has a magnitude which

is equal to the ratio of the areas of the triangle 12’3 to that of 123. We observe
that (5.12) is simply the edge-based expansion for the triangular elements [32] and
is the appropriate expansion to be used in (3.5). The corresponding volumetric basis

functions can be obtained by inspection. viz.

. =23 i=1.2.3
v, cetas=3g 156 (5.13)
Az
Vi =G k=T.8.9

where (. is the triangle simplex coordinate associated with the kth prism vertex at
(zr.yx). As illustrated in fig. 5.3, =, and A = Az represent the offset coordinate and
the prism height. respectively. When (5.13) are substituted into (5.7). the resulting
integrals can be evaluated in closed form as given in the Appendix C. However.
the integrals resulting from the substitution of (3.12) into (3.9) must be carried out

numerically. except the self-cells which can be performed analyvtically as discussed

by Wilton [33].
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5.4 Applications

Thin slot antenna structures have been treated using the above formulated FE-BI
technique and certain modeling results will be presented in this section to demon-
strate the validity and capability of the approach.

Radiation and scattering by an Annular Slot:

To evaluate the accuracy and efficiency of the prismatic mesh and the afore-
mentioned implementation. we first consider the analysis of the narrow annular siot
(0.75cm wide) shown in fig. 5.4. The slot is backed by a metallic circular cavity 24.7
cm in diameter and 3 cm deep. The FE-BI method is quite attractive for this ge-
ometry because the slot is very narrow and most of the computational requirements
are shifted on the finite element portion of the system. The calculation shown in
fig. 5.5 were carried out using the prismatic and tetrahedral elements [29]. As seen.
they overlay each other. However. only 1024 prisms were needed for modeling the
cavity. whereas the number of the tetrahedral elements for this homogeneously filled
cavity were 2898 for acceptable element distortion. If a multi-layered structure was
considered. or a similar system condition was used as a criterion for mesh generation.
then much more tetrahedrals than prisms would be needed for modeling such a struc-
ture. Moreover. the prismatic mesh is trivially generated given the slot outline. In
contrast. substantial time investment is required for generating and post-processing
the tetrahedral mesh.

Frequency Selective Surfaces:

Frequency selective surfaces (FSS) structures [56,57] are arrays of tightly packed

periodic elements which are typically sandwiched between dielectric layers. The

periodic elements may be of printed form or slot configurations designed to resonate



a=1235cm
b=0.75cm
p= 7.7cm

0.7<f<1GHz
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Figure 5.4: Geometry of the annular slot antenna backed by a cavity 23.7 cm in
diameter and 3 cm deep

at specific frequencies. As such, they are penetrable around the element resonances
and become completely reflecting at other frequencies. To meet bandwidth design
specifications. stacked element arrays may be used in conjunction with dielectric
layer loading.

Here we shall consider the analysis of FSS structures (with slot elements) via
the FE-BI method. Because of the fine geometrical detail associated with the FSS
surface. the finite element method has vet to be applied for the characterization of
FSS structures. but use of prismatic elements makes this a much easier task. Of
particular interest in FSS design is the determination of the transmission coefficient
as a function of frequency. and since the array is periodic. it suffices to consider a
single cell of the FSS. For computing the transmission coefficient T'. the periodic cell
is placed in a cavity as shown in fig. 5.6 and the structure is excited by a plane wave
impinging at normal incidence. Assuming that near resonance the wave transmitted
through the FSS screen will retain its TEM character. the transmission line concept

can be used to find the scattered field

aT?

=1—QR

ES
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Figure 5.5: Scattering: Bistatic (co-pol) RCS patterns computed using the tetrahe-
dral FE-BI code and the prismatic FE-BI code. The normally incident
plane wave is polarized along the & = 0 plane and the observation cut
is perpendicular to that plane. Radiation: X-pol and Co—pol radiation
patterns in the © = 0 plane from the annular slot antenna shown in
fig. 5.4. The solid lines are computed using the tetrahedral FE-BI code
whereas the dotted lines are computed using the prismatic FE-BI code.
The excitation probe is placed at the point (y=0) marked in fig. 5.4.
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radome cover
(on £=4.5 substrate)

0.0762cm
0.0762cm

1.2cm

metal backwall absorber

Figure 5.6: Illustration of the setup for computing the FSS transmission coefficient
Upper figure: periodic element (top view): Lower figure: periodic element
In cavity (cross-sectional view)
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where T is the transmission coefficient of the FSS, R = 1 — T and a is the reflec-
tion coefficient associated with the cavity base. To reduce the multiple interactions
within the cavity, it is appropriate to terminate the cavity with some absorber. thus
reducing the value of ¢ to less than 0.1. Since R is also small near resonance. a good

approximation for T is

s

Tég) = 10log

a |
and upon considering the next higher order cavity interactions, we have

Tig =~ T\ + 10log [I — (1 — T)] .

A more direct and traditional computation of Ty would involve the placement of
the FSS element in a thick slot {38]. However, this requires enforcement of the
boundary integral over the entire lower surface of the slot. leading to a much more
computationally intensive implementation.

The above FSS modeling approach was applied for a characterization of single
layer and multi-layer FSS structures. In both cases, the periodic element was a slot
configuration. The geometry of the single layer periodic element is shown in fig. 5.6
and consists of a planar slot array on a dielectric layer 0.0762 cm thick and having
¢ = 4.3. The FE-BI calculation using prismatic elements is given in fig. 5.7. Clearly.
our calculations are in good agreement with the measurements and data based on
the more traditional method of moments [59,60].

The geometryv of the multilayer radome considered in our study is given in fig. 5.8.
The total thickness of the FSS was 6.3072 cm and is comprised of two slot arrays (of
the same geometry) sandwiched within the dielectric layers. For modeling purpose.

a 1.534cm thick absorber is placed below the FSS as shown in fig 5.3. From the
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Figure 5.7: Calculations and comparisons of transmission through the FSS structure
shown in fig. 5.6

calculated results. it is seen that the results generated by the FE-BI method are in
good agreement with the measurements.
Radiation Property study of Conformal Slot Spiral Antenna:

Consider a typical Archemidean slot-spiral antenna shown in fig. 5.9. This an-
tenna is built on a double-sided PCB with its two arms following the expression:
r =af + 3, where a = 0.1333cm and 3 = 2.8595¢m. One arm can be determined
from the other by rotating 180° counterclockwisely. It is noted that this structure
differs from the conventional design in that the central portion of the spiral is not
fabricated. The reasoning for it relies on the facts that the antenna is designed with
a bandwidth less than 30%. and that the central portion usually requires a careful
fabrication because of the geometric details, and still that the central space may be

used for possibly complex feed network. One of our goal is to study the effect of this
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Figure 5.8: Upper figure: geometry of the multilayer frequency selective surface
(FSS) used for modeling: lower figure: measured and calculated trans-
mission coefficient through the FSS structure
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spiral shape on its performance.

A benchmark test model is designated to operate from 118 MHz to 157 MHz.
to replace the conventional protruding blade antenna. The size however is much
compact with its conformality property. Our simulation model is scaled by 1/8 to
operate at 944MHz to 1256MHz with the center frequency 1100MHz. The values of
a and 3 above were determined based on this frequency band and also the number
of turns (4.3). The cavity is filled with a dielectric slab (¢, = 2.2) of 0.3 cm depth,
corresponding to approximately 0.011 free space wavelength at the center frequency.
The antenna’s directivity is analyzed from the radiated pattern at lower, center and
higher frequencies and the results are tabulated in Table 5.1.

Figure 5.10 — 5.12 show the radiation patterns for frequency 944. 1100 and 1236
MHz, respectively. The Ey and E, at the principle plane ¢ = 90° are plotted. It
is understood that when the frequency varies. the active region travels along the
slot spiral. Thus the principle plane may not be coincident with the E-plane. (In
fact. the E-plane is not clearly defined in this case.) The optimum axial ratio for
the three cases are tabulated also in Table 3.1. and it shows that the spiral shape
design really plays an important role to insure a good quality radiation pattern. At
both center and lower frequencies, less than 3 dB AR has been achieved. When the
frequency increases. the active region moves inwards to the center and becomes closer
to the feeds where the EM fields exhibit a comparatively strong profile. The radiated
pattern therefore is most likely affected and this explains why the AR increases at
the high frequency. The AR deterioration can be avoided by adding a couple of spiral
turns inside. It is seen. nevertheless, that a CP mode can be achieved within the
entire designated bandwidth and with a wide azimuthal angle (as wide as 60° in the

optimum case). In practice. we notice that absorbing materials may be needed to
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regulate the magnetic currents at the beginning or ends of the slot spiral. especially

when the number of turns is minimized.

Frequency (GHz) || 0.944 | 1.100 | 1.256
Gain (dB) 7.22 | 6.66 | 5.2
Axial Ratio (dB) 2.7 1.0 3

Table 5.1: Comparisons of gain and axial ratio at different operating frequencies

5.5 Concluding Remarks

A hybrid finite element-boundary integral (FE-BI) formulation was presented
for modeling narrow slots in metal backed cavities. Prismatic elements were used
in connection with the FE-BI implementation, and in contrast to the tetrahedral
elements, these offer several advantages. Among them, low sampling rates are needed
for generating meshes and the mesh generation process is substantially simplified.
Other advantages of the prismatic elements over the tetrahedral elements include
better system conditions and faster pre/post data processing.

The explicit expressions for FE-BI implementation of prismatic elements were
tabulated and numerical results for slot antennas and frequency selective surfaces

were presented to demonstrate the validity and capability of the technique.
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Figure 5.9: Illustration of a typical 2-arm slot-spiral design
frequency=1.1GHz

solid line: E_phi, dashed line: E_theta

Figure 5.10: Radiation Pattern at f=1.1GHz (center frequency design). A good axial
ratio is achieved up to 60° degree.
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I solid line: E_phi. dashed line: E_theta ]

Figure 5.11: Radiation Pattern at f=0.944GHz (lower end of frequency range). It
can be seen that the axial ratio of the pattern becomes larger compared
to that at the center frequency. but still remains within 3dB for a wide
angle range. This indicates that the number of the outer turns in the

spiral contour design is most likely sufficient.

frequency=1.256 GHz
————— - _

[ solid line: E_phi, dashed line: E_theta J

Figure 5.12: Radiation Pattern at f=1.256GHz (higher end of frequency range). It
can be seen that the axial ratio of the pattern is deteriorated compared
to those at the center frequency and lower frequency. This certainly
shows that the number of inner loops still needs to be increased to
insure a good quality pattern.



CHAPTER VI

Antenna Feed Modeling

For scattering problems where the plane wave incidence is usually considered as
the ‘source’. the right-hand-side excitation has been explicitly expressed in (3.7) and
(5.10) and will not be discussed further. However. for antenna impedance evaluations.
we have proposed and reported several feeding schemes [61] associated with various

practical feed designs for microstrip antennas. Some of these are discussed below.

6.1 Probe Feed

6.1.1 Simple Probe Feed

For thin substrates the coaxial cable feed may be simplified as a thin current
filament of length [ carrying an electric current /{. Since this filament is located
inside the cavity. the first term of the integral in (3.7) needs to be considered for this

model. Specifically. the ith (global) entry of the excitation vector A; becomes
Ki=jkZol [-Vi(r).  i=jij2in

where r is the location of the filament. m is the number of {non-metallic) element
edges and j,, is the global edge numbering index. In general. m such entries are

associated with m element edges. and thus the index ¢ goes from j; up to j,. This
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expression can be further reduced to A; = jkoZo! [. provided that the ith edge is

coincident with the current filament.

6.1.2 Voltage Gap Feed

This excitation is also referred to as a gap generator and amounts to specifying «
priori the electric voltage V' across the opening of the coax cable or any other gap.

Since V' = E - d, where d is a vector whose magnitude is the gap width. and E the

/

dcosb;

ith edge is parallel to d. Numerically, this gap voltage model can be realized by first

electric field across the gap. we have that E; = . where cos#; is equal to | if the
setting the diagonal term A4;; equal to unity and the off-diagonal terms A;; (¢ # Jj)
to zero. For the right-hand-side vector. only the entry corresponding to the :th
(global) edge across the gap is specified and set equal to the value E; whereas all

other entries associated with edges not in the gap are set to zero.

6.2 Aperture—coupled Microstrip Model

As shown in fig. 6.1. when the microstrip antenna is fed with a microstrip line
network underneath the ground plane (cavity’s base) via a coupling aperture, special
treatment of the feed structure must be considered in the FEM formulation. This
is because the microstrip line is usually designed to have different size and shape as
compared to the cavity’s geometries. Hence. the conventional simulation of treating
the entire 3-D domain using a single type of elements is not efficient or appropriate
for this feed.

Referring to fig. 6.1. it is appropriate to separate the computational domains
because of the small element size required in modeling the guided feed structure.
One difficulty encountered when this decomposition is implemented is how to model

the coupling through the aperture. As an example let us consider a rectangular
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aperture which has been extensively employved in practice. The cavity fields may be
discretized using tetrahedral elements, whereas in the microstrip line region rectan-
gular bricks are the best candidate since the feed structure is rectangular in shape

and the substrate is of constant thickness. Although both types of elements employ

Antenna Elments

/
| U]
St (I ‘\

Tﬁnwtion Plane \

Coupling Aperture

Figure 6.1: Cross-section of an aperture coupled patch antenna. showing the cavity
region [ and the microstrip line region II for two different FEM compu-
tation domains.

(a)

(b) (c)

Figure 6.2: slot and its discretization (a) slot aperture; (b) typical mesh from cavity
region: (c) uniform mesh from microstrip line region.

edge-based field expansions. the meshes across the common area (coupling aperture)
are different. and this causes difficulty in enforcing field continuity across the slot
aperture. However. since the aperture is very narrow. a ‘static’ field distribution
may be assumed at any given frequency. Therefore. the potential concept may be

again applied to relate the fields below and above the aperture. Specifically. the
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‘equi—potential” continuity condition is enforced, and to proceed to do so. let us first
classify the slot edges as follows

Tetrahedral Mesh (Cavity Region I):

8]

h
..

b

.

e B j=1.: vertical edges
° Ej?'z j=1.2.3... diagonal edges
Brick Mesh (Feed Region II):

o £f j=1.23... vertical edges

Then the "equi-potential’ continuity condition requires that

E?l = CjEj (6-1)
t
E? = 2—d(€jEf+Cl+1 T+1) (6.2)
in which
+1
6_,' =
-1

whereas t and d are the lengths of the vertical and diagonal edges. respectively.
That is. ¢t is simply the width of the narrow rectangular apertﬁre. The coefficient ¢;
is equal to =1 depending on the sign conventions associated with the meshes above
and below the coupling aperture.

The connectivity scheme for entirely different computational domains may be
extended by generalizing this concept. It is apparent that this approach makes
the FEM implementation straightforward for different geometry/size domains that
would be significantly inefficient if only one type of elements were used for modeling
the structure. In addition. the technique ensures a good system condition since the

number of distorted elements in the mesh are minimized.



6.3 Coax Cable Feed

6.3.1 Motivation

The coax cable is widely used as a feeding structure for microstrip or cavity-
backed patch antennas because of its simplicity and low spurious radiation. Indeed.
abundant literature exists on the theoretical and experimental investigation of coax
cable feeds [62-64]. Most of these papers present integral equation techniques in
conjunction with the pertinent Green’s functions. However. the Green's function is
only available for a certain class of geometries. and this limits the application of
the integral techniques to those geometry designs. Also. the formulation must be
modified and recoded for different antenna configurations cerresponding to Green's
function variations. To avoid the complexity of the Green’s function. we recently
proposed a hybrid finite element — boundary integral approach [29] which is described
in chapter 3 and 4. For antenna radiation. it is observed that a simple probe model
with a constant current along the inner conductor linking the grounded base to the
antenna element is straightforward and efficient. But the probe feed is only valid
for thin substrates and this is consistent with the Moment Method (MM) results.
To model an electrically thick substrate, in this section a more sophisticated feed
modeling scheme is proposed in the context of the finite element method (FEM)
using linear edge-based tetrahedral elements. The formulation of the entire hybrid
numerical system will be first described in the presence of the necessary functional
term for feedline. The proposed feed model is then presented on the basis of a TEM
mode excitation. Model improvements are also discussed for the case when the TEM

assumption at the cavity-cable junction does not hold.
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6.3.2 Hybrid FE-BI System

The functional pertinent to the radiation by a cavity-backed antenna with a coax

cable feed (as shown in fig. 6.3) is given by

l/// {(VxE)-—l—(VxE)—kge,E-E} dv

2 v Hr

—2k2 //b(E X 5)-{/ ~'(E x 2 <I+ A,vv) Go(r.r')dS'} dS

—jkoZo //(E x H) - 2dS. (6.3)
C

where V refers to the cavity volume and the surface S encompasses the cavity aperture
excluding the portion occupied by the metallic antenna elements; ¢, and ., denote.
respectively, the relative permittivity and permeability; ko is the free space wave
number, Zy is the free space intrinsic wave impedance, I is the unit dvad. and
Go(r.r') is the free space Green's function with r and r’ denoting the observation
and integration points; the surface C is the cross section of the coax cable at the
cavity—cable junction.

Following the standard discretization procedure [29]. we obtain a system of equa-
tions of the form

i{ ]{Ee}}+2{[3 {Ee}}+ZaF0EH) 0. (6.4)

e=1 e€S eeC

where the explicit expressions for 4;; and B;; may be found in [29] and the functional

term F¢ is the surface integral on C in (6.3).

6.3.3 Proposed Coax Feed Model

To proceed with the evaluation of

Fe = —jkOZO/ (E x H) - 2dS. (6.5)
C
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a boundary constraint relating E to H is needed. To this end. we assume a TEM
mode on C and consequently the fields within the cavity may be expressed as (see

fig. 6.4)

E= 27-\/22(1 +0)—=f. H=—(1-D)-0. (6.6)

where ¢,. is the relative permittivity inside the coax cable; [' denotes the reflection

[OZO 1 " [0 1
2T

coefficient measured at = = 0 and [ is the given input current source at the same
location. Also, (r,¢.z) are the polar coordinates of a point in the cable with the

center at r = 0. To simplify the analysis. we introduce the quantities

lwZ, I _
€o=27‘_0\/::(1+r), h0=2—;(1—I‘). (6.7)
Hence.
hqo ~
E=2¢ H=2¢ (6.8)
r r
and from (6.7) it follows
VEre If
ho = —Y-"Ceq + 2. (6.9)
Zo s

which is the desired constraint at the cable junction in terms of the new quantities
ho and eg. Note that €5 and hg are field coefficients as new unknowns in place of the
fields E and H. and it is therefore appropriate to rewrite F¢ in terms of these new
coefficients. To do so, we substitute (6.7) and (6.9) into (6.5) and upon making use

of the axisymmetric field property we obtain
- STC b
Fe = —:.Tn']kQZQEQhO ln(g). (610)

where a and b are the radii of the inner and outer cable conductors. The superscript
src stands to indicate that hq is treated as a source term in the extremization of the

functional.
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We choose the linear edge-based tetrahedral elements to discretize the cavity
and the corresponding mesh on the cross section C is shown in fig. 6.4(b). In this
formulation. the field across the p** edge. p=1.2...., V¢ (Ne¢ is the number of cavity
mesh edges on C), is set to a constant as dictated by the linear edge-based expansion
function inside the cavity. However. the cable TEM modal fields (6.6) behave as
1/r and this modeling inconsistency makes it difficult to apply the tangential field
continuity condition at the cable junction ( i.e. over the aperture C). To overcome
these difficulties. we can relate the fields across the cable junction by recognizing that
the potential difference between the inner and outer conductors must be the same
as computed by the fields of the cavity or those in the cable region. Specifically.
if the N;" edge of the cavity region borders and is also across the coax cable. from
(6.6)-(6.8) it then follows that the appropriate equi-potential condition is

b
AV = Eib—a) = egln~. i= Np(p=1.2.....N¢). (6.11)

a
where AV denotes the potential difference between the inner and outer surface of the
cable. This condition simply provides a relation between the constant cavity edge
field and the coax cable modal field. When used into the functional Fe. it introduces
the excitation into the hybrid finite element system without a need to extend the
mesh inside the cable or to employ a fictitious current probe. It remains to rewrite
Fe in terms of E;, i.e. the field value of the edges bordering the cable and to do so
we substitute (6.9) and (6.11) into (6.1G). Then upon taking into account all N¢

cavity mesh edges on the cable junction. we obtain

Iy Zo lné

a

- I rcb_ STC N
Fec = “§jk‘ozo(b —a) {“2 - \/e__aEi} Z E;. (6.12)

i=Np
In this expression. rather than representing the functional F¢ in terms of a single edge

field. we made use of the average field across the cable as computed by the totality



106

of the equal element fields on the cable’s aperture (because of the axisymmetric
property, all elements fields at the cable’s aperture are equal). The factor inside
the curly brackets of (6.12), with the superscript sre, functions as a source in the

extremization process. Hence. the extremization of (6.12) yields

ofc —%wjkoZo(b—a){é—‘/eTc—b—aE;}

aE,' w Zo lng
= UE; -V, i=N,(p=12..N¢). (6.13)
where
] | (b—a)?
Ui = jpmho/ere——pt (6.14)
3 ln;
1

We observe that the “constant cavity field” along each mesh edge at the cable junc-
tion is just a fictitious field representation and its meaningful physical interpretation
is governed by the equi-potential constraint (6.11). To proceed. we assemble the
FEM system together with (6.13). Specifically. each [; is added to the V¢ diagonal
entries of the finite element matrix which is associated with the V¢ edges bordering
the coax cable. Also. the excitation column of the hybrid system is nullified every-
where except for the N¢ entries which are set to V. Once the hybrid FE-BI system

is solved [29], the input admittance at z=0 is calculated from

Yin = L}{ H-rrdo

VO 2x
21 |

eolng ZC.

(6.16)

where Z_ is the characteristic impedance of the coax cable.
In the above feed model we assumed the presence of only the dominant(TEM)

mode at the cavity-cable junction. an assumption which may not be suitable for
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certain applications. To overcome this limitation. one approach is to extend the
mesh (say, a distance d) into the cable. The equi-potential condition will then be
applied at z=-d. where all higher order modes vanish. This scheme requires a more
suitable expansion for the fields in the —d < z < 0 section to avoid the complication
of extending the tetrahedral mesh into the cable and. thus. retain the efficiency of the
equi-potential feed model. Since in most cases the antenna is operated in a frequency
range far below the cut-off of the first higher order mode of the coax cable, the field
distribution near the junction C will still be dominated by the fundamental TEM
mode. With this understanding. a possible suitable expansion for the field in the

coax cable (using shell elements rather than tetrahedrals) is

- N‘r@)

E= ZZE‘ (6.17)

where q=r. ¢ or z. i=1.2.3 or 4 and N;(r. @, z) is the shape function for each of the
12 edges (3 directionsx 4 edges per direction). They are given by

i €

No = Xgag (@~ )@ ~ &) (6.13)
with ¢,.qs and ¢. representing r.¢ and z in cyclic rotation and correspondingly
Go- 3> and §. represent the parameters *. o and 3. Also. i denotes the edge number
along each coordinate, and Ag, is the width of the edge along the ¢, direction. The
correspondence between the edge numbers and the node pairs for each coordinate(r. o
or =) is given in Table 6.1 along with the definition of the tilded parameters in (6.13).
When an axisymmetric field property is assumed. the numerator of the expansion in
(6.17) reduces to the standard brick element format for the radial and z components.
independent of the ¢ variable. Note also that the particular property of this expan-

sion is the introduction of the 1/r factor. simulating the coaxial cable mode. The

accuracy of (6.17) is demonstrated in fig. 6.5. where we show that only 2-3 elements
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q 1§ | pairs || € 7 ° 3
; 1 (1-2) -+ O]'*‘AO :|+A:_
r p2l=n - o o+ A
316010+ o1 B
14} (5-6) - o1 + Ao B
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o t 21(3-8) || - n+Ar X
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Table 6.1: The correspondence between the edge numbers and the node pairs for each
coordinate(r. ¢ or z) along with the definition of the tilded parameters in
(6.18).

are needed along the radial direction for the accurate prediction of the dominant

field distribution. When compared to the conventional linear tetrahedral elements.

the efficiency of this expansion is apparent (i.e.. many more tetrahedrals are needed

to model the same cable region).

6.3.4 Results and Conclusion

To validate our proposed feed simulation. two circular patch antenna configura-
tions were used for calculation. One patch antenna was of radius 1.3 cm printed
atop of a circular cavity (radius=2.1 cm) filled with a dielectric (¢,=2.9) material
0.41 cm deep. For this patch. the feed was placed 0.8 cm from the center and the
input impedance was measured over the band 2 - 5 GHz. In fig. 6.6 we compare the
measured input impedance with data computed on the basis of the proposed equi-
potential feed model. Clearly, the results from measurements and the equi-potential
model are in excellent agreement whereas the probe model vields substantially inac-
curate results near resonance.

Figure 6.7 shows the comparison between measurements and calculations for an-
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other patch antenna whose input impedance was measured by Aberle and Pozar [63].
This patch had a radius of 2.0 cm and the 0.218 cm thick substrate had €,=2.33 and
a loss tangent tand=0.0012. The feed was located 0.7 cm from the center, and for
our FE-BI calculation the patch was placed in a circular cavity of 2.44 cm in radius.
As shown in fig. 6.7. the equi-potential model is again in excellent agreement with
measurements. as opposed to the results by the probe model in [63].

In conclusion. the presented equi-potential feed model has been shown to be
extremely accurate in modeling coax feed structures. Moreover. its implementation
in the context of a finite element formulation is very simple and as easy to implement
as the probe feed. It was also demonstrated how the proposed feed model can be
generalized to the case of asymmetric feed structures where evanescent modes may

be present.

6.4 Conclusion

In developing numerical techniques for antennas. the feed network is one of chal-
lenging problems to solve in consideration of accuracy. efficiency and simplicity. This
is primarily because the antenna feed in fabrication has certain instrumental uncer-
tainties on one side. On the other., as aforementioned. the accuracy of numerical
results is usually extremely sensitive to the feed model, the feed location. sampling
rate around the feed point. and so on.

The proposed numerical feeds in this chapter resemble the practical systems as
closely as possible, and with a thorough consideration of their numerical implemen-
tations. we realize that they can be used for mostly encountered antenna problems.
As an addition to the group of feed models. we also developed a circuit modal feed

which coincides with domain truncations. Since this model has to do with microwave



110

z
A
Patch Ground plane
Aperture o »
b - —a > Y
. P
Cavity e — ____ Coax cable opening
- .= (surface C)
R N
X —

<« - -—~  Coax cable

caVlty patch ____________ 'y
- re
L TTTITITI 2 . xe .Y
- < 1 e A" 2b
- 2a
cavity-cable junction S |

Figure 6.4: (a) Side view of a cavity-backed antenna with a coax cable feed: (b)
[Hustration of the FEM mesh at the cavity-cable junction (the field is set
to zero at the center conductor surface).
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Figure 6.5: Field distribution in a shorted coax cable as computed by the finite ele-
ment method using the expansion (6.18). —: analytical: xxx: numerical.
(a) Field coefficient eq along the length of the cable (leftmost point is the
location of the short): (b) Field along the radial coordinate calculated at
a distance A/4 from the shorted termination.
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Figure 6.6: Measured and calculated input impedance for a cavity-backed circular
patch antenna having the following specifications: patch radius r=13mm:
cavity radius R=21.1mm: substrate thickness t=4.Imm: ¢,=2.4: and feed
location r;=0.8 cm distance from center. Results based on the simple
probe model are also shown for comparison. Our modeling retains the
vertical wire connection to the patch and uses the incoming coaxial mode
field for excitation. (a) Real part: (b) Imaginary part.
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tenna having the following specifications: patch radius r=2cm; substrate
thickness d=0.21844cm: feed location from center r;=0.7cm: €,=2.33:
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circuit, we shall leave the topic to the next chapter in conjunction with other related

subjects.



CHAPTER VII

Circuit Modeling

Many designs of microstrip antennas require certain feedlines to carry electromag-
netic signals from the source. Finite element methods are also suited and applicable
to these wave propagation problems. This chapter is devoted to circuit modeling.
After an overview of recent mesh termination techniques. we discuss a numerical
de-embedding process appropriate for the finite element analysis. and then turn to

the topic of mesh truncations for circuit simulation.

7.1 Introduction

One of the most important aspects of finite element implementations is the trun-
cation of the computational volume. An ideal truncation scheme must ensure that
outgoing waves are not reflected backwards at the mesh termination surface. i.e. the
mesh truncation scheme must simulate a surface which actually does not exist. To
date. a variety of non-reflecting or absorbing boundary conditions (ABCs) have been
employed for truncating the computational volume at some distance from the radi-
ating or scattering surface. and applications to microwave circuits and devices have
also been reported. The ABCs are typically second or higher order boundary condi-

tions and are applied at the mesh termination surface to truncate the computational
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volume as required by any PDE solution. Among them. a class of ABCs is based on
the one-way wave equation method [66,67] and another is derived starting with the
Wilcox Expansion [68.31]. Also, higher order ABCs using Higdon’s [69, 70]formula-
tion and problem specific numerical ABCs have been successfully used. particularly
for truncating meshes in guided structures [71]. There are several difficulties with
traditional ABCs. Among them is accuracy control, conformality, ease of paralleliza-
tion and implementation difficulties when dealing with higher order ABC’s. Also, the
applications of ABC’s in microwave circuit modeling requires a priori knowledge of
the propagation constants which are typically not available for high density packages.

An alternative to traditional ABCs is to employ an artificial absorber for mesh
truncation. Basically. instead of an ABC, a thin layer of absorbing material is used
to truncate the mesh, and the performance for a variety of such absorbers have been
considered [72.73]. Nevertheless, these lossy artificial absorbers (homogeneous or
not) still exhibit a non-zero reflection at incidence angles away from normal. Re-
cently, though. Berenger [74] introduced a new approach for modeling an artificial
absorber that is reflectionless at its interface for all incidence angles. In two dimen-
sions, his approach requires the splitting of the field components involving normal
(to the boundary) derivatives and assigning to each component a different conduc-
tivity. In this manner an additional degree of freedom is introduced that is chosen
to simulate a reflectionless medium at all incidence angles. Provided the medium
is lossy, this property is maintained for a finite thickness layer. Berenger refers to
the latter as a perfectly matched layer(PML) and generalization of his idea to three
dimensions have already been considered [75.76]. Also. implementations of the ab-
sorber for truncating finite difference-time domain(FDTD) solutions has so far been

found highly successful. Nevertheless. it should be noted that Berenger's PML does
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not satisfy Maxwell equations and cannot be easily implemented in finite element
(FEM) solution.

A new anisotropic(uniaxial) artificial absorber [77] was introduced recently for
truncating FEM meshes. This artificial absorber is also reflectionless at all incidence
angles. Basically. by making appropriate choices for the constitutive parameter ten-
sors. the medium impedance can be made independent of frequency. polarization.
and wave incidence angle. A PML laver can then be constructed by introducing suf-
ficient loss in the material properties. The implementation of this artificial absorber
for truncating finite element meshes is straightforward and, moreover. the absorber

is Maxwellian.

7.2 Numerical De—embedding

De-embedding presented here is a numerical process used to extract certain circuit
quantities. Specifically. we are interested in S—parameters for a uniform transmission
line terminated with any loads denoting the possible discontinuities, which may arise
from line-to-line or line-to-antenna couplings. The dominant transmission line mode
is assumed at and near a reference plane S,y in this discussion.

Consider a transmission line of certain length as shown in fig. 7.1. With an
appropriate shielding scheme. the line is included in the computational domain. The
full wave analysis provides the E field distribution anywhere including the region
along the line. One is therefore able to represent E field along the transmission line

with respect to the locations to get
Viz) = VieT™ + Ve™* (7.1)

where 17 is proportional to the magnitude of E with V; being the incoming and 1

the reflected wave amplitude. = is measured from the reference plane S,.f. v is the
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Microstrip Line

Shielded FEM Region

Probes

Figure 7.1: Illustration of a shielded microstrip line.

Substrate

propagation constant to be determined and R = V,/V; is the reflection coefficient.

~
or b“.

Since in (7.1) 7. V; and V; are three independent quantities that characterize the

wave propagation and reflection, to determine them one needs to specify the field

values for V(=) at three points =_. zo and =, of equal inter-distances

Vi(=-) V(z0) V(=)

..+'—'30 - ~0 T ~—

—
-1
.
(8]

_

along the line. To simplify the problem, we choose the reference plane right at the

center point such that zp = 0 and =, = —z_ = d. Given the three field values from

FEM computations. it follows
Vd) = Vie™ +Vie™
Vo) = Vi+V;

Ve + Ve

\_.
—
I
Q
S’
I

To solve for 7. we first add (7.3) to (7.3) to get

(Vi+ V) (9 +e7™) = V(d) + V(=d)
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Then eliminating V; + V; from (7.4) and (7.6), we obtain

V(d) + V(—d)
2V(0)

cosh(~d) =

from which v can be determined. The effective guided wavelength A, and effective

dielectric constant €.;s may then be calculated by

27
M=

Ao

Ceff = .
g

with 3 = Im {7} and Ao being the free space wavelength. From(7.3) and (7.4). V;

and V, are expressed as

V(0)e™ — V(d)

Vi 3 sinh(+d) (7-3)
Vi = V(0)-V (7.9)
Therefore. the reflection coefficient becomes
- v -
Su = v (7.10)

This de-embedding process is suited for one port network analysis. However.
the technique may be readily extended to two-port networks. For instance. on the
assumption of a perfect termination or match at port 2, once V; is determined. S,
can be obtained by V,/V;. where V; is the outgoing wave at port 2 predicted by FEM.

As mentioned before. S-parameter evaluations depend on termination methods.
Low quality terminations result in prediction errors and make the analysis less reli-
able. Therefore. high performance termination methods are always desirable and we

next discuss this issue.
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7.3 Truncation Using DMT

As already indicated, S-parameters from a possible discontinuity region along a
transmission line may be extracted at a distant reference plane, where there exists
only a dominant mode. For shielded microstrip lines at the input port (#1) and
output port (#2), (similar to that in fig. 7.1), the modes underneath the lines are

given by

Ly

Eo(z)(e™™* + Re™*) Z € Sin
E, (r)= (7.11)

TEQ(l’)E‘Q: 2 € Sout
where Ey(z) denotes the field distribution of incident wave at the incident plane
(port 1) and R is the reflection coefficient at the same plane. T represents the trans-
mission coefficient measured at the plane S,,, (port 2). and v;. v; are the effective

propagation constants at port 1 and port 2, respectively.

For truncating the FEM mesh at a specific port. it is necessary to first determine

the E field pattern across the shielded structure. This can be accomplished by

assuming a static model shown in fig. 7.2, where the static potential satisfies
Vo = 0
o = W on metallic line (7.12)

where E = —V¢. Sove this standard PDE model. and with a tedious mathematical

derivation, it is finally found that

nw \ .., [/nw
Yo n=1.0dd “in COS (Tl‘) sinh (7y) =>d

o(x.y) = sinh (22d) (7.13)

Znstott b o (1;—*(2:— dy) () sint (Fe-v)

[¥]
IN
Q.

where
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Figure 7.2: Illustration of the cross section of a shielded microstrip line.

with

nsw

F = Zﬁ%sinh (%d)

sinh (Ed) n
sinh (E(Z — d)) cosh (T(b - d))

a

+ €,1cosh (Ed)

a

fn = €2

A complete FEM system may now be constructed by introducing the EM fields

at S;, to truncate the computational domain. This truncation simultaneously in-

troduces an excitation to the numerical system and the S-parameters may then be

extracted by measuring the field distributions at the input and output ports as men-

tioned before.

7.4 Truncation Using PML

Below. we begin with a brief presentation of the artificial absorber. and this is

followed by an examination of the absorber’s performance in terminating guided

structures and volume meshes in scattering problems. Results are presented which

show the absorber’s performance as a function of thickness/frequency and for differ-

ent loss factors.



7.4.1 Theory

Consider the waveguide, shielded microstrip line and scatterer shown in fig. 7.3.

Of interest is to model the wave propagation in these structures using the finite

Electric
Probe =_z
Vi 8r= u' 1
&=g= &= a-jp
I he=hy= = o-ip
4 ==K
[}
e > ¢ [ d+t=40f:m t=5cm
d cross-section: 4.755x2.215 cm
(a). waveguide
" - Absorbing layer
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w_—% Il : L h= 021 cm
i E L H=1.06 cm
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(b). Microstrip Line

Figure 7.3: A rectangular waveguide (a) and a microstrip line (b) truncated using
the perfectly matched uniaxial absorbing layer.

element method. For a general uniaxial medium, the functional to be minimized is
.7":/ \% xE-(ﬁ:l-V x E) -kl -E-EdV
v

—/ E x (E.' -V xE)- dS. (7.14)
Sln+50u!

in which &z, and €, denote the permeability and permittivity tensors whereas E is the
total electric field in the medium. The surface integrals over S;, and S,,; must be
evaluated by introducing an independent boundary condition and the ABC serves
for this purpose but alternatively an absorbing layer may be used. An approach to

evaluate the performance of an absorbing layer for terminating the FE mesh is to
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extract the reflection coefficient computed in the presence of the absorbing layer used
to terminate the computational domain. In this study we consider the performance
of a thin uniaxial layer for terminating the FE mesh in a rectangular waveguide
and a microstrip line. Such a uniaxial layer was proposed by Sacks et.al. [77] who

constdered the plane wave reflection from an anisotropic interface (see fig. 7.4 ). If

Region | Region 2

Reflected wave

Incident wave 0b0
00c¢g

Figure 7.4: Plane wave incidence on an interface between two diagonally anisotropic
half-spaces.

ZZ, and €, are the relative constitutive parameter tensors of the form
as 0 0
E,=&=1| 0 b 0 (7.13)
0 0 C

the TE and TM reflection coefficients at the interface (assuming free space as the

background material) become

E cosl; — / %cosﬁ,
R —

cosf; + %cos@t

& e . (7.16)
., o cost — cosb;
R*Y =

cosl; + %cosO,
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1
and by choosing a; = b, and ¢, = Ez_ it follows that RTZ = RTM = ( for all incidence

angles, implying a perfectly matched material interface. If we set a; = a — j3. the

reflected field for a metal-backed uniaxial layer is
|R(8)| = e™2keeosts (7.17)

where t is the thickness of the layer and 6; is the plane wave incidence angle. The
parameter ak is simply the wavenumber in the absorber. Basically. the proposed
metal backed uniaxial laver has a reflectivity of -30 dB if 3tcosf; = 0.275X or -
55dB if 3tcosf; = 0.5\, where A is the wavelength of the background material.
The reflection coefficient (7.17) can be reduced further by backing the layer with an
ABC rather than a PEC. However. the PEC backing is more attractive because it
eliminates altogether the integrals over the surfaces. Clearly. although the interface
is reflectionless. the finite thickness layer is not and this is also true for Barenger’s
PML absorber.

Below we present a number of results which show the performance of the proposed
uniaxial absorbing layer as a function of the parameter 3. the laver thickness ¢ and
frequency for the guided structures shown in Figure 7.3. We remark that for the
microstrip line it is necessary to let a; = €.5(a — j3) for the permittivity tensor
and a; = p.(a — jJ3) for the permeability tensor. where ¢, and g, are the relative

constitutive parameters of the background material (i.e. the substrate).

7.4.2 Results

Rectangular Waveguide
Let us first consider the rectangular waveguide shown in fig. 7.3. The guide’s cross-
section has dimensions 4.755 cm x 2.215 em and is chosen to propagate only the T E}g

mode. It is excited by an electric probe at the left. and fig. 7.6 shows the mode field



strength inside the waveguide which has been terminated by a perfectly matched
uniaxial layer. As expected, the field decay inside the absorber is exponential and
for 8 values less than unity the wave does not have sufficient decay to suppress
reflections from the metal backing of this 5cm layer. Consequently, a VSWR of
about 1.1 is observed for 3 = 0.5. However. as 3 is increased to unity. the VSWR
is nearly 1.0 and the wave decay is precisely given by e~5¥tc0s0 — e7VercoséP (chere
t is the wave travel distance measured from the absorber interface. P = 23t/A; and
here §; = 14.5°. It is noted that when 3 is increased to larger values. the rapid
decay is seen to cause unacceptable VSWR's. One is therefore prompted to look
for an optimum decay factor for a given absorber thickness and fig. 7.7 provides a
plot of the T Ejo mode reflection coefficient as a function of 23t/A,. where we chose
to normalize with respect to the guided wavelength A,. Figure 7.7 is typical of the
absorber performance and demonstrates its broadband nature and the existence of
an optimum value of 3 for minimizing the reflection coefficient. Basically. the results
suggest that 3 must be chosen for a given absorber thickness to provide the slowest
decay without causing reflections from the absorber backing. That is. the lowest
reflection may be achieved when the entire absorber width is used to reduce the
wave amplitude before it reaches the absorber’s backing. As expected. this optimum
value of 3 changes with frequency but the broadband properties of the absorber are
still maintained since acceptable low reflections can still be achieved for unoptimized
3 values. For example. in the case of f = 1.3G H> (dashed line) the optimum value of
J = 1 gives a reflection coefficient of -45dB whereas the value of 3 = 3 (corresponding
to 23t/ Ay = 2.3) gives a reflection coefficient of -37 dB which is still acceptable for
many applications. [t should be noted though that setting 3 = 3 allows use of an

absorber which is about 2cm or 1/3 free space wavelengths. Also. as can be realized
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the discretization rate plays a role in finding the optimum value of 3¢/, and thus
the presented curves refer to a sampling rate of around 18/A; for the waveguide
example.

Not surprisingly (see (6.6)), for this example, the value of o does not play an
important role in the performance of the absorber and this is demonstrated in fig. 7.8.
As seen, setting always a = 3 gives the same performance as the case of & = 1 shown
in fig. 7.7. Our tests also show that other choices of a give the similar absorber
performance. However, it is expected that a will play a role in the presence of
attenuating modes and it is therefore recommended to choose a = 3 to ensure that
all modes are absorbed.

Microstrip line

The performance of the perfectly matched uniaxial layer in absorbing the shielded
microstrip line mode is illustrated in fig. 7.9 where the reflection coefficient is plotted
as a function of 23¢/A;, where Ay = Ao/ /€c;; and e.sy is the effective dielectric
constant. In this case, the microstrip line is terminated with a 1.87 cm thick. 5-
layered absorber and the line is extended up to 4 layers inside the absorber to avoid
an electric contact with the metallic wall. Similarly to the waveguide. we again
observe that an optimum 3 value exists and it was verified that in the absorber
the wave exhibits the same attenuation behavior as shown in fig. 7.6. The reflection
coefficient at the optimum 3 = 1 is now —42dB and if better performance is required.
a thicker absorbing layer may be required. Again as in the case of the waveguide
example, the value of a plays little role in the performance of the absorber and this
is illustrated in fig. 7.10. However. of importance is the behavior of the reflection
coefficient as a function of 23t/),. For the waveguide and microstrip examples. we

observe that the absorption is maximized for approximately the same value of 2.3t/ A,



127

(about 0.8). Thus these curves can be used for other applications as well. although
it should be noted that the discretization rate plays an equally important role and
this needs further investigation.

The accuracy and validity of the PML applications for circuit parameter compu-
tations can also be seen from the result illustrated in fig. 7.11. It is seen that use
of the optimized 4.5 cm PML layer. with « = | and 3 = 1. vields veryv accurate
input impedance values. The shown microstrip line impedances were computed by
measuring the vertical field at the probe’s location without a need to extract the
VSWR which is often difficult with unstructured finite element meshes. Note that
the shielded microstrip line dimensions for the data are given in fig. 7.11.
Meanderline
Another example is the meander line shown in fig. 7.12. For the FEM simulation.
the structure was placed in a rectangular cavity of size 5.8mm x 18.0mm x 3.173mm.
The cavity was tessellated using 29 x 150 x 5 edges and only 150 edges were used
along the v-axis. The domain was terminated with a 10 layer PML. each layer being
of thickness t = 0.12mm. The S;; results are shown in fig 7.13 and are in good

agreement with the measured data [78].
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Figure 7.7: Reflection coefficient vs 23t/A, (a = 1) for the perfectly matched uniaxial
laver used to terminate the waveguide shown in fig. 7.6.
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CHAPTER VIII

AWE: Asymptotic Waveform Evaluation

8.1 Brief Overview of AWE

Although full wave electromagnetic systems are large and cumbersome to solve.
typically only a few parameters are needed by the designer or analyst. A reduced or-
der modeling of these parameters (input impedance. S parameters, far field pattern.
etc) is therefore an important consideration in minimizing the CPU requirements
needed for generating the frequency response of the parameter. The Asymptotic
Waveform Evaluation(AWE) method is one approach to construct a reduced order-
ing model of the input impedance or other useful electromagnetic parameters. AWE
relies on a Pade approximation of the given parameters to avoid the repeated solution
of the system at each frequency value. It has already been applied to problems in cir-
cuit analysis and in this paper we demonstrate its application and validity when used
in conjunction with the finite element method to simulate full wave electromagnetic
problems.

The method of Asymptotic Waveform Evaluation (AWE) is a reduced-order mod-
eling of a linear system and has already been successfully used in VLSI and cir-
cuit analysis to approximate the transfer function associated with a given set of

ports/variables in circuit networks [79-82]. The basic idea of the method is to de-
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velop an approximate transfer function of a given linear system from a limited set of
spectral solutions. Typically, a Padé expansion of the transfer function is postulated
whose coefficients are then determined by matching the Padeé representation to the
available spectral solutions of the complete system.

In this chapter we investigate the applicability of the AWE method for approx-
imating the response of a given parameter in full wave simulation of radiation or
scattering problems in electromagnetics. Of particular interest is to use AWE for
evaluating the input impedance of the antenna over an entire bandwidth from a
knowledge of the full wave solution at a few (even a single) frequency points. Also.
the method can be used to fill-in a backscattering pattern with respect to frequency
from a priori knowledge of the simulation system with a few data samples of that pat-
tern. Given that practical partial differential equation(PDE) systems involve several
thousand unknowns, AWE can indeed have a dramatic reduction of CPU require-
ments in generating a response for a given system parameter (state variable) without
a need to resolve the system for the fields in the entire computational grid. Below we
first describe the recasting of the FEM system for application of the AWE. We then
proceed to describe the AWE method and demonstrate its application. accuracy and

efficiency for computing the input impedance of a shielded microstrip stub.

8.2 Theory

8.2.1 FEM System Recast

The application of the finite element method to full wave electromagnetic solu-
tions amounts to generating a linear system of equations by extremizing the func-

tional [83]

F=<VxEZ VXxE>-k*<E.3-E > +kb.t. (8.1)
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where <.> denotes an inner-product and b.t. is a possible boundary term whose

specific form is not required for this discussion. Also. the dvadics @ and 3 are mate-

27w

P
operating frequency with ¢ being the speed of light. A discretized form of (8.1)

rial related coefficients. k = is the wavenumber and w is the corresponding

incorporating the appropriate boundary conditions is [29]

—
[va)
[§V]

~—

(Ao + kA, + k2A2> {X}={f}

where A; denote the usual square (sparse) matrices and {f} is a column matrix
describing the specific excitation.

Clearly (8.2) can be solved using direct or iterative methods for a given value of
the wavenumber. Even though A; is sparse. the solution of the system (8.2) is com-
putationally intensive and must be further repeated for each & to obtain a frequency
response. Also, certain analyses and designs may require both temporal and fre-
quency responses placing additional computational burdens and a repeated solution
of (8.2) is not an efficient approach in generating these responses. An application of
AWE to achieve an approximation to these responses is an attractive alternative and
below we formulate AWE in connection with the FEM system (8.2). whose imple-
mentation is considered in connection with antenna and microwave circuit problem.
For these problems it turns out that the excitation column {f} is a linear function

of the wavenumber and can therefore be stated as

U} =k} (3.3)

with {fi} being independent of frequency. This observation will be specifically used

in our subsequent presentation.
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8.2.2 Asymptotic Waveform Evaluation

To describe the basic idea of AWE in conjunction with the FEM, we begin by

first expanding the solution {X} in a Taylor series about kg as

{X} = {Xo} + (k= ko) {Xa} + (k = ko)? { X2} + ...

(k= ko) { X0} + O {(k — ko)**'} (8.4)
where {Xo} is the solution of (8.2) corresponding to the wavenumber ky. By intro-
ducing this expansion into (8.2) and equating equal powers of & in conjunction with
(8.3), after some manipulations we find that

{Xo} = koAg'{fi}

{X1} = AF'[{A}— A {Xo} —2koA; {Xo}]

(X2} = —AF'[AL{Xi}+ As({Xo} + 2ko {X1})] (.5)
{Xi} = —AFV AL {Xioi} + As({Xi—2} + 2ko {Xi1})]
with
Ao = Ao + koAl + kgAz (86)

Expressions (8.3) are referred to as the system moments whereas (8.6) is the
system at the prescribed wavenumber (ko). Although an explicit inversion of Ag'
may be needed as indicated in (8.3). this inversion is used repeatedly and can thus
be stored out-of-core for the implementation of AWE. Also. given that for input
impedance computations we are typically interested in the field value at one location
of the computational domain. only a single entry of { X;(k)} needs be considered. say

(the pth entry) X7(k). The above moments can then be reduced to scalar form and
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the expansions (8.5) become a scalar representation of X[ (k) about the corresponding
solution at ky. To vield a more convergent expression. we can instead revert the
moments to a Padé expansion, which is a conventional rational function in form. A

special case of the qth order of such an expansion is given by

ag + al(k - ko) +ag(k - :IC())2 +... +aq(k —_ ko)q
L+ by(k — ko) + ba(k — k)2 + ... + by (k — ko)?

XP(k) =

where a; and b; (: =0, L. ..., q) are referred to as the Pade coefficients.
For transient analysis, it is observed that the Pade expansion can be reformulated

by partial fraction decomposition [82.84] as

oL
oL

9
PLY VP ri

XP(k) = XB + ; oy e (
where X is the limiting value when k tends to infinity. Clearly, this is the represen-
tation suitable for time/frequency domain transformation. The residues and poles
(r; and ko + k;) in (8.7) or (8.8) correspond to those of the original physical system
and play important roles in determining the accuracy of the approxiration. In gen-
eral. higher order expansion contains more system residues and poles and usually
provides a better approximation. Since the accuracy of AWE relies on the dominant
residues and poles located in a complex plane closest to the point on the real axis
ko from the origin. in practice the number of poles (and residues) needed to obtain
a sufficiently accurate expansion can be much smaller than that of the original nu-
merical system. which is the beauty of AWE method. (Detailed analysis and theory

of Padeé expansion can be found for instance in [85].)
For hybrid finite element — boundary integral system. the implementation of
AWE is more involved because the fully populated submatrix of the overall system
may be associated with a more complex dependence on frequency. In this case it is

attractive to instead generate the full submatrix by introducing a spectral expansion
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of the exponential boundary integral kernel to facilitate the extraction of the system
moments. This approach does increase the complications for implementing AWE.
[t however remains far more efficient in terms of CPU requirements when compared
to the conventional approach to continuously repeating the solution of the entire

system.
8.3 Numerical Implementation

As an application of AWE to a full wave electromagnetic simulation. we consider
the evaluation of the input impedance for microstrip stub shielded in a metallic
rectangular cavity as shown in fig. 8.1. As expected. the stub’s input impedance is
a strong function of frequency from 1-3 GHz and this example is therefore a good
demonstration of AWE's capability.

The shielded cavity is 2.38¢cm x 6.00cm x 1.06cm in size and the microstrip stub
resides on a 0.35¢m thick substrate having a dielectric constant of 3.2. The stub is
0.79cm wide and A/2 long at about 1.8 GHz. We note that the cavity is terminated
at the perfectly electric conductor (PEC) back wall by an artificial absorber having
relative constants of €, = (3.2. —3.2) and g, = (1.0. —1.0). In this study the artificial
absorber was used for setting up an appropriate forced problem rather than to es-
tablish a perfectly matched interface. Nevertheless the numerical FEM system was
already demonstrated valid and accurate for microwave circuit analysis [36].

The frequency response of the shielded stub was first computed using a full wave
finite element code from 1 to 3 GHz at 40MHz intervals (30 points) to serve as the
reference solution. We then chose the single input impedance solution at 1.78GHz
in conjunction with the 4th order and 8th order AWE representation given in (8.8)

to approximate the reference response. As seen in fig. 8.3. the {th order AWE
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representation is in agreement with the real and reactive parts of the reference input
impedance solution over about 36% and 33% bandwidth, respectively. This clearly
shows that the contributions of the system poles in the complex k plane lead to an
accuracy difference to the real and reactive components. Surprisingly, the 8th order
AWE representation recovers the reference solution over the entire 1-3GHz band for
both impedance components. We also observed that the CPU requirements for tth
and Sth order computations are nearly the same except for a few more times of
matrix-vector products. The number of these product operations is in the order of
the AWE approximation order ¢ and therefore much smaller than the size of the
original numerical system.

[t is also apparent that to demonstrate the AWE efficiency we only solved the
system once at one frequency point. The save of CPU time can be easily estimated
when compared to solve the system conventionally for each frequency over the entire
band. Thus. the AWE representation is an extremely useful addition to electro-
magnetic simulation codes and packages when a wideband frequency response of the
system is required. The development and utility of the method for more complex
numerical systems and multiple parameter simulation can be readily extended and

will be considered in the future.
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Figure 8.1: Illustration of the shielded microstrip stub excited with a current probe.
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Figure 8.2: Impedance calculations using traditional FEM frequency analysis for a
shielded microstrip stub shown in figure 8.1. Solid line is the real part
and the dashed line denotes the imaginary part of the solutions. These
computations are used as reference for comparisons.
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Figure 8.3: 4th order and 8th order AWE implementations using one point expan-
sion at 1.78 GHz are shown to compare with the reference data. With
the 4th order AWE solutions, 36% and 33% bandwidth agreement can be
achieved for the real (a) and imaginary (b) parts of impedance compu-
tations, respectively. It is also shown that the Sth order solutions agree
excellently with the reference data over the entire band. (a) Real Part
(b) Imaginary Part computations



CHAPTER IX

Conclusions

9.1 Discussion on the Research Work

During the period of developing the hybrid finite element methods. many ex-
pected and unexpected issues were frequently encountered. Among them are the
understanding of physical systems, development of mathematical models. interpre-
tation of results. lack of measurement data for comparison. and increased compu-
tational demands, etc. We can comfortably state that significant progress has been
made during the course of this work. Some of our accomplishments are summarized

below.

e GENERAL PURPOSE HYBRID FE-BI METHOD DEVELOPMENT
Once the FE and BI subsystems and the hybrid method were mathemati-
cally formulated. a major effort was then devoted to the integration of the
two subsystems. The interface between the FE-BI program and a commercial
(SDRC-IDEAS) mesh generator was developed with minimum but sufficient
geometry and meshing data. The latter task was important in permitting the
geometrical modeling and meshing of printed antenna configurations of arbi-
trary shape. It is this general version of the FE-BI code that can (in theory)

be used to simulate any planar conformal antenna.
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e ITERATIVE SYSTEM SOLVER
A memory saving algorithm ITPACK was intertwined with the hybrid FEM
subsystem to register only the non—zero FEM entries. The BiCG iterative
solver was independently developed for partially sparse and partially full ma-

trices in conjunction with the ITPACK algorithm.

e UNIFORM GRID BI sUBSYSTEM — BICG-FFT
To facilitate the efficient storage and evaluation of the BI sub-system. a uni-
form right triangular zoning scheme for discretization of the boundary integral
equation was introduced by re-numbering the triangle edges as dictated by their
geometrical locations. This approach leads to a BI sub-system which could be
cast as a 2-D discrete convolution, thus allowing use of FFT for fast execution
of the iterative solver. This truncation/termination the “exact” evaluation of

rectangular and right-triangular patches.

e NON-UNIFORM BI SUBSYSTEM — OVERLAY-BICG-FFT
For non-rectangular patches. an interpolation scheme was proposed to make use
of the efficient BiCG-FFT technique by overlaying a fictitious uniform grid with
the original arbitrarv mesh. The forward/backward transformation matrices
to account for field interpolations using localized basis functions were derived

and they were indeed highly sparse.

e FEED MODELING
Feed modeling is one of the most important and challenging tasks in the context
of the general purpose FEM. To this end. a series of commonly used feed
structures were modeled using the hybrid technique. especially in consideration

of efficiency and accuracy. These include probes/generators. aperture coupled
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slotline, microstrip line, coax cable, etc.

PRIsMATIC FEM ELEMENTS INCORPORATION

A major problem in any hybrid FEM analysis is the tedious pre-processing
for mesh generation. Thin layer substrates in the presence of thick spacer(s)
are often found in practical conformal antenna designs. However. this typical
configuration leads to large numerical systems when tetrahedral elements are
used. To alleviate these difficulties, the prismatic edge-based elements were
developed and incorporated in the hybrid system. This formulation exhibits
certain features/advantages that tetrahedral FEM does not. It can therefore

be used to compensate the tetrahedral FEM as a subsystem module.

MESH TRUNCATIONS WITH DMT anND PML

The uniaxial or other anisotropic medium simulation may be readily accom-
plished using the proposed hybrid FEM technique due to the geometrical adapt-
ability of the tetrahedral elements. Hence the PML was first introduced into
the 3-D FEM. Various performance studies were carried out to optimize the
application of the PML to microwave circuit simulations. In the meantime. an
analytical approach, dominant mode truncation (DMT). was proposed and im-
plemented as an alternative mesh truncation of the FEM domain for microstrip

lines and similar structures.

REDUCED ORDER APPROXIMATION—AWE

AWE has been reported useful in RLC and VLSI applications. For wideband
and highly varving frequency responses. this technique is particularly efficient.
Given the promise of the method for broadband simulations of VLSI circuits.

we consider its application to electromagnetic svstem. In particular. AWE
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was incorporated into the finite element method. It was indeed observed that
the attractive features of AWE are maintained when used in electromagnetic

problems.

9.2 Suggestions for Future Tasks

The following is a list of suggested tasks for further development of the finite

element methods
e HIGHER ORDER EDGE-BASED FEM DEVELOPMENT
e ADAPTIVE ELEMENTS
e MIXED ELEMENTS AND INTERFACE
e ANISOTROPY (WITH LOSS) FEM INVESTIGATIONS/APPLICATIONS
e INCORPORATION OF MORE ROBUST TRUNCATIONS
e MODULAR DEVELOPMENT AND INTEGRATION (WITH USER INTERFACE)

9.3 Modular Development

Hybrid finite element methods for the analysis of various electromagnetic prob-
lems encountered in practice are still on the way to reach its maturity. As well known.
any general purpose technique (such as the commercially available software in electro-
magnetics) either loses its efficiency or becomes incapable when simulating intricate
problems. It is anticipated that at the current stage of the FEM development with
the limited capacity of computing resources. more and more specialized techniques
will be desired, particularly when efficiency and speed become a kev consideration

in large scale computations and in engineering design.
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With a whole set of specially developed techniques and methodologies. one should
then consider to create an integration environment. As shown in fig. 9.1. we propose
this FEM modular environment for future computational electromagnetic applica-
tions. A well designed modular finite element methods will be the most capable and

robust in the future!

FEM Multi-Module Environment

User interface

User’s Modules

FEM Modules FeedLine

X bricks
Truncation prisms Modules

Modules tetras

Figure 9.1: Multi-modular FEM environment
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APPENDIX A

Evaluation of Matrix Elements for Tetrahedrals

Referring to Fig. A.l and the associated table, the fields in the eth tetrahedron

nodes/vertices
(a)
Table
Edge Vertex Numbering
Numbering 1 I
D 1 2
@) 1 3
©) 1 4
€) 2 3
® 1 2
® 3 4
(b)

Figure A.1: (a) A tetrahedron. (b) its local node/edge numbering scheme
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are expanded as

6
E=) EW:;
=1

where the basis functions W$ are given by

fri+g-_,xr rel,

W;—i(r ) =
0 outside element
b-_; .. ) . )
f-_; = GT ri, X T r;,. T, : position vectors of vertices i, and i, (see Table)
_ bbb
gT-—i - 6‘/; €
o (ri, —r;)
e = .
b; = |ri —r; | =length of the ith edge (see Table)
V. = element’s volume
We note that
V-W:=0 V x W =2g;

indicating that W?¢ are divergenceless. Furthermore,
o 1 i=j
W,-(r’)-ej=5,-j: 5,'_,' =
0 t#J
where r’ has its tip on the jth edge of the tetrahedron. This last property ensures
that the coefficients Ef = E - €, represent the average field value at the ith edge of
the tetrahedron.
Using the above basis functions. we now proceed with the derivation of the matrix

elements Af;. We have

JI[ e xwo (v x W) = g0
V. Hr Hr
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Also,

e,/ Wi -Widv = c,// {(f.--f,-)+(r'D)+(g,-xr)-(gjxr)} dv
V. V.

= e(h+hL+)
where
D= (f; x g,) +(f x &)

and

I = ///f £ dv
I = ///r D
I = ///‘/e(gixr)-(gjxr)d'L'

Since f is a constant vector. [; reduces to
[1 = f,‘ . fj "e

To evaluate [, we first set

1 4
r= Z Liz;: y= Z L:yi: z=
=1

i=1 3

L,':,'

4
=1
where z;, y;. =; (¢ = 1l.....4) denote the (z.y.z) coordinates of the tetrahedron’s
vertices and L; are the simplex coordinates or shape functions for the same element.
That is. L; is the normalized volume of the tetrahedron formed by its three corners
other than the tth. and the point (z.y. =) located within the tetrahedron. Using the

standard formula for volume integration within a tetrahedral element and simplifving.

we have

4 4 4
Dzzfi-l- DyZyi-i- D:Z:i
=1 i=1 =1
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where Dp, is the mth component of D. The evaluation of I3 can be simplified by the

use of basic vector identities. We have

b =88 IFIZdU-K_(g;'r)(gjvr)dv

= (99iy + 9i29i:) / 2P dv + (izgjz + gizge) / YR dv +(gigjz + GisGi) / e

L3 - Ve

= (9izgiy + 9iz9iy) / rydv — (gizgj= + gjzGiz) / sz dv — (9iyg;- + 9jygi:) / yzdv
. v, v,

where g;,» represents the mth component of the vector g;. Each of the above integrals
can be easily evaluated analytically and the result can be expressed in the general

form

4 4
/V’— aan, dv = ‘0 [Z Alilmi + Z aj; Z am,]

=1 =1

for m = 1.....3. The parameters a; or a,, can represent any of the rectilinear

variables . y, =



APPENDIX B

Evaluation of the Boundary Integral System
Matrix

The explicit representation of the boundary integral subsystem matrix is given

by (3.12) and can be rewritten as

qu,_, =2// // (—kéS,SJ-{»VxS,V XSJ) Go(r.r')dS'dS (B.l)
TF T}

where Go(r.r’) is the free space Green’s function. and 77 is the pth triangle of the
triangle pair 5, as shown in fig. 3.3. Similar to the finite element assembly procedure.
it should be recognized that the definition of (B.1) virtually involves an assembling
over the triangles.

To proceed. (3.14) is used to discritize the field region and thus its curl is given
by

V x Si(r) = e(r)%f (B.2)

where ¢(r) is defined by (3.13). Note that when deriving (B.2). the fact that r is
located inside the pth triangle in a planar surface is considered and therefore V-r = 2.

Given the Green's function., it is straightforward to express the matrix entries as

B = —ﬂ-—/‘/ // (e —r})-(r— r'-)e;(r)e-(r)e—jkOR dS'dS
Y 87-’.4;:{{, TF T,q ' ! J R

lilj e~k R o re .
+ m/ﬂp //]'q TC,‘(I‘)CJ'(I‘)([.S ds (B.3)
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in which R = |r — r/|. These integrals can be readily evaluated for non-self-cell
terms by numerical integrations. [t is also observed that once T7 coincides with
T! . the integrands become singular because of the Green’s function. In this case.

the singularity should be removed. For the second integral. this is accomplished by

subtracting and adding an additional term. That is

//T//T e—;’;oRei(r)fj(r)dS’dS - //T //T &ei(r)q(r)dsug
* //T»//Tq ds'dS (B.4)

The first integral in (B.4) is evaluated using numerical integrations and the second

one is carried out analytically [55]. Similarly. the first integral in (B.3) is rearranged

as

(J‘n

’ ’ ) e~ IR
//T,P //Tq(r —r;) - (r —r})e(r)e;(r) B dS'dS
il W
_ _ ._, 5:
//T//Tr ) (¢~ ) Jelr)es ()
//T{’ //;}q(r —-rl)-(r— rj)ci(r)ej(r)%dS’ ds (B.3)

in which the first integral on the right hand side is numerically integratable with
singularity removed and the second one again may be expressed in a simple analytical

form [33].
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APPENDIX C

Formulation for Right Angle Prisms

For FEM implementation, the following quantities are required

P, = VxV, VxV,dV (C.1)

Ve

‘w = | Vo VadV (C2)

ve
where the curls are given by

li

V xV; =—,,SCA~[(r—r;)i+(y—ys)§/—5(:—:c)] 1=1.2.3
l; . .. ) - .
VxV; =g - 2)i+y—g)i+ 3+ 32 -3)] j =456 (C.3)
1 A ) .
V x Vi = 53 [(z2 = zk1)E + (Yr2 — Yx1)Y] k=7.38.9

To this end. we follow the notation defined in (4.13) and (4.14). where ¢.:'=1.2.3
represent the top triangle edges. j.j'=1.5.6 denote the bottom triangle edges and
k.k'=7.8.9 stand for the vertical three edges. It is found that (C.2) and (C.3) can

be analytically evaluated and we tabulate the results as follows

Py = Cu [Du’AZ + %58(4\3)3] (C.4)

, 4
Py = Cjy [Dpﬂ: +3

. 5°(—\:)3J (C.5)



- _:_l‘l._l'k’
Py 15 (C.6)
4
P; = P;=-C; I:ngA..——be(A..)s (C.7)
(C.8)
li A 3 - e ~ X3 ¥ cre
Pr = Py= R TIIE [2-F(SX ~2;5%) + § - F(SY — y:5°)] (C.9)
l' A J cre ~ Tk, Oy e
Py = Py= 4(52)2 [£-F(SX —2;8°) + § - M(SY —y;5°)] (C.10)
(C.11)
A 13
Qir = (A;) Cii Djir (C.12)
Az)® .
(C.14)
Q(-k' = A:Schkl (C.lvi'))
Az)3
Qi = Q= £—6—)-C,-,~D,-j (C.16)
Qik = Qui=Qj=0Qk =0 (C.17)
where
T = 1/6 fork=Fk; 1/12 fork#K

lil; .
Ci = [Geanp (C.18)

Di; = SXX —(2;+1;)SX + 5,255+ SYY — (g + y;)SY + yiy; 5°

The remaining quantities in the above list of the expressions are defined as

/ drdy
Se

SX = /rd.rdy
-

U
o
1l
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SY = /ya’:cdy
se

SXX = /rzdzdy
Se

/ y*drdy
5!

SXY = /Iyd.rdy

)
~
~
]

b!
These integrals can be expressed in terms of the global coordinates of the three nodes
(Xi. Y0 (X;.Y5). (X, Yo). Specifically. assuming that the three nodes i.j and m of

a triangle are in counterclockwise rotation. we then have.

Iz
S = dd—1
“‘Szxy‘g 1 y;
l Tm Ym
S
SX = /J:da:dy——? (Xi+ X;+Xn)
. S .
SY = /yd.z’cU-—}-Y-i-Y + Ym)
5S¢
SXX = /r d.rdy——)
e Z

{(Ni+ X+ X))+ + (X2 + X7+ X2}
SYY = /yzd.rdy——;{ YY)+ (VYR 4Y2))
Se 4

SXY = dzdy = >
% = /cl’y I y—ﬁ

+(XY + XY + XY}

{(Xi+X;+Xn)(Yi+ Y +Yn)



APPENDIX D

System Derivation From A Functional

Referring to fig. 2.2. we begin with the functional
1 — —
'f'(H)z_—/ VxH-E,l-VXH—kgH-ﬁr-H) dQ (D.1)
= Ja+9,+0,

to derive the system in terms of the scattered field. On inserting the field decompo-

sition H = H** + H™. the functional becomes

f-( Hscat. HinC) — (Hscat’ Hscut Hsca.t. HinC) le"I-(Him:. Hscat

)IQd+QI+Qq +( )|Qd

+ (Hscat.HinC)IQ!_*_(Hinc.Hscat)IQ! (DZ)

where the fact that H™ does not exist in {, has been considered. and (. ) represents
the integral of the same form as in (D.1). Once a self-adjoint system operator is

assumed. it then follows that
(I_Iinc?I_I.scat)lde (Hscat.’HinC)IQd (D})

Also. in free space Q.

(Hinc’ Hscat)lnf__: (Hscnt. Hinx:) o, (D-L)
Upon invoking the divergence theory, we have
2ECH™), = [ B (7 xF O x H™) dS
Q -
scat ~ =-1 ing o -
- H —(ngxcf -V xH ) ds (D.5)

Ty
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Evidently, for a self-adjoint operator, one readily recovers the system (2.42) obtained
via Galerkin’s method. It should be noted that besides the boundary/transition

conditions. the self-adjoint property of a system operator simply requires
T
=1 =1 = =T
£ = (er ) . B =(g) (D.6)

In the case of a non-self-adjoint operator, it is generally not possible to recover the
system given by (2.42) in the same manner. This is because the functional (D.2) in

terms of the scattered field is of the form

f‘(H) — L/ V x Het. g:l .V x H®t — kgHscat . lzlr . Hsca.t) dQ
- Qd+Qf+Qq
+ _];_/ (v X Hscat . ?;1 -V x Hinc _ kSHscat N ﬁd N Hinc) d
2 Jay

1 . _ . —
+ ;/Q (v X Hmc . Edl . v X Hscat - kgHmc . ,Ed . Hscat) d..Q
d

4

+ [ Hee. (le x &'V x H""C) ds
Ca

_ / B (7 x &'V x HP) dS (D.7)
It is observed that the first integral shows the same form of the FEM system as that in

(2.42). All other integrals in (D.7) contribute to the system excitation. Apparently.

the two integrals over domain (1 are not identical, leading to a different FEM system
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