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ABSTRACT

Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast
Imaging

by

Mark S Haynes

Chair: Mahta Moghaddam

Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques

are explored in both theory and experiment with the ultimate aim of noninvasively

mapping the material properties of the breast. There is evidence that benign and

malignant breast tissue have different acoustic and electrical properties and imaging

these properties directly could provide higher quality images with better diagnostic

certainty. In this dissertation, acoustic and electromagnetic inverse scattering al-

gorithms are first developed and validated in simulation. The forward solvers and

optimization cost functions are modified from traditional forms in order to handle

the large or lossy imaging scenes present in ultrasonic and microwave breast imag-

ing. An antenna model is then presented, modified, and experimentally validated for

microwave S-parameter measurements. Using the antenna model, a new electromag-

netic volume integral equation is derived in order to link the material properties of

the inverse scattering algorithms to microwave S-parameters measurements allowing

direct comparison of model predictions and measurements in the imaging algorithms.
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This volume integral equation is validated with several experiments and used as the

basis of a free-space inverse scattering experiment, where images of the dielectric

properties of plastic objects are formed without the use of calibration targets. These

efforts are used as the foundation of a solution and formulation for the numerical

characterization of a microwave near-field cavity-based breast imaging system. The

system is constructed and imaging results of simple targets are given. Finally, the

same techniques are used to explore a new self-characterization method for com-

mercial ultrasound probes. The method is used to calibrate an ultrasound inverse

scattering experiment and imaging results of simple targets are presented. This work

has demonstrated the feasibility of quantitative microwave inverse scattering by way

of a self-consistent characterization formalism, and has made headway in the same

area for ultrasound.
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CHAPTER I

Introduction

1.1 Motivation and Objectives

The modern imaging standard for breast cancer screening is mammography with

ultrasound follow-up. A mammogram is the 2D projection of X-ray absorption of

breast issue. Any suspicious lesions detected by radiologists on a mammogram are

followed up using an ultrasound hand probe. After analyzing the ultrasound image,

a BiRads rating is assigned to the lesion assessing the certainty of malignancy or

not, [1], after which recommendations are made for either biopsy, 6-month follow-up,

or 12-month standard exam. Biopsy results are returned with their pathology after

about a week, and further recommendations are made if necessary. The images for all

positive cases and some negative cases are later reviewed by radiologists concurrent

with the pathology report.

Between mammography and ultrasound, many lesions can be detected and diag-

nosed. Even still, most breast biopsies are benign. This is due in part from imaging

uncertainties, the relatively low risk of biopsy, and the low tolerance, generally, for

false negatives (i.e. lesions diagnosed as benign which were actually malignant),

which all taken together lead to conservative care practices. As reported in [2], the

sensitivity (ability to predict positive results, reducing false negatives) and specificity

(ability to predict negative results, reducing false positives) of mammography alone
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is about 70% and 75%, respectively. For ultrasound alone, they are about 80% and

35%, respectively. Breast MRI has recently been recommended for high-risk patients,

[3], but the images are expensive and have a high false positive rate.

X-ray mammography has many benefits. It has the best resolution of any modality

available and provides full coverage of the breast. It is also a relatively low-energy, low-

dose X-ray modality as compared to X-ray CT or chest X-rays, because it only needs

to image soft tissue. Some draw backs are that a mammogram is a 2D projection

of a 3D object and that the variable breast properties throughout the population

require highly trained radiologists to interpret the images. Also, X-ray radiation is

ionizing, which is known to be harmful, and it is desirable to limit exposure as much

as possible.

Ultrasound imaging also has many benefits. It is so far know to be safe, it is

inexpensive, fast, has millimeter resolution or better, and is portable. However, im-

ages are only 2D slices in depth, they cannot be formed through bone or air, and are

technician dependent. From a wave imaging stand point, the image quality is quite

poor. Images are plagued with artifacts such as speckle, reverberations, lensing, ghost

images, and shadowing. Highly trained radiologists are again required to interpret

the images and artifacts are often used for diagnosis.

Mammographic and ultrasonic images are both anatomical in nature, meaning

they show primarily tissue structure. Tissue function, such as malignancy, is inferred

from shape, texture, and context, [4]. For example, shapes such as spickulations,

spheres, or microlobulations indicate malignancy, while almond shaped lesions or

those with smooth margins indicate benign masses. Cysts show up on ultrasound as

homogeneous black regions (no sound reflected). Artifacts in the ultrasound images

often aid the diagnosis of certain lesions, such as reverberations at cyst boundaries

or shadowing which is often a sign of malignancy due to high attenuation.

The speed with which ultrasound images are formed is due in part because algo-
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rithms are built on only the kinematic properties of waves. Ultrasound algorithms

assume fixed speed of sound, ray approximations, and no diffraction, refraction or

multiple scattering [5]. Ultrasound systems and algorithms essentially focus acoustic

energy through the tissue and listen, in a way, for reflections due to tissue with differ-

ent material properties than water. Ultrasound images are formed with a technique

called dynamic receiver focusing. On transmit, in hardware, the signals of every trans-

ducer element on the probe (up to 128) are phased to focus the acoustic radiation to

several coarse points at depth. In software, the received echoes are phased in order

to focus at every pixel in the scene. The echoes are summed, and the result displayed

as pixel intensity. The brightness of the pixels represents a measure of reflectivity of

the tissue, or the degree to which the tissue properties differ from the background,

but, due to the many assumptions, one can only make qualitative statements from

these images about the actual material properties of the tissue.

This is just a small picture of breast imaging today, and, based on it, there are

several areas of breast imaging we can look to improve. First, any modality avoiding

the use of ionizing X-ray radiation is worth investigating, especially screening modal-

ities to which large portions of the population are exposed. Second, the quality of

ultrasound images might be improved by reconsidering the physics missing in those

algorithms. Last, it is also worth investigating any type of imaging that provides

additional quantitative diagnostic information aiding the task of diagnosis to better

assess malignancy.

A candidate technology to improve breast imaging then is wave-based inverse

scattering. Inverse scattering has a long history in oil exploration, acoustics, and

electromagnetics. It is centered around the idea that, by using the complete physical

description of wave phenomena, one can remotely and noninvasively map the actual

material properties of objects under investigation. The methods apply equally to

ultrasound and microwave imaging.
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The real motivation for using inverse scattering methods is evidence that benign

and malignant breast tissue have quantitatively different material properties, and

that imaging these properties directly could provide higher quality images with better

diagnostic certainty. In acoustics we are concerned with tissue speed of sound (i.e.

compressibility and density) and absorption; in microwave we are concerned with

relative permittivity and conductivity. The quantitative material differences of breast

tissue are well known in acoustics; malignant tissue has higher speed of sound and

more attenuation than surrounding healthy tissue. In microwave, evidence that the

relative permittivity and conductivity of benign and malignant breast tissue differ is

not as strong, but is still an area of investigation. Furthermore, microwave radiation

is known to be non-ionizing. Also, quantitative images formed with inverse scattering

techniques do not depend on the operator. While inverse scattering images have their

own artifacts, they do not suffer from speckle or other artifacts found in traditional

beamforming.

For all the possible benefits, inverse scattering is not without its own challenges.

First of all, images must be formed using non-linear optimization techniques and

the complete description of wave propagation. This is because probing waves must

travel through all the intervening tissue to sense and return, and the optimization

routine must unravel the effects of tissue from one area with those of another. This is

computationally intensive. Also, because the received fields are necessarily measured

outside the object, the inverse scattering problem is mathematically and inherently ill-

posed and non-unique. The simultaneous imaging of more than one material property

creates further ambiguity. On top of these, inverse scattering systems require very

carefully calibration and source characterization, because they use the full description

of waves. Addressing these issues in order to bring inverse scattering methods to a

point where they can be clinically and commercially tested continues to be an active

area of research. Addressing some of these challenges dominates much of the subject
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of this dissertation.

At the outset of this work, the abstract goal was to use microwave and ultrasound

inverse scattering methods to create quantitative maps of the material properties of

breast tissue. After some work understanding and improving theoretical acoustic and

electromagnetic inverse scattering algorithms, it was clear that in order to perform

any type of experiment, several unanswered questions about calibration needed to be

addressed. As a result, the bulk of this dissertation is concerned with the calibration

and characterization of microwave and ultrasound inverse scattering imaging systems

in the context of breast imaging. For the microwave problem, we systematically

progress from the imaging algorithms, antenna model, propagation model, scattered

field volume integral equation, and inverse scattering algorithm to eventually arrive

at a solution and formulation for the numerical characterization of a near-field cavity-

based breast imaging system. For the ultrasound problem, we apply some of the same

techniques to explore a new area of self-characterization for commercial ultrasound

probes.

While the work described in this dissertation never approached clinical use, much

progress was made in understanding the next steps required for developing clinically

viable inverse scattering imaging systems and the last chapter lists several areas for

future work.

1.2 Previous Work

The application of inverse scattering to ultrasound and electromagnetic breast

imaging has gained popularity because the acoustic or electrical contrasts of benign

and malignant lesions have been reported to be different. For ultrasound, malignant

lesions are known to have increased sound speed and attenuation compared to the

background tissue [6, 7]. In microwave, there has been evidence that the dielectric

properties differ between benign and malignant lesions [8, 9], though this remains an
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active area of investigation [10, 11], because the microwave properties of breast have

never been measured in vivo.

Inverse scattering methods that have been applied to acoustic breast imaging

include kinematic backprojection [12], which yield images of wave speed and atten-

uation, first order approximations such as diffraction tomography [13, 14] based on

the Born-approximation, and full-wave inverse scatting [15].

Only a few clinical ultrasound breast imaging systems exist which use inverse scat-

tering algorithms. In ultrasound, the system described in [16, 15] uses ultrasound CT

in conjunction with a gradient based full-wave optimization, but images of acoustic

loss display artifacts near the skin/background interface. Several diffraction tomog-

raphy systems have been tested in the last decades, [13, 17, 14, 12, 18], but images

commonly suffer ringing artifacts. In [19, 20], several imaging algorithms have been

tested on an experimental system to study the trade off between computation effort

and image quality.

There has been substantial work done in developing microwave breast imaging

algorithms in simulation. Time domain beamforming algorithms have received much

attention, [21, 22, 23, 24, 25, 26]. These are usually based on shift-and-sum methods

to focus volumetrically through inhomogeneous media. Full-wave, iterative nonlinear

inverse scattering methods have been studied by several different groups, [27, 28,

29, 30, 31]. Other inversion methods based on shape, level-sets, genetic algorithms,

priors, and global optimization have also been investigated in an effort to improve

the performance of the inverse scattering problem in the context of breast imaging,

[32, 33, 34, 35, 36].

A few microwave experimental and clinical systems exist. Some non-clinical in-

verse scattering experiments for breast imaging and biomedical applications have been

built and tested, [37, 38, 39, 40]. A clinical system using gradient-based optimization

has been studied in some depth [41]. Whole breast images are formed by splicing
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2D slice approximations, but image quality is poor. Another clinical system, [42], is

based on beamforming and radar backscatter images, but has not yet shown successful

clinical results in discriminating benign and malignant tissue.

1.3 Thesis Overview

This dissertation contains nine chapters, including this one. Chapters II and III

explain the acoustic and electromagnetic forward models and inverse scattering al-

gorithms. For both the acoustic and electromagnetic problem, we use is the Born

Iterative Method inverse scattering algorithm. We modify this algorithm from its

traditional implementations with an eye toward experiment. We do this using a

multi-variate covariance-based cost function which allows us to 1) minimize the func-

tional with conjugate gradients avoiding the need to build and invert a large matrix,

and 2) use the Gaussian interpretation of the least-squares problem to give us physi-

cally meaningful regularization, eliminating the need for arbitrary tuning parameters.

The derivation of these algorithms is validated in simulation. Chapter IV describes

the antenna model which forms the basis of our calibration method. We use it to

derive an S-parameter based antenna and propagation model and show how we use

simulation to obtain the antenna model parameters. Chapter V presents our use the

antenna model to solve one of the outstanding problems of microwave experimental

inverse scattering by developing a formalism to directly link the material properties

of the object we want to image to the scattered field quantities we measure. We

valid this formalism with several experiments. Chapter VI describes a microwave

free-space inverse scattering experiment built to test the integration of the inverse

scattering algorithm and the calibration formalism. We show how to make the algo-

rithm, antenna characterization, and experiment consistent. The experiment demon-

strates our ability to form images of dielectric constant without the use of calibration

targets. In Chapter VII we combine all of these elements to characterize a cavity-
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based microwave breast imaging system prototype. We outline the system, study

the performance of the characterization in simulation, and present imaging examples

from both simulation and experiment. In Chapter VIII we apply the findings of the

microwave problem to the task of characterizing an acoustic inverse scattering exper-

iment. We derive an analogous propagation model and calibration formalism. A new

self-characterization technique is derived and tested which is based on the nonlinear

inversion of the propagation model. Images of test objects are presented along with

a discussion of the limitations of the setup. Finally, Chapter IX, summarizes and

concludes the dissertation and gives several areas of future work.

1.4 Dissertation Contributions

Specific contributions of this dissertation include:

1. Chapter 2: Acoustic Born Iterative Method (BIM) with covariance-based cost

function, conjugate gradient minimization, and Neumann series forward solver.

2. Chapter 3: Electromagnetic BIM with covariance-based cost function, conju-

gate gradient minimization, and Neumann series forward solver with Shanks

transformation speed-up.

3. Chapter 4: S-parameter based antenna and propagation model with numerical

characterization and experimental T-matrix scattering.

4. Chapter 5: Vector Green’s function formulation for microwave S-parameter

measurements of the electromagnetic scattered field volume integral equation.

5. Chapter 6: Experimental demonstration of BIM and vector Green’s function.

Showed image formation is possible without calibration targets.

6. Chapter 7: Numerically characterized breast imaging system prototype.
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7. Chapter 8: Experimental test of Acoustic BIM, acoustic vector Green’s function

analogue, and ultrasound probe self-characterization based on the nonlinear

inversion of an acoustic propagation model.
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CHAPTER II

Acoustic Inverse Scattering Algorithm

2.1 Introduction

In breast ultrasound, it is well known that the speed of sound variation of breast

tissue is ± 6% of water [43]. This property has enabled for decades imaging by real-

time volumetric beamforming. While ultrasound is an indispensable tool in medicine,

the image resolution and quality of beamformed images are fundamentally limited by

the assumptions inherent in the image formation: fixed speed of sound, ray approxi-

mation, and no multiple scattering [5]. Images are qualitative measures of backscatter,

with artifacts such as speckle, shadowing, reverberations, and ghost images. Simi-

lar methods have been simulated in electromagnetics for the same application with

similar effects [21, 22].

Generally, the inverse scattering problem can be classified as a constrained nonlin-

ear optimization. Numerous techniques exist for the solutions in both acoustics and

electromagnetics [44, 45, 46, 47, 27, 48, 49, 50]; most are iterative, gradient-based

approaches because global, nonlinear optimization techniques, which require millions

of forward solver evaluations, are not practical given the large number of unknowns.

The central contribution of this chapter is the unique selection, modification,

and integration of components of the inversion algorithm to make large, full-wave

quantitative inverse scattering feasible for ultrasound breast imaging. The choice of
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forward solver, inversion method, and cost function were specifically motivated by the

imaging domain size and known ranges of object contrasts. We combine the familiar

concepts of the Born Iterative Method (BIM) and an efficient semi-analytical forward

solver, with a covariance-based cost function, to tackle the specific problem of large,

low-contrast acoustic inverse scattering.

Because soft tissue is weakly scattering in ultrasound, Born iterations are an

appropriate inverse scattering method. The BIM has been shown to retrieve small

objects with contrasts up to 3 times the background [44, 51]. The Distorted Born

Iterative Method (DBIM) can retrieve objects with even higher contrasts [52, 51]

and has been demonstrated experimentally for acoustics [45], but requires additional

computation. The Born approximation alone is expected to break down for large

objects, but an area not previously investigated is the applicability of Born iterations

to domains of tens of wavelengths or larger.

We use the Neumann series solution for the forward solver [53] and extend it to

three object contrasts. This solution is an O(NlogN), volumetric, frequency domain

technique that takes advantage of low contrast media to expand the field solution in

a power series.

The inverse scattering problem is typically cast as a multivariate optimization

for the image, often reducing to the problem of solving a series of ill-posed, linear

systems. This system must be regularized in order to retrieve physically meaningful

images. The choice of regularization is often more influential on the final image than

including or excluding data or even the accuracy of forward model. A common choice

of regularization is a Tikhonov tuning parameter [54, 44], the value of which must be

determined by trial and error, and carries little intuition except that it is related to the

spectral content of the linear system and also the image. For extremely large inversion

domains, tuning parameters are not practical and cannot be easily determined. To

avoid this, and to include physically meaningful regularization, we use a covariance
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based cost-function [55, 56] from which we can set the regularization simply from our

a priori knowledge of the range of image pixel values and experimental noise.

For now, we will only consider the inverse scattering problem in two dimensions.

The following equations and formulation apply equally to 3D problems by only chang-

ing the background Green’s function.

2.2 Theory and Formulation

2.2.1 Forward Model

The physics of the acoustic problem are captured by the following integral equation

φ(x) = φinc(x) + k2o

∫

g(x,x′)

(

δκ(x′) + i
δα(x′)

κoω

)

φ(x′)dV ′

+

∫

g(x,x′)∇′ · δρ−1(x′)∇′φ(x′)dV ′ (2.1)

k2 = k2o

(

1 + i
αo

κoω

)

(2.2)

where k2o = ω2ρoκo is the lossless background wave number and g(x,x′) is the free-

space Green’s function with wave number k. The incident field, φinc(x), is the field

in the absence of the object. We also define the following contrast functions

1

ρo
δρ−1(x) =

1

ρ(x)
− 1

ρo
(2.3)

κoδκ(x) = κ(x)− κo (2.4)

δα(x) = α(x)− αo (2.5)

where ρo, κo and αo are the background material constants. The quantities δρ−1 and

δκ are unitless, and δα is an absolute measure of loss with units of compressive loss.
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We will refer to the complex compressibility as

κc = δκ+ i
δα

κoω
. (2.6)

For x /∈ V , (2.1) is sometimes called the data equation, while for x ∈ V it is the

object equation [46]. x /∈ V are positions of field measurements. When the data

equation is cast as a functional to be minimized, it is used to retrieve the contrasts.

The object equation represents the solution to the forward problem for the field given

the object. We will refer to the total field, φ(x), as the object field when it is in the

integration domain

The inverse scattering solution is nonlinear because both the contrasts and object

fields are unknowns and occur as a product in the data equation. The contrasts are

constrained by our a priori knowledge of values and smoothness, as well as exper-

imental noise; the object fields are constrained such that, for a given object, they

must satisfy the wave equation, i.e. the object equation.

2.2.2 Problem Specific Material Properties

In the breast ultrasound problem, the speed of sound for all tissue is bounded

between ±6% the speed of sound in water [6]. As reported in [43], the compress-

ibility and density contrasts of human soft tissue vary no more than 20% about the

background assumed to be water. Furthermore, these quantities are linearly pro-

portional over the range of frequencies and tissues of interest with proportionality

δκ ∽ 2.4δρ−1. If this relation can be assumed for this problem, the number of un-

knowns in the inversion is greatly reduced, and, more importantly, the ambiguity in

simultaneous retrieval of both quantities is eliminated while maintaining the physics

of density variation [57].

Reported values of attenuation rate of breast tissue range from 0-4 dB/cm/MHz,

[15, 58]. Together with the contrast ranges, the complex compressibility takes values
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no more than 0.2 + i0.02 and no less than −0.2 + i0. Imaging methods based on

the Born approximation such as diffraction tomography [59, 14] are only good for

contrasts of up to 0.01 as explained in [60, 52]. Thus, the contrasts for the breast

imaging problem are beyond the validity of the standard Born approximation, but

still weak enough that Born iterations are appropriate to solve the nonlinear problem.

2.3 Forward Solver

2.3.1 Neumann Series

Of the many techniques for the forward solution, few are well suited for large,

low-contrast inhomogeneous media. Method of Moments (MoM) and the Finite Ele-

ment Method require building and solving a large linear system, and Finite-Difference

Time-Domain is grossly over sampled in both space and time. A full-wave time do-

main solver for ultrasound propagation in breast tissue based on spectral methods can

be found in [61], [62], but requires storage of auxiliary domains. The forward solver

adopted here is the Neumann or Born series solution [53, 47, 63]. This uses the fact

that for small contrasts the operator norm of the Green’s function integral is such that

the field solution can be expanded in a power series of the incident field. Another

similar iterative method, but for highly lossy background, is [64], where the MoM

matrix is compressed to a diagonal, after which the matrix inverse and Born itera-

tions are readily computed. A forward and inverse method using the Extended Born

approximation and FFT to speed the forward solution and handle higher contrasts is

[65, 66].

The Neumann series solution begins by writing (2.1) as single operator equation.

With the source and frequency dependence assumed, we can write

φ = φinc +Gφ (2.7)
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where G is the integral-differential operator containing the Green’s function and ob-

ject contrasts acting on the field. The formal inverse of this equation is

φ = (I −G)−1 φinc (2.8)

Similar to the approximation of (1 − x)−1, if ||G|| < 1 as measured in a suitable

norm, then the solution can be sought using the Neumann series

φ =

n
∑

i=0

Giφinc (2.9)

where the number of series terms, n, needed for convergence depends on the value of

the norm. The operator is an infinite space convolution which is readily computed

with an N-1 zero-padded FFT, where N is the number of samples along the sides of

the original domain. The zeroth and first order solutions give the well known Born

and Extended-Born approximations, respectively. See [46] for discussions of these and

other approximations as they relate to the formal inverse of the operator equation.

2.3.2 Operator Norm for Three Contrasts

The bounds of ||G|| and the degree to which the peak contrasts and object spec-

tral content affect series convergence have been thoroughly studied in [53, 47]. In

these papers, the norm is only computed for the first term of the operator, involving

compressibility and loss, and not for density. We wish to compute this norm quickly

including all three contrasts.

As given in [53], the L2 norm of a continuous, linear operator is bounded by a

double integral over the object domain. Because the contrast functions are only non-

zero in the integration domain, the limits of the first integration can be extended to

infinity. The norm is then given as
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||G||2 < ||k||2L2(Ω×Ω) =

∫

Ω

∞
∫

−∞

|k(x,x′)|2dV ′dV (2.10)

where |k(x,x′)|2 does not depend on the field. After applying integration by parts

to the second term of (2.1) in order to factor the field from the integrand, and inserting

the shifted argument of the Green’s function

|k(x,x′)|2 = |g(x− x′)

(

k2oδκ(x) +
ik2o
κoω

δα(x)

)

+ ∇′ · δρ−1(x)∇′g(x− x′)|2 (2.11)

To speed the computation of the convolution using FFT, we must separate the

shifted and unshifted functions in the square magnitude. It can be shown that the

norm can be written as an integral over six functions

‖k‖2L2
=

∫

Ω

N1(x) +N2(x) +N3(x)

+ 2ℜ{−N4(x)−N5(x) +N6(x)} dV (2.12)

N1(x) = |h(x)|2 ∗ ∗|g(x)|2 (2.13)

N[2,3](x) = |δρ−1
[x,y](x)|2 ∗ ∗|g[x,y](x)|2 (2.14)

N[4,5](x) =
(

h∗(x)δρ−1
[x,y](x)]

)

∗ ∗
(

g∗(x)g[x,y](x)
)

(2.15)

N6(x) =
(

(δρ−1
x )∗(x)δρ−1

y (x)
)

∗ ∗ (g∗x(x)gy(x)) (2.16)

where h(x) is

h(x) = k2o

(

δκ(x)− δρ−1(x) +
i

κoω

(

δα(x)− αoδρ
−1(x)

)

)

(2.17)

and where ∗∗ is an infinite-space 2D convolution, and ∗ is complex conjugation. These
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expressions can be computed with 2D FFTs. The partial derivatives of the Green’s

function can be obtained analytically and are given below. The leading order of ko,

and so the nature of h(x), contributes most to the value of the norm.

It can be seen that in 2D the norm depends on the difference of the contrasts.

Thus, in cases where the compressibility and density contrasts follow one another,

series convergence requires fewer terms. As stated earlier, this condition is met for

biological tissue. The norm can be interpreted as a measure of correlation between the

object contrasts and the Green’s functions. Random collections of objects, containing

little overall structure, tend to have smaller norms than highly structured objects,

such as rings or disks.

2.3.3 Computation of Series and Norm

To avoid aliasing, we must compute the convolutions for the both the norm and

the series by first sampling each function in the spatial domain, zero padding, FFT,

multiplying, IFFT, and cropping. Numerically, best results were given by centering

the Green’s function in a domain with an odd number of samples. This requires sam-

pling the singularities of the Green’s function and its derivatives. While singularity

extraction was carried out in the integral equation, we found that simply approxi-

mating the singularity sufficed. This is equivalent to low pass filtering the Green’s

function. Given the small sampling area of each pixel for grids sampled at λmin/10

or better, the difference between the contribution of the singularity and an approx-

imation is small. When validated against the analytic solution, the magnitude and

phase of the forward scattered field appeared unaffected. The 2D Green’s function,

derivatives and approximate values at the origin used were
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g(k|ρ|) =
i

4
H

(1)
0 (kρ) (2.18)

∂

∂[x, y]
g(k|ρ|) = −ik

4
H

(1)
1 (kρ) [cos(φ), sin(φ)] (2.19)

lim
ρ→0

g(k|ρ|) ≈ 0.4 + i0.25 (2.20)

lim
ρ→0

∂

∂[x, y]
g(k|ρ|) ≈ 0 (2.21)

The approximation for g(k|ρ|) is justified by considering the real and imaginary

parts separately in the limit as ρ→ 0. We found a value of 0.4 was adequate for the

real part of the singularity. We also found the norm required multiplication by the

constant 1/(2
√
M

√
N), where M and N are the number of samples along each side

of the unpadded rectangular domain. This brought the value of the norm into the

correct range where values on either side of 1 matched series convergence.

2.4 Inverse Scattering Algorithm

2.4.1 Born Iterative Method

The BIM iterations proceed as follows:

1. Assume the object field is the incident field (Born approximation).

2. Given the scattered field data, estimate the contrasts with the current object

field by minimizing a cost function subject to suitable constraints.

3. Run forward solver with current contrasts. Store the updated object field.

4. Repeat at step 2 until convergence.
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In effect, the BIM iterations successively linearize the nonlinear problem. The use

of the forward solver enforces the constraint that the field satisfy the wave equation

for a given object. The cost function enforces any constraints on the contrasts and is

minimized with a conjugate gradient routine described below.

The BIM has been shown to be applicable for contrasts of up to 3 times the

background in acoustics for both compressibility and density [44]. The BIM is aptly

suited for the problem we are considering because the contrasts vary no more than

20% about the background, which is beyond the Born approximation but still weakly

scattering.

2.4.2 Cost Function

The cost function used to estimate the contrasts follows that of [55],

2S(m) = ‖g(m)− d‖22 + ‖m−ma‖22 . (2.22)

The vector d contains the data, g is the forward operator, and g(m) is the vector

of predicted data. The forward operator, generally, can be a nonlinear function of

the model parameter vector, m. ma is a vector of a priori model parameter values.

If m belongs to an unweighted space, and m̂ belongs to the analogous weighted

space, then the L2 norm is defined through the outer product of these spaces given

by

‖m‖22 = (m̂,m) = mtC−1m (2.23)

where C−1 is the inverse covariance matrix.

Writing out the cost function using the definition of the norm with data and model

inverse covariance matrices, we get
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2S(m) = (g(m)− d)∗C−1
D (g(m)− d)

+ (m−ma)
∗
C−1

M (m−ma) (2.24)

where ∗ is conjugate transpose in the case of complex vectors, or simply transpose for

real vectors.

This cost function has the statistical interpretation that both the predicted data,

g(m), and separately model parameters, m, are jointly Gaussian random variables

with means d and ma, respectively. The operators C−1
D and C−1

M assume their usual

meaning in probability. If the elements of the data vector or model vectors are in-

dependent, then the corresponding inverse covariance operator is a diagonal matrix,

with reciprocal variances given along the diagonals. Finding the set of model param-

eters that minimizes the cost function will give, at the same time, the most probable

set of model parameters for the data.

We write a linear forward operator as G, the transpose as G∗ and the adjoint as

G†. It can be shown that, [55],

G† = CMG∗C−1
D . (2.25)

In wave scattering problems, the forward operator is the Green’s function integral,

mapping contrasts to scattered fields at receivers. Its transpose, which maps scattered

fields at the receivers onto the object domain is, physically, a form of time reversal or

backprojection.

For the BIM, the vector m contains the pixel values of the contrasts; G is the

discretized Green’s function integral with constant object field. The forward model

is a linear function of model parameters and given by
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Gm = G1m1 +G2m2 +G3m3 . (2.26)

The cost function is

2S (m) = ‖G1m1 +G2m2 +G3m3 − d‖2D

+ Σ3
m=1‖mm −ma,m‖2M,m (2.27)

with

G1,2(·) = η1,2

∫

g(xr,x
′)(·)φs(x

′)dV ′ (2.28)

G3(·) =

∫

g(xr,x
′)∇′ · (·)∇′φs(x

′)dV ′ (2.29)

d = φ(xr)− φinc(xr) (2.30)

m1 = δκ(x) (2.31)

m2 = δα(x) (2.32)

m3 = δρ−1(x) (2.33)

η1 = k2o (2.34)

η2 =
ik2o
κoω

(2.35)

where xr is the position of receiver r, φs is the object field produced by a source s, and

the frequency is not indexed. The data vectors are indexed over source, frequency,

and receiver. The integral operators are linear and their transposes given by
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G∗
1,2(·) = η∗1,2φ

∗
s(x)

∫

g∗(xr,x)(·)dxr (2.36)

G∗
3(·) = −∇φ∗

s(x) · ∇
∫

g∗(xr,x)(·)dxr (2.37)

where ∗ on the right hand side represents complex conjugate. The integral over the

receiver location becomes a sum for receivers at discrete points.

The gradient vector for each contrast is given by

γ̂m = G∗
mC

−1
D r+C−1

M,m(mm −ma,m) (2.38)

where r = Gm− d is the residual vector. Because the operators are linear, they are

their own Frechet derivatives.

In this derivation, we assume the scattered field data are independent, so C−1
D is

diagonal. We further assume that the contrast functions are independent. However,

for an inversion where compressibility and density can be assumed to be linearly

related, it is easier to substitute one for the other in the forward operator than

enforce this condition through the covariance matrix spanning the three contrasts

(see example below).

The contrasts are updated with the steepest descent vector

γm = CM,mG
∗
mC

−1
D r+mm −ma,m (2.39)

= G†
mr+mm −ma,m (2.40)

which is a vector in the model space and G†
m = CM,mG

∗
mC

−1
D is the adjoint. The

adjoint maps the residual (a data vector), through the weighted spaces to the model
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space. When the same cost function is used with unweighted spaces, the gradient and

steepest descent vectors are equal and terminology often interchanged in the litera-

ture [46, 67]. Notice that the steepest descent is the aggregate of all backprojected

scattered field residuals; for additional discussion on this topic see [68].

2.4.3 Conjugate Gradient Updates

We use conjugate gradients to determine the contrasts which minimize the cost

function. The updates for the model parameter vector are given by

mmn = mm,n−1 − αnvmn (2.41)

vmn = γmn + βnvm,n−1 (2.42)

where n is the iteration number, mmn is the running model parameter vector for a

particular contrast, vn is the search direction, αn is the step length, and n is the

iteration number. The same step length is used for all contrasts at a given iteration.

The search direction is a linear combination of the steepest descent and the previous

search direction. The value of βn is chosen to ensure that the gradient and steepest

descent are conjugate in some sense [67]. We used the Polak-Ribiere step given by

βn =

3
∑

m=1

〈γ̂mn − γ̂mn−1,γmn〉
〈γ̂mn−1,γmn−1〉

=

3
∑

m=1

〈C−1
M,m

(

γmn − γmn−1

)

,γmn〉
〈C−1

M,mγmn−1,γmn−1〉
(2.43)

where <,> is a simple dot product. Choosing αn to minimize the cost function at

each step, it can be shown
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αn =
Σ3

m=1ℜ{(vmn,γmn)M,m}
‖Σ3

m=1Gmvmn‖2D + Σ3
m=1‖vmn‖2M,m

(2.44)

where ℜ is the real part, and (, )M,m represents the norm over the model space. The

step length αn is similar in form to the update parameter in [69]. In general, an

analytic expression for this parameter is possible when derived in this manner if the

cost function is a quadratic functional of linear operators.

2.4.4 Advantages of the Covariance-Based Cost Function

An attractive feature of the above cost function is that a complete linear system

is never constructed, which is also true for other gradient based methods [46, 41]; the

object contrast functions are simply updated. However, the use of a forward solver

in the overall inversion algorithm does require storing the object field.

The greatest advantage of a covariance-based cost function is that it provides nat-

ural regularization through the inverse covariance matrices which are chosen at the

beginning of the optimization and need not be changed. For example, if we know

that contrasts vary no more than 10%, and each contrast pixel is independent, the

covariance matrices are diagonal and choosing standard deviations of 0.2 is appropri-

ate. Also, experimental noise is readily included in the optimization. The Gaussian

interpretation of the data norm implies that the predicted data are corrupted by

Gaussian noise. For example, with coherent imaging systems, averaging many single

scene scattered field time traces is common to improve the signal to noise ratio. From

these traces, the first order statistics, mean and standard deviation, can be found.

These values are precisely the values used for d and the diagonal of C−1
D .

If C−1
M is diagonal and a constant, the second term in the cost function reduces to

Tikhonov regularization. Often in practice, when the Tikhonov tuning parameter is

used with unweighted spaces, its optimal value, which changes with the experimental

setup, must be determined by trial and error [44, 70, 67]. This is because the value of
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a single tuning parameter must replace the effects of all the elements of the matrices

C−1
M and C−1

D , which inherently adjust for each experimental setup and domain size.

While a tuning parameter could be added to this cost function, it only changes the a

priori variances of the contrasts, so is unnecessary. When dealing with large domains,

it is not practical to recompute a tuning parameter for every variation of problem

size and setup; the covariance-based cost function avoids just this.

Regularization by the model inverse covariance matrix can also be computationally

efficient. In cases of mostly uncorrelated contrast pixel values, the covariance matrix

is sparse. Furthermore, the full inverse is never computed; only the sparse system

CMm̂ = m must be solved. For the example in the following section, we solve

the preconditioned system Ct
MCMm̂ = Ct

Mm using a conjugate gradient method for

normal equations [71]. As the covariance matrix is symmetric, computing and storing

the transpose is unnecessary. An example of this procedure can also be found in [56].

Due to the problem size, it is difficult to determine in real time whether the

solution has been trapped in a local minimum. One way to avoid local minima is

to better constrain the problem with more measurements and use of the covariance

matrix. Another, but ad hoc, method is to limit the number of conjugate gradient

steps before updating the field with the forward solver. This effectively creates smaller

linearizations of the nonlinear problem.

2.4.5 Strictly Positive Model Parameters

Gaussian probability distributions are appropriate for contrasts taking both pos-

itive and negative values. However, compressive losses take strictly positive values

when the background loss goes to zero, so Gaussian distributions, while practical

and still useful in this context, are not technically correct. As addressed in [55], one

solution is to use the log-normal distribution. This is beyond the scope of this work,

but it is mentioned here for completeness.
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2.4.6 Comparison with the CSI Method

The Constrast Source Inversion Method (CSI) [69] has gained recent popularity

as an inversion method for biologic imaging [29], [72]. While the BIM and CSI share

many similarities, and, while both methods are generally effective, some key differ-

ences in algorithm structure are illuminated here. The CSI method simultaneously

minimizes functionals over the data and object equations by interleaving conjugate

gradient updates of the contrasts and fields. First, because complete minimization

of an object equation functional represents the solution to the forward problem, only

after which the fields satisfy the wave equation, the contrasts in the CSI are updated

with fields that are not wave fields. The BIM, on the other hand, by using a forward

solver, effectively completes the minimization of an object functional before minimiz-

ing the data functional, therefore uses a wave field satisfying the wave equation to

update the contrasts. Second, conjugate gradient iterations, in general, rely on the

fact that the functional space is constant in order to use the history of the updates for

that space to construct the Krylov subspaces out of which the solution is formed. By

changing the functional space at each iteration, the CSI states that it avoids local min-

ima [69], however, this is done at the expense of properly formed conjugate gradient

updates. Lastly, the terms of the CSI cost function are given arbitrary normaliza-

tions, and many types of regularization have been tested for the CSI cost function,

such as a total variation multiplicative constant. In the probabilistic interpretation

of the least squares problem, such normalizations affect the a priori variances of the

Gaussian distributions. Also, such multiplicative regularizers make the cost function

more nonlinear. Even partial use of a model inverse covariance matrix adds sufficient

regularization without increasing the nonlinearity of the cost function. Thus, the

BIM is the inversion method of choice for our problem because the data and object

equation constraints are fully enforced between steps, the conjugate gradient updates

are well defined, and the form of regularization has a simple physical interpretation.
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2.5 Results and Discussion

2.5.1 Series Solution Validation

The forward solver was validated in 2D against the analytic scattering solution

of a cylinder [52]. Many combinations of contrast, domain size, and gridding were

tested. A representative example is given.

Shown in Figs. 2.1 and 2.2, is the scattered field of a 6λ diameter cylinder with

compressive contrast of 5%. The domain size was 10λ × 10λ sampled at λ/10. The

source is a point source located at 180 degrees (the backscatter direction) and 8λ from

the origin, with unit amplitude and zero phase. The scattered field was computed

at a radius of 10λ for all angles. The norm of this object had a value of 0.11, and

7 terms were needed for convergence. The convergence criterion used was that the

mean pixel change for the field be less than 0.1% after adding an additional series

term.
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Figure 2.1: Magnitude of scattered field at receivers around 6λ cylinder with 5%
contrast. Dashed: analytical; dotted: series solution.

Fig. 2.3 is an example of the number of series terms for convergence vs operator

norm. The compressibility contrast of the cylinder was linearly stepped from 0-0.23.

Smoother objects permit higher peak contrasts to give the same values of the norm.

No more than 200 terms where summed.

The largest overall domain tested was 150λ× 150λ, with smoothly random objects

of peak contrasts ± 20%. Convergence is achieved usually with 20 terms. Generally,
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Figure 2.2: Phase of scattered field at receivers around 6λ cylinder. Dashed: analyti-
cal; dotted: series solution. The phase in the backscatter direction begins
to deteriorate.
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Figure 2.3: Number of series terms needed for convergence vs. operator norm. The
compressibility contrast of a 6λ cylinder was linearly stepped from 0 to
0.24, on a 10λ × 10λ domain.
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background loss, even as little as 1% imaginary to real part in the wavenumber, tends

to reduce the norm and speed convergence; similar effects are demonstrated in [47]

but for small domains.

2.5.2 Inverse Scattering Algorithm

The transmit waveform is a modulated Gaussian with the -10-dB frequency band

from 0.5-1.5 MHz. The background speed of sound is 1500 m/s, with smallest free

space wavelength, λmin, equal to 1mm. For Examples 1-5, there are 20 point sources,

with unit amplitude and zero phase, and 20 point receivers collocated with the sources,

as shown in Fig. 2.4. Twenty complex frequency samples are used for a total of 16000

data points. For Example 6, 256 sources and receivers were used with 20 frequencies.

The pixel size is 0.09λmin, equal to 90 microns. Synthetic scattered pressure field data

had magnitudes on the order of 1e-3 (Pa); the standard deviation for predicted data

used for all examples was 1e-5, which is approximately 1% Gaussian noise. Twelve

series terms were used for the forward solver. Eight conjugate gradient steps were

used when minimizing the cost function. The operator norm was computed for each

object at the highest transmit frequency before the inversion; the values are reported

below. No more than 3-5 inversion iterations were typically needed to recover the

contrasts with mean pixel error of 5% relative to the actual contrasts.
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Figure 2.4: Source/receiver setup. 8λ × 8λ domain.
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Storage requirements for the unknowns are O(N); storage requirements for the

object fields are O(NfNsN), where Nf, Ns, N are the number of frequencies, sources,

and unknown pixels, respectively. For 2D rectangular domains, the forward solver

requires O(NfNsNtNlogN) operations, where Nt are the number of terms required for

the Neumann series to converge. The total run time for the inversion of the 8λmin

× 8λmin domains was typically 5-15 minutes using 64-bit Matlab on a Linux desktop

with an Athlon 64 processor and 4 GB of RAM.

We used a Fourier-based compression scheme for the object fields and pre-computed

data equation Green’s functions. Spectral components with greater than 0.1% mag-

nitude of the maximum were stored and uncompressed when needed. This procedure

yielded at least a 100-fold decrease in required memory, with an increase in com-

putation time determined by the 2D FFTs used to compress and uncompress the

data.

Example 1, shown in Figs. 2.5 and 2.6, is the reconstruction of two cylinders 2λmin

in diameter with peak contrast 0.2 at different stages of the BIM. The background is

lossless and the operator norm is 0.31. A contrast standard deviation of 0.2 is used

uniformly. Similar results are obtained for cylinders of only density and only loss.

Because we use a diagonal inverse covariance matrix, low pass filter artifacts of the

type for Tikhonov regularization are apparent in the reconstruction.

Example 2, Figs. 2.7 and 2.8, demonstrate the resolution limits of the algorithm.

There are four sets of objects of 1, 4, 9, and 16 pixels wide equal to 90, 180, 270, and

360 microns, respectively. Compressibility only and a contrast of 0.2. Single objects

smaller than λmin/2 are detected, but a pair of objects are only distinguished when

they are separated by a distance around λmin/2. While small objects are detected,

their peak contrasts are not recovered.

Example 3, Figs. 2.9 and 2.10 is the reconstruction of a complex compressibility

profile with peak complex compressibility 0.2 + i0.02 for both cylinders. The back-
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Figure 2.5: a) Actual compressibility contrast. 2 cylinders each 2λmin in diameter.
Peak contrast 0.2, lossless background, operator norm 0.31. b) Retrieved
contrast with Born approximation. c) Retrieved contrast after 2 itera-
tions. d) Retrieved contrast after 3 iterations.
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Figure 2.6: Horizontal cut through lower cylinder. Solid: actual contrast; dashed:
recovered contrast after 3 iterations.
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Figure 2.7: a) Four sets of objects of 1, 4, 9, and 16 pixels equal to 90, 180, 270, and
360 micron widths. b) Compressibility contrast with 3 iterations.
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Figure 2.8: a) Horizontal cut through third row of objects. b) Horizontal cut through
fifth row of objects. Solid: actual contrast; dashed: recovered contrast
after 4 iterations.
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ground is lossless and a standard deviation of 0.2 and 0.04 is used for the real and

imaginary parts, respectively. The operator norm is 0.31. Note that the recovered

imaginary part is 25% of the actual value. The ambiguity in recovering the real

and imaginary parts of the complex compressibility result because 1) the inversion

must separate the scattered field contributions of the two contrast functions which

are summed in the integral equation; this is inherently ambiguous, 2) by adding a

second contrast we have doubled the number of unknowns for the same number of

data points, even though the optimization is still over-determined, and 3) because

the contribution to the scattered field of the imaginary part is an order of magnitude

smaller than the real part and the algorithm is not sensitive enough to recover it

without additional a priori information.

Example 4, Figs. 2.11 and 2.12, is the reconstruction of both compressibility and

density under the assumption that they are linearly related. The peak compressive

contrast is 0.2. The inversion is for compressibility only, with the assumed relation

δκ = 2.4δρ−1. Standard deviation of 0.2 used for all pixels, with an operator norm

0.36.

Example 5, Figs. 2.13 and 2.14, demonstrates use of the model covariance matrix

to improve image sharpness. The background and object pixels each correlated with

themselves. The peak contrast is 0.2 and a standard deviation of 0.3 used for all

pixels. A crosscorrelation coefficient of 0.004 used in both regions. The edges of the

cylinders in the reconstruction are more sharp than would be without the correlation.

Finally, Example 6, is the reconstruction of a 50λmin × 50λmin domain of random

compressibility with two inclusions and peak contrast ±0.08. A standard deviation of

0.2 used for all pixels and 5 iterations were used. Data from 80 sources, 80 receivers

were collocated at a radius of 45 λmin, shown in Figure 2.5.2, and 20 frequencies were

used for a total of 256,000 data points for 245,000 unknowns. Reconstructions are

shown in Figures 2.16 and 2.17. Overall features are recovered well.

33



λ
min

λ m
in

Compressibility Contrast
 

 

 

−4 −2 0 2 4

−4

−2

0

2

4 −0.05

0

0.05

0.1

0.15

0.2

(a)

λ
min

λ m
in

Recovered Re part
complex compressibility

 

 

−4 −2 0 2 4

−4

−2

0

2

4 −0.05

0

0.05

0.1

0.15

0.2

(b)

λ
min

λ m
in

Recovered Im part
 complex compressibility

 

 

−4 −2 0 2 4

−4

−2

0

2

4 −0.01

−0.005

0

0.005

0.01

0.015

0.02

(c)

Figure 2.9: a) Compressibility and loss. Peak complex compressibility 0.2 + i0.02 for
both cylinders. b) Real part of compressibility contrast after 3 iterations.
c) Imaginary part of compressibility contrast after 3 iterations
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Figure 2.10: a) Horizontal cut through lower cylinder of real part of compressibility
contrast. b) Horizontal cut through lower cylinder of imaginary part
of compressibility contrast. Solid: actual contrast; dashed: recovered
contrast after 3 iterations.
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Figure 2.11: a) Compressibility and density. Peak compressive contrast of 0.2. Loss-
less background, inversion for compressibility only, with assumed relation
δκ = 2.4δρ−1. b) Compressibility contrast after 3 iterations. c) Density
contrast after 3 iterations.
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Figure 2.12: a) Horizontal cut through lower cylinder of compressibility contrast. b)
Horizontal cut through lower cylinder of density contrast. Solid: actual
contrast; dashed: recovered contrast after 3 iterations.
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Figure 2.13: a) Compressibility only with background and object pixels each corre-
lated. b) Compressibility contrast after 5 Born iterations.
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Figure 2.14: Horizontal cut through lower cylinder. Solid: actual contrast; dashed:
recovered contrast after 5 iterations.
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Figure 2.15: Source/receiver setup. 50λ × 50λ domain.
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Figure 2.16: a) Domain is 50 λmin × 50 λmin. Compressibility only. Random distri-
bution with two inclusions and peak contrast ±0.08. b) Compressibility
contrast after 5 iterations.
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Figure 2.17: Horizontal cut at -6 λmin. Solid: actual contrast; dashed: recovered
contrast after 5 iterations. Low pass artifacts evident.
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The run time for the 50λmin × 50λmin object domain was 9 hours per Born iteration

using Matlab on a 64-bit Linux desktop with 4 Gb of RAM, which includes one run of

the forward solver and one cost function minimization. This is due to the nonlinear

increase in computation with the number of unknowns, as the gradient is a triple

nested loop over source, receiver and frequency, where the product of the number of

sources, receivers and frequencies scales with the unknowns. Note also that so far no

particular attempt has been made to optimize the code, or to run the code in a more

efficient language such as Fortran.

Extending the method to 3D only requires changing the form of the Green’s func-

tion; the structure of the inversion algorithm is the same. The storage scales as the

2D problem. The forward solver requires 3D FFTs, which still gives O(NlogN) for

the forward solver. Because the algorithm loops over source, receiver, and frequency,

where the product of these three quantities scale with the number of unknowns, the

computation for the algorithm scales nonlinearly with the number of unknowns.

2.6 Conclusion

In this chapter, we have presented an iterative inverse scattering method suit-

able for ultrasound breast imaging. The forward solver, inversion method, and cost

function were specifically selected for the size of the problem and expected range of

contrasts. The Neumann series as forward solver is well suited to simulate the scat-

tering of large, low contrast, inhomogeneous domains. Also, the covariance based cost

function has physically meaningful regularization which avoids trial and error when

determining a tuning parameter. Finally, Born iterations can retrieve the expected

material contrasts with high accuracy in few iterations; contrasts can be retrieved to

within 5% of the actual and resolution of at least λmin/2 and often better, is possible.

Also, we have included density variation in the formulation, and demonstrated object

retrieval when compressibility and density are linearly related.
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CHAPTER III

Electromagnetic Inverse Scattering Algorithm

3.1 Introduction

The microwave breast imaging problem is currently the application of many elec-

tromagnetic inverse scattering algorithms, such as the Contrast Source Inversion, and

Distorted Born Iterative Method. The goal is to image both the permittivity and con-

ductivity of the soft tissue. Evidence suggests that there is a quantitative difference

in the material parameters between benign and malignant tissue, which if imaged

might provided an addition diagnostic tool, though the degree of diagnostic potential

is still under investigation. Assuming the use of a coupling medium with a relative

permittivity of 30, the imaging domain at frequencies between 1-10 GHz is in the

tens of wavelengths in three dimensions. The size of the domain is large compared to

those tested by most inverse scattering algorithms. The goal is to choose the elements

of the inverse scattering algorithm to handle these larger domains.

The highest relative permittivity expected is that of water, which, with a back-

ground relative permittivity of 30, has a contrast of no more than 3:1. We choose

Born iterations as the inversion scheme as it has been shown capable of recovering

contrasts this high. Born iterations alternate estimates of the objects and object

fields by first estimating the object via the cost function assuming constant object

field, then use this object in the forward solver to update the field. The forward

39



solver we have chosen is the Neumann series solution. The series solution is applica-

ble for objects of low contrast (less than 1) or some loss. A contrast of 3:1 is normally

not valid, but we expect high conductive losses in the tissue. The series solution

is an O(NlogN) volumetric solver, good for large domains. We estimate objects by

minimizing a multi-variate covariance-based cost functional with conjugate gradients.

This procedure eliminates the need to build, store or solve a large matrix system be-

cause the functional is simply minimized, and natural regularization is provided by

inverse data and model covariance matrices. Tuning parameters are eliminated be-

cause the elements of the covariance matrices are provided by our a priori knowledge

of the experimental noise and range of contrasts. Solving a matrix system with tuning

regularization is not practical for this problem.

We have specifically chosen the elements of this inverse scattering algorithm to

handle large imaging domains. We have initially tested this algorithm in three di-

mensions for full-vector data and object fields on domains of several wavelengths and

retrieved objects of contrasts of 2:1 with half-wavelength resolution of the smallest

wavelength in the transmit spectrum.

3.2 Formulation

3.2.1 Volume Integral Equations

The electric field volume integral equation (VIE) for an inhomogeneous distribu-

tion of permittivity and conductivity is given by

E(r) = Einc(r) + k2o

∫

G(r, r′) ·
(

δǫ(r′) +
iδσ(r′)

ǫbω

)

E(r′)dV ′ (3.1)

where E(r) and Einc(r) are the total and incident fields, respectively, and r is the

position vector. The quantity k2o = ω2µoǫb is the lossless background wave number

and ǫb = ǫoǫrb is the background permittivity with relative permittivity ǫrb. The
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object contrast functions are defined

ǫbδǫ(r) = ǫ(r)− ǫb (3.2)

δσ(r) = σ(r)− σb (3.3)

where σb is the background conductivity. The quantity δǫ(r) is unitless and δσ(r) is

an absolute measure of conductivity with units of Siemens per meter and G(r, r′) is

the background dyadic Green’s function.

In free space, this is given by,

G(r, r′) =

[

I+
∇′∇′

k2

]

g(r, r′) (3.4)

where

g(r, r′) =
eikr

4πr
(3.5)

with r = |r− r′|. The background wave number, k, is given by

k2 = k2o

(

1 + i
σb
ǫbω

)

(3.6)

Defining the scattered field as

Esca(r) = E(r)− Einc(r) (3.7)

and restricting the observation point r to points outside the object region in Eqn.

(3.1), we can write the VIE for the scattered field concisely as

Esca(r) =

∫

G(r, r′) ·O(r′)E(r′)dV ′ (3.8)
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where we define the following object function

O(r) = k2o

(

δǫ(r) + i
δσ(r)

ǫbω

)

(3.9)

In the context of inverse scattering, Eqn. (3.1) represents the solution to the

wave equation in the object domain, while Eqn. (3.8) relates the material contrasts

to scattered field measurements taken outside the object domain. Depending on the

inversion algorithm, these two equations are used in combination to recover both the

contrasts and the total fields.

3.3 Born Iterative Method

The Born Iterative Method (BIM) and the related Distorted Born Iterative method

(DBIM) have been extensively studied in theory, [52, 73, 74, 51, 75]. In effect, the

BIM successively linearizes the nonlinear problem by alternating estimates of the

contrasts and the object fields according to the following algorithm:

1. Assume the object fields are the incident field (Born approximation).

2. Given the measured scattered field data, estimate the contrasts with the current

object fields by minimizing a suitable cost function.

3. Run the forward solver with current contrasts. Store the updated object field.

4. Repeat at step 2 until convergence.

3.3.1 Neumann Series for the Electromagnetic Forward Problem

The use of the forward solver in the BIM enforces the constraint that the object

fields satisfy the wave equation for the current object at each iteration. We will

continue the use of the Neumann series solution that was used for the acoustic problem

in the previous chapter. As mentioned then, the converge properties are better for
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lossy backgrounds. In the microwave breast imaging problem, we expect to use a

background coupling medium with some loss, see Chapter VII for an example. Writing

Eqn. 3.1 in operator form

E = Einc +G · E (3.10)

then the solution in terms of the formal inverse is

E = (I−G)−1E (3.11)

which for sufficiently operator norms ‖G‖ < 1 can be solved with the series

E =

N
∑

n=1

(G)nEinc (3.12)

The norm of the operator is given by

‖G‖ < k2o

∫ ∫

|G(x,x′)|2
∣

∣

∣

∣

δǫ(r′) +
iδσ(r′)

ǫbω

∣

∣

∣

∣

2

dV ′dV (3.13)

which can be computed efficiently using 3D FFTs and is a measure of correlation

between the object and the background dyadic Green’s function.

For example, the operator norm as a function of relative permittivity for a sphere

with a diameter of 1λ is given in Figure 3.1, where the relative permittivity is stepped

from 1 to 2.1. Convergence is achieved when the change in the magnitude of the field

solution is on average less than 1 percent by adding the next term. The behavior is

similar to the that in the acoustic problem.

3.3.2 Shanks Transformation

As shown previously, and also for the acoustic problem, the number of terms nec-

essary for convergence for objects which yield operator norms near 1 can be between
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Figure 3.1: Linearly stepped relative permittivity of 1λ diameter sphere from 1 to 2.1

50-200 terms, which can be computationally prohibitive. A method to accelerate

the convergence of a series which oscillates about the final solution is called Shanks

transformation [76]. This is a nonlinear transformation which, in effect, cancels the

oscillatory behavior of the series. Given a sequence of partial sums An the Shanks

transformation is given by

S(An) =
An+1An−1 − A2

n

An+1 − 2An + An−1
(3.14)

This transformation generally only requires the first six or seven partial sums and

can be applied in succession to achieve high order transformations for more rapid

convergence. This transformation is computed over fields of the partial sums of the

Neumann series point by point.

An example of the effect of the Shanks transformation on the field solution is

shown in Figure 3.2. Shown are real parts of the z-component of the scattered electric

field of a 1λ sphere. The relative permittivity of the background and sphere are 30

and 60 respectively. A dipole source is located 10λ to the right of the domain. The

background is lossless. The field in the horizontal plane for the Neumann series

terms {10, 11, 12}, and then 3rd order Shanks transformation for terms {4, 5, 6}

are shown. The field solution under the Neumann series oscillates, while that for the

Shanks transformation has already converged.
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Figure 3.2: Scattered field solution for different terms the Neumann series and Neu-
mann series with Shanks transformation of a 1λ sphere. Top row: Neu-
mann series partial sums {10, 11, 12}. Bottom row: Neumann series
partial sums with 3rd order Shanks transformation terms {4, 5, 6}.
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This transformation was retrospectively tested with success for the acoustic prob-

lem in 2D and 3D.

As an aside, for several years a few Applied Physics colleagues and I would meet

weekly in a group we called Applied Theory to discuss our work and mulch ideas.

My thanks to William Fisher who suggested trying the Shanks transformation on

the Neumann series after he ran across it buried in a math methods book. Also,

transformations like this one, I think, have several new applications in wave physics.

For instance, rapid computation of analytic scattering solutions, such as the Mie

solution, or accelerating perturbation series for random media.

3.3.3 Cost Function

The choice of the cost function is not trivial, because it and the form of regulariza-

tion often have more effect on the final image than the number of data points. Unlike

traditional formulations of the BIM, which build and solve a linear system of equa-

tions over a discretized Eqn. (3.8) to update the contrasts, we minimize a functional

over Eqn. (3.8) using the multi-variate covariance-based cost function of [55]. We use

this cost function for the same reasons it was used in the acoustic problem, 1) it has

the probabilistic interpretation that the model parameters and forward model predic-

tions are Gaussian random variables, for which inverse covariance operators provide

physically meaningful regularization, the parameters of which come directly from ex-

periment, avoiding the need for tuning parameters, 2) it gives a unified framework for

analytically deriving the transpose of the forward operator in weighted spaces, and

3) we can minimize this cost function with conjugate gradients avoiding the need to

build and solve a large linear system of equations. This cost function and its meaning

are described in more detail in [55] and Appendix D.1.1.

At each iteration when we estimate the contrast, we assume the object field is

constant. The scattered field integral with constant object field is then a linear
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operator acting on the contrast. With this in mind, we write the cost function as

2F (m) = ‖G1m1 +G2m2 − d‖2D +
∑

m=1,2

‖mm −ma,m‖2M,m (3.15)

where

[Gm]ji = cm

∫

Gj(xj,x
′) · (·)Ei(x

′)dV ′ (3.16)

[d]ji = Eji,sca (3.17)

m1 = δǫ(x) (3.18)

m2 = δσ(x) (3.19)

ma,1 = δǫa priori(x) (3.20)

ma,2 = δσa priori(x) (3.21)

c1 = k2o (3.22)

c2 = k2o
i

ǫbω
(3.23)

with frequency dependence understood. The quantities i and j index source and

receiver respectively. The vector xj is the location of the received scattered field, and

Ei(x
′) is the total field in the object domain due to the transmitter. The quantity G

is the forward operator, and G1m1+G2m2 is a vector of forward model predictions.

The quantity d is the data vector containing the measured scattered fields. The

vectors m1 and m2 contain the relative permittivity and conductivity contrast pixel

values, respectively, for a discretized domain. The vectors ma,1 andma,2 contain our a

priori knowledge of the contrast pixel values. We have assumed that the permittivity

and conductivity contrasts are independent so each has its own regularization term.

The vector norms are defined over the data and model spaces, respectively, through
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inverse covariance operators. See Appendix D.1.1.

The gradient vector and steepest descent vectors for the two model vectors are

also independent and given by

γ̂m = G∗
mC

−1
D r+C−1

M,m(mm −ma,m) (3.24)

γm = CM,mG
∗
mC

−1
D r+mm −ma,m (3.25)

for m = 1, 2, and where r = G(c1m1 + c2m2)− d, is the residual. The transpose of

the forward operator is similar for both object functions and for a single datum is

given by

G∗
mEji,sca = c∗mE

∗
i (x) ·G

∗
(x,xj) · Eji,sca (3.26)

where ∗ is simply the conjugate. The complete operation of the transpose is a sum

over its application to all the data, and can be thought of as a form of aggregate

backprojection, which maps data quantities onto the object domain. We note that

the transposes for the permittivity and conductivity only differ by a constant. See

Appendix D.2 for the derivation of the operator transpose.

The conjugate gradient updates of the model parameters are

mmn = mmn−1 − αnvmn (3.27)

vmn = γmn + βmnvmn−1 (3.28)

For βmn, we used the Polak-Ribiere step given by

βmn =
〈C−1

M,m

(

γmn − γmn−1

)

,γmn〉
〈C−1

M,mγmn−1,γmn−1〉
(3.29)
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where <,> is a simple dot product. Choosing αn to minimize the cost function at

each step, it can be shown that (see Appendix D.1.2),

αn =
ℜ{Σ2

m=1(vmn,γmn)M,m}
‖sn‖2D + Σ2

m=1‖vmn‖2M,m

(3.30)

where sn = G(c1v1n + c2v2n).

3.4 Numerical Examples

In this section we give several numerical examples of the performance of the elec-

tromagnetic inverse scattering algorithm on small imaging domains. These were done

simply to confirm the formulation as derived. We used the forward solver to compute

synthetic scattered field data which were used as measured scattered field data.

For the following examples, the imaging domain and source configuration are

shown in Figure 3.3. The we used 20 frequency points from 1-3 GHz. The background

relative permittivity is 30. There are 24 collocated source and receiver positions. The

sources are 3-vector Hertzian dipoles and the scattered field was measured in all three

Cartesian directions at the same points. We test a hemi-spherical source geometry to

mimic a source arrangement in a breast imaging setup, though the imaging domain

for now is only 2 λmin × 2 λmin × 2 λmin due to computation limits, where λmin

is the smallest free space wavelength in the transmit spectrum. The domain was

sampled at λmin/10 = 1.7 mm. In the cost function, we gave the data 1% Gaussian

noise, and restricted the permittivity and conductivity contrasts to within ± 10 of

the background. These values were chosen at the outset for use in the data and model

inverse covariance matrices and were not changed during the inversion.

Example 1 : Shown in Figure 3.4 are the reconstructions of a single 1λ diameter

sphere with a relative permittivity of 33, which is a 10% contrast. We have also

made the imaginary part of the background wave number 1 percent that of the real

49



Figure 3.3: Transmit pulse, transmit spectrum and source configuration to test the
electromagnetic inverse scattering algorithm.

part. The object shape and permittivity contrast are well recovered after only 2 BIM

iterations.

Example 2 : Shown in Figure 3.5 are the reconstructions of a single λ/6 diameter

sphere with a relative permittivity of 60, which is a 100% contrast. Same background

as Example 1. The object shape and permittivity contrast are well recovered.

Example 3 : Shown in Figure 3.6 are the reconstructions of a single λ diameter

sphere with a conductivity of 1 Siemens/m, which is a 100% contrast. Same back-

ground as Example 1. The object shape and conductivity are well recovered.

Example 4 : Shown in Figure 3.7 are the reconstructions of two λ/2 diameter

spheres with relative permittivities of 60. The object shape and location are well

recovered, but the contrast is very underestimated. This is the result of the small

size of the object and the form of regularization we have used.

Example 5 : Shown in Figure 3.8 are the reconstructions of two λ/2 diameter
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Figure 3.4: Reconstructed object for Example 1 after 2 BIM iterations. Actual object
shown at right.

Figure 3.5: Reconstructed object for Example 2 after 3 BIM iterations. Actual object
shown at right.
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Figure 3.6: Reconstructed object for Example 3 after 3 BIM iterations. Actual object
shown at right.

Figure 3.7: Reconstructed object for Example 4 after 3 BIM iterations. Actual object
shown at top.
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spheres each with a relative permittivity and conductivity of 45 and 0.5 Siemens/m,

respectively. The object shape and locations are found, but the conductivity is very

underestimated (the scale is reduced by factor of 5). This begins to show the inherent

ambiguity of simultaneous retrieval of both relative permittivity and conductivity in

the inverse scattering problem.

Figure 3.8: Reconstructed object for Example 5 after 3 BIM iterations. Actual ob-
jects shown at right.

Example 6 : Shown in Figure 3.9 are the reconstructions of two λ/2 diameter

spheres one with a relative permittivity of 45 the other with a conductivity of 0.5

Siemens/m. The permittivity is shape and locations is similar to that in the previous

example, but the conductivity is very underestimated (the scale is reduced by factor of

10) and shows two objects. This very clearly demonstrates ambiguity in the retrieval

of both relative permittivity and conductivity.

Example 7 : Shown in Figure 3.10 are the reconstructions of a random distribution

of relative permittivity with values from 15-45. The image is a blurred version of the

53



Figure 3.9: Reconstructed object for Example 6 after 3 BIM iterations. Actual ob-
jects shown at right.

actual, but even small permittivity fluctuations are recovered.

Example 8 : Finally, we demonstrate the effect of the source geometry on the re-

constructions. We arrange a similar number of sources in a cylindrical geometry. The

object is the same sphere from Example 1. The source geometry and reconstructions

are shown in Figure ??. The recovered sphere is elongated in the z-direction.

3.5 Conclusion

In this chapter, we have derived and numerically demonstrated a new version

of the electromagnetic inverse scattering algorithm. The key features are the use of

the Neumann series and Shanks transformation for the forward solver, the covariance-

based cost function for which we could set the regularization parameters at the outset,

and conjugate gradient minimization to avoid storing a large system of equations and
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Figure 3.10: Exploded view of reconstructed object for Example 7 after 3 BIM iter-
ations. Actual objects shown at right.

Figure 3.11: Source geometry and reconstructed object for Example 8. Cylindrical
arrangement of sources elongates the recovered object in the z-direction.
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solving them by matrix inversion.

The examples given were meant to be small to allow quick study of the algorithm.

These showed 1) that the algorithm was derived correctly, 2) reconstructions of only

relative permittivity or conductivity for solid or random distributions is quite good,

and 3) there is inherent ambiguity in the simultaneous retrieval of both permittivity

and conductivity, which corroborates the findings of the acoustic inverse scattering

problem. Although the imaging domains were small, provided the number of data

remains commensurate with the number of unknowns, the size of the domain can be

increased without altering the algorithm.

3.6 The Missing Link

The next step is to test both the acoustic and electromagnetic inverse scattering

algorithms in experiment. This requires us to calibrate an experimental measurement

system by characterizing the sources. We must do this for two main reasons. First,

inversion algorithms must have the actual incident field throughout the object domain.

In simulation our knowledge of the incident field is essentially perfect, but determining

it in experiment is not trivial. The incident field is required for the forward solver, the

initial guess of the BIM, and, as will be shown in Chapter V, the scattered field volume

integral. Second, the measurements in the acoustic and electromagnetic algorithms

are field quantities, either pressure fields or electric fields. This is the traditional

treatment in the area of theoretical inverse scattering. However, field measurements

present a hurtle when taking these algorithms to experiment. That is because no one,

in the history of physics, has ever measured a field quantity directly. We measure

forces, and the force of an electric field on an electron is a voltage. For acoustics, we

relate the pressure fields to voltages at the output of piezoelectric devices. Thus, there

is a missing link between the algorithms as we derive them and the measurements

as we take them and this issue is seemingly absent from the majority of inverse
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scattering literature. Finding this link, in order to perform meaningful experiments,

is the subject of the next few chapters.

57



CHAPTER IV

Antenna and Propagation Model for S-parameter

Measurements

4.1 Introduction

In this chapter, we focus our attention on modeling the fields radiated from an

antenna and linking the fields to measurement quantities. Specifically, we show how to

obtain the antenna model parameters with simulation, and we derive a propagation

model predicting the S-parameter measurements between to antennas. While this

discussion and that for the next few chapters is in the context of microwaves, almost

any treatment in electromagnetics can be reworked for acoustics.

Two-way propagation models are useful in a variety of microwave communication

and measurements scenarios [77, 78, 79, 80]. While antenna radiation patterns and

gain might accurately model long range measurements, these are not always conve-

nient to use in full-wave scattering experiments where targets can occupy a large field

of view and spatial field distributions are needed. Inverse scattering methods, such

as those presented in Chapters II and III, use free-space radiated field distributions

as the starting point for iterative algorithms. Also, in the case of receivers, measured

output voltages are angle dependent weighted sums of all incoming fields. If we want

to predict the output voltage due to incoming fields from many directions, then doing
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so, for instance, by integrating over the antenna current distributions [81, 82] can be

difficult. Furthermore, S-parameters, which are voltage ratios, are an accurate and

often available measurement. Thus, a compact way is needed to relate the spatial

distributions of fields radiated and received by antennas to the S-parameters that

would be measured between them.

The source-scattering matrix formulation in [83, 84, 85, 86] provides the framework

for our S-parameter and propagation model. Specifically, the source-scattering for-

mulation relates modes on a feeding transmission line to the multipole fields radiated

and received by an antenna. It assumes the antenna response is linear and captures

the effect through a set of model parameters called transmit and receive coefficients.

Because the source-scattering formulation is based on the multipole expansion, the

fields radiated or received by different antennas in different reference frames are easily

related through the use the addition theorems for vector wave functions [52]. Finally,

when considering the modes on the feeding transmission line of multiple antennas

radiating and receiving in the presence of each other, we can relate the transmit co-

efficients of each antenna to S-parameter measurements between them. This forms

the basis of our derivation.

Accurately determining the transmit coefficients of an antenna is vital to their

use in the propagation model and spatially computing radiated fields. Similar to

[83], the approach in [87] uses multipole fields to study antenna interactions, in this

case the mutual impedances between multiple stationary antennas. However, in both

[83] and [87], the transmit coefficients or multipole coefficients are assumed known or

found analytically for simple antennas. These transmit coefficients are also the same

as those sought in near-field antenna measurements systems [85]. Near-field antenna

systems require precise positioning, sophisticated probe calibration, and are generally

expensive ventures. Instead of using a near-field measurement system or analytic

methods, we use simulation to approximately determine the transmit coefficients. For
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instance, if a CAD model accurately represents the physical structure of an antenna,

the fields computed in simulation serve as estimates of probeless field measurements.

These simulated fields can then be used to invert the antenna model for the transmit

coefficients. We demonstrate this procedure below as an effective use of simulation

in place of expensive measurements.

A method to account for the mutual coupling of antennas based on the source-

scattering matrix has been developed in theory [86]. Even though we do not consider

the multiple scattering between antennas here, we show how to include single-path T-

matrix scattering of near-by objects in the propagation model. T-matrices are readily

included because they are derived with the same multipole fields as those used in the

propagation model [52].

We validate both the propagation model and the inclusion of T-matrix scattering

with several experiments using the apertures of two probe-fed waveguides as the

antennas. The experiments were done between 4-6 GHz. We show that the magnitude

of the predicted S-parameters between the two waveguides matches measurements to

better than 2 dB, in most cases, and the phase is better than 10 degrees. This means

the model is accurate to λ/10 (i.e. 36 degrees), which is a common metric for many

microwave systems.

This model shows promise for use in a range of laboratory-scale experiments.

First, because the antenna model parameters can be estimated with simulation, ac-

cess to a near-field antenna range is not required to characterize an antenna. Also,

the S-parameters predicted by the model are the same as those measured by a vector

network analyzer. These two features allow fast development of small-scale scattering

and propagation experiments, as well as full antenna characterization. Specifically,

this model can be used for the first time to experimentally validate N-scatterer T-

matrix solutions, [88], and is a starting point in order to model the multiple scattering

of antennas in near-field setups if the antenna T-matrices are known. It can also be
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used for diagnostics in multi-antenna setups. Finally, because the antenna character-

ization is directly related to field measurements, it can be used to implement inverse

scattering algorithms.

As a note, we use the vector wave function conventions of [52]; therefore, the

normalization constants in the following derivations differ slightly from [83, 84, 87, 85].

4.2 Antenna Model

4.2.1 Electric Field Expansion

Let the total electric and magnetic fields around an antenna be expressed by the

multipole expansion

E(r) =
∑

lm

[almMlm(r) + blmNlm(r) + clmℜMlm(r) + dlmℜNlm(r)] (4.1)

H(r) =
k

iωµ

∑

lm

[almNlm(r) + blmMlm(r)clmℜNlm(r) + dlmℜMlm(r)] (4.2)

where r is the position vector, k is the wavenumber of the medium, ω is the operating

frequency in radians, and µ is the background permeability. Mlm(r) and Nlm(r) are

the free-space vector wave functions, and ℜ means the regular part of the correspond-

ing spherical Bessel function. The conventions for vector wave functions follow [52],

which are also given in Appendix B.1.1. The quantities alm and blm are the expan-

sion coefficients for outgoing waves, and clm and dlm are the coefficients for incoming

waves. The number of harmonics needed to represent a field produced by an antenna

is O(kd), where d is the largest dimension of the antenna.
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4.2.2 Antenna Model

We model the full antenna response following the source-scattering matrix formu-

lation [83, 84, 85]. The antenna is connected to a shielded transmission line, show in

Figure 4.1, where ao and bo are complex outgoing and incoming modes, respectively,

on the transmission line. We relate the modes on the transmission line to the electric

field expansion coefficients through a linear model

bo = aoΓ +
∑

lm

(

u(c)lmclm + u(d)lmdlm
)

(4.3)

alm = t(a)lmao +
∑

l′m′

(

S(ac)lm,l′m′cl′m′ + S(ad)lm,l′m′dl′m′

)

(4.4)

blm = t(b)lmao +
∑

l′m′

(

S(bc)lm,l′m′cl′m′ + S(bd)lm,l′m′dl′m′

)

(4.5)

where Γ is the reflection coefficient looking into the antenna. The quantities u(c)lm and

u(d)lm are receive coefficients which convert incoming field harmonics to bo. Similarly,

t(a)lm and t(b)lm are transmit coefficients which convert ao to outgoing field harmonics.

The terms S(xy)lm,l′m′ capture the passive scattering properties of the antenna, similar

to a T-matrix. An in depth explanation of this model is found in [83].

The antenna model can be written in matrix notation as

bo = aoΓ +

[

ut
c ut

d

]







c

d






(4.6)







a

b






= ao







ta

tb






+







Sac Sad

Sbc Sbd













c

d






(4.7)
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Figure 4.1: Antenna and transmission line setup. ao and bo are outgoing and incoming
modes on the transmission line, respectively.

4.2.3 Reciprocity Relations

Assuming the antennas are reciprocal, we can establish the following relations

between transmit and receive coefficients and between the scattering matrices by

evoking the reciprocity theorem for electromagnetics. Following the steps in [83] and

[85], with our convention for vector wave functions, see Appendix B.1.1, we arrive at

the following reciprocity relations:

u(c)lm =
Zo

2kωµ
l(l + 1)(−1)mt(a)l,−m (4.8)

u(d)lm =
Zo

2kωµ
l(l + 1)(−1)mt(b)l,−m (4.9)

S(ac)l′m′,lm = clm,l′m′S(ac)l−m,l′−m′ (4.10)

S(bc)l′m′,lm = clm,l′m′S(ad)l−m,l′−m′ (4.11)

S(ad)l′m′,lm = clm,l′m′S(bc)l−m,l′−m′ (4.12)

S(bd)l′m′,lm = clm,l′m′S(bd)l−m,l′−m′ (4.13)

clm,l′m′ =
l(l + 1)

l′(l′ + 1)
(−1)m+m′

(4.14)
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where Zo is the characteristic impedance of the feeding transmission line. The index-

dependent multiplying factor in Eqn. (4.14) differs from [83] because the spherical

harmonics in the vector wave functions we use are not fully normalized.

Equation (4.8) relates transmit and receive coefficients on theMlm field harmonics,

while Eqn. (4.9) relates transmit and receive coefficients on the Nlm field harmonics.

No cross terms and no mixing between u(c,d)lm and t(a,b)lm indicates that Mlm and

Nlm harmonics are transmitted and received independently.

4.3 Two Antenna Propagation Model

4.3.1 Two Fixed Antennas

Having established the antenna model, we now derive an expression for the S-

parameter, S21, that would be measured between two antennas. Let two antennas

be separated by some distance in free space, shown in Figure 4.2. One antenna

transmits in reference frame i and the other receives in reference frame j. Each

antenna has its own field expansion and set of transmit coefficients, indexed with i

and j, respectively. In the following derivation, unprimed indices, lm, index sums in

the transmitter frame, while primed indices, l′m′, index sums in the receiver frame.

We make the following assumptions,

1. There are no incoming waves in the transmitter frame (i.e., cilm = dilm = 0).

2. The receiver is purely receiving (i.e., the receiver transmission line is matched

looking into its source, or ajo = 0).

3. There is no multiple scattering between the two antennas or between the an-

tennas and other objects (i.e., S(xy)lm,l′m′ = 0).

Applying the assumptions for the transmitting antenna to Eqns. (4.1), (4.4), and

(4.5), we can write the total electric field in the frame of the transmitter as a purely
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Figure 4.2: Two antenna setup in free space. The transmitting antenna is in frame i
and the receiving antenna is in frame j.

radiating wave

E(ri) =
∑

lm

[

ailmMlm(ri) + bilmNlm(ri)
]

(4.15)

with outgoing field coefficients

ailm = ti(a)lma
i
o (4.16a)

bilm = ti(b)lma
i
o (4.16b)

Applying the assumptions for the receiving antenna to Eqns. (4.1), and (4.3), we

can write the incoming field in the receiver frame as

E(rj) =
∑

l′m′

[

cjl′m′ℜMl′m′(rj) + djl′m′ℜNl′m′(rj)
]

(4.17)

where the incoming mode on the receiver transmission line is
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bjo =
∑

l′m′

(

uj(c)l′m′c
j
l′m′ + uj(d)l′m′d

j
l′m′

)

(4.18)

Next, we expand the outgoing fields from frame i as incoming fields in frame j using

the translation addition theorem for vector spherical harmonics [52], see Appendix

B.1.2. The field coefficients in each frame are related by

cjl′m′ =
∑

lm

(

Aji
l′m′,lma

i
lm +Bji

l′m′,lmb
i
lm

)

(4.19a)

djl′m′ =
∑

lm

(

Bji
l′m′,lma

i
lm + Aji

l′m′,lmb
i
lm

)

(4.19b)

where Aji
l′m′,lm andBji

l′m′,lm are the translation matrices with spherical Hankel functions

for the radial part. We use (·)ji to indicate that the translation matrices are evaluated

with the vector that points from the origin of frame i to that of frame j.

Substituting (4.16) into (4.19), then (4.19) into (4.18) we have

bjo = aio
∑

l′m′

[

uj(c)l′m′

∑

lm

(

Aji
l′m′,lmt

i
(a)lm +Bji

l′m′,lmt
i
(b)lm

)

+ uj(d)l′m′

∑

lm

(

Bji
l′m′,lmt

i
(a)lm + Aji

l′m′,lmt
i
(b)lm

)]

(4.20)

Defining the reciprocity constant as cr =
Zo

2kωµ
and the normalization index nlm =

l(l+1)(−1)m, we use the reciprocity relations in Eqns. (4.8) and (4.9) to replace the

receive coefficients of the receiving antenna with its transmit coefficients,
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bjo = aio
∑

l′m′ crnl′m′

[

tj(a)l′,−m′

∑

lm

(

Aji
l′m′,lmt

i
(a)lm +Bji

l′m′,lmt
i
(b)lm

)

+ tj(b)l′,−m′

∑

lm

(

Bji
l′m′,lmt

i
(a)lm + Aji

l′m′,lmt
i
(b)lm

)]

(4.21)

Taking −m′ → m′, only Aji
l′m′,lm and Bji

l′m′,lm are affected, because the sums com-

mute and the normalization is unaffected. This gives:

bjo = aio
∑

l′m′ crnl′m′ ·
[

tj(a)l′,m′

∑

lm

(

Aji
l′,−m′,lmt

i
(a)lm +Bji

l′,−m′,lmt
i
(b)lm

)

+ tj(b)l′,m′

∑

lm

(

Bji
l′,−m′,lmt

i
(a)lm + Aji

l′,−m′,lmt
i
(b)lm

)]

(4.22)

Finally, thinking of the two antennas as the ports of a two-port network, together

with the conditions above (matched receiver), we can identify the S-parameter, Sji =

bjo/a
i
o,

Sji =
∑

l′m′ crnl′m′ ·
[

tj(a)l′,m′

∑

lm

(

Aji
l′,−m′,lmt

i
(a)lm +Bji

l′,−m′,lmt
i
(b)lm

)

+ tj(b)l′,m′

∑

lm

(

Bji
l′,−m′,lmt

i
(a)lm + Aji

l′,−m′,lmt
i
(b)lm

)]

(4.23)

So we have formally related the transmit coefficients of each antenna to S-parameter

measurements between them. This was possible because we began with an antenna

model relating the field harmonics to the modes on the feeding transmission line. It

can be shown (see Appendix B.2) that Eqn. (4.23) is reciprocal, that is Sji = Sij .

The notation, Sji, can be read similarly to its use for multi-port networks, where this

is the S-parameter measured by a receiver in frame j due to a transmitter in frame i.
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Having demonstrated the basic derivation of the model, we will adopt matrix

notation for the remainder of the chapter. We use the indexing convention in [89].

For sums up to order L for all m, there are L2 + 2L harmonics. The matrix index of

the lm harmonic is l2 + l +m. Rewriting the propagation model, we have

Sji =

[

(tja)
t (tjb)

t

]







N 0

0 N













A′
ji B′

ji

B′
ji A′

ji













tia

tib






(4.24)

where t denotes the transpose, [N ]lm,lm = crnlm is a diagonal matrix of normalization

indices, and matrix prime, ′, denotes evaluating the row indices of the matrix at

m′ → −m′.

4.3.2 Two Rotated Antennas

Equation (4.24) can be generalized for antennas which are rotated in their frames.

Assume, as before, that there are no additional sources and that there is no multiple

scattering. Let the transmitting antenna be initially centered in the unrotated frame

i. The antenna is then rotated to a frame, i′, where the rotation is described by

its three Euler angles about the origin of i. The antenna transmits, as before, with

transmit coefficients tia and tib, but now produces outgoing field coefficients in the

rotated frame, a′ and b′, given by







a′

b′






= aio







tia

tib






(4.25)

Let the outgoing field coefficients in the unrotated frame be a and b. These

are related to Eqn. (4.25) through the rotation addition theorem for vector wave

functions [90, 91, 92] (see also Appendix B.1.3):
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





a

b






=







D∗
i 0

0 D∗
i













a′

b′






(4.26)

where Di is the rotation matrix describing the rotation from i to i′ and ∗ is conjugate

transpose. Next, using the translation relations we expand Eqn. (4.26) as incoming

harmonics in the unrotated receiver frame







c

d






=







Aji Bji

Bji Aji













a

b






(4.27)

Let the receiver be initially unrotated in frame j with receive coefficients uj
c and

u
j
d. We then rotate it to a frame j′. From the rotation addition theorem, the incoming

field coefficients in the rotated receiver frame, c′ and d′, are given by







c′

d′






=







Dj 0

0 Dj













c

d






(4.28)

where Dj describes the rotation from j to j′. The incoming mode on the receiver

transmission line is now

bjo =

[

(uj
c)

t (uj
d)

t

]







c′

d′






(4.29)

Substituting (4.25)-(4.28) into (4.29) we have

bjo = aio

[

(uj
c)

t (uj
d)

t

]

·







Dj 0

0 Dj













Aji Bji

Bji Aji













D∗
i 0

0 D∗
i













tia

tib






(4.30)

Dividing by aio, applying the reciprocity relations, and multiplying the matrices,

we have
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Sji =

[

(tja)
t (tjb)

t

]







A1 A2

A3 A4













tia

tib






(4.31)

where

A1 = A4 = ND′
jAjiD

∗
i (4.32)

A2 = A3 = ND′
jBjiD

∗
i (4.33)

We are using the i and j indices of Di and Dj to implicitly index rotations in a

particular frame. If the antennas are not rotated, Di = Dj = I, the matrix prime

moves to the translation matrices and this reduces to the propagation model for two

fixed antennas. Equation (4.31) is also reciprocal (see Appendix B.2).

4.3.3 Required Number of Transmit Coefficients

The transmit coefficients represent the excitation-independent multipole expan-

sion of the field radiated by the antenna. Hence, as stated previously, the number

of harmonics needed to represent the antenna field is roughly O(kd) where d is the

largest dimension of the antenna and k is the operating at wave number. Compu-

tationally, we must always truncate the expansion, but should do so only after this

condition is met.

4.3.4 Coordinate Origins

The placement of an antenna in its reference frame is arbitrary but affects the

number of expansion coefficients needed to model the fields. Consider an infinitesimal

dipole placed precisely at the origin. Only the l = 1 harmonics are needed to represent

this source. If, however, the dipole is moved off the origin, then all harmonics are
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needed out to O(kd), because, even though the dipole is a concentrated source, the

source region now has dimension d relative to the origin. Thus, in order to limit the

number of expansion harmonics, the origin of the antenna frame and the antenna

itself should be as coincident as possible.

Furthermore, the fact that the transmit coefficients are independent of the exci-

tation means that there are no additional requirements on the positions of the frame

origins relative to the antennas. For instance, the origins need not be placed at the

phase centers of the antennas. The transmit coefficients also capture all internal

propagation effects from the transmission line reference plane to the radiating fields.

For instance, if the physical antenna were connected through a long rigid coax cable,

then the phase delay arising from the cable length is accounted for in the transmit

coefficients. All that matters is that the transmission line reference plane and the

antenna coordinate origin be consistent for a particular set of transmit coefficients.

4.4 Scattering Objects

4.4.1 Single-Path Object Scattering

If an object is present, with a known T-matrix, then we can easily include single-

path scattering in the propagation model. The scattered field coefficients in the frame

of the scatterer are given by







as

bs






=







TMM
s TMN

s

TNM
s TNN

s













cs

ds






(4.34)

where as and bs, and also cs and ds are the scattered and incident field coefficients, re-

spectively. The matrices Txy
s are T-matrix blocks relating the corresponding incident

and scattered field wave harmonics. Assuming the scatterer and antenna reference

frames are parallel, we can account for the incident and single-path scattered field in
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the antenna model by making the following substitution for the translation matrices







Aji Bji

Bji Aji






→







Aji Bji

Bji Aji






+







Ajs Bjs

Bjs Ajs













TMM
s TMN

s

TNM
s TNN

s













Asi Bsi

Bsi Asi







(4.35)

where Asi and Bsi translate fields from the frame of the transmitter to the frame

of the scatterer, and Ajs and Bjs translate fields from the scatterer to the receiver.

If the scatterer is rotated, then this too can be accounted for by including rotation

matrices on both sides of the T-matrix. Notice that for any combination of single-

path scattering, the form of Eqn. (4.31) will not change; transmit coefficients will

multiply the outside of a 2x2 block matrix containing some linear combination of

rotation and translation matrices.

Like the fields from an antenna, the required number of harmonics needed to

accurately represent the scattered field from an object is O(kd), where d is the largest

dimension of the scatterer. Furthermore, the A and B translation matrices need not

be square should the scatterer and antenna transmit coefficients require a different

number of harmonics.

4.4.2 Multiple Scattering of Antennas and Objects

Modeling the mutual coupling of the antennas using the source-scattering formu-

lation has been addressed in theory [86]. For our model, however, the assumptions

used to derive Eqns. (4.24), (4.31), and (4.35) limit the validity of these expressions

to situations where single-path scattering and propagation between two antennas or

between an antenna and an object are reasonable. Even still, the propagation model

is readily applicable to full-wave T-matrix methods.

If the incoming field coefficients in Eqns. (4.4) and (4.5) represent the incident
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field and we replace the source-scattering matrices in the same equations with the T-

matrices of the antennas, then we can account for all multiple scattering between the

antennas and objects by finding the N-scatterer solution. T-matrix solution methods

abound, some examples are [52, 93, 88, 94]. These usually begin with the object

T-matrices in isolation, and yield the object T-matrices in the presence of all other

scatterers. Demonstrating this application is beyond the scope of this chapter, but is

the next step in extending this model to account for all multiple scattering between

antennas and objects.

4.5 Determining Transmit Coefficients from Simulation

The transmit coefficients, ta and tb, are also those sought in near-field antenna

measurements [85]. In near-field systems, the coefficients are determined directly by

performing the inverse Fourier transform over densely sampled spherical measure-

ments. While the coefficients are in principle determined exactly, near-field antenna

characterization requires precise position alignment and probe calibration.

In the absence of a near-field measurement system, one can determine the transmit

coefficients approximately from simulation. In simulation we can directly sample

the electric field radiated by an antenna. Provided an antenna’s numerical CAD

model and physical construction are nearly the same, we can substitute actual field

measurements (which are never possible) with simulated field measurements. We can

then estimate the transmit coefficients by setting up an inverse problem to simply

invert the expression for the electric field given in Eqn. (4.1).

Let a single antenna be purely radiating (a = aota and b = aotb). In simulation,

we compute the electric field at points rn, where n indexes spatial samples. Writing

Eqn. (4.1) in matrix notation for a single point
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E(rn) = ao

[

M(rn) N(rn)

]







ta

tb






(4.36)

We can write this as a linear system over all measurements

b = Ax (4.37)

with

x =







ta

tb






(4.38)

[b]n = E(rn)/ao (4.39)

[A]n =

[

M(rn) N(rn)

]

(4.40)

where the electric field vector components are stacked row-wise in b and A, and the

lm harmonic index is column-wise for A. The field measurements are normalized

by the outgoing mode on the transmission line, indicating again that the transmit

coefficients are independent of the excitation.

We determine x, and thus the transmit coefficients, by solving the normal equa-

tions of Eqn. (4.37) with Tikhonov regularization.

x = (A∗A+ γI)A∗b (4.41)

were ∗ is conjugate transpose and I is the identity matrix.

The number of harmonics needed to represent the antenna field dictates the num-

ber of unknowns in the inverse problem. For expansions out to l = L, the total

number of complex unknowns is 2(L2 + 2L). At least this many complex numeric
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field measurements are required to make Eqn. (4.37) overdetermined. Furthermore,

these measurements should sample all three components of the field in order to better

constrain the problem and yield better estimates for the transmit coefficients.

Because we are determining the transmit coefficients through an inversion pro-

cedure, also know as parameter estimation or fitting, we are finding the transmit

coefficients of an equivalent source, not the actual source. In general, fitting prob-

lems can only be expected to make accurate model predictions in the vicinity of the

measurements used for inversion. Antenna problems have the beneficial property

that, once an observer is in the far-field, there is no new information about the field

at further distances from the antenna. Thus, if the field in Eqn. (4.36) is computed

in the far-field of the antenna, we can expect field points beyond those to be reason-

ably well predicted. We cannot say the same for points in the near-field for the same

situation. Furthermore, due to the nature of the multipole expansion, we cannot use

field measurements within the dimension d to find the transmit coefficients. So, if

we want the transmit coefficients to produce accurate fields in the near-field, then we

must use field samples in the near-field but outside d.

4.6 Experimental Validation

To validate Eqn. (4.31) experimentally, we constructed two, hollow, probe-fed

brass waveguides to be the antennas. These structures were chosen with the rationale

that they could be accurately simulated in Ansoft HFSS. The waveguide body and

aperture are the radiating objects we wish to test.

The reason for the use of HFSS is two fold, 1) we need a full-wave simulation

to provide numeric field measurements to invert Eqn. (4.36), 2) HFSS can easily

model the transmission line feeding the physical waveguide so that we can match the

S-parameter reference planes used in simulation to those used by the vector network

analyzer (VNA) in measurement.
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The waveguides were designed with WR-187 specifications to operate between

3.95-5.85 GHz. The probes feeding the waveguides were SMA female flange mount

connectors with an extended dielectric. The positions of the probes were optimized

in HFSS for best matching at 5 GHz. After construction, we carefully measured the

waveguide dimensions and used these dimensions for field simulations. The CAD

model is shown in Figure 4.3. The HFSS transmission line feeding the waveguide had

the same inner dimensions and dielectric constant as the SMA probe. This line was

de-embedded to the same reference plane of the physical waveguide that would be

used by the VNA. The coordinate origin for the antenna reference frame to be used in

the propagation model was placed at the center of the waveguide aperture, as shown

in Figure 4.3.

Figure 4.3: HFSS CAD model of probe-fed rectangular waveguide used to determine
the transmit coefficients. The coordinate origin for the reference frame
of the antenna is the center of the aperture. The de-embedded reference
plane for the feeding transmission line is approximately half way up the
extruding stalk to match the physical location of the VNA measurement
reference plane.

The value of S11 of each physical waveguide was measured and compared with

simulation, as shown in Figure 4.4. Away from resonance, these were accurate to

within 5 degrees of phase, and near resonance these were within 20 degrees, confirming

that the CAD model was accurate.

Returning to simulation, we sampled the simulated fields radiated by the aperture
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Figure 4.4: Measured and simulated S11 for both waveguides. a) Magnitude of S11.
b) Phase of S11. Dotted: HFSS simulation; Solid: waveguide 1 measured;
Dashed: waveguide 2 measured.

on a sphere with a radius of 20 cm, at 2700 points uniformly distributed on the sphere.

Using these numerical field measurements, we solved Eqn. (4.41) for the waveguide

transmit coefficients, with harmonics up to l=10, for a total of 240 unknown trans-

mit coefficients. We found no regularization was needed in Eqn. (4.41). Transmit

coefficients were found at 21 frequencies between 4-6 GHz. The transmit coefficients

at 5 GHz up to l = 4 are shown in Figure 4.5.
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Figure 4.5: Normalized magnitude of transmit coefficients, ta and tb, found using
Eqn. (4.41) for the waveguide in Figure 4.3, with harmonics up to l = 4
at 5 GHz. The horizontal axis is the (l, m) index; the upper row is m, the
lower row is l. Most of the field information is captured in the first few l.
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4.6.1 Determining ao

The normalization, ao, in Eqn. (4.39), was determined from the source definitions

in HFSS. The input source had an average power of 1 Watt and zero phase. The

characteristic impedance of the transmission line computed during simulation, Zo,

was 48.5 Ω. From transmission line analysis, the average power on the line is given

by

Pave =
|ao|2
2Zo

(4.42)

Rearranging we have

|ao| =
√

2ZoPave (4.43)

The coefficient ao has zero phase because the reference plane of transmission line

in the HFSS CAD model matched that of the VNA reference plane of the physical

waveguide.

This normalization is applied twice in the propagation model: once for the trans-

mit coefficients of the transmitter and again for the transmit coefficients of the re-

ceiver. Thus, with an average simulated source power of 1 Watt, the propagation

model is scaled by a factor of 1/(2Zo). Here we assume that the line impedance com-

puted by HFSS is the same as the line impedance of the SMA cables used to connect

the VNA to the waveguides.

4.6.2 Examples

Measurements were taken from 4-6 GHz in the University of Michigan Radiation

Laboratory anechoic chamber, shown in Figure 4.6. The waveguides pictured are

attached to a rigid Styrofoam board and suspended on a Styrofoam pedestal.

Example 1, shown in Figure 4.7, is the magnitude and phase of measured and
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Figure 4.6: Example of anechoic chamber measurements of S21. Waveguide apertures
in photo are separated by 0.55 m and rotated 30 degrees.

predicted S21 for the two antennas separated at two different distances facing one

another. Both sets of data are displayed. The distances were 0.55 m and 0.73 m. For

both, the magnitude of the model predictions was accurate to better than 1.5 dB.

The phase was accurate to better than 10 degrees overall.
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Figure 4.7: Measured and predicted S21 for two distances. a) Magnitude of S21. b)
Phase of S21. Waveguides are separated by d1 = 0.55 m and d2 = 0.73 m
facing each other with no rotation. Solid line and circles: measured and
predicted S21, respectively, at d1. Dashed line and squares: measured and
predicted S21, respectively, at d2. Phase for d2 is shifted by 360 degrees
for display.

Example 2, shown in Figure 4.8, is the magnitude and phase of measured and

predicted S21 for the two waveguides when they are rotated. The data for two sets
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of rotations is displayed. The first set is when each waveguide was rotated about

the z-axis away from a facing position by 15 degrees. The second set is when both

waveguides are rotated by 30 degrees. See also Figure 4.6. The magnitude of the

model predictions was accurate to better than 2 dB. The phase of the predictions

matched the measurements as well as Example 1.
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Figure 4.8: Measured and predicted S21 for two rotations. a) Magnitude of S21. b)
Phase of S21. Waveguides are separated by 0.55 m and rotated about
the z-axis of their coordinate systems by a1 = 15 degrees, and a2 = 30
degrees (also shown in Figure 4.6). Solid line and circles: measured and
predicted S21, respectively, for a1. Dashed line and squares: measured
and predicted S21, respectively, for a2. Phase for a2 is shifted by 360
degrees for display.

For Example 3, we demonstrate the use of Eqn. (4.35) to predict the single-path

scattered field of an object from its T-matrix. The setup is shown in Figure 4.9. The

object is a conducting sphere with a diameter of 2 inches. In the setup, it is held

in a Styrofoam cup and placed near the boresight of each antenna. The waveguides

pictured are rotated 40 degrees toward the object, and separated by 0.85 m.

The T-matrix of a PEC sphere can be found by solving the boundary condition

problem with Eqn. (4.1). The T-matrix is diagonal with elements given by
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[

TMM
s

]

lm,lm
= − jl(ka)

h
(1)
l (ka)

(4.44)

[

TNN
s

]

lm,lm
= − j′l(ka)

h
(1)
l

′
(ka)

(4.45)

and TMN
s = TNM

s = 0. The quantity a is the radius of the sphere, and jl(ka) and

h
(1)
l (ka) are the spherical Bessel and Hankel functions, respectively. Prime denotes a

derivative with the form

z′l(x) =
1

x

∂

∂x
(xzl(x)) (4.46)

Figure 4.10 shows the magnitude and phase of measured and predicted S21 for the

incident, total, and scattered fields. The corresponding S-parameters are defined as

Sji,tot = Sji,inc + Sji,sca (4.47)

where Sji,inc is measured in the absence of the scatterer, Sji,tot is measured in the

presence of the scatterer, and Sji,sca is the contribution from the scatterer alone. The

scattered field contribution can never be measured directly, but is determined by sub-

tracting the incident field from the total field. This subtraction has the added benefit

of eliminating some systematic errors, for example any multipath effects between the

two antennas which do not also occur between the antennas and the object.

The magnitude of the model predictions for the scattered field in Figure 4.10 was

accurate to better than 1.5 dB. The phase was accurate to better than 10 degrees

overall. Similar results were obtained for rotations of [0, 10, 20, 30, 45] degrees.
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Figure 4.9: Example of anechoic chamber measurements of S21 for a scatterer. The
scatterer is a 2 inch diameter conducting sphere. Waveguide apertures
in photo are separated by 0.85 m and rotated 40 degrees. The sphere is
positioned near the boresights of the waveguide apertures.

4.6.3 Phasor Convention

The vector wave functions we use have eikr−iωt phasor convention. HFSS, however,

uses e−jkr+jωt. Thus, we had to conjugate the simulated field measurements before

using them to determine the transmit coefficients in Eqn. (4.37).

Furthermore, we found that the phasor convention of the VNA is that of HFSS.

This was determined from technical notes and is consistent with the observation that

the phase of simulated and measured S11 match. Thus, we need to conjugate Eqns.

(4.23) and (4.31) when comparing predictions and measurements. The data displayed

include this adjustment.

4.6.4 Discussion of Errors

There are several sources of error that may contribute to differences between

the measured and predicted S-parameters. The first major source of error is the

estimation procedure used to determine transmit coefficients, Eqn. (4.41). When

experimenting with different normalizations for the vector wave functions, we found

that predicted S21 could change by as much as 0.5 dB (at -30 dB signal levels) for

different normalizations. The second major source of error is the lack of multiple
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Figure 4.10: Measured and predicted S21 of the incident, total and scattered field
for the setup in Figure 4.9. a) Magnitude of S21. b) Phase of S21.
Solid line and circles: measured and predicted incident field, respec-
tively. Dashed line and triangles: measured and predicted total field,
respectively. Dash-dot line and squares: measured and predicted scat-
tered field. Phases for the total and scattered field are shifted by 360
and 720 degrees, respectively, for display.

scattering in the model. The waveguides are directive enough that objects in their

bore sight 2-3 m away will noticeably influence the measurements. A third source of

error are uncertainties in the values for position and rotation. Position and rotation

measurements were taken by hand with uncertainties of a few millimeters in position

and a few degrees in rotation. At 6 GHz in free space, the wavelength is 5 cm, so

a 5 mm position error is already an error of λ/10, or 36 degrees. Another source of

error was the agreement between the HFSS CAD model and the physical waveguide.

From Figure 4.4, we see the most disagreement between measured and simulated

S11 is near resonance, where the phase differs by as much as 20 degrees. Finally,

truncating the sums and any numeric error arising from the translation and rotation

matrix multiplications, while undoubtedly present, are considered small relative to

the previously listed errors. This is because the transmit coefficients decay quickly

for larger l (see Figure 4.5) and because numerical computation of translation and

rotation via the addition theorems are nearly exact so long as the correct number of
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harmonics are used.

4.7 Conclusion

In this chapter, we derived a model relating the multipole expansions of the fields

of two antennas to S-parameter measurements between them. We also showed how

numerical simulation can be used to approximately determine the antenna model

parameters. We experimentally validated the model using two rectangular waveg-

uides as antennas. Model predictions matched measurements to better than 2 dB in

magnitude and better than 10 degrees in phase.

The work in this chapter has a wide range of potential applications. First, it is

now very simple to test T-matrix scattering methods on laboratory scales. This is

because the propagation model only requires scalar computations based on the loca-

tions of antennas. As a demonstration, my colleague, Jessie Duan, used this model to

experimentally validate aggregate T-matrix methods. This model now allows accu-

rate and simple testing of multipole scattering methods with network analyzer based

experiments. Second, this propagation model is simple enough to be used for inver-

sion methods which could be designed to either find the transmit coefficients, perform

multi-sensor diagnostics, or make corrections to models based on experimental data.

These ideas are pursued in more depth in Chapter VIII.

In the next chapter, we will use this antenna model to derive a formal link be-

tween the integral equations used in the inverse scattering algorithm to S-parameter

measurements that would be taken in an experimental imaging system.
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CHAPTER V

Vector Green’s Function for S-parameter

Measurements of the Electromagnetic Volume

Integral Equation

5.1 Introduction

In the electric field volume integral equation (VIE), the dyadic Green’s function

can be used either to determine the total field solution inside the object domain or to

move the field quantities inside the object domain to observed fields outside the object

domain. While this type of formulation is indispensable for analytical and numerical

studies, the vector fields predicted by the VIE in the latter case cannot be observed

directly in measurement. That is, actual measurements of fields are performed with

antennas or probes, the outputs of which are voltages, which are scalar quantities.

Thus, in order to directly link the material contrasts of the VIE to scalar measurement

quantities, we need a kernel which, instead of relating fields to fields, relates fields to

scalars.

The primary motivation for the work in this chapter is a lack of attention to

full-wave antenna models in both theoretical and experimental scattering and inverse

scattering. Forward and inverse algorithms based on the VIE commonly use infinites-

imal dipole sources and full vector data when analyzing scattering phenomena or
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when forming images, [73, 74]. While dipole sources, plane wave sources, or antenna

gain patterns, might be adequate for many systems, [95, 96, 97, 98], an additional

modeling step, or antenna characterization, is still required to properly link the fields

collected by an antenna to its output voltage. Polarimetric remote sensing systems are

often calibrated using the radar cross section of trihedral corner reflectors [99, 100],

which is appropriate for investigations of rough-surface scattering or other random

media for which absolute phase measurements are not required or defined. Full-wave

systems, however, such as those for inverse scattering, which 1) use absolute phase,

2) deal with near-fields, or 3) illuminate objects and receive fields from large fields

of view, require more complete antenna models. Calibration for far-field scattering

systems using spheres has been done successfully in a few cases [101, 102].

Even with the proper use of standard calibration targets for experimental scatter-

ing and inverse scattering, a method to directly link the VIE to measurement quan-

tities for both near-field and far-field experiments using a full-wave antenna model is

missing. Furthermore, the measurement of choice in microwave engineering is often

the set of S-parameters, or some other voltage ratio, due to the ease and accuracy of

calibrating a vector network analyzer (VNA), as well as the familiarity and meaning

of S-parameters. Thus, we not only want to link the VIE directly to measurement

quantities, we also want to link it to S-parameter measurements.

We will show that the antenna model from the previous chapter, when used in

conjunction with the VIE, can manifest itself as a new kernel. This new kernel is

a vector which moves field quantities in the object region to a scalar voltage on the

transmission line. Because of the role this new kernel servers in the VIE, we call it

a vector Green’s function. We then show that this vector Green’s function can be

used to predict an object’s scattered field S-parameters measured in a mono-static or

bi-static antenna system.

To further distinguish the vector Green’s function from the standard dyadic Green’s
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function, we note that the vector Green’s function is used only in a measurement role.

It is analogous to when the observation point argument of the dyadic Green’s function

is evaluated at a receiver location. The vector Green’s function, however, implicitly

includes the antenna model. The vector Green’s function is not used to simulate

the forward scattering of an object, nor is it to be confused with the vector Green’s

functions named in [103], where it is one column of the dyadic Green’s function, or

[104], where it is defined by the gradient of the scalar green’s function.

It can be shown using reciprocity that the dyadic Green’s function is related to

the incident field produced by an infinitesimal source. Analogously, we show that the

vector Green’s function is related to the incident field produced by an antenna, and

formally find the proper scaling factors.

Even though our primary derivation is for antennas and objects in free-space, we

justify that the relationship between the vector Green’s function and the antenna

incident field holds whether or not there exist closed form expressions for either.

This implies that we can use simulation to estimate the vector Green’s function for

any complex measurement geometry where it will include all background multiple

scattering not included in the VIE object function. This will be useful later when we

move to cavity-based imaging geometries.

We validate the vector Green’s function formulation with several experiments. We

demonstrate the use of the vector Green’s function in free space using two probe fed

waveguides to measure scattering from dielectric spheres. Then, we show how to ob-

tain the vector Green’s function numerically for near-field scenarios, and demonstrate

this use with a combination of simulation and experiment.

We include expressions for far-field and Born approximations in Appendix C.1.

The following derivation can also be applied to acoustic waves and sources, which will

be presented in Chapter VIII.
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5.2 Derivation

5.2.1 Volume Integral Equation

The domain and scattered field volume integral equations (VIE) for an inhomo-

geneous distribution of permittivity and conductivity are again, respectively,

E(r) = Einc(r) + k2o

∫

G(r, r′) ·
(

δǫ(r′) +
iδσ(r′)

ǫbω

)

E(r′)dV ′ (5.1)

and

Esca(r) =

∫

G(r, r′) ·O(r′)E(r′)dV ′ (5.2)

where the scattered field is defined

Esca(r) = E(r)− Einc(r) (5.3)

and the object function is

O(r) = k2o

(

δǫ(r) + i
δσ(r)

ǫbω

)

(5.4)

5.2.2 Antenna Model and Normalized Fields

We model the full antenna response following the source-scattering matrix formu-

lation explained in the previous chapter [83, 84, 85], but use a simplified version

bo =
∑

lm

(

u(c)lmclm + u(d)lmdlm
)

(5.5)

alm = aot(a)lm (5.6)

blm = aot(b)lm (5.7)
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The quantities u(c)lm and u(d)lm are again the receive coefficients which convert

incoming field harmonics to bo. Similarly, t(a)lm and t(b)lm are transmit coefficients

which convert ao to outgoing field harmonics.

Here, we have made the following assumptions about the antenna model 1) there

is no multiple scattering between the antenna and other antennas or objects, and 2)

the transmission line is matched looking into the source or reciever.

Given the assumptions above, the incident field produced by a transmitting an-

tenna is composed of only outgoing waves. Using the antenna model, we can write

the incident field in the frame of the transmitter as

Einc(r) =
∑

lm

(almMlm(r) + blmNlm(r)) (5.8)

= ao
∑

lm

(

t(a)lmMlm(r) + t(b)lmNlm(r)
)

(5.9)

= aoeinc(r) (5.10)

where we define einc(r) as the normalized incident field. This is a field produced by

only the transmit coefficients, and can be thought of as the excitation-independent

multipole expansion. Einc has units of V/m and ao has units of V, so einc has units

of 1/m.

Next, consider the total field, which is the solution of Eqn. (5.1) given the object

contrasts and incident field. Even though the total field results from solving an

integral equation, it is still only linearly proportional to the source excitation. Letting

the solution of Eqn. (5.1) be represented by the operator inverse, and substituting

Eqn. (5.10), we can write the total field as
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E(r) =
(

I−GO
)−1

Einc(r) (5.11)

= ao
(

I−GO
)−1

einc(r) (5.12)

= aoe(r) (5.13)

where we define e(r) as the normalized total field. This is the field solution resulting

from a normalized incident field. That is, the field solution due to a source described

by only the transmit coefficients. Similar to einc(r), e(r) also has units of 1/m.

5.2.3 Vector Green’s Function for S-parameters

The dyadic Green’s function, which is the kernel of the VIE, serves to move field

quantities inside the object region to field quantities outside the object region. In

practice, though, we can never measure fields directly; we measure a voltage response

at the terminals of an antenna. We need an additional modeling step to convert the

fields at observation points to voltages. The antenna model described previously,

[83, 84, 85, 105], is one mechanism to do this. When this antenna model is used in

conjunction with the VIE, we will show that it manifests itself concisely as a new

kernel, which, instead of transforming fields to fields, transforms fields to scalars.

That is, the new kernel will move field quantities inside the object region directly to

scalar measurement quantities. This kernel is a vector as opposed to a dyad, and

so we call it the vector Green’s function. Finally, because the antenna model we use

links the fields of an antenna to the voltages on its feeding transmission line, we show,

using the concept of normalized fields, that the vector Green’s function we derive is

specialized for S-parameter measurements.

In order to use the antenna model, we must first expand the scattered field from

the VIE as incoming waves in the reference frame of the receiver. We begin with the

90



addition theorem for the free-space dyadic Green’s function from [52],

G(r, r′) = ik
∑

lm

1

l(l + 1)

[

ℜMlm(r)M̂lm(r
′) + ℜNlm(r)N̂lm(r

′)
]

(5.14)

where hat, ,̂ denotes conjugating the angular part of the vector wave function. The

dyad is formed by taking the outer product of ℜMlm(r) and M̂lm(r
′), and of ℜNlm(r)

and N̂lm(r
′). Here, r and r′ are position vectors in the frame of the receiver where

|r| < |r′|. Substituting Eqn. (5.14) into the VIE, Eqn. (5.2), we have

Esca(r) =

∫

(

ik
∑

lm

1

l(l + 1)

[

ℜMlm(r)M̂lm(r
′)+

ℜNlm(r)N̂lm(r
′)
]

)

·O(r′)E(r′)dV ′

(5.15)

Exchanging the order of integration and summation, and collecting the terms

being integrated, the scattered field of the VIE can be written as incoming fields in

the frame of the receiver as

Esca(r) =
∑

lm

(clmℜMlm(r) + dlmℜNlm(r)) (5.16)

where the expansion coefficients are

clm =
ik

l(l + 1)

∫

M̂lm(r
′) · O(r′)E(r′)dV ′ (5.17)

dlm =
ik

l(l + 1)

∫

N̂lm(r
′) · O(r′)E(r′)dV ′ (5.18)

Note that the argument of the wave functions is directionally dependent, where r′

points from the origin of the receiver frame to an integration location. However, for

the object and the total field, r′ simply keeps track of the integration location.
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The quantity O(r)E(r) can be thought of as a collection of infinitesimal dipole cur-

rent sources. The vector wave functions in the integrands of Eqns. (5.17) and (5.18)

effectively translate the fields radiated from these dipoles so as to be expanded as in-

coming waves in the frame of the receiver. We can compare this action to the transla-

tion of dipole fields in the context of T-matrix methods [52]. The multipole expansion

of an infinitesimal dipole has at most three harmonics: (l, m) = (1,−1), (1, 0), (1, 1).

Thus, translating dipole fields using the translation matrices for vector spherical har-

monics, [52], only requires the first three columns of the matrices. The matrix entries

have Hankel functions for the radial part, and the vector argument points from the

dipole to the receiver. The wave functions in the integrands of Eqns. (5.17) and

(5.18) act as these columns. While these also have Hankel radial parts, the vector

argument points from the receiver to the dipole, hence the angular conjugate. Thus,

we see that the incoming field coefficients are the aggregates of all translated dipole

fields.

We can now interpret the condition |r| < |r′| more carefully. The observation

points r are restricted to a sphere with a radius less than the radius of the nearest

point of integration in Eqns. (5.17) and (5.18), which is the nearest point of non-zero

contrast. In other words, the radius for the field expansion of the receiver cannot

overlap the object. See Figure 5.1.

We also point out that the right hand vector of each term of the dyadic outer

product serves to translate the scattered fields, while the left hand vector serves to

expand the scattered field as incoming waves in the frame of the receiving antenna.

Now that we have the expansion coefficients for the scattered field in the frame

of the receiver, we substitute Eqns. (5.17) and (5.18) into the antenna model, Eqn.

(5.5), giving
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ao

bo

Figure 5.1: Antenna and transmission line setup. The quantities ao and bo are out-
going and incoming voltages on the transmission line, respectively. The
dotted line represents the nearest point of nonzero contrast and the max-
imum radius for the antenna multipole expansion.

bo =
∑

lm

[

u(c)lm
ik

l(l + 1)

∫

M̂lm(r
′) · O(r′)E(r′)dV ′

+u(d)lm
ik

l(l + 1)

∫

N̂lm(r
′) · O(r′)E(r′)dV ′

]

(5.19)

Exchanging the order of integration and summation again and factoring out the

object and total field we have

bo =

∫

∑

lm

ik

l(l + 1)

(

u(c)lmM̂lm(r
′) + u(d)lmN̂lm(r

′)
)

· O(r′)E(r′)dV ′ (5.20)

The term multiplying the object and total field acts as a Green’s function. It is a

vector which moves the vector quantity O(r)E(r) to a scalar, bo. Letting the vector

Green’s function be g(r), we can write the incoming voltage on the transmission line

due to the scattered field as
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bo =

∫

g(r′) · O(r′)E(r′)dV ′ (5.21)

where

g(r′) = ik
∑

lm

1

l(l + 1)

(

u(c)lmM̂lm(r
′) + u(d)lmN̂lm(r

′)
)

(5.22)

The vector Green’s function for the free-space VIE is a sum of dipole translations

weighted by the receive coefficients of the antenna. It directly links field quantities

in the object domain to the incoming voltage on the receiver transmission line.

Next, consider a bi-static system with two antennas, one transmitting in reference

frame i, the other receiving in reference frame j, shown in Figure 5.2, and subject to

the assumptions in Section 5.2.2. Let the receiver vector Green’s function be labeled

gj(r) and let the total field in the object be Ei(r), which is the unnormalized total

field due to the transmitter. Equation (5.21) then becomes

bjo =

∫

gj(r
′) · O(r′)Ei(r

′)dV ′ (5.23)

Finally, dividing both sides by the outgoing voltage on the transmission line of

the transmitter, aio, with the conditions before (matched receiver), we can identify

the S-parameter, Sji = bjo/a
i
o,

Sji =

∫

gj(r
′) · O(r′)ei(r′)dV ′ (5.24)

where ei(r
′) is the normalized total object field produced by the transmitter.

Thus, we have transformed the traditional scattered field volume integral equation

into one suitable for S-parameter measurements. The notation, Sji, can be read sim-

ilarly to its use for multi-port networks, where this is the scattered field S-parameter

measured by a receiver in frame j due to a transmitter in frame i.
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While Eqn. (5.24) has been derived in a bi-static S21 measurement setup, it also

applies to monostatic S11 measurements. The S-parameters are measured between

the reference planes on the antenna transmission lines, so that the antennas and the

object scattering are represented by a 2-port microwave network, shown in Figure

5.2.

S  =
Sii Sij

Sji Sjj

aoa i

bob i
aoa j

bob j

i j

Figure 5.2: Network model of two antennas and a scattering object. S-parameters
are measured between the reference planes on the antenna transmission
lines.

To summarize, we arrived at an expression in terms of S-parameters because we

used an antenna model relating transmission line voltages to multipole fields, as well

as the concept of normalized fields.

As stated in the introduction, the vector Green’s function is only used in a mea-

surement role; it is not used to simulate the forward scattering of an object. In order

to determine the total field or normalized total field in the object domain, one must

solve Eqn. (5.1) or Eqn. (5.11) in its entirety using one of numerous techniques,

e.g. Conjugate gradient FFT, Neumann series, Finite difference time domain, etc.,

[106, 107, 108, 53, 109]. The forward solvers also require knowledge of the incident

field throughout the object domain. In the context of this model, the normalized inci-

dent field is computed using Eqn. (5.10). Lastly, in experiment, we can never measure

the scattered field directly, but can obtain it by subtracting the S-parameters for the
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total and incident fields,

Sji,sca = Sji,tot − Sji,inc (5.25)

where Sji,inc is measured in the absence of the object, and Sji,tot is measured in the

presence of the object.

5.2.4 Reciprocity Relation

Making use of the antenna coefficient reciprocity relations, Eqns. (4.8) and (4.9),

we can write g(r) in terms of the transmit coefficients as

g(r) =
iZ0

2ωµ

∑

lm

(−1)m
(

t(a)l,−mM̂lm(r) + t(b)l,−mN̂lm(r)
)

(5.26)

=
iZ0

2ωµ

∑

lm

(−1)m
(

t(a)lmM̂l,−m(r) + t(b)lmN̂l,−m(r)
)

(5.27)

The second relation comes from taking m → −m where the sum commutes and

(−1)m is unaffected. We can simplify this further. M̂lm(r) is the same as Mlm(r)

with the angular harmonics conjugated

M̂lm(r) = ∇× [rzl(kr)Y
∗
lm(θ, φ)] (5.28)

Using the identity Y ∗
lm = (−1)mYl,−m, we can show

M̂l,−m(r) = (−1)mMlm(r) (5.29)

The same relation is true for Nlm(r). Using this in Eqn. (5.27), the vector Green’s

function becomes

96



g(r) =
iZ0

2ωµ

∑

lm

(

t(a)lmMlm(r) + t(b)lmNlm(r)
)

(5.30)

which is the expansion for the normalized incident field multiplied by a scaling

factor

g(r) =
iZ0

2ωµ
einc(r) (5.31)

or

g(r) = − Zo

2ao

1

iωµ
Einc(r) (5.32)

We see that the vector Green’s function used in the VIE for a receiver can be

interpreted as the incident field produced by that antenna in transmit mode and

scaled by factors characterizing the transmission line. This form of the vector Green’s

function means we can bypass the step of determining the antenna transmit and

receive coefficients, if we can obtain and store the incident field with other means,

such as simulation.

Recall that the transmit and receive coefficients are related formally through reci-

procity, so Eqn. (5.31) is a statement of reciprocity for this type of problem. This

equation is another way of expressing the idea that an antenna receives the same way

it transmits.

Substituting Eqn. (5.31) into Eqn. (5.24) we can write the VIE in terms of the

normalized incident and total fields as

Sji =
iZj

0

2ωµ

∫

einc,j(r
′) ·O(r′)ei(r′)dV ′ (5.33)

where Zj
0 is the characteristic impedance of the receiver transmission line. Note that
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einc,j(r
′) and ei(r

′) are fields transmitted by the receiver and transmitter, respectively.

Finally, dimensional analysis shows that Eqn. (5.24) is self consistent. From Eqn.

(5.31), it can be shown that g(r) is unitless. The object function, O(r), has units

of 1/(m2), and the normalized total field has units of 1/m. Replacing these in Eqn.

(5.24), we have

Sji =

∫

gj(r
′) · O(r′)ei(r′)dV ′ → (1) =

∫

(1)

(

1

m2

)(

1

m

)

(m3) (5.34)

5.2.5 Object-Centered Vector Green’s Function

Previously, we derived the vector Green’s function for a receiver-centered scatter-

ing situation. In principle, given the condition |r| < |r′|, the object can surround the

receiver. In practice, however, multiple antennas usually surround the object. Thus,

we will rework the antenna model and derivation for an object-centered situation,

where we will be dealing with the condition |r′| < |r|.

ao

bo

Figure 5.3: Antenna and transmission line setup for an object-centered scattering
scenario. The quantities ao and bo are outgoing and incoming voltages on
the transmission line, respectively. The dotted line represents the furthest
point of non-zero contrast.
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We begin by considering the setup in Figure 5.3. The multipole expansion of the

electric field is the same as before, but now it is expanded in the frame of the object

instead of the antenna. The antenna model is

bo =
∑

lm

(

u(a)lmalm + u(b)lmblm
)

(5.35)

clm = aot(c)lm (5.36)

dlm = aot(d)lm (5.37)

The quantities u(a)lm and u(b)lm are the receive coefficients which convert outgoing

field harmonics in the frame of the object to bo. Similarly, clm and dlm are transmit

coefficients which convert ao to incoming field harmonics in the frame of the object.

The derivation of the reciprocity relations between the antenna transmit and receive

coefficients is nearly identical to that used to derive Eqns. (4.8) and (4.9), and the

following analogous relations can be shown:

u(a)lm =
Zo

2kωµ
l(l + 1)(−1)mt(c)l,−m (5.38)

u(b)lm =
Zo

2kωµ
l(l + 1)(−1)mt(d)l,−m (5.39)

Next, we consider the dyadic Green’s function under the condition |r′| < |r|, which

is

G(r, r′) = ik
∑

lm

1

l(l + 1)

[

Mlm(r)ℜM̂lm(r
′) +Nlm(r)ℜN̂lm(r

′)
]

(5.40)

Substituting this into the VIE we get the scattered field in terms of outgoing

coefficients in the frame of the object
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Esca(r) =
∑

lm

[almMlm(r) + blmNlm(r)] (5.41)

where

alm =
ik

l(l + 1)

∫

ℜM̂lm(r
′) · O(r′)E(r′)dV ′ (5.42)

blm =
ik

l(l + 1)

∫

ℜN̂lm(r
′) · O(r′)E(r′)dV ′ (5.43)

The integration vector r′ now points from the origin of the object frame to an inte-

gration point still in the object domain. The vector wave functions in the integrands

are translating the dipole fields to the origin of the object frame. We see that alm

and blm are the coefficients for the multipole expansion of the scattered field radiating

from the object. This also means that the antennas cannot be inside a sphere with

a radius smaller than the furthest point of non-zero contrast from the origin of the

object frame, shown in Figure 5.3. Substituting these into the new antenna model

we again get

bo =

∫

g(r′) · O(r′)E(r′)dV ′ (5.44)

but this time

g(r′) = ik
∑

lm

1

l(l + 1)

(

u(a)lmℜM̂lm(r
′) + u(b)lmℜN̂lm(r

′)
)

(5.45)

The last steps in Section 5.2.3 can be used to find the scattered field S-parameter

that would be measured between a transmitter and receiver. The incident field from

the antenna is now expanded as incoming waves in the frame of the object, and,

following the steps of Section 5.2.4, we can arrive at the same relation between the

vector Green’s function and the incident field, Eqn. (5.31).
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5.2.6 Comparison with the Dyadic Green’s Function

Here we compare the result of Eqn. (5.32) to the method of determining the

dyadic Green’s function using the fields of infinitesimal dipoles. The incident field

due to an arbitrary current distribution is given by

Einc(r) = iωµ

∫

G(r, r′) · J(r′)dV ′ (5.46)

Let the current source be an infinitesimal dipole at location rp with strength I

and direction p̂,

J(r′) = Ip̂δ(r′ − rp) (5.47)

Substituting this into the integral we have

Einc(r, rp) = iωµIG(r, rp) · p̂ (5.48)

or

G(r, rp) · p̂ =
1

iωµI
Einc(r, rp) (5.49)

We can find the columns of the dyadic Green’s function by finding the incident

field due to three orthogonal dipoles in turn. Using the reciprocity of the dyadic

Green’s function, [52, 51], we can swap the arguments, r and rp, which will give us

the dyadic Green’s function used in the VIE to predict observed scattered fields at

the point rp by integrating over the points r. In principle, this technique can be used

for any problem geometry, not only free-space, and has been used in simulation for

nonlinear inverse scattering algorithms [51].

Comparing the multiplying constant in Eqn. (5.49) to that found for the vector

Green’s function in Eqn. (5.32) shows they differ by a factor of −Zo/2 with ao in place
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of I. We see then that the line voltage, ao, which normalizes the incident field for the

vector Green’s function is analogous to the strength of the dipole source, I, which

normalizes the incident field for the dyadic Green’s function. Thus, collapsing the

dyad to a vector using the antenna model results in a constant which only depends

on the feeding transmission line and antenna reciprocity.

From the above treatment of the dyadic Green’s function, we might have expected

the vector Green’s function to be related to the incident field, but it took the use of

a full antenna model to elucidate the proper multiplying constant in Eqn. (5.32).

5.2.7 Obtaining g(r)

Determining the antenna transmit and receive coefficients is difficult. These are

the same transmit and receive coefficients that can be obtained from near-field an-

tenna measurements [85]. Near-field systems are expensive ventures, which require

precise positioning and probe calibration. Alternatively, these coefficients can be es-

timated using simulation as we did in Chapter IV, and [105], from which we can

compute g(r) using Eqn. (5.22) or Eqn. (5.30). However, from Eqn. (5.31), we see

it is sufficient to simply know the incident field, which we can choose to determine

through measurement or estimate with simulation.

To see how to normalize excitation-dependent fields from a simulator, we substi-

tute the normalized fields from Eqns. (5.10) and (5.13) into Eqn. (5.33)

Sji =
i

2ωµ

Zj
o

ajoaio

∫

Einc,j(r
′) · O(r′)Ei(r

′)dV ′ (5.50)

If we are given the average transmit power on the transmission line, Pave, and the

characteristic impedance, then from transmission line analysis the magnitude of ao is

given by, [110],
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|ao| =
√

2ZoPave (5.51)

The phase of ao is found by comparing the transmission line reference plane used

to determine the simulated fields to those used in measurement by, for instance, a

vector network analyzer (VNA). In practice, it may be difficult to determine this

phase, so it is best to try to make these reference planes the same, in which case, the

phase of ao will be zero.

If the transmission lines of the transmitter and receiver have the same character-

istic impedances, as would be the case for most multi-sensor imaging applications,

and the S-parameter reference planes are appropriately aligned between simulation

and measurement, then the factor of Zo drops out of Eqn. (5.50) so it becomes

independent of the type of transmission line

Sji =
i

4ωµ

1
√

Pave,iPave,j

∫

Einc,j(r
′) ·O(r′)Ei(r

′)dV ′ (5.52)

5.2.8 Generalization

Although the vector Green’s function was derived in a free-space scattering sce-

nario, from the results of Eqns. (5.31) and (5.32), we see that the vector Green’s

function 1) only depends on the antenna incident field and transmission line, and 2)

appears to be independent of the basis functions used for the field expansion. This

implies that we can generalize the derivation of Section 5.2.3 to any geometry under

certain assumptions.

In general, the addition theorem for the dyadic Green’s function for a source free

region can be written [103, 111]
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G(r, r′) =
∑

µ

[

k′Mµ(r)M
∗
µ(r

′) + k′′Nµ(r)N
∗
µ(r

′)
]

(5.53)

where Mµ(r) and Nµ(r) are the electric and magnetic (or vice versa) solenoid vector

wave functions [52], with adjoints (or inverses) M∗(r) and N∗(r) and k′ and k′′ are

their normalizations. There will be conditions on the position vectors r and r′ specific

to the prescribed coordinate system, just as there are for the free-space dyadic Green’s

function. For example, there exist the analytical solutions of the dyadic Green’s

function for a z-oriented PEC cylinder, [103, 111], where there are conditions on z

and z′.

Assuming that an addition theorem of the form in Eqn. (5.53) exists for a partic-

ular geometry, and assuming that the antenna fields can be expanded in the vector

wave functions that make up the addition theorem, then we can carry out a deriva-

tion that is identical to the one in Section 5.2.3, regardless of the form of Mµ(r)

and Nµ(r). If the antennas and medium are reciprocal, we will arrive at the same

reciprocity relation between the vector Green’s function and the incident field, Eqn.

(5.31). The term −Zo/2ao will always remain because it depends only on the feeding

transmission line and electromagnetic reciprocity. The term 1/(iωµ) remains as well

because it comes from the source term in Maxwell’s equations. We have already given

one example of this generalization by reworking the derivation of the vector Green’s

function in Section 5.2.5 for the object-centered scattering situation.

The implications of this generalization are that Eqns. (5.31) and (5.32) will hold

whether or not we can find closed-form expressions for the vector wave functions. We

need only obtain the incident field, which we can measure experimentally after proper

probe calibration, or estimate with simulation. We provide examples in Section 5.3,

in both simulation and experiment, to support this generalization.

We also mention that, while the vector Green’s function in Eqn. (5.24) serves

the purpose of a Green’s function by acting as the kernel of the VIE, calling it such
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implies that it is the impulse solution to a linear differential or partial differential

equation, [112]. In a way it is: while the dyadic Green’s function is the solution to

an infinitesimal dipole source, the incident field is the solution to the entire source,

found by the superposition of dipole solutions that make up the source. However,

Green’s functions also have completeness relations, [113]. Developing this formalism,

if it exists and makes sense to do so, is left for future work, and so we use the name

Green’s function because of the role it serves as a kernel of the VIE. In the end, we

might think of the vector Green’s function as the impulse response of an antenna-

object microwave network.

5.3 Experimental Validation

We performed several experiments to validate the use of the vector Green’s func-

tion with the VIE. First, we demonstrate that we can predict the S21 scattered field

S-parameters from known objects using the VIE and vector Green’s function in a

free-space scenario. Next, we show we can also predict the S11 scattered field of ob-

jects close to an antenna. Third, we show with simulation that we can predict 2-port

scattered field S-parameters in a near-field scenario for which we can only compute

and store the incident and total fields, but otherwise have no knowledge of the types

of basis functions that could satisfy the wave equation. Fourth, and last, we com-

pare simulated, predicted, and measured 2-port scattered field S-parameters for a

cavity-like experiment. The last two examples support the generalization of Section

5.2.8.

5.3.1 Example 1

First, we compare measured and predicted scattered field S21 in free space for a

pair of dielectric spheres.

We use the same two identical waveguides from the previous chapter as the trans-
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mitter and receiver. The waveguides and spheres are shown in Figure 5.4. The

waveguides are characterized using Ansoft HFSS and the method described in Chap-

ter IV. The average power on the transmission line is 1 Watt, so line voltage is given

by ao =
√
2Zo. The transmit coefficients can then be used in Eqn. (5.10) to compute

the normalized incident field at any points around the antenna except those in the

very near-field.

The setup for this example is shown in Figure 5.4. The waveguides are placed

on a Styrofoam board which is suspended on a Styrofoam pedestal in an anechoic

chamber. Measurements were taken between 4-6 GHz. The transmitter and receiver

are positioned 40.6cm away from the scatterers. The transmitter is fixed and the

receiver is positioned in 15 degree increments about the center from 90 to 180 degrees

relative to the transmitter. The spheres are acrylic and identical, having a diameter

of 2.54 cm and a relative permittivity of 2.5 and assumed lossless. The spheres are

held in a Styrofoam support and separated by approximately 5 cm.

We predict S21 using Eqn. (5.33) at 21 discrete frequencies between 4-6 GHz.

First, we define an object domain encompassing the two spheres with dimensions

9cm × 9cm × 5cm. We discretize the object domain with a regular spacing of

2.5 mm, which is ∼ λ/20 at 6 GHz in a material with relative permittivity of 2.5.

The discretized domain and the dielectric contrast of the pair of spheres are shown

in Figure 5.5. Then using the transmit coefficients and Eqn. (5.10) we compute the

normalized incident field of the transmitter at all points in the object domain. This is

used to compute the normalized total field in the object region using the Bi-Conjugate

Gradient FFT (BCGFFT), [106, 107, 108]. We use this forward solver because the

size of the contrasts of the acrylic spheres are two large for the Neumann series.

Next, we compute the normalized incident field for each receiver location at all

points in the object domain, which are used in Eqn. (5.31) to obtain the vector

Green’s function for each receiver location. Finally, the normalized total field and
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vector Green’s functions are used in Eqn. (5.33), where we evaluate the integral by

summing over the cubic voxels.

Figure 5.6 shows the magnitude and phase of measured and predicted S21 for the

scattered field for the pair of spheres at receiver angles of 120 degrees and 180 degrees

(see also Figure 5.4). We see that the magnitude of measured and predicted S21 agree

to better than 2 dB across the band (at -50 dB levels or less). The phase agrees

overall to better than 20 degrees.

This example shows that we can use the VIE in conjunction with the vector

Green’s function and a numerical volumetric forward solver to predict S21 for the

scattered field with a phase much better than λ/10, i.e., 36 degrees, which is a common

metric for many microwave systems.

Figure 5.4: Setup for Example 1. The two waveguides are rotated 120 degrees around
the target at distances of 16 inches each. The object consists of two acrylic
spheres which are separated by approximately 5 cm.

5.3.2 Example 2

In this example, we use Eqn. (5.33) to predict S11 for the setup in Figure 5.7. We

use the same procedure as Example 1, however, here we predict the scattered field

S11 for a single acrylic sphere.

One waveguide is supported by Styrofoam in an anechoic chamber, show in Figure
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Figure 5.5: Discretized object domain for Example 1. The two spheres have a diame-
ter of 2.54 cm, a relative permittivity of 2.5 in a background of free-space,
and are separated by approximately 5 cm. This discretization is used for
both the VIE and BCGFFT.
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Figure 5.6: Measured and predicted S21 of the scattered field for a pair of spheres
and the setup in Figure 5.4. a) Magnitude. b) Phase. The results for two
receiver angles are shown. Solid line and dots: measured and predicted
S21 for a receiver at 180 degrees. Dashed line and triangles: S21 for a
receiver at 120 degrees. The second set of phases is shifted by 360 degrees
for display.
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5.7. The sphere is held in a Styrofoam and placed two inches in front of the waveguide

and one inch to the side of the boresight. We included the Stryofoam holder in the

incident field measurement, and it is shown in Figure 5.8.

After evaluating the incident field in the object domain, the normalized total field

in the object region is computed again with the BCGFFT. The same incident field is

used for the vector Green’s function because we are predicting S11.

From Figure 5.9, we see that the magnitude of measured and predicted S11 agree

well up to 5 GHz and differ by about 2 dB through 5.6 GHz. The phase agrees to

within 10 degrees up to 5.6 GHz. It is clear from the phase that we lose sensitivity

above 5.6 GHz. We also attribute the difference in magnitude between measurements

and predictions to the lack of multiple scattering in the model, especially as the object

becomes electrically larger. Furthermore, the location of the sphere is near the radius

of the source dimension for the multipole expansion of the waveguide fields, which will

render the incident field computation invalid. Even with these errors, this example

demonstrates that reasonable predictions of S11 are possible.

Figure 5.7: Setup for Example 2. The waveguide and acrylic sphere are supported
by Styrofoam in an anechoic chamber. The sphere is held in a Styrofoam
mount.

5.3.3 Example 3

In this example, we test the vector Green’s function and VIE in simulation. We

compare simulated and predicted scattered field S-parameters of an arbitrary distri-

bution of inhomogeneous dielectric objects in a near-field scenario using HFSS. We
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Figure 5.8: Close-up picture of one waveguide and the acrylic spheres used in Exam-
ples 1 and 2. The spheres are held in Styrofoam. The spheres in the pair
are separated by approximately 5 cm.
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Figure 5.9: Measured and predicted S11 of the scatter field for a single sphere and
the setup in Figure 5.7. a) Magnitude. b) Phase.
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make no assumptions about the nature of the field solution. This example supports

the argument that Eqn. (5.31) holds for any geometry.

The simulation domain is shown in Figure 5.10. The simulation region has dimen-

sions of 32cm × 38cm × 20cm, and the object domain is 8cm × 10cm × 9cm. The

2-ports are apertures in PEC walls. The dimensions of the apertures for ports 1 and

2 correspond to WR-430 and WR-187 waveguides, respectively, with characteristic

impedances of 250 Ohms and 450 Ohms. The other four sides of the simulation region

are radiation boundaries. The dielectric objects are a Teflon sphere, cylinder, and

two blocks, with permittivities of 2.1.

Figure 5.10: HFSS CAD model for Example 3. Two different sized apertures are
embedded in PEC walls. The object domain has four dielectric objects
and is meshed with a sparse, unassigned grid to constrain the HFSS
adaptive meshing.

We use HFSS to both simulate the 2-port S-parameters as well as estimate the

incident and total fields in the object region. Because of the proximity of the objects

to the apertures, this is a near-field problem where the multiple scattering between

the PEC walls and the objects is included in both the incident and total fields.

First, the direct 2-port scattered field S-parameters were simulated between 3-4

GHz, which we treat as the measurement. Next, the incident and total fields were

computed by HFSS in the object domain at 21 discrete frequencies between 3-4 GHz.
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The fields were sampled on a fine Cartesian grid across the object domain. The grid

spacing was 2.5 mm, which is ∼ λ/20 at 4 GHz in Teflon. Because HFSS computes

volume fields by interpolating across the finite element mesh, we superimposed a

sparse grid of unassigned sheets through the domain before simulation (shown in Fig-

ure 5.10). We have found that this sparse grid helps constrain the adaptive meshing

of HFSS providing more accurate interpolation on the finely sampled Cartesian grid.

The surface sheets of the sparse grid are separated by 9 mm in all three dimensions,

which is ∼ λ/6. The sampled incident and total fields were then used in Eqn. (5.50)

to predict all four S-parameters. The integral was computed with the trapezoidal

method. The average power on the transmission lines are again 1 Watt, so the line

voltages are given by aio =
√

2Z i
o and a

j
o =

√

2Zj
o , specific to each port.
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Figure 5.11: Simulated and predicted S21 and S12 of the scattered field for the sim-
ulation in Figure 5.10. a) Magnitude. b) Phase. Solid line: S21 and
S12 computed by HFSS, which are identical. Circles: S21 predicted by
the VIE. Dots: S12 predicted by the VIE. While HFSS computes identi-
cal values for S21 and S12, the VIE results in some asymmetries due to
numerical error.

Figures 5.11 and 5.12 show simulated and predicted 2-port scattered field S-

parameters. Overall, simulated and predicted S21 and S12 agree to within 1 dB

in magnitude and 8 degrees in phase, while S11 and S22 agree to within 2 dB in mag-

nitude and 10 degrees in phase. The system is reciprocal, so all values of S21 and S12

should be equal. The HFSS simulation yields identical values, but some asymmetries
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Figure 5.12: Simulated and predicted S11 and S22 of the scatter field for the simulation
in Figure 5.10. a) Magnitude. b) Phase. Solid line and circles: simulated
and predicted S11. Dashed line and dots: simulated and predicted S22.
Phase of S22 is shifted by 360 degrees for display.

are present between predicted S21 and S12, which we attributed to interpolation and

numerical integration errors. These data confirm the generalization in Section 5.2.8,

that we can use the incident field as the vector Green’s function in the absence of

analytical expressions.

Finally, from technical notes we know that HFSS computes generalized S-parameters,

which are normalized to the impedance of the transmission lines in order for the trans-

mitted power to be given by |ao|2 [110]. We define S-parameters, however, by the line

voltages, see also [110]. Thus, in order to compare HFSS and Eqn. (5.50), we mul-

tiply Eqn. (5.50) by
√

Z i
o/
√

Zj
o . The data in Figures 5.11 and 5.12 include this

adjustment.

5.3.4 Example 4

For the last example, we compare simulated and predicted 2-port scattered field

S-parameters to experimental measurements. The simulations and predictions follow

the procedure in Example 3, but we validate with an experiment. The structure we

tested was a dielectrically loaded waveguide. The physical waveguide and dielectric

load are shown in Figure 5.13, and its HFSS CAD model is shown in Figure 5.14.
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This example also supports the argument that Eqn. (5.31) holds for any geometry.

Figure 5.13: Dielectrically loaded waveguide for Example 4. The empty waveguide is
shown at left, and the two nylon blocks making up the load and object
domains are shown at right. The relative positions of the blocks and
probes in the waveguide are outlined underneath.

The waveguide body is the same as those used in Examples 1 and 2, but the

ends of the waveguide are left open to prevent cavity resonances which may lead to

inaccurate HFSS simulations. The probes are SMA female flange mounts with an

extended dielectric. One probe is located 1.91cm inward from one corner along both

axes, and the other is located 2.54cm and 1.27cm inward from the other corner.

The dielectric load is composed of two rectangular, nylon blocks having a relative

permittivity of 2.93 and assumed lossless. The blocks were machined to fit tightly

in the vertical direction to limit the air gap at the metal surface and preserve the

dielectric-metal boundary conditions. The blocks had dimensions of 3.78cm × 1.34cm

× 2.28cm and 9.26cm × 2.33cm × 2.28cm. The probe locations and block dimensions

were chosen to break any structural symmetries.

Measurements were performed between 4-6 GHz in an anechoic chamber (not

pictured). In order to accurately model the positions of the nylon blocks in the CAD

model, we first inserted and aligned the dielectric blocks in the physical waveguide.

These locations were recorded and used in HFSS. In experiment, we then measured

the total field S-parameters first, after which we removed the blocks and measured
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Figure 5.14: HFSS CAD model of the dielectrically loaded waveguide in Figure 5.13.
The object domains are meshed with an unassigned sheet grid to con-
strain the adaptive meshing of HFSS. The waveguide is also enclosed in
a large radiation box (not depicted). The coaxial lines extend to the
radiation boundary and are de-embedded to the reference planes used
by the VNA for the physical waveguide.

the incident field S-parameters, the difference being the scattered field S-parameters.

The simulated and predicted scattered field S-parameters were computed just as

in Example 3. The incident and total fields were computed at 41 discrete frequencies

between 4-6 GHz. Because both dielectric blocks contribute to the scattered field, the

incident and total fields were computed by HFSS in both object regions and the VIE

was integrated over both. In addition, the HFSS probes were de-embedded so that the

simulation reference planes matched the reference planes used by the vector network

analyzer (VNA). This de-embedding correction was also applied to the computed

incident and total fields.

Figures 5.15 and 5.16 show the magnitude and phase of measured, simulated, and

predicted scattered field S-parameters. The magnitude of simulated and predicted S21

match to better than 0.2 dB, and both match the measurements to better than 2 dB

across the band. The phases of all three agree to better than 8 degrees. Similar results

were obtained for S12. The magnitude of S11 of all three quantities agrees to within

1 dB, and the phase better than 10 degrees. S22, however, does not agree as well in
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magnitude due in part to the sensitivity of reflection measurements near resonance.

The S22 phases diverge at resonance, but are otherwise within 10 degrees. Note that

the magnitude of S22 is greater than 0 dB in the range from 4-5 GHz, because the

scattered field magnitude can be greater than the incident or total fields individually.

This can be confirmed mathematically by applying the triangle inequality to Eqn.

(7.6), [114].

4 4.5 5 5.5 6
−20

−18

−16

−14

−12

−10

−8

−6

−4

Frequency (GHz)

2
0

lo
g

1
0

(|
S

|)

 

 

S
21

 Measured

S
21

 HFSS

S
21

 VIE

(a)

4 4.5 5 5.5 6
−200

−150

−100

−50

0

50

100

150

200

Frequency (GHz)

P
h

a
se

 S
 (

d
e

g
)

(b)

Figure 5.15: Measured, simulated, and predicted S21 of the scattered field for the
setup in Figures 5.13 and 5.14. a) Magnitude. b) Phase. Solid line:
measured S21. Dashed line: S21 computed by HFSS. Dots: S21 predicted
by the VIE and vector Green’s function. Similar results were found for
S12.
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Figure 5.16: Measured, simulated, and predicted S11 and S22 of the scattered field for
the setup in Figures 5.13 and 5.14. a) Magnitude. b) Phase. Phases of
S22 are shifted by 360 degrees for display.
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5.3.5 Discussion of Errors

While the measurements and predictions match well in each example, we need to

briefly discuss some sources of error.

For Examples 1 and 2, we can trace the errors through the computational steps.

First, and probably the largest contribution to error for the free-space predictions, is

the fitting procedure used for the transmit coefficients of the antenna model [105].

This uses a least squares criterion to find an equivalent multipole expansion to fields

generated by HFSS. The accuracy of the fit depends on the accuracy of HFSS and

number of field data used to find the multipole expansion. The next source of error

is the evaluation of the incident field used for the vector Green’s function and the

BCGFFT. This is obtained by summing over a finite number of the free-space vector

wave functions, where inaccuracies will undoubtedly be present. The third source of

error is the normalized total field solution given by the BCGFFT. While we validated

the BCGFFT with analytical solutions, the spheres must be approximated with their

discretized counterparts. Finally, the computation of the VIE itself will be prone to

integration errors even for high spatial sampling rates. For Example 2, we have the

additional problem that the object is so close to the waveguide that the multipole

expansion for the field may not be accurate, and that the effects of multiple scattering,

which are non-negligible at that range, are not included in the vector Green’s function

or the total field computation. Furthermore, the positions and angles of antennas

and objects in the experiments were measured by hand, and VNA measurements are

subject to some, though small, calibration errors. Last, there is uncertainty in our

knowledge of the dielectric constant of the acrylic spheres.

Errors in Example 3 are purely numerical. This example also helps to show us

the internal consistency of HFSS. The largest source of error is the interpolation of

the FEM CAD mesh to obtain the volume fields. We tried to mitigate this with the

undefined, sparse sheet grid.
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In order to show that some numerical errors can be controlled, we re-simulated

the object in Example 3. The HFSS convergence criteria was tightened from ∆S =

0.02 to ∆S = 0.005. The spatial sampling of the unassigned sheet grid was double

to ∼ λ/12, and the sampling of the interpolation and VIE integration points were

doubled to ∼ λ/40 in Teflon. A total of 12000 tetrahedra were used in this simulation,

which is large given a simulation region of only a few wavelengths. The resulting

simulated and predicted S21 are shown in Figure 5.17. The magnitudes now agree to

within 0.2 dB and phases differ by no more than 1 degree (as compared to 1 dB and

10 degrees, respectively, in Example 3). Similar results were obtained for the other

S-parameters. This shows that some of the numerical errors to can be controlled with

sufficient computation.
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Figure 5.17: Simulated and predicted S21 and S12 of the scattered field for the simu-
lation in Figure 5.10 with twice the spatial sampling and stricter HFSS
convergence criteria than used in Example 3. a) Magnitude. b) Phase.
Solid line: S21 and S12 computed by HFSS, which are identical. Circles:
S21 predicted by the VIE. Dots: S12 predicted by the VIE. This shows
that numerical errors can be controlled.

Finally, for Example 4, differences between measured and predicted scattered

field S-parameters are due in large part to CAD model inaccuracies and structural

resonances that cannot be accurately simulated. This example is also affected by

HFSS interpolation errors, VIE integration errors, and uncertainties in the dielectric

constant of the objects.
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5.3.6 Summary of Experiments

The four examples we presented in this chapter demonstrate the use of the vector

Green’s function and VIE in simulation and measurement.

Examples 1 and 2 demonstrated that we can predict scattered field S-parameters

for objects in free space by using the vector Green’s function, the VIE, and a full-wave

antenna model. The antenna model allowed us to compute the normalized incident

field in the object domain, which we used for the vector Green’s function and to find

the normalized total field using a volumetric forward solver.

Examples 3 and 4 demonstrated that the methods in this chapter apply to arbi-

trarily complex geometries, which can include near-field effects. We have shown that

we need only obtain the incident field to find the vector Green’s function. We can use

the VIE and S-parameters to study scattering phenomena of inhomogeneous material

in near-field scenarios, such as cavities, where the background multiple scattering can

be accounted for by the vector Green’s function.

5.4 Conclusion

In this chapter, we derived a vector Green’s function for S-parameter measure-

ments of the electric-field volume integral equation for inhomogeneous media. This

formulation directly links the object properties to microwave measurements through

a source model in a way that can be used for many applications. We have demon-

strated how to obtain the vector Green’s function from simulation and validated the

model with both simulation and experiment in near-field and free-space scenarios.

This formulation effectively solves one of the outstanding problems in inverse

scattering. Instead of calibrating a system to convert voltage measurements back

to predicted scattered fields, we now have a forward model that directly predicts

the voltage measurements, in this case microwave S-parameters. In these examples,
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we were essentially validating the forward model of an inverse scattering algorithm.

That is, given complete knowledge of the object to be imaged, how accurately can

one predict the measurements? Only then does it make sense to run the model in

reverse. The elegance of the method lies in the fact that the scattering, simulated

incident field, and network analyzer measurements are formally and efficiently related.

We need nothing more than the incident field in order to include the behavior of an

antenna in the integral equation.

This formulation also has applications for using simulation to experimentally study

the electrical properties of material. For instance, cavity based dielectric measure-

ments, where we can parametrically simulate complicate devices and set up an inver-

sion based on the S-parameter integral equation. Its simplicity also expands the use

of network analyzer measurements to validate analytical forward scattering models

of dielectric objects on laboratory scales. This provides the incident field for use in

a forward model, that forward model computes the total field by the method under

investigation, and the vector Green’s function and scattered field VIE relates every-

thing to the measurement for comparison. One of the next steps is to prove the

method for surface integral techniques and random or rough scattering.

In the next chapter, we will prove the use of the vector Green’s function and VIE

in inverse scattering by using it as the core of a free-space S-parameter based inverse

scattering algorithm and experiment.
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CHAPTER VI

Free-space Electromagnetic Inverse Scattering

Experiment

6.1 Introduction

While microwave inverse scattering has been extensively studied in theory [52,

73, 74, 115, 116, 117, 118, 46, 69, 51, 119], comparatively few experiments have

demonstrated their use in practice, [95, 96, 97, 120, 121, 102, 98, 75]. One of the most

difficult aspects of experimental inverse scattering is source characterization. That

is, how to relate the electric field predictions in the algorithms to antenna voltage

measurements in experiment. This problem is not usually treated comprehensively

when developing algorithms or when performing experiments. The purpose of the

algorithm and experiment in this chapter is to demonstrate how to use the full-wave

antenna model and vector Green’s function formulation from Chapters IV and V to

make an inverse scattering algorithm and S-parameter-based experiment consistent.

As demonstrated in Chapters II and III, inverse scattering algorithms estimate

material contrasts by comparing forward model predictions of fields to measurements

using a cost function. The forward model is a volume integral equation giving the

scattered electric field at observations points. However, the same scattered field can-

not be measured directly in experiment; we measure a voltage response at the output
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of an antenna. To properly compare forward model predictions to measurements,

these two quantities must have the same dimensions. We can either calibrate our

setup to covert measured voltages to measured scattered fields, or use an antenna

model to convert predicted scattered fields to predicted voltages. The overarching

philosophy of this work has been the latter, with the belief that is the most complete,

intuitive, and rigorous.

The choice of whether to calibrate a setup or characterize an antenna depends on

what assumptions apply in the experiment. For [101], far-field assumptions apply. A

precisely located calibration target is used to determine a single complex parameter

relating voltage measurements to plane wave amplitudes. Voltage measurements are

mapped back to scattered fields, which, in this case, has worked with great success,

[120, 102, 98, 121, 95]. However, we often cannot make plane wave assumptions, for

instance in small laboratory setups where the antennas are in the quasi near-field,

or use calibration targets, for instance, in half space inverse problems [51, 75]. In

these cases, we must absolutely characterize the antenna response with a model to

map scattered field predictions to voltage predictions. This necessarily changes the

forward model and affects the downstream implementation of the inversion algorithm.

The goal here is to test the antenna model, vector Green’s function formulation,

and BIM in a free-space inverse scattering experiment. The overall structure of the

BIM given in Chapter III is largely unchanged. However, our forward model now

predicts scattered field S-parameters. This required rederiving the gradients and

operator transposes in the conjugate gradient minimization steps. We will show how

the values of the entries of the data and model covariance matrices are selected from

experiment. We will also show what must be done to make the S-parameter based

forward model consistent with the experiment.

We form images of the 2D dielectric profiles of finite cylindrical objects using a

full 3D inverse scattering algorithm and 2D source geometry. The shapes of different
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objects are discernible even though the contrast value is often underestimated. We

also show that the algorithm breaks down for large contrast objects too closely spaced

for this source geometry.

6.2 Formulation with Source Characterization

6.2.1 Integral Equations for Characterized Sources and S-parameters

First, we will make the domain VIE and scattered field VIE consistent. We

essentially did this in Example 1 of Chapter V, where we simulated the volumetric

scattering of the two acrylic spheres and predicted the scattered field S-parameters

using the vector Green’s function, but here we will point out the equations explicitly

for the inverse scattering algorithm.

We write Eqn. (5.1) in terms of the normalized incident and total fields by dividing

both sides by ao,

e(r) = einc(r) +

∫

G(r, r′) · O(r)e(r′)dV ′ (6.1)

This is the integral equation we will use to represent the forward scattering so-

lution. It is solved with the same methods used to solve Eqn. (5.1), e.g. FDTD,

CGFFT, Neumann Series [47, 106], but with einc(r) used in place of Einc(r).

Using the vector Green’s function formulation from Chapter V, the two-port scat-

tered field S-parameter, Sji,sca, measured between the two antennas in the presence

of an object is again given by

Sji,sca =

∫

gj(r) · O(r)ei(r)dV (6.2)

where ei(r) is the normalized total object field produced by the transmitter and gj(r)

is the vector Green’s function kernel for the receiver. This assumes any multiple
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scattering between the antennas and object is negligible. The vector Green’s function

is again

gj(r) =
iZj

0

2ωµ
einc,j(r) (6.3)

where ω is the operating frequency in radians, µ is the background permeability, and

Zj
o is the characteristic impedance of the receiver transmission line.

Equations (6.1) and (6.2) are the integral equations we will use for the inverse

scattering algorithm. They consistently link the physics of the electromagnetic in-

verse scattering problem to an S-parameter measurement system through a full-wave

antenna model. The antenna model allows us to compute fields that are properly

normalized for S-parameter measurements to be used in Eqns. (6.1), (6.2), and (6.3).

If the antenna transmit coefficients and locations are known accurately enough, then

no other step is required to calibrate a free-space experimental inverse scattering sys-

tem except to calibrate the transmission line reference planes. Equation (6.2), in fact,

requires less storage and computation than Equation (5.2) where we would have used

the dyadic Green’s function in order to compute vector fields.

Finally, in experiment, we can never measure the scattered field S-parameter di-

rectly, but can obtain it by subtracting the S-parameters for the total and incident

fields

Sji,sca = Sji,tot − Sji,inc (6.4)

where Sji,inc is measured in the absence of the object, and Sji,tot is measured in the

presence of the object.
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Figure 6.1: Network model of two antennas and a scattering object. S-parameters
are measured between the reference planes on the antenna transmission
lines.

6.3 Born Iterative Method

Our aim is to test the BIM in experiment using the new integral equations which

include the source model. Compared to studies of the BIM and the related DBIM in

theory [52, 73, 74, 51, 75], it has been implemented only a few times in experiment,

[102, 122].

While implementing the forward solver with Eqn. (6.1) is standard enough, we will

develop the cost function around Eqn. (6.2). This scattered field integral operator is

substantially different from traditional forms, [68, 69], and that presented in Chapter

III, and will affect our derivation of the minimization steps, specifically the operator

transpose.

We mention here that the choice of the BIM over other inversion algorithms has

been mainly for historical reasons, it being among many in the literature not exten-

sively tested in experiment. The BIM, though, distinctly separates the data misfit

functional from the forward solver, and this has provided clarity in consistently linking

the two to experiment.
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6.3.1 Forward Solver

For this free-space experiment, we use the BCGFFT for the forward solver [106,

107, 108]. This because the Neumann series may not be able to handle objects with

relative permittivities of 3 or higher, which we expect for some plastics, such as Nylon.

Even still, the BCGFFT was validated against the Neumann series up to contrasts

of 2:1 and validated against the Mei scattering solution up to contrasts of 4:1.

6.3.2 Cost Function

Unlike traditional formulations of the BIM, which build and solve a linear system

of equations over Eqn. (5.2) to update the contrasts, or develop the algorithm around

point sources and receivers, as we did in Chapter III, we will minimize a functional

over Eqn. (6.2) using the multi-variate covariance-based cost function of [55].

As before, at each iteration when we estimate the contrast, we assume the object

field is constant. The scattered field integral with constant object field is then a linear

operator acting on the contrast. With this in mind, we write the cost function as

2F (m) = ‖G1m1 +G2m2 − d‖2D +
∑

m=1,2

‖mm −ma,m‖2M,m (6.5)

where the forward operator is now
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[Gm]ji = cm

∫

gj(r
′) · (·)ei(r′)dV ′ (6.6)

[d]ji = Sji,sca (6.7)

m1 = δǫ(r) (6.8)

m2 = δσ(r) (6.9)

ma,1 = δǫa priori(r) (6.10)

ma,2 = δσa priori(r) (6.11)

c1 = k2o (6.12)

c2 = k2o
i

ǫbω
(6.13)

with frequency dependence understood. The quantity G is the forward operator, and

G1m1 +G2m2 is a vector of forward model predictions. The quantity d is the data

vector containing the measured scattered field S-parameters. The vectors m1 and m2

contain the relative permittivity and conductivity contrast pixel values, respectively,

for a discretized domain. The vectors ma,1 and ma,2 contain our a priori knowledge

of the contrast pixel values. We have assumed that the permittivity and conductivity

contrasts are independent so each has its own regularization term. The vector norms

are defined over the data and model spaces, respectively, through inverse covariance

operators. See Appendix D.1.1.

The gradient vector and steepest descent vectors for the two model vectors are

also independent and given by

γ̂m = G∗
mC

−1
D r+C−1

M,m(mm −ma,m) (6.14)

γm = CM,mG
∗
mC

−1
D r+mm −ma,m (6.15)
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for m = 1, 2, and where r = G(c1m1 + c2m2)− d, is the residual. The transpose of

the forward operator is similar for both object functions

G∗
mu = c∗m

∑

ji

(gj(r) · ei(r))∗ uji (6.16)

where ∗ is simply the conjugate, and the vector u is a vector in the weighted data

space. As before, the transpose can be thought of as a form of aggregate backprojec-

tion, which maps data quantities onto the object domain. Here we are backprojecting

scattered field S-parameter data. Again, the transposes for the permittivity and con-

ductivity only differ by a constant. See Appendix D.2 for the derivation of Eqn.

(6.16). The operator transpose differs from those derived traditionally for full-wave

scattering problems, [68, 69], because we have used an integral equation which pre-

dicts S-parameters instead of fields.

The conjugate gradient updates of the model parameters are

mmn = mmn−1 − αnvmn (6.17)

vmn = γmn + βmnvmn−1 (6.18)

For βmn, we used the Polak-Ribiere step given by

βmn =
〈C−1

M,m

(

γmn − γmn−1

)

,γmn〉
〈C−1

M,mγmn−1,γmn−1〉
(6.19)

where <,> is a simple dot product. Choosing αn to minimize the cost function at

each step, it can be shown that (see Appendix D.1.2),

αn =
ℜ{Σ2

m=1(vmn,γmn)M,m}
‖sn‖2D + Σ2

m=1‖vmn‖2M,m

(6.20)
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where sn = G(c1v1n + c2v2n).

6.4 Experimental Setup

To test the inverse scattering algorithm in conjunction with the source character-

ization, we constructed the setup shown in Figure 6.2. Fifteen antennas are mounted

to a ridged nylon octagon. The octagon is supported on eight, 4-foot Styrofoam

pedestals in an anechoic chamber. One antenna transmits, while the other 14 receive.

The receivers are connected through a SP16T solid-state switching matrix that was

designed and assembled in-house. 2-port S-parameter measurements were taken with

an Agilent PNA-5230A Vector Network Analyzer from 2.4-2.8 GHz between the trans-

mitter and any one receiver. A rotator with a Styrofoam pedestal was aligned in the

center of the octagon to rotate test objects and provide multiple transmitter views.

Figure 6.2: Experimental setup in an anechoic chamber. One transmitter and 14 re-
ceivers are mounted on a nylon octagon which is supported on Styrofoam
mounts. The objects are turned with a rotator (not visible). The trans-
mitter and receives are connected to the VNA, where the receivers are
selected with a SP16T solid-state switch.
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6.4.1 Antenna Characterization

The antennas where designed and characterized using Ansoft HFSS and the tech-

nique described in Chapter IV. The HFSS CAD model is shown in Figure 6.3. The

antennas are E-patch antennas, [123], where the dimensions of the patch are 4cm ×

2.5cm on a 5cm × 5cm substrate of 1/8 inch FR4. The size of the patch gaps and

location of the feed were optimized to give a -10 dB bandwidth between 2.45-2.75

GHz. We chose this antenna for its moderate increase in bandwidth over a square

patch with only a small additional design effort. This gave us a wider margin of error

when fabricating many antennas as well as the option to use a few more frequencies

about the center frequency when forming images.

(a) (b)

Figure 6.3: a) HFSS CAD model of E-patch antenna in the vertical polarization. The
patch is enclosed in a large radiation box (not shown). The transmission
line was de-embedded to match the reference plane of the VNA in ex-
periment. b) Actual antenna mounted in the setup for the horizontal
polarization.

Before completing the characterization, we compare measured and simulated S11

of the antennas in isolation before being used in the setup. Figure 6.4 shows the

magnitude and phase of simulated S11 as well as the upper and lower bounds of

measured S11 across all 15 antennas used in the setup. The overall phase variation was

less than 10 degrees, except near the two resonances, even though the magnitude can

differ by as much as 6 dB. From our experience with this characterization technique,

130



large differences in measured and simulated S11 do not directly translate to large

differences between measured and predicted S21, so we treat the antennas identically.

Also, the S-parameter reference plane of the CAD model matched that used by the

VNA in measurement (see VNA Calibration below).
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Figure 6.4: Magnitude and phase of simulated and measured S11 for the E-patch
antennas. a) Magnitude. b) Phase. The solid line is simulated S11 from
HFSS. The dashed and dotted lines represent the upper and lower bounds,
respectively, of the variation of measured S11 across all 15 antennas before
being used in the setup.

When estimating the transmit coefficients, we choose the coordinate origin of the

antenna reference frame as the intersection of the center conductor and the ground

plane of the patch. In simulation, the radiated electric field was computed relative to

this origin on four spheres with radii of [20 50 100 150] cm at 2500 points uniformly

on each sphere. The antenna transmit coefficients were estimated as in [105] up to

harmonics of l = 5 for all m. The transmit coefficients at 2.5 GHz up to l = 3 are

shown in Figure 6.5. Most of the field information is captured in the first few l, show-

ing the dipole nature of the antenna. We obtain the transmit coefficients for antennas

in rotated frames using the rotation addition theorem for vector spherical harmonics,

[105], which allows us to compute the incident field for any antenna location and

polarization from the same set of transmit coefficients.

The patch antennas are linearly polarized, so we tested two principal polarizations,
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Figure 6.5: Normalized magnitude of transmit coefficients, t(a)lm and t(b)lm, for the
E-patch antenna in Figure 6.3, with harmonics up to l = 3 at 2.5 GHz.
The horizontal axis is the (l,m) index; the upper row is m, the lower row
is l. Most of the field information is captured in the first few l.

vertical and horizontal relative to the plane of the antennas, labeled V and H. To

achieve different polarizations, the antennas were rotated about the connector and

adjusted with a hand level.

The locations of the antenna reference frames in the setup were determined by

measuring their relative locations on the nylon octagon. A schematic of the ideal

positions and rotations of the antenna reference frames are shown in Figure 6.6. The

receivers are numbered 1-14 counterclockwise from the transmitter as viewed from

above.

6.4.2 Switching Matrix

The receivers were connected through a SP16T solid-state switching matrix that

was designed and assembled in house. The switching matrix has two layers of SP4T

Hittite HMC241QS16 non-reflective switches controlled with a computer parallel port.

The operating band of the switching matrix is between 0.1-3 GHz. The overall loss of

a path in the switching matrix is no worse than 2 dB across the band. We measured

the switch path isolation to be better than -35 dB between 1-3 GHz, which means
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Figure 6.6: Schematic of ideal antenna reference frame positions and rotations for the
setup pictured in Figure 7.2. The transmitter frame is at the lower right.
The dots represent the mounting holes on the nylon beams, which are
separated by 1 inch.

scattered field measurements between two antennas that differ by more than 35 dB

cannot be reliably measured.

6.4.3 VNA Calibration

Two-port VNA calibrations were accomplished between the transmitter and each

receiver. The S-parameter reference planes were calibrated to the points where the

antennas were connected to the mounts. These reference planes are identical to that

in the HFSS CAD model used to solve for the antenna transmit coefficients thus

making the measurements and antenna characterization consistent.

To calibrate the VNA, the antennas were first removed from their mounts. While

calibrating, we left the unused ports open with the rationale that the one-way switch

isolation of -35 dB provided sufficient matching to the open ports. Short-open-load

measurements for a 1-port calibration were taken for each antenna. Next, we mea-

sured the through path between the transmitter and each receiver with a 10’ SMA

cable. In software, we combined the 1-port and through measurements to accomplish
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a 2-port short-open-load-through (SOLT) calibration with arbitrary through between

the transmitter and each receiver. Although standard 2-port calibrations would have

sufficed, this technique was developed with an eye toward multi-transmitter systems.

6.4.4 Setup Diagnostics

Before collecting data for inversion, we tested the setup by comparing measured

and predicted S21 of the incident, total, and scattered fields for the conducting sphere

in Figure 6.7, using the propagation model in Chapter IV. We tested both VV and

HH polarizations. Note that the sphere is not used as a calibration target, it is only

used to confirm the accuracy of the antenna characterization and our knowledge of

the antenna reference frames.

Figure 6.8 shows the measured and predicted S21 for the VV polarization of the

incident, total and scattered field of a conducting sphere measured between the trans-

mitter and receiver 11. The magnitude agrees to within 2 dB and the phase is accurate

to better than 20 degrees across the band from 2.4-2.7 GHz. Similar results were ob-

tained for each transmitter-receiver pair and HH polarization. Given the accuracy of

the predicted phase, we expect the incident field when computed in the object domain

to be accurate to better than λ/5 throughout.

We found that scattered field cross pole measurements for small objects were

not consistent with model predictions, likely because their magnitude was below the

isolation levels of the switch, and so we excluded cross pole measurements from future

measurements.

6.4.5 Noise

In the probabilistic interpretation of the cost function, the data vector d repre-

sents the mean of the forward model Gaussian distributions. We assume the data are

independent, so the data inverse covariance operator is a diagonal matrix with in-
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Figure 6.7: Setup to test the antenna model by measuring the scattered field from
a conducting sphere. The sphere has a diameter of 2 inches, and was
centered in the setup.
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Figure 6.8: Magnitude and phase of measured and predicted S21 of the incident, total
and scattered fields of the conducting sphere in Figure 6.7 between the
transmitter and receiver number 11. a) Magnitude. b) Phase. Solid
line and circles: measured and predicted incident field S21. Dashed line
and triangles: measured and predicted total field S21. Dash-dot line and
squares: measured and predicted scattered field S21. The incident and
total field S21 appear nearly identical on these scales.
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verse variances given along the diagonal. By using these distributions, we necessarily

assume the measurements are corrupted by Gaussian random noise.

The values of the means and variances for the Gaussian distributions are deter-

mined directly from the statistics of the measurements. For instance, in radar, we

often average many data takes of the same viewing geometry to improve the signal to

noise ratio. These averages, in addition to the variances, are precisely the quantities

used for the entries of the inverse covariance matrix. As an aside, the data vectors in

the cost function are complex, but are assigned a single value for the variance. This

treatment automatically assumes that the real and imaginary parts of the data are

independent with the same value for the variance.

To determine the noise of the system, we saved 12000 individual S21 measurements

of the incident field for each receiver. A histogram of the real part of a typical

S21 measurement at 2.5 GHz is shown in Figure 6.9. The random noise is clearly

Gaussian with a standard deviation of 2.68e-05, which is approximately -91 dB. The

noise includes the effects of the VNA, the switch, and the background. Results at

each receiver and each frequency varied between -88 dB and -92 dB, for both real and

imaginary parts of S21. It was enough to assign a single variance with a value of -90

dB for all the data, which is the value we use when forming the images.
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Figure 6.9: Histogram of the real part of S21 for the incident field of receiver 8 (across
from the transmitter) at 2.5 GHz. The solid line is a Gaussian distribution
with the same mean and variance of the data. The noise is equal to
approximately -91 dB. Similar results are obtained for all measurements.
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When taking data for inversion, we did not complete a full histogram, due to time

constraints. For our setup, we averaged 20 samples of each measurement to use for

the mean, and use the value of the variance above for the noise.

6.5 Image Reconstructions

The images we form are 2D cross sections of finite cylindrical objects using the full

3D inverse scattering algorithm. We use the cylindrical nature of the objects only as

a priori information, where we assume we know the vertical extent of the object. We

do this because it is difficult to collect enough data in a 2D source geometry to make

the inverse problem overdetermined for a fully 3D object. Furthermore, we already

know that the point spread function of a 2D source geometry is elongated in the

vertical direction, which would corrupt 3D images. Also, it is simply not correct to

use a 2D inversion algorithm in a 3D experiment, unless the objects are very tall and

the incident fields are nearly cylindrical or plane waves. Thus, the full 3D forward

solver and inversion algorithm are used to form images of 2D cross sections.

Most of the images we form are of permittivity only, because the objects consist of

plastic cylinders and bars. We give one example of imaging conductivity only, where

the objects are thin metal rods.

The object domain used for the forward solver and the scattered field volume

integral was 30 × 30 × 30 cm. This was large enough to encompass rotated objects

which had heights of 15 cm. The domain was meshed at λ/8 in a material with

relative permittivity of 3. This gave a domain that is 41 × 41 × 41 pixels on a

side. The discretization size was chosen so that the number of pixels of the zero

padded domains for FFTs in the BCGFFT were 2N − 1 = 81, which has a prime

factorization of 34. We also accept the possibility of some discretization errors given

that this discretization may be coarser than λ/10 for high contrast objects. The 2D

cross section, and thus the number of unknowns in the inverse problem for a single
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contrast function, has 41× 41 = 1681 pixels.

The objects were rotated to 72 positions in 5 degree increments. Using data from

all 14 receivers gives 1008 complex data points per frequency for a single polarization.

Thus reconstructions of permittivity with only one frequency have effectively 2016

data points, making the inverse problem overdetermined.

The antenna transmit coefficients were found at 20 frequencies between 2.4 and

2.7 GHz, and we have the option of using any of these frequencies in the inversion

algorithm. After experimenting with different combinations of frequencies, we found

that using a single frequency, or only two or three well separated frequencies, yielded

the best results in terms of reconstructing the object shapes and contrasts. This is be-

cause data separated by 10-20 MHz in frequency will have free-space wavelengths that

differ by less than 1 percent, which makes these data nearly redundant. Redundant

data will contribute to numerical error more than they help the inversion.

In the cost function, we took the inverse covariance operators to be diagonal,

meaning both the data and, separately, the image pixels, are independent. The value

for the data variance was the noise. The standard deviations of the model parameters

(i.e., relative permittivity) was set to 10, which is sufficient to regularize the problem

without penalizing high contrasts. See Section 7.5.3 for further discussion on the

regularization.

Each image is formed with 12 iterations of the BIM. An iteration consists of one

run of the forward solver and 12 conjugate gradient iterations to minimize the cost

function. We chose this number of iterations for the conjugate gradient because most

of the work of the conjugate gradient is done in first couple of iterations and we saw

that this number was repeatably sufficient for the the norm of the residual to bottom

out, after which there was no noticeable change to the object estimate. Also, the

number of BIM iterations was repeatably sufficient to achieve overall convergence.

The computation time and storage to form a single image were 2 hours and 0.5 GB
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RAM per frequency, respectively, for code written in Fortran on a Linux desktop with

an AMD Phenom II quadcore processor and 16 GB RAM.

Example 1: Pair of Delrin rods

Shown in Figure 6.10, a pair of Delrin rods are approximately 5 cm in diameter, 15

cm tall, and have a relative permittivity of 2.3. Also shown are the reconstructions

at BIM iterations {1,7,12}. The images were formed with VV data with the three

frequencies {2.5, 2.6, 2.7} GHz. An outline of the locations of the actual objects is

superimposed on the final image, which were measured during the experiment. The

objects are detected at the correct locations, and the peak relative permittivity in

the last iteration is approximately 1.8. Figure 6.11 shows a cross section of the actual

and reconstructed permittivities. Also shown is the residual during the conjugate

gradient minimization for each BIM iteration. The residual resets at the beginning

of each iteration because we always begin the minimization with a zero object. The

behavior of the residual at the 6th iteration is attributed either to the nonlinearity of

the problem or error accumulation. Similar features were observed in the residuals in

about one quarter of the examples which follow.

Next, using the same parameters, we formed an image of the two Delrin rods using

HH data, shown in Figure 6.12. The objects are detected but the contrast is quite

underestimated.

Example 2: Delrin block

Figure 6.13 shows the reconstruction after 12 BIM iterations using VV data at 2.5

GHz. Also shown is an outline of the actual block. The block is 5.5cm × 8cm ×

15cm, with a relative permittivity of 2.3. While the shape is reasonably recovered,

the contrast is only 40% of the actual. We attribute this to the fact that the block

is electrically small, and the peak contrast of subwavelength objects are often not

recovered given the type of regularization used in this algorithm.

Example 3: Two different PVC rings
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Figure 6.10: Reconstructed relative permittivity at 4 iterations of the BIM after 12
conjugate gradient iterations each using VV polarization data. a) Photo
of Delrin rods. b) BIM iteration 1, i.e. Born approximation. c) Iteration
7. d) Iteration 12. The wavelength is that in a material of ǫr = 3.
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Figure 6.11: a) Normalized residual for the conjugate gradient iterations for each
successive BIM iteration. b) Vertical cut of the actual and reconstructed
relative permittivity through the center of the two objects.
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Figure 6.12: a) Reconstructed image of two Delrin rods using HH polarization data.
b) Vertical cut of the actual and reconstructed relative permittivity
through the center of the two objects.
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Figure 6.13: a) Photo of Delrin block. b) Reconstructed relative permittivity after
12 BIM iterations. An outline of the actual block is superimposed on
the image. c) Normalized residual for all iterations. d) Horizontal cut
through the middle of the image for the actual and reconstructed object.
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Shown in Figure 6.14, the rings had diameters of 10 cm and 17 cm, respectively, both

with thicknesses of 7.5mm. The reconstruction after 12 BIM iterations using VV data

and the three frequencies {2.5, 2.6, 2.7} GHz is also shown as well as an outline of

each ring. The rings have a relative permittivity of 2.7. The overall shape of the rings

is recovered well, but the peak contrast is underestimated due mostly to resolution

limits, because the ring thickness is about λ/8. The apparent object in the center of

the large ring is an artifact.
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Figure 6.14: a) and c) Photo of PVC rings. b) and d) Reconstructed relative per-
mittivity after 12 BIM iterations. An outline of the actual rings are
superimposed on the images.

Example 4: PVC rod in rings

We enclosed a 5 cm diameter PVC rod in two different rings, shown in Figure 6.15.

The first ring is the small PVC ring used in Example 3. The second ring is a large

cardboard ring with a 18cm diameter and 5mm thickness, where this ring and rod
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combination is also offset from the center. The relative permittivity of the PVC rod

is 2.7. The reconstruction after 12 BIM iterations using VV data and the three

frequencies {2.5, 2.6, 2.7} GHz is shown in Figure 6.15 as well as an outline of

the actual locations of the ring and the PVC rod. Both the rod and the ring are

distinguishable in each case. The recovered peak relative permittivity of the rod in

each image is 2.2. The cardboard ring is faintly visible, even with a thickness of λ/12.
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Figure 6.15: a) Photo of ring and rod combination. b) Reconstructed relative per-
mittivity after 12 BIM iterations. An outline of the inner and outer
diameter of the ring as well as the PVC rod is superimposed on the
image.

Example 5: Thin metal rods

In this example, we attempted to image two very thin metal rods out of curiosity to

study resolution, with the rationale that metal rods act as impulses in both space

and conductivity. The rods are held in a Styrofoam mount, as shown in Figure 6.16.

The images were formed at 2.5 GHz with VV polarization data. Also shown are the
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reconstructed images for rods separated by 4cm and 6cm, respectively. The rods are

distinguishable in the images at a 6 cm separation, which is λ/2 at 2.5 GHz in free

space.
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Figure 6.16: a) and c) Photo of the metal rods at separates of 4cm and 6cm, respec-
tively. b) and d) Reconstructed absolute conductivity in Siemens per
meter after 12 BIM iterations.

Example 6: High contrast limit I

There were some objects that could not be recovered by the algorithm. Similar to

Example 4, we attempted to image the PVC rod enclosed by the 17cm PVC ring,

shown in Figure 6.17. However, the algorithm failed to recover the objects properly

after 12 iterations. Given that the PVC ring can be imaged by itself (Figure 6.14)

and that the PVC rod with a cardboard ring can be imaged (Figure 6.15), the failure

of the algorithm to recover the combination suggests that the nonlinearity of strong

scattering interactions might have been too great for the algorithm to start from the

Born approximation.
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Figure 6.17: a) Photo of ring and rod combination in the setup. b) Reconstructed
relative permittivity after 12 BIM iterations. The algorithm failed to
recover this object.

Example 7: High contrast limit II

Here we attempted to image a combination of objects, shown in Figure 6.18. The

objects are a Delrin rod and block each having a relative permittivity of 2.3. The

algorithm failed to recover the contrasts correctly. To diagnose the problem, we ran

the algorithm with synthetic data. The forward model still includes the antenna

characterization and the reconstruction represents the image we could best expect for

the same state of the algorithm. The ideal object and its reconstruction are shown in

Figure 6.19. The image shows that the algorithm is capable of recovering this object

to a point, which suggests that modeling errors (i.e., differences between the assumed

experimental setup and the actual setup) are too large for the object to be recovered

from experimental data, without additional a priori knowledge.

Next we tested the algorithm assuming we know the shapes of the objects a pri-

ori, but not the contrasts. We accomplish this regularization using the model inverse

covariance matrix, [55, 56, 124]. We correlate the pixels within each homogeneous

region with themselves, but leave the regions uncorrelated. We also assume we know

the background to be free space and so set the variance of these pixels to be nearly

zero. The value for the variance of pixels in the two dielectric regions was 10. Figure

6.20 shows the reconstructions for synthetic and experimental data. The reconstruc-
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Figure 6.18: a) Photo of Delrin rod and block b) Reconstructed relative permittivity
after 12 iterations. An outline of the actual objects is shown. The
algorithm could not recover the contrasts of the objects.
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Figure 6.19: a) Objects used to generate synthetic scattered field data. b) Recon-
struction using synthetic data.
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tion from synthetic data recovers the contrast value quite well, while the experimental

data underestimates the contrast value of the cylinder with the block faintly visible.

This suggests that modeling errors are the underlying source of the discrepancy.
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Figure 6.20: Image reconstructions from synthetic and experimental data using co-
variance operators to correlate pixels of homogeneous regions. a) Recon-
struction using synthetic data. b) Reconstruction using experimental
data.

6.5.1 Discussion

In general, the inversion algorithm with experimental data was able to recover the

shapes of low contrast objects. However, it could not recover objects with too high

a contrast. In the cases where objects were recovered the reconstructed contrasts

were underestimated, as shown in Examples 1-4. The achievable resolution of the

system is at least λ/2, as demonstrated in Example 5. Example 7 shows that the

algorithm is capable of recovering high contrast objects when given synthetic data

but not experimental data, which suggests the presence of modeling errors.

By developing an inverse scattering system based on an absolute source character-

ization, we are trading the convenience of calibrating the system using targets with

the need to accurately model the experimental setup. That is, we rely solely on the

numerical antenna characterization and our knowledge of their locations and orien-

tations to link the S-parameter measurements to the physics of our algorithms. We

do not have an additional correction procedure after setting up the experiment and
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calibrating the VNA. The integration of the absolute source characterization with the

inversion algorithm is the feature we set out to test. It makes an inverse scattering

system more realistic, by enabling imaging in situations where calibration targets

are unavailable, such as half-space problems. However, this means that any discrep-

ancies between the forward model and the physical setup will remain uncorrected.

Because the BIM is capable of recovering all the tested objects and their contrasts in

simulation, we believe that in experiment the accumulation of many small modeling

errors (e.g., transmit coefficient estimation errors, antenna position, rotator align-

ment, multiple scattering, calibration drift), accounts for most of the imperfections

in the reconstructions.

Another complication is that the inverse scattering problem is nonlinear and non-

unique, both of which are due to, but not exclusively due to, the source geometry and

the strength of the scattering within the objects. In general, the BIM is capable of

recovering contrasts as high as 3:1 in simulation for sources which surround the object

in 2D or 3D, [74, 75]. For our experiment, even though we accounted for the cylindrical

nature and finite height of our objects, we used a 3D algorithm with a 2D source

geometry, which means the space of all possible measurements is incomplete. We

suspect that while modeling errors and possibly the source geometry contributed to

the low contrast estimations in Examples 1-4, the addition of stronger scattering and

the sensitivity of a more nonlinear problem, led to the resulting images of Examples

6-7.

As stated previously, we regularize the inversion through the data and model in-

verse covariance operators and it is their Gaussian interpretations that allow us to

physically and experimentally justify the values we use in each. However, treating the

inverse model covariance operator as a diagonal matrix with equal diagonal elements,

as we have done with most of the reconstructions, has had the effect of low-pass fil-

tering the images. This is the same effect as when a Tikhonov tuning parameter is
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used to solve similar inverse scattering problems via matrix inversion [74], the differ-

ence being that the value in our case comes directly from experiment. Higher-order

regularizations exist, which can enforce different constraints on the image, such as

total variation used to automatically preserve block-like structures [125, 67]. Higher-

order regularization, however, is generally accomplished with non-linear operators,

and therefore comes with two main caveats in the context of our cost function. First,

the step length, α, in the conjugate gradient minimization, cannot be found ana-

lytically and must be sought through line minimization. Line minimization is very

common but can increase the computational complexity of the algorithm. Second,

and more importantly, the relationship between non-linear regularization and the

Gaussian interpretation of the least-squares problem is unclear. The Gaussian model

is very powerful, especially in experiment, but the model covariance matrix we use

captures only the linear relations between unknowns. To link the nonlinear regu-

larizers to the Gaussian model, we might 1) find a model covariance matrix, which

approximates the non-linear regularizers, 2) attempt to generalize the model covari-

ance operator to include high-order moments, or 3) seek a hybrid solution. Linking

non-linear regularization and the Gaussian model, so that the reconstructions might

benefit from both, remains a topic of study.

6.6 Conclusion

In this chapter, we demonstrated the use of the antenna model, vector Green’s

function formulation and BIM in experimental inverse scattering. We used the an-

tenna model and vector Green’s function to modify the traditional inverse scatter-

ing volume integral equations so that they are consistent with VNA S-parameter

measurements. This absolute source characterization allowed us to directly compare

measurements to model predictions in the inverse scattering algorithm without using

calibration targets in experiment, and is one of the first demonstrations of its kind.
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We successfully reconstructed 2D dielectric profiles of 3D objects. The inversion algo-

rithm recovered object shape and contrast with mixed success given the constraints of

the imaging setup. We also showed how a priori knowledge of random noise, contrast

limits, and shape regularize the inverse problem in a covariance-based cost function.

The techniques in this experiment open up the area of network analyzer based

microwave inverse scattering, because there is now a clear procedure for characteriza-

tion. These methods also apply to situations where targets cannot be easily used to

calibrate a scene, in, for instance, through-wall imaging or ground penetrating radar.

In the next chapter, we will use the concepts proven here as the foundation for

characterizing and forming imagse with a cavity-based breast imaging system proto-

type.
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CHAPTER VII

Microwave Breast Imaging Cavity Experiment

7.1 Introduction

A number of experimental systems for microwave breast imaging have been de-

veloped in recent years. These systems test full-wave inverse scattering algorithms

[41, 126, 127, 37] as well as synthetic aperture beam focusing techniques [21, 42, 23].

While imaging algorithms abound in the literature, techniques to properly model,

characterize, and calibrate these systems have lagged behind algorithm development.

Investigators have started to identify characterization as a major task which must

be addressed in order to fully evaluate the efficacy of microwave imaging for breast

cancer detection. Part of this evaluation involves separating modeling errors from

intrinsic algorithm artifacts in the final images. Thus, there has been a need for accu-

rate models of experimental systems, as well as methods which efficiently incorporate

these models into the imaging algorithms.

The task of characterizing a microwave breast imaging system for inverse scatter-

ing, as compared to a free-space system, is complicated by several factors. Specifically,

the antennas are not isolated in the background media, but exist as part of the sur-

rounding structure. Also, compact arrangements of many antennas creates a cavity-

like imaging geometry, and the transmitter incident fields include all background

multiple scattering. Finally, the antennas and object are in each others near-fields,
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so object-cavity scattering should be modeled.

In trying to characterize breast imaging systems, investigators have turned to

full numerical simulation. The antenna cavity in [128] was modeled using Ansoft

HFSS, and only used for antenna design and sensitivity analysis. In [97], dipole

sources of an inverse scattering experiment were modeled with HFSS, and calibration

constants used to scale the antenna incident fields. HFSS has also been used to obtain

antenna incident fields in a near-field, and open, antenna setup, [129], however, ad

hoc methods have been used to calibrate the scattered field S-parameter data for the

inverse scattering algorithm. In more recent work, [130], CST Microwave Studio was

used to study and tune antenna performance in a breast imaging cavity. Also, finite-

volume time-domain solvers of [131] modeled wide-band antennas for time domain

beam focusing. The most complete work to date is [132], where an FEM forward solver

is used to simulate the entire breast in the presence of the antennas, but computational

complexity remains a challenge. Despite the growing use of numerical solvers to model

breast imaging systems, there has been no formal way of incorporating the results

from full-wave numerical models into the imaging algorithms.

The task of characterizing any inverse scattering system can generally be divided

into three parts: 1) determining the incident fields produced by the antennas in the

absence of the object, 2) determining the background dyadic Green’s function, i.e.,

modeling the interactions between the object and its surroundings if necessary, and

3) linking the volume integrals in the imaging algorithms to measurable transmit and

receive voltages.

In this chapter, we will use the vector Green’s formulation we developed in Chapter

V and HFSS to effectively solve parts 1) and 3) of this characterization problem for

cavity-like breast imaging geometries, where we make the numerical characterization

and inverse scattering algorithm consistent with an S-parameter based experiment.

The inverse scattering algorithm we use is the Born Iterative Method (BIM) with
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multivariate-covariance cost function [133, 124, 55]. This cost function allows us to

experimentally choose the regularization parameters based on our prior knowledge of

system noise and expected range of permittivities.

We will again use the BIM as the inverse scattering algorithm, same as Chapter

VI. The forward solver used in the BIM requires the background dyadic Green’s

function and finding it constitutes part 2) of the characterization problem mentioned

above. For convenience we use the lossy free-space dyadic Green’s function and give

some numerical and experimental justification for this. Fully modeling the multiple

scattering between the breast and the imaging structure in the forward solver is not

trivial and some discussion is devoted to this.

We validate these methods with a combination of simulation and experiment. We

first present the vector Green’s function formalism of Chapter V in the context of cav-

ity problems. We then explain our experimental setup which consists of a cylindrical

imaging cavity with printed antennas, solid-state switching matrix and water/oil cou-

pling medium. The HFSS numerical model is presented and the simulation results are

compared to experiment. We form 3D images of the relative permittivity and con-

ductivity using both HFSS synthetic data and experimental data for simple targets.

We also present findings on the sensitivity of image reconstructions to the accuracy

of modeling the background electrical properties.

7.2 VIEs and Characterization for Cavity Imaging

7.2.1 Integral Equations for Cavity S-parameter Measurements

In Chapter VI, we showed that is possible to transform the domain VIE and scat-

tered field VIE so that they are consistent with an S-parameter based measurement

system. We showed that the resulting equations were valid for both free-space and

cavity-like geometries, and went on to validate the free-space case with the inverse
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scattering experiment in Chapter VI. Here, we will summarize the results for a cavity

geometry.

Consider the cavity depicted in Figure 7.1. An object to be imaged is placed

in the middle of the cavity. The cavity is filled with a background material having

a permittivity and conductivity of ǫb and σb, respectively. The cavity is lined with

radiating apertures, which could be antennas. Each aperture has its own feeding

transmission line and S-parameter reference plane.

We define the normalized incident and total fields throughout the cavity due to a

transmitting aperture as

einc(r) = Einc(r)/ao (7.1)

e(r) = E(r)/ao (7.2)

where ao is the transmit voltage measured with respect to the S-parameter refer-

ence plane. The normalized incident field captures all background multiple scattering

not present between the object and the cavity.

Let transmitting apertures be indexed with i and those receiving indexed with

j. We can write domain VIE in terms of the normalized incident and total fields

produced by a transmitter as

ei(r) = einc,i(r) +

∫

G(r, r′) · O(r′)ei(r′)dV ′ (7.3)

This is the integral equation we will use to represent the forward scattering so-

lution. The normalized total field is the field solution in the object domain and,

with the appropriate dyadic Green’s function for the cavity, includes the scattering

interactions between the object and the cavity.

From Chapter V, the two-port scattered field S-parameter, Sji,sca, measured be-
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tween the transmission line reference planes of two apertures in the presence of an

object is given by

Sji,sca =

∫

gj(r
′) ·O(r′)ei(r′)dV ′ (7.4)

where ei(r) is the normalized total object field produced by the transmitter and gj(r)

is the vector Green’s function kernel for the receiver. Again, gj(r) is related to the

normalized incident field of the receiver as

gj(r) = − Zj
0

2iωµ
einc,j(r) (7.5)

To reiterate, this is the incident field throughout the cavity, which includes all

background multiple scattering not present between the object and the cavity.

Equations (7.3) and (7.4) are the integral equations we will use for the inverse scat-

tering algorithm. They consistently link the electric field volume integral equations

to an S-parameter measurement system. We need only determine the normalized

incident fields in the object domain and the background dyadic Green’s function; no

other step is required to characterize the system, except to calibrate the transmission

line reference planes.

Lastly, in experiment, we never measure scattered field S-parameters directly, but

obtain them by subtracting the S-parameters for the total and incident fields

Sji,sca = Sji,tot − Sji,inc (7.6)

where Sji,inc is measured in the absence of the object, and Sji,tot is measured in the

presence of the object.
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Figure 7.1: Microwave network model of cavity and scattering object. S-parameters
are measured between the reference planes on the transmission lines.

7.2.2 Determining einc(r)

The normalized incident field is required in both Eqns. (7.3) and (7.5), and is

required for every aperture. We can either measure it experimentally or estimate it

with simulation. Experimentally mapping the fields requires proper probe calibration

and has the added complication in a cavity that the probe-wall interactions cannot

be neglected. An alternative approach, and the one we adopt for this chapter, is to

estimate the normalized incident field with simulation. This can be done provided

that we have a computer aided design (CAD) model that accurately represents the

cavity. It is also possible in simulation to model the feeding transmission lines and

line voltages in order to assign an S-parameter reference plane that is identical to the

reference plane used by a vector network analyzer for the physical measurement. We

will show how we use Ansoft HFSS to accomplish this.
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7.2.3 Determining G(r, r′)

As stated in the introduction, determining the background dyadic Green’s function

is non-trivial, especially for arbitrary cavity geometries. Despite this, for the immedi-

ate investigation, we use the free-space dyadic Green’s function under the condition

that the background medium is extremely lossy. Though not strictly correct, this

approximation is convenient provided the multiple scattering throughout the cavity

is limited by the background loss. It also allows us, for the time being, to retain

use of an FFT based volumetric forward solver. We give examples later evaluating

this assertion. There are several approaches for determining or approximating the

background dyadic Green’s function for arbitrary geometries which we list as work

for future investigation:

Analytical dyadic Green’s function. There exist analytical solutions of the dyadic

Green’s function for some simple cavity geometries, such as cubes or cylinders, [?

], which might approximately model certain cavity based imaging setups. These

solutions, however, will likely not include finer details such as antenna plating, con-

nectors, substrate material, or open-ended cavities, such as those used for breast

imaging. Analytic solutions though lend themselves to the possibility of retaining

some convolution structure in the VIE so fast forward solvers can be used, (e.g. fast

half space solutions, [134], applied to multi-sided cavities). Determining the dyadic

Green’s function analytically becomes a formidable task as the geometry complicates,

where simulation may be better suited.

Full numeric simulation. The most complete solution is to fully simulate the object

and cavity using a numeric simulator, which will capture all the multiple scattering

between the object and the cavity. However, unlike a dyadic Green’s function, which

only needs to be found once for a particular geometry and the values of which are

only need on the interior of the object domain, this method must simulate the cavity

structure outside the object domain in every instance of the simulation. When used
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in an inverse scattering algorithm, which might compute the domain VIE for each

source, frequency and iteration, then repeatedly simulating the cavity structure adds

to the already high computational burden. In addition, some simulation methods are

better at simulating surfaces or antennas, such as MoM or FEM, while others are

better for inhomogeneous media, such as FDTD or CGFFT, so choosing the proper

technique or hybrid is difficult.

Numerical dyadic Green’s function. If analytical solutions are not accurate enough,

then one must determine the dyadic Green’s function numerically. This requires

simulating three orthogonal dipoles in turn at every point in the object domain and

recording the response at every other point in the domain. The dyadic Green’s

function is symmetric, so half of the combinations are redundant, and while the

convolution nature of the VIE is destroyed, some computational speed up is possible

for symmetric operators. This technique however, requires accurate modeling around

the dipole singularity, which can be difficult. In the case of PEC structures, the

technique in [135] computes the dyadic Green’s function by finding an array of image

dipoles outside the cavity, which avoids the complications from the singularity. The

main advantage of determining the dyadic Green’s function numerically is that once

found, we no longer need to simulate the cavity structure and can turn our attention

to optimizing the computation of the dyadic Green’s function.

Approximate solutions. If the background loss is sufficiently high, so that the

resonances of the cavity are damped, then we can approximate the dyadic Green’s

function. This can be done by adopting an analytical solution (e.g. free-space, or

cavity), or by, for instance, developing a perturbation method. Adopting the free-

space dyadic Green’s function (or a perturbation on it) also allows us to retain the

convolution structure of the VIE and FFT based forward solvers, which may be more

beneficial to the inverse scattering algorithm than modeling higher-order multiple

scattering.
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7.2.4 Born Iterative Method for Cavities

The imaging algorithm we use is the same Born Iterative Method (BIM) inverse

scattering algorithm as was used in the free-space experiment in Chapter VI. The

cost function and conjugate gradient minimization remain unchanged. For the for-

ward solver, because we use the lossy free-space dyadic Green’s function to model

the internal scattering, we use the BCGFFT. The one major assumption is the use

of the free-space dyadic Green’s function which ignores the breast-cavity scattering

interactions. In a lossless background medium this would not work, however, we have

some allowance given that the background coupling medium we use is so lossy.

7.3 Breast Imaging System Prototype

The breast imaging system prototype we built is shown in Figure 7.2. The imag-

ing structure is a cavity, shown in Figure 7.3, which was created by soldering twelve

vertical panels of microwave substrate together and soldering the collection to a con-

ducting base. Opposite panels are separated by 15 cm, and the cavity is 17 cm tall.

Three antennas are printed on each panel for a total of 36 antennas. In the prototype,

the three antennas of one panel are used as transmitters while all other antennas are

receivers. The transmit antennas are switched with a Dowkey SP6T electromechani-

cal switch. The receivers are connected through a SP33T solid-state switching matrix

that was designed and assembled in-house. 2-port S-parameter measurements were

taken with an Agilent PNA-5230A Vector Network Analyzer at 2.75 GHz between

each transmitter and any one receiver. This frequency was chosen as a compromise

between resolution and switch performance which rolls off above 3 GHz. A rotator

was mounted above the cavity and aligned in the center of the cavity. Test objects

are suspended with fishline and rotated to provide multiple transmitter views.

159



Figure 7.2: Breast imaging system prototype. The imaging cavity is connected to the
VNA through a solid-state switching matrix. A rotator is mounted above
and turns suspended objects for multiple transmitter views.

Figure 7.3: Imaging cavity. Twelve panels with three bow-tie antennas each are solder
together and to a conducting plate.
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7.3.1 Liquid Coupling Medium

We expect breast tissue to have a relative permittivity between 10-60 [10]. With-

out a matching medium, much of the incident power would be reflected at the

breast/air interface reducing the sensitivity of the system, [136]. Also, the contrast

ratio between the object and the background would be too high for the BIM inverse

scattering algorithm to converge.

The matching medium we use is an oil/water emulsion developed in previous work

[137]. This fluid is designed to balance the high permittivity and high conductivity

of water with the low permittivity and low conductivity of oil, in order to achieve a

fluid with moderate permittivity while limiting loss as much as possible. We are also

able tune the microwave properties of this emulsion by adjusting the oil/water ratio.

We aimed for a relative permittivity value around 20, which brings the maximum

permittivity contrast to about 3:1. The fluid mixture we used was 65%/35% oil/water.

The electrical properties of the fluid were initially measured using the Agilent

85070E slim form dielectric probe. The measured properties at 2.75 GHz were

(ǫr, σ) = (24, 0.34). Relative permittivity is unitless; the units of conductivity used

throughout the paper are Siemens/m. However, when using this value in the numer-

ical model (presented below) the magnitude of cross-cavity S21 was too high and the

phase was shifted compared to measurements. We obtained the best model agreement

for (ǫr, σ) = (21, 0.475), and are the values we use through the chapter. We suspect

that the probe area may be too small to accurately measure the bulk properties of

the mixture, but the fluid otherwise appears homogeneous for propagation at 2.75

GHz. We are still investigating this effect.

When taking data, we fill the cavity with the coupling fluid to a height which

is 0.5 cm below the top edge. This fluid height is accounted for in the numerical

model. Any fluid displacement from adding or removing test objects is compensated

in order to keep the height constant. We have also found the emulsion to be stable
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over the course of measurements, which we confirmed by comparing transmission

measurements before and after we take data for imaging.

7.3.2 Antenna Design

The antennas are bow-tie patch antennas, similar to the antennas in [128, 138].

They are single frequency, vertical polarization. The bow-tie was chosen to give

more degrees of freedom to help impedance match the antenna to the coupling fluid.

The vertical polarization was chosen for best illumination of the object and other

antennas in the cylindrical geometry. The substrate material is Rogers RO3210, with

50 mil thickness and reported dielectric constant of 10.2. The antennas were originally

designed to operate at 2.8 GHz in the cavity filled with a fluid with (ǫr, σ) = (24, 0.34),

however, after iterating, we found best performance at 2.75 GHz in a fluid of (ǫr, σ) =

(21, 0.475).

7.3.3 System Parameters

In determining the system noise and isolation requirements, the minimum ex-

pected signal determines the required noise level, and the maximum relative mag-

nitude between signals on adjacent channels determines the required switch path

isolation. From previous numerical studies of cavity-like breast imaging with similar

emulsion properties, [139], we expect the scattered field S21 magnitude of small inclu-

sions to be in the range from -100 to -50 dB, and signals between adjacent antennas

to differ by as much as -30 dB. This means that the noise of our measurements must

be less than -100 dB, which is achievable by our VNA with averaging and an IF

bandwidth of 100 kHz or less. Also, the switching matrix paths must be isolated by

at least -30 dB.
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7.3.4 Switching Matrix

The receivers were connected through a SP33T solid-state switching matrix that

was designed and assembled in house. The matrix consists of two custom SP16T

solid state switching matrices, and a cascaded pair of Miniciruits SPDT switches.

Each SP16T switch is composed of two layers of SP4T Hittite HMC241QS16 non-

reflective switches which are buffered at the output by a third layer consisting of a

single SPDT Hittite HMC284MS8GE on each path. The buffer layer was added to

increase interpath isolation. The switch is controlled with an embedded digital board

and computer parallel port. The operating band of the switching matrix is between

0.1-3 GHz. The overall loss of a path through the SP33T matrix is no worse than 8

dB across the band. We measured the switch path isolation to be better than -55 dB

between 1-3 GHz, which meets the criteria above.

7.3.5 VNA Calibration

Two-port VNA calibrations were accomplished between each transmitter and each

receiver. The S-parameter reference planes were calibrated to the points where the

cables connect to the antenna. These reference planes are identical to those in the

HFSS CAD model (presented below). While calibrating, we left the unused ports

open with the rationale that the one-way switch isolation of -55 dB provided sufficient

matching to the open ports. Short-open-load measurements for a 1-port calibration

were taken for each antenna. Next, we measured the through path between the

transmitter and each receiver using a connector. In software, we combined the 1-port

and through measurements to accomplish a 2-port short-open-load-through (SOLT)

calibration with arbitrary through between each transmitter and receiver for a total of

99 separate 2-port calibrations. The calibration for a particular transmitter/receiver

pair is recalled in the VNA before taking data.
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7.4 Numerical Model

We use Ansoft HFSS to numerically model the cavity, similar to [139]. We use

it several ways. First, we model the feeding transmission lines in order to assign

S-parameter reference planes that are identical in both simulation and experiment.

Second, we estimate the normalized incident fields due to the transmitters throughout

the cavity for use in Eqns. (7.3) and (7.5), where the normalized incident fields now

include all background multiple scattering not present between the object and the

cavity. Also, we use the model to generate synthetic scattered field S-parameters of

numerical targets in order to study the performance of the inverse scattering algorithm

given the source geometry and system parameters.

Figure 7.4 shows the HFSS CAD model of the 12 sided cavity. The model includes

the panel thickness and dielectric constant, bottom conductor, probe feed, coupling

fluid properties, and height of the fluid. Same as in the experiment, the cavity is

filled to a height that is 0.5 cm below the top (seen as the line below the top edge of

the cavity). The remaining 0.5 cm is air with a radiating boundary condition. The

outer boundary of the cavity is PEC.

Next we compare measured and simulated incident S-parameters in order to access

the accuracy of the model. Figure 7.5 shows the magnitude and phase, respectively,

of the measured and simulated incident S-parameters between each transmitter and

all receivers. The magnitude and phase agree best when the receivers are on the same

level as the transmitter. In this case, the magnitude agrees generally to within 3 dB,

for all three levels, and the phase agrees to within 30 degrees, which is approximately

λ/10, a common metric for many microwave systems. For measurements between

antenna levels in Figure 7.5, the agreement is not as good in magnitude, but the

phase error remains similar to the previous cases. For cross-level measurements, the

agreement is not as good in magnitude, but similar phase. This also shows that the

one-way path loss across the cavity is approximately -50 dB, so we expect any multiple
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Figure 7.4: HFSS CAD model of the imaging cavity. Twelve panels contain three
bow-tie antennas each. The bottom of the cavity is PEC, it is filled with
the coupling fluid up to the visible line, and the top surface radiates to
air.

scattering to be localized. This partially justifies our approximating the cavity dyadic

Green’s function with the lossy free-space dyadic Green’s function.

When computing the incident fields, the center of the cavity was meshed with a

coarse Cartesian grid of sparse unassigned sheets, shown in Figure 7.6. Sheets are

spaced every 5 mm in the x, y and z directions. The spacing is approximately λ/5

at 2.75 GHz in the fluid with relative permittivity of 21. We have found that this

helps constrain the adaptive meshing of HFSS when we obtain the incident fields by

interpolating the FEM mesh onto a fine Cartesian grid as we did in Chapter V.

When simulating the structure, with or without scattering targets, we use a con-

vergence criterion of ∆S = 0.02 which is generally reached in 7 adaptive meshing

iterations. A typical simulation completed with approximately 1.4 million tetrahedra

using 23.5 GBytes of RAM and swap space to obtain a full 36 × 36 S-matrix. Sim-

ulations took approximately 25 hours on a dual 2 GHz E5504 Intel Xeon (2x Quad
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Figure 7.5: Measured and simulated magnitude and phase of incident S21 between
each of the three transmitting antennas and all receivers. Solid: measured.
Dots: HFSS. The groupings from left to right are the eleven receivers
of each level (middle, top, bottom), repeated for the three transmitters
(middle, top, bottom), plotted counterclockwise when viewed from above
for a given receiver level. For example, data 38:48 are middle receivers
and top transmitter. The magnitude and phase agree best for transmitters
and receivers on the same level (i.e. data 1:11, 50:60, and 98:108).

166



Figure 7.6: HFSS CAD model of the imaging cavity with mesh of unassigned sheets
to constrain the adapting meshing of HFSS for field interpolation. Sheets
are spaced every 5 mm in each direction.

Core) desktop with 24 GBytes of RAM. Figure 7.7 shows a typical convergence rate

as a function of tetrahedra.
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Figure 7.7: HFSS convergence with number of tetrahedra for each adaptive meshing
step.

We obtained the incident fields for only the three transmitters. The incident fields

for the receivers were obtained through rotation, where we assume the 12 panels of the

experimental cavity are identical. The incident fields were sampled on a 17 cm × 17

cm × 18 cm grid with 1 mm spacing, which is λ/24 at 2.75 GHz in a fluid with relative

permittivity 21. In simulation, the average transmit power was 1 Watt, so, from
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transmission line analysis, the line voltage is given by ao =
√

(2PaveZo) =
√

(2Zo),

which is used in Eqns. (7.1) and (7.2). The phase of ao is zero because the S-parameter

reference planes of the HFSS model and the experimental cavity were identical.

Figure 7.8 shows three cross cuts of the z-component of the incident electric field

through the center of the cavity for the center transmitter in a fluid of relative per-

mittivity of 21 and conductivity 0.475 at 2.75 GHz. The coordinate origin is at the

center of the cavity, and the transmitter is located on the positive x axis. The effects

of the cavity on the incident field are seen in Figure 7.8(a) where the fields are guided

by the walls of the cavity; the coaxial feeds are also visible; the fluid-air interface is

visible in Figures 7.8(b) and 7.8(c).

7.5 Image Reconstructions

7.5.1 Synthetic Data

We first test the BIM and numerical characterization using synthetic data from

HFSS. This is to assess the performance of the algorithm and source geometry under

near ideal circumstances. We simulated the scattered field S-parameters of simple

numerical objects and use these data as measurements in the inversion algorithm.

HFSS scattered field data includes any multiple scattering between the object and

the cavity. The background medium had a relative permittivity of 21 and a conduc-

tivity of 0.475 Siemens/m. The incident fields were computed with these background

parameters and used in volume integral equations.

Example 1 : We first used HFSS to simulate the scattered field S-parameters for a

single 1.5 cm diameter sphere located at (x,y,z) = (0,0,2cm) with four combinations

of relative permittivity and conductivity: (40, 1), (40, 0), (10, 1), (10, 0). The HFSS

model is shown in Figure 7.9. Figures 7.10 - 7.13 show images of the first and fourth

BIM iterations for each object. As shown, in some cases, the BIM steps were essential
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Figure 7.8: Cross cuts through the center of the cavity of the z-component of
the incident electric field due to the middle transmitter. The scale is
20log10(|Re{Ez,inc}|) of the unnormalized field. a) horizontal x-y, b) ver-
tical x-z, c) vertical y-z planes.
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in recovering the correct property values of the sphere, in other cases, the relative

permittivity was improved at the expense of the conductivity value. These images

show that the source geometry and numerical characterization are adequate for the

retrieval of some object property combinations, but not others. This fact, together

with the visible artifacts, suggests that the images could be improved with a denser

source geometry.

Figure 7.9: HFSS model of a simple sphere use to generate synthetic scattered field
S-parameters.

Example 2 : Next we imaged a more anatomical, albeit unrealistic, numerical

breast phantom. The numerical phantom in shown in Figure 7.14. The breast is 9

cm at the widest point, and 6 cm deep. The outer layer is 2 mm thick and meant to

mimic a mismatch layer, for example a layer with an effective permittivity representing

both skin and subcutaneous fat. The inclusion is 2 cm in diameter. The dielectric

properties of the outer layer, glandular tissue, and inclusion, respectively, are (ǫr, σ)

= {(10, 0.3), (23, 0.475), (42, 0.8)}. We assume we know the volume region of the

breast, so mask that volume excluding all other points during inversion. Figure 7.15

shows the reconstructed relative permittivity and conductivity after 3 iterations for

three cuts. The relative permittivities of the inclusion and the skin layer are well

recovered. The conductivity of the inclusion is also recovered, but the skin is not.
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Figure 7.10: Reconstructions of a single sphere (ǫr, σ) = (40, 1) located at (x,y,z) =
(0,0,2cm) of Example 1. Left and right columns are relative permittiv-
ity and conductivity, respectively. Top row is the Born approximation.
Bottom row is BIM iteration 4. Here, iterations help retrieve the relative
permittivity in c), but the Born approximation yielded better conduc-
tivity in b).
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Figure 7.11: Reconstructions of a single sphere (ǫr, σ) = (40, 0) located at (x,y,z)
= (0,0,2cm) of Example 1. Born iterations helped retrieve the relative
permittivity in c), and are essential in recovering the conductivity in d).

Both sets of images suffer from artifacts; the twelve-pointed pattern in Figures 7.15(e)

and 7.15(f) is due to the sparse spatial sampling of the antennas and indicates that

the images can be improved with more angular views.

Example 3 : To push the algorithm, we imaged a phantom which included a skin

layer, fat layer, glandular tissue, chest wall, and inclusion, with relative permittivity

and conductivity, respectively, of (45, 1.6), (5.1 0.16), (21, 0.475), (52, 2.0), and (40,

1.0). The HFSS model is shown in Figure 7.16. The reconstructions are shown

in Figure 7.17. In this case the algorithm failed to recover the contrasts. This

suggests that either 1) the object is too different from the background for the BIM

to converge, 2) object-cavity interactions are too strong to use the free-space dyadic

Green’s function, or 3) images cannot be constructed if the chest wall is not modeled,

meaning that it is necessary to model the chest wall for the incident fields and the

dyadic Green’s function.
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Figure 7.12: Reconstructions of a single sphere (ǫr, σ) = (10, 1) located at (x,y,z) =
(0,0,2cm) of Example 1. Born iterations helped the recovery of the low
permittivity in c), but at the expense of the correct conductivity value
which was better in with the Born approximation in b).
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Figure 7.13: Reconstructions of a single sphere (ǫr, σ) = (40, 0) located at (x,y,z)
= (0,0,2cm) of Example 1. Born iterations helped bring out the proper
conductivity value in d).

Figure 7.14: HFSS CAD numerical breast phantom of Example 2. The inclusion is 2
cm in diameter with relative permittivity and conductivity contrasts of
2:1. The skin layer is 2 mm thick.
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Figure 7.15: Reconstructions of the HFSS numerical breast phantom in Example 2
after three iterations. Left and right columns are relative permittivity
and conductivity, respectively. Rows top down are cuts at x = 0 cm, y =
0 cm, and z = 2.5 cm. The relative permittivity of the skin and inclusion
are well recovered. The conductivity of the inclusion is recovered, but
both images contain many artifacts.
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Figure 7.16: HFSS CAD numerical breast phantom with skin layer, fat layer, glandu-
lar tissue and chest wall of Example 3. The inclusion is 1 cm in diameter
with relative permittivity and conductivity contrasts of 2:1.
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Figure 7.17: Reconstructions of the HFSS numerical breast phantom which includes
the chest wall of Example 3. Left and right figures are relative permit-
tivity and conductivity, respectively. The object could not be recon-
structed.
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Example 4 : Finally, we studied the effects of different background permittivities

when forming images. This represents a case in experiment where the measurements

are taken in a fluid with some set of properties, but the fluid properties we use in

the model are slightly off. We formed images using HFSS scattered field data of the

sphere with (ǫr, σ) = (40, 0) in a background of (ǫb, σ) = (21, 0.475), but where we

use incident fields from five different background permittivities: {20, 20.5, 21 (again),

21.5, 22} and the same conductivity.

Figure 7.18 shows 3D cross cuts at the fourth BIM iteration for all five back-

grounds. Figures 7.18(e) and 7.18(f) are the correct images. Notice that an error

in the background permittivity of 1, or 5%, is enough for the reconstructed object

contrast to oscillate, demonstrating that reconstructions are very sensitive to our

knowledge of the background properties.

7.5.2 Experimental Data

In the experimental system, we imaged simple plastic objects as well as gelatin

breast phantoms. The objects were suspended from a platform and rotated to 12

positions in 30 degree increments. Scattered field S-parameter measurements from

each position were combined to yield a full 36 × 36 S-parameter matrix which was

used in the inverse scattering algorithm.

Experiment 1 : We imaged a single acrylic sphere, shown in Figure 7.19. The

diameter of the sphere was 2.54 cm, with properties (ǫr, σ) = (2.7, 0). The sphere

was located at approximately (x,y,z) = (1.5 cm, 1.5 cm, 0). Figure 7.20, shows the

reconstructions after 4 iterations of the x-y plane. The inversion domain is masked so

that only a cylindrical region containing the rotated object is imaged. We also imaged

two acrylic spheres, shown in Figure 7.19. Figure 7.21, shows the reconstructions after

4 iterations. In both cases, the relative permittivity is recovered, and the conductivity

contrast is correctly valued but the shape is incorrect. There are also many artifacts
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Figure 7.18: Image reconstruction sensitivity to background permittivity. Left and
right columns are relative permittivity and conductivity, respectively.
Data was generated in background of (21, 0.475). Reconstructions with
background relative permittivities of {20, 20.5, 21, 21.5, 22} for rows 1
through 5 respectively. Recovered contrasts of the sphere oscillate about
the background.
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present. Given that the imaging algorithm could recover the single sphere using HFSS

data, we can attribute these discrepancies to differences between the experiment and

the model.

(a) (b)

(c)

Figure 7.19: Test objects and coupling fluid for Experiment 1. a) Single suspended
acrylic sphere. b) Two acrylic spheres. c) Cavity filled with the coupling
medium. Objects are suspended and rotated from the nylon platform.

Experiment 2 : Finally, while the primary system concerns a cavity having an-

tennas which operate at 2.75 GHz, we also built a lower frequency cavity where the

antennas operate at 915 MHz. This cavity was numerically characterized using the

same methods. Figure 7.22 shows the cavity with three acrylic spheres. Two spheres

are located in the x-y plane, while the third is positioned at approximately (x,y,z) =

(4 cm, -3 cm, 5 cm). We imaged the relative permittivity and conductivity and the

results after 2 iterations are shown in Figure 7.23. The shape and permittivity of the

two in-plane spheres are well recovered. The third sphere is also detected but cut

off at the upper left of the imaging domain. Artifacts are also present, but this ex-

ample better demonstrates that the numerical characterization, BIM, and free-space
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Figure 7.20: Reconstructions of the single acrylic sphere of Experiment 1 shown in
Figure 7.19(a). Left: relative permittivity. Right: conductivity. The
permittivity is recovered well but the shape in the conductivity is not
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Figure 7.21: Reconstructions of the two acrylic spheres of Experiment 1 shown in
Figure 7.19(b). Left: relative permittivity. Right: conductivity. The
permittivity is again recovered well but the shape in the conductivity is
not.
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Green’s function are capable of recovering objects in this cavity and source geometry.

It should be noted that images formed with data at 915 MHz are less susceptible

to modeling errors because the cavity and objects are electrically smaller, but the

resolution is reduced.

Figure 7.22: Second cavity with antennas designed to operate at 915 MHz of Experi-
ment 2. Three acrylic sphere are suspended (one visible). Cavity is filled
with fluid for imaging.
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Figure 7.23: Reconstruction of the relative permittivity and conductivity of three
acrylic spheres using a cavity operating at 915 MHz from Experiment 2.
The two spheres in plane are well recovered, and the third detected at
the upper left of the image.

7.5.3 Discussion

Overall, the imaging algorithm, numerical characterization and experiment worked

with some success, and there are several areas for continued investigation.
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First, Examples 1 and 2, and also Experiments 1 and 2, validate the technique

described in this chapter showing that the numerical characterization of the cavity

incident fields and the use of the vector Green’s function formulation linking the

incident fields to the inverse scattering algorithm can be used to successfully form

images in a cavity geometry. Examples 1 and 2 demonstrate the consistency of the

method using synthetic scattered field S-parameter data. Experiments 1 and 2 show

that the characterization and experiment agreed enough for the BIM to recover the

location and permittivity of the test objects. More realistic phantoms and lower

contrast phantoms will help further confirm the methodology.

Second, in Example 1, although some permittivity and conductivity combinations

of the sphere were recovered, others were not. Given that the data was synthetic,

this points to inherent imaging ambiguities in the simultaneous retrieval of both

permittivity and conductivity in the inverse scattering problem. Possible solutions

are increasing the number of unique data, or including prior information about the

relations between permittivity and conductivity in tissue.

Third, the success of the algorithm in Example 2 in recovering the partial breast

phantom suggests that our use of the lossy free-space dyadic Green’s function in the

forward solver of the BIM did not grossly affect image reconstruction in this case.

This is keeping in mind that the synthetic scattered field S-parameter data did include

any multiple scattering between the phantom and the cavity.

Fourth, in light of the successful reconstruction of the simple phantom in Example

2, the failure of the algorithm to recover the more complete breast phantom in Ex-

ample 3 points to the need to model the chest wall. This can be done by including it

in the incident field computations but it may also be necessary to estimate the cavity

dyadic Green’s function. This is an area to be investigated.

Lastly, Example 4 shows that we must know the background relative permittivity

to within 5% of the actual or else risk incorrectly estimating whether the contrasts
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are higher or lower than the background. An equivalent error can arise from a cor-

rect background permittivity but incorrectly measuring the dimensions of the cavity.

We suspect that the very high recovered conductivity values in both Experiments 1

and 2 may be due in part to these types of systematic errors. This demonstrates

the difficulty in achieving the necessary consistency between the model, experiment,

characterization, and imaging algorithm to accurately form microwave breast images

of diagnostic quality.

7.6 Conclusion

In this chapter, we used the vector Green’s formulation and numerical simulation

to characterize an experimental breast imaging cavity. We used HFSS to numerically

estimate the incident fields of the antennas in the cavity and used our understanding

of the vector Green’s function to interface the numerical characterization with our

imaging algorithm and S-parameter based experimental setup. The imaging algorithm

recovered both the numerical and experimental test objects with some success.

Though much work remains in developing methods to help better match the model

to the physical setup, this experiment shows that the techniques developed in the

previous chapters were successful in providing a clear path in order to characterize

near-field microwave breast imaging systems. Any current or future cavity based

imaging systems can take advantage of some of these techniques.
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CHAPTER VIII

Acoustic Inverse Scattering Experiment

8.1 Introduction

In this chapter, we will give the analogous treatment to acoustics as we did to

the electromagnetic inverse scattering problem in Chapters IV-VII in an effort to

carry the formalism from those chapters to the task of calibrating an acoustic inverse

scattering experiment. The acoustic source-scattering matrix formulation will be

presented along with a propagation model. Next we will discuss acoustic source

characterization and a new self-calibration technique based on the nonlinear inversion

of the acoustic propagation model. We will derive the acoustic analogue of the vector

Green’s function from Chapter V. Finally, results from the application of the self-

calibration technique to commercial ultrasound transducer probes will be presented,

as well as images of simple targets from the inverse scattering algorithm.

There are several key differences between the experimental acoustic and microwave

problems that should be pointed out, especially with regard to source characterization.

First, we are unable to simulate acoustic transducers as completely as we can sim-

ulate antennas. The transducer elements of both single-element focused transducers

as well as commercial ultrasound probes are complicated amalgams of piezoelectric

material, backing, and matching materials. It is possible to X-ray the transducer for

spatial size, but this does not give us information about the boundary conditions. In
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Table 8.1: Comparison between ultrasound and microwave spatial scales
Background Velocity Frequencies Wavelengths λ/10

Microwave 3× 108/
√

(20) m/s 1 - 3 GHz 7cm - 2 cm O(mm)
Ultrasound 1500 m/s 1 - 3 MHz 1.5 mm - 0.5 mm O(10 µm)

the microwave problem HFSS gave us a precisely defined way of comparing experi-

ment and simulation through S-parameters. We do not have an analogous simulator

in acoustics.

Second, the acoustic problem size and operator frequencies differ greatly from

the microwave problem, as listed in Table 8.1. While the GHz operating frequencies

and speed of light are the primary challenge for microwave circuits, the spatial wave-

lengths and antenna sizes are on the order of centimeters, making the construction

of antennas and setups by hand accurate enough. For the acoustic problem, the op-

erating frequencies are MHz making for simpler electrical components, however the

acoustic wavelengths in water are submillimeter. Thus positioning and alignment are

often done with optical equipment and cannot be done by hand or by eye, because

distances are hundreds of wavelengths.

Last, the acoustic source-scattering formulation gives the same transmission line

treatment to the feed of the acoustic transducer as we had in the microwave case.

However, for the acoustic problem, the electrical length in the circuit is so large that

microwave network analysis is not necessary. Also, acoustic measurements are typi-

cally not taken with a network analyzer, only an oscilloscope, nor are the transmission

lines calibrated as would be necessary to carry out network analysis. Thus, instead

of dealing with left and right going waves on the transmission line, we only deal with

the total line voltage in experiment. Thus, we need to modify the source-scattering

model somewhat to account for this.
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8.2 Multipole Propagation Model for Acoustics

In this section, we will first present the same source scattering matrix formulation

as was presented in Chapter IV but for acoustic sources. Using it we will derive a sim-

ilar propagation model relating the transmit coefficients of two acoustic transducers

to the voltage measurements between them.

8.2.1 Field Expansion and Translation Relations

The free-space scalar wave functions are given by, [52]

ψlm(r) = zl(kr)Ylm(θ, φ) (8.1)

where zl(x) in any one of jl(x), yl(x), h
(1)
l (x), h

(2)
l (x) and Ylm(θ, φ) are the spherical

angular harmonics. A pressure field can be expanded about a source in terms of

incoming and outgoing wave functions as

φ(r) =
∑

lm

(almℜψlm(r) + blmψlm(r)) (8.2)

where alm and blm are the multipole coefficients for incoming and outgoing harmonics,

respectively, and ℜ means the regular part of the corresponding Bessel function.

In the case where we have a field radiating from a frame i and incoming in frame

j the fields in each frame are given by

φ(ri) =
∑

lm

bilmψlm(ri) (8.3)

φ(rj) =
∑

lm

ajlmℜψlm(rj) (8.4)

(8.5)

Then, from the addition theorem for scalar wave functions, the coefficients of each
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frame are related by

ajl′m′ =
∑

lm

αji
l′m′,lmb

i
lm (8.6)

where αji
l′m′,lm is the translation matrix given in [52] and is evaluated with the vector

that points from frame i to frame j.

8.2.2 Acoustic Source Scattering Matrix Formulation

Following [83], and analogous to the antenna source scattering matrix formulation,

the acoustic source is connected to a shielded transmission line, where ao and bo are

complex outgoing and incoming modes, respectively, on the transmission line. We

relate the modes on the transmission line to the pressure field expansion coefficients

through a linear model

bo = Γao +
∑

lm

ulmalm (8.7)

blm = tlmao +
∑

l′m′

Slm,l′m′al′m′ (8.8)

where tlm and ulm are the transmit and receive coefficients, respectively, and Slm,l′m′

captures the passive scattering properties of the acoustic source, much like a T-matrix.

Also, Γ is the reflection coefficient seen looking into the device.

From electro-acoustic reciprocity, the following relations between the transmit and

receive coefficients can be derived, [83],

ulm =
Zo

2ρock2
(−1)mtl,−m (8.9)

Sl,m,l′m′ = (−1)m+m′

Sl−m,l′,−m′ (8.10)
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where ρo, c, and k are the background density, sound speed, and wave number,

respectively, and Zo is the characteristic impedance of the line.

8.2.3 Relation to Total Line Voltage

The source scattering matrix formulation is derived using the left and right trav-

eling line voltages feeding the acoustic source. This was advantageous for the mi-

crowave problem because it made the extension to S-parameters quite natural. Given

the long electrical wavelengths at ultrasound operating frequencies (1-3 MHz), full

network analysis is not usually performed; there is no need to define a reference plane

on the transmission line, and we use oscilloscopes to measure only the total line volt-

age. However, the electrical impedance (and so reflection coefficient) of the acoustic

source does play a part. Here we will outline the assumptions necessary to deal with

the source scattering matrix in terms of the total line voltage.

The total line voltage is given as Vo = ao + bo. If the acoustic device is purely

receiving, we expect no input mode, ao = 0 so bo = Vo, which we define as the total

output voltage on the line Vout.

Vout = bo =
∑

lm

ulmalm (8.11)

If the device is purely transmitting, and no other device is transmitting so there

are not other incoming waves (alm = 0), then blm = tlmao and bo = Γao. Defining the

total line voltage now as Vin

blm = tlm
1

1 + Γ
Vin (8.12)

It is enough to lump the effects of the reflection coefficient into the reciprocity

relations where the source model is now
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Vout =
∑

lm

ulmalm (8.13)

blm = tlmVin (8.14)

with

ulm = cr(−1)mtl,−m (8.15)

cr =
Zo(1 + Γ)

2ρock2
(8.16)

where we define cr as the reciprocity constant.

It may be difficult or impossible to measure Zo, Γ, and possibly the other co-

efficients accurately (especially with commercial ultrasound probes). However, we

see that ulm and tlm are simply linearly proportional by systematic constants. The

important part of the reciprocity relation is the dependence between ulm and tlm on

−m.

8.2.4 Propagation Model

Let there be two acoustic sources, which could be transducers elements on a scan

head, one transmitting in frame i, the other receiving in frame j, both have their

own field expansion and set of transmit and receive coefficients. Assume no multiple

scattering between the sources. Using Eqn. (8.6), the input and output voltage of

the two devices are related by

V j
out = V i

in

∑

l′m′

ujl′m′

∑

lm

αji
l′m′,lmt

i
lm (8.17)

Substituting Eqn. (8.15) and taking m′ → −m′ we have the acoustic propagation
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model

V j
out = V i

inc
j
r

∑

l′m′

(−1)m
′

tjl′m′

∑

lm

αji
l′,−m′,lmt

i
lm (8.18)

which is analogous to the antenna propagation model derived in Chapter IV.

Here, cjr depends on the characteristic line impedance and reflection coefficient on the

receiver side.

8.3 Ultrasound Source Characterization

In the antenna characterization problem, we took advantage of the fact that we

could make our commercial simulation package (HFSS), network analyzer, and an-

tenna construction completely consistent from end to end. In the ultrasound problem,

however, we are hard pressed to do any one of these three. First, we do not fabri-

cate the ultrasound transducers ourselves. They are a complicated assortment of

piezoelectric resonator, matching layer (to water), impedance matching (to driving

circuit), grounding layer, plastic membrane, water proofing, and focusing lens, [5]. It

is possible to obtain a rough mechanical layout by X-raying a given transducer, but

the exact material properties and boundary conditions are nearly impossible to re-

verse engineer. Also, the mechanical scales are submillimeter. Second, even if all the

mechanical properties are known, simulating the electro-acoustic response requires a

multi-physics simulation package which can handle anisotropic piezoelectric material.

Last, because we do not calibrate an oscilloscope as we do a vector network analyzer,

linking the simulation to the measurements is difficult. A well known package called

Field II [140], can simulate the free space radiation of a prescribed array of transducer

apertures. It is a widely popular method for simulating beam patterns and apodiza-

tions. However, it is based simply on the linear impulse response of ideal apertures.

It is unclear how to properly link the results of Field II to measurements in a way
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that yields absolute phase calibration of the transducer incident field over hundreds

of wavelengths, especially given the uncertainty in the transducer features and their

sizes. The point is, we want to avoid having to make too many assumptions in our

method of characterizing the transducer; we are seeking a method that keeps close

to the formalism of the source-scattering matrix and multipole propagation model

because of the rigor and versatility they provide if the transmit coefficients can be

found.

Without a full electromechanical simulation of our transducers, we are left with

two options in characterizing our transducers and finding the transmit coefficients:

direct field measurements using a hydrophone, or inverting the propagation model.

We will briefly discuss hydrophone field measurements, but will concentrate mainly

on the inversion of the propagation model. The latter represents a new multi-source

self-calibration technique which we have studied in some depth.

8.3.1 Hydrophone Characterization

Here we describe our early attempts of transducer characterization with a hy-

drophone and some thoughts for future work in this area.

Figure 8.1 shows one of our early attempts to characterize a large transducer

element with a hydrophone. The transducer has a focal spot approximately 2 cm

from the face of the lense. The idea was to find an equivalent source that, given an

arbitrary voltage input, would appear to radiate from the focal spot. The transducer

was mounted on a micropositioner and gimbal and a filament was used to place the

focus at the center of rotation of the rotator. The hydrophone was positioned on a

3-axis automated positioner so that it could be aligned coincident with the bore site of

the transducer. A pulse was sent to the transducer, and both it and the hydrophone

response were recorded. The transducer was then rotated about its focus for another

data acquisition. The reason for doing this is that the hydrophone is not a point, but
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has a finite sensing face and its own radiation pattern. The best way, at the time,

of minimizing the need to account for the hydrophone pattern was to keep it always

pointing radially at the transducer. A Cartesian 3D scan of the field of a stationary

transducer would require an extra calibration step to account for this.

Figure 8.1: Photo of an early hydrophone characterization experiment. A transducer
is gimballed and mounted on a translator. The focus of the transducer is
positioned at the center of rotation of the rotational stage. A hydrophone
is also gimballed and positioned with a 3-axis micropositioner.

At the time of this experiment, the source-scattering matrix was not known to us,

but the goal remained the same in that we were seeking an equivalent source. The

approach was to fit the measured hydrophone time traces with a series of Gaussian

windowed sinusoids emanating from a compact array of point sources near the focal

spot of the transducers. This fitting procedure was successful, but using it in an

inverse scattering experiment was not possible at the time.

Had the source-scattering matrix formulation been know to us at the time, then

the approach would be to solve a linear inverse problem for the transmit coefficients

192



given the pressure fields measured by the hydrophone,

φ(rn) = Vn
∑

lm

tlmψlm(rn) (8.19)

where rn are the locations of N hydrophone pressure field measurements Vn. Here,

Vn is the frequency component of the recorded voltage time trace.

The main challenges with hydrophone characterization are 1) alignment and posi-

tioning, 2) removing the effects of the hydrophone, and 3) repeatability. Repeating a

hydrophone characterization is difficult, say for instance if someone drops the trans-

ducer warranting another characterization, because alignment is so time consuming.

Furthermore, unless the hydrophone has been absolutely calibrated (which it often

is), then its pattern and frequency response must be taken out.

More recently in the BRS Ultrasound group, a 6-axis robotic arm was used in the

hydrophone characterization of CMUT (capacitive micromachined ultrasound trans-

ducer) arrays. The robotic arm, with its isocentric software, allows taking samples of

the radiated pressure field with the hydrophone radially pointed at a stationary trans-

ducer, along the radial arc. Alignment is still a challenge, but this setup approaches

an ideal measurement setup.

Interestingly, given the simplicity of a CMUT structure, successful electro-mechanical

simulations have been performed which agree with measurement, [141]. This opens

up the possibility of using simulation to obtain the transmit coefficients and be able

to apply more of the techniques of Chapter IV to ultrasound devices. This is left for

future work.

8.3.2 Nonlinear Inversion of the Propagation Model

In the absence of hydrophone characterization of ultrasonic transducers, the next

idea is to stay within the formalism of the source-scattering matrix and attempt to

invert the propagation model directly for the transmit coefficients. This represents
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a hydrophone-less characterization, and could prove quite useful. The envisioned

setup is to have two or more transducers in a water bath, with know locations and

properly measured transmit and receive line voltages, in which we measure the pair-

wise response and build an inverse problem around Eqn. (8.18).

The advantages of this approach are that all the necessary physics are contained

in the propagation model: the translation matrices capture wave propagation, and

reciprocity relates the different transmit coefficients to each other. The disadvantage

is that because we are dealing with absolute phase, the locations of the transducer

reference frames must be know with submillimeter accuracy. Also, the propagation

model is nonlinear in the transmit coefficients. In the case of identical transducers,

the problem is polynomial nonlinear, but solvable. In the case of distinct transducers,

the problem in nonlinear and non-unique.

8.3.2.1 Forward Model

The cost function for a nonlinear problem is, generally, [55]

2S(m) = ‖g(m)− d‖2D + ‖m−ma‖2M (8.20)

The elements of the forward model and data vectors from the propagation model

are, respectively,

gji(m) = cjr
∑

l′m′

(−1)m
′

tjl′m′

∑

lm

αji
l′,−m′,lmt

i
lm (8.21)

dji =
V j
out

V i
in

(8.22)

where we always exclude the self term. The vector of model parametersm contains the

transmit coefficients of the kth transducer, written in vector form over all harmonics
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as

m =



















t1

t2

...

tk



















(8.23)

The forward model is a nonlinear function of the transmit coefficients, but only

polynomial nonlinear to second order. In the case that all the transducers in the

problem are identical, then it has quadratic form, where we are essentially solving

the problem c = x2. However, for multiple distinct transducer elements, where each

transducer has its own set of transmit coefficients, the forward model takes the form

c = xy. In the former case, the answer is unique to within a sign. For the latter, it

is impossible to uniquely separate the product of two unconstrained variables.

The weakly nonlinear properties of the forward model point to two things: 1) we

should attempt to solve a self characterization problem only when we can assume

all the transducers are identical, or when we can correct the data so the elements

appear identical (as in Figure 8.16 shown later in the experimental section), and

2) the polynomial form of the forward model means that we will be able to derive

an analytical expression for the step length in a conjugate gradient minimization,

enabling a fast gradient search.

To facilitate the derivations which follow, we can write the forward model in

matrix notation as

gji(m) = ttjNαjiti (8.24)

where ()t is vector transpose, N is a diagonal matrix containing cr(−1)m, and the

rows of αji are evaluated at m′ → −m′.
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8.3.2.2 Gradients

Assuming the data are independent, the gradient vector is given by

γ̂ =
∑

ji

(

∂gji

∂m

)∗
1

σ2
ji

(

gji(m)− dji
)

+C−1
M (m−ma) (8.25)

where ∂gji/∂m is the vector of partial derivatives of the forward model with respect

to the model parameters.

We can compute the partial derivatives of Eqn. (8.24) with the help of the fol-

lowing matrix identities

∂xTBx

∂x
=
(

B+BT
)

x (8.26)

∂xTa

∂x
=
∂aTx

∂x
= a (8.27)

If the transducers are identical, t = tj = ti, for all i and j then

∂gji

∂t
=
(

Nαji + (Nαji)
t
)

t (8.28)

If the transducers are different, then the gradients are

∂gji

∂ti
= (Nαji)

ttj (8.29)

∂gji

∂tj
= Nαjiti (8.30)

8.3.3 Conjugate Gradient Updates

Regardless of whether we are solving for identical or different transducer transmit

coefficients, the conjugate gradient updates are defined
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mn = mn−1 − αnvn (8.31)

vn = γn + βnvn−1 (8.32)

where αn is the step length and γn is the steepest decent vector. βn is given by

βn =
〈C−1

M (γn − γn−1) , γn〉
〈C−1

M γn−1, γn−1〉
(8.33)

where <,> is a simple dot product.

8.3.4 Step length

We choose αn to minimize the cost function at each step. Substituting the ex-

pression for mn into the cost function

2S(mn) = ‖g(mn−1 − αnvn)− d‖2D + ‖mn−1 − αnvn −ma‖2M (8.34)

Because this forward model is only slightly nonlinear (polynomial), we will obtain

a polynomial in α, the minimum of which can be found using standard algebraic

techniques. To help the bookkeeping, we first write the the forward model in matrix

notation with two generic model vectors representing receivers and transmitters

gji(a,b) = at
jNαjibi (8.35)

where a and b are model vectors for receiver and transmitter positions respectively.

After substituting the update step, and rearranging it can be shown that

g(mn) = g(mn−1,mn−1)− αn (g(mn−1,vn) + g(vn,mn−1)) + α2
ng(vn,vn) (8.36)
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Substituting this into the cost function we have

2S(mn) = ‖rn−1 − αng1 + α2
ng2‖2D + ‖cn−1 − αnvn‖2M (8.37)

where

rn−1 = g(mn−1,mn−1)− d (8.38)

g1 = g(mn−1,vn) + g(vn,mn−1) (8.39)

g2 = g(vn,vn) (8.40)

cn−1 = mn−1 −ma (8.41)

The term g(mn−1,vn) is treating mn−1 as receivers and vn as sources, while

g(vn,mn−1) is the opposite. Writing out the vector norms

2S(mn) = ‖r‖2D − α(r, g1)D + α2(r, g2)D

−α(g1, r)D + α2‖g1‖2D − α3(g1, g2)D

+α2(g2, r)D − α3(g2, g1)D + α4‖g2‖2D

+‖c‖2M − α(c,v)M − α(v, c)M + α2‖v‖2M (8.42)

and using the fact that (a,b) = (b, a)∗, we can write this as a quartic polynomial in

αn

S(x) = ax4 + bx3 + cx2 + dx+ e (8.43)

where
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x = α (8.44)

a = ‖g2‖2D (8.45)

b = −2ℜ(g1, g2)D (8.46)

c = ‖g1‖2D + 2ℜ(r, g2)D + ‖v‖2M (8.47)

d = −2ℜ(r, g1)D − 2ℜ(c,v)M (8.48)

e = ‖r‖2D + ‖c‖2M (8.49)

Next, we must find the minimum of S(x) with respect to x. The first and second

derivatives of the quartic are given by

S ′(x) = 4ax3 + 3bx2 + 2cx+ d (8.50)

S ′′(x) = 12ax2 + 6bx+ 2c (8.51)

The leading term of the second derivative shows us that this quartic will, globally,

always be convex, because a is a square vector norm and always greater than zero.

For a convex quartic, there is either one global minimum, or there are at most 2

local minima and 1 local maximum. We can separate these cases by finding the

zeros of S ′(x), for which there is either 1 real root and two complex conjugate roots

(i.e., 1 global minimum of the quartic), or 3 real roots (i.e., 2 local minima and 1

local maximum of the quartic). In the latter case, we find the global minimum by

back substitution; any ambiguity that might arise from identical local minima (i.e.

different possible step lengths) has not been observed in practice to be a problem.

A cubic is one of the few polynomials for which the zeros can be determined ana-

lytically. There are several methods which can be found in math texts; we summarize
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one such method here. Given the following definitions for the cubic

f = a3x
3 + a2x

2 + a1x+ ao = 0 (8.52)

q =
3a3a1 − a22

9a23
(8.53)

r =
9a3a2a1 − 27a23ao − 2a32

54a33
(8.54)

∆ = q3 + r2 (8.55)

the roots of the cubic are determined in two cases

∆ ≥ 0 s =
3

√

r +
√
∆

t =
3

√

r −
√
∆

∆ < 0 ρ =
√

−q3

θ = arccos(r/ρ)

s = 3
√
ρeiθ/3

t = 3
√
ρe−iθ/3

(8.56)

where the real part of the cube root is taken. In the first case there is one real root,

and two conjugate complex roots. In the second case, there are three real roots. In

either case, the zeros are given by

z1 = s+ t− a2
3a3

(8.57)

z2 = −1

2
(s + t)− a2

3a3
+

√
3

2
(s− t)i (8.58)

z3 = −1

2
(s + t)− a2

3a3
−

√
3

2
(s− t)i (8.59)

To summarize, the procedure for finding the step length in this section broadly

demonstrates that, for any forward model that is polynomial in the model parame-
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ters, the optimal conjugate gradient step length, αn, can be determined by finding the

minimum of a polynomial that is of the forward model order squared. This reduces

to a root finding problem, which can be done numerically for any order, but becomes

more sensitive to numerical errors for very high order polynomials. This just means

that polynomials are a class of nonlinear forward model that do not require line min-

imization to find the optimal conjugate gradient step length. This can be beneficial

for large problems or in trying to carry analytical inversion methods to their limits.

8.3.5 Summary

In this section, we set up and derived a direct nonlinear optimization routine

to invert the acoustic propagation model for the transducer transmit coefficients.

All of the above steps were used to implement this nonlinear optimization routine.

Experimental results of this algorithm follow in the next section.

Much time was spent analyzing this acoustic inversion routine in simulation. These

simulations showed that the algorithm was derived correctly. With perfect data and

perfect knowledge of the source locations, the transmit coefficients for multiple iden-

tical sources could be recovered uniquely to within a sign, from a wide range of initial

conditions. It was also determined that when solving for multiple different transducer

transmit coefficients, that the synthetic measured data could be fit quite well, but the

solution was not correct and dependent on the initial condition, proving the point of

non-uniqueness alluded too earlier.

The physical interpretation of the uniqueness of this problem can explained this

way. For identical sources, if one source is positioned as the mirror image of the other,

then we know that the contribution to the radiation pattern from the measured re-

sponse should be split evenly in that direction. When identical sources are positioned

not as mirrors, but we are given enough angular looks and the associated source ori-

entations, then we can still recover the pattern correctly. For the case of different
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sources, a null in the radiation pattern of one source can be compensated by a strong

beam in the other. This effect cannot be separated by pair wise-measurements alone.

It should also be noted that this entire derivation was also carried out and studied

for the electromagnetic antenna problem. The only major difference is the addition of

more terms in the forward model, but the overall form, subsequent conjugate gradient

minimization, and interpretations are otherwise the same.

8.4 Ultrasound Probe Characterization Experiment

To test the nonlinear source characterization in the previous section, we built

the setup shown in Figure 8.2. This setup was also used for the inverse scattering

(next section) so that the characterization and imaging were performed in identical

geometries. Two commercial Phillips ATL L7-4 transducers are mounted facing each

other in a water tank. Each probe has 128 transducer elements in a linear array. The

probes are connected to a Verasonics data acquisition system, which was programmed

to collect all combinations of transmit and receive signals between the elements. The

mount was custom made out of king starboard. The mounting holes, shown in Figure

8.3, are separated by 1 cm to allow linear translation of the probes relative to one

another. The blue holders were created with the help of the U-M 3D Lab. The probes

were laser scanned and the scan was used to create a 3D CAD model of the holders.

The holders were then fabricated with a 3D printing system.

The idea for characterization was to take transmission measurements in probe

positions that would sweep out the imaging domain. This would allow us to sample

the field at points in the imaging domain and out at the receiver location, the hope

being that this would pin down the phase of the transmit coefficients, and so also the

incident field, everywhere. This setup, however, also means that we only use data in

plane for the characterization, which is a compromise we had to make to avoid going

to complicated 3D setups. The transducer elements of the L7-4 probe are known to
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Figure 8.2: Photo of setup for nonlinear source characterization and inverse scattering
experiment.

Figure 8.3: Top view of transducer positions. Mounting holes are spaced 1 cm apart.
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be 4 mm tall, 0.3 mm wide, with a spacing of 0.4 mm.

8.4.1 Time Domain Data

Figures 8.4 and 8.5 show a typical example of the signals recored from a water

shot, i.e., the incident field. The center transducer element of one probe fired a two

cycle pulse and was recorded by all the receivers of the opposite probe. This was

repeated for all the elements of the transmitting probe to create an entire data set.

The recorded time traces are plotted vertically, for each receiver. Figure 8.6 shows

the time trace of the center receive element.

The pulse was a two cycle pulse with a 5 MHz center frequency. The Verasonics

was set to sample at 4 samples per wavelength, giving a sample rate of 20 MHz. In

water, the wavelength at 5 MHz is 300 µm, which was the center frequency used for

the position inversion in the next section. The characterization and imaging were

performed at 3.75 MHz, where the wavelength is 400 µm in water.
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Figure 8.4: Typical time domain data for a water shot. The center element of one
probe was fired and the signal was received by all the elements of the
opposite probe. The color scale is digitized voltage.
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Figure 8.5: Close up of the traces in Figure 8.4.
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Figure 8.6: Time trace of the center receive element from the data in Figure 8.4.
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8.4.2 Position Inversion Setup and Virtual Sources

Before performing the characterization, we must know or assume the locations

and orientations of the transducer reference frames. This is not easily done by hand

with a micrometer, so we use time of flight, because it is far more accurate. The idea

is to record the time of flight of a pulse between all (or many) elements and solve

a triangulation problem by inversion for the position and orientation of one array

relative to the other. We assume we know the spacing of the array elements and that

all the elements lie on a line.

There are several experimental aspects to note at the outset. First, we use time

zero of the Verasonics time traces as a common reference. This is because the receive

channels of the Verasonics begin recording at the same time on each occurrence of a

transmit pulse. This is the only common reference we have between all the transmit

and receive data. Second, there is a delay in firing of the transmit pulse equivalent

to about one wavelength. Third, each transducer has a lens on its face with a lower

speed of sound. This lens is designed to focus the radiation from each element in the

elevation direction, so that focused beams used for everyday diagnostic ultrasound are

restricted to a thin plane. This lens then introduces a delay on both the transmit and

receive signals. Last, the pulse may be delayed in other ways either by the system,

the cables, or probe head, that we many not be able to quantify.

We measured the time of flight relative to the beginning of the time trace using

a simple envelope-max, shown in Figure 8.7. We accounted for the transmit pulse

delay by shifting the zero of the time axis forward. We accounted for the envelope

delay by subtracting half a pulse length in water from the time of flight measured at

the peak of the envelope. To properly account for the delay induced by the lenses,

one must solve Fermat’s least action integral for the two-layered boundary. While

this effort was undertaken by another member of the group for another project, it

was not used here. The effects of not accounting for the lenses, or other delays, in a
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time of flight position inversion are that we will find the location of a virtual source

behind the actual source location. We rationalize this with the following reasons: 1)

accounting for the lens in the propagation model inversion is not trivial and, even

if necessary, was deemed beyond the scope of what we wished to derive and test, 2)

if the lenses do not adversely effect the radiation pattern in the azimuth plane (the

plane of the array), then, using the virtual positions, we can solve for the transmit

coefficients of equivalent sources at the virtual locations. In doing so, the effects of

the lenses are accounted for by a free-space spatial offset. Finally, if we settle on

finding and using virtual source locations and transmit coefficients, we can now also

lump the effects of miscellaneous system delays into the virtual source location. This

was the reasoning going forward and the assumptions under which we performed our

computations. Figure 8.8 shows a diagram of the transition from what we believe to

be the actual system to the virtual source configuration.
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Figure 8.7: Envelope of time trace in Figure 8.6. The time of flight is determined by
the time of the envelope maximum less half the pulse width.

The forward model for the position inversion is diagrammed in Figure 8.9 and

given by
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Figure 8.8: Actual and virtual sources and receivers. The signal fires at t0, emanates
from the transducer at t1, arrives at the receiving transducer at t2, and
is recorded at t3. The virtual source and receiver lump any delays into a
spatial offset.

tij = rij/c (8.60)

rij = | − (c1 + div̂1) + c2 + djv̂2| (8.61)

di = ((128 + 1)/2− i)d, i = 1...128 (8.62)

dj = ((128 + 1)/2− j)d, j = 1...128 (8.63)

where tij is the time of flight between two elements, c is the speed of sound of water,

and rij is the distance between two elements. The vectors c1, and c2 point to the

centers of each array. The vectors div̂1 and djv̂2 point to the locations of the array

elements, with d being the separation of the elements.

To note, many of the modeling problems encountered here are not uncommon in

many ultrasound imaging systems. This is because we do not have control over the
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Figure 8.9: Actual and virtual sources and receivers. The signal fires at t0, emanates
from the transducer at t1, arrives at the receiving transducer at t2, and
is recorded at t3. The virtual source and receiver lump any delays into a
spatial offset.

construction of the transducers, and the electronic systems are not calibrated with

the same care as we calibrate microwave network analyzers. While standard LTI

modeling can be used to characterize the electronics of ultrasound systems by solving

for appropriate transfer functions, this was not something we were willing to do on

the Verasonics system, risking damage, given its recent purchase, heavy use, and cost.

8.4.3 Speed of Sound of Water

The speed of sound of the background water bath was determined two ways: 1)

reflection off a plate for a transducer stepped on a micrometer, and 2) measuring the

water temperature at the time the data was taken and converting it to speed of sound

using a lookup table [142]. Figures 8.10 and 8.11 show the reflection measurement

setup. We stepped the transducer on a micropositioner every 0.2” and recorded the

time of the zero crossing of the reflected pulse with an oscilloscope. The fit of a set
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of reflected pulse travel times is shown in Figure 8.12. The slope is the speed of

sound, determined here to be 1495.3 m/s. The temperature of the water for this data

was 24.3 oC. Figure 8.13 shows the speed of sound of pure water as a function of

temperature from [142]. At 24.3 oC, the sound speed is predicted from the curve to

be 1494.8 m/s. In general, these two methods agreed to within 1-2 m/s, which is an

error of 0.1% or approximately λ/1000 at 3.75 MHz. As a result, we routinely relied

solely on the temperature to determine the sound speed.

Figure 8.10: Photo of setup to determine the speed of sound of the water bath. From
left to right: digital readout thermocouple, oscilloscope, pulser/receiver,
micropositioner with transducer and reflection plate.

8.4.4 Position Inversion Results

After determining the time of flights between all elements, we minimized an L1

cost functional over Eqn. (8.60) using the publicly available Matlab function called

fminsearchbnd. This function modifies the built-in Matlab function fminsearch with a

nonlinear transformation of the model parameters to enforce bounded limits. We use

the L1 norm to automatically eliminate outliers in the time of flights created by the

envelop search.
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Figure 8.11: Photo of micropositioner with transducer to measure the speed of sound
of the water bath.
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Figure 8.12: Water speed of sound estimation frommicropostioner and reflection mea-
surements. Slope of the line is the speed of sound.
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Figure 8.13: Water speed of sound with temperature from literature.

We solved for the location and orientation of the second transducer relative to the

first. Thus, we let c1 = 0 and v̂1 = x̂ and the six model parameters are then the

elements of the vectors c2 and v̂2. The initial conditions used were c2,o = c ∗ tcenterŷ,

where tcenter is the time of flight between the two center elements and v̂2,o = −x̂

which assumes that the arrays are initially parallel.

This optimization took a few seconds to compute per transducer position on the

mount, and was done for each position used for characterization. The results are

plotted in Table 8.2 for seven positions spaced approximately 1 cm apart. From

the solved y coordinate, we see that the probe separation is consistent with our 1

cm spacing. From the solved x coordinate, we see that the receive array is shifted

along the array direction by nearly a millimeter. This was confirmed visually, and

corresponds to a translation of the receiver array by several array elements, shown

in Figure 8.14. We also confirmed this by inspecting the symmetry of the raw time

traces. Finally, from the solved y component of the orientation vector, we see that

the receive array is slightly tilted in the x-y plane. The z coordinate offset and z

orientation component we ignore, because 1) this inversion is not sensitive to that

dimension unless the array is grossly tilted in the x-z plane, and 2) these variations

are small compared to variation in the element radiation patterns in the elevation
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Table 8.2: Position inversion results for seven transducer positions
Position c2,x(cm) c2,y(cm) c2,z(cm) v2,x(m/m) v2,y(m/m) v2,z(m/m)

1 0.11 1.27 0.01 -0.999 -0.002 -0.001
2 0.07 2.24 0.01 -0.999 -0.003 0.000
3 0.07 3.25 0.02 -0.999 -0.004 0.000
4 0.08 4.25 0.00 -0.999 -0.004 0.001
5 0.09 5.24 0.00 -0.999 -0.005 0.000
6 0.10 6.24 0.01 -0.999 -0.005 0.003
7 0.11 7.25 0.03 -0.999 -0.003 0.001

direction.
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Figure 8.14: Split plot of the probe element positions. Bottom line and filled circles
are the element locations of probe 1 (reference). Open circles are the
element locations of probe 2 for all seven positions based on the position
inversion values of Table 8.2. The y-axis is compressed.

8.4.5 Characterization Results

Having estimated the locations of sources, we can now invert the propagation

model for the transmit coefficients. We do this in the frequency domain at 3.75 MHz.

This means that we will only be able to form images at this frequency. While more

frequencies will help the inverse scattering algorithm, a single frequency is sufficient

to confirm if the characterization and imaging algorithm pair are working together,

213



without the added computation cost. We chose this frequency because it was the

lowest frequency at which we could drive the transducers for clean signals. The lower

the frequency, the more leniency we are allowed for phase and position errors.

8.4.5.1 Characterization Data

Figure 8.15 shows the magnitude and real part of the incident field spectral com-

ponent at 3.75 MHz for one position between all combinations of transmit-receive

pairs. The anti-diagonal band is due to the fact that the elements are numbered

the same on each probe but the probes face each other. Notice the striations in the

data, especially the magnitude. This is attributed to inconsistencies in the Verason-

ics receive chain duplexing. The striations must be filtered before using this data for

characterization. In order to filter this effect, we smooth the complex data along each

anti-diagonal, because we expect the data to vary smoothly if we were to select any

transmit/receive pair and then step along each array. The filtered data are shown in

Figure 8.16 and are the data we use for characterization.
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Figure 8.15: Magnitude (a) and real part (b) of the incident field at 3.75 MHz for
all transmit/receive pairs. Scale is magnitude and real part of digitized
voltage.

We can use this data to look at the intrinsic alignment of the transducer arrays,

by looking at phase of the complex frequency component of each signal, shown in
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Figure 8.16: Data of Figure 8.15 smoothed along the anti-diagonals.

Figure 8.17. The main anti-diagonal, which represents elements directly across from

each other, shows a progressive phase shift of about half a wavelength, which is about

150 µm. This is corroborated by the position inversion and means that we were able

to align the probes parallel to within about λ/2 with the mount alone. However, this

also validates the need to use the position inversion.
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Figure 8.17: Phase of incident field at 3.75 MHz. Anti-diagonal shows that the probes
are not quite parallel and rotated about the z-axis.

8.4.5.2 Inversion Results

Here we give some results of the inversion of the propagation model with the

measured data above. Because we cannot take data out of plane, we only need to
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describe the radiation pattern in the imaging plane, and so we chose to invert for

multipole harmonics out to L = 8. We assume all the elements are the same, so we

are effectively assuming that we use the same source to sample the fields at all points

along the face of the probe.

Also, the elements of the second probe are rotated by about 180 degrees, so

rotation matrices were included in the propagation model to account for this based

on the position inversion results. These are the same rotation matrices used in the

antenna model, because rotation of the Yl,m angular harmonics is the same for vector

and scalar wave functions. After many trials, we found best results by using data

from a subset of elements from each probe. We used data from every tenth element

and two positions to obtain the results below.

Figure 8.18 shows the residual with each iteration of conjugate gradient mini-

mization. The residual drops monotonically, meaning that our algorithm was coded

correctly. The behavior of the residual is more complicated than for a typical linear

problem; the residual of a linear problem would look smoothly logarithmic.
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Figure 8.18: Normalized residual as a function of conjugate gradient iteration number.

Figure 8.19 shows the real and imaginary parts of the obtained transmit coeffi-

cients. This plot is essentially the spectral power of each multipole in the radiation

pattern.

Figure 8.20 shows the measured and predicted magnitude and phase of the data

for a subset of transmitter-receiver pairs. The groupings are receivers per transmitter
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Figure 8.19: Normalized transmit coefficients. a) real part, b) imaginary part. Hori-
zontal axis is the (l, m) harmonic index.

for the two positions. We see that the overall shape of the magnitude is well fitted,

and that the phase is fit quite well, to within 20 degrees. This again indicates that

the inversion procedure was working to correctly fit the data.
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Figure 8.20: Magnitude and phase of measured and predicted data for a sampling of
transmit and receive elements. a) Magnitude, b) phase. The apparent
groups in the magnitude plot are receivers for a given transmit element.

The pressure field computed with the transmit coefficient is shown in Figure 8.21.

This is the normalized magnitude in the plane of the probes, and is the incident

field we will use in the inverse scattering algorithm. The side lobes come from hav-

ing incomplete information in those directions; in other words, the fields are only

constrained where we took data with the second probe.
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Figure 8.21: Normalized magnitude of acoustic field in the transducer plane computed
with the solved transmit coefficients.

8.5 ”Vector Green’s” Formulation for Acoustics

Before turning to the inverse scattering algorithm, we must derive the proper

use of the incident field in the volume integral equations. Like Chapter V, where

we derived a vector Green’s function kernel to directly link the electrical properties

of an object to microwave S-parameter measurements, we can derive the analogous

operator for the acoustic problem which will link the acoustic properties of an object

to measured voltages by way of the acoustic source model. This kernel will be a

single argument scalar function specific to the receiver. We will again see that only

the normalized incident field is required to fully characterize an acoustic setup for

inverse scattering, provided that it is known accurately enough.

8.5.1 Setup

The scattered pressure field due to an inhomogeneous object is given from Chapter

II as
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φsca(r) =

∫

g(r, r′)O(r′)φ(r′)dV ′ (8.64)

where we define the object function O(r) as the linear operator

O(r) = k2o

(

δκ(r) + i
δα(r)

κoω

)

+ k2o∇′ · δρ−1(r)∇′· (8.65)

Let the pressure field about a transducer be written in terms of the multipole

expansion as

φ(r) =
∑

lm

(almℜψlm(r) + blmψlm(r)) (8.66)

with the accompanying transducer model

Vout =
∑

lm

ulmalm (8.67)

blm = tlmVin (8.68)

We next define the normalized incident pressure field by substituting the trans-

ducer model into the field expansion when the transducer is purely transmitting

φinc(r) =
∑

lm

blmψlm(r) (8.69)

= Vin
∑

lm

tlmψlm(r) (8.70)

= Vinφ̂inc(r) (8.71)

where φ̂inc(r) is the normalized incident field. We next define the normalized total
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field which is the total pressure field in the object due to a normalized incident field

φ̂(r) = φ(r)/Vin (8.72)

8.5.2 Vector Green’s Function analogue

The addition theorem for the scalar Green’s function is given by, [52],

g(r, r′) = ik
∑

lm

ℜψlm(r)ψ
∗
lm(r

′) (8.73)

where we have taken the case |r| < |r′|. Substituting Eqn. (8.73) into Eqn. (8.64)

and rearranging, we can write the scattered field in the frame of a transducer in terms

of incoming waves as

φsca(r) =
∑

lm

almℜψlm(r) (8.74)

where the multipole coefficients are

alm = ik

∫

ψ∗
lm(r

′)O(r′)φ(r′)dV ′ (8.75)

Substituting Eqn. (8.75) into the transducer model when in receive mode, Eqn.

(8.67), we have the output voltage as

Vout = ik
∑

lm

ulm

∫

ψ∗
lm(r

′)O(r′)φ(r′)dV ′ (8.76)

Rearranging this we can identify the acoustic analogue of the vector Green’s func-

tion, which we label as ĝ(r′),
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Vout =

∫

ĝ(r′)O(r′)φ(r′)dV ′ (8.77)

ĝ(r′) = ik
∑

lm

ulmψ
∗
lm(r

′) (8.78)

Finally, let there be two transducers, one transmitting in frame i, the other re-

ceiving in frame j. The total pressure field in the object is due to the transmitter.

Dividing both sides of Eqn. (8.77) by the transmit voltage we can write the scattered

field integral equation in terms of the normalized total field of the transmitter and

the input and output line voltages as

V j
out

V i
in

=

∫

ĝj(r
′)O(r′)φ̂i(r

′)dV ′ (8.79)

where ĝj(r
′) is the kernel for the receiver.

8.5.3 Reciprocity Relation

Last, by reciprocity, we can show that ĝj(r
′) is related to the incident field of the

receiver. Substituting the relations between transmit and receive coefficients, Eqn.

(8.15),

ĝ(r′) = ikcr
∑

lm

(−1)mtl,−mψ
∗
lm(r

′) (8.80)

and using the relation Y ∗
lm = (−1)mYl,−m in the wave function it can be shown that

ĝ(r′) = ikcr
∑

lm

tl,mψlm(r
′) (8.81)

which is the expansion for the normalized incident pressure field multiplied by a

scaling factor
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ĝ(r′) = ikcrφ̂inc(r
′) (8.82)

Finally, we can write the scattered field transmit/receive voltage ratio in terms the

normalized incident field of the receiver and normalized total field of the transmitter

as

V j
out

V i
in

= ikcr

∫

φ̂inc,j(r
′)O(r′)φ̂i(r

′)dV ′ (8.83)

This is the scattered field integral equation we will use in the cost function of the

inverse scattering algorithm.

8.6 Ultrasound Inverse Scattering Experiment

We use the same acoustic inverse scattering algorithm presented in Chapter II

to form images of compressibility and absorption. Several objects were used to test

the inverse scattering algorithm. The objects are made of metal, plastic, and worm

rubber. The hard objects are used to test resolution. The worm rubber has a speed

of sound less than that of water and attenuation greater than water and serves to test

the contrast. The objects were rotated with a robotic manipulator arm to provide

multiple views. First we explain how the rotator was aligned, then present imaging

examples.

8.6.1 Rotator alignment

We form images with transmission data only. Due to the limited angle acquisition

geometry of the facing probes, we must rotate the probes or the object in order to

adequately sample the scattered fields. This is now akin to X-ray or ultrasound CT,

where two parallel arrays of sensors are rotated around the object. We rotated the

objects using the six-axis robotic arm shown in Figure 8.22.
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Figure 8.22: Photo of 6-axis positioning arm used to place and rotate objects.

Given the sensitivity of the algorithm to position errors, we must align the center

of rotation as best we can at the coordinate center of the object domain. A smooth

metal cylindrical rod is attached to the center of the last arm axis which is used for

alignment and for attaching and rotating objects, shown in Figure 8.23.

We first align the rod vertically. This is done by eye, and using the global internal

reference frame of the robot. Not only must the rod rotate symmetrically, but we

must know the location of the center of rotation relative to the first probe (similar

to the position inversion). We translate the rod to a point between the probes and

take reflection measurements off the rod from symmetric sets of receivers, shown in

Figure 8.24, as we finely adjust the position of the arm. If the reflections do not shift

in time, then the rod is at the center of rotation and is rotating symmetrically about

it. Then any object suspended from it will also rotate about the center of rotation.

Reflections recorded from the first probe align the rod in the x-direction. Comparing

the reflections of opposing elements on the second probe aligns the cylinder in the

y-direction.
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Figure 8.23: Close-up of metal rod. Rod is translated and rotated to

Figure 8.24: Diagram of transmissions and reflections used to align the rotator.
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8.6.2 Image Reconstructions

We form images of the 2D cross section of cylindrical targets using the full 3D

inverse scattering algorithm. An assortment of these objects is shown in Figure 8.25.

The objects hang from the metal rod and are weighed down. We assume the imaging

domain is very thin, so ignore any out of plane scattering.

Figure 8.25: Assorted targets of worm rubber, brass rods, and fishline to image.

We form images at 3.75 MHz using 12 or 36 object rotations and a subset of

transmitters and receivers on each probe. The imaging domain was about 2 cm on a

side, shown in Figure 8.26.
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Figure 8.26: Diagram of sources and receivers used in the inverse scattering algorithm.
The box outlines the imaging domain.
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8.6.2.1 Example 1: Worm rubber cylinder

The first object we imaged was a cylinder of worm rubber, shown in Figure 8.27.

The cylinder is approximately 4 mm in diameter. From mass/volume measurements

of worm rubber samples, the measured density of the material was 1.0164 g/cm3.

The speed of sound was estimated from differential time of flight through a known

thickness to be 1406 m/s. From this the compressibility was determined to be 4.977e-

10 1/N, which equates to a contrast relative to the background as defined in Chapter

II of 0.102. Attenuation measurements were not performed, but worm rubber is know

to have positive attenuation contrast.

Figure 8.27: Photo of worm rubber target.

For this object we used 12 rotations of 30 degrees each. We subtract the same

incident field from the total field for each rotation. The magnitude of the scattered

field for all transmitter and receiver pairs is shown in Figure 8.28. These images are

similar to the sinograms formed in X-ray CT. The object is off center, and this is

evident by tracing the peak scattered field through the different rotations. Also, it

is interesting to note, that given the cylindrical nature of this particular object, the

side-lobes of the scattered field radiation pattern are visible.

Figure 8.29, shows images of compressibility and absorption formed by the inverse
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Figure 8.28: Magnitude of the scattered field for select rotations of the object in
Figure 8.27.
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scattering algorithm. The inverse scattering algorithm was terminated after 12 BIM

steps with 12 conjugate gradient steps per iteration. The object location and shape of

the object are recovered. The value of compressibility is too large and the absorption

shows a ring artifact. These are most likely due to the thin imaging domain, where

the recovered values are trying to compensate the predicted scattered fields. However,

the signs of the two contrasts are correct, which indicates that the acoustic ’vector

Green’s’ analogue was derived correctly. Similar effects will be present in the examples

that follow. Also, the streaks along the outside of the imaging domain are artifacts

from the rotations.
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Figure 8.29: Recovered compressibility and absorption contrast for the object in Fig-
ure 8.27. a) Compressibility. b) Absorption.

8.6.2.2 Example 2: Two metal filaments

We imaged two thin metal filaments to test resolution even though the material

hardnesses are not captured by the physics of the algorithm. The filaments are

shown in Figure 8.30. The rods are brass with 0.5 mm diameter and separated by

approximately 2 mm.

Figure 8.31, shows images of compressibility and absorption. The inverse scat-

tering algorithm was terminated after 5 BIM steps. The object location and shape
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Figure 8.30: Photo of two metal filaments.

of the object are recovered. The compressibility contrast is negative and absorption

is positive. This is the correct direction for compressibility because we expect the

compressibility of brass to be less than water. The ringing artifacts and streaks are

due to the use of only twelve rotations.
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Figure 8.31: Recovered compressibility and absorption contrast for the object in Fig-
ure 8.30. a) Compressibility. b) Absorption.
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8.6.2.3 Example 3: Two fish line filaments

We imaged two plastic fish line filaments. Again, the material hardnesses are not

captured by the physics of the algorithm. The filaments are shown in Figure 8.32.

The filaments are 1 mm diameter and separated by approximately 2 mm.

Figure 8.32: Photo of two fish line filaments.

Figure 8.33, shows images of compressibility and absorption. 36 rotations were

used and the inverse scattering algorithm was terminated after 5 BIM steps. The

object location and shape were not recovered as well as the metal rods. The com-

pressibility contrast is negative and absorption is positive, which is consistent with

the results of the brass rods. The images are blurred more than the rods which we

attribute to object motion. While this experimental deficiency could have been better

addressed, this and the following images are included for completeness.

8.6.2.4 Example 4: The Cheshire cat

For this example, the object was a crescent of worm rubber. This was made as

the result of a failed attempt to create a cylinder of worm rubber by pouring molten

worm rubber into a metal tube. The target is shown in Figure 8.34.

Figure 8.35, shows images of compressibility and absorption. 36 rotations were
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Figure 8.33: Recovered compressibility and absorption contrast for the object in Fig-
ure 8.32. a) Compressibility. b) Absorption.

Figure 8.34: Photo of worm rubber crescent.
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used and the inverse scattering algorithm was terminated after 12 BIM steps. The

compressibility image shows a positive contrast of a crescent, however the negative

contrast dip and its similar appearance on the absorption image should not be there.

The meaning of this artifact is unclear. While an air bubble could be a been trapped

in the target, none was visibly present. It might again be due to motion.
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Figure 8.35: Recovered compressibility and absorption contrast for the object in Fig-
ure 8.34. a) Compressibility. b) Absorption.

8.6.2.5 Example 5: Combination

Here we imaged a combination of metal rod and a cylinder of worm rubber. The

target is shown Figure 8.36.

Figure 8.37 shows images of compressibility and absorption. 36 rotations were

used and the inverse scattering algorithm was terminated after 12 BIM steps. The

compressibility image shows the correct positive contrast of worm rubber and also

the correct locations of the metal rods. The sign of the contrast of the worm rubber

absorption is positive and correct, however the rods were not picked up as clearly as

when imaged by themselves. This begins to suggest that the alignment of robotic

arm may not have been as good for this example as it was for the first few examples.
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Figure 8.36: Photo of metal rod and worm rubber combination.
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Figure 8.37: Recovered compressibility and absorption contrast for the object in Fig-
ure 8.36. a) Compressibility. b) Absorption.
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8.6.2.6 Example 6: Worm rubber rectangle.

Last we imaged a rectangle of worm rubber. The target is shown Figure 8.38.

Figure 8.38: Photo of worm rubber rectangle.

Figure 8.39, shows images of compressibility and absorption. 36 rotations were

used and the inverse scattering algorithm was terminated after 12 BIM steps. The

object borders are not well defined. The object in the absorption image is filled in,

while there is an apparent hole in the compressibility image. Given that the object is

the same material and nearly the same size as the target in Example 1, we would have

expected the images to be similar. Suspected again are motion artifacts, especially if

not enough time was allowed for the object settle between rotations.

To summarize the results from these images, we can say that the algorithm, source

characterization, ’vector Green’s’ analog formulation, together with the assumptions

of the experiment worked with mixed success. The objects were mostly recovered,

and the quantitative values follow some physical intuition. However, the images were

not recovered well enough where a detailed evaluation of resolution or quantitative

accuracy is appropriate.
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Figure 8.39: Recovered compressibility and absorption contrast for the object in Fig-
ure 8.38. a) Compressibility. b) Absorption.

8.7 Conclusion

The overall goal of the work in this chapter was to test the acoustic inverse scat-

tering algorithm that was presented in Chapter II in experiment. The two main

difficulties of doing this, as compared to the microwave problem, are 1) dealing with

the small spatial scales of acoustic waves and 2) the need to characterize the trans-

ducers using measurements as opposed to simulation.

We knew from the outset that we would be required to characterize our sources and

receivers. Given the success of the microwave propagation model, source-scattering

formulation, and vector Green’s function, we also wanted to do as much as possible

to remain within these formalisms when testing the acoustic experiment. While we

briefly described hydrophone characterization of ultrasonic transducers, the system

that was at our disposal for the inverse scattering experiment was the Verasonics Data

Acquisition system. The main benefit of using it was the ease and quality with which

we could take all combinations of transmit and receive waveforms from commercial

ultrasound probes. As such, we needed to characterize these probes and the system,

so pursued a path using a new self-characterization technique based on the nonlinear

inversion of the acoustic propagation model. To aid the characterization inversion,
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we used an additional inversion to solve for the positions of the transducers using the

incident field time of flight. The inverse scattering algorithm ultimately worked with

some success.

There were many caveats to the experiment as performed. While the characteriza-

tion inversion appeared to fit the data well, admittedly, we did not have independent

confirmation of its accuracy. Thus, in a sense, we were running the forward model

blind in the inverse scattering algorithm. Confirming the forward model would have

required knowing the precise position and material of targets, with spatial accuracies

on the order of 10s of micrometers. For the geometry of the experiment, this would

also have required us to model the 3D scattering of 2D objects. This can be done

quite nicely in the context of the source-scattering formulation, propagation model

and T-matrix methods, but is not trivial to accomplish.

A major assumption which probably had the most effect on image quality and

interpretation was solving for a 2D slice of a 3D object. With the cylindrical nature

of the objects, we wanted to ignore out of plane scattering. This assumption was

probably much of the reason the contrasts values were too high or flipped. Also,

motion artifacts turned out to be more of a problem than first anticipated.

While we were mostly interested in testing the self-characterization method of

inverting the propagation model, given more time, there are several other methods

that could have been tried to characterize this type of experiment. First, the flexibility

in the transmit control of the Verasonics system allows one to fire all elements at once.

This can be used for plane wave excitation. Plane wave excitation is easily calibrated

by comparing the receiver response to theoretical plane wave incidences. However,

this method usually requires one to ignore the radiation pattern of the receivers.

Given the large wavelength scale of this experiment, these approximations may have

worked well. Second, because the transmit and receive elements are in the far-fields of

each other, this is a situation where targets could be used to calibrate the transducer
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response by normalizing the scattered field response with theoretical scattered fields.

Last, we could characterize the probes with traditional hydrophone measurements in

the context the source scattering formulation as mentioned at the beginning of this

chapter. The robotic arm is well suited for this, but involves a serious investment in

alignment and trigger synchronization.

Overall, the methods presented here worked with some success but further investi-

gation is required to better evaluate the performance of the nonlinear characterization

and acoustic imaging algorithm.
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CHAPTER IX

Conclusion and Future Work

9.1 Conclusion

The purpose of this thesis was to investigate the use of acoustic and microwave

inverse scattering imaging techniques in the problem of forming quantitative images

for breast cancer detection. The rational for using inverse scattering has been the

hypothesis that if benign and malignant tissue have different material properties,

then imaging these properties directly could provide better diagnostic information

than is available today. Inverse scattering methods include the complete physical

description of wave propagation through material, and so they offer the most rigorous

and potentially fruitful path to imaging material properties directly.

There are several algorithmic difficulties in trying to apply inverse scattering to

medical breast imaging. First, even with perfect data, inverse scattering algorithms

are non-linear and non-unique. This is because images must be formed indirectly

through iterative optimization procedures and the metrics used to compare forward

model predictions to data are, for all intents and purposes, arbitrary. This just means

the images have their own artifacts and interpretations. For instance, these images do

not have speckle, but are often blurred. Second, in the case of acoustic and microwave

medical imaging, we are interested in imaging more than one material property. For

example, we image both permittivity and conductivity with microwaves, and both
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compressibility and absorption with ultrasound. This is done for additional diagnostic

information but it must also be done to properly describe the scattering phenomena

in tissue. However, the simultaneous inversion of two physical properties based on

the algorithms investigated here is inherently ambiguous without additional prior

information. Last, the computational complexity of inverse scattering algorithms

grows nonlinearly with the number of addition data.

The difficulties mentioned so far are purely algorithmic and can be mitigated to

some effect. We know that the ill-posedness and non-uniqueness can be reduced by

taking more scattered field measurements in both space and frequency. The ambiguity

in simultaneous retrieval of two materials is aided by priors. Computation, of course,

is improved using more efficient code or more computational resources.

Algorithmic difficulties aside, however, the major question that remained was how

does one perform an inverse scattering experiment in the first place? That is, how

does one properly calibrate an inverse scattering system so that we achieve meaningful

images? This is the one question that needed to be addressed before evaluating the

true efficacy of inverse scattering for breast imaging, or any other application. It is

also the one question never really addressed in the literature. There are hundreds of

papers describing inverse scattering algorithms in theory. These algorithms almost

ubiquitously assume two things: 1) the incident fields are known, and 2) the data are

field quantities. Oddly, no one, in the history of physics, has ever measured a field

quantity directly. At the outset of this work, it was clear that there was a disconnect

between the algorithms in theory and the measurements in experiment, and there was

never a point to building an experimental system until there was some path to solving

them. As a result, the main thrust of this thesis became trying to address these two

assumptions in order to make inverse scattering experimentally viable, all the while

trying to create experimental systems aimed at breast imaging. These contributions

are summarized next.
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The work in Chapters II and III contain our modifications to the traditional Born

Iterative Method inverse scattering algorithm. These modifications made the algo-

rithm more experimentally realistic. The original cost function of this algorithm was

designed around the inversion of a large matrix which was regularized with turn-

ing parameters. Instead, by using a multi-variate covariance-based cost function we

could, 1) minimize the functional with conjugate gradients avoiding the need to build

and store a large matrix, and 2) use the Gaussian interpretation to give us physically

meaningful regularization, the values of which come from experiment, eliminating

the need for tuning parameters. We also found the Neumann series solution of the

forward scattering problem to be particularly useful, especially with the speed up

from the Shanks transformation. We applied these modifications to both the acoustic

and microwave inverse scattering algorithms which were successfully demonstrated in

simulation.

Chapter IV describes our answer to the antenna modeling question. The work

was based on the source-scattering matrix formulation. While the formulation is well

known in near-field antenna characterization, we contributed three things of very

practical importance. First, we used the formulation to derive a propagation model

directly predicting microwave S-parameters between two antennas. Second, we used

simulation to find the antenna model parameters. Third, we showed how to integrate

object T-matrices to predict object scattering. The first and second attributes make

this model inexpensively accessible to small laboratory setups. S-parameters are

widely used and now expensive near-field antenna ranges are not required to obtain

these specific antenna model parameters. Most importantly, we can compute the

antenna incident field anywhere away from the antenna, addressing the first major

calibration problem of an experimental inverse scattering system. The third attribute

allows investigators to very simply evaluate T-matrix methods in the lab. This is also

useful for system diagnostics, which we used in Chapter VI.
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Chapter V is perhaps the most significant contribution of this thesis. The vector

Green’s function derived in this chapter effectively solved one of the outstanding

calibration problems in experimental microwave inverse scattering, which was the

second calibration issue mentioned above. It gave us a rigorous and formal link

between the material properties of the objects we wished to image and the scattered

field voltage quantities we measured, namely S-parameters. Furthermore, it was

shown that the vector Green’s function is valid for cavity-like geometries; this would

prove to be instrumental in characterizing our near-field microwave breast imaging

system in Chapter VII.

In Chapter VI, we wanted to prove the use of the vector Green’s function with

a free-space inverse scattering experiment. We first modified the cost function and

forward model of the BIM to include the vector Green’s function. We then constructed

a ring of antennas, explained how to make the experimental setup and antenna model

consistent, and successfully formed dielectric images of plastic objects without the use

of calibration targets.

Chapter VII was the culmination of the microwave calibration and inverse scat-

tering algorithm in a cavity-based breast imaging prototype system. We constructed

an imaging cavity and accompanying switching matrix to image simple targets in a

lossy coupling medium. We characterized the cavity using simulation and integrated

the results with the vector Green’s function and inverse scattering algorithm. The

imaging was evaluated in both simulation and experiment. Simulation showed the

validity of the method and the experiment worked with some success.

In Chapter VIII we returned to the acoustic inverse scattering problem. Given

the success of the microwave analysis, we adapted the antenna propagation model

and vector Green’s function to acoustics. We investigated a new self-characterization

technique based on the non-linear inversion of the propagation model to the problem

of characterizing commercial ultrasound transducers. We integrated this into the
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acoustic inverse scattering algorithm and constructed an experiment in which we

rotated objects between two ultrasound probes. Even though we formed images

of several targets, given the many assumptions made in the acoustic experiment

due to the length scale and nature of the data acquisition, it remained unclear how

successfully the methods worked for acoustics.

Overall, much headway was made improving and understanding the calibration of

inverse scattering systems, but several questions remain regarding their use in breast

imaging. First, even though we know how to calibrate the microwave system, we still

do not know if the resolution or image quality is good enough for diagnosis. This is

mostly because accurately characterizing a system using absolute phase, as we do,

and getting the model to match the experiment, is very difficult. For the ultrasound

inverse scattering problem, more work needs to be done on basic calibration. The

major problem encountered in this work was that the acoustic wavelengths were too

small, and so the spatial uncertainties too large, for the methods we tried. The small

wavelength is ultrasound’s great strength by providing safe imaging with superior res-

olution, but it may also exclude techniques such as ours which depend so heavily on

accurate phase calibration and crude targets to confirm the forward models. However,

because there is little question about to the diagnostic potential of the acoustic prop-

erties of tissue, further work in acoustic inverse scattering imaging methods should

be pursued.

9.2 Future Research Directions

There are several new paths of investigation building on and inspired by this

work. Some are specific improvements that can be made on the immediate findings

or setups, others are new directions based on some of the conclusions herein, listed

below in no particular order.
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1. Inverse scattering algorithms

Inverse scattering remains an open topic as researchers are continually look-

ing for faster and more accurate algorithms. They are also searching for new

regularization methods. First, having successfully applied the multi-variate

covariance-based cost function to the BIM, an area for investigation is how it

can be applied to other inversion algorithms, such as the popular CSI algo-

rithm, [69]. It would also be interesting to see how the covariance operators can

be generalized or related to non-linear regularization techniques, such as total

variation. Second, the computational complexity of gradient based inverse scat-

tering algorithms continues to be nonlinearly proportional to the problem size.

This is something that cannot be improved by advances in computation alone.

Investigating direct inversion techniques, such as those in diffuse optical tomog-

raphy, offer a promising direction for rapid imaging but require modifications

for acoustic or electromagnetic inverse scattering.

2. System modeling

One of most difficult aspects of the experiments in this dissertation was system

modeling. Uncertainties in the source locations, microwave substrate param-

eters, coupling medium parameters, network analyzer calibration, transducer

materials, etc, percolated through the inversion algorithms to adversely affect

image reconstruction quality. In addition, multiple scattering between the un-

known objects and the surrounding structures went unmodeled. This was the

case in both the free-space microwave experiment and the cavity experiment.

There is much that can be contributed to methods which help improve our accu-

racy of the parameters in system models. One idea is to use inversion techniques

as the basis for data driven rapid model correction. For example, in the cavity

experiment, even with independent measures of the dielectric properties of the
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coupling fluid, we still had to make small, iterative adjustments to our HFSS

model after comparing measurements to numerical predictions. A fast inverse

perturbation method using incident field measurements might have allowed us

to fine tune this parameter on the fly for every experiment. These methods

would be especially useful for estimating properties or parameters which are

not stable, such as the coupling fluid properties, or structural motion of se-

tups. The other question we encountered was whether to model the multiple

scattering in the imaging cavity. Efforts should be undertaken to evaluate the

effects on image quality of including multiple scattering or not, and developing

ways of estimating or approximating background dyadic Green’s functions for

arbitrarily complex structures.

3. Ultrasound

Much of the work in this dissertation concentrated on the microwave problem.

While microwave breast imaging is still an exploratory area, ultrasound is quite

established and actually stands to profit the most from any applications of

inverse scattering in clinical settings. This is because ultrasound is used every

day to diagnosis or monitor many more medical conditions than breast cancer.

Thus, a continued and concerted effort should be made to keep applying full-

wave and inverse scattering techniques to improve ultrasound images. The aim

should be to provide new quantitative imaging as well as to sharpen traditional

B-mode images. In particular, calibration methods for full-wave ultrasound

need to be improved so they are simpler and more robust.

4. Microwave breast systems continued

While we were successful in building a prototype microwave breast imaging

system, more complete testing remains to be done. First, the system needs to

be tested with more realistic breast phantoms. Our coupling medium provides
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the basis for this, because we can tune the medium properties by changing the

oil/water ratio, but creating realistic breast phantoms is still a difficult pro-

cess. Another problem encounter with the imaging system was that, because

the antenna geometry was fixed, and, because we used a single operating fre-

quency, the scattered field data sets given to the inverse scattering algorithm

were extremely sparse. The inverse problem was underdetermined by one order

of magnitude of more, and the artifacts in both the images from the numerical

and experimental data were a result of this. Better data collection strategies,

such as more antennas or mechanical scanning, are needed if inverse scattering

is going to be successful for breast imaging.

Other work in the group involved focused microwave breast thermal therapy.

While this work continues, an application for microwave breast imaging, in

addition to diagnosis, is to aid the planning and accuracy of focused thermal

therapy. This requires advances in fast inverse scattering techniques, because

images must be formed in a matter of minutes. One approach is to take advan-

tage of the high background conductivity and the lower operating frequencies

of the thermal system, which make the electrical size of the problem small, in

order to develop fast, approximate inverse scattering solutions.
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APPENDIX A

Operator Transpose for Electromagnetic Inversion

A.1 Operator transpose for point receivers

Here we derive the electromagnetic operator transpose in the context of the

weighted spaces, [55]. We assume the field is constant and the integral acts on the

object. Writing the scattered field volume integral equation as

Esca(xr) = c

∫

G(xr,x
′) · O(x′)E(x′)d3x′ (A.1)

where c and O(x) are one of the two object functions and their multiplying con-

stant. The above is written for only one, three-vector data point at xr. To derive the

transpose, we use the relation between the model and data space norms

(d,Gm)D =
(

G†d,m
)

M
(A.2)

This is written in terms of the adjoint operator, G† = CMG∗C−1
D . If we assume

the covariance matrices are the identity, then the adjoint is equal to the transpose.

Next, take the model space as a continuous space over the object function, and the
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data space also continuous over all possible points of the scattered field. These norms

can be defined for continuous scalar functions as

(u, v)D = (u, v)M =

∫

u(x)∗v(x)dV (A.3)

In the case that the data are vectors, the conjugate is a vector transpose and dot

product

(u,v)D = (u,v)M =

∫

u(x)∗ · v(x)dV (A.4)

We start by writing out the data norm, interchanging the order of integration,

and aim to arrive at a norm over the model space. Let d = Esca(x) and Gm be a

single predicted scattered field three-vector, then

(d,Gm)D =

∫

E∗
sca(x) · c

∫

G(x,x′) ·E(x′)O(x′)d3x′d3x (A.5)

again ∗ is the conjugate vector transpose for the field, and we take the object out

of the dot product. Next, interchange the order of integration

(d,Gm)D =

∫ ∫

E∗
sca(x) · cG(x,x′) · E(x′)O(x′)d3x′d3x (A.6)

and use the definition of the matrix-vector transpose u∗v = (v∗u)∗.

(d,Gm)D =

∫ ∫

(

(

cG(x,x′) · E(x′)
)∗ · Esca(x)

)∗

O(x′)d3x′d3x (A.7)

=

∫ ∫

(

c∗E∗(x′) ·G∗
(x,x′) · Esca(x)

)∗

O(x′)d3x′d3x (A.8)
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=

∫
(

c∗E∗(x′) ·
∫

G
∗
(x,x′) · Esca(x)d

3x

)∗

O(x′)d3x′ (A.9)

Which is the norm over M , so we identify the transpose operator as

G∗d = c∗E∗(x) ·
∫

G
∗
(x,x′) · Esca(x)d

3x (A.10)

For the scattered field measured at a point we can write

Esca(x) → Escaδ(x− xr) (A.11)

and evaluate the integral to give

G∗d = c∗E∗(x) ·G∗
(x,xr) · Esca(xr) (A.12)

The above maps a three vector scattered field data point from a single receiver

back to the model space (i.e., the object domain). Numerically, the result is usually

multiplied by a factor of a volume element.
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APPENDIX B

Vector Wave Functions

B.1 Vector Wave Functions

B.1.1 Wave Function Conventions

From [52], the scalar wave function is

ψlm(r) = Ylm(θ, φ)zl(kr) (B.1)

where zl(x) is any of jl(x), yl(x), h
(1)
l (x), h

(2)
l . The vector wave function is defined

Mlm(r) = ∇× [rψlm(r)] = [∇ψlm(r)]× r (B.2)

Also

N =
1

k
∇×M (B.3)

M =
1

k
∇×N (B.4)

Written out the vector wave functions are
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Mlm = Nlmzl(kr)e
imφ

(

im

sin θ
Pm
l (cos θ)θ̂ + sin θPm′

l (x)
∣

∣

x=cos θ
φ̂

)

(B.5)

Nlm = Nlme
imφ

[

zl(kr)

kr
l(l + 1)Pm

l (cos θ)r̂ +

(

1

x
zl(x) + z′l(x)

)
∣

∣

∣

∣

x=kr

·

(

− sin θPm′

l (x)
∣

∣

x=cos θ
θ̂ +

im

sin θ
Pm
l (cos θ)φ̂

)]

(B.6)

with

Nlm =

√

2l + 1

4π

(l −m)!

(l +m)!
(B.7)

The Condon-Shortly phase is included in the definition of the Associated Legendre

polynomials. This is consistent with the vector wave function definitions used to

derive the translation and rotation recurrence relations, see Appendix B.1.4.

The l(l+ 1) factor in the reciprocity relations comes from integrating products of

these waves functions over the sphere when evoking then reciprocity theorem. The

radially independent vector wave harmonics as given in [113] are

Xlm =
1

i
√

l(l + 1)
(r×∇) Ylm(θ, φ) (B.8)

with orthonormality over the sphere as

∫

Xl′m′ ·X∗
lmdΩ = δl′lδm′m (B.9)

∫

(Xl′m′ ×X∗
lm) · rdΩ = 0 (B.10)
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The Condon-Shortly phase does not affect the orthonormalization. If neither term

is conjugate, then a factor of −(−1)m remains from the integration in (B.9). In terms

of X, Mlm is written

Mlm = −i
√

l(l + 1)zl(kr)Xlm (B.11)

Thus, when integrating dot products of Mlm and Nlm over the sphere for reci-

procity integrals, see [83], in which neither is conjugate, we get a factor of l(l+1)(−1)m

multiplying δl′lδm′m.

B.1.2 Translation Addition Theorem

The translation relations for the vector wave functions are

Mlm(r) =
∑

l′m′

[Ml′m′(r′)Al′m′,lm +Nl′m′(r′)Bl′m′,lm] (B.12)

Nlm(r) =
∑

l′m′

[Nl′m′(r′)Al′m′,lm +Ml′m′(r′)Bl′m′,lm] (B.13)

where Al′m′,lm and Bl′m′,lm are given in [52]. The following identities were con-

firmed numerically for the translation coefficients
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|Aji
l′m′lm| = |Aij

l′m′lm| (B.14a)

|Bji
l′m′lm| = |Bij

l′m′lm| (B.14b)

Aij
l′m′lm = (−1)l+l′Aji

l′m′lm (B.14c)

Bij
l′m′lm = −(−1)l+l′Bji

l′m′lm (B.14d)

Aji
l′m′lm = cl,l′(−1)l+l′+m+m′

Aji
l,−m,l′,−m′ (B.14e)

Bji
l′m′lm = −cl,l′(−1)l+l′+m+m′

Bji
l,−m,l′,−m′ (B.14f)

Aji
l′,−m′,l,m = cl,l′(−1)m+m′

Aij
l,−m,l′,m′ (B.14g)

Bji
l′,−m′,l,m = cl,l′(−1)m+m′

Bij
l,−m,l′,m′ (B.14h)

where cl,l′ = l(l + 1)/l′(l′ + 1). Equations (B.14g) and (B.14h) are used in Appendix

B.2 and can be derived using (B.14c)-(B.14f).

B.1.3 Rotation Addition Theorem

The rotation addition theorems for both scalar and vector wave harmonics are

given by [90, 85, 91, 92],

Mlm(r, θ, φ) =

l
∑

p=−l

Dlmp(αβγ)M
′
lp(r

′, θ′, φ′) (B.15)

where (α, β, γ) are the three Euler angles describing a Z-X-Z rotation from un-

primed to primed coordinate systems. The rotations transform across m for a given l.

In other words, Dlmp can be written as a block diagonal matrix with blocks spanning

m and p for a particular l, zero otherwise. Specifically,

Dlmp(αβγ) = eimαdlmp(β)e
ipγ (B.16)

where
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dlmp(β) =

√

(l + p)!(l − p)!

(l +m)!(l −m)!

∑

u

(

l +m

l − p− u

)(

l −m

u

)

·(−1)l−p−u

(

cos
β

2

)m+p+2u(

sin
β

2

)2l−m−p−2u

(B.17)

The sum is over all u for positive arguments of the binomial coefficients.

In matrix form, if a are the outgoing wave coefficients in the i frame, and a′ are

those in the rotated i′ frame, then

a′ = Dia (B.18)

where Di describes the rotation from i to i′. Di is unitary, so D−1
i = D∗

i , and the

inverse relation is

a = D∗
ia

′ (B.19)

B.1.4 Computation of Addition Theorems

Recursion relations exist for quickly computing the translation and rotation ma-

trices. For the translation matrices, we use the recursion relations in [143, 144]. For

the rotation matrix, we use the recursion relations in [145].

B.2 Reciprocity for Two Fixed Antennas

The goal is to show Sji = Sij. Starting with Eqn. (4.23),
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Sji =
∑

l′m′ crnl′m′

[

tj(a)l′,m′

∑

lm

(

Aji
l′,−m′,lmt

i
(a)lm +Bji

l′,−m′,lmt
i
(b)lm

)

+tj(b)l′,m′

∑

lm

(

Bji
l′,−m′,lmt

i
(a)lm + Aji

l′,−m′,lmt
i
(b)lm

)]

(B.20)

Rearranging the sums and writing out the normalization constant,

Sji =
∑

lm cr ·
[

ti(a)l,m
∑

l′m′ nl′m′ ·
(

Aji
l′,−m′,lmt

j
(a)l′m′ +Bji

l′,−m′,lmt
j
(b)l′m′

)

+ ti(b)l,m
∑

l′m′ nl′m′

(

Bji
l′,−m′,lmt

j
(a)l′m′ + Aji

l′,−m′,lmt
j
(b)l′m′

)]

(B.21)

Applying (B.14g) and (B.14h) to the translation matrices, we get

Sji =
∑

lm crnlm

[

ti(a)l,m
∑

l′m′

(

Aij
l,−m,l′m′t

j
(a)l′m′ +Bij

l,−m,l′m′t
j
(b)l′m′

)

+ ti(b)l,m
∑

l′m′

(

Bij
l,−m,l′m′t

j
(a)l′m′ + Aij

l,−m,l′m′t
j
(b)l′m′

)]

= Sij

(B.22)

which is the reciprocity relation for a passive, linear, two-port network.

We confirmed numerically that Eqn. (4.31), which includes rotation matrices, is

also reciprocal.
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APPENDIX C

Special Cases of Vector Green’s Function VIE

C.1 Special Cases of Vector Green’s Function Integral

Here we consider three special cases of the scattered field integral equation using

the vector Green’s function: 1) either the transmitter or the receiver is in the far-field,

2) we make the Born approximation, and 3) the antennas are in the far-field and we

make the Born approximation.

C.1.1 Far-Field

When either the transmitter or the receiver is in the far-field, we can simplify the

expression for its normalized incident field by using the far-field approximations of

the free-space vector wave functions, Mlm(r) and Nlm(r). Similar to [89], these are

given by

Mlm(r)|kr→∞ ≈ eikr

kr
C′

lm(θ, φ) (C.1)

Nlm(r)|kr→∞ ≈ eikr

kr
B′

lm(θ, φ) (C.2)
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where

C′
lm(θ, φ) = i−l−1∇× [rYlm(θ, φ)] (C.3)

B′
lm(θ, φ) = i−lr∇ [Ylm(θ, φ)] = r̂×C′

lm(θ, φ) (C.4)

The vector functions B′
lm and C′

lm have only θ̂ and φ̂ components and do not depend

on the distance r. Prime indicates that we use angular harmonics with the conventions

of [52] instead of [89]. We can then write the normalized incident field as

einc(r)|kr→∞ =
∑

lm

(

t(a)lmMlm(r) + t(b)lmNlm(r)
)

(C.5)

≈ eikr

kr
f(θ, φ) (C.6)

where

f(θ, φ) =
∑

lm

(

t(a)lmC
′
lm(θ, φ) + t(b)lmB

′
lm(θ, φ)

)

(C.7)

= fθ(θ, φ)θ̂ + fφ(θ, φ)φ̂ (C.8)

where fθ and fφ are complex amplitudes resulting from summing the angular har-

monics over the transmit coefficients. The vector function f(θ, φ) represents the far-

field radiation pattern of the antenna, but which is phased properly for S-parameter

measurements and our antenna characterization. This expression for the normalized

incident field can be used either for the vector Green’s function when the receiver is

in the far-field, or used in a forward solver when the transmitter is in the far-field.
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C.1.2 Born Approximation

Under the Born approximation for weakly scattering objects, the total field in the

object is approximated by the incident field. Using Eqn. (5.33) which is given in

terms of the normalized incident and total fields, the scattered field S-parameters are

given by

Sji ≈ iZj
0

2ωµ

∫

fji(r
′)O(r′)dV ′ (C.9)

where

fji(r
′) = einc,j(r

′) · einc,i(r′) (C.10)

Note that while the variable r′ simply keeps track of the integration location,

the dot product of the two incident fields must be computed in the same coordinate

system. For instance, when the normalized incident fields are computed using the

multipole expansion for antennas in two different reference frames, the vector com-

ponents seen from each frame must be projected to a common frame for the dot

product.

C.1.3 Far-Field and Born Approximation

Let the object be in its own reference frame. If we make far-field approximations

for the normalized incident fields in Eqn. (C.10), and we further assume that the

incident fields can be approximated by plane waves in the object domain, then it can

be shown that

Sji ≈ iZj
0

2ωµ

eik(rj+ri)

k2rjri
fj(θj , φj) · fi(θi, φi)

∫

e−ik(r̂j ·r
′+r̂i·r

′)O(r′)dV ′ (C.11)
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where the vectors rj and ri point from the object frame to the receiver and transmitter

frames, respectively, and the vector functions fj(θj , φj) and fi(θi, φi) are measured

with respect to the vectors −rj and −ri which point from the antennas to the object.

This expression can be used for 3D diffraction tomography where scattered field S-

parameters are used as data.
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APPENDIX D

Cost Function of Linear Inverse Problems

D.1 Cost Function and Step Length for a General Linear

Problem

D.1.1 Cost Function

Here we summarize the major points of [55] for minimizing a weighted least-

squares cost functional of a linear operator using conjugate gradients. The cost func-

tion is, generally,

2F (m) = ‖Gm− d‖2D + ‖m−ma‖2M (D.1)

The vector norms ‖ · ‖2D and ‖ · ‖2M are defined over the data and model spaces

through the inverse data and model covariance operators, C−1
D and C−1

M , respectively

as

‖ · ‖2D = (u,v)D = u∗C−1
D v (D.2)

‖ · ‖2M = (u,v)M = u∗C−1
M v (D.3)
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The gradient vector and steepest descent vector are given by

γ̂ = G∗C−1
D (Gm− d) +C−1

M (m−ma) (D.4)

γ = CMG∗C−1
D (Gm− d) +m−ma (D.5)

The adjoint is defined as G† = CMG∗C−1
D . Norms over the two spaces are related

through the adjoint as

(d,Gm)D = (G†d,m)M (D.6)

The conjugate gradient updates of the model parameters are given by

mn = mn−1 − αnvn (D.7)

vn = γn + βnvn−1 (D.8)

where βn can take one of a number of forms, [55].

D.1.2 Step Length

We solve for the step length by substituting the model update vector into the

cost function, and minimize with respect to the step length. A similar result appears

in [46], but here we outline and explain the steps in the context of weighted spaces.

Substituting Eqn. (D.7) into Eqn. (D.1) we have

261



2F (mn) = ‖G(mn−1 − αnvn)− d‖2D + ‖mn−1 − αnvn −ma‖2M (D.9)

= α2
n‖sn‖2D − αn(sn, rn−1)D − αn(rn−1, sn)D + ‖rn−1‖D

+α2
n‖vn‖2M − αn(vn, cn)M − αn(cn,vn)M + ‖cn‖2M (D.10)

where rn−1 = Gmn−1−d, sn = Gvn, and cn = mn−1−ma. Taking the derivative

with respect to αn.

∂

∂αn
(2F (mn)) = 2αn‖sn‖2D + 2αn‖vn‖2M −

2ℜ{(sn, rn−1)D + (vn, cn)M} (D.11)

Setting this equal to zero and solving for αn

αn =
ℜ{(sn, rn−1)D + (vn, cn)M}

‖sn‖2D + ‖vn‖2M
(D.12)

We can simplify the numerator by using the conjugate of Eqn. (D.6),

(sn, rn−1)D + (vn, cn)M = (Gvn, rn−1)D + (vn, cn)M (D.13)

= (vn,G
†rn−1)M + (vn, cn)M (D.14)

= (vn,G
†rn−1 +mn−1 −ma)M (D.15)

= (vn,γn)M (D.16)

The step length becomes

αn =
ℜ{(vn,γn)M}
‖sn‖2D + ‖vn‖2M

(D.17)
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This is easily modified to account for two, independent contrast functions.

D.2 Vector Green’s function operator transpose

To derive the transpose operator in the context of the Vector Green’s function

volume integral equation, we first let C−1
M = C−1

D = I, so that the adjoint is equal to

the transpose, and we can write Eqn. (D.6) as

(d,Gm)D = (G∗d,m)M (D.18)

For our problem, the data norm is a sum over discrete data points, namely S-

parameter quantities, and the model norm is a volume integral over the contrast

functions. Although we discretized the integral in practice, for the derivation of the

transpose we can treat the contrast as a continuous function. We start by writing

out the left hand side of Eqn. (D.18), using Eqns (6.6) and (6.7). For now, we will

only consider the permittivity contrast.

(d,G1m1)D =
∑

ji

S∗
jic1

∫

gj(r) · δǫ(r)ei(r)dV (D.19)

We exchange the order of integration and summation,

(d,G1m1)D =

∫

∑

ji

S∗
jic1gj(r) · δǫ(r)ei(r)dV (D.20)

We then rearrange the integrand to make the integral look like a norm over the

model space (i.e. a volume integral over two spatial functions)

(d,G1m1)D =

∫

((

c1
∑

ji

gj(r) · ei(r)
)∗

Sji

)∗

δǫ(r)dV (D.21)

= (G∗
1d,m1)M (D.22)
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from which we identify the transpose

G∗
1d = c∗1

∑

ji

(gj(r) · ei(r))∗Sji (D.23)

where ∗ is simply conjugate. The transpose for the conductivity differs only by a

constant.
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