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ABSTRACT

Retrieval of Parameters for Layered non-Smooth Interface Media: Theory and
Experiment

by

Yuriy M Goykhman

Chair: Mahta Moghaddam

Many naturally occurring or manmade objects can be modeled as three layer me-

dia with non-smooth interfaces. Most of the existing forward and inverse scattering

models that can be applied to such media are either too inefficient or have limited

regions of validity. In this dissertation an efficient forward scattering model based on

the Extended Boundary Condition Method (EBCM) is developed for a three layer

medium. The boundary between the first and the second layers is periodic while the

boundary between the second and third layers is rough. The model is then extended

by including an arbitrarily shaped cylinder placed into the third layer. Both TM and

TE polarizations and PEC and Dielectric cylinder cases are considered. The Method

of Moments (MOM) is used to obtain an impedance matrix, which is then trans-

formed into a T-matrix. The T-matrix is transformed into a scattering matrix and

cascaded with scattering matrices for the periodic and rough interfaces to obtain a

generalized scattering matrix for the total system. A solution to the inverse problem

for a three-layer medium is developed using simulated radar data. The retrieval of

the layered- medium parameters is accomplished by sequential nonlinear optimiza-

xiii



tion starting from the top layer and progressively characterizing the layers below.

The optimization process is achieved by an efficient iterative technique built around

the solution of the forward scattering problem. To be efficiently utilized in the inverse

problem, the forward scattering model is simulated over a wide range of unknowns

to obtain a complete set of subspace-based equivalent closed-form models that relate

radar backscattering coefficients to the sought-for parameters, including the dielectric

constants of each layer and the thickness of the middle layer. The inversion algorithm

is implemented as a modified conjugate-gradient-based nonlinear optimization. It is

shown that this technique results in accurate retrieval of surface and subsurface pa-

rameters, even in the presence of noise. To validate forward and inverse scattering

models, a compact tower-based radar system is built. The data collected with the

instrument is used to demonstrate sensitivity of radar measurements to changes in

soil moisture and the potential for estimating surface and subsurface parameters.

xiv



CHAPTER I

Introduction

1.1 Motivation and Dissertation Objectives

There is a great need for practical and efficient systems that can remotely estimate

root zone soil moisture and snow depth, detect buried or sunken objects, estimate

the depth of fresh bodies of water, and be used in medical and industrial testing and

imaging. Both national governments and private companies have devoted consider-

able resources to research in the area of microwave remote sensing. In particular, in

2014 NASA is planning to launch The Soil Moisture Active-Passive (SMAP) mission

to map soil moisture on a global scale using combined radar and radiometer obser-

vations. The purpose of the system, which will operate at L-band, is to estimate

surface soil moisture. The penetrating abilities of low frequency radiation make it an

excellent candidate for subsurface measurements. To penetrate dense vegetation and

estimate root-zone soil moisture down to approximately 1.2 meters, NASA is plan-

ning to launch a UHF synthetic aperture system as part of the Airborne Microwave

Observatory of Subcanopy and Subsurface (AirMOSS) program.

Microwave radar instruement cannot measure the quantities of interest directly; it

measures quantities proportional to the radar cross section of the scene from which the

sought-for parameters must be extracted. Inverse scattering models are algorithms

that allow for retrieval of the desired parameters from the measured quantities. These
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algorithms typically involve multiple evaluations of forward scattering models, which

relate the sought-for parameters as well as various ancillary parameters to the mea-

sured quantities. The goal of this dissertation is to develop a complete subsurface

sensing system that encompasses efficient forward and inverse scattering models, and

can be used to interpret data measured by the compact tower-based instrument.

1.2 Previous Work

There have been considerable efforts to develop accurate, versatile and computa-

tionally efficient forward and inverse scattering models that can be applied to practical

remote sensing systems. Forward scattering models can usually be classified as an-

alytical, numerical, or a hybrid of analytical and numerical approaches. One of the

most popular analytical methods is the Small Perturbation Method (SPM) developed

for a single rough interface by Rice in the early 1950s [1]. In recent years the method

was extended to include higher order expansions [2] and applied to media with two

or more rough interfaces [3]. Since SPM is a purely analytical model, it is computa-

tionally very efficient. However, since it is based on truncation of a series expansion,

the range of validity of the model is limited to surfaces with small and slowly varying

roughness. Fully numerical techniques, such as the Method of Moments (MOM), can

in principle be applied to almost any distribution and roughness scale. When applied

to rough surfaces, many realizations of the random rough surface are needed to fully

capture surface statistics, resulting in added computational times. Moreover, when

applied to finite surfaces, the accuracy of solution deteriorates due to edge diffraction

(see [4]). The problem is exacerbated when this method is applied to more than

one interface. The edge diffraction effects can be only partially remedied by using

tapered incident field as was demonstrated in [5]. In addition, the surface needs to

be densely discretized to ensure accuracy of solutions. Therefore, such methods are

computationally expensive and are rarely used in inversion algorithms where multiple

2



evaluations of the forward problem are needed.

Methods such as the ones based on the Extended Boundary Condition Method

are significantly more efficient than fully numerical methods, they account for high

order scattering, and have a significantly greater region of validity [6] than the ap-

proximate analytical solutions. However, these methods are still significantly slower

than analytical methods and are too computationally expensive to be of practical use

in inversion algorithms.

When modeling scattering from objects, such as a collection of cylinders, the T-

matrix technique first developled by Waterman [7] in the early 1960s for a single

scatterer can be especially useful. T-matrix is convenient since it does not depend on

the incidence angle or the location of the object, thereby reducing its dependence to

only the properties of an object and the polarization of the incoming radiation. In

many multiple scattering problems such as detection of objects behind an obstacle,

through-the-wall imaging, tunnel detection, and ground penetrating radar applica-

tions, real world objects are often approximated as circular cylinders ([8], [9], [10]).

The analytical expressions for a T-matrix of a circular cylinder are simple and widely

reported but cannot adequately describe a scatterer with noncircular cross section,

so a more versatile T-matrix method is needed. In [11] a similar approach to the one

presented in this dissertation is used to obtain a T-matrix for the simplest case of a

PEC cylinder for TM polarization.

Inversion algorithms can be generally classified as local or global optimization

methods. Local optimization methods such as variations on Newton’s method [12]

and the Conjugate Gradient methods [13] are iterative methods which generally rely

on gradients and partial derivatives to obtain the next estimate. Since numerical

evaluation of derivatives is not accurate and accumulates error, these methods are

best suited for situations where derivatives can be computed analytically. Local opti-

mization methods usually converge rapidly (at least as compared to global methods)

3



but may get trapped in a local minimum and fail to converge to the correct solu-

tion. Global optimization methods, such as the Simulated Annealing method [14],

are guaranteed to converge but may take hundreds of thousands of iteration to do so.

With the tremendous increase in computational power in recent years, a number of

new works have successfully applied global optimization algorithms to solve inverse

scattering problems [14], [15]. While it is feasible to use global optimization methods,

local optimization techniques are still preferred from the point of view of compu-

tational efficiency. The algorithm used in this dissertation is a local optimization

algorithm that is based on a Conjugate Gradient method.

There has been a number of previous efforts to experimentally validate forward and

inverse scattering models as well as to construct practical instruments to estimate soil

moisture, detect burried objects and perform through-the-wall imaging. One of the

first significant experiments in using a short range (tower or vehicle based) radar to

estimate soil moisture was carried out in 1975 at the University of Kansas (See [16]).

The data was collected from five sample fields using a truck mounted Microwave

Active Spectrometer (MAS) system. In addition to measuring the dependence of

backscatter data on soil moisture, the experiment established the dependence on pa-

rameters such as soil surface roughness, incidence angle and measurement frequency.

The measurement frequencies were varied between 1 and 8 GHz so the penetration

into the subsurface layers was limited. In [17] several ground penetrating radar sys-

tems for detecting buried or sunken objects are described. Most of these systems have

transmit and receive antennas in contact or close proximity to the target, greatly re-

ducing the footprint size and practicality for many applications. In [18] a tower based

low frequency system operating at frequencies down to 137 MHz is used to estimate

root-zone soil moisture.
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1.3 Dissertation Contribution

The contributions of this dissertation span over a broad range of activities, in-

cluding the development of forward and inverse scattering models, the design of radar

systems and measurement techniques and the development of advanced radar data

processing algorithms. The main contributions include:

• The development of an efficient forward scattering model for a three-layer medium.

• A versatile and efficient T-matrix method for cylinders with arbitrary cross sections.

• A robust inversion algorithm based on the conjugate gradient method.

• A new compact multifrequency radar system and advanced data processing algo-

rithm.

An efficient forward scattering model based on EBCM and scattering matrix tech-

nique was developed for three layer media with non-smooth interfaces. The model

with a periodic interface between the 1st and 2nd layers is more accurate and efficient

than the one with both rough interfaces for a number of applications.

The three layer model is then extended by the inclusion of a cylinder with an

arbitrary cross section inside the 3rd layer. Such models are especially important in

through-the-wall imaging and detection of buried objects. To incorporate the cylinder

into the model, compact and efficient T-matrix equations were developed for both TM

and TE polarizations and for metallic and dielectric cylinders.

The inversion algorithm presented in this dissertation is a robust local optimization

algorithm based on the conjugate gradient method. Several important modifications

were introduced to the standard conjugate gradient optimization to improve efficiency

and accuracy of the algorithm. The numerical computation of the two gradient op-

erations required in a conjugate gradient method is highly undesirable, and is one of

the main sources of error and inefficiency of the standard optimization algorithm. To

address this problem, the forward model is simulated over a large range of unknowns.

The resultant data space is then broken into subspaces, and closed-form analytical

5



expressions are fitted to accurately model the function within each subspace. The

conjugate gradient algorithm is applied to analytical expressions representing each

subspace. The best solution is then chosen based on the magnitude of the cost func-

tion. As a result of the modification, all operations beyond obtaining closed-form

expressions are analytical and do not accumulate error.

Another problem with retrieval algorithms is the number of unknowns. The com-

putational cost of initial simulation, the cost of obtaining closed-form representations

and the complexity of the inversion algorithm itself all increase rapidly with the num-

ber of unknowns. A significant efficiency improvement is achieved by sequential layer

characterization. The model is first simulated at high frequency such that contribu-

tions of the subsurface can be safely neglected. The parameters pertaining to the first

interface are retrieved and used in simulating the model at lower frequencies.

Even with these modifications, the number of parameters which go into a forward

model is too great for efficient inversion. Most of these parameters, called ancillary

parameters, are not the parameters of interest but nontheless are part of the forward

scattering model. In this dissertation a careful analysis is performed on the sensitivity

of the forward and inverse models to the errors in the ancillary parameters. The result

of the analysis provides insights into the preferred way of obtaining these parameters

(treating them as unknowns, direct measurement, approximation) and the accuracy

with which they have to be obtained in order to achieve desirable inversion results.

To validate the models described in this dissertation and to further the technology

of low frequency radar, a compact, tower-based radar was designed and manufactured.

The radar is a multi-frequency bistatic pulse system that can measure changes in radar

cross section corresponding to changes in the soil moisture measured by a co-located

soil moisture sensor network. The instrument achieved 20 dB sensitivity improvement

at approximately 1
8

of the weight and 1
5

of the deployment time compared to its

predecessor. A coherent processing algorithm applied to the collected data allowed
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for significant resolution and signal-to-noise ratio improvements.

1.4 Thesis Overview

The dissertation contains six chapters. Chapter 1 (this chapter) introduces the

dissertation topic by discussing motivation and previous work done in the field. Chap-

ter 2 introduces the forward scattering model for a three-layer medium with a periodic

boundary between the 1st and the 2nd layers and a random rough boundary between

the 2nd and the 3rd layers. The method is based on the Extended Boundary Condi-

tion Method and Scattering Matrix approach. The computational efficiency of the

proposed forward model is analyzed, along with establishing the sensitivity of the

model to the parameters of the subsurface layer. In Chapter 3 a forward scattering

model is developed for a cylinder with an arbitrary cross section placed in the 3rd

layer of the medium. First, the T-matrix formulations are developed for the four main

cases (TM PEC, TE PEC, TM Dielectic, TE Dielectric) and extensively validated

for a number of special cases with analytical solutions. The derived T-matrix quanti-

ties are converted to scattering matrices, which are then combined with the relations

developed in Chapter 2 to complete the formulation. In Chapter 4 an inversion al-

gorithm for retrieval of parameters from scattering coefficients data for a three-layer

medium is introduced. The algorithm uses a local optimizer based on the modified

conjugate gradient method but differs from previous inverse algorithms by developing

closed-form subspace-based representations of the forward model. The sensitivity of

the algorithm to errors in scattering coefficients and ancillary parameters is explored.

Chapter 5 is devoted to the discussion of a new tower based radar system. This com-

pact, multi-frequency radar instrument was designed and built to validate forward

and inverse scattering models. Instrument design, calibration, data collection and

processing are described. In addition, the data from several measurement campaigns

is discussed. The last chapter (Chapter 6) concludes the dissertation and discusses

7



future work.

8



CHAPTER II

Forward Scattering Model for Three-Layer Media

with non-Smooth Interfaces

2.1 Introduction

In this chapter a forward scattering model for three layer media with non-smooth

interfaces is introduced. The forward model is emphasized here because the forward

and inverse models are inherently coupled such that in order to properly describe the

inversion algorithm, adequate presentation of the forward model is essential. The for-

ward model is based on the application of the Extended Boundary Condition Method

to derive the scattering contributions from the top and the bottom interfaces. In

Section 2.2 a set of scattering matrices for a single periodic interface is developed.

A similar process is applied to the rough interface in Section 2.3. The plane wave

modes of both interfaces are matched to produce the total scattering matrix for the

entire system. The scattering matrix is then related to backscattering coefficients.

The relative complexity of forward and inverse models associated with multi-layer

structures developed in the past has often led to the use of simplified models that

ignore the contributions of subsurface layers. In this chapter the effects of subsurface

properties on the backscattering coefficients are explored in order to determine the

extent of error due to ignoring the subsurface and the cases for which the use of
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Figure 2.1: Geometric parameters for the problem. Surfaces are separated by dis-
tance d; εr0-εr2 are relative dielectric constants, A and T are amplitude
and period of a periodic surface, and σrms and l are RMS height and
correlation length of a rough surface. Such surfaces are typical of fresh
water and agricultural fields.

simplified models is justified.

The geometry of interest is a three layer medium with a periodic interface between

the first and second layers and a rough interface between the second and third layers,

as shown in Figure 2.1. This geometry occurs frequently in natural and man-made

structures (See [19]). Lakes and rivers often have this cross-section, with the periodic

top surface being representative of waves and the rough bottom surface representative

of the lake or river beds. Plowed agricultural fields are another example of periodic-

over-rough cross-section geometries, in which there is often a rough interface below

the top periodic surface, where transition between sandy and clay soils occurs. The

first layer is typically air, i.e., a homogeneous dielectric with the relative dielectric

constant of one. The 2nd and 3rd layers are also modeled as homogeneous layers with

relative dielectric constants εr1 and εr2, which are in general complex. Figure 2.1

depicts the relevant parameters for the problem: amplitude A and period T for the

periodic surface, RMS height σrms and correlation length l for the rough surface,
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layer separation d, dielectric constants εr0, εr1, εr2, incidence angle θinc, and wave

polarization.

The penetrating abilities of low frequency electromagnetic radiation make it a

good candidate for this group of applications, provided sufficient resolution can be

achieved, and a diversity of measurements (such as multiple polarizations) are avail-

able to provide sufficient independent information for retrieval of the several un-

knowns. In particular, multipolarization radar systems at L-band (∼1.2 GHz) and

lower frequencies are well suited for this purpose. Through the use of accurate and

efficient forward and inverse scattering model techniques, these radar measurements

can be converted into estimates of the sought-after parameters of the surface and

subsurface media.

2.2 Scattering Matrices of a Single Periodic Surface

The derivation of scattering from a single 1-D periodic surface is presented in [20].

In this work, the derivation for horizontal polarization (TE waves) is provided. The

vertical polarization solution (TM waves) can be obtained using duality. If we consider

a periodic surface described with variations only in the x-direction, the surface height

profile can be described by f(x) = f(x + L), where L is the period of the surface.

The incident electric field can be expressed as:

Ei = ŷE0e
ikir, where (2.1)

ki = x̂kix − ẑkiz (2.2)
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Using the scalar form of the Huygens’ principle and extinction theorem for the upper

half-space, the electric field above and below the periodic interface can be written as:

Eiy(r)−
+∞∫

−∞

dl{g0(r, r
′)n̂ · ∇′

sE0y(r
′)− E0y(r

′)n̂ · ∇′

sg0(r, r
′)} =

{
E0y(r) z > f(x)

0 z < f(x)

(2.3)

where dl is the differential unit of length along the surface and r, r′ are vectors from

the origin to the observer and the source. Repeating for the lower half-space:

+∞∫
−∞

dl{g1(r, r
′)n̂ · ∇′

sE1y(r
′)− E1y(r

′)n̂ · ∇′

sg1(r, r
′)} =

{
0 z > f(x)

E1y(r) z < f(x)
(2.4)

The two-dimensional Green’s function can be expressed as

gt(r, r
′) =

i

4
H1

0 (ktr|r − r′|) =
i

4π

+∞∫
−∞

1

ktz

ei(kx(x−x′)+ktz |z−z′| )dkx (2.5)

Equations 2.3 and 2.4 are over an infinite domain and therefore not fit for numeri-

cal solutions. The integrals in equations 2.3 and 2.4 can be represented as infinite

summations of integrals over one period:

Ety(r) = (−1)t+1

n=+∞∑
n=−∞

x0+(n+1)L∫
x0+nL

dl{gt(r, r
′)n̂ · ∇′

sEty(r
′)− Ety(r

′)n̂ · gt(r, r
′)}, (2.6)

where t = 0 and t = 1 represent upper and lower half-spaces respectively.

Since the surface only varies in the x-dimension with periodicity L, according to

the Floquet theorem, all field quantities must be periodic and differ only by a phase

factor.

E(x + L, y, z) = E(x, y, z)eikxL (2.7)
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As a result, Equation 2.6 can be expressed as an integral over only one period using

the periodic Green’s function (see [21] for more detail):

gt(r, r
′) =

i

4

n=+∞∑
n=−∞

H1
0

(
ktr

√
(x− x′ − nL)2 + (z − z′)2

)
eikxinL (2.8)

The rate of convergence of the periodic Green’s function is very slow and therefore it

is not fit for numerical computation. Using a Fourier transform identity equation 2.8

can be tranformed to

gt(r, r
′) =

i

2L

n=+∞∑
n=−∞

1

ktnz

eiknx(x−x′)eiktnz |z−z′|, (2.9)

where knx and ktnz are given by:

knx = kxi +
2πn

L
, ktnz =

√
k2

t − k2
nx (2.10)

The transformed Green’s function can be interpreted as a field produced by a periodic

array of line currents of progressive phase. This array produces a finite number of

propagating modes (called Floquet modes). A mode is propagating when the expres-

sion under the radical for ktnz is positive and evanescent if it is negative. Evanescent

modes decay exponentially away from the interface. The number of propagating

modes is determined by the period-over-wavelength ratio and the incidence angle.

We define quantities fmin and fmax to be the minimum and the maximum extent of

the periodic surface respectively. By allowing z to be larger than fmax or smaller than

fmin, |z − z′| = z − z′ for z > fmax, and |z − z′| = −(z − z′) for z < fmin. Substitut-

ing the transformed periodic Green’s function into the field equations produces field

equations above and below the periodic interface.
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The result of applying the extinction theorem above the interface (region 0) is:

E0y(r) = Eiy(r) +
n=+∞∑
n=−∞

b01ne
i(knxx+k0nzz), z > fmax (2.11a)

0 = Eiy(r) +
n=+∞∑
n=−∞

a01ne
i(knxx−k0nzz), z < fmin (2.11b)

The result of applying the extinction theorem below the interface (region 1) is:

E1y(r) =
n=+∞∑
n=−∞

b11ne
i(knxx+k1nzz), z > fmax (2.12a)

0 =
n=+∞∑
n=−∞

a11ne
i(knxx−k1nzz), z < fmin (2.12b)

where coefficients bt1n and at1n are given by

bt1n =
−i

2Lktnz

∫
{n̂ · ∇Ety(r

′)e−i(knxx′+ktnzz′) − Ety(r
′)n̂ · ∇e−i(knxx′+ktnzz′)}dl (2.13)

at1n =
−i

2Lktnz

∫
{n̂ · ∇Ety(r

′)e−i(knxx′−ktnzz′) − Ety(r
′)n̂ · ∇e−i(knxx′−ktnzz′)}dl (2.14)

The surface fields can be expanded in terms of their Fourier series

E1y(x, f(x)) =
m=+∞∑
m=−∞

βmeikmxx (2.15)

dln̂ · ∇E1y(x, f(x)) =
m=+∞∑
m=−∞

γmeikmxx (2.16)

The incident field can be decomposed into Floquet modes as well as producing a vector

with a sole non-zero entry corresponding to n = 0. By substituting Equations 2.13-

2.16 into the field expressions given by Equations 2.11a-2.12b and imposing boundary
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conditions, the result can be cast into infinite summations

m=+∞∑
m=−∞

U1+
nmβm + U2+

nmγm = a01n (2.17a)

m=+∞∑
m=−∞

Q2−
nmβm + Q1−

nmγm = 0 (2.17b)

In Equation 2.17a, a01n is a Floquet expansion of the incident field. The infinite

summations are truncated to produce matrix equations for β and γ,

 β

γ

 =

 U
1+

U
2+

Q
2−

Q
1−


−1  a01n

0

 (2.18)

Similarly, the upward and downward propagating field amplitudes can be expressed

via similar matrix equations:

−

 U
1−

U
2−

Q
2+

Q
1+


 β

γ

 =

 b

A

 (2.19)

Substituting Equation 2.18 into Equation 2.19 leads to

 b

A

 = −

 U
1−

U
2−

Q
2+

Q
1+


 U

1+
U

2+

Q
2−

Q
1−


−1  a01n

0

 (2.20)

The Scattering matrix relates amplitudes of the incident wave to those of the reflected

and transmitted waves

 R T̃

T R̃

 = −

 U
1−

U
2−

Q
2+

Q
1+


 U

1+
U

2+

Q
2−

Q
1−


−1

(2.21)

with R and T standing for the reflection and transmission matrices looking down and
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R̃ and T̃ looking up. The U and Q matrices are given by

U1±
nm =

knxkmx − k2
0

2Lk0nz

I±0 , U2±
nm =

−i

2Lk0nz

k0

k1

Y1

Y0

I±0 (2.22)

Q1±
nm =

knxkmx − k2
1

2Lk1nz

I±1 , Q2±
nm =

−i

2Lk1nz

I±1 , (2.23)

where I±0 and I±1 are given by:

I±0 =

L∫
0

ei(2π(m−n)x′
L
±k0nzf(x′)) dx′ (2.24)

I±1 =

L∫
0

ei(2π(m−n)x′
L
±k1nzf(x′)) dx′ (2.25)

Special care is needed to properly and efficiently evaluate the I integrals. A direct

numerical integration requires four (I−0 , I+
0 , I−1 , I+

1 ) integral evaluations for every ma-

trix entry, for a total of 16N2 + 16N + 4 integral evaluations where N is the number

of Floquet modes. Moreover, for large values of ktnz the integrand oscillates rapidly

requiring a very fine discretization. These problems render direct integral evalua-

tion impractical. An alternative method formulated in [22] relies on the Fast Fourier

Transform algorithm and allows for orders of magnitude improvement in computa-

tional efficiency. The I integrals generally take the form of

I(τ) =

L∫
0

ei2πτ x′
L eik(τ)f(x′)dx′ (2.26)

and can be rewritten as follows:

I(τ) = δ(τ) + K(τ) = δ(τ) +

L∫
0

ei2πτ x′
L (eik(τ)f(x′) − 1)dx′ (2.27)
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Next, K(τ) can be evaluated by expanding it using a Taylor series and integrating

the result term by term

K(τ) =
N∑

n=1

(ik(τ))n

n!
C(τ, n) (2.28)

C(τ, n) =

L∫
0

ei2πτ x′
L fn(x′)dx′ =

1

M
fft(fn(x′d), M) (2.29)

where f(xd) is a vector of length M of discrete samples of a continuous function f(x).

The efficiency of the algorithm is further improved if the number of points of the

surface is equal to a power of 2.

2.3 Cross Section Coefficients of the Three-Layer Medium

After the scattering matrices for a single periodic interface are obtained, the pro-

cess is repeated for the rough interface. Then, the modes for periodic and rough

surface are matched to obtain a total reflection matrix for the three-layer system.

Finally, scattering coefficients are computed from the total reflection matrix.

2.3.1 Scattering Matrices of a Single Rough Surface

Although a random rough surface is not periodic, the EBCM algorithm for peri-

odic surfaces can still be applied provided that the surface statistics can be properly

captured. The two parameters that generally describe a 1-D random rough surface are

the surface roughness σrms and correlation length l. Surface roughness is computed

by σrms =
√

1
N

∑N
n=1(xn − x)2, where x is the mean value for the surface. Correla-

tion length is a distance from a point on the surface required for the autocorrelation

coefficient to drop to 1
e
. Figures 2.2 and 2.3 demonstrate the impact of correlation
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Figure 2.2: Random rough surface with long correlation length. The effect of corre-
lation length on the rough surface height profile. The surface is a random
rough surfaces with σrms = 10cm. The correlation length of the surface
is 1 m

length parameter on the rough surface profile. Rough surfaces that have a short

correlation length feature rapid slope variation while surfaces with longer correlation

lengths have a gradual variation. Since the surface profile is not deterministic, many

surface realizations are necessary to adequately capture the surface statistics.

2.3.2 Generalized Scattering Matrix of the Three-Layer Medium

Once scattering matrices for the periodic and rough surfaces are computed, the

results are cascaded to form a generalized scattering matrix for the entire system.

The total reflection matrix for the entire system is given by

[Rt] = [R1] + [T̃1][φ][R2]([I]− [φ][R̃1][φ][R2])
−1[φ][T1] (2.30)

18



−5 0 5
−20

−10

0

10

20

X coordinate (m) 

S
ur

fa
ce

 h
ei

gh
t p

ro
fil

e 
(c

m
)

Effect of correlation length. corL =0.2 m

Figure 2.3: Random rough surface with short correlation length. The effect of corre-
lation length on the rough surface height profile. The surface is a random
rough surfaces with σrms = 10cm. The correlation length of the surface
is 20 cm

where subscripts 1 and 2 represent 1st and 2nd interfaces respectively, I is the identity

matrix and [φ] is a phase shifting matrix and is given by:

[φ] =


eikd cos φ1 · · · 0

...
. . .

...

0 · · · eikd cos φn

 (2.31)

In Equation 2.31, k corresponds to the propagation constant in the medium between

periodic and rough interfaces and φn is the propagation direction of the nth Floquet

mode in the middle layer. If both surfaces are completely flat (both the amplitude of

the periodic interface and roughness of the rough interface are equal to zero) and the

dielectric constant of the 3rd layer is the same as the dielectric constant of the first

layer, the expression for the total reflection matrix simplifies to the familiar equation

for the reflection coefficient from a homogeneous dielectric slab. Equation 2.30 can

be recursively extended to N layers. All the multiple scattering interactions are

incorporated in the inverse term. The advantage of this method becomes especially

apparent when performing the sensitivity analysis to a certain parameter since only
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the matrix containing the parameter in question would need to be recomputed. To

properly match the modes of the periodic interface with the modes of the rough

interface, the periods of both surfaces have to be equal. Since the artificial period of

the rough surface needs to be many correlation lengths long to properly capture the

surface statistics, it is typically larger than the natural period of the periodic surface.

Since any periodic function of period T is also periodic with period nT , an artificial

period for both surfaces is chosen in such a way that it is an integer multiple of the

period of the periodic surface and is large enough to properly capture the statistics

of the rough surface.

2.3.3 RCS of the Three-Layer Medium

Once a total reflection matrix for the system is obtained, radar scattering coeffi-

cients can be computed as follows (See [23]):

σ2D = Lλ cos2 θs|bm|2 (2.32)

where Lλ is the artificial period of both periodic and rough surfaces normalized by

the wavelength, [b] = [Rt][A], and [A] is a column vector containing the incident field

coefficients. The model is validated for several special cases with the SPM (See [6]).

2.4 Computational Efficiency and Sensitivity to Subsurface

2.4.1 Computational Efficiency

Table 2.1 compares computational efficiencies of the MOM and EBCM methods.

Special care is needed to address the differences in the type of metrices used to

assess computational efficiency of the different numerical models. In the case of

Method of Moments (MOM), unknowns represent induced current elements on a

surface of a scattering target and therefore have to be densely discretized to preserve
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Table 2.1: Computational efficiency comparison between EBCM and MOM. The sur-
faces are 40 λ long.

EBCM MOM
modes = 101 segments = 800
interfaces = 2 interfaces = 2

seconds/realization = .91 seconds/realization = 117

the accuracy of the model. Generally, it is recommended to have at least 10 unknowns

per wavelength. In the case of EBCM, modes represent discrete scattering directions

and therefore usually many fewer modes than MOM segments suffice. EBCM becomes

even more computationally advantageous as compared to MOM when applied to

multilayer problems since scattering matrices are developed independently for each

interface and then cascaded using only a few multiplications.

2.4.2 Sensitivity to Subsurface Parameters

There is great interest in the Earth Science community to map soil moisture on

a global scale. In most cases the air/soil system is modeled as two homogeneous

dielectric layers separated by a rough interface. Such models ignore the effects of

subsurface interfaces that are often present in reality. Soils, particularly croplands,

can often be considered periodic interfaces with a small roughness on top and a rough

interface between the top layer of soil and the subsurface layer (for example bedrock).

It is therefore important to investigate cases when the effects of the 2nd interface are

significant and when they can be neglected. There are several key parameters that

are especially significant: depth of the subsurface layer, difference in soil composition

and water content (dielectric contrast) between the layers, roughness (and periodic

properties) of top and bottom interfaces, attenuation loss in the middle layer, and

measurement frequency.

Figure 2.4 shows the effect of the depth of the 2nd interface. In this case, the

medium under the first interface is not very lossy (εr1 = 5.5 + i); therefore, there
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Figure 2.4: Error in RCS as a function of layer separation: VHF case. At low fre-
quencies and low losses below the first interface errors from ignoring the
subsurface can be significant. The error variation with the depth of the
2nd interface clearly displays underdamped characteristics. Simulation
parameters: frequency = 150MHz, Amplitude = 3.5cm, period =2m,
εr1 = 5.5 + i, εr2 = 35 + 2i, σrms1 = 2cm, l1 = 20cm, σrms2 = 5cm,
l2 = 20cm

is a clear oscillatory pattern in the error with the envelope of the error gradually

getting smaller (due to loss). The error can be even more significant if the roughness

in the interface between the 2nd and 3rd layers is large (see Figure 2.6). If the losses

are small and the 2nd interface is close to the top surface, the modeling errors can

be unacceptably large if the subsurface is not included in the scattering model. At

higher frequencies, the effects of the subsurface rapidly diminish. This fact makes

low frequencies very attractive when characterizing the subsurface properties. Figure

2.5 shows the error in predictions of backscattering cross section as a function of

layer separation for L-band. At higher frequencies the effect of the subsurface is only

significant when the 2nd interface is shallow.

2.4.3 Chapter Conclusion

In this chapter an efficient forward scattering model based on Extended Bound-

ary Condition Method was presented. Unlike many of the previous works employing

forward models based on EBCM [6] and modelling the system as two rough inter-
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Figure 2.5: Error in RCS as a function of layer separation: L band case. At higher
frequencies error variation displays overdamped characteristics. Simula-
tion parameters: frequency = 1150MHz, Amplitude = 3.5cm, period
=2m, εr1 = 5.5 + i, εr2 = 35 + 2i, σrms1 = 2cm, l1 = 20cm, σrms2 = 5cm,
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Figure 2.6: Error in RCS as a function of surface roughness σrms. Larger values of
roughness of the 2nd interface has a greater impact on the total RCS. Sim-
ulation parameters: frequency = 150MHz, Amplitude = 3.5cm, period
=2m, εr1 = 5.5 + i, εr2 = 35 + 2i, σrms1 = 2cm, l1 = 20cm, l2 = 20cm

faces, the top interface in this work is modeled as a periodic interface. Many natually

occuring and anthropogenic landscapes are more accurately modeled as periodic in-

terfaces on top of a rough interface. In addition to a more accurate modelling, since

periodic interfaces are deterministic, there is no need to generate multiple realizations

of the surface, which significantly improves computational efficiency. In this chapter
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the computational efficiency of the presented forward model is compared to an estab-

lished numerical technique. Also, since many existing scattering models of the soil

completely discount contributions from the subsurface layers, this chapter analyzed

the errors that result from such approximations for several cases.
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CHAPTER III

Scattering from an Arbitrary Cylinder Behind a

non-Smooth Wall

3.1 Introduction

In this chapter an efficient forward scattering model is developed for a 2−D cylin-

der with an arbitrary cross section behind a non-smooth wall or under a non-smooth

surface. Since the development of the T-matrix technique for a single scatterer by

Waterman [7] in the early 1960s, the approach found many applications especially in

multiple scattering problems. T-matrix is convenient since it does not depend on the

incidence angle or the location of the object thereby reducing the number of parame-

ters to the properties of the object and the polarization of the incoming radiation. In

many multiple scattering problems such as detection of objects behind an obstacle,

through-the-wall imaging, etc., real world objects have often been approximated as

circular cylinders [8]. The analytical expressions for a T-matrix of a circular cylin-

der are simple and widely reported but cannot adequately describe a scatterer with

noncircular cross section; therefore a more versatile T-matrix method is needed. In

[11] the solution for obtaining a T-matrix for the simplest case of a PEC cylinder for

TM polarization is presented. However, the solution for dielectric cylinders and TE

PEC case have not been previously developed. In this chapter, explicit expressions
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are derived relating the T-matrix with an impedance matrix obtained by MOM for

both PEC and Dielectric cylinders for both polarizations. The results are extensively

validated for special cases against analytical models. Also, the sensitivity of scatter-

ring coefficients to the shape of the cylinder is explored by comparing the response

of arbitrary cylinders with the response of the circular cylinder for all four cases.

Once the expressions for the T-matrices are derived, the results are transformed into

R-matrices. The resulting R-matrices are then cascaded with the scattering matrices

for periodic or rough interfaces to obtain a scattering matrix for the entire system.

3.2 T matrices of PEC and dielectic cylinders for TM and

TE polarizations

3.2.1 TM PEC

For a normally incident TM wave, the only current component induced on an

infinite conducting cylinder is Jz and the scattered field can be expressed as:

Esc
z = ikηAz(t) (3.1)

where

Az(t) =

∫
Jz(t

′
)
i

4
H1

0 (kR)dt
′

(3.2)

R =

√(
x(t)− x(t′)

)2

+
(
y(t)− y(t′)

)2

(3.3)

Imposing the boundary conditions on the surface of the scatterer makes the total

electric field vanish and the incident field equal to the negative of the scattered field.

Applying a standard Method of Moments method (MOM) [24] by discretizing the

cylinder into M segments, the following approximate matrix equation is obtained:

26




Einc

z (t1)

...

Einc
z (tM)

 =


Z11 . . . Z1M

...
. . .

...

ZM1 . . . ZMM




j1

...

jM

 (3.4)

The elements of impedance matrix Z are given by:

Zmm =
kηwm

4

{
1 + i

2

π

[
ln

(
γkwm

4

)] }
, m = n (3.5)

Zmn =
kηwm

4
H1

0 (kRmn), m 6= n (3.6)

Rmn =
√

(xm − xn)2 + (ym − yn)2 (3.7)

In Equation 3.5, wm is the width of the mth segment and γ is a constant approxi-

mately equal to 1.78107. The scattered field can now be represented as a sum of the

individual contributions from each induced current element:

Es
z = −kη

4

M∑
m=1

jmH1
0 (k|ρ− ρm|), (3.8)

where R = |ρ − ρm|, with ρ being a vector between the origin and an observer and

ρm a vector between the origin and the mth segment. Using the Addition theorem for

cylindrical harmonics, H1
0 (k|ρ− ρm|) can be expressed as an infinite sum:

H1
0 (k|ρ− ρm|) =

∞∑
n=−∞

Jn(kρm)e−inφmH1
n(kρ)einφ (3.9)

Truncating the infinite summations at N , Equation 3.8 can be cast into a matrix
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equation:

Es
z = −kη

4
[ . . . H1

n(kρ)einφ . . . ]P p


...

jm

...

 , where (3.10)

P p is an 2N + 1 by M matrix whose entries are given by:

P p
nm = Jn(kρm)e−inφm (3.11)

The current density vector can be expressed as a product of an inverse of an impedance

matrix and an incident field vector J = Z−1Einc. Expanding Einc in terms of har-

monics and truncating infinite summations, the current density can be expressed as

J = Z−1P , where

Pmn = Jn(kρm)einφm (3.12)

It is clear that P p is a conjugate transpose of matrix P . Substituting the expression

for J into Equation 3.10 produces the expression for the T-matrix of a perfectly

conducting cylinder for TM polarization.

T = −kη

4
P †Z−1P (3.13)

3.2.2 TE PEC

The derivation of a T-matrix for TE-PEC case is more complicated and requires

several more steps due to the partial derivatives present in the expression of the scat-

tered magnetic field. The equation for the scattered magnetic field can be simplified

to:

Hs
z =

∂Ay

∂x
− ∂Ax

∂y
(3.14)
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where A is given by:

A(t) =

∫
t̂(t

′
)Jt(t

′
)
i

4
H1

0 (kR)dt
′

(3.15)

t̂(t) = x̂ cos Ω(t) + ŷ sin Ω(t) (3.16)

where Ω represents orientation of each segment with respect to x axis. Ax and Ay,

the components of the magnetic vector potential, become:

Ax(t) =

∫
cos Ω(t

′
)Jt(t

′
)
i

4
H1

0 (kR)dt
′

(3.17)

Ay(t) =

∫
sin Ω(t

′
)Jt(t

′
)
i

4
H1

0 (kR)dt
′

(3.18)

Following a similar procedure to the TM-PEC case but applying boundary conditions

for the magnetic field, the equations for the elements of the impedance matrix can be

derived. Off-diagonal matrix entries are given by:

Zmn =
−ikwm

4
(sin Ωn

xm − xn

Rmn

− cos Ωn
ym − yn

Rmn

)H1
1 (kRmn) (3.19)

Rmn =
√

(xm − xn)2 + (ym − yn)2 (3.20)

Diagonal entries are approximately equal to:

Zmm =
1

2
(3.21)

Integrals in Equations 3.17 and 3.18 can be approximated by summations before

partial derivatives are computed:

∂Ax

∂y
= −

M∑
m=1

ikwm

4
cos Ωm sin φ

′′
JmH1

1 (kR) (3.22)

29



∂Ay

∂x
= −

M∑
m=1

ikwm

4
sin Ωm cos φ

′′
JmH1

1 (kR) (3.23)

Note that sin φ
′′

and cos φ
′′

can be written as:

cos φ
′′

=
1

2
(eiφ

′′

+ e−iφ
′′

); sin φ
′′

=
1

2i
(eiφ

′′

− e−iφ
′′

) (3.24)

Substituting Equation 3.24 into Equations 3.22 and 3.23, we obtain an expression

for the scattered field Hs
z :

Hs
z = −

M∑
m=1

ikwm

8
sin Ωm(eiφ

′′
+ e−iφ

′′
)JmH1

1 (kR)

−
M∑

m=1

kwm

8
cos Ωm(eiφ

′′
− e−iφ

′′
)JmH1

1 (kR)

(3.25)

Following a few more manipulations, the scattered magnetic field can be expressed

as:

Hs
z = −

M∑
m=1

kwm

8
Jm

(
eiφ

′′
H1

1 (kR)e−iΩm+

e−iφ
′′
H1
−1(kR)eiΩm

) (3.26)

The Addition theorem for cylindrical harmonics can be expressed as:

H±1(kρ|ρ− ρ
′|)e±iφ

′′

=
∞∑

n=−∞

Jn∓1(kρρ
′
)Hn(kρρ)einφe−i(n∓1)φ

′

(3.27)

Applying the Addition theorem to Equation 3.26 and truncating the infinite summa-

tion, two matrixes P+ and P− are defined as:

P+
nm = Jn−1(kρρm)e−i(n−1)φme−iΩm (3.28)

P−
nm = Jn+1(kρρm)e−i(n+1)φmeiΩm (3.29)

Following a similar procedure as for TM-PEC case and expressing the induced current

density vector as a product of the inverse of the impedance matrix and incident
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magnetic field, a T-matrix for TE PEC can be written as:

T = −kwm

8
(P+ + P−)Z−1P. (3.30)

3.2.3 TM Dielectric

In the case of scattering from a dielectric cylinder for TM polarization the electric

field can be expressed as:

Es
z = ikηAz −

∂Fy

∂x
+

∂Fx

∂y
, (3.31)

where Az and F are given by:

Az =

∫
Jz(t

′
)
i

4
H1

0 (kR)dt
′

(3.32)

F =

∫
t̂(t

′
)Kt(t

′
)
i

4
H1

0 (kR)dt
′

(3.33)

Enforcing boundary conditions at an infinitesimal distance outside and then inside

the cylinder surface produces a pair of coupled equations which upon discretization

and pulse basis testing produce a 2 x 2 matrix structure given by:

 E

0

 =

 A B

C D


 J

K

 (3.34)

In Equation 3.34, A, B, C, D are M by M matrices and J , K are M by 1 electric and

magnetic current density vectors. The definition of elements of matrices A and C is

very similar to the TM-PEC case with the exception that in the case of matrix C, k0

and η0 are replaced with kd and ηd, which are the wave number and impedance inside

the dielectric. Similarly, B and D matrix entries are similar to impedance matrix
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entries for the TE-PEC case. Off-diagonal matrix entries are represented by:

Amn = k0η0wm

4
H1

0 (k0Rmn)

Cmn = kdηdwm

4
H1

0 (kdRmn)

Bmn = ik0wm

4
(sin Ωn

xm−xn

Rmn
−

cos Ωn
ym−yn

Rmn
)H1

1 (k0Rmn)

Dmn = ikdwm

4
(sin Ωn

xm−xn

Rmn
−

cos Ωn
ym−yn

Rmn
)H1

1 (kdRmn)

(3.35)

Diagonal elements are given by

Amm = k0η0wm

4

{
1 + i 2

π

[
ln

(
γk0wm

4

)] }

Cmm = kdηdwm

4

{
1 + i 2

π

[
ln

(
γkdwm

4

)] }
Bmm = −1

2

Dmm = 1
2

(3.36)

To proceed with the derivation of the T-matrix, we need to derive expressions for the

J and K vectors in terms of block matrices A, B, C and D. This can be done by

employing a blockwise matrix inverse formula,

 A B

C D


−1

=

 Ā B̄

C̄ D̄

 , (3.37)
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Ā, B̄, C̄, D̄ are given by:

Ā = (A−BD−1C)−1

B̄ = −(A−BD−1C)−1BD−1

C̄ = −D−1C(A−BD−1C)−1

D̄ = D−1 + D−1C(A−BD−1C)−1BD−1

(3.38)

Vectors J and K can be expressed as J = ĀEinc and K = C̄Einc. The expression for

the scattered electric field (Equation 3.31) has two components that look very similar

to the scattered electric and magnetic fields for the PEC cases. Following similar

steps, a T-matrix for a dielectric cylinder for TM polarization can be shown to be:

T = −k0η0wm

4
P †ĀP +

k0wm

8
(P+ + P−)C̄P (3.39)

3.2.4 TE Dielectric

The scattered magnetic field in the case of a dielectric cylinder for TE polarization

can be expressed as:

Hs =
∂Ay

∂x
− ∂Ax

∂y
− j

k0

η0

Fz (3.40)

An expression for the T-matrix can be obtained following a similar procedure as in

the TM dielectric case. Alternatively, the result can be obtained directly from the

solution to the TM dielectric case by the application of duality. Using duality, the
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expression for the off-diagonal entries of the impedance matrix become:

Amn = k0wm

η04
H1

0 (k0Rmn)

Cmn = kdwm

ηd4
H1

0 (kdRmn)

Bmn = ik0wm

4
(sin Ωn

xm−xn

Rmn
−

cos Ωn
ym−yn

Rmn
)H1

1 (k0Rmn)

Dmn = ikdwm

4
(sin Ωn

xm−xn

Rmn
−

cos Ωn
ym−yn

Rmn
)H1

1 (kdRmn)

(3.41)

The expressions for the diagonal elements of the impendece matrix are:

Amm = k0wm

η04

{
1 + i 2

π

[
ln

(
γk0wm

4

)] }

Cmm = kdwm

ηd4

{
1 + i 2

π

[
ln

(
γkdwm

4

)] }
Bmm = −1

2

Dmm = 1
2

(3.42)

Vectors J and K can be expressed as J = C̄H inc and K = ĀH inc. The T-matrix for

the dielectric cylinder for TE polarization becomes:

T = −k0wm

η04
P †ĀP − k0wm

8
(P+ + P−)C̄P (3.43)

3.3 Validation and Sensitivity to the shape of the cylinder

To check the validity of the derived expressions, Radar Cross sections are compared

with the values given by analytical expressions in [25] for the infinite circular cylinder.

A large number of discretization segments and harmonics is used to test the agreement
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Figure 3.1: Comparison between analytical and T-matrix method for the TM-PEC
case. Parameters: f = 300 MHz, Number of segments: M=161, radius of
the cylinder: r = 1

2π

between the two methods. Figure 3.1 compares the analytical and T-matrix method

results for a metallic cylinder and TM polarization. The validation graphs were

produced for the incidence angle of 10◦. Since contributions of the discrete segments

for the TM-PEC case are independent of the segment orientation, this case produces

the best agreement with theoretical results even for relatively coarse discretization.

Figure 3.2 shows the comparison between analytical expressions for circular cylidner

and T-matrix method for the TE-PEC case. As can be observed from the figure, when

sufficiently fine discretization is used, the graphs show excellent agreement. However,

unlike the TM-PEC case, much finer discretization is necessary to achive the same

level of agreement. Figure 3.3 shows the comparison for the TM dielectric case. The

relative dielectric constant was 2 for this case. There is excellent agreement between

the analytical results for circular cylinder and the results obtained from the T-matrix

method. Figure 3.4 depicts excellent agreement for the TE dielctric case. Generally,

the magnitude for the cross section is greater for TM cases.
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Figure 3.2: Comparison between analytical and T-matrix method for the TE-PEC
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3.3.1 Accuracy vs the Number of Segments

Generally, the computational complexity of a standard MOM algorithm is O(n3),

where n is the number of segments. Using conjugate gradient and fast miltipole

methods the computational comlexity of the algorithm can be reduced to O(n2) and

O(n log n) respectively. Nonetheless, it is imperative to reduce the number of seg-

ments as much as the accuracy requirements allow. As evidenced by figure 3.5, fewer

than 20 segments per wavelength are necessary to be within 1% of the analytical solu-

tions for the TM-PEC case. Since only the coordinates of the centers of the segments

affect the solution, coarse discretization introduces little error. For the TE-PEC case

(see figure 3.6) orientation of every segment determines the contribution to the total

electric field and therefore coarse discretization generates significantly higher error

than the TM-PEC case. Nearly 5 times as many segments are necessary to reach the

same level of accuracy as in the TM-PEC case.

3.3.2 Size of a T Matrix

Theoretically, there is an infinite number of harmonics contributing to the scat-

tered field. To make T-matrix equations computationally practical, the infinite sum-
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Figure 3.5: Percent error vs. the number of segments per wavelength for the TM-PEC
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Figure 3.6: Percent error vs. the number of segments per wavelength for the TE-PEC
case. Parameters: f = 300 MHz, radius of the cylinder: r = 1
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Figure 3.7: Percent error vs. the number of segments per wavelength for TM-
Dielectric case. Parameters: f = 300 MHz, radius of the cylinder: r = 1

2π
,

εd = 2

50 100 150

2

4

6

8

10

Num. of Segments per λ

%
 e

rr
or

 in
 R

C
S

 Error vs number of segmentsTE DIEL case

Figure 3.8: Percent error vs. the number of segments per wavelength for TE-
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,

εd = 2
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Figure 3.9: Number of harmonics N vs. the electrical size of an object for the TM-
PEC case. Note, there is an equal number of negative harmonics making
the total number of terms in the series 2N + 1

mations are truncated at some number N making the size of the T matrix 2N + 1 by

2N + 1. There is a need for a method to determine how many harmonics are neces-

sary to be incorporated into the T matrix to adequately represent the field scattered

by an object. The method used in this work relies on the condition number of the

T matrix. Generally, the largest contributions come from the first few harmonics.

Eventually, the contributions from the harmonics become very small compared to the

largest contribution, resulting in ill-conditioning of the T-matrix. The rate of con-

vergence of the series depends on the electric size of the cylinder (size normalized by

the wavelength). For small cylinders the series converges very rapidly and only a few

harmonics are necessary to adequately represent the target. Figures 3.9− 3.12 show

the truncation number vs the radius scaled by the wavenumber that would produce

a condition number of 10000. The condition number is chosen rather arbitrarily but

it provides a clue to the dependence of the number of harmonics vs. the size of the

object for four difference cases.
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Figure 3.10: Number of harmonics N vs. the electrical size of an object for the TE-
PEC case. Note, there is an equal number of negative harmonics making
the total number of terms in the series 2N + 1
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Figure 3.11: Number of harmonics N vs. the electrical size of an object for the TM-
Dielectric case. Note, there is an equal number of negative harmonics
making the total number of terms in the series 2N + 1. In this case,
εd = 2
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Figure 3.12: Number of harmonics N vs. the electrical size of an object for the TE-
Dielectric case. Note, there is an equal number of negative harmonics
making the total number of terms in the series 2N + 1. In this case,
εd = 2

3.3.3 Sensitivity to the Shape of an Object

Many previous works in through-the-wall and subsurface imaging have approx-

imated non-circular objects as circular cylinders. In this work, scattering from a

smooth non-circular object is compared to a circular cylinder of the same perimeter.

The goal of the study is to examine the sensitivity of cross section to object shape for

all four cases, as well as to estimate the error of modeling a non-circular object as a

circular cylinder. Figure 3.13 depicts a non-circular shape constructed by inserting

a rectangle in the middle of a circle. The parameters of the object are the radius of

the circle and the length of the rectangle (the width being equal to the diameter of

the circle). Figures 3.13 − 3.17 compare RCS plots for four cases. Since for the

TM-PEC case the orientation of the segments does not affect the imepedance matrix,

approximating a smooth non-circular cylinder with a circular cylinder produces very

little error. Obviously the low sensitivity to shape could be a significant challenge

to classification of objects in through-the-wall or other imaging applications. The

TE-PEC case, on the other hand, displays the greatest sensitivity to shape.

To further explore the sensitivity to the shape of a non-circular cylinder the cylin-
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Figure 3.13: Non-circular cylinder at 0◦. Non-circular cylinder is constructed by in-
serting a rectangle in the middle of a circle
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Figure 3.14: Scattering from non-circular and circular cylinders for the TM-PEC case
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Figure 3.15: Scattering from non-circular and circular cylinders for the TE-PEC case
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Figure 3.16: Scattering from non-circular and circular cylinders for the TM-Dielectric
case (εd = 2)
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Figure 3.17: Scattering from non-circular and circular cylinders for the TE-Dielectric
case (εd = 2)
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Figure 3.18: Non-circular cylinder at 90◦. Non-circular cylinder is constructed by
inserting a rectangle in the middle of a circle and rotating the result by
90◦
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Figure 3.19: Scattering from non-circular cylinder (rotated by 90◦) for the TM-PEC
case

der in the previous example is rotated by 90◦ as depicted in figure 3.18. As in the

previous example, the TE-PEC case displays the greatest and TM PEC the least

sensitivity to shape.

3.4 R matrix of a cylinder

In order to compute the scattering coefficient for a cylinder-wall combination, a

reflection matrix for a single cylinder needs to be computed. Reflection and transmis-
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Figure 3.20: Scattering from non-circular cylinder (rotated by 90◦) for the TE-PEC
case
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Figure 3.21: Scattering from non-circular cylinder (rotated by 90◦) for the TM-
Dielectric case (εd = 2)
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Figure 3.22: Scattering from non-circular cylinder (rotated by 90◦) for the TE-
Dielectric case (εd = 2)
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sion matrices for a periodic array of circular cylinders have been derived in [26]-[27].

When the spacing between the cylinders is large, the interaction between the cylinders

can be neglected, producing an approximate solution for the scattering from a single

cylinder. In order to ensure proper mode matching, the period of the cylinders has to

be identical to the period used in the computation of the reflection and transmission

matrices for the non-smooth interfaces. The reflection matrix for a periodic array of

cylinders is given by

[Rcyl] = [U ]([I]− [T ][XC])−1[T ][P ] (3.44)

where [XC] is a matrix that accounts for the cross coupling between the cylinders.

When the poriod between the cylinders is large, [XC] vanishes transforming equation

3.44 to

[Rcyl] = [U ][T ][P ] (3.45)

Matrices [U ] and [P ] are given by

Unm =
2(−i)m

kL cos θn

eim(θn−π
2
) (3.46)

Pmn = imeim(θn−π
2
) (3.47)

where L is the period of the cylinders (must be the same for all interfaces for mode

matching), m denotes the mth harmonic, n and θn are the nth Floquet mode and angle

of the nth Floquet mode, respectively. Matrix P transforms the nth Floquet mode

into the mth cylindrical harmonic; matrix U tranforms the mth cylindrical harmonic

into the nth plane wave (Floquet mode); matrix T is a T-matrix for a single cylinder.
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3.5 Scattering from a cylinder behind a non-smooth wall

Many through-the-wall, subsurface testing, and imaging applications involve ob-

jects that can be modeled as 2-D cylinders of arbitrary cross section behind a non-

smooth dielectric wall. The cylinder can be either metallic or dielectric. Figure 3.23

depicts a schematic view of the target: a periodic interface is separated from the

rough interface by a distance d1 and the rough interface is separated from the center

of the cylinder by distance d2. To obtain a reflection matrix for the entire complex

target, a scattering matrix technique is applied recursively to the layers from the

bottom up. First, the total reflection matrix is computed for the rough interface -

cylinder subsystem:

[RRC ] = [R2] + [T̃2][φ1][R3]([I]− [φ2][R̃2][φ2][R3])
−1[φ2][T2] (3.48)

[R3] is the reflection matrix of an individual cylinder and matrices with a subscript

2 pertain to the rough interface. Now, the rough surface- cylinder subsystem can be

replaced with an interface having a reflection matrix RRC . The total reflection matrix

for the entire system becomes

[Rt] = [R1] + [T̃1][φ1][RRC ]([I]− [φ1][R̃1][φ1][RRC ])−1[φ1][T1] (3.49)

Figure 3.24 depicts the sensitivity to the presence and the shape of the cylinder

behind a non-smooth dielectric wall for the TM-PEC case. The results show a strong

sensitivity to the presence of the cylinder. However, in the TM-PEC case the sensitiv-

ity to the shape of the cylinder is weak (about 1 dB) and probably cannot be reliably

measured in practice. Simulation parameters for Figures 3.24- 3.26 are presented in

Table 3.1. Figure 3.25 shows the results for TE PEC case. While the sensitivity to

the presence of the cylinder is lower (but still more than enough for detection), the
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Figure 3.23: Non-circular cylinder below two non-smooth interfaces. The center of
the 2D cylinder is separated from the mean height of the rough interface
by a distance d2
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Figure 3.24: Scattering from non-circular cylinder behind non-smooth dielectric wall
for the TM-PEC case. The cylinder used is depicted on Figure 3.13.
While the cylinder is clearly detectable (as evidenced by large difference
in observed RCS) the TM-PEC case displays only a weak sensitivity to
the orientation of the cylinder.
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Figure 3.25: Scattering from non-circular cylinder behind non-smooth dielectric wall
for the TE-PEC case. The cylinder used is depicted on Figure 3.13.
The observed cross section is strongly dependent on the orientation of
the cylinder
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Figure 3.26: Scattering from non-circular cylinder behind non-smooth dielectric wall
for the TE-Dielectric case. The cylinder used is depicted on Figure 3.13.
The curves show the sensitivity of the RCS to the dielectric constant of
the cylinder
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Figure 3.24 Figure 3.25 Figure 3.26
Number of Floquet modes 61 61 61
Number of pts. for each interface 1024 1024 1024
Number of realizations 85 85 85
Frequency 300 MHz 300 MHz 300 MHz
Period (for mode matching) 25 m 25 m 25 m
εr of the wall 2 2 2
Wall thickness .5 m .5 m .5 m
Wall to the cylinder 1m 1m 1m
Amplitude of the periodic surface 2 cm 2 cm 2 cm
Period of the periodic surface 1 m 1 m 1 m
σrms of the rough surface 2 cm 2 cm 2 cm
Correlation length 20 cm 20 cm 20 cm
Radius of the cylinder (circular part) 1

4π
1
4π

1
4π

Length param. of the cylinder 25 cm 25 cm 25 cm
Number of discretization segments 161 161 161
Number of harmonics 35 35 35
Cylinder orientation 0, 90 0, 90 0
Cylinder εr PEC PEC 1.1, 2, 8
Case TM PEC TE PEC TE Dielectric

Table 3.1: Non-circular cylinder behind non-smooth wall simulation parameters

simulation displays significant sensitivity to the shape of the cylinder. The sensitivity

to shape is important in through-the-wall imaging and characterization of burried

objects applications. Figure 3.26 explores the sensitivity of RCS to the relative di-

electric constant of the cylinder for the TE Dielectric case. Based on the graph, the

sensitivity to the relative dielectric constant of the cylinder makes it possible to de-

velop inversion algorithms that would allow us to determine the dielectric properties

of the cylinder and identify the material from which the cylinder was made.

3.6 Conclusion

In this chapeter a new and efficient approach for computation of T-matrices for

2D cylinders of arbitrary cross sections was demostrated. Once the T-matrices are

computed, the resulting matrix is transformed to a reflection matrix for an individual

cylinder. The reflection matrix can be easily cascaded with transmission and reflection
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matrices for one or more interfaces. This approach is efficient and flexible which allows

it to be applied to modeling many natural and artificial objects, from buried pipes

underneath layered soil to detection of objects behind non-smooth walls.
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CHAPTER IV

Retrieval of Parameters for Three-Layer Media

4.1 Introduction

A solution to the inverse problem for a three-layer medium with non-smooth

boundaries, representing a large class of natural subsurface structures, is developed

in this chapter using simulated radar data. The retrieval of the layered medium

parameters is accomplished as a sequential nonlinear optimization process starting

from the top layer and then progressively characterizing the layers below. The op-

timization process is achieved by an efficient iterative technique built around the

solution of the forward scattering problem. To be efficiently utilized in the inverse

problem, the forward scattering model is simulated over a wide range of unknowns

to obtain a complete set of subspace-based equivalent closed-form models that relate

the radar backscattering coefficients to the sought-for parameters, including dielectric

constants of each layer and the thickness of the middle layer. The inversion algorithm

is implemented as a modified conjugate-gradient-based nonlinear optimization. It is

assumed that multifrequency radar measurements are available from tower-mounted

or airborne platforms, at radar frequencies of L-band, P-band (UHF), and/or VHF.

It is shown that this technique results in accurate retrieval of surface and subsurface

parameters, even in the presence of noise.
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4.2 Closed Form Representations

4.2.1 Obtaining Analytical Expressions

Even though the computational complexity of the forward model based on EBCM

is significantly less than a fully numerical technique such as MOM, it is still too costly

for use in most iterative inversion algorithms. This problem is especially serious for

global optimization algorithms that often require hundreds of thousands of iterations

to converge. Local optimization methods usually converge faster but they require

multiple computations of partial derivatives which quickly accumulates significant

errors if done numerically, increasing the likelihood of being trapped in a local min-

ima. To arrive at a model that is more suitable for inversion, we use the full for-

ward scattering model to derive an equivalent analytic (closed-form) representation

by pre-computing the backscattering coefficients for a comprehensive set of parame-

ters, followed by several function fits. A preliminary version of this equivalent-model

approach was developed in [28] for scattering from vegetation canopies. More specif-

ically, the full model is simulated for a range of parameters such as those related to

the dielectric constants (water content), surface height statistics, and layer separa-

tion. Then, the dependence on each of these parameters is sequentially modeled using

much simpler, analytically differentiable functions, such as polynomials of arbitrary

orders. The result is a multidimensional nonlinear, but closed-form (analytic) func-

tion. Once the proper closed-form model is developed, the subsequent evaluations

of the forward model are extremely fast and the forward model is suited for both

local and global inversion techniques. The derivation of this analytic-form model has

several intricacies, which are discussed later in this chapter.
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4.2.2 Sequential Layer Characterization

The inversion process requires at least as many independent data points (measure-

ments) as there are unknowns. The initial overhead cost of simulating the function

for a range of values of all of the unknowns may be too large to be practical, espe-

cially considering that the lower interface is a random rough surface, requiring the

scattering simulation of many realizations of the surface. Therefore, a sequential

layer characterization algorithm is applied by using a multifrequency radar scenario.

Even if the inverse problem is solved simultaneously for the unknowns of all layers, at

least two frequencies are required to obtain accurate results (see [29]). Assuming the

medium between the first and second interfaces is uniform but lossy, the scattering

problem is first simulated at a sufficiently high frequency such that the effects of the

2nd interface are negligible. With the assumption that only the top layer affects the

scattering coefficients at this frequency, the number of unknowns is greatly reduced,

and the retrieval of the top-layer unknowns can be efficiently accomplished. Since the

top layer is a deterministic periodic surface, there is no need for computing multiple

realizations of the surface to obtain statistically representative values. With the top

layer characterized, the scattering contribution of the subsurface layer can be sim-

ulated at a lower frequency. The coupling between the two interfaces is still fully

represented in the solutions of the forward and inverse models through the lower fre-

quency radar data, but the retrieval of their properties has been effectively decoupled

through this approach.

4.2.3 Sensitivity to errors in Ancillary Parameters

While the forward model contains many parameters, only a few, usually parame-

ters related to dielectric constants (for example volumetric moisture content for soils)

and separation of layers are the parameters of interest. For a successful inversion, all

other parameters (which we will call ancillary parameters) still have to be obtained
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as well. Generally there are three methods of obtaining these parameters. These

parameters can be treated as unknowns, with the inversion algorithm producing val-

ues for these parameters along with the primary sought-for parameters. While this

approach is often the only feasible way to obtain ancillary parameters, it has some

major drawbacks. Each additional unknown significantly slows down the initial sim-

ulation. Generally, the minimum number of simulations required to obtain a unique

solution is given by:

Nsim = M
M∏

m=1

Pm (4.1)

Nsim = Number of simulations,

M = Number of unknown parameters,

Pm = Number of values of the mth parameter to cover the desired range.

Increasing the number of unknowns quickly leads to prohibitively costly initial simu-

lations, as well as to the increased likelihood of the inversion algorithm converging to

a local minimum. Another method for obtaining ancillary parameters is apriori ap-

proximation, provided the expected error is small and quantifiable. However, careful

sensitivity analysis must precede the approximation. This method is generally only

feasible if the sensitivity of the scattering coefficients to that parameter is low in the

region of approximation.

Direct measurement is another alternative for obtaining ancillary parameters.

Since the cost of the measurement is usually dependent on the accuracy of the mea-

surement performed, careful sensitivity analysis is needed to estimate the maximum

allowable error in the ancillary parameter that would meet the accuracy requirements

for the scattering measurements. For a periodic surface the amplitude is usually an

ancillary parameter, whereas the dielectric constant is a parameter of interest. Figure

4.1 shows the sensitivity of the model to errors in the amplitude. The backscattering

coefficients are very sensitive to errors in the amplitude and therefore this parameter

has to be obtained to a high degree of accuracy. For the rough interface, the ancillary
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Figure 4.1: Sensitivity of errors in scattering coefficients to errors in amplitude of
the periodic surface A. Error in backscattering coefficients (dB) increases
almost linearly with increase in error in the surface amplitude, hence large
sensitivity.
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Figure 4.2: Sensitivity to errors in σrms. Sensitivity of RCS to σrms is highly variable
for different ranges of σrms. The simulation was performed at 435MHz.
Simulation parameters: A = 3cm, period = 1m, correlation length =
20cm, layer separation = 2m, εr1 = 5.5 + .3i. Water fractions of .2 and
.4 correspond to εr2 = 11.5565 + 4.5961i and εr2 = 26.3868 + 8.1573i
respectively (see [30])
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Figure 4.3: Sensitivity of RCS to correlation Length l. The sensitivity decreases
significantly for larger values of l. The simulation was performed at
435MHz. Simulation parameters: A = 3cm, period = 1m, σrms = 4cm,
layer separation = .5m, εr1 = 5.5 + .3i.

parameters are usually surface roughness σrms and correlation length l. As can be

seen from Figure 4.2, the backscattering coefficients are quite sensitive to the errors in

the σrms of the lower surface. However, this sensitivity is not uniform and decreases

for increased roughness. The sensitivity to errors in correlation length is relatively

small and is not uniform as well (see Figure 4.3). For regions where the sensitivity is

the smallest, a simple apriori approximation is enough to obtain acceptable retrieval

results for other parameters of interest.

4.3 Inversion Algorithm

4.3.1 Inversion Algorithm Overview

Once the numerical simulations over the desired range of parameters are com-

plete, special care is needed to select the proper polynomial representation for the

data. While it may be tempting to fit a high-order polynomial such that the resid-

ual error is exactly zero, the polynomial function may oscillate rapidly between the

sample points, which represents nonphysical behavior and significantly degrades the

inversion algorithm. A lower-degree fit, on the other hand, could produce a less accu-
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Figure 4.4: Data subspaces for the 3-D case). The total data space is broken up
into smaller subspaces. The inversion algorithm is then applied to every
individual subspace and the best solution is then selected.

rate function representation with errors accumulating rapidly with each subsequent

dimension. To address both of these problems, the method developed here optimally

balances the quality of the closed form models and the robustness of the inversion

algorithm, as described below. The initial simulated data space is broken up into

subspaces of the same dimension but with only a subset of the total points along each

dimension (typically 4 points). For example, for the case of 3 unknown variables, the

complete data space is a cube, and the subspaces are smaller cubes that completely

fill the larger space. Typically, we use polynomials of 3rd order to fit the data in

each subspace, resulting in an analytical model for that subspace (Figure 4.4). The

3rd order polynomials are fitted with high accuracy and generally produce non-zero

2nd order partial derivatives, which are used in a conjugate-gradient based inversion

algorithm. If a unique solution for the problem exists, it must be contained in one of

the data subspaces shown in Figure 4.4. The retrieval problem is solved for each in-

dividual data subspace and the best solution is then selected based on the magnitude

of an appropriately defined cost function.The inversion algorithm used in this work
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is a local optimizer based on the conjugate gradient method. The cost function to be

minimized can be expressed as:

L(x) =
N∑

n=1

(fn(x1, x2, x3)− fobsn)2 (4.2)

where x = [x1, . . . , xm] is a solution vector, with m corresponding to the dimension

of the inversion, fobsn is the nth component of the independent observation vector

and fn(x) is the nth estimate. The procedure starts by computing two initial vectors:

g0 = ∇L(x0), and d0 = −g0. Then, the following equation is evaluated iteratively

until sufficient level of convergence or the maximum number of iterations is reached:

xk+1 = xk + λkdk (4.3)

where dk+1 and λk are given by:

dk+1 = −gk+1 + bkdk, λk = − ∇L(xk) · dk

∇(∇L(xk) · dk) · dk

(4.4)

bk =
gk+1

t · (gk+1 − gk)

gk
t · gk

(4.5)

Since all of the operations are performed on closed-form functions, these operations,

including multiple gradient computations, are analytic and do not accumulate errors.

The algorithm is very efficient compared to most global optimization techniques and

usually converges in less than 50 iterations. Since the inversion algorithm is a local

optimizer the convergence to the global minimum is not guaranteed [29]. Breaking

up the problem into subspaces increases the chances of finding a global minimum,

since the algorithm can only get trapped in the local minimum and not converge to

a global minimum if both are present within one data subspace; the probability of

this event is very small compared to the case where the search is over the entire data
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domain.

4.3.2 Computational Efficiency of Inversion Algorithm

The inversion algorithm described in this work is an efficient local optimizer which

is able to achieve high levels of accuracy in relatively few steps. As the data space

is broken into subspaces, the problem is solved individually in every subspace. If

a unique solution is to be obtained, and if the maximum allowable error is set to a

sufficiently low value, the algorithm should only converge in one of the data subspaces

and run out of the maximum allowable iterations in others. Since the majority of

time is spent looking for the solution in subspaces that do not contain the global

minimum, the maximum allowable number of iterations is a critical parameter for

computational efficiency of the algorithm. The overall computational time beyond

the initial overhead of obtaining the closed form solutions is approximately equal to:

ttotal = tcg ·Nmax ·Nsubspaces (4.6)

ttotal = total run time to complete the inversion process,

tcg = runtime for a single iteration of CG within a subspace,

Nmax = maximum number of iterations,

Ns = number of subspaces.

The number of iterations it usually takes to reach convergence depends on the type

of closed-form function used to fit the data, the maximum allowable error, and the

overall dimension of the problem. Table 4.1 summarizes the empirically found results:

higher dimensions require significantly more iterations to reach convergence. The

maximum acceptable value for the cost function was set to 10−3. The user has a

choice of setting the Nmax parameter which is critical to the computational speed of

the overall inversion algorithm. If we assume there is a unique solution and there is
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Table 4.1: Maximum Number of Iterations to Converge
Dimension Type of function Iterations to converge

1 Cubic polynomial 8
2 Cubic polynomial 17
3 Cubic polynomial 54

no subspace overlap, the solution must be contained in only one subspace. Therefore,

the algorithm runs Nmax times in all other subspaces without reaching convergence.

In the case of non-unique solutions or solutions at the boundaries of subspaces fewer

iterations are typically needed since the algorithm will converge faster than Nmax in

more than one subspace.

4.3.3 Effect of Observation Parameters on Inversion Results

In order for the inversion algorithm to produce a unique solution for N independent

variables there needs to be at least N independent observations. However, depend-

ing on the characteristics of the forward scattering model, there are still ambiguous

cases when two or more combinations of parameters produce the same value for the

backscattering coefficients. To illustrate this point using a one-dimensional case, Fig-

ure 4.5 shows the dependence of the backscattering coefficient on the layer separation

at two different frequencies. Since it is a one dimensional case with the only unknown

being the layer separation d, one observation could potentially be enough to obtain

a unique solution. If the true value of layer separation is d = .7m, this value cor-

responds to the cross section values of -33.7 dB and -36.8 dB for 120 MHz and 150

MHz respectively. If only one observation is used, the inversion algorithm converges

to two solutions for each of the frequencies (marked with asterisks) and it is impossi-

ble to pick the correct solution without additional information. However, when both

observations are used, the algorithm inevitably picks out the correct solution. The

same principle applies to higher dimensions.
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Figure 4.5: RCS vs. layer separation at two frequencies. RCS is an oscillating func-
tion of depth, especially for lossless cases, because as depth increases it
periodically becomes equal to an integer multiple of half a wavelength.
Therefore, more than one observation is usually necessary to obtain a
unique solution.

0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

True layer separation (m)

R
et

rie
ve

d 
la

ye
r 

se
p.

 (
m

)

Retrieval of layer separation d

Figure 4.6: 1-D case: one observation. Only one observation is used in the inversion
resulting in non-unique solutions. Parameters: θi = 40 deg, Amplitude =
3cm, l = 20cm, εr1 = 5.5+.3i, σrms = 7cm, H2O frac. = .15. Observation
channel: f1 = 120MHz
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Figure 4.7: 1-D case: two closely spaced observations (in frequency). Even though
two observations are used, the observations are closely spaced (in fre-
quency) resulting in limited improvement in the quality of the inversion.
Parameters: θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i,
σrms = 7cm, H2O frac. = .15. Observation channels: f1 = 120MHz,
f2 = 150MHz
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Figure 4.8: 1-D case: two separated in frequency observations. Two observations
are used to produce nearly perfect results. Parameters: θi = 40 deg,
Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i, σrms = 7cm, H2O frac. =
.15. Observation channels: f1 = 120MHz, f2 = 460MHz
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Figure 4.9: For the two dimensional case the minimum number of observations is used.
The observations are closely spaced in frequency producing non-unique
inversion results. Parameters: θi = 40 deg, Amplitude = 3cm, l = 20cm,
εr1 = 5.5 + .3i, σrms = 7cm. Observation channels: f1 = 120MHz,
f2 = 150MHz

0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

True layer separation (m)

R
et

rie
ve

d 
la

ye
r 

se
p.

 (
m

)

Retrieval of layer separation d

Figure 4.10: Three independent observations are used in a 2-D case resulting in signif-
icantly improved inversion results. Parameters: θi = 40 deg, Amplitude
= 3cm, l = 20cm, εr1 = 5.5 + .3i, σrms = 7cm. Observation channels:
f1 = 120MHz, f2 = 180MHz, f3 = 460MHz
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Figure 4.6 shows the results for one observation (one dimensional case). As can

be seen, the algorithm often converges to multiple solutions and more observations

are needed to remove the ambiguity. Introducing another observation that is closely

spaced in frequency (20 MHz apart) and therefore not completely independent from

the original observation helps eliminate a few double solutions but the algorithm

still fails to produce a unique solution every time (see Figure 4.7) . If the second

observation is replaced by one taken at a very different frequency (for example 450

MHz), the algorithm converges to a unique solution every time (see Figure 4.8).

Additional observations would not result in further improvement in the absence of

noise, but could be helpful in practical situations when measurement noise is present.

The same trend continues for 2 and 3 dimensions (see Figures 4.9 and 4.10), al-

though it normally takes more observations for the algorithm to converge to a correct

solution every time. When applied to radar remote sensing, these observations are

backscattering cross section measurements at difference frequencies, polarizations,

and incidence angles. In the case of observations taken at different frequencies, the

frequency separation should be large enough to ensure a necessary degree of linear

independence. When observations are cross section measurements taken at frequen-

cies that are spaced close to one another, the algorithm typically produces multiple

solutions.

4.3.4 Inversion Results and Sensitivity of Errors in the Backscattering

Coefficients

The algorithm described in this work is an efficient and robust method for retriev-

ing parameters of interest from radar cross section measurements. Once the initial

simulation over multiple parameters is complete and subspace-based closed-form ex-

pressions are obtained, all subsequent operations such as computing 2nd order partial

derivatives are analytical and therefore do not accumulate errors. The algorithm has
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Figure 4.11: Retrieval of layer separation for 3-D errorless case. Parameters: θi =
40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i

been extensively validated, first using noise-free simulated data for a wide variety

of layered-medium parameters. Figures 4.11 and 4.12 show estimated parameters

vs. true values for a 3 variable inversion (the other variable being the roughness of

the layer). These plots show inversion results for a three dimensional case (three

unknowns) when a sufficient number of observations were included in the algorithm.

In this case, six observations at different frequencies were used (120 MHz, 150 MHz,

180 MHz, 400 MHz, 435 MHz, and 460 MHz).

Since all measurements include some error, it is important to analyze the robust-

ness of the inversion algorithm when real observations containing noise error are used.

Figure 4.13 shows the same scenario as Figure 4.11 for layer separation retrieval but

this time 0.1 dB of Gaussian noise was added to the observations. Increasing the

error to 0.5 dB (see Figure 4.14), we can see the increase in the error in the retrieved

parameters, but overall, the errors remain relatively small and the algorithm does not

break down. Increasing the error to 1 dB (see Figure 4.15), we notice the further in-

crease in error but the algorithms still performs considerably well. Similar analysis

is then performed to analyze the error performace of the algorithm when retrieving

the water content of the 3rd layer. Typically, the sensitivity of the backscattering co-

efficients to the moisture content in the 3rd layer is lower than to the layer separation
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Figure 4.12: Retrieval of water content of the 3rd layer for 3-D errorless case. Param-
eters: θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i
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Figure 4.13: Retrieval of layer separation (3-D case). Erms = .1dB. Parameters:
θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i
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Figure 4.14: Retrieval of layer separation (3-D case). Erms = .5dB. Parameters:
θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i
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Figure 4.15: Retrieval of layer separation (3-D case). Erms = 1dB. Parameters:
θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i
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Figure 4.16: Retrieval of H2O fraction in the 3rd layer (3-D case). Erms = .1dB.
Parameters: θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i
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Figure 4.17: Retrieval of H2O fraction in the 3rd layer (3-D case). Erms = .5dB.
Parameters: θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i

and therefore it is important to make sure the inversion algorithm is robust enough

to be effective. Figures 4.16- 4.18 demonstrate that the algorithm retains robustness

in retrieval of the water content in the 3rd layer. Since the parameters retrieved

from the top interface are incorporated in developing closed-form equations relating

subsurface parameters to backscattering coefficients, it is especially critical that the

retrieval of these parameters be as accurate and robust as possible. To minimize

the contribution of the subsurface, the simulation was performed at three L-band

frequencies: 1000 MHz, 1100 MHz, and 1200 MHz. Figures 4.19 and 4.20 depict
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Figure 4.18: Retrieval of H2O fraction in the 3rd layer (3-D case). Erms = 1dB.
Parameters: θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i

the retrieval of water fraction of the middle layer and amplitude of the periodic inter-

face for the errorless case. With the data from the three measurement channels, the

inversion results are very accurate and converge to a correct solution in every case.

Figures 4.21- 4.23 depict the inversion results form the amplitude of the periodic

interface when 0.1dB, 0.5dB and 1dB RMS error is introduced to the backscattering

coefficients. As predicted the error in the retrieved amplitude increases with increased

error in the backscattering coefficients but the algorithm retains robustness.

4.4 Conclusion

An efficient and robust algorithm for retrieval of parameters of interest from scat-

tering coefficients is described in this chapter. The forward model is simulated for a

range of parameters and the resulting data space is broken up into multiple subspaces

and closed-formed representations are determined for each of the subspace. The con-

jugate gradient based inversion algorithm is applied to produce a solution in each

individual subspace and the best solution is then picked out based on the magnitude

of an appropriately defined cost function. The sensitivity of the algorithm to errors

in ancillary parameters and scattering coefficients is carefully analyzed.
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Figure 4.19: Retrieval of H2O fraction in the 2nd layer (3-D case). Parameters: θi =
40 deg, Amplitude = 3cm, l = 20cm, εr1 = 5.5 + .3i. Observation
frequencies: 1000 MHz, 1100 MHz and 1200 MHz
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Figure 4.20: Retrieval of the amplitude of the periodic interface (2-D errorless case).
Parameters: θi = 40 deg, l = 20cm, εr1 = 5.5+ .3i. Observation frequen-
cies: 1000 MHz, 1100 MHz and 1200 MHz
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Figure 4.21: Retrieval of the amplitude of the periodic interface (2-D case). Erms =
0.1dB. Parameters: θi = 40 deg, Amplitude = 3cm, l = 20cm, εr1 =
5.5 + .3i. Observation frequencies: 1000 MHz, 1100 MHz and 1200
MHz
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Figure 4.22: Retrieval of the amplitude of the periodic interface (2-D case). Erms =
0.5dB. Parameters: θi = 40 deg, l = 20cm, εr1 = 5.5 + .3i. Observation
frequencies: 1000 MHz, 1100 MHz and 1200 MHz
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Figure 4.23: Retrieval of the amplitude of the periodic interface (2-D case). Erms =
1dB. Parameters: θi = 40 deg, l = 20cm, εr1 = 5.5 + .3i. Observation
frequencies: 1000 MHz, 1100 MHz and 1200 MHz
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CHAPTER V

Multifrequency Tower Based Radar System for

Forward and Inverse Model Validation

5.1 Introduction

This chapter is devoted to the description of two experimental radars developed to

provide measurements of backscattering cross sections of media with nonsmooth inter-

faces. In addition to the radar hardware, advanced measurement and data processing

techniques, measurement results, and validation using ground sensors are discussed

in this chapter.

5.2 Radar Architecture

This section details the evolution of a radar system operating in the 120-1100 MHz

range. A monostatic radar in this frequency range was originally developed at the Jet

Propulsion Laboratory (JPL) (see [18]), which provided initial design and preliminary

datasets. Over the course of several years the radar was modified and upgraded in

search of an architecture that would produce the best quality measurements while

having low cost and being conveniently deployed in the field. Finally, a new compact

bistatic radar system was designed and built.

75



Figure 5.1: MOSS Radar picture. The system was a monostatic radar which used
a large dual polarization log periodic antenna, balanced by a set of lead
counterweights. The ground electronics consisted of (from the top) a
signal generator, RF gound box, a computer housing a PCI digitizer, a
radar power supply and an AC power backup unit

5.2.1 Modified MOSS Radar

This radar was originally designed and built at JPL to support the Microwave

Observatory of Subcanopy and Subsurface (MOSS) project. It was one of the first

tower-based systems capable of polarimetric measurements at 137 MHz, 435 MHz,

and 1000 MHz frequencies. This radar was a pulsed continuous wave monostatic

radar. The architecture of the radar is described in more detail in A.1. A picture of

a tower and ground electronics is shown in Figure 5.1. The radar was involved in two

exploratory measurement campaigns in Arizona and Oregon before being transported

to Michigan. The radar suffered from several harware problems which degraded the

quality of the measured signal.

Since the radar relied on solid-state switches for transmit/receive (T/R) switching,

the power was limited to 21 dBm, the upper limit that these switches could with-

76



stand. These switches also have relatively poor isolation characteristics (∼30 dB),

which results in unwanted transmit signals leaking into the receive chain during co-

polarization measurements. This leakage signal arrived at the receiver at a different

time than the expected receive signal and generally did not directly interfere with the

quality of the measurement. This unwanted leakage signal, however, saturated the

receiver and was approaching the maximum allowable power limit for receiver com-

ponents, thus limiting the amplification that could be added to the receiver chain.

Another problem was that the radar was designed for receive signal levels that

are about 60 dB below the transmit level. Typically, such a difference is only enough

to detect very bright targets. Additionally, the log periodic antenna caused large

reflections and pulse despersion. The impulse response of the dual-polarization log

periodic antenna did not decay fast enough, and was still close in magnitude to the

receive signal at the time window of the receive signal arrival. The antenna had a

relatively poor (∼15 dB) polarization isolation and a wide, almost omnidirectional

pattern in the E-plane. To address some of the shortcomings of the MOSS radar and

to prepare the instrument for an experiment to estimate soil moisture under a corn

canopy, the radar hardware underwent important modifications, explained in the next

subsection.

5.2.2 Modified Bistatic MOSS Radar

To improve the hardware isolation between transmit and receive signals and to

mitigate the effect of a long antenna impulse response, the radar was converted to a

bistatic system, with the transmit and receive antennas connected to former H and

V ports respectively. Since transmit and receive signals no longer pass through the

same solid-state switch, the isolation is not limited by radar electronics, but by cross-

coupling of the antennas. The antennas used in this version of the radar were high

gain L-band Yagi-Uda antennas, which have a peak gain of 12 dBi and much narrower
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Figure 5.2: A photo of the Bistatic Radar. Antennas are separated by a 6’ custom
made steel beam. The height of the tower is varried between 12m and
35m. The incidence angle is set manually for every antenna. In this
picture the antennas are pointing up for calibration purposes.

beamwidths in both planes. Since Yagi-Uda antennas are narrow band resonant

antennas, they similarly suffer from long impulse response times. To significantly

dampen the ringing, the antennas were resistively loaded with 3 dB attenuators.

Such loading decreases gain by decreasing antenna efficiency, but has no influence on

beamwidth, thus preserving the spacial resolution. The new arrangement allowed for

an addition of another amplifier in the receive chain to increase the expected difference

between transmit and receive chain to about 70 dB. The modified bystatic system in

the sky calibration state is depicted in Figure 5.2. The antennas are separated by a 6’

steel beam. The incidence angle can be set for each antenna individually by rotating

a disk at the end of the beam.

5.2.3 Compact Bistatic Radar

The most rapid changes in soil moisture occur during and right after rain events.

In many applications of remotely sensing soil moisture, capturing rapid soil moisture

78



evolution associated with rain events is of particular interest. It is therefore impracti-

cal to use a system which can only be deployed in half a day. Since it was not possible

to miniaturize the original MOSS radar, a new radar was designed and built. Table

5.1 summarizes the radar specifications to which it was designed.

Radar type pulse
Pulse width 40-200 ns
Center frequency range 120 -1000 MHz
Peak Power 1 W
T/R difference 80-110 dB
Maximum weight 25 kg
Incidence angle selection fully automated
Deployment time (2 people) <1 hour

Table 5.1: The new radar specifications. The radar needed to be compact, easy to
deploy and have superior RF characteristics than its predecessor

A detailed description of the new radar architecture is provided in A.2. Unlike

its predecessors, the radar fits into a custom 1’ by 1’ by 2’ aluminum enclosure. A

standard 110 V extension cord is the only cable that connects to the system located

atop the tower.

From radar theory, the range resolution of a radar is given by Equation 5.1. For

50 ns pulses the range resolution in air is approximately 7.5 m. Since the speed of

light inside the dielectric is inversely proportional to
√

εr, the resolution distance is

shortened accordingly.

r =
cmediumτ

2
, (5.1)

where r is the range resolution in meters, cmedium is the speed of light in the medium

in meters per second, and τ is the pulse width in seconds. To reach the best range

resolution the pulse width has to be kept as short as possible. However, in practice,

the minimum realizable pulse width is governed by the limitations of hardware (most

fast solid state switches can generate pulses as short as 20 nS), impusle response of
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the antenna and the amount of power radiated. To overcome the radiated power

limitations, state of the art radar systems use long chirped pulses that can then be

compressed to produce super range resolutions while radiating sufficient amounts of

power. Unfortunately, chirp synthesizers and related hardware are very complex and

were not in the budget for the current system.

The antenna choice for a low frequency pulsed system is one of the most difficult

and important decisions the designer has to make. There are several conflicting

requirements that the antennas have to meet. First, the gain should be large enough

for good target isolation, as wide beamwidths pick up unwanted signals from the

surroundings (tower, nearby objects). Second, the antenna impulse response should

be as short as possible. Third, the antenna has to be of a practical size and weight.

5.3 Calibration

Calibration is one of the main technical challenges of the low-frequency radar

development. The miniaturized radar used for this dissertation employs three types

of calibration: internal, sky and target.

The performance of all electronic components is affected by changes in temper-

ature. To minimize errors due to temperature variation, many state of the art sys-

tems use temperature controlled enclosures for their RF electronics. Temperature

controlled enclosures are heavy, power hungry and expensive, so for this system an

internal calibration measurement is used instead. To calibrate out the variations due

to temperature changes, the electromechanical switches bypass the antenna, and in-

stead route the signal through a load (80 dB fixed plus programmable attenuator

combination) which attenuates the signal approximately to the level of the incoming

receive signal. Internal calibrations are performed at the beginning and the end of

every measurement, as well as every half an hour of measurement taking. Separate

calibrations are necessary for every frequency channel. In addition to temperature
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Figure 5.3: A typical setup for sky calibration. To minimize the capture of unwanted
signals the antennas are pointing at 45◦ above horizontal.

calibration, internal calibration capabilities are an invaluable tool in troubleshooting

and lab testing of the radar. Since the antennas are bypassed, work on the radar can

be performed in any lab and does not require an anechoic chamber.

One of the biggest challenges in building a low frequency radar is finding a com-

pact antenna with a short impulse response. If the antenna impulse response in the

measurement time window is repeatable and does not saturate the receive-path elec-

tronics, it can be calibrated out. The calibration procedure employed to remove the

antenna response is called a sky calibration. In order to perform this calibration the

antennas are rotated to point at 45◦ above horizontal and the data trace is recorded.

Pointing the antennas straight up produces more error since the back lobe of the

antenna captures a strong ground specular return. The sky calibration trace is then

substraced from all subsequent data traces. Figure 5.3 depicts the radar mounted on

the tower with antennas in the sky calibration position.

Another form of calibration explored in this work is a standard target calibration.

The standard target calibration involves placing a target with a known radar cross

section in the radar footprint and measuring the received signal. Since the cross

section of the target is known, this measurement allows for absolute radar calibration.

One of the dfficulties of this meathod is to isolate the response of the standard target
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from the response of the surroundings. At high frequencies, a good degree of isolation

can be achived if this measurement is performed in the anachoic chamber. Figure 5.4

shows a 1 GHz calibration getting performed in the University of Michigan anechoic

chamber. A corner reflector and the radar are placed at the opposite ends of the

chamber and the distance between them is carefully measured using a laser range

finder.

Most anechoic chambers have a cutoff frequency in the UHF range and are not

suited for VHF standard target calibration. Moreover, at VHF frequencies the targets

become too large to fit inside most chambers. Typical standard targets are metalic

spheres, plates and corner reflectors. It is worth noting that exact analytical expres-

sions for the radar cross section are only availible for the sphere. The approximate

cross section equations for the metal plate and corner reflector are only valid when

the size of the target is large compared to the wavelength. Sphere calibration tar-

gets are typically used in chamber tests at high frequency since their relatively low

brightness increases the relative contribution of the surroundings. Metalic plates are

the simplest targets to manufacture but are rarely used due to the required align-

ment tolerances. Even a slight (less than 1◦ ) misalignment is enough to render the

measurement useless.

Large corner reflectors (more than 5λ) are often a preferred radar calibration

target due to their strong brightness and very lax alignment requirements. The radar

cross section is given by equation 5.2, making it one of the brightest targets relative

to its size. Moreover, the radar cross section of a large trihedral corner reflector is

approximately independant of the incidence angle over a wide angular range.

σCR =
4π

3

l4

λ2
(5.2)

The target used for most outdoor testing was an 8’ trihedral corner reflector.
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4’ trihedral reflector 

Figure 5.4: Calibration inside anechoic chamber. At high frequencies accurate ab-
solute calibration can be performed inside the anachoic chamber. Here
the measurement is done at 1 GHz. At lower frequencies the chamber
attenuation characteristics significantly deteriorate.

The reflector can be easily taken apart for transporation and redeployment. While

the reflector is large enough to meet the approximation requrement at L-band, it is

still only slightly over a wavelength at VHF. For L-band measurements at low tower

height, the corner reflector response saturates the receiver and makes it impossible

to obtain an absolute amplitude calibration. However, the measurement is still valu-

able for providing a precise time calibration. At higher tower elevations the corner

reflector allows for absolute amplitude calibration for L-band frequencies. At lower

frequencies the cross section becomes sensitive to incidence angle, such that even a

slight misalignment results in 2-3 dB change in observed cross section. Moreover, the

expressions for the magnitude of the cross section of the corner reflecor are no longer

valid at VHF. Therefore, accurate standard target calibration at VHF frequencies is

still an open problem.

5.4 Measurement and Data Processing

Typically, each data campaign contains hundreds of individual measurements.

These measurements include data takes over different days to detect change, data

taken at different frequencies and incidence angles, sky calibration takes and special
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calibration measurements when a known target is placed in the footprint of the radar

antenna. A typical data set contains an internal calibration measurement, one or

two sky calibration measurements and tens of data measurements. After mounting

the hardware, raising the tower to the upright position and establishing a wireless

connection between the radar and the ground computer, the operator lets the radar

temperature stabilize and reach equilibrium. A temperature sensor mounted inside

the radar box monitors the temperature during the entire measurement cycle. Once

equilibrium is reached, several internal calibrations are performed to make sure the

radar is stable and ready for measurement. Then, a sky calibration is performed by

recording the data while the antenna is pointing at the sky. Measurement data is

collected by pointing the antenna at the target and recording the data. The height

of the radar is accurately provided by a laser range finder. The tower is then raised

by some increment and the process is repeated. Typically, another sky and internal

calibration data takes are done at the end of every data set.

Generally, high gain antennas tend to be electrically large (several λ long) which

leads to impractically large size and weight for the antennas working at VHF frequen-

cies. Antennas of practical size have wide beamwidth, and therefore large footprints.

To reduce the footprint (and therefore improve the resolution) and to increase the

signal to noise ratio, a coherent beam focusing algorithm was applied in post process-

ing to the radar data. The focusing algorithm is based on the antenna array theory -

data traces are shifted to account for the path difference between measurements. As a

result, the gain of the synthetic antenna is approximately equal to the product of the

gain of the actual antenna and the gain of an array of isotropic radiators located at

the points of measurement. The schematic footprint reduction is illustrated in Figure

5.5. By adding differnet phase shifts, the beam can be focused at different points

along the line perpendicular to the antenna mount. Since focusing relies on accurate

phase information, it can only be performed when working with I and Q data before
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Figure 5.5: Schematic effect of focusing. The beam is significantly sharpened by
coherent additions of individual data traces.

it is converted to power.

5.5 Radar Data Validation

The performance of the radar instruments is typically validated by placing in situ

sensors in or near the footprint of the instrument. To confirm sensitivity of the radar

instrument to changes in soil moisture, the local soil moisture sensors supplied by

Decagon devices were chosen for this purpose. These sensors, pictured in Figure

5.8, operate by measuring the change in capacitance between the prongs. EC 5

sensor is an inexpensive soil moisure sensor that can be easily integrated with a

custom data aquisition device and logger. The interface for each probe consisted

of three wires: supply, signal and ground. When ON, the device is powered by

a DC voltage in the range between 2.5 and 5 V. The singnal wire outputs a DC

voltage which is proportional to the moisture content of the soil. Since many of the

radar measurements were performed at the Matthaei Botanical Gardens’ community
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Figure 5.6: USB 8 channel data aquisition module. This inexpensive module com-
bines 8 analog channels and 16 bi-directional digital lines. Three modules
were necessary to sample the signal from the 22 sensors

garden, two identical 1.5 m holes were dug near the community garden and used to

install 11 sensors in each hole. Two identical installations were chosen to estimate

the variations of sensor measuremnts at the same depth and to provide redundancy

in case of sensor failure. Since soil moisture typically varies faster near the surface,

the sensors were installed more densely there. The sensor locations are depicted in

Figure 5.7.

A custom data logger was contructed to collect data from the 22 sensors. An

old desktop computer was placed in a shed about 25’ from the deployment site. All

the power and ground wires for the probes were connected to a thick cable (for low

resistance) and to 5V and Gnd terminals of the computer power supply. The signal

wires are connected to 2 multiconductor cables which are run into the shed. The

voltages are sampled by three 8-channel USB data aquisition modules depicted in

Figure 5.6 and the data is stored in the computer. Sensors were pushed horizontally

into the undisturbed soil to minimize the disruption of the natural soil texture, as

soil density affects sensor readings. To obtain meaningful soil moisture readings, the

sensors need to be carefully calibrated.

The calibration procedure involves collecting a soil sample and carefully heating

it at very low heat to evaporate the water. The sample is then carefully weighted.

The reading from the soil moisture sensor is recorded for 0 % water content. The

amount of water necessary to increase the water content to the desired incremental
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Figure 5.7: Soil moisture sensor locations. Two idential columns of sensors were in-
stalled to estimate sensor reading variability and to introduce redundancy
in the case of sensor failure.

Figure 5.8: Decagon Devices soil moisture sensor.

value is added to the soil and carefully and thoroughly mixed in. The reading from

the sensor is recorded and the process is repeated until soil saturation is reached.

Once the data was collected, closed-form functions are fitted to the data to obtain

analytical expressions relating the readings of each of the sensors to the soil water con-

tent. From several experiments 3rd order polynomials produce the best compromise

between accuracy (with fit errors < 1%) and simplicity of the expressions. Figure

5.9 depicts a calibration curve for one of the soil samples collected and 5V excitation

voltage. Equation 5.3 relates sensor voltage measurements to the gravimetric water

content.

fH2O = 1.1242V 3 − 3.5356V 2 + 3.9765V − 1.4326 (5.3)

Once the true soil moisture is computed from the voltage measurements of the in-

situ sensors, the data must be converted to dielectric constants. There are a number
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3V Excitation 4V Excitation 5V Excitation

Gravimetric m3

m3 sensor 1 sensor 2 sensor 1 sensor 2 sensor 1 sensor 2
air .285 0.294 0.401 0.394 0.478 0.482
0% 0.421 0.42 0.568 0.57 0.697 0.695
2.50% 0.456 0.46 0.603 0.599 0.733 0.726
5% 0.492 0.512 0.641 0.655 0.772 0.789
7.50% 0.521 0.543 0.667 0.685 0.804 0.827
10% 0.555 0.576 0.699 0.725 0.848 0.908
12.50% 0.586 0.594 0.74 0.755 0.922 0.945
15% 0.645 0.658 0.855 0.884 1.055 1.067
17.50% 0.796 0.794 1.007 0.99 1.216 1.183
20% 0.767 0.805 0.984 1.001 1.182 1.203

Table 5.2: Typical sensor calibration measurements. Typically two sensors are used
to make sure the samples are well mixed. A large difference between the
readings would point to poor mixing and non-uniform samples.
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Figure 5.9: Calibration curve for 5V excitation. After calibration coefficients are
determined, the readings from the sensor can be immediately converted
to moisture content
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of dielectric models available and the one used in this work is described in [30]. The

model predicts the dielectric constant of a soil based on soil composition (sand, clay

and silt fractions), bulk density of the soil and water content. The soil encountered

at the Matthaei Botanical garden can be modeled as a two layer structure with a clay

dominated layer on top of a sandy layer.

5.6 Radar Data

The data from several measurement campaigns is presented in this chapter. Fig-

ure 5.10 shows the focused data from several data takes measured at L-band center

frequency by the bistatic L-band radar described in 5.2.2. One of the measurements

was performed shortly after a heavy rainstorm passed through the area. As can be

clearly seen, there is a noticeable difference between the after-rain trace and all other

traces taken when the soil was drying up. However, the cross section data could not be

successfully corroborated with the readings of the in situ soil sensor in this measure-

ment. The radar footprint was a freshly plowed corn field before the plants emerged

from the ground. Careful measurements were performed of the soil-air profile. It is

quite likely that the heavy rain that caused the noticable soil moisture change also

altered the statistical properties of the air-soil interface.

Several data sets were collected in Ann Arbor during Spring of 2011. Figure

5.11 shows a typical raw data trace for L-band data. The sampling rate for each

channel is 1 Gs/s. The former and the latter 1000 samples represent I and Q channels

respectively. The data was sampled with an 8-bit ADC with 0 corresponding to -1V,

255 to 1 V and 128 to 0 V. Figure 5.12 shows two plots taken in May 2011 in Ann

Arbor, MI about 1 week apart. The graphs show relative values of received power vs.

time. To estimate the difference in cross sections, the power values were integrated

over the receive window, converted to dB scale and subtracted. The result is the

cross section difference observed between two different data takes. The difference in
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Figure 5.10: Data from the modified bistatic radar. Radar traces taken before and
after rain: the trace collected after the rain storm is noticeably different
from the ’dry’ measurements.
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Figure 5.11: Raw IQ data collected by ADC card. Two channels (I and Q) are given
in succession
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Figure 5.12: Michigan 2011 L-band data for wet and dry soil. The y axis shows
power obtained by combining I and Q processed measurements. Since
only relatve power is important, the measurements are not magnitude
calibrated
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Figure 5.13: Florida June 2011 L-band data for wet and dry soil. The y axis shows
power obtained by combining I and Q processed measurements. Since
only relatve power is important, the measurements are not magnitude
calibrated

this case is approximately 2.6 dB. Using Peplinsky-Ulaby-Dobson model and EBCM

forward model, the predicted difference should be 3.4 dB.

Figure 5.13 shows the results of a similar experiment conducted in Florida in June

2011. This time the measurements were taken only about 12 hours apart but one of

the measurements was of dry soil and the other of a soil after a heavy thundrestorm.

A similar procedure was undertaken to estimate the difference in cross section to be

4.3 dB.

The experiment was repeated at UHF (435 MHz) frequency to compare with the

results for the L-band. Figure 5.14 shows comparision between measurements of wet

and dry soil. The relative cross section difference derived from the power graphs is
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Figure 5.14: Florida June 2011 P-band data for wet and dry soil.
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Figure 5.15: Michigan VHF data. At VHF frequencies the radar data shows greater
descreptancy with the values derived from the in situ sensor readings

estimated to be 1.47 dB. Figure 5.15 shows the relative received power graphs for

VHF (137 MHz) measurements. The difference derived from the radar data is about

4.2 dB. The predicted difference from the model is only .61 dB. The difference can be

attributed to a number of factors: dielectric models used to convert moisture fraction

to dielectric constant are only valid above 300 MHz; the radar antennas perform

the worst at low frequencies; the contribution of the subsurface is more important

and therefore the errors in the ancillary parameters (surface roughness, depth of the

subsurface layer, etc) play a more important role.

5.7 Sources of Error in Measurement and Validation

Since both radar data collection and ground truth validation processes contain

errors, it is important to carefully identify and characterize all the important sources
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of error. Major sources of error include:

• variability in the electronics

• imperfect sky calibration

• contributions of the surroundings

• modeling errors

• errors in measuring ancillary parameters

• imperfect dielectric models and model input parameters

• ground sensor measurements not representing true means

The behavior of all electronic components varies to some degree from one measure-

ment to the next. In the case of radar electronics, the variability is most pronounced

in the behavior of solid-state switches that have a typical rise time of 10 ns and

are typically used to create 40-60 ns pulses. The variability between two individual

traces can be significant and is mitigated by averaging the receive signal over hun-

dreds of measurements. There is also variability in measurements due to different

temperature, huminidty and other environmental factors. When the measurements

are averaged and proper internal calibration procedures are applied, the errors due

to electronics are significantly smaller than other sources of error.

Sky calibration records the data when radar antennas are pointed at the sky and

not at the target. Ideally, the receive signal is purely antenna impulse and cross

coupling responses, which can be calibrated out from subsequent traces. There are

two sources of error in sky calibration: phase instability in cables and side/back lobes

of the antenna. When antennas are rotated to point at the sky, transmit and receive

cables are bent introducing errors due to changes in propagation properties of the

cables. When antennas are pointing at the sky, the side lobes still pick up signals

from the ground, tower and other objects. The quality of a sky calibration is limited

by side-lobe level of transmit and receive antennas.

To stay within practical size and weight limits, low frequency radars use relatively
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low gain antennas, resulting in unwanted radiation into the surroundings. The receive

signal includes not only scattered signals by the target but also signals picked up from

the surroundings. As with the sky calibration case, the quality of the measurements

is degraded by the side and back lobes. However, unlike the sky calibration, this

problem can be partically solved through coherrent focusing techniques.

Even though the three-layer model presented in this dissertation is more accurate

and appropriate than previously used single rough-interface models, it is still an

approximation of the actual media. The model assumes homogeneous layers with clear

boundaries between them. In reality soils are multilayered inhomogeneous structures

with inclusions of various shapes and sizes and no clear boundaries between the layers.

Errors in ancillary parameters is another serious source of discreptancy between

predicted and measured variation of the dielectric constant. While quantities per-

taining to the first interface can be measured or visually approximated with high

degree of accuracy, there is no easy way to accurately obtain subsurface parameters.

Approximate values are obtained by inspecting sides of several holes dug for this

purpose.

The dielectric model used to relate soil moisture to dielectric constant was only

developed for measurement frequencies above 300 MHz and the accuracy of the model

at VHF frequencies is not known. Moreover, sand and clay fractions and soil density

are also model parameters which are not easy to accurately measure. Errors in the

model parameters could produce highly erroneous estimates for the dielectric constant

of the soil.

Another potential source of error is the difference between ground sensor measure-

ments and the true mean of the radar footprint. Since ground sensors are expensive

to install only two validation sites were established.

In order to successfully validate forward and inverse scattering models, it is im-

portant to develop techniques to address the above mentioned sources of error.
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5.8 Conclusion

In this chapter a summary of the experimental part of the dissertation is pre-

sented. Three radar instruments were either modified or built for experiments in soil

moisture estimation. Significant progress was made in improving the performace of

the radar instruments, miniturization and shortening of the deployment times. Radar

data processing algorithms were developed to improve the quality of the signal and

reduce the antenna size necessary for successful soil moisture estimation. An in-situ

sensor network was installed and calibrated to validate radar measurements. A clear

relationship was established between a change in magnitude of the radar return and

the observed changes in soil moisuture. To further improve the instruments, more

work needs to be done on obtaining a compact wideband non-dispersive antenna and

finding a compact signal generator with performace characteristics similar to labora-

tory signal generators. Additionally, substantial amount of work remains to be done

in the area of improving radar data validation.
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CHAPTER VI

Conclusion and Future Work

6.1 Dissertation Summary

The goal of this thesis was to develop efficient forward and inverse scattering mod-

els, and then design and build a radar instrument which could be used to validate

these models. First, an efficient and accurate forward scattering model based on

EBCM and the scattering matrix technique was developed for a three layer medium.

The boundary between the 1st and the 2nd layers of the medium is periodic and there

is a random rough interface between the 2nd and the 3rd layers. Typical forward scat-

tering models represent the 1st interface as a random rough surface. For many types of

media, such as fresh bodies of water and plowed agricultural fields, the periodic on top

of rough model is more appropriate than most other forward scattering models. Next,

the forward model is extended by including a cylinder with an arbitrary cross section

embedded in the 3rd layer. This particular forward model is especially applicable

to detection of buried objects and through the wall imaging. The inverse scattering

model presented in this dissertation is a local optimizer based on the modified con-

jugate gradient method. To cast the forward model into a form fit for inversion, the

forward scattering model is simulated over large domains of values to obtain closed

form, analytically differentiable relations. The total simulated data space is broken up

into smaller subspaces, and the problem is solved for every individual subspace. The
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best solution is then chosen based on the magnitude of the cost function. Since the

computational complexity strongly depends on the number of parameters to retrieve,

the model is simulated at high frequency to isolate retrieval of parameters pertaining

to the top interface followed by the simulation at lower frequency to retrieve the rest

of parameters. Error analysis demonstrates the robustness of the proposed method

to added noise by showing that the average values of inversion results do converge to

the actual values. To confirm the utility of the forward and inverse scattering models

a novel, compact radar instrument was designed and manufactured. The system is

efficient and partially automated for rapid data collection. Using a coherent focus-

ing algorithm, a relationship between cross section coefficients and soil moisture was

established, however the validation of forward and inverse scattering models was not

complete.

6.2 Future Work

6.2.1 Forward Scattering Model Enhancement

The forward scattering model presented in this dissertation accurately represents

many naturally occuring and anthopogenical media such as fresh bodies of water,

plowed agricultural fields, walls, etc. One challenge for remote soil moisture estima-

tion is vegetation modeling. While short grassy vegetation is nearly transparent to

VHF/UHF bands, forests layers (including roots) cannot be ignored. The current

forward scattering model can be significantly enhanced by integrating it with tree

models (cite Mariko’s work) to develop a complete forward scattering model for a

forest. There is also a need to increase the region of validity and computational effi-

ciency of the current forward scattering model. A recent work on stabilizing the 3D

EBCM presented in [31] shows promising preliminary results in extending the region

of valitity of the algorithm. A similar technique, if developed for a two dimensional
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version, could significantly increase the region of validity of the model.

6.2.2 Scattering from 2D cylinder

In this dissertation an efficient forward scattering model for an arbitrary two di-

mensional cylinder behind a non-smooth wall was developed. The model combined

a reflection matrix for a cylinder derived from the MOM formulation with reflection

and transmission matrices derived for periodic and rough interfaces using EBCM.

The MOM algorithm used the simplest uniform rectangular integration technique,

resulting in a relatively fine discretization requirements, especially for non-smooth

cylinders and TE polarization. A more sophisticated MOM algorithm would allow

for a significant reduction in the number of segments per wavelenth, and improvement

in the efficiency of the algorithm. The model was validated by comparison with theo-

retical results obtained for a circular cylinder. Since a circular cylinder is a symmetric

and smooth shape, more validation is desirable for rigorous method evaluation. The

next step would be to experimentally confirm the model by measuring scattered fields

for various wall types and cylinder shape combinations.

6.2.3 Retrieval of Parameters

The inversion algorithm proposed in this work is an efficient local optimizer based

on a modified conjugate gradient method. The results for retrieval of parameters for

three layer media were presented in this dissertation. The algorithm can be further

extended to include retrieval of the cylinder parameters, so it can be used along with

a measurement setup for through-the- wall applications. Since the most computa-

tionally complex step is the initial simulation over the range of parameters, once

closed form expressions are derived, all subsequent computations are simple matrix

evaluations. It may be promising to take advantage of computational efficiency of the

closed form expressions to test the feasibility of using a global inversion algorithm
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such as simulated annealing. Better results may be obtained at a modest increase of

computational complexity.

6.2.4 Tower-Based Radar System Future Improvement

The radar instrument designed and built as part of this work is one of the first

compact tower-based low frequency systems of its kind. There are several potential

areas of advancement of these types of instruments. The most urgent is develop-

ment of a compact low frequency antenna with a short impulse response. Recently,

promising early results were reported in [32]. There is also an ongoing search for

a compact quality frequency synthesizer. One possibility would be to design and

build it at ourselves to ensure proper integration with the rest of the radar hardware.

On the measurement side, there is a need to conduct an experiment to validate the

inverse scattering models proposed in this dissertation. In order to take advantage

of the penetrating abilities of the low frequency radiation, many of the subsurface

measurements need to be performed at VHF (137 MHz) frequencies. However, the

current dielectric model presented in [30] is only valid above 300 MHz. There is a

need to extend this model down to VHF frequencies to accurately relate soil moisture,

density and composition to the dielectric constant. Finally, there are several more

experimental systems currently being considered. One of the systems currently in

the proposal stage is a compact (under 22 lb) radar mounted on an unmanned aerial

vehicle.
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APPENDIX A

Radar Architecture Description

A.1 Modified MOSS Radar

The schematic of the original MOSS radar is depicted on figure A.1. The computer

controlled signal generator generates a continuous wave, which is then split into two

branches by a 10:1 directional coupler. The larger signal (90% of the power) goes

to the IQ demodulator to provide the Local Oscillator (LO) signal for the received

Radio Frequency (RF) signal. The coupled in 10 % signal is then taken through two

solid state switches. The switches stay on only for a few nanoseconds (typically 50 ns)

at a time to produce pulses narrow enough for sufficient range resolution (see 5.2.3

for discussion of relationship between range resolution and pusle width). The signal

then travels along the long RF cables to the component box located at the top of the

tower. The signal there is amplified to about 21 dBm (signal generator is typically

set to output +15 dBm of RF power) and passes through another solid state switch

which acts as a duplexer switching between the transmit and receive paths. Since

a PC serial interface cannot achive timing control on the ns scale all time critical

signals are generated by the FPGA.
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Figure A.1: MOSS Radar simplified schematic. The system was one of the first pulsed
multi-frequency tower based systems built for soil moisture surveying.
One of the main drawbacks of the system was a separate electronics box
at the top of the tower, requiring the use of two RF and one multi-
conductor power cables. This arrangement resulted in long deployment
times.

The radar has two measurement channels: H (for Horizontal polarization) and V

(for Vertical polarization). A set of electromechanical switches controls the choice of

transmit and receive polarizations (with HH, HV, VH and VV being the possibilities).

The transmit signal is then radiated from the antenna, and after scattering from the

target, is received by the same antenna. The antenna used for this radar is a dual

polarization log periodic antenna. It is mounted on a long aluminum pole with two

circular hoops (connected with several bolts) at one end, and two lead counterweights

at the other end. The incidence angle is set by unbolting the connection at the hoops

and rotating the antenna. The receive signal captured by the antenna is then amplified

by the Low Noise Amplifier (LNA), travelled down the RF cable back to the ground

electronics box where it is mixed down to baseband and sampled by the computer

based digitizer.

A.2 Compact Bistatic Radar

In order to significantly simplify the design and reduce cost, the system relied on

many widely used and extensively tested off-the-shelf devices. The operating system
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Figure A.2: The new compact radar simplified schematic.

is a standard Windows XP operating system which includes many built in features

such as serial communication and peer to peer wireless networking. The hardware

running the operating system is a small form factor, low power, fanless Intel ATI

motherboard/processor/video card integrated system. The radar control and data

aquisition program (written in LabVIEW) communicates with the rest of the system

using serial protocol via the COM 1 connector on the motherboard. Serial commands

that are generated by the computer are transmitted to an FPGA Spartan II board

which generates control signals for most of the RF components. A simplified radar

schematic is given on figure A.2. The RF signal is generated by a frequency synthesizer

built by General Electronic Devices. The RF source has a voltage controlled oscillator

in the range of 1-2 GHz and several dividers providing an output signal in the range of

100Mhz to 1.5 GHz at approximately 10 dBm of RF power. The control is executed

via a 25 pin parallel connector with custom pinout. In addition to providing 15V
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of DC power, there are three combinational circuit lines which set the values for the

dividers. Also, there are clock, data and latch pins which set output frequency of

the voltage controlled oscillator. The RF performance of the source is inferior to the

signal generator stand alone instrument used in previous radars but the size of the

RF source (3” by 3”) makes it an attractive option.

The continuous wave signal generated by the RF source is split in a 10:1 ratio by

a directional coupler. The larger signal becomes an LO signal of the IQ demodula-

tor, and the smaller signal is passed though the solid state switch which generates a

pulsed signal. The pulse is then amplified by the power amplifier and radiated by the

antenna. Just as the previous versions, this radar is equipped with an internal cali-

bration feature. The internal calibration is implemented with two electromechanical

switches which bypass the antennas and instead route the signal though an attenua-

tor of the magnitude similar to the attenuation between transmit and receive signals.

Unlike the previous version, the attenuation can be adjusted to imitate a wide variety

of targets. The minimum attenuation is set at 80 dB.

Even if the antennas are separated by the maximum allowable distance, the largest

receive signal comes from the cross coupling between the transmit and receive anten-

nas. This signal saturates the receiver, and can damage sensitive electronic compo-

nents. To protect the receiver, a solid state isolation switch is used. It connects the

receiver to the receive antenna a few nanoseconds after the cross coupling signal had

passed. For small tower heights, this delay is set conservatively to ensure the capture

of the wanted signal. For larger tower heights, the target response and the coupling

response can be more easily separated.

The solid state switches used for isolation introduce a video leakage noise, which

after amplification by LNAs can saturate the receiver. The spectral content of this

noise is almost exclusively below the frequencies of the desired signal, which make

it possible to remove most of this noise with bandpass filters. For higher frequency
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measurements the removal of the video leakage noise is more complete.

After the receive signal passes through the isolation switch it is amplified, filtered,

amplified again and is demodulated to baseband by an IQ demodulator. For superior

noise performance it is important to place the low noise amplifier as early in the

receive chain as possible. This radar uses an amplifier with a noise figure of 3 and

around 40 dB of gain across the entire frequency band. Since the phase information

is critical for focusing and data processing operation the use of an IQ demodulator

is preferred to a standard RF mixer. The IQ demodulator splits the RF signal into

two branches: the first branch is mixed down and produces the in-phase component

(I), while the other is shifted 90◦ prior to down converting producing a quadrature

(Q) component. The resultant channels are amplified by the baseband amplifier and

filtered by a pair of lowpass filters to remove LO and higher order harmonics. From

the noise performance point of view, it is preferable to avoid mixing the signal down

to baseband, since the phase noise of the RF source is amplified. On the other

hand, the superior from the noise performance point of view method of mixing to

the intermediate frequency (IF) significantly complicates the radar hardware. The

filtered I and Q channels are sampled by the digitizer at 1 GS/s and the data is stored

on the computer hardrive.

The antennas used for this system are two identical log periodic antennas with

a bandwidth of 100 - 1300 MHz (S11 < 10dB). The antennas are about 4’ long

(a relatively small size for VHF antenna) and provide a free space gain of 8 dBi.

The antennas are mounted on a 10’ aluminum pole using u-brackets. The separation

between the antennas can be adjusted from 4’ to almost 10’. The pole holding the

antennas is inserted into the antenna rotator depicted on figure A.3 and secured

with two u-bolt clamps. Both the rotator and the radar are mounted on a 5’ by 1’

aluminum plate. To prevent the plate from bending, the plate is reinforced at the

edges by u-shaped rails. The plate holding the radar and the rotator is attached to
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the tower by 4 bolts spaced by exactly 90◦. This allows for 4 possible measurement

directions (front, back and sides of the tower).

The incidence angle is set by turning the boom on which the antennas are mounted.

The rotator (Yaesu 550) provides a 6 pin connector for the controller interface. The

schematic of the motor is shown on figure A.3. The motor is rotated clockwise if 29V

AC is applied between pins 4 and 6 and counterclockwise if applied between 5 and

6. The motor provides position feedback via a built in potentiometer. If DC voltage

is applied between pins 1 and 3, the voltage between pins 1 and 2 is proportional to

the position of the rotator. A custom rotator controller was designed and built to

remotely set the antenna incidence angle. The rotator controller simplified schematic

is schown on figure A.4. A step down fused transformer was used to obtain the

29V AC signal needed for antenna rotation. The signal is connected to pin 4 or 5

via a voltage activated AC relay depending on the desired direction of rotation. A

USB based DAQ was used to sample the voltage at pin 2 and to actuate relays. A

system was carefully calibrated by accurately measuring a voltage at −178◦, −90◦,

0◦, 90◦ and 178◦ and fitting a polynomial function which maps voltage to angular

position. When the system powers up, it is theoretically possible that some residual

charges could turn on both relays and try to rotate the motor in both directions

simultaneously. To avoid this dangerous situation, large pull-down resisters were

inserted between the gate terminal and ground of each relay. When nothing is written

to the digital output lines of the controller, these resistors force the voltage at the

gate of the relays to 0V, turning off the relays. Whenever nanosecond switching

speed is not necessary, electromechanical switches are preferred due to their superior

RF characteristics. Electromechanical switches are wideband (with VSWR values

very close to 1), can handle high power levels (up to kW), and are essentially lossless.

Solid state switches generally have an insertion loss of .5 - 2 dB, and can only safely

handle about 23 dBm of RF power. Video leakage is another major problem at low
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Figure A.3: Antenna rotator picture and electrical schematic. An automatic antenna
rotation feature was added to this radar system. The incidence angle
can be automatically set from the ground without the need to lower the
tower. The voltage between pins 1 and 2 is proportional to the angular
position of the rotator
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Figure A.4: A simplified rotator controller schematic. This custom controller allows
for remote control of the rotator.

power levels with solid state switches. The video leakage is mostly a lower frequency

signal which and can be filtered out using bandpass or high pass filters.
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