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ABSTRACT

Theory and Development of Near-field Plates

by

Mohammadreza F. Imani

Chair: Anthony Grbic

The widespread use of the electromagnetic near field, in applications ranging from

high resolution imaging devices to wireless power transfer systems, has called for

focusing devices with higher resolutions and larger focal lengths. This demand, how-

ever, faces a major obstacle: the diffraction limit. Due to this limit, subwavelength

resolutions are only possible at near-field distances.

A novel solution is proposed for overcoming the diffraction limit: near-field plates

(NFPs). NFPs are non-periodically patterned surfaces that can form desired sub-

wavelength patterns at specified near-field distances. They are simple to fabricate,

robust to inherent losses, and allow the near field pattern to be stipulated. Given

these advantages, they show great promise as a simple and effective method for tailor-

ing the electromagnetic near field. In this thesis, the first reported NFP is introduced

and its operation is analytically studied. The NFP concept is then advanced through

several phases, addressing a major issue in each phase. NFPs suitable for practical

applications are introduced, and their design and operation are described. Their abil-

ity to tailor the electromagnetic near field is verified through full-wave simulations

and experiments. Finally, application areas of NFPs such as near-field probing and
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imaging, biomedical devices, and wireless power transfer systems are discussed.
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CHAPTER I

Introduction

1.1 Background

Throughout history, humans have relied on their vision to observe the world

around them. Early humans drew stories on cave walls to transfer their knowledge

to others. In many civilizations, the movement of sun and moon were observed to

develop calendars. However, human vision is limited and cannot see very small or

very far. As a result, knowledge of our surroundings was limited and even incorrect

until imaging systems were developed: apparatuses that enabled us to see beyond

the limits of our eyesight. The enhanced vision revolutionized our perception of the

world and triggered many momentous scientific breakthroughs. Reliable telescopes

put fictions about outer space to rest and paved the way to our current understand-

ing. Microbes and their role in the transmission of disease were not known until the

invention of the microscope. Microscopes also led to the discovery of cells, which

revolutionized the science of biology. The advancement of science and technology, in

return, resulted in demands for imaging systems with higher quality and improved

resolutions. Hence, the quest to see smaller details or objects farther away has drawn

strong interest from scientists and engineers for centuries.

The primary component of early imaging systems was a curved surface, such as

a lens or a mirror. Curved surfaces can converge or diverge electromagnetic waves
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radiated by an object to form an image. The “tailoring” capability of lenses and

mirrors was utilized to develop devices such as microscopes and telescopes. In fact,

lenses and mirrors are still the backbone of many imaging systems. However, the

maximum resolution that can be obtained using a lens or mirror was known to be

limited. This fundamental limit is referred to as the “diffraction limit”, and was first

formulated by Abbe:

d =
λ

2NA
(1.1)

where d is the resolution, λ is the operating wavelength, and NA is the numerical

aperture. This equation describes the maximum resolution of an imaging system at

a given wavelength of operation. According to this equation, the only method to

achieve higher resolution is either by operating at shorter wavelengths or increasing

the numerical aperture. However, shorter wavelengths (higher frequencies) of opera-

tion were not always desired or simple to achieve. The numerical aperture is bounded

by the refractive index, n, of the medium, which is usually air (n = 1). Therefore,

the diffraction limit was a major obstacle to visualizing finer details. As a result,

methods to overcome the diffraction limit were sought.

The physics behind Abbe’s limit is simple and can be explained by examining

the configuration of imaging systems. For example, consider the simplified schematic

of an imaging system shown in Figure 1.1. In this configuration, a lens collects the

radiation of an object to form a magnified image of it. In such imaging schemes, the

distance between the imaging component (lens) and the object are large compared

to the wavelength. In other words, they are in the far-field region of each other.

The object under test emits both propagating and evanescent electromagnetic waves.

However, the lens can only collect the propagating spectrum since the evanescent

spectrum decays rapidly with the distance. Therefore, the image obtained through

a far-field imaging system, such as the one shown in Figure 1.1, only contains the

propagating spectrum. However, the subwavelength details of the object are only
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carried by the evanescent spectrum. As a result, the maximum resolution possible

with conventional imaging systems was limited. On the other hand, this simple

explanation suggests that higher resolutions are possible if the imaging device could

capture the evanescent spectrum.

Figure 1.1: A simplified schematic of an imaging system.

The importance of the evanescent spectrum in imaging was first noted by Synge [1],

where he proposed detecting the near field to obtain resolutions beyond the diffraction

limit. He went on to show that probing the near field (evanescent fields) of an object

amounted to tapping into the object’s subwavelength details. Nearly fifty years after

Synge’s proposal, Ash and Nicholls experimentally verified super-resolved near-field

imaging in 1972 [2]. Since then, high resolution near-field imaging systems have been

a reality (for example, refer to [3] for a detailed review).

Synge proposed a practical method for detecting evanescent spectrum. This

proposition paved the way for a myriad of other near-field devices. High density data

storage, biomedical targeting instruments, radio frequency identification (RF-ID) de-

vices, and wireless power transfer systems [4] are all examples of devices that rely

on the evanescent spectrum. In high density data storage devices, a subwavelength

electromagnetic spot is used to store or retrieve data. Similarly, a highly confined

electromagnetic field spot is used in biomedical targeting devices to stimulate cells

(such as transcranial magnetic stimulation [5]) or create a hyperthermal effect. Such

subwavelength beam dimensions are only plausible in the near field, where the evanes-
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cent spectrum is comparable to or dominant over propagating spectrum. In RF-ID

devices or wireless power transfer devices, the evanescent spectrum is used to couple

energy between two devices with high efficiency.

Today, the evanescent spectrum is widely employed in scientific and industrial

applications. Its widespread use has in turn created a demand for improvements to

existing near-field devices. Increasing the resolution of near-field imaging systems or

extending the range of wireless power transfer systems are some obvious examples.

Since the evanescent spectrum, which is vital to the performance of near-field devices,

decays with distance, the primary strategy to improve performance is to reduce the

operating distance. However, such operating schemes can be costly and infeasible in

many applications. For example, an imaging probe placed too close to a biomedical

sample can be invasive and damaging to the sample and experimental results. Hence,

a method to tailor the electromagnetic near field to obtain desired resolutions at

specified distances is highly sought after.

1.2 Motivation

In 2000, Pendry introduced the perfect lens, a lens capable of overcoming the

diffraction limit, and obtaining subwavelength resolutions at extended near-field focal

lengths [6]. Pendry showed that a planar slab of negative refractive index metama-

terial can manipulate the near field in such a way that it achieves perfect imaging,

i.e., a perfect reconstruction of the source’s near and far field. He also went on to

show that the P -polarized near field (evanescent field) could be focused with only a

negative permittivity slab. Since that time, negative refractive index metamaterials

have attracted strong interest. The experimental verification of negative refraction [7]

and subwavelength focusing using negative refractive index [8], negative permittiv-

ity [9, 10], and negative permeability slabs [11] have demonstrated that near-field

lenses are in fact a reality.
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Metamaterial superlenses provided a dramatically different approach to overcom-

ing the diffraction limit and achieving subwavelength resolutions. Prior to their in-

troduction, the only option was to go extremely close to the sample being imaged

using subwavelength apertures. Metamaterial superlenses enhance the evanescent

spectrum to compensate for its fast decay, thus paving a new path for engineering

the electromagnetic near field. Unfortunately, the performance of the proposed meta-

material superlenses were limited in practice. They suffered from inherent losses, a

narrow operating frequency range, or their dependency on a particular polarization.

Most recently, S. Rudolph and A. Grbic experimentally demonstrated a wideband

polarization-independent volumetric superlens with robust performance in the pres-

ence of practical losses [12]. Despite addressing the practical issues limiting previous

metamaterial superlenses, this structure was three dimensional and challenging to fab-

ricate. Therefore, the quest to develop a metamaterial structure suitable for practical

applications remained.

Metamaterial superlenses also inspired an alternative method for focusing electro-

magnetic waves to subwavelength resolutions [13]. In this work, R. Merlin proposed

a general class of aperture field distributions which can form a subwavelength focus

at a prescribed focal plane in the aperture’s reactive near field. This new approach

to subwavelength focusing relies on patterned (grating-like) planar structures to pro-

duce the aperture fields needed to achieve a desired subwavelength focus. These

planar structures have been referred to as near-field plates (NFP) [14–16] and can

focus electromagnetic radiation to spots or lines of arbitrarily small subwavelength

size. Moreover, they can be tailored to produce focal patterns of various shapes and

symmetries.

In [14], specific structures and a systematic design procedure for NFPs was de-

scribed. It was shown that NFPs could be implemented as completely passive struc-

tures composed of inductive and capacitive elements. As an example, a microwave
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realization of a NFP that focuses the field of a plane wave to a 1-dimensional (1-D)

subwavelength focal pattern was reported in [14]. Full-wave electromagnetic simu-

lations (Method of Moments) were presented that clearly demonstrated the plate’s

ability to overcome the diffraction limit. The effect of loss on the performance of

NFPs was also discussed and it was shown that losses have a minimal effect on NFP

performance.

The first experimental NFP was presented in [15, 16]. This plate consisted of an

array of interdigitated capacitors designed to produce a subwavelength focal pattern.

It was experimentally shown to focus 1.027 GHz microwave radiation emanating from

an S-polarized cylindrical source to a focus with full width at half maximum (FWHM)

of λ/18. This experimental demonstration verified the radiationless focusing approach

and the NFP design procedure.

While NFPs were originally inspired by metamaterial superlenses, they provided a

number of advantages over metamaterial superlenses. Superlenses were periodic bulk

structures, while NFPs were non-periodic surfaces or arrays. As a result, NFPs were

much simpler to fabricate. Furthermore, NFPs allowed one to stipulate the desired

near-field pattern. They were also shown to be robust to practical losses. Given these

advantages, NFPs show great promise for tailoring the electromagnetic near field in

practice.

In order to employ NFPs in practical applications, several major improvements

were still needed. The initial NFP configurations were designed for plane wave or

cylindrical illuminations. In many applications, a waveguide excitation is preferred.

Furthermore, the existing NFPs were only able to produce one-dimensional focal

patterns, while two-dimensional patterns are needed in practice. Finally, the NFP

configuration proposed in [14–16] was not simple to integrate with other electronics.

Addressing NFPs’ practical limitations is the primary topic of this thesis. The ul-

timate goal is to advance NFPs, so that they can be easily integrated into current
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systems such as near-field imaging systems, and improve their performance in terms

of resolution, range, or efficiency.

1.3 Outline

In this thesis, NFPs are investigated as practical devices for achieving extreme

electromagnetic field confinement. The thesis begins with an introduction of the first

NFP and its design and operation. An analytical analysis of NFPs is then presented,

which provides an intuitive understanding of their operation. This added insight is

utilized to advance the initial NFP to topologies more suitable for practical applica-

tion. Novel realizations are introduced, and their design and operation are described.

The design procedures are verified through full-wave simulations and experiments.

Finally, application areas of NFPs are discussed.

The thesis is organized into seven chapters. In Chapter 2, the initial proposal of

the NFP concept is briefly reviewed. The procedure for designing NFPs as well as their

principle of operation are explained. An analytical description of NFPs is presented

that provides insight into their operation [17]. Closed-form expressions for the NFP

aperture field, current density, and impedance profile are derived. Characteristic

features of a NFP’s aperture field and current density are also discussed.

In Chapter 3, an alternative NFP implementation that can be directly fed through

a waveguide is developed. This novel NFP, referred to as linearly corrugated NFP,

consists of a central slit in a metallic plate surrounded by non-periodic linear corru-

gations. The structure is fed through its central slit. The non-periodic corrugations

are designed to tailor the radiation emanating from the slit to a prescribed subwave-

length focus. A design procedure for this structure is presented and verified through

full-wave simulation. It is shown that this structure is robust to practical losses

and can be impedance matched. Finally, an experimental verification of the linearly

corrugated NFP is presented [18].
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In Chapter 4, a high resolution near-field probe based on a NFP is explored.

The probe consists of non-periodic, concentric corrugations that surround a central

coaxial aperture in a metallic surface [19]. This structure, referred to as concentrically

corrugated NFP, is fed through the central coaxial aperture and can produce a two-

dimensional (2-D) subwavelength focus. A design procedure for this structure is

outlined and the structure is thoroughly investigated through full-wave simulation. In

addition, experimental results confirming the performance of this NFP are presented

[20, 21]. In the experiments, the electric-field focal patterns formed by the NFP are

shown to be significantly narrower than those of a conventional probe. In addition,

the concentrically corrugated NFP is used as a probe to image two closely spaced

dipole sources. The NFP probe achieves images with significantly higher resolution

compared to the conventional coaxial probe.

In Chapter 5, the NFPs ability to sculpt the electromagnetic near field is further

highlighted by demonstrating a NFP that can generate evanescent Bessel beams [22].

Evanescent Bessel beams are solutions to Maxwell equations which resist diffraction.

As a result, they can have a transverse pattern with a subwavelength main beam that

is nearly constant over a near-field distance. In this chapter, evanescent Bessel beams

and their unique properties are briefly reviewed. A summary of previous methods

for generating evanescent Bessel beams and their limitations is presented. A uniform

impedance surface is designed and also shown to produce evanescent Bessel beams in

full-wave simulation. It is noted that such a structure suffers from edge diffraction and

thus has limited performance. In addition, an electrically large uniformly-fed annular

slot is theoretically and experimentally shown to produce Bessel beams. However, the

proposed structure was relatively large and does not allow for the beamwidth of the

Bessel beam to be tailored. In the remainder of this chapter, concentrically corrugated

NFPs are investigated as effective, yet simple means for generating evanescent Bessel

beams. Their advantages over other methods are also highlighted.
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In Chapter 6, a planar NFP that can be fabricated using standard printed circuit

board (PCB) technology is presented. Previous NFP realizations were not planar

and thus cannot be fabricated using PCB technology. Therefore, planar NFPs are

an important step towards our goal to promote NFPs as practical structures that

can be integrated with near-field devices to improve their performance. These pla-

nar NFPs consist of annular slots on a circular, grounded dielectric slab. They are

excited through a coaxial connector. The annular slots are loaded with lumped el-

ement impedances, which are chosen to produce a prescribed subwavelength focal

pattern. A procedure to design such plates is outlined. The designed plates are

studied through full-wave simulation and the generation of desired subwavelength

patterns are demonstrated. Several NFPs are fabricated and examined through ex-

periment. It is shown that the experimental near-field patterns are in close agreement

with simulation, thereby verifying the proposed design and operation. Furthermore,

experimental results confirm the planar NFPs ability to tailor the electromagnetic

near field.

In the final chapter, the findings and contributions of this thesis are summarized.

Possible application areas of NFPs are described. Finally, future directions of research

on NFPs are discussed.
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CHAPTER II

Analytical and Numerical Analysis of Near-Field

Plates

2.1 Introduction

Using near-field plates (NFPs), or non-periodically modulated surfaces, to obtain

subwavelength resolutions is a novel approach to overcoming the diffraction limit.

Their principle of operation differs dramatically from earlier methods such as placing

small tips in close proximity to a sample [3]. They are also distinct from periodic

bulk metamaterial slabs which amplify the evanescent spectrum to overcome the

diffraction limit [6]. Given the novelty of NFPs, the goal of this chapter is to provide

a detailed introduction to their operation. To do so, we will first review the concept

of “radiationless interference” proposed by R. Merlin [13], on which NFPs are based.

Subsequently, we will examine the first NFP configuration and its design procedure.

In the remainder of the chapter, we will analytical investigate NFPs to gain a more

intuitive understanding of their performance.

The design procedure for NFPs, outlined in [14–16], relied on solving an electro-

magnetic inverse problem through numerical simulation (Method of Moments). Such

numerical approaches are sufficient for design purposes, but do not provide insight

into the operation of NFPs. Therefore, we opt for an analytical analysis of NFPs
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to illustrate their performance. In this analytical treatment, closed-form expressions

for the currents excited on a NFP, as well as its impedance profile are derived. In

addition, spectral domain representations of the current density and the electric field

at the surface of the plate are studied. Both the spatial domain and spectral domain

studies are used to highlight the performance of NFPs and their unique features. The

analytical investigation also sheds light on the similarities and differences between

NFPs and earlier structures such as metamaterial superlenses and antenna arrays.

This chapter is organized as follows. First, radiationless interference as the phys-

ical principle behind NFPs is reviewed. The general configuration of NFPs and their

design and operation are described. In the remainder of the chapter, a specific near-

field configuration is considered. Its step-by-step design procedure is outlined and its

performance is analyzed analytically. The plate is assumed to be infinite in width to

simplify the analytical treatment. The current density on the plate is found in the

spectral domain and inverse Fourier transformed to obtain its spatial dependence, as

well as the plate’s impedance profile [17]. The analytically derived expressions are

then compared to those computed numerically for electrically-wide plates, in order

to validate the analytical approach. The results of the analytical investigation are

discussed to reveal characteristic features of NFPs.

2.2 Radiationless interference

The idea of focusing electromagnetic fields to dimensions less than the diffraction

limit using patterned surfaces was first proposed in [13]. In this work, R. Merlin

introduced a general class of aperture fields that converges to a subwavelength focal

pattern at a near-field distance away from the aperture. The desired aperture field

is realized using a patterned surface. This idea is demonstrated in Figure 2.1 where

the aperture is assumed to be at z = 0 and the focal plane at z = L. The structure

is excited from z < 0 with an electric field polarized in the x direction. According
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to [13], a variety of aperture field distributions (Eaper(y, z = 0)) can be assigned

that result in a subwavelength pattern at z = L. For example, consider an aperture

distribution of the form:

Eaper(y, z = 0) = M(y)e−jqy (2.1)

where q À k, k is free space wavenumber, and M(y) is a modulation function. It can

be shown that if M(y) has a pole with imaginary part equal to ±iL, then the aperture

field given by (2.1) converges to a focus at z = L with resolution given by 2π/q. Since

q À k, the aperture field distribution given by (2.1) is predominantly evanescent (non-

radiative). These evanescent components combine constructively and destructively to

form the subwavelength focus. As a result, this process of focusing electromagnetic

fields, which is based on the interference of evanescent components, has been referred

to as “radiationless interference”. The required aperture field (Eaper(y, z = 0)) is

realized using an engineered surface which has been referred to as “near-field plate”

(NFP).

In radiationless interference, the aperture field interferes in the near field to form

a desired subwavelength focal pattern. This process of tailoring the electromagnetic

near field is quite unique and distinct from earlier structures. For example, it involves

interference of the evanescent components which differs from that of zone plates [23],

where traveling waves interfere to form a diffraction-limited focus. It is also distinct

from antenna pattern synthesis in which desired patterns are formed in the far-field,

where evanescent components are insignificant. Radiationless interference is used to

synthesize patterns in the near-field where the evanescent spectrum is dominant. Even

though the field exiting a metamaterial superlens, when excited by a subwavelength

source, demonstrates properties similar to those of the aperture field in NFPs [13] (for

example, both exhibit enhanced evanescent spectrum as shown later in this chapter),
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Figure 2.1: A schematic demonstrating “radiationless interference” for overcoming
the diffraction limit. The aperture is located at z = 0 and the focal plane
is at z = L. Radiationless interference describe a class of aperture field
profile which converges into a subwavelength focal pattern at z = L. The
aperture field is realized using a patterned surface referred to as near-field
plate.

they have notable differences. Metamaterial superlenses are bulky periodic structures

that can enhance the evanescent spectrum to overcome its fast decay, while NFPs are

non-periodically patterned surfaces or arrays which rely on constructive and destruc-

tive interference in the near field to form a desired subwavelength pattern.

A step-by-step procedure for designing NFPs was outlined in [14–16]. This proce-

dure which is based on solving an electromagnetic inverse problem is summarized in

Figure 2.2. In the first step, a desired subwavelength focal pattern is selected. The

desired focal pattern is then back propagated to the surface of the NFP to obtain

the aperture field. In the next step, current densities on the surface of the NFP re-

quired to form the aperture field are computed. By taking the ratio of the aperture

field and the current densities, the required impedance profile is found. In the last

step, this impedance profile is realized using lumped/distributed impedance elements,
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Figure 2.2: A general flowchart for designing NFPs.

corrugated surfaces, or plasmonic nanocircuit elements [24] depending on the NFP

configuration and the operating frequency.

Using the outlined procedure, two different NFPs were designed in [14–16]. The

plate in [14] was designed to form a subwavelength focus when illuminated by a

plane wave while the plate in [15, 16] was designed for a cylindrical (line source)

excitation. The later was also fabricated and measured. In the experiment, the

fabricated NFP was shown to focus 1.027 GHz microwave radiation, emanating from

an x-polarized cylindrical source, to a focus with FWHM = λ/18, where λ is the

free space wavelength. Close agreement between measurement and simulation were

demonstrated, thereby verifying the proposed design and operation.
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The NFPs presented in [14–16] were designed using a numerical approach. In

the next section, we revisit the NFP configurations examined in [14–16]. In contrast

to [14–16], we analytically solve for the required current and impedance profile of

NFP. The analytical results are then used to explain the operation of the NFP.

2.3 Design Procedure

In this section, we work through the procedure shown in Figure 2.2 to design the

NFP configuration in Figure 2.1. Following this procedure, the first step in designing

the NFP is to choose a subwavelength focal pattern. In our analytical treatment, we

will investigate a NFP that produces a subwavelength focal pattern of the following

form,

~E(y, z = L) = jM |Emax|e−qLqLsinc(qy)x̂ (2.2)

where L = λ/16, and q = 10k. The operating frequency is f = 1.0 GHz. In (2.1),

M = 6 is a real constant known as the amplification factor, which expresses the

focal pattern in terms of the maximum of the incident electric field at the surface

of the plate: |Emax| = |Einc(y = 0)|. These values for L, q, f , and M are assumed

throughout this chapter. As explained in [14], the imaginary number j ensures that

the plate’s surface impedance is primarily reactive. For the assumed parameters, the

sinc focal pattern and its spectrum are shown in Figure 2.3. The constant q represents

the maximum transverse wavenumber ky = q that contributes to the focal pattern,

and as a result determines its null-to-null beamwidth: 2π/q = λ/10. Finally, the

plate is assumed to be electrically thin in the z direction (λ À thickness) so that

current densities in the direction normal to the plate can be neglected, and the plate

can be modeled as a sheet characterized by a surface impedance ηsheet(y) [25].

The next step involves finding the currents, Jx(y), on the surface of the plate

to generate the desired focal pattern given by (2.2). To do this, we first find the
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electric field, Eaper(y), that is needed at the surface of the plate to produce the focal

pattern [14]. By back-propagating the focal pattern given in (2.2), Eaper(y) can be

easily obtained through an inverse Fourier transform (IFT):

~Eaper(y) = F−1{~Eaper(ky)} = jM |Emax|F−1{πLe(−q+jkz)LΠ(ky, q)}x̂ (2.3)

where the symbol F−1 denotes the IFT with respect to transverse wavenumber ky;

Π(ky, q) is a rectangular function in the spectral domain with amplitude equal to one

extending from ky = −q to ky = q; and kz is the wavenumber in the z direction

defined as:

kz =





√
k2 − ky

2 : ky
2 < k2

−j
√

ky
2 − k2 : ky

2 > k2.
(2.4)

Since the configuration is two dimensional and the electric fields and current densities

only have x components, the scalar form of these quantities with a subscript x will be

used. Figures 2.4 and 2.5 show the spectral Eaper(ky) and spatial Eaper(y) computed

in this manner. It should be noted that the numerically computed values for Eaper(y)

that are used here are different from those in [14], where an approximate analytical

expression for Eaper(y) was used.

The total electric field, Eaper(y), can be related to the current density, Jx(y), using

the following integral equation [14]:

Einc(y)− kη

4

∫ W
2

−W
2

Jx(y
′)H(2)

0 (k|y − y′|)dy′ = Eaper(y) (2.5)

which represents the boundary condition at the plate’s surface. The field quantity

Einc(y) denotes the electric field incident on the plate from an external source, H
(2)
0

is the zeroth order Hankel function of the second kind, η = 120π Ω is the free space

wave impedance, and W is the width of the NFP. Substituting (2.3) into (2.5) yields
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an integral equation which can be solved to find Jx(y).

Once Jx(y) is known, ηsheet(y) can be computed by simply taking the ratio of

Eaper(y) to Jx(y):

ηsheet(y) =
Eaper(y)

Jx(y)
. (2.6)

In order to find Jx(y) and subsequently ηsheet(y), (2.5) was solved numerically in

[14]. Here, we solve (2.5) analytically, to obtain approximate closed-form expressions

for both Jx(y) and ηsheet(y) [17]. In the analytical treatment, we assume that the

plate is infinitely wide, in order to simplify the integral on the left hand side of (2.5)

to a convolution:

Einc(y)− kη

4

∫ ∞

−∞
Jx(y

′)H(2)
0 (k|y − y′|)dy′ = jM |Emax|F−1{πLe(−q+jkz)LΠ(ky, q)}.

(2.7)

Since the convolution becomes a multiplication in the spectral domain, an expression

for Jx(ky) can be found in the spectral domain, and then inverse Fourier transformed

to obtain approximate expressions for Jx(y) and ηsheet(y). The Fourier transform

properties of Hankel and Bessel functions as well as their integral representations

[25–27] are utilized in deriving the approximate expressions. Although we consider

a NFP under a specific excitation (i.e. cylindrical wave), the analytical approach

presented here can be applied to NFPs designed for arbitrary incident waves and

desired focal patterns, provided that the Fourier transformation of the incident and

desired focal patterns are known.

2.4 Focusing with Infinitely-Wide Near-Field Plates

A NFP is considered that can focus a cylindrical wave to a subwavelength focal

pattern given by (2.2). The source of the cylindrical wave will be an x-directed electric

line source with current I located at (y = 0, z = −d), as shown in Figure 2.6.
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Figure 2.3: Spectral and spatial representation of the electric-field focal pattern (~E)
given by (2.2).
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Figure 2.4: Spectral representation of the electric field at the surface of the plate.
The solid line represents Eaper(ky) given by (2.3). The dashed line is
the spectral domain representation of the approximate Eaper(y) given by
(2.18). The ripples are due to the truncation of the numerical Fourier
transform (Gibb’s phenomena).

Throughout this section, it will be assumed that I = 1 mA and d = λ/16. The

electric field produced by the line source at the plate’s surface is [26]:

Einc(y) = −kηI

4
H

(2)
0 (k

√
y2 + d2) (2.8)
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Figure 2.5: Spatial representation of the electric field at the surface of the plate. The
solid line represents Eaper(y) given by (2.3) while the dashes in (a) and
the dotted line in (b) represents the analytical expression given by (2.18).

Substituting Einc(y) into the integral equation (2.7) yields:

−kηI

4
H

(2)
0 (k

√
y2 + d2)− kη

4

∫ ∞

−∞
Jx(y

′)H(2)
0 (k|y − y′|)dy′ =

jM |Emax|F−1{πLe(−q+jkz)LΠ(ky, q)}. (2.9)

This integral equation can be Fourier transformed exactly to obtain its spectral do-

main counterpart:

−kηI

2

e(−jkzd)

kz

− kη

2

Jx(ky)

kz

= jπM |Emax|Le(−q+jkz)LΠ(ky, q) (2.10)
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Figure 2.6: A schematic of a near-field plate that is illuminated by a line source at
z = −d and forms a desired subwavelength focal pattern at z = L.

By rearranging (2.10), the following expression for the spectral domain Jx(ky) can be

obtained:

Jx(ky) = J inc
x (ky)+Jfoc

x (ky) = −Ie(−jkzd)− j2πLM |Emax|e(−q+jkz)Lkz

kη
Π(ky, q) (2.11)

Equation (2.11) reveals that the current density on the NFP consists of two parts.

The first term, referred to as J inc
x (ky), cancels the incident cylindrical wave in the

region z > 0, while the second term, referred to as Jfoc
x (ky), forms the desired focal

pattern. The first term, J inc
x , can be inverse Fourier transformed directly:

J inc
x (y) =

jkdI

2
√

d2 + y2
H

(2)
1 (k

√
d2 + y2) (2.12)

The real and imaginary parts of the IFT of Jfoc
x (ky) are found separately. The IFT

of the imaginary part of Jfoc
x (ky) is found exactly, by transforming the propagating
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spectrum (|ky| < k) of Jfoc
x (ky), and retaining its imaginary part:

Im{Jfoc
x (y)} = −πML|Emax|ke−qL

2η
[J0(k

√
y2 + L2) +

y2 − L2

y2 + L2
J2(k

√
y2 + L2)]

(2.13)

where J0 and J2 denote Bessel functions of the first kind. The real part of Jfoc
x (y)

can be derived approximately. Given that the second term of (2.11) increases ex-

ponentially as a function of ky for |ky| À k, we apply the following quasi-static

approximation,
√

k2 − k2
y ≈ −j|ky|. (2.14)

Under this assumption, the real part of Jfoc
x (ky) simplifies to:

Re{Jfoc
x (ky)} ≈ −2πLM |Emax|e(−q+|ky|)L|ky|Π(ky, q)

kη
. (2.15)

The quasi-static approximation is valid when q À k, in other words for NFPs that

focus electromagnetic waves to extremely subwavelength resolutions. It should be

noted that the growing nature for Re{Jfoc
x (ky)} is expected, since it results from

restoring/amplifying the evanescent electric field from the focal plane (z = L) to the

sheet plane (z = 0) (see Figure 2.4(b)). Inverse Fourier transforming (2.15), leads to

the following approximate expression for the real part of Jfoc
x (y),

Re{Jfoc
x (y)} ≈ −2ML|Emax|

kη(L2 + y2)
[(Lq−L2 − y2

L2 + y2
) cos(qy)+(yq− 2Ly

L2 + y2
) sin(qy)] (2.16)

By combining (2.13) and (2.16), the following expression for Jx(y) is obtained:

Jx(y) =
jkdI

2
√

d2 + y2
H

(2)
1 (k

√
d2 + y2)

−jπM |Emax|Lke−qL

2η
[J0(k

√
y2 + L2) +

y2 − L2

y2 + L2
J2(k

√
y2 + L2)]

−2M |Emax|L
kη(L2 + y2)

[(Lq − L2 − y2

L2 + y2
) cos(qy) + (yq − 2Ly

L2 + y2
) sin(qy)]. (2.17)
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The accuracy of (2.17) can be verified by comparing its numerical Fourier transform,

to the exact expression for Jx(ky) given by (2.11). The two plots are compared in

Figure 2.7 and show close agreement. The ripples at the sharp transitions are due to

the truncation of the numerical Fourier transform (Gibb’s phenomena).

Finally, in order to have a completely analytical expression for ηsheet, we must find

a closed-form expression for Eaper(y). In [14], an analytical expression for Eaper(y)

was derived which we will use here with a slight modification:

Eaper(y) = jM |Emax|L[
L cos(qy) + y sin(qy)

L2 + y2
+ 2πqe(−qL)(cos(kL)− 1)sinc(qy)]

−πL2e−qLkM |Emax|
2
√

L2 + y2
J1(k

√
L2 + y2). (2.18)

The first term is the same as the formula used in [14], and can be derived un-

der the quasi-static approximation (2.14). The second term is a modification factor

which is included to match the approximate expression for Eaper(ky) with its exact

value at ky = 0. The third term is the real part of Eaper(y) resulting from the prop-

agating spectrum (|ky| < k). The analytical expressions for Eaper(ky) and Eaper(y)

are compared to the numerically computed ones in Figures 2.4 and 2.5, and show

close agreement. Now that a closed-form expression for the current density and Eaper

on the infinitely-wide plate are known, the plate’s sheet impedance can be found by

substituting (2.17) and (2.18) into (2.6).

Examining (2.17) and (2.18) reveals an interesting feature of the aperture current

and field distributions: both equations have the term (y2 + L2) in their denominator

which translates into a pole at z = ±jL. This is in accordance with the “radiationless

interference” concept described earlier.
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Figure 2.7: The (a) real and (b) imaginary parts of the spectral representation of the
current density Jx(ky). The solid line represents (2.11) and the dashed
line represents the numerical Fourier transform of (2.17).

2.5 Focusing with Finite Near-Field Plates

In the previous section, we derived the current density and impedance for an

infinitely-wide NFP that focuses a cylindrical wave to a subwavelength focus (line

focus). In this section, we compare the analytical results to numerical results for

a finite plate that is W = 10λ wide (electrically-wide). The Method of Moments

(MoM) is used to simulate the finite-width plate. To be precise, the point matching

method [26] is employed with a discretization of λ/40. The current densities obtained

analytically and numerically are depicted in Figure 2.8. They match up well, other

than the slight differences near the edges of the finite plate that result from edge
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Figure 2.8: The (a) real and (b) imaginary parts of the current density Jx(y). The
solid line represents the analytically derived current density given by
(2.17). The dots in (a) and the dashed line in (b) represent the nu-
merically (MoM) computed current density. The current density is only
shown on half of the plate since it is symmetric about y = 0.

diffraction. It should be noted that the analytical expression for Re{Jx(y)} has been

derived based on the quasi-static assumption (2.14), which is valid for q À k. For

larger focal spots, or equivalently smaller values of q, it becomes less valid. As a rule

of thumb, the quasi-static assumption holds for q > 3k.

Figure 2.5 reveals that the aperture field, Eaper(y) is predominantly imaginary,

while Figure 2.8 shows that the current density, Jx(y), is predominantly real. As

a result, the sheet impedance which is the ratio of Eaper(y) and Jx(y) is predomi-

nantly imaginary (reactive). This fact explains why only the reactive part of sheet

impedance, Im{ηsheet(y)}, is typically used in the implementation of practical NFPs
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and the resistive parts are neglected.

Equations (2.17) and (2.18) and Figures 2.4-2.8 illustrate a distinctive feature of

the NFPs. The current density and also the electric field on the surface of the NFP

exhibits an evanescent spectrum that grows with increasing values of ky (see Figures

2.4 and 2.7). This evanescent spectrum results in a highly oscillatory spatial domain

counterpart (see Figures 2.5 and 2.8 and (2.17)). The evanescent spectrum produced

by the NFP is similar to the enhanced evanescent spectrum observed at the exit

surface of a negative refractive index metamaterial slab. However, the process by

which the evanescent spectrum is enhanced by NFPs is quite different from that for

metamaterial slabs. Negative refractive index metamaterials, which are periodic bulk

media, enhance the evanescent spectrum through the interaction of surface plasmons,

while NFPs are non-periodic planar structures which achieve an enhanced evanes-

cent spectrum through a modulation of their surface reactance. Finally, it should be

emphasized that the enhanced evanescent spectrum is required to form the subwave-

length focal pattern. The spectrum of the subwavelength focal pattern consists of an

extended evanescent spectrum (|ky| > |k|) (see Figure 2.3 (a)). The evanescent spec-

trum decays as the field propagates to the focal plane with the larger wavenumbers

experiencing a higher rate of decay. Therefore, the field at the surface of the NFP

must have a growing evanescent spectrum with respect to ky to compensate for the

higher decay rate associated with the larger wavenumbers.

Figure 2.8 reveals another distinctive feature of NFPs: the phase of adjacent el-

ements exhibits rapid variations. This is a characteristic feature of a NFP’s current

density. It is also reminiscent of the current distribution of superdirective antenna

arrays [28]. For both structures, the rapid phase variation between subwavelength-

spaced elements increases the ratio of reactive power to that radiated, resulting in

a high quality factor, Q [17, 28]. Due to this high Q, both NFPs and superdirec-

tive antenna arrays are narrowband (see [28] and [20]). They possess small input
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resistances and large input reactances, resulting in a significant input impedance mis-

match. While NFPs and superdirective antenna arrays share these features, they

are also distinct. NFPs produce a prescribed subwavelength near-field pattern, while

superdirective antenna arrays produce a far-field pattern that is more directive than

that produced by a uniformly excited aperture of the same size. Further, since NFPs

operate in the near field and superdirective arrays in the far field, they are designed

using entirely different procedures. The NFPs elements are designed through solving

an inverse problem step-by-step while in designing superdirective arrays, the elements

are optimized to minimize the directivity in the far field [29]. While we demonstrate

several different experimental NFPs throughout this thesis, superdirective antenna

arrays have remained difficult to realize [30, 31]. One reason is that the tolerances

on the magnitude and phase of the element excitations are exceedingly tight, making

the feed extremely challenging to implement. Since NFPs operate in the reactive

near field, these tolerances are less stringent, simplifying fabrication. Superdirective

antennas with passive reflectors or parasitic elements have also been pursued recently.

Superdirective reflector arrays and parasitic arrays of electrically-small antennas were

designed in [30, 32] and [31], respectively. Much like in NFPs, mutual coupling be-

tween elements was exploited to minimize the complexity and loss of the feeding

structure. These superdirective arrays, however, are still quite distinct from NFPs.

They are composed of resonant elements that generate a superdirective far-field pat-

tern, while the non-periodically varying elements of a NFP are designed to interfere

in the near field to produce a desired subwavelength near-field pattern.

The focal patterns, produced by both the analytical and numerical current densi-

ties, were computed using the two dimensional free space Green’s function [26],

Ex(y, z = L) = −kηI

4
H

(2)
0 (k

√
y2 + (d + L)2)−kη

4

∫ W
2

−W
2

Jx(y
′)H(2)

0 (k
√

(y − y′)2 + L2)dy′

(2.19)
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Figure 2.9: Close-up view of the magnitude of electric field at the focal plane. The
solid line represents the electric field at the focal plane produced by the
analytically derived current density given by (2.17). The dashed line
represents the electric field at the focal plane produced by the numerically
computed (MoM) current density. The dotted line represents the ideal
focal pattern given by (2.2).

and are plotted in Figure 2.9. The focal patterns produced by the analytically de-

rived current density show close agreement with those computed using the MoM.

Furthermore, 2-D plots of the vertical electric field computed using the analytically

derived and numerically computed current densities (Jx) are shown in Figure 2.10.

The incident electric field excites a highly oscillatory field on the surface of the plate

(z = 0). This highly oscillatory field forms a narrow beam for distances 0 < z < L

and converges to a subwavelength focus at the focal plane. Beyond the focal plane

(z > L), the field diverges rapidly. The ability of the NFP to maintain a narrow beam

over its focal length (0 < z < L) is an intriguing feature, and can be used in many

applications to increase operating distance while maintaining resolution. Later in this

chapter, and also in chapters 3 and 4, this feature will be demonstrated through ex-

periments and its applications will be discussed in more detail. In Chapters 5 and 6,

we will design NFPs that generate evanescent Bessel beams and retain their sunwave-

length beamwidth beyond the focal plane. Figure 2.10 also shows reflection from the

plate in the region z < 0. In the following chapters, methods to decrease reflection

from NFPs will be presented.
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Figure 2.10: 2-D plots of the vertical electric field (in dB) surrounding the 10λ NFP.
The electric field is computed for the current densities obtained (a) nu-
merically (MoM) and (b) analytically.

Finally, since one of the main goals was to find an expression for the plate’s sheet

impedance, the reactive sheet impedance resulting from analytical and numerical

methods is plotted in Figure 2.11. Impedance values for a 4λ plate are shown, since

it is simpler to implement than a plate that is 10λ wide. Given that only the reactive

part of the sheet impedance is used in the realization of NFPs [14], the reactive part

is only shown. The impedances show good agreement over the majority of the plate

with the exception of the plate’s edges.
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Figure 2.11: The reactive sheet impedance, Im{ηsheet(y)}. The solid line represents
the analytically derived Im{ηsheet(y)} using (2.17) and (2.18) in (2.6).
The dots represent the numerically computed Im{ηsheet(y)} using MoM.
The surface impedance is only shown for half of the plate since it is
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2.6 Conclusion

In this chapter, we reviewed the concept of “radiationless interference”, which

forms the basis of operation for NFPs. In addition, a general procedure for designing

NFPs was outlined. This procedure was used to design a NFP and its characteristics

were described analytically. Closed-form expressions for the induced current density

and surface impedance of infinitely-wide NFPs were derived. Further, it was shown

that the expressions obtained for infinitely wide plates can be used to approximate

the characteristics of finite-width plates. This study revealed that the current density

on a NFP can be split into two parts. One part cancels the incident wave on the

focus-side of the plate, while the other part produces the desired subwavelength focal

pattern. Furthermore, the spatial and spectral representations of the electric field on

the NFP were examined and shown to exhibit properties similar to those at the exit

face of a metamaterial slab. The intuitive understanding acquired from the analytical

discussion in this chapter will be used in the future chapters to further develop the

NFP concept and practical NFP designs.
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CHAPTER III

Linearly Corrugated Near-Field Plates

3.1 Introduction

In the previous chapter, the concept of “reflectionless interference” on which the

operation of near-field plates (NFPs) is based was reviewed. In addition, the design

procedure for NFPs and their performance were analytically studied. The NFP of

the previous chapter was excited by a cylindrical source and exhibited significant

reflection. For many applications, it is more convenient to excite the NFP through

a waveguide. A waveguide excitation allows for impedance matching. Therefore, our

goal in this chapter is to design a NFP which can be fed through a waveguide.

The NFP described in this chapter is referred to as linearly corrugated NFP. It

consists of a slit (parallel plate waveguide) surrounded by equally-spaced grooves with

non-periodically varying depths, as shown in Figure 3.1. The grooves act as parasitic

elements which shape the radiation from the slit to form a prescribed subwavelength

focus. The spacing and the width of the grooves are uniform while the depths of the

grooves are varied to shape the desired focal pattern. This non-periodically corru-

gated NFP should not be confused with periodic, corrugated structures discussed in

earlier works [33–44]. In these earlier works, periodic corrugations were used to beam

radiation into the far field, in contrast to the non-periodically corrugated NFP pre-

sented here which tailors the near field and forms a highly confined electromagnetic
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beam. An overview of earlier works and their fundamental differences with corrugated

NFPs are presented later in this section.

A linearly corrugated NFP is shown in Figure 3.1. Our goal in this chapter is to

demonstrate that such a structure can focus electromagnetic field with subwavelength

resolution. A procedure for designing this plate is outlined. Two different examples of

corrugated NFPs are developed and their performance is studied in full-wave simula-

tion. In the first example a corrugated NFP is considered that is fed through a central

slit in a metallic surface. Full-wave simulation results confirming the plate’s ability

to form subwavelength focal patterns are reported. It is also demonstrated that the

corrugated NFP is robust to practical losses and it can be impedance matched to its

waveguide feed.

In the second example, a corrugated NFP with corrugations on both sides is

studied. The two sides of the plate are connected by a central slit. One side features

a periodic corrugation, which will be referred to as the input corrugation (IC), while

the other side features a non-periodic corrugation, which will be referred to as output

corrugation (OC). The periodic IC is illuminated by a plane-wave. The IC enhances

the transmission of the incident plane wave through the central slit. The non-periodic

OC focuses the wave transmitted through the slit to a subwavelength focus. Therefore,

the overall function of this corrugated NFP is similar to that of a lens: the IC collects

the incident plane-wave radiation, which is then transmitted through the central slit

and focused to a subwavelength focus by the non-periodic OC. This corrugated NFP

is fabricated and its measurement results are reported. Experimental results confirm

that the linearly corrugated NFP produces a focal pattern significantly narrower than

that formed by a single slit.
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3.1.1 Periodic vs. Non-periodic Corrugations

Over the past few years, there has been growing interest in tailoring far field ra-

diation using periodic corrugations or holes. Much of this interest was initiated by

the discovery of extraordinary optical transmission through metallic films perforated

with subwavelength holes [33–35]. This work prompted numerous theoretical and

experimental studies on light propagation along periodic plasmonic surfaces. It also

initiated the investigation of enhanced transmission and beaming through a single sub-

wavelength hole/slit in a metal film surrounded by wavelength-scaled grooves [36–38].

Various geometries were considered including circular holes with concentric grooves

and slits flanked by linear arrays of grooves.

From an antenna perspective, the periodic grooves increase the antenna aper-

ture - the area over which the electromagnetic wave is collected or radiated. This

enhanced transmission/beaming through a single subwavelength hole was not only

observed for periodically patterned plasmonic films, but also patterned conducting

surfaces [39–42]. Much like a metallic film at optical frequencies that supports surface

plasmons, the patterned conducting surface exhibits an inductive surface impedance

that supports bound P -polarized surface waves (spoof surface plasmons) [43]. By pe-

riodically perturbing a plasmonic or conventional conducting metal film at a spacing

close to guided wavelength, a leaky n = −1 spatial harmonic (diffracted beam) can

be generated that delocalizes the radiation, in effect creating a leaky-wave antenna

that has a directive far-field pattern [42].

The periodically structured surfaces described above enhance transmission and

beam radiation into the far field. In contrast, corrugated NFPs possess non-periodic

grooves which provide extreme electromagnetic confinement. They manipulate the

near field to create a subwavelength focal pattern at a near-field focal distance. It

should be noted that, even in [44], where a non-periodic corrugation was considered,

the device still operated in the far field and achieved diffraction-limited focusing.
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Figure 3.1: A linearly corrugated NFP consisting of a waveguide-fed slit in a non-
periodically grooved metallic surface. The grooves have uniform width,
w, and are equally spaced at a distance, a, from each other. The depth
of each groove is non-periodically varied.

3.2 Design Procedure

We will consider a symmetric linearly corrugated NFP with a finite number of

±N grooves on each side of the central slit, as shown in Figure 3.1. The grooves

have uniform width w and spacing a, while their corresponding depths are non-

periodically varied and denoted as d−N to dN . It is assumed that the grooves are

infinite in the x direction and the metallic surface into which the grooves are placed

is infinite in the x and y directions. In the design process, the corrugated NFP is

first viewed as a waveguide-fed slit in a modulated, non-periodic impedance sheet, as

shown in Figure 3.2. In the illustration, the contour plot at the exit face of the slit

represents a possible impedance variation realized using non-periodic corrugations.

The grooves and central slit (shown in Figure 3.1) are apertures within an infinite

metallic surface, and therefore can be modeled as an array of magnetic currents over

an infinite ground plane. The magnetic currents are equivalent sources with complex

amplitudes equal to the tangential electric field in the central slit and grooves [35,45].
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Figure 3.2: A simplified model of the corrugated NFP shown in Figure 3.1. The
model consists of a waveguide-fed slit in a non-periodic impedance sheet.

The depicted surface impedance simply represents the ratio of the magnetic current

to the tangential magnetic field at z = 0+.

The step-by-step procedure for designing the linearly corrugated NFP is similar

to the one described in Figure. 2.2 with few changes. The first step is to find the

magnetic current density M(y)x̂ on the plate needed to produce the desired focal

pattern, in the presence of the excitation (the waveguide-fed slit). The second step

involves computing the magnetic field at the surface of the plate, Htotal = H(y, z =

0+)x̂, resulting from the magnetic current density and the excitation combined. The

third step is to calculate the surface impedance required to produce the focal pattern.

The surface impedance is calculated by taking the ratio of M(y) to H(y, z = 0+).

The final step is to optimize the depth of the grooves surrounding the central slit, in

order to realize this surface impedance profile.

The magnetic current density on the plate needed to produce the desired focal

pattern Hfocal(y) = H(y, z = L) can be found by solving an integral equation that

relates the incident magnetic field Hinc, M(y), and Hfocal(y). The electromagnetic

boundary value problem can be divided into two regions: region 1 representing the

unbounded space z > 0 , and region 2 representing the region within the waveguide

feed. Using the aperture formulation for TM scattering [45], equivalent electromag-
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netic problems for the two regions can be written, that are connected through the

continuity of tangential magnetic and electric field through the central slit. The

equivalent problem for region 1 involves a magnetic current density 2M(y) radiating

in free space to produce the desired focal pattern Hfocal(y). It is governed by the

following integral equation,

−ωε0

2

∫ W/2

−W/2

M(y′)H(2)
0 (k

√
(y − y′)2 + L2)dy′ = Hfocal(y), (3.1)

where W is the total width of the corrugated NFP, and H
(2)
0 is the zeroth order Hankel

function of the second kind. It should be emphasized that the required magnetic

current densities, M(y), is directly related to the desired focal pattern in 3.1. This is

quite different from the approach in Figure 2.2 where the desired focal pattern was

back propagated to find the required current densities. By eliminating the need to

back propagate the focal pattern, we have further simplified the design procedure.

However, it should be noted that the physics behind the operation of NFPs is still

similar to the previous chapter and relies on radiationless interference.

Given the desired focal pattern Hfocal, (3.1) can be solved using the Method of

Moments [45]. The magnetic current density is treated as the unknown and discretized

into 2N +1 elements with ∆y width. For example, pulse basis functions and the point

matching method can be used to convert (3.1) into the following matrix equation:

−ωε0

2

N∑
m=−N

MmH
(2)
0 (k

√
(|n−m|∆y)2 + L2)w = Hfocal,n (3.2)

where n is an integer from −N to N , w is the width of the grooves, Mm = M(y =

m∆y) and Hfocal,n = Hfocal(n∆y). Since the magnetic current density has a non-zero

value only at the groove locations, the width of each element is represented by w in

(3.2). It should also be noted that M0 represents the magnetic current assigned to

the central slit. The equivalent problem for region 2 involves a TEM wave incident on
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a magnetic current density, M0. Considering only the dominant TEM mode within

the waveguide, the electromagnetic fields in region 2 (z < 0) are governed by the

following equation,

2Hinc +
M0

η
= Htotal,n=0 (3.3)

where Htotal,n = Htotal(z = 0, y = n∆y) , Hinc is the magnetic field of the incident

electromagnetic wave, and η is the characteristic impedance of free space. The mag-

netic current density M0, that is common to (3.2) and (3.3), ensures the continuity of

the tangential electric field through the central slit. The continuity of the magnetic

field is enforced by ensuring that the magnetic field Htotal(n∆y = 0) at the central

slit,

Htotal,n =
−ωε0

2

N∑
m=−N

MmH
(2)
0 (k|(n−m)∆y|)w (3.4)

produced by the magnetic currents Mm in (3.2), is the same as the one which appears

in (3.3).

By solving (3.2), the magnetic current densities needed to produce the focal pat-

tern Hfocal can be found. Given the magnetic current densities and the continuity

relation given by (3.4), the required incident magnetic field Hinc can be computed

using (3.3). In the next step, the ratio of the magnetic currents and magnetic field

at the surface of the plate is taken to obtain the required surface impedance:

Z(y = n∆y) = Zn =
Mn

Htotal,n

. (3.5)

In the final step of the design process, the surface surrounding the slit is corrugated

(see Figure 3.1) in order to realize the impedance profile given by (3.5). Only the

imaginary part of the impedance is used given that the real part is negligible (see

Chapter 2 and [14]). The width, w, and spacing, a, of all of the grooves are kept the

same, while the depth, dn, of the grooves is varied. Each groove can be considered as a
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short-circuited waveguide. By varying the depth dn of each groove, its input reactance

can be changed. Using this short-circuited waveguide model, the input impedance of

each groove is jη tan kdn [35, 46]. This expression for the input impedance pertains

to the idealized case where there are no fringing fields, and only the dominant TEM

mode is present within the waveguide. To accurately determine the depth of the

grooves, a full-wave electromagnetic solver can be used that takes into account all

parasitics and higher order waveguide modes that are excited.

3.3 Simulation Results

To demonstrate the utility of the design procedure, we present two different cor-

rugated NFPs. Both plates are designed following the procedure outlined above and

full-wave simulation results verifying their operation are presented. Later in this

chapter, experimental results verifying the performance of the second example are

presented.

3.3.1 Example 1

In the first example, a linearly corrugated NFP is considered with the following

parameters: L = λ
15

, a = λ
40

, w = λ
80

, N = 19 where λ = 30 cm corresponds to a

1 GHz frequency of operation. The magnetic-field focal pattern is assumed to be a

sinc function with a null-to-null beamwidth of λ/10,

Hfocal(y) =
sin(qy)

qy
= sinc(qy) (3.6)

where q = 10k determines the null-to-null beamwidth. At first, we assume that the

metal is a lossless perfect electric conductor (PEC). Following the design procedure

above, the required magnetic current densities have been computed and are listed in

Table 3.1. The magnetic currents listed in Table 3.1 are normalized to the incident
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Groove Index (n) Normalized Magnetic Current Densities(Mn/Einc)

0 1.9963∠176.4247◦

1 0.4975∠176.5339◦

2 1.5722∠− 3.6577◦

3 1.0262∠− 3.6804◦

4 0.8870∠176.4664◦

5 0.9757∠176.4556◦

6 0.5099∠− 3.7405◦

7 0.8217∠− 3.6830◦

8 0.3109∠176.5874◦

9 0.6968∠176.4547◦

10 0.2251∠− 3.8885◦

11 0.5676∠− 3.6546◦

12 0.1173∠177.0418◦

13 0.5674∠176.3452◦

14 0.2117∠− 4.2414◦

15 0.2830∠− 3.1021◦

16 0.1836∠− 5.2499◦

17 0.8258∠175.8882◦

18 0.6505∠− 4.4743◦

19 0.1660∠173.9888◦

Table 3.1: The magnetic current densities representing the grooves of the linearly cor-
rugated NFP in example 1. The magnetic current densities are normalized
to the incident electric field computed using (3.3).

electric field, found using (3.3). Table 3.1 shows that the phase of adjacent magnetic

current densities is reversed. As pointed out in the previous chapter, this rapid phase

variation is a characteristic feature of NFPs. Given the magnetic current densities in

Table 3.1, (3.5) is used to obtain the required surface impedance. Neglecting the real

part of the surface impedance, the depths of the grooves needed to produce the focal

pattern were found. The computed depths are shown in Figure 3.3.

The focal pattern produced by this corrugated NFP is plotted in Figure 3.4. The

plot also shows the ideal focal pattern given by (3.6) (Theory), as well as the focal

pattern produced by the discretized magnetic currents Mm (given by (3.2)) found

using the Method of Moments (MoM ). The NFP is simulated using a commercial
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Figure 3.3: The groove depths for the corrugated NFP shown in Figure 3.1, designed
to operate at 1.0 GHz. The plot is symmetric: dn = d−n.

finite element electromagnetic solver Comsol Multiphysics (COMSOL). The three

focal patterns are nearly identical, thereby validating the described design procedure.

It should be noted that the COMSOL pattern is plotted at 1.0015 GHz, while the

other two curves are plotted at 1.0 GHz. This slight frequency shift in center frequency

can be attributed to the initial assumption that the electric field is constant across

the grooves.

Moreover, the effect of practical losses on the performance of the corrugated NFP is

studied using Comsol Multiphysics by replacing the PEC boundaries of the structure

with copper. A contour plot of the magnetic field is shown in Figure 3.5 for a plate

with copper boundaries. The focal patterns with losses (copper) and without losses

(PEC) are compared in Figure 3.6. As can be seen, losses have minimal effect on the

performance of the NFP.

Although the designed corrugated NFP maintains a subwavelength focus despite

losses, it still suffers from an impedance mismatch at its input. To remedy this, the

corrugated surface was impedance matched to its waveguide feed using a single-stub

matching network [46], as shown in Figure 3.5. The stub is located at 0.49571λ from

the opening of the central slit, and has a length of 0.24017λ. The stub was chosen
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Figure 3.4: Focal patterns at 1.0 GHz formed by the NFP depicted in Figure 3.1. The
curve labeled MoM represents the focal pattern produced by Mm given
by (3.2), Theory is a plot of (3.6), and COMSOL is the focal pattern
produced by the designed corrugated NFP.

to have a width equal to that of the central slit. Using the stub matching network,

a return loss of around −15 dB was obtained for the plate. Through impedance

matching, the maximum amplitude of the focal pattern (Hfocal,0) was increased from

0.0098Hinc to 0.0817Hinc. Therefore, impedance matching can clearly enhance the

field at the focal plane.

3.3.2 Example 2

The linearly corrugated NFP presented in the previous example was fed through

its central slit by a waveguide. The feeding mechanism of the linearly corrugated

NFP is modified in this example. The modified structure is shown in Figure 3.7 and

consists of two identical metallic slabs placed closely together. The gap between the

slabs serves as the central slit. Both sides of each slab feature corrugations which run

along the length of the slab (see Figure 3.7). The slabs are illuminated from one side

by a plane wave, which is partially transmitted through the central slit. The side of the
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Figure 3.5: A cross-sectional view of the corrugated NFP designed to operate at
1 GHz. A contour plot (in dB) of the x-directed magnetic field formed by
the device is shown, given a TEM wave with magnetic field Hinc = 1 in-
cident from the waveguide feed. The magnetic field contour plot includes
the effect of losses. The stub attached to the waveguide feed is used to
impedance match the device.

plate illuminated by the plane wave, features a periodic input corrugation, referred

to as IC. The other side of the plate features a non-periodic output corrugation,

referred to as OC. The periodic IC is similar to the periodic corrugations discussed in

subsection 3.1.1. The design and operation of these periodic corrugations have been

thoroughly discussed in literature [33–44]. The purpose of the IC is to enhance the

transmission of the plane wave through the central slit. On the other hand, the non-

periodic OC, which forms the subwavelength focus, is a corrugated NFP, similar to the

one of Example 1. Since the roles and operation of IC and OC are independent of each

other, they can be designed separately. The OC is designed following the procedure

outlined in Example 1. The IC is designed following an established procedure [33–44].

The performance of the entire structure including both IC and OC is studied using

full-wave simulation. Finally, the structure is examined through experiment in the

next section.
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Figure 3.6: The focal pattern produced by the corrugated NFP with PEC (lossless)
boundaries (solid line) and with copper (lossy) boundaries (dashed line),
computed using Comsol Multiphysics.

In the design process, the slabs are initially assumed to be infinitely wide. Subse-

quently, the effects of the finite width and edge diffraction are considered. In the previ-

ous example, a sinc function magnetic-field focal pattern with null-to-null beamwidth

of λ/10 was selected as the focal pattern (see Figure 3.8 (a)). This choice results in

a transverse electric-field (Ey) focal pattern with null-to-null beamwidth of λ/15 as

shown in Figure 3.8 (b). Figure 3.8 (b) reveals that the transverse electric-field (Ey)

focal pattern exhibits significantly large side lobes. To remedy this, the magnetic-field

focal pattern was chosen to be a zeroth-order Hankel function of the second kind (see

Figure 3.8 (c)), with its spatial spectrum truncated to q = 15k. The corresponding

Ey focal pattern approximates a sinc function with null-to-null beamwidth of λ/15

with small sidelobes, as shown in Figure 3.8 (d).

The operating frequency is set to 10.0 GHz, corresponding to λ = 3.0 cm. The

other parameters are the same as those in the previous example: L = λ
15

, aOC =

λ
40

, wOC = λ
80

, NOC = 19. Given these parameters and assuming lossless conditions,

the required OC’s groove depths, dOC,n, were obtained, and are shown in Figure 3.9.

With these groove depths, the structure was simulated using Comsol Multiphysics.
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Figure 3.7: The linearly corrugated NFP discussed in section 3.3.2 (Example 2). The
plate consists of two identical metallic slabs, placed closely together, to
form the central slit. One side is periodically corrugated and is referred
to as input corrugation (IC). The other side is non-periodically corru-
gated and referred to as output corrugation (OC). The IC enhances the
transmission through the central slit while the OC forms a subwavelength
focus on the other side.

The resulting focal patterns are plotted in Figure 3.10 and denoted as COMSOL. For

comparison, the ideal focal patterns shown in Figure 3.8 are also plotted and labeled

as Theory. In addition, the focal patterns computed using the Method of Moments

are shown and denoted as MoM. To compute the MoM plot, the focal pattern pro-

duced by the magnetic current density on the OC is found. The induced magnetic

current densities are found by substituting the imaginary part of the required surface
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(a) Example 1 magnetic-field focal pattern
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(b) Example 1 transverse electric-field focal
pattern
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(c) Example 2 magnetic-field focal pattern
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(d) Example 2 transverse electric-field focal
pattern

Figure 3.8: Comparison of the desired focal patterns in example 1 and example 2. (a)
Example 1 magnetic-field focal pattern: a sinc function with null-to-null
beamwidth of λ/10. (b) Example 1 transverse electric-field focal pattern.
(c) Example 2 magnetic-field focal pattern: a zeroth order Hankel function
of the second kind with its spatial spectrum truncated to q = 15k. (d)
Example 2 transverse electric-field focal pattern which approximates a
sinc function with null-to-null beamwidth of λ/15.
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Figure 3.9: The groove depths for the OC of the NFP shown in Figure 3.7. The plate
is designed to operate at 10.0 GHz. The NFP is symmetric: dOC,n =
dOC,−n.

impedance, Zn, into the equation below:

Mn

Zn

=
ωε0

2

N∑
m=−N

MmH
(2)
0 (k|(n−m)∆y|)w (3.7)

Figure 3.10 shows good agreement between MoM and COMSOL, and thereby

verifies the design procedure. However, both the MoM and COMSOL plots are

different from the ideal pattern. This difference is due to the fact that the real part

of the required impedance profile is ignored in the design procedure, when in fact it

is not negligible in this particular case. One should note that the real part of the

impedance profile cannot be realized by varying the grooves’ depths. Finally, it should

be emphasized that the simulation results are presented at 10.006 GHz, which differs

from the design frequency of 10.0 GHz by 0.6%. As before, this slight frequency shift

is attributed to the initial assumption that the electric field is constant across the

grooves.

In order to study the effect of practical losses on the performance of the plate,

the designed OC was resimulated with the PEC boundaries replaced with copper

boundaries. The focal pattern produced by the lossy NFP is depicted in Figure 3.11

and denoted as Copper. The pattern produced by the lossless NFP is also depicted
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(a) Normalized magnetic-field focal pattern
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(b) Normalized transverse electric-field focal pat-
tern

Figure 3.10: Normalized (a) magnetic-field and (b) transverse electric-field focal pat-
terns produced by the OC of the NFP shown in Figure 3.7. The curve
labeled Theory is the plot of the theoretical focal pattern. The curve
MoM represents the focal pattern produced by the magnetic current
densities computed using (3.7), and COMSOL is the focal pattern pro-
duced by the designed corrugated NFP.
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(a) Normalized magnetic-field focal pattern
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(b) Normalized transverse electric-field focal pat-
tern

Figure 3.11: Normalized (a) magnetic-field and (b) transverse electric-field focal pat-
terns produced by the OC of the corrugated NFP shown in Figure 3.7
with PEC boundaries (solid line) and with copper boundaries (dashed
line). The patterns are computed using Comsol Multiphysics.

and denoted as PEC. The effect of loss is more pronounced here than in the previous

example (see Figure 3.6), since conductor losses are higher due to the ten fold increase

in frequency [46].

In the next step, the IC is designed to maximize transmission through the central

slit. The IC design procedure has been outlined in literature [33–44]. Following the

established procedure, the IC was designed and its parameters are as follows: NIC = 5,

aIC = 27.6 mm = 0.92λ, wIC = 2.76 mm = 0.092λ, and dIC = 4.15 mm = 0.138λ. It

is worth noting that the input corrugation is periodic with the groove separation aIC

equal to a guided wavelength of the surface mode supported by the IC at 10.0 GHz.
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(a) Normalized magnetic-field focal pattern
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(b) Normalized transverse electric-field focal pat-
tern

Figure 3.12: Normalized (a) magnetic-field and (b) transverse electric-field focal pat-
terns produced by the corrugated NFP shown in Figure 3.7. The IC+OC
Lossy plot represents the patterns produced by the lossy NFP while the
IC Lossy plot represents the patterns produced by the lossy plate with
the output corrugation (OC) removed.

Also, the depth and width of the input corrugations are subwavelength. Finally, the

thickness of the slab is chosen to be H = 14 mm, which corresponds to a resonant

length (λ/2). This choice further enhances transmission through the central slit.

Given the parameters above for the IC and OC, the corrugated NFP shown in

Figure 3.7 was simulated in Comsol Multiphysics. Conductor losses were included in

the simulation and the results are shown in Figure 3.12, and denoted as IC+OC Lossy.

For comparison purposes, the focal patterns produced by the plate when the OC is

removed are also depicted and denoted as IC Lossy. The focal patterns produced by
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the plate with the OC are significantly narrower than those produced without the

OC.

In order to illustrate the effect of losses and diffraction from the edges separately,

the focal patterns produced for different cases are depicted in Figure 3.13. The first

graph is the same pattern shown in Figure 3.12 and is labeled as IC+OC Lossy. The

second graph, labeled as IC+OC Lossless, is the pattern produced by the structure

when there is no loss. As noted earlier, the effect of conductor loss is noticeable due

to the high frequency of operation. The third graph, labeled as OC Lossy, is the

focal pattern produced by the lossy structure when the IC is removed. When the

IC is removed, the diffraction from the edges significantly changes the focal pattern.

The last graph is labeled OC Lossless. This graph is the focal pattern produced by a

lossless plate with the IC removed. These focal patterns significantly differ from the

ones plotted in Figure 3.10. This difference clearly demonstrates the effects of the

edge diffraction.

In the next section, the corrugated NFP presented in this example is fabricated

and tested. The setup used to measure the plate’s focal patterns is described in

detail. Magnetic field measurements for the fabricated structure are also reported.

For comparison purposes, the patterns produced by a single slit are measured. It

is shown that the corrugated NFP produces significantly narrower patterns than a

single slit in a metallic plate with dimensions equal to that of the IC.

3.4 Measurements

The experimental NFP consisted of two corrugated copper plates fabricated with

25 micron accuracy using wire electrical discharge machining (EDM). The corrugated

NFP was measured using the setup shown in Figure 3.14. In this setup, a Gaus-

sian beam telescope system [47, 48] was used to illuminate the IC of the corrugated

plate. The magnetic field of the Gaussian beam was oriented along the grooves. The
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(a) Normalized magnetic-field focal pattern
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(b) Normalized electric-field focal pattern

Figure 3.13: Normalized (a) magnetic-field and (b) transverse electric-field focal pat-
terns produced by the corrugated NFP shown in Figure 3.7. The IC+OC
Lossy plot represents the pattern produced by the lossy plate. The
IC+OC Lossless plot represents the pattern produced by the lossless
plate. The OC Lossy plot represents the pattern produced by the lossy
structure with the IC removed. The OC Lossless plot represents the
pattern produced by the lossless plate with the IC removed.

Gaussian beam telescope was connected to port 1 of a network analyzer. To detect

the magnetic-field focal pattern produced by the plate, a shielded loop antenna was

scanned along the y direction at a distance 1 mm from the OC. The shielded loop

had a diameter of 4.5 mm, and was made from 0.047 inch semi-rigid coaxial cable.

The loop was connected to port 2 of the network analyzer. In this setup, the S21

measured by the network analyzer is a measure of the transmitted magnetic field.

The measured magnetic-field focal pattern is shown in Figure 3.15, and is denoted

as Corrugated Measurement. To emphasize the narrowness of the focal pattern pro-
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duced by the OC, we have also plotted a curve showing the measured magnetic-field

pattern when the OC was removed (covered by copper tape), and is denoted as Slit

Measurement. By covering the OC with copper tape, the grooves were short circuited

and effectively removed. Therefore, the plate with the OC covered acted like a single

slit with enhanced transmission resulting from the IC. The Corrugated Measurement

exhibits a FWHM of λ/9.23, which is 3 times narrower than the Slit Measurement

plot that exhibits a FWHM of λ/3.07. It should be noted that the simulated focal

pattern, denoted as Corrugated Simulation, is slightly narrower than the measured

one, exhibiting a FWHM of λ/11 . The increased width of the experimental focal

pattern can be attributed to the size of the shielded-loop used to probe the mag-

netic field. The radius of the probe was larger than the groove spacing of the OC,

which determines the resolution of the subwavelength focus. Therefore, the size of

the shielded-loop limited the spatial resolution that could be detected. Finally, the

measurement results are reported at 10.007 GHz, while the simulation results are

reported at 10.006 GHz. This negligible frequency shift can be attributed to the 25

micron tolerance of the fabrication process.

In order to investigate the transmission enhancement achieved by the IC, the

measured signal levels detected by the loop placed close to the central slit are listed

in Table 3.2. The signal levels when the IC is removed (covered by coper tape) are

significantly lower than when the IC is present (not covered). These comparisons

verify the enhanced transmission through the central slit achieved by the IC.

Finally, the emitted beam from the corrugated NFP with and without OC (single

slit with IC) are compared in Figure 3.16. In the plot, the measured magnetic field

(Hz) along each z = z′ plane has been normalized to its corresponding maximum

value: Hz(y, z = z′)/Hz(y = 0, z = z′). Figure 3.16 (a) shows the beam radiated

from the NFP with the OC covered by copper tape, while Figure 3.16 (b) shows the

beam radiated from the NFP. These two figures confirm the NFP’s superior ability
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(a) Gaussian beam telescope illuminating IC

(b) Small loop measuring the pattern created by
OC

Figure 3.14: Fabricated corrugated NFP and measurement setup. (a) The Gaus-
sian beam telescope used to illuminate the input corrugation (IC). (b)
The photograph depicts the small shielded loop used to measure the
magnetic-field pattern created by the output corrugation (OC).

to confine the electromagnetic near field over an extended operating distance.

3.5 Conclusion

We have shown that a linearly corrugated NFP consisting of a waveguide-fed slit

surrounded by non-periodic corrugations can focus electromagnetic fields to subwave-

length resolutions. A general procedure for designing such a device was outlined. Two

different examples of corrugated NFPs were designed and studied in full-wave simula-

tion. The effect of losses was also considered, and two different methods for reducing

the reflection from a NFP were demonstrated. In the first example, a single stub was
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Figure 3.15: Normalized magnetic-field near-field patterns detected using the mea-
surement setup shown in Figure 3.14. The Corrugated Measurement
plot represents the measured magnetic-field pattern produced by the
corrugated NFP while the Slit Measurement plot represents the pattern
formed by the plate when OC is removed (covered by copper tape). The
Corrugated Simulation plot is the simulated magnetic-field focal pattern
produced by the NFP (computed using Comsol Multiphysics).

used to reduce the reflections while in the second example, periodic input corruga-

tions were used to reduce reflections and enhance transmission. This second example

was experimentally studied. The input face of the experimental plate was periodi-

cally corrugated to enhance transmission through the slit, while the output face of

the plate featured a non-periodic corrugation which formed the subwavelength focus.

Simulation and free-space measurements were reported at approximately 10 GHz,

confirming the corrugated plate’s ability to form a subwavelength focus. The sub-

wavelength focus had a FWHM of λ/9.23 which was 3 times narrower than the focus

produced by the single slit. Linearly corrugated NFP addressed the first limitation

of NFPs. Namely, they can be fed directly through a waveguide. Furthermore, it

illustrated a method to form desired magnetic-field near-field patterns. This idea has

been pursued by others to manipulate magnetic field in the near field and design novel

electromechanical actuators and transducers [49,50].
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Measurement S11 (dB) S21 (dB)

IC+OC −9.7 −33.8
OC −3.7 −37.12
IC −7.5 −28.2

single slit −3.34 −33.3

Table 3.2: The transmitted magnetic field amplitude for the different input/output
corrugation configurations. The magnetic field amplitude is measured by
placing the shielded loop close to the central slit. The S11 and S21 values
are signals measured by the network analyzer when port 1 is connected
to the Gaussian beam telescope and port 2 is connected to the shielded
loop. IC+OC represents the measured signal when both the input and
output corrugations are present. OC represents the measured signal when
the input corrugation is removed (covered by copper tape). IC represents
the measured signal when the output corrugation is removed (covered by
copper tape). Single slit represents the measured signal when both input
and output corrugation are removed (covered by copper tape).

z/λ

y/
λ

 

 

0.0083 0.083 0.167
−0.5

−0.25

0

0.25

0.5

0

0.2

0.4

0.6

0.8

1

(a) Slit with IC

z/λ

y/
λ

 

 

0.0083 0.083 0.167
−0.5

−0.25

0

0.25

0.5

0

0.2

0.4

0.6

0.8

1

(b) NFP

Figure 3.16: Measured beam emitted from (a) the corrugated NFP with OC removed
(covered by copper tape) and (b) the corrugated NFP. In both plots, the
measured field along each z = z′ plane is normalized to its maximum
value: Hz(y, z = z′)/Hz(y = 0, z = z′).
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CHAPTER IV

Concentrically Corrugated Near-Field Plates

4.1 Introduction

In the previous chapter, a corrugated NFP consisting of a waveguide-fed slit sur-

rounded by linear, non-periodic corrugations was studied. It was shown that non-

periodic corrugations can form a desired subwavelength magnetic-field focal pattern

(line focus). The simulation results were then verified using an experimental, corru-

gated NFP.

The results of the previous chapter proved that NFPs can be fed through a waveg-

uide. However, the linearly corrugated NFP still required further development to be of

practical use in applications. Specifically, the NFP presented in the previous chapter

could only produce a 1-D subwavelength focus (line focus), while a 2-D subwave-

length focus is needed in most applications. Also, the plate of the previous chapter

was excited using a parallel plate waveguide (slit), which may be difficult to feed in

practice. Therefore, our goal in this chapter is to design a NFP which forms a 2-D

focus, and can be fed through a simple coaxial connector. Such a device can find

many applications ranging from near-field probing and sensing systems to biomedical

and data storage devices.

The NFP examined in this chapter is referred to as concentrically corrugated

NFP. It consists of a coaxially-fed central aperture surrounded by periodically-spaced
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concentric grooves, as shown in Figure 4.1 (a). The grooves are spaced uniformly at

a subwavelength distance and the depths of the grooves are non-periodically varied.

We will show that such a device can localize the electromagnetic field emitted by the

central aperture to a 2-D subwavelength spot at a near-field distance (focal length)

z = L. The near-field focal spot can be designed to be much smaller than that

produced by the central aperture alone. Therefore, this coaxially-fed concentrically

corrugated NFP can provide extreme 2-D electromagnetic field confinement, and is

well suited for applications such as near-field probing.

This chapter is organized into five sections. First, a procedure is outlined for

designing a concentrically corrugated NFP. Simulation results are reported which

confirm a designed NFP’s ability to form a 2-D subwavelength focus. Next, the

performance of the concentrically corrugated NFP is studied in experiment. The

electric-field patterns produced by an impedance matched, concentrically corrugated

NFP are measured at various distances. It is experimentally verified that the NFP

produces focal patterns with significantly narrower beamwidths compared to those

produced by a coaxial probe of the same dimensions. The measured electric-field

patterns are also compared to those numerically computed for the measurement setup.

Furthermore, the NFP’s experimental frequency response is shown to be consistent

with simulation results. Also, 2-D plots of the beams emitted by both the NFP and

a coaxial probe are compared. The comparison confirms that the beam emitted from

the NFP is confined over a larger operating distance (focal length) compared to a

coaxial probe. Finally, the NFP is used to create 1-D and 2-D images of two in-phase

dipole (coaxial) sources separated by a subwavelength distance. The images obtained

using the NFP exhibit significantly higher resolution than those using a conventional

coaxial probe. These results demonstrate the concentric NFP’s ability to serve as a

coaxially-fed, high resolution near-field probe.
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(a) Concentrically corrugated NFP (b) Magnetic current frills

Figure 4.1: (a) A concentrically corrugated NFP. The concentric corrugations have
uniform width and spacing, while their depths are varied non-periodically
in order to shape the desired focal pattern at z = L. (b) The magnetic
current frills used to model the concentric grooves in the design process.
The n’th frill has a magnetic current density of Mn, and voltage Vn across
it.

4.2 Design Procedure

The concentrically corrugated NFP depicted in Figure 4.1 (a) has N concentric

circular grooves. The central aperture is coaxially fed. The grooves (n = 1...N) have

uniform width w, inner radius an, and outer radius bn, but their depths (denoted as

d1 to dN) are non-periodically varied. For design purposes, the metallic surface into

which the grooves are placed is assumed to be infinite in the x and y directions. In

addition, each groove (n) is modeled as a magnetic frill (an annular ring of magnetic

current) as shown in Figure 4.1 (b) [51]:

~Mn(ρ) =
−Vn

ρ ln( bn

an
)
φ̂ (4.1)

that exists between an ≤ ρ ≤ bn, where Vn represents the voltage across each frill. The

magnetic frills are equivalent sources with complex amplitudes equal to the tangential

electric field across the openings of the coaxially-fed aperture (n = 0) and concentric
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grooves (1 ≤ n ≤ N).

The step-by-step procedure for designing the concentrically corrugated NFP is

similar to those discussed in the previous chapters. The first step is to find the

complex values of Vn needed to produce the desired electric-field focal pattern (Efocal
z )

at a focal length z = L from the plate. In this chapter, the z-directed electric field at

the focal plane is assumed to be a subwavelength Airy pattern of the form:

Efocal
z (ρ) = Ez(z = L, ρ) =

J1(kmaxρ)

kmaxρ
(4.2)

where kmax > k is the maximum radial wavenumber that comprises the focal pattern,

and k = 2π/λ is the wavenumber in free space. The wavenumber kmax dictates

the resolution of the focal spot. By sampling the focal pattern at regular intervals,

ρm = 2mw, Efocal
z can be expressed in terms of the magnetic frills as a matrix

equation,

2
N∑

n=0

Vnfnm(z = L, ρ = ρm) = Efocal
z (ρm) (4.3)

where m is an integer from 0 to N , and fnm(z = L, ρ = ρm) is the z component of the

electric field at (z = L, ρ = ρm) produced by the nth groove. It should be noted that

since image theory is used to simplify the problem to magnetic frills radiating in free

space, the magnetic frill amplitudes must be doubled. The expression for fnm is given

by (A.1) of Appendix A. This Appendix summarizes the expression for near field of

a magnetic current frill based on analytical formals derived in [51]. Through matrix

inversion, the magnetic frill voltages Vn can be found from (4.3) given a desired Efocal
z .

These voltages, along with (A.1), (A.2), and (A.3), allow the electric and magnetic

field to be found anywhere in space.

The second step in the design process involves finding the azimuthal magnetic
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field, Hφ, at the center of each magnetic frill (ρ = ρn = (an + bn)/2):

2
N∑

p=0

Vpgpn(z = 0, ρ = ρn) = Hφ(z = 0, ρ = ρn) (4.4)

where gpn(z = 0, ρ = ρn) is the φ component of magnetic field produced by pth groove

at (z = 0, ρ = ρn), computed using (A.3).

The third step estimates the impedance seen at the opening of each groove from

the quantities Mn and Hφ:

ηn =
Mn(ρn)

Hφ(z = 0, ρn)
for 1 ≤ n ≤ N (4.5)

where the relationship between the computed Vn and Mn values is given by (4.1), and

ρn is the same as in (4.4).

The final step of the design procedure entails determining the depths dn of the

grooves (n = 1 to N) needed to realize the required values of ηn. This is achieved

through scattering simulations. In the scattering simulations, the impedance (ηn) of

a groove is extracted from normal incidence on an infinite array of linear grooves with

identical widths w and depths. It should be noted that corrugations can only realize

reactive impedances. However, since the real part of the required surface impedances

is small, it can be neglected (see chapter 2).

In the design process, the fields in the space z > 0 were of primary concern. This

region will be referred to as region 1, and the space inside the coaxial cable as region 2

(see Figure 4.1 (a)). The fields in regions 1 and 2 can be related to each other through

the continuity of the tangential electric and magnetic fields across the central (n = 0)

coaxial aperture. Specifically, the incident current, Iinc, in the coaxial line (region 2)

can be related to the field in region 1 through the following approximate expression,

2Iinc +
V0

Z0

= 2πρ0Hφ(z = 0, ρ0) (4.6)
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Groove Index (n) Normalized Voltage (Vn/Vinc) Groove Depth (dn/λ)

0 1.9999∠0.0635◦ NA
1 0.0830∠− 179.9026◦ 0.2412
2 0.0252∠0.2079◦ 0.241
3 0.0080∠− 179.4839◦ 0.2411
4 0.0016∠1.4271◦ 0.2425

Table 4.1: The groove voltages and depths for the NFP depicted in Figure 4.1 (a).
The voltages are normalized to the incident voltage computed using (4.6),
where Vinc = Z0Iinc.

which considers only the TEM mode within the coaxial cable. The variable Z0 repre-

sents the characteristic impedance of the cable and ρ0 = ρn in (4.4) when n = 0. In

summary, Equations (4.3), (4.4) and (4.5) can be used to directly relate the incident

current (Iinc) in the coaxial cable to Efocal
z .

4.3 Simulation Results

As an example, we consider a concentrically corrugated NFP designed to operate

at a frequency of 1.0 GHz (λ = 0.3 m). Throughout this chapter, the dimensions

are given in terms of the design wavelength, λ = 0.3 m. The design parameters were

chosen to be: N = 4, L = λ/15, w = λ/80 and kmax = 8πk. The central coaxial feed

dimensions were a0 = 0.635 mm and b0 = 2.05 mm, which correspond to standard

semi-rigid coaxial cable dimensions. The design parameters, N , w, L, an, and bn were

chosen by taking into account fabrications constraints. The described plate produces

a subwavelength Airy pattern at the focal plane with a null-to-null beamwidth of

λ/20. The frill voltages, Vn, and required groove depths, dn, are found through the

design procedure presented in the previous section. They are listed in Table 4.1 [21].

It is worth noting that the signs of the voltage phase for adjacent elements (frills)

are reversed. This is a characteristic feature of a NFP’s aperture field and was also

observed for NFPs of Chapters 2 and 3.
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The designed NFP was then simulated in Comsol Multiphysics. In the simulations,

the lossless metallic plate into which the grooves are placed is truncated to a radius of

ρ = 0.125λ. The simulated focal pattern (Corrugated) produced by the NFP is shown

in Figure 4.2 along with the ideal subwavelength Airy pattern (Ideal). In addition,

the focal pattern generated by the computed magnetic frills (Frills) is plotted. The

Frills and Ideal patterns differ since the Ideal pattern was slightly undersampled

when the frill voltages, Vn, were found using (4.3). The slight difference between the

Corrugated and Frills patterns results from the definition of the groove impedance,

which assumes that the magnetic current across each groove is constant. In reality,

the magnetic current varies and its variation is given by (4.1). Further, the formulas

from Appendix A, used to find the fields due to the magnetic frills, are approximate.

This also leads to the differences between the simulated Corrugated pattern and the

Frills pattern. The simulated design operates at a frequency 1.195% higher than that

predicted by the approximate formulas. Finally, to emphasize the narrowness of the

focal pattern produced by the designed plate, Figure 4.2 shows a plot (Coaxial) of the

z-directed electric field pattern produced by the isolated coaxial aperture (n = 0) in

a ground plane without corrugations. Both the Coaxial and Corrugated patterns are

subwavelength, since the focal plane is within the structure’s near field. However, at

the same focal distance, the concentric corrugations allow for a significantly narrower

spot size.

To observe the effect of losses on the NFP’s performance, the plate was also

resimulated with a finite conductivity equal to that of aluminium. The focal pattern

for the lossy plate is shown in Figure 4.3. The simulation results demonstrate that

practical losses at microwave frequencies have a minimal effect on the beamwidth of

the subwavelength focal pattern formed by the device. The ρ-component and norm of

the electric field are also shown in Figure 4.4. Although the goal was to make a narrow

Ez focal pattern, the norm of the electric field (Figure 4.4 (b)) is also significantly
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Figure 4.2: A subwavelength Airy function (Ideal) and z-directed electric-field focal
patterns that approximate it. The Frills plot represents the focal pattern
produced by the computed magnetic frills, while the Corrugated pattern
represents the focal pattern formed by the lossless, concentrically corru-
gated NFP shown in Figure 4.1 (a). The Corrugated pattern shows a
null-to-null beamwidth of λ/20 at a focal length z = L = λ/15 = 0.02 m,
where λ = 0.3 m. The Corrugated and Coaxial patterns are plotted for a
frequency 1.195% above the design frequency (1 GHz).
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Figure 4.3: The focal pattern produced by the concentrically corrugated NFP with
aluminium boundaries (solid line) versus the focal pattern produced by
a coaxial aperture in an aluminium ground plane without corrugations.
These results were computed using Comsol Multiphysics at a frequency
1.195% above the design frequency (1 GHz).
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(a) ρ-directed electric-field focal pattern.
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(b) Norm of electric-field focal pattern.

Figure 4.4: Simulated electric field at z = L = 20 mm from the concentrically cor-
rugated NFP (denoted as Corrugated) and a coaxial probe (denoted as
Coaxial). (a) Normalized ρ component of the electric field. (b) Normal-
ized norm of the electric field.
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Figure 4.5: The concentrically corrugated NFP’s frequency response. The NFP’s op-
erating frequency is 1.01195 GHz.

narrower than that of a coaxial probe.

Finally, the frequency response of the NFP is shown in Figure 4.5. Below the

operating frequency, the side lobe levels increase significantly. In contrast, above

the operating frequency, the side lobes are suppressed and the main beam widens

with increasing frequency. The FWHM, which is λ/30.73 at the operating frequency

1.01195 GHz, increases by 50% as the frequency is increased to 1.0232 GHz (1.11%

increase in frequency).

In the next section, fabricated structures and setup used to measure them are

described in detail. Electric field measurements for both a simple coaxial probe and

the concentrically corrugated NFP of equal dimensions are compared. It is shown that

the simulated and experimental results are in close agreement, thereby validating the

design procedure of the concentric NFP and its performance.

4.4 Measurements

The experimental setup used to measure the z-directed electric field patterns pro-

duced by the concentric NFP is illustrated in Figure 4.6. In the setup, a semi-rigid

probe with an inner conductor radius of 0.46 mm and outer conductor radius of

1.8 mm was used to detect the NFP’s electric-field patterns. The inner conductor of
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Figure 4.6: A concentrically corrugated NFP and the semirigid probe used to measure
the electric patterns.

the semirigid probe was extended 4.5 mm to increase the signal strength received by

the probe. The distance between the outer conductor of the semirigid probe and the

surface of the corrugated plate was considered the measurement distance. Therefore,

to measure a focal pattern at z = L = λ/15 = 20 mm, the semirigid probe was

placed such that its outer conductor was 20 mm from the surface of the NFP. In

the experiments, the semirigid probe was moved using an automated xyz translation

stage.

The designed NFP was fabricated with 12.5 micron (0.5 mil) accuracy by electric

discharge machining (EDM) an aluminium cylinder (see Figure 4.7 (a)). For com-

parison purposes, a coaxial probe of equal dimensions, consisting of a single coaxial

aperture without corrugations, was also fabricated, as shown in Figure 4.7 (b). At the

experimental frequency of 1.0105 GHz, the reflection coefficient of the concentrically

corrugated NFP was measured to be −0.75 dB. Such a high reflection coefficient is

expected, given that the feed of the NFP terminates in an open circuit. However,

when the NFP is used as a probe in the following section, a lower reflection coeffi-

cient was needed to increase its sensitivity: the received signal strength. Therefore,

the NFP was matched using a double stub tuner to obtain a reflection coefficient of
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−6.5 dB at 1.0105 GHz. In addition, the semirigid probe used in the measurement

setup (shown in Figure 4.6) was also matched using a double stub tuner to a reflection

coefficient of −13.3 dB.

The simulated and measured electric-field patterns along the focal plane (z =

L = 20 mm) of the NFP are shown in Figure 4.8 (a). The experimental focal pat-

tern formed by the NFP is labeled Corrugated Measurement and exhibits a FWHM

of λ/23.58. At the same distance, the experimental pattern formed by the coaxial

probe (without corrugations) was measured. It is labeled Coaxial Measurement. This

pattern exhibits a FWHM of λ/13.14, which is 1.79 times wider than that produced

by the NFP. A third pattern is also plotted in Figure 4.8 (a) and labeled Corrugated

Simulation. It is the simulated focal pattern of the NFP detected by the semirigid

probe along the focal plane z = L = 20 mm. It is computed using the Ansys HFSS

finite element electromagnetic solver. Similarly, Coaxial Simulation is the simulated

electric-field pattern of the coaxial probe detected by the semirigid probe at the same

distance. Both Corrugated Simulation and Coaxial Simulation show good agreement

with the measured patterns, but clearly differ from the Ez patterns plotted in Figure

4.3. The difference is due to the fact that the semirigid probe, used to obtain the

simulation and measurement results of Figure 4.8, couples slightly to the ρ component

of the electric field in addition to the z component. Furthermore, the finite radius

and length of the semirigid probes inner conductor slightly averages the electric field

in both the ρ and z directions. The simulation of Figure 4.8 accurately captures the

limitations of the semirigid probe used in experiment.

It should be noted that the HFSS simulations are reported at the design frequency

of 1.01195 GHz, while the experimental results are reported at 1.0105 GHz: the

fabricated plate’s operating frequency. This 0.14% frequency shift can be attributed

to the 12.5 µm tolerance of the EDM process used to fabricate the NFP. Figures

4.8 (b) and 4.8 (c) show the simulated and measured electric-field patterns at z =

66



(a) Corrugated NFP. (b) Coaxial probe.

Figure 4.7: (a) A concentrically corrugated NFP fabricated from an aluminum cylin-
der using sink EDM. The NFP is fed by an SMA connector from the
bottom side. (b) A coaxial probe consisting of a coaxial aperture in a
cylindrical aluminum cylinder fed by an SMA connector from the bottom
side.

3L/4 = 15 mm and z = L/2 = 10 mm respectively. Once again, the measurement

results show excellent agreement with simulation. Finally, it should be pointed out

that the measured pattern for the matched NFP and semi-rigid probe is 7 dB higher

than the measured pattern for the unmatched case at the same distance.

In Figure 4.9, the electric-field pattern measured at z = 10 mm is plotted for

different frequencies. Below the operating frequency (1.0105 GHz), the electric-field

pattern produced by the corrugated plate shows ripples with no main beam, while

above the operating frequency the main beam widens with increasing frequency. This

frequency dependance agrees with the simulation results of the previous section.

To demonstrate the NFP’s ability to confine the electromagnetic near field to a

symmetric narrow spot, the measured 2-D electric field patterns at z = 15 mm for

both the corrugated NFP and the coaxial probe are depicted in Figure 4.10. Finally,

beam emitted from the coaxial probe and the corrugated NFP are compared in Figure

4.11. The measured electric field (Ez) along each z = z′ plane has been normalized to

its corresponding maximum value: Ez(ρ, z = z′)/Ez(ρ = 0, z = z′). These two figures

confirm the superior ability of the NFP to confine the electromagnetic near field over
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(b) z = 15 mm.
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(c) z = 10 mm.

Figure 4.8: (a) Electric near-field patterns at z = 20 mm formed by the concentric
NFP and detected using the measurement set up shown in Figure 4.6.
Corrugated Measurement and Coaxial Measurement are the measured
near-field patterns formed by the impedance matched concentrically cor-
rugated plate and coaxial probe, respectively. Corrugated Simulation and
Coaxial Simulation are the corresponding simulated near-field patterns.
(b) Electric near-field patterns at z = 15 mm. (c) Electric near-field
patterns at z = 10 mm. The simulation results include dielectric and
conductor losses.
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Figure 4.9: Measured near-field patterns generated by the concentrically corrugated
NFP at z = 10 mm for different frequencies. The NFP’s operating fre-
quency is 1.0105 GHz.

an extended operating distance. In the next section, the electromagnetic confinement

provided by the NFP is used to resolve two sources separated by a subwavelength

distance.

4.5 Detection of Sources

Figure 4.10 demonstrates that the concentrically corrugated NFP produces higher

resolution focal spots than a conventional coaxial probe. This also suggests that the

NFP can provide higher resolution when imaging sources. To test this, two dipole

sources (coaxial) separated by a distance s were placed at distance z = 15 mm from

the NFP. The distance s is defined as the distance between the centers of the two

dipole sources. The concentrically corrugated NFP and the coaxial probe were used

to image the two sources by detecting the field emitted by the sources. Figure 4.12

shows the detected patterns for two different separation distances s. The pattern

measured by the NFP is denoted as Corrugated, while Coaxial denotes the pattern

measured by the coaxial probe. For comparison purposes, the pattern measured by

a simple semi-rigid probe (with inner radius 0.52 mm, outer radius 2.20 mm, and

a 5.2 mm extended inner conductor) is also shown in Figure 4.12, and denoted as
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Figure 4.10: Measured two-dimensional focal patterns (z = 15 mm) produced by (a)
the coaxial probe and (b) the concentrically corrugated NFP.
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Figure 4.11: Measured beam emitted from (a) the coaxial probe and (b) the concen-
trically corrugated NFP. In both plots, the measured field along each
z = z′ plane is normalized to its maximum value: Ez(ρ, z = z′)/Ez(ρ =
0, z = z′). The near-field patterns along z = 0.066λ = 20 mm,
z = 0.05λ = 15 mm, and z = 0.033λ = 10 mm are plotted in Fig-
ure 4.8.
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Probe.

Figure 4.12 (a) shows the extreme case when the sources cannot be resolved by

the coaxial probe. In this figure, the sources have been placed s = 9.1 mm = λ/33

apart. In contrast, the NFP can distinguish between the two sources (see Figure

4.12(a)). The distance between the two peaks measured by the corrugated NFP is

7.9 mm = λ/38, while the separation between the two sources is s = 9.1 mm = λ/33.

The difference is due to the superposition of the field incident from the two sources.

The 2-D patterns measured using the NFP and the coaxial probe are shown in Figure

4.13. The two sources are easily distinguishable from the pattern measured by the

NFP, while the pattern measured by the coaxial probe shows only one source.

Figure 4.12 (b) shows another extreme case, where the two sources are resolvable

by the coaxial probe. In this case, the two sources are placed s = 13.8 mm = λ/21.74

apart. It is evident that the NFP can resolve the two sources completely, while the

coaxial probes can only distinguish between them. The separation between the two

sources observed using the corrugated NFP is 14.2 mm = λ/21.1, which is very close

to the physical separation distance of s = 13.8 mm = λ/21.74. The higher resolution

obtained using the corrugated NFP in resolving the two sources is more pronounced

in the 2-D patterns shown in Figure 4.14.

4.6 Conclusion

In this chapter, we addressed two major limitations of initial NFP designs: The

initially reported NFPs were excited by cylindrical or plane wave sources and could

only produce a one-dimensional subwavelength focus [14–16]. To overcome these lim-

itations, we developed concentrically corrugated NFPs which can be fed through a

coaxial connecter and produce a 2-D subwavelength focal pattern. A step-by-step

procedure for designing such plates was outlined. In addition, simulation results were

presented that confirm the designed NFP’s ability to create a 2-D focus. The effect
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Figure 4.12: Resolving two dipole (coaxial) sources located at z = 15 mm and sep-
arated by (a) s = 9.1 mm = λ/33 and (b) s = 13.8 mm = λ/21.74
along the x axis (y = 0). The plot labeled Corrugated denotes the
electric near-field pattern measured using the concentrically corrugated
NFP. The plot labeled Coaxial denotes the pattern measured using the
coaxial probe. The plot labeled Probe denotes the pattern measured
using a semirigid coaxial probe (with inner radius 0.52 mm, outer radius
2.20 mm, and a 5.2 mm extended inner conductor).
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Figure 4.13: Resolving two dipole sources (coaxial) located at z = 15 mm and sep-
arated by s = 9.1 mm = λ/33. (a) Two-dimensional electric near-field
pattern measured using the coaxial probe. (b) Two-dimensional pattern
measured using the corrugated NFP.
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Figure 4.14: Resolving two dipole sources (coaxial) located at z = 15 mm and sepa-
rated by s = 13.8 mm = λ/21.74. (a) Two-dimensional electric near-field
pattern measured using the coaxial probe. (b) Two-dimensional pattern
measured using the corrugated NFP.
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of practical losses on the performance of the NFP was shown to be minimal, and its

frequency response was also studied. Furthermore, the experimental performance of

an impedance matched concentrically corrugated NFP was investigated. The electric

field patterns produced by the corrugated plate and a simple coaxial probe (without

corrugations) of the same dimensions were compared for different focal distances at

approximately 1 GHz. The subwavelength electric-field pattern produced by the cor-

rugated NFP at z = λ/15 = 20 mm was shown to possess a FWHM that is 1.79 times

narrower than that of the coaxial probe. Measurement and simulation results were

shown to be in close agreement, thus validating the design procedure. In addition,

the beam emitted by the corrugated NFP was narrower than that emitted by the

coaxial probe, thus confirming the NFP’s superior ability to confine electromagnetic

field over a focal length (an extended operating distance). Finally, the NFP was used

to image two coaxial sources placed a subwavelength distance apart. The images

obtained using the NFP exhibited significantly higher resolution than those obtained

using the coaxial probe. The results reported in this chapter demonstrate that non-

periodic, concentrically corrugated surfaces can provide new opportunities to develop

high resolution near-field probes and sensors.
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CHAPTER V

Generating Evanescent Bessel Beams Using

Near-Field Plates

5.1 Introduction

In the previous chapter, we experimentally demonstrated a concentrically cor-

rugated near-field plate (NFP) that could generate prescribed subwavelength focal

spots. This plate also obtained images with higher resolution compared to a conven-

tional coaxial probe. Its coaxial feed as well as its ability to produce a 2-D subwave-

length focus addressed the practical limitations of earlier NFP designs.

Now that a NFP more suitable for practical applications has been developed, our

goal in this chapter is to apply its tailoring capabilities to a current electromagnetic

problem. To this end, we demonstrate a concentrically corrugated NFP that can

produce evanescent Bessel beams. Evanescent Bessel beams exhibit limited diffraction

and can retain nearly constant subwavelength beamwidth over a near-field distance.

While practically appealing, they have been difficult to generate and thus, have not

found their role in practice. In this chapter, the tailoring capabilities of NFPs paves

the way for a simple, yet effective, method for generating them.

Before developing NFPs that can generate evanescent Bessel beams, we first re-

view the interesting properties of propagating and evanescent Bessel beams, and their
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Figure 5.1: Schematic of the device used by Durnin to experimentally demonstrate a
propagating Bessel beam.

potential applications. We also briefly survey earlier structures proposed for generat-

ing evanescent Bessel beams. Next, we will demonstrate how the tailoring capabilities

of NFPs can be used to generate evanescent Bessel beams. In this chapter, we will

also propose and examine uniform impedance surfaces and electrically-large annular

slots that can generate Bessel beams.

5.1.1 Bessel Beams

Bessel beams propagate in free space without undergoing diffraction and as a

result retain their transverse field pattern. They were first proposed by Durnin in

[52] and referred to as “diffraction-free beams”. Ideal Bessel beams theoretically

carry infinite energy and thus cannot be realized in practice. However, they can be

approximated. In [53], Durnin verified his theoretical proposal by demonstrating the

first experimental approximation of a Bessel beam at optical frequencies. Since then,

Bessel beams have been a topic of significant research interest [54–70].

Bessel beams can be decomposed into plane waves with wave vectors forming a

cone [52]. This idea has been the basis for approximating Bessel beams in practice.

Durnin and colleagues produced the first Bessel beam by illuminating a circular slit
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located at the focal plane of a lens as shown in Figure 5.1 [53]. The radiation of the

circular slit is transformed by the lens into plane waves with wavevectors forming a

cone, resulting in a Bessel beam. Herman and Wiggins used a conically shaped op-

tical element called an axicon to generate Bessel beams [56]. More recently, Pendry

proposed using a distributed Bragg reflector with a central cavity [58]. In that con-

figuration, the spatial filtering effect of the Bragg reflector produces plane waves with

wave vectors lying on a cone.

Applications of Bessel beams have also received strong interest in the past few

years. Much of this interest stems from the ability of Bessel beams to retain their

beamwidth and transverse pattern over considerable distances. In [59], this property

of Bessel beams was used to develop near-field probes that operate over larger dis-

tances than conventional ones, while maintaining the same resolution. In [71,72], this

property was employed in micro drilling of metallic objects with high precision and

high aspect ratios. In [60], the scattering of a zero-order Bessel beam by a dielectric

sphere was formulated. In [61], Bessel beams were shown to be robust to distortion

caused by obstacles. This feature was exploited in [62] to develop microscopy schemes

with higher image qualities. In [63], two Bessel beams propagating along the same

axis, but with different wavevectors, were shown to exhibit a self-imaging property:

the longitudinal Poynting vector of the combined beams is periodic with respect to

the axial distance. In [64], this property was used to trap and move small particles.

While these works primarily focused on propagating Bessel beams, Leizer and

colleagues showed that evanescent Bessel beams can also exist, and are also solu-

tions of Maxwell’s equations [65]. They went on to demonstrate in simulation that

evanescent Bessel beams can be produced through the total internal reflection of

propagating Bessel beams [65]. This method of generating evanescent Bessel beams

was later experimentally verified in [59].

Since that time, several other methods of producing evanescent Bessel beams have
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been proposed. In [58], Pendry showed how a point source located close to a thin

dielectric slab can produce a cylindrical surface wave that generates an evanescent

Bessel beam. Zhan and colleagues proposed [66] and experimentally verified [67]

that evanescent Bessel beams can be generated by the angular filtering of radially

polarized light using a surface plasmon resonance. They also explored the genera-

tion of evanescent Bessel beams using highly focused cylindrical vector beams and

the gigantic transmission band-edge resonance in one dimensional photonic bandgap

structures [68,69].

Evanescent Bessel beams can have a subwavelength main beam with a transverse

pattern that is fixed over a near-field distance. This property is of high practical value

in applications such as near-field probing, microscopy, high-density data storage, and

medical targeting devices. While evanescent Bessel beams are attractive, they have

not been simple to realize, and thus have not found their place in practice. In this

chapter, we propose NFPs as effective, yet simple structures for generating evanescent

Bessel beams.

In the NFP approach, a concentrically corrugated NFP is designed to form a Bessel

focal pattern at a near-field distance. Since a Bessel beam is non-diffracting, the field

profile at other near-field distances will be invariant. This approach is different from

the earlier methods of generating Bessel beams. Conventionally, a device is used to

filter the spectrum of the incident field to approximate the spectrum of a Bessel beam:

a ring in the spectral domain. For example, the lens deployed by Durnin (shown in

Figure 5.1) yields the Fourier transform of the electromagnetic radiation from the

circular slit which is a Bessel function [53]. Similarly, Pendry and Zhan filtered the

spectrum of the incoming wave by passing it through a resonator [58,66–69].

While NFPs can produce evanescent Bessel beams, it will be shown that simpler

impedance surfaces are also capable of generating evanescent Bessel beams. For exam-

ple, a uniform inductive surface impedance can be designed to generate an evanescent
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Bessel beam. This can be accomplished by launching a cylindrical TM surface wave

on the inductive surface. The design and operation of such a configuration is stud-

ied in the next section. Edge diffraction is shown to limit its performance. In the

following section, we examine a similar structure consisting of an electrically-large,

uniformly-fed annular slot in a metallic surface. It is analytically shown that such a

structure produces a Bessel beam close to its axis. However, its does not allow the

beamwidth of the generated Bessel beam to be controlled. Hence, we present NFPs

which can produce evanescent Bessel beams with tailored properties, and thus, a bet-

ter method for generating such beams. NFPs allow the truncation of a Bessel beam

to be altered, in order to mitigate the diffraction. As a result, NFPs can produce

evanescent Bessel beams over a larger range than uniform surface impedances. NFPs

can also generate Bessel patterns with various beamwidths, an important advantage

over uniformly-fed electrically-large annular slot.

The chapter is organized as follows. In the next section, a uniform inductive sur-

face impedance is designed to generate a desired evanescent Bessel beam. The induc-

tive surface impedance is examined through full-wave simulation and the formation

of the evanescent Bessel beam is verified. In the following section, a similar struc-

ture consisting of uniformly-fed, electrically-large annular slot in a metallic surface is

theoretically and experimentally shown to generate Bessel beams. In the remainder

of this chapter, a concentrically corrugated NFP is presented as a more effective and

practical method for generating evanescent Bessel beams. The design procedure for

such a plate is reviewed. The operation and design of the NFP is also verified through

full-wave simulation. In the last section, the performance of a NFP that can generate

an evanescent Bessel beam is compared with that of a simple coaxial probe and a

NFP that generates a subwavelength Airy focal pattern with the same beamwidth.

Finally, the flexibility offered by NFPs in producing evanescent Bessel beams with

different properties is demonstrated.
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5.2 Generating Evanescent Bessel Beams Using an Impedance

Surface

Evanescent Bessel beams retain their transverse pattern as they attenuate in space.

As a result, they also retain a constant wave impedance. This property suggests that

a surface with a uniform impedance equal to that of the Bessel beam can be used to

generate it. Our goal in this section is to find such a configuration. First, we need

to compute the wave impedance of an evanescent Bessel beam. To do so, we apply

Maxwell equations in cylindrical coordinates to a TM-polarized zeroth order Bessel

beam of infinite transverse extent. The Bessel beam is assumed to decay along the z

direction. The z component of the electric field of such a beam is then given by [65]:

Ez(ρ, z) = Ae(−α◦z)J0(q◦ρ) (5.1)

where, J0 is the zero order Bessel function, q◦ determines the null-to-null beamwidth

of the main lobe of the Bessel function, α◦ =
√

(q2◦ − k2◦) determines the decay rate

(q◦ > k◦), k◦ is the wavenumber in free space, and A is a normalization factor.

Gauss’s law in cylindrical coordinates, ∇ · E = 0, can then be applied to the z

component of electric field given by (5.1) to obtain the ρ component of the electric

field:

Eρ = Aα◦/q◦e(−α◦z)J1(q◦ρ) (5.2)

Throughout this chapter, only TM-polarized evanescent Bessel beams are con-

sidered (Eφ(ρ, z) = 0). The proposed procedures can be easily extended to other

polarizations and higher orders of the Bessel beam.

By applying Faraday’s law, H = −∇× E/jω◦µ◦, to the electric field given by
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Figure 5.2: An infinitely wide inductive surface impedance excited by a vertical elec-
trical dipole (VED) located at the origin.

(5.1) and (5.2), the magnetic field can be obtained:

H= Ajω◦ε◦/q◦e(−α◦z)J1(q◦ρ)φ̂ (5.3)

From (5.2) and (5.3), the wave impedance of the evanescent Bessel beam can be

computed:

ηs = −Eρ(ρ, z)/Hφ(ρ, z) =
jα◦
ω◦ε◦

(5.4)

Now, lets consider an infinite sheet with a surface impedance equal to ηs. In order

to produce a TM polarized evanescent Bessel beam using this infinite sheet, the sheet

needs to be excited by a TM source with cylindrical symmetry. An infinitely small

vertical electric dipole (VED) is chosen for this purpose, as shown in Figure 5.2.

In order to verify that the configuration in Figure 5.2 produces an evanescent

Bessel beam, we need to solve for the electromagnetic fields excited. Fortunately,

the problem in Figure 5.2 is well-known. It has been a topic of many scientific com-

munications and several numerical and analytical approaches to solving this problem
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have been proposed (see [73–83] and references therein). Most of these works have

focused on modeling the effect of the earth on communication links [73–76]. How-

ever, some works have also investigated the cylindrical surface wave excited in Figure

5.2 [77–81]. Such a surface wave has a Hankel function profile which can be used to

form an evanescent Bessel beam.

The surface wave produced by the VED in Figure 5.2 can be found by examining

the field scattered from the surface impedance, expressed as follows [83]:

Es
z(ρ, z) =

−Il

8πω◦ε◦

∫ +∞

−∞
dkρ

k3
ρ

kz

H
(2)
0 (kρρ)Γe−jkzz, (5.5)

where Es
z(ρ, z) is the z component of the scattered field, Il is the current and length

of the VED, H
(2)
0 is the Hankel function of the second kind and zero order, and kρ

and kz are the ρ and z components of the wavevector, which are related to each other

through the separation relation k2
ρ + k2

z = k2
◦. In equation (5.5), Γ is the Fresnel

reflection coefficient of the infinite surface impedance:

Γ =
kz − jα◦
kz + jα◦

. (5.6)

This coefficient exhibits poles at |kρ| = q◦ (when kz = −jα◦ = −j
√

(q2◦ − k2◦)).

Equation (5.5) is commonly solved using asymptotic methods [83]. In these meth-

ods, the integral is approximated by its value along the steepest descent path in

addition to the contribution due to singularities such as poles and branch-cuts [83].

The contribution due to the pole at kρ = +q◦ can be calculated using Cauchy’s residue

theorem. Using this theorem, the pole contribution is given by:

Es(pole)
z (ρ, z) =

−jIl

2ω◦ε◦
q3
◦H

(2)
0 (q◦ρ)e−α◦z (5.7)

which represents the surface wave supported by the configuration shown in Figure 5.2.
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This surface wave dominates the near field of the surface impedance. As the distance

from the surface impedance increases, the surface wave decays and the additional

contributions to the total field given by (5.5) become comparable to the surface wave

contribution [79–81]. It should be emphasized that the pole contribution given by

(5.7), is an approximation of the total field in the near-field of the impedance surface

and is not strictly valid at extremely small values of ρ. At these small radial distances,

the fields need to be numerically computed using (5.5).

By comparing Ez of (5.7) and (5.1), one can see that the surface wave would

resemble an evanescent Bessel beam if H
(2)
0 (q◦ρ) was replaced by J0(q◦ρ). But J0(q◦ρ)

is closely related to H
(2)
0 (q◦ρ): J0(q◦ρ) = (H

(2)
0 (q◦ρ)+H

(1)
0 (q◦ρ))/2. Here, H

(1)
0 (q◦ρ) is

the zero order Hankel function of the first kind and represents a surface wave traveling

towards ρ = 0. A surface wave going towards the origin can be generated by reflecting

the surface wave given by (5.7) from a circular boundary, such as a perfect electric

conductor (PEC) surface, to form a standing wave. If the PEC termination is placed

at a distance ρ = ρ0, where ρ0 is a zero of J0(q◦ρ), the surface wave takes the form of

J0(q◦ρ).

Keeping the arguments above in mind, the configuration in Figure 5.3 is proposed

for generating a Bessel beam. In this configuration, the VED is replaced by an

electrically small magnetic current loop M , whose field is equivalent. Such a loop

can be easily realized with a coaxial aperture. The inductive sheet can be realized

as a dielectric coated ground plane or corrugated metallic plate. The configuration is

similar to that proposed in [78] for a different purpose. In [78], an inductive surface

impedance terminated by matched loads was used to study the surface wave given

by (5.7). In contrast, we abruptly terminate the inductive surface impedance with a

PEC boundary to produce an evanescent Bessel beam.

To verify the ability of the configuration in Figure 5.3 to generate evanescent

Bessel beams, the structure is simulated using the commercial electromagnetic finite
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Figure 5.3: A circular inductive surface impedance terminated by a PEC surface.
The structure is excited by a small magnetic current loop to form an
evanescent Bessel beam.

element solver, Comsol Multiphysics. For this purpose, an evanescent Bessel beam

with q◦ = 9k◦ and α◦ = 8.94k◦ is considered. The operating frequency is set to

f = 1 GHz, which corresponds to λ◦ = 0.3 m. Given the Bessel beam properties

above, a plate with reactance of 8.94jη◦ is required, where η◦ is the characteristic

impedance of free space. This inductive surface is chosen wide enough to ensure that

the discontinuity at the edge, has a minimal effect on the main beam. The radius of

the plate is chosen to be a = 2.939λ◦, which is very close to the zero of J0(q◦ρ) that

occurs at ρ0 = 2.930λ◦.

The full-wave simulation results are shown in Figure 5.4. In this figure, the Ez

pattern produced by the plate at different distances is plotted along with the ideal

Bessel beam given by equation (5.1). Throughout this chapter, the near-field pattern

at each distance, z, is normalized with respect to its amplitude at ρ = 0. The close-up

view of Figure 5.4 (a) shows that the pattern produced by the plate retains its shape
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over a finite range (up to z = 40 mm = 0.13λ◦) and shows close agreement with the

ideal evanescent Bessel beam. Beyond z = 40 mm = 0.13λ◦, the beam generated by

the inductive surface starts to differ. This is expected since the surface wave, which

forms the evanescent Bessel beam, dominates only close to the surface and becomes

comparable to the additional contributions to the total field given by (5.5) at around

z = 40 mm = 0.13λ◦.

The PEC surface shown in Figure 5.3 truncates the Bessel beam, and as a result

limits its range. The PEC termination also causes edge diffraction which disturbs

the near-field pattern close to the PEC termination (ρ = ρ0), as shown in Figure 5.4

(b). The effect of edge diffraction is minimal close to the surface (see the pattern

at z = 10 mm) and increases with the distance from the surface. At z = 40 mm,

the edge diffraction is prominent. As a result, the evanescent Bessel beam retains its

shape only close to the central axis of the surface impedance.

The results presented in Figure 5.4 verify the fact that the surface impedance

shown in Figure 5.3 can generate an evanescent Bessel beam. However, the perfor-

mance of this device needs to be improved in order for it to be suitable for practical

applications. Specifically, it is relatively large and can form the evanescent Bessel

beam only near its central axis over a limited range. To address these issues, the sur-

face impedance needs to be redesigned taking its finite extent into account during the

design process. The design procedure presented in this section is based on the prop-

erties of an ideal infinitely-wide evanescent Bessel beam and cannot be used to find

a suitable surface impedance. Later in this chapter, we present NFPs, which can be

designed to produce evanescent Bessel beams with a tailored truncation. By tailoring

the truncation, one can minimize edge diffraction and improve device performance.
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(b) Full-scale view

Figure 5.4: Normalized z-directed electric-field patterns at various axial distances
from the inductive surface shown in Figure 5.3 along with the ideal Bessel
beam given by (5.1). The close-up view in (a) shows the patterns pro-
duced by the inductive surface at different axial distances. The full-scale
view in (b) illustrates the effect of edge diffraction on the performance
of the inductive surface. The simulations are performed using Comsol
Multiphysics.
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5.3 Generating Bessel beams using electrically-large uniformly-

fed annular slot

Before studying NFPs, it is worth noting that the proposed configuration of Figure

5.3 closely resembles the recently proposed structures that generate Bessel beams

in the optical regime [84, 85]. In these works, an annular slot in a metallic plate,

illuminated by radially [84] or linearly [85] polarized light, is shown to form Bessel

beams. This configuration is analogous to the one studied in the previous section. The

annular slot can be modeled as a magnetic current loop and the plasmonic metallic

surface at optical frequencies acts as an inductive surface impedance. However, the

radius of the annular slot reported in [84] was electrically large (7λ, where λ is at

corresponding optical frequency). Such an electrically large radius is in contrast to the

structure described in the previous section. In [84], the Bessel profile was attributed

to excitation of surface plasmon polaritons on the surface of the metal at optical

frequencies. In fact, it can be shown that an annular slot with electrically large

radius generates a focal spot with Bessel profile, even at microwave frequencies where

surface plasmon polaritons are not present.

To do so, we start with an analytical formulation for the electric field radiated

by an annular slot (see Appendix A). The annular slot is then assumed to be large

in order to approximate the analytical formulas and derive simple expressions. The

approximate analytical formula predicts that a Bessel beam is formed by an electri-

cally large slot. This analytical prediction and the generation of Bessel beam are then

verified through full-wave simulation and experiment.

The annular slot configuration is shown in Figure 5.5. The inner and outer radius

of the slot is assumed to be a and b, respectively. The annular slot is supported by a

circular dielectric slab with radius R. The dielectric slab is terminated by a metallic

rim and excited through a coaxial feed as shown in Figure 5.5 inset. This structure
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Figure 5.5: Schematic of an annular slot supported by a circular grounded dielectric
slab. The inset shows the coaxial excitation.

can be modeled as a magnetic current frill whose z-directed electric field is given by

(A.1):

Ez =
1

2π ln(b/a)

∫ π

0

e−jkra

ra

− e−jkrb

rb

dφ′ (5.8)

where k is the free space wavenumber, ra =
√

z2 + ρ2 + a2 − 2ρa cos(φ′) and rb =
√

z2 + ρ2 + b2 − 2ρb cos(φ′). Assuming the annular slot is large, or z ¿ a, b and

ρ ¿ a, b, (5.8) can be approximated by:

Ez ' 1

2π ln(b/a)

∫ π

0

e−jk(a−ρ cos(φ′))

a
− e−jk(b−ρ cos(φ′)

b
dφ′ (5.9)

The identity J0(kρ) = 1
π

∫ π

0
ejkρ cos(φ′)dφ′ is then used to simplify (5.9) and obtain:

Ez ' 1

2 ln(b/a)
{e−jka

a
− e−jkb

b
}J0(kρ) (5.10)

where J0 is the zero order Bessel function.

Equation (5.10) states that a large annular slot generates a Bessel field profile in

the near field close to its axis (ρ = 0). According to the analysis above, the Bessel

beam results from the inherent cylindrical symmetry of the large annular slot and,

does not rely on excitation of surface plasmon polaritons or surface waves. However,
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to generate a Bessel pattern with different beamwidth, the metallic plate should be

replaced by a reactive surface impedance. In [86], a propagating Bessel beam was

produced using a capacitive surface impedance. In the previous section and in [84],

an inductive surface impedance was used to generate an evanescent Bessel beam.

The structure shown in Figure 5.5 is examined through full-wave simulation using

Comsol Multiphysics. The simulation frequency is selected to be 17.35 GHz, corre-

sponding to a 17.3 mm wavelength. Here, we consider an annular slot with inner and

outer radii of a = 70 mm = 4.05λ and b = 70.4 mm = 4.07λ. The annular slot is

supported by a Rogers RO4003C dielectric substrate with 0.813 mm thickness (32

mil). The radius of the substrate is selected to be R = 75 cm.

The simulated electric-field pattern generated by the annular slot at z = 10 mm =

0.58λ is plotted in Figure 5.6, and denoted as Simulation. For comparison, the theo-

retical near-field patterns predicted by (5.8) and (5.10) are also plotted. The theoret-

ical and simulation results exhibit close agreement, thereby verifying the prediction

that a large annular slot produces a Bessel beam.

In Figure 5.7, the simulated near-field patterns generated by the annular slot are

plotted at various axial distances. The near-field patterns have an almost fixed shape,

especially close to the axis where the assumption ρ ¿ a, b is valid. Furthermore, the

full-width at half-maximum (FWHM) of the near-field patterns stays nearly constant.

Specifically, the FWHM increased by 13.9% from 0.4874λ at z = 10 mm = 0.58λ to

0.555λ at z = 40 mm = 2.31λ.

The structure was also fabricated and its electric field patterns were measured

using a semi-rigid coaxial probe with inner and outer radii of 0.46 mm and 1.8 mm,

respectively. The inner conductor of the probe was extended by 4.5 mm, to enhance

the received signal. In the experiments, the distance between the outer conductor

of the probe and the plate was considered as the axial distance, z. For instance,

to measure the pattern at z = 10 mm, the probe was placed such that its outer
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Figure 5.6: The z-directed electric-field patterns generated by the annular slot in
Figure 5.5. The patterns are plotted at z = 10 mm.
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Figure 5.7: The z-directed electric-field patterns generated by the annular slot at
various axial distances.

conductor was 10 mm away from the surface of the plate. The pattern measured in

this manner is plotted in Figure 5.6, and labeled Measurement. The measured electric-

field pattern exhibits close agreement with simulation and theoretical predictions. The

slight difference between measured and simulated patterns can be attributed to the

averaging effect of the scanning probe

5.4 Generating Evanescent Bessel beams using Near-field Plates

In the previous sections, a uniform inductive surface impedance was designed to

generate evanescent Bessel beams. Such a configuration suffered from pronounced
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edge diffraction which limited its performance. We also studied a uniformly-fed,

electrically-large annular slot and proved its ability to generate Bessel beams close

to its axis. However, this structure did not allow the beamwidth of the generated

Bessel beam to be tailored. Furthermore, its dimensions were relatively large. In

this section, we exploit the field tailoring capabilities of NFPs to generate evanescent

Bessel beams. It is shown that a NFP allows the truncation of the beam to be

customized, in order to mitigate the edge effects due to the finite beamwidth. It is

also demonstrated that NFPs can be designed to generate evanescent Bessel beams

with different beamwidths. These are the practical advantages offered by NFPs over

the uniform impedance sheet and the large annular slot considered in the previous

sections.

In order to generate evanescent Bessel beams using NFPs, the concentrically cor-

rugated NFP introduced in the previous chapter is considered. This plate is redrawn

in Figure 5.8 (a) for convenience. Similar to the previous chapter, the width, w, and

the spacing, s, of the grooves are selected to be uniform while their depth, dn, is var-

ied to generate the desired subwavelength near-field pattern. In the previous chapter,

we outlined a design procedure for this plate. Here, we will generalize this procedure

so that it can be used for structures other than concentrically corrugated NFPs. For

example, the proposed procedure can be used to design a dual configuration which

consists of concentric rings of electric currents (current loops).

We can model the concentrically corrugated NFP as an array of annular slots in an

infinite ground plane, as shown in Figure 5.8 (b). The slots are treated as ports with

voltages Vn across them. In the design process, the voltages needed across the slots

to form the desired pattern are found. Once the Vn are known, the wave impedances

required to load the slots, ηn, are found [87]. The loaded slot array is then realized as

a concentrically corrugated NFP [19]. Different groove depths are used as the loads.

It should be noted that other methods such as lumped circuit elements (see next
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chapter) or nanocircuit elements [24] at higher frequencies can also be used to realize

the necessary loadings.

In the following, we first outline the procedure to find the required Vn and ηn

to generate a desired focal pattern Efocal
z (ρ). Next, we use this procedure to design

two different concentrically corrugated NFPs: one generates a truncated evanescent

Bessel focal pattern (Bessel beam NFP) and the other an Airy focal pattern (Airy

pattern NFP). The Airy pattern NFP is used to highlight the advantages of Bessel

beams over other near-field profiles.

5.4.1 Design Procedure

Let’s assume that the array in Figure 5.8 (b) has N concentric slots with inner and

outer radii an and bn, respectively. First the complex voltages, Vn, needed to produce

the desired focal pattern at z = L are found. The concentric slots are modeled as

an array of magnetic current rings (magnetic frills), radiating in free space. As in

the previous chapter, the analytical expression for the field radiated by a frill in free

space (see Appendix A) is used to relate the frills voltages to the desired near-field

pattern:

2
N∑

n=1

Vnfnm(z = L, ρ = ρm) = Efocal
z (ρm) (5.11)

where m is an integer from 1 to N , Efocal
z (ρ) is the desired z-directed electric field

sampled at ρm = (m−1)s, and fnm(z = L, ρ = ρm) is the z component of the electric

field at (z = L, ρ = ρm) produced by the nth frill given by (A.1). The amplitudes and

voltages of the magnetic frills have been doubled as a result of image theory.

In the next step, the matrix equation (5.11) is solved to find Vn. Once the voltages,

Vn, are known, they can be used to obtain the magnetic field at the slot locations.

In contrast to the previous chapter, where we used the approximate equations of

Appendix A, here we use the impedance matrix, ZNN , of the slot array shown in

Figure 5.8 (b) to find the magnetic field on the surface of the plate. The impedance
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(a) Concentrically corrugated NFP

(b) Array of loaded annular slots

Figure 5.8: (a) A concentrically corrugated NFP. The width, w, and the spacing, s,
are assumed to be uniform while the depths, dn, are varied to produce the
desired focal pattern. (b) An array of annular slots in an infinite ground
plane used to design the concentrically corrugated NFP.
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matrix, ZNN , is found using Comsol Multiphysics. It relates the electric current into

the slots (ports) to the slot voltages: In = Z−1
NNVn. The magnetic field at the slots is

found from the current using Ampere’s law: Hφ(z = 0, ρ = ρ) = In/(2πρ). Combining

these equations, we obtain:

Hφ(z = 0, ρ = ρn) = Z−1
NNVn/(2πρn) (5.12)

where ρn = an+bn

2
.

In the last step, the loading wave impedances are found using

ηn = −Eρ(z = 0, ρ = ρn)/Hφ(z = 0, ρ = ρn) (5.13)

where Eρ(z = 0, ρ) is the transverse electric field across the frills defined as Eρ(z =

0, ρ) = Vn

ρ ln(bn/an)
.

The required loading wave impedances are then realized by varying the groove

depths of the concentrically corrugated NFP. In the next subsection, this design

procedure is used to design two concentrically corrugated NFPs.

5.4.2 Bessel vs Airy Focal Pattern

We will first use the described procedure to design a concentrically corrugated

NFP that generates a truncated evanescent Bessel beam. Bessel beams are com-

monly truncated using either a circular step function or a Gaussian function [65]. As

discussed in [65], the Gaussian function truncates the Bessel beam gradually and the

resulting beam more closely approximates an ideal Bessel beam. Therefore, we will

consider a z-directed electric-field focal pattern with a Gaussian truncation:

Efocal
z (ρ) = Ae(−ρ2/2σ2)J0(q◦ρ) (5.14)
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where σ determines the fullwidth-at-half-maximum (FWHM) of the Gaussian trun-

cating function. By changing σ, one can tailor the truncation of the Bessel beam to

fit the requirements of an intended application.

In the design process, the slot array is assumed to have N = 20 frills (slots), spaced

at s = λ◦/40 = 7.5 mm, with widths w = λ◦/80 = 3.75 mm. The inner and outer

radii of the slots are selected to be an = (2n−1)w and bn = (2n)w, respectively. Given

these parameters, an array is designed to produce the evanescent Bessel focal pattern

with q◦ = 9k◦, and σ = 0.1066λ◦ = 32 mm at a focal plane z = λ◦/10 = 30 mm.

Following the design procedure, the voltages and loading impedances of the array

of Figure 5.8 (b) are found. The loading impedances of the slots (n = 2, ..., 20)

are realized by varying the depths, dn, of the grooves. To do this, scattering from a

linear, periodic array of grooves is used to compute the groove depths. The computed

groove depths are shown in Table 5.1. It should be noted that the central slot (n = 1)

represents the exciting coaxial aperture and therefore is not listed in Table 5.1. To

simplify the notation, the NFP designed here is referred to as, Bessel beam NFP 1.

The number 1 is used to distinguish the Bessel beam NFP designed here from the

ones discussed in the next section.

For comparison purposes, a second concentrically corrugated NFP is designed to

generate an Airy pattern of the following form:

Efocal
z (ρ) = A′J1(q

′
◦ρ)

q′◦ρ
, (5.15)

where A′ is a normalization constant, and q′◦ = 1.5934q◦ is chosen such that a

null-to-null beamwidth of 0.085λ◦, equal to that of the Bessel beam, is obtained. The

required groove depths for such a NFP are also listed in Table 5.1.
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Table 5.1: The groove depth (dn/λ◦) of the NFPs designed to generate evanescent
Bessel beam and Airy pattern.
Groove Index (n) Bessel beam NFP 1 Airy pattern NFP

2 0.2383 0.2391
3 0.2396 0.2402
4 0.2379 0.2407
5 0.2401 0.2395
6 0.2374 0.2404
7 0.2404 0.2406
8 0.2367 0.2381
9 0.2406 0.2404
10 0.2357 0.2406
11 0.2408 0.2412
12 0.233 0.2403
13 0.2409 0.2405
14 0.2329 0.2406
15 0.241 0.2406
16 0.259 0.2407
17 0.2411 0.2409
18 0.2388 0.2413
19 0.2407 0.2424
20 0.2462 0.2453
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Figure 5.9: Normalized z-directed electric-field focal patterns (z = L). The graph
Bessel beam NFP 1 depicts the pattern produced by the Bessel beam
NFP 1, while Bessel beam ideal shows the theoretical Bessel beam pattern
defined by (5.14). The graph denoted as Airy pattern NFP depicts the
pattern produced by the Airy pattern NFP, while Airy pattern ideal is the
theoretical Airy pattern defined by (5.15). The simulations are performed
using Comsol Multiphysics.

5.5 Full-wave Simulation

In this section, NFP designs are studied through full-wave simulation using Comsol

Multiphysics. In the simulations, we initially assume the devices are lossless and made

of PEC. Subsequently, the effect of losses is examined.

The focal pattern produced by the Bessel beam NFP 1 is shown in Figure 5.9.

For comparison purposes, the pattern defined by (5.14) is also shown, and labeled

as Bessel beam ideal. The close agreement between the two patterns validates the

design procedure. Plotted in the same figure and labeled Airy pattern NFP, is the

focal pattern produced by the Airy pattern NFP. The ideal Airy pattern defined

by equation (5.15) is also plotted and labeled as Airy pattern ideal. As shown, the

null-to-null beamwidth of the Bessel beam and the Airy pattern are the same.

The simulation results for the Bessel beam NFP 1 are reported at 1.00833 GHz

which is 0.833% higher than the design frequency of 1.0 GHz. Similarly, the simula-

tion results for the Airy pattern NFP are reported at 1.007965 GHz. These frequency
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shifts can be attributed to the field expressions used to find the frill voltages (see Ap-

pendix A). However, the frequency shifts are lower than those reported in the previous

chapter (1.195%), which indicates the higher accuracy of the method presented here

over the one used in the previous chapter. Specifically, the magnetic field at the sur-

face of NFP was found in the previous chapter using the approximate equations given

in [51], while here we used the simulated impedance matrix, ZNN of the slot array,

to find the magnetic field. Since the full-wave simulation used to find ZNN includes

the fringing fields close to the frills, the magnetic field and the resulting impedances

found in this chapter are more accurate than those presented in the previous chapter.

In order to show that the beam produced by the Bessel beam NFP 1 retains its

transverse shape, the normalized patterns at various distances produced by it are

shown in Figure 5.10. The patterns exhibit nearly the same shape and beamwidth

from z = 0.025λ◦ = 7.5 mm to z = 0.25λ◦ = 75 mm. Closer to the plate, the

pattern’s shape differs from the desired Bessel profile due to the finite width of the

grooves (surface discretization). The pattern also begins to differ from the Bessel

profile around z = 0.25λ◦ = 75 mm (for example see the pattern at z = 90 mm).

This difference is due to the small propagating components radiated by the plate,

which become comparable to the evanescent field beyond z = 75 mm.

For comparison purposes, the patterns produced by the Airy pattern NFP are

shown in Figure 5.11 at the same distances from the plate. Neither the shape, nor

the beamwidth are preserved in this case.

It is worth noting that the near-field patterns produced by the Bessel beam NFP 1

in Figure 5.10 are almost zero close to the plate’s radius (ρ = 0.5λ◦). In other words,

the effect of edge diffraction is minimal. This is in contrast to the performance of

the uniform surface impedance studied in the previous section (see Figure 5.4). The

edge diffraction has been suppressed by using a Gaussian truncation in the design of

Bessel beam NFP 1. One should note that this could not be done using the uniform
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Figure 5.10: Normalized z-directed electric-field patterns at various axial distances
from the Bessel beam NFP 1. The simulations are performed using
Comsol Multiphysics.

surface impedance.

Figure 5.12 compares the variation of the beamwidth with respect to distance for

the Bessel beam NFP 1 (solid black line) and the Airy pattern NFP (dashed black

line). Although both plates generate a nearly identical FWHM at the focal plane

(z = 30 mm), the behavior of their beam with distance differs significantly. The beam

produced by Bessel beam NFP 1 has a FWHM which stays nearly constant, while

the FWHM of the beam produced by the Airy pattern NFP changes dramatically.

Specifically, from z = 0.025λ◦ = 7.5 mm to z = 0.3λ◦ = 90 mm, the FWHM of the

Airy pattern changes by a factor of 10.53, from 0.034λ◦ to 0.358λ◦. Over the same

distance, the FWHM of the Bessel beam changes by a factor of 1.95, from 0.044λ◦ to

0.086λ◦.

Also plotted in Figure 5.12 is the FWHM variation of the beam produced by

a single coaxial aperture without corrugations (black dash dots). The FWHM of

this beam changes from 0.037λ◦ to 0.383λ◦ (10.35 times) as the distance varies from

z = 7.5 mm to z = 90 mm. This rapid variation of the shape and beamwidth of

the beam produced by the coaxial probe severely limits its usefullness as a near-
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Figure 5.11: Normalized z-directed electric-field patterns at various axial distances
from the Airy pattern NFP. The simulations are performed using Comsol
Multiphysics.

field probe. The results depicted in Figure 5.12 suggest that a NFP designed to

produce evanescent Bessel beams can overcome the shortcomings of conventional

coaxial probes.

The ability to maintain a constant beamwidth is better understood by comparing

the range of the different devices. Here, we define the range as the distance over which

the intended FWHM increases by 50%. The intended FWHM is the beamwidth

a NFP forms at its focal plane. For example, the Bessel beam NFP 1 obtains a

FWHM = 0.0533λ◦ at its focal plane, which becomes 50% wider over the range

of 86.25 mm = 0.287λ◦. The Airy pattern NFP obtains a FWHM = 0.0488λ◦ at

its focal plane. This beamwidth is retained over a range of 40.27 mm = 0.134λ◦

which is 45.98 mm less than that of the Bessel beam NFP 1. The coaxial aperture

obtains a FWHM = 0.0533λ◦ (the intended resolution of the Bessel beam NFP 1)

at z = 13.27 mm = 0.044λ◦. This beamwidth becomes 50% larger over a range of

21.14 mm = 0.07λ◦, which is 65.11 mm less than that of the Bessel beam NFP 1.

Figure 5.13 examines the performance of the Bessel beam NFP 1 with frequency.

The FWHM at the operating frequency, 1.00833 GHz, is plotted versus axial dis-
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Figure 5.12: Variation of the z-directed electric field pattern beamwidth with distance
for different devices.
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Figure 5.13: Effect of frequency variation on the performance of the Bessel beam NFP
1.

tance along with FWHM at lower and higher frequencies. At the lower frequency

(1.008 GHz), the performance follows that at 1.00833 GHz up to approximately

z = 50 mm. Beyond z = 50 mm, the side lobes of the patterns formed by the plate

begin to become comparable to the main lobe. At the higher frequency (1.009 GHz),

the structure also exhibits a similar performance to that at 1.00833 GHz up to ap-

proximately z = 50 mm. Beyond z = 50 mm, the beamwidth of the pattern formed

by the structure starts to widen. Such a frequency response is consistent with the

ones reported for the concentrically corrugated NFP in the previous chapter.
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Figure 5.14: The maximum amplitude of the beam’s main lobe, |Ez(ρ = 0, z)|, gen-
erated by different devices versus axial distance. Graphs are normalized
to their maximum at (ρ = 0, z = 0) and are shown in dB scale.

Figure 5.14 illustrates the evanescent nature of the beam produced by Bessel

beam NFP 1. In this figure, the maximum amplitude of the beam’s main lobe,

|Ez(ρ = 0, z)|, is shown versus axial distance, z. The graph is normalized with

respect to its maximum at (z = 0, ρ = 0) and is shown on a dB scale. The beam

produced by Bessel beam NFP 1 experiences a nearly exponential decay (see Figure

5.14). This is in close agreement with the exponential decay of an ideal Bessel beam

with distance. The slight difference can be attributed to the fact that Bessel beam

NFP 1 is truncated by a Gaussian function.

Figure 5.14 also shows the decay rate of the beam produced by the Airy pattern

NFP. This beam exhibits a high rate of decay close to the surface which then tapers

off with increasing axial distance. For larger distances (z > 54.48 mm), the field

amplitude of the Airy pattern beam remains higher than that of the Bessel beam.

This is because the Airy pattern beam has a dominant propagating spectrum, while

the Bessel beam essentially does not have one.

For completeness, the decay rate of the simple coaxial aperture is also shown in

Figure 5.14. Again, the field decays rapidly near the aperture but quickly levels off

as the axial distance increases. The coaxial aperture does not have an enhanced
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Table 5.2: Comparison of the characteristics of different Bessel beam NFPs.
Bessel beam NFP N FWHM Truncation (σ) Range

(z = L)
1 20 0.053 λ 0.1066λ◦ 86.25 mm
2 20 0.044 λ 0.1066λ◦ 61.98 mm
3 20 0.068 λ 0.1066λ◦ 81.92 mm
4 15 0.052 λ 0.07λ◦ 59.33 mm

1(Lossy) 20 0.054 λ 0.1066λ◦ 58.94 mm

evanescent spectrum [17] as do the Bessel beam and Airy pattern NFPs, and as a

result its propagating spectrum quickly dominates the field profile.

A useful feature of NFPs is that they can sculpt the near-field. To show this, sev-

eral other Bessel beam NFPs have also been designed and are listed in Table 5.2. In

this table, the number of grooves, N , indicates the size of the plate, FWHM (z = L)

represents the intended resolution at the focal plane, σ denotes the width of the Gaus-

sian truncation, and the range is a measure of the NFP’s ability to retain its intended

resolution. For comparison purposes, we have also included the characteristics of

Bessel beam NFP 1 in this table.

The second design listed in Table 5.2 is Bessel beam NFP 2. This plate is designed

to produce an evanescent Bessel beam with narrower beamwidth compared to Bessel

beam NFP 1. The beamwidth produced by Bessel beam NFPs can be modified by

changing q◦. As an example, Bessel beam NFP 2 is designed with q◦ = 11k◦ instead

of q◦ = 9k◦ for Bessel beam NFP 1. The FWHM of the beam produced by Bessel

beam NFP 2 is plotted versus distance in Figure 5.15 with a dash-dot grey line.

The beamwidth variation for this NFP is only shown up to z = 65 mm. Beyond z =

65 mm, the sidelobes become comparable to the main lobe. For comparison purposes,

we have also shown the beamwidth variation of Bessel beam NFP 1 (solid black line).

It can be seen that Bessel beam NFP 2 generates a narrower beam. However, this
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Figure 5.15: Variation of the z-directed electric field pattern beamwidth with distance
for different Bessel beam NFPs.

narrow beamwidth is achieved at the cost of a shorter range: 61.98 mm = 0.207λ◦

compared to 86.25 mm = 0.287λ◦ for Bessel beam NFP 1. The beam produced

by Bessel beam NFP 2 also exhibits a higher decay rate than Bessel beam NFP 1,

as shown in Figure 5.14. This is expected since the decay rate is determined by

α◦ =
√

(q2◦ − k2◦).

The next example listed in Table 5.2 is Bessel beam NFP 3, which is designed to

produce an evanescent Bessel beam with wider beamwidth compared to that of Bessel

beam NFP 1. In this design, q◦ = 9k◦ of Bessel beam NFP 1 was reduced to q◦ = 7k◦.

The performance of this plate is plotted in Figure 5.15 with a dotted line. The range

for this plate is 81.92 mm = 0.274λ◦ which is comparable to 86.25 mm = 0.287λ◦ for

Bessel beam NFP 1. On the other hand, this beam exhibits a lower decay rate, as

shown in Figure 5.14.

In the next example, the effect of Gaussian truncation on the performance of Bessel

beam NFPs is examined. Bessel beam NFP 4 is designed to produce an evanescent

Bessel beam truncated by a narrower Gaussian function than Bessel beam NFP 1.

This is done by decreasing σ = 0.1066λ◦ of Bessel beam NFP 1 to σ = 0.07λ◦.

The beamwidth of the desired Bessel function is kept the same: q◦ = 9k◦. The

beamwidth variation of the beam produced by this plate is shown in Figure 5.15
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with a solid black line marked with triangles. This beam exhibits larger beamwidth

variation than Bessel beam NFP 1. Specifically, the range of Bessel beam NFP 4 is

59.33 mm = 0.198λ◦ which is 26.92 mm less than 86.25 mm = 0.287λ◦ for Bessel

beam NFP 1. This larger variation is expected since an evanescent Bessel beam

truncated by a narrower function diffracts more with distance. On the other hand, a

lower number of grooves is needed to generate such a beam (N = 15 for Bessel beam

NFP 4 compared to N = 20 for Bessel beam NFPs 1, 2, and 3). Therefore, a trade-off

exists between the range, and the size of the NFP.

Finally, to examine the effect of losses on the performance of Bessel beam NFPs,

Bessel beam NFP 1 (q◦ = 9k◦ and σ = 0.1066λ◦) is resimulated in Comsol Multi-

physics. The perfect electric conductor boundaries of the earlier examples are re-

placed with copper. The performance of this plate is plotted in Figure 5.15 with

a solid grey line marked with circles. The effect of losses is negligible close to the

plate and becomes more pronounced farther from the plate. Nevertheless, its range

is 58.94 mm = 0.196λ◦, which is still significantly larger than 21.14 mm = 0.07λ◦ for

the coaxial aperture.

5.6 Conclusion

This chapter highlighted a NFP’s ability to tailor the electromagnetic near field by

presenting a concentrically corrugated NFP capable of producing evanescent Bessel

beams. In addition, a generalized design approach was outlined that can be used

for various NFP configurations. The performance of the designed NFPs was studied

through full-wave simulation. It was shown that the evanescent Bessel beam pro-

duced by the NFP retained a nearly constant shape and beamwidth over a near-field

distance. The FWHM of the beam produced by the Bessel beam NFP changed from

0.044λ◦ to 0.086λ◦ (1.95 times larger) as the distance from the plate was varied from

z = 0.025λ◦ = 7.5 mm to z = 0.3λ◦ = 90 mm. Over the same distance, the FWHM
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of the beam produced by the Airy pattern NFP and the one produced by a coaxial

aperture increased by 10.53 and 10.35 times, respectively. NFPs capable of producing

evanescent Bessel beams, will find application in near-field imaging/probing systems,

high-resolution data storage, and medical devices that focus electromagnetic fields.
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CHAPTER VI

Planar Near-field Plates

6.1 Introduction

In the previous chapter, concentrically corrugated near-field plates (NFPs) were

developed to generate evanescent Bessel beams. Evanescent Bessel beams retain a

nearly constant subwavelength beamwidth over a near-field distance and thus, can

be beneficial in applications such as high resolution imaging, biomedical devices, and

high density data storage. However, they have been difficult to produce, and thus

have not found their place in practice. Results from previous chapter proved how

a NFP’s tailoring capabilities pave the way for an effective, yet simple method for

generating evanescent Bessel beams.

While concentrically corrugated NFPs demonstrated promising results in tailoring

the electromagnetic near field, they were costly to fabricate. They had to be machined

and could not be implemented using low-cost methods such as printed circuit board

(PCB) techniques. This drawback hinders their integration with electronic devices.

In this chapter, we present planar NFPs that can be fabricated in standard PCB

technology.

The planar NFP topology considered in this chapter is shown in Figure 6.1. It

consists of annular slots in a metallic surface supported by a circular grounded dielec-

tric substrate. The dielectric substrate is truncated with a metallic rim. The plate
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Figure 6.1: A planar NFP which consists of concentric annular slots on a circular
grounded dielectric slab. The plate is excited through a coaxial cable
and its rim is short circuited. The slots are loaded with lumped element
impedances designed to produce a prescribed subwavelength focal pattern.

is excited through a centrally located coaxial connector and the slots are loaded with

lumped-element impedances. The impedances are chosen to produce desired focal

patterns.

This chapter is organized as follows. In the next section, the design procedure for

a planar NFP is detailed. In the subsequent section, planar NFPs are designed and

studied through full-wave simulation. In the final section, the designed plates are fab-

ricated and measured. Planar NFPs that can produce both evanescent Bessel beams

and subwavelength Airy patterns are experimentally demonstrated. The performance

of the plates are also contrasted against an unloaded plate, to highlight their near

field tailoring capabilities.

6.2 Design Procedure

The goal of the design procedure is to find the loading impedances needed to

produce a desired focal spot. Lets consider a planar NFP with radius ρ = R and
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(a) Front view of planar NFPs. (b) Array of magnetic current frills.

Figure 6.2: (a) Front view of the planar NFP depicted in Figure 6.1. (b) The array
of magnetic current frills with voltages Vn across them used to model the
planar NFP in the design procedure.

N circular slots, as shown in Figure 6.2 (a). The annular slots have inner and outer

radii an and bn, respectively. The width w and spacing s of the slots are assumed to

be uniform, and the focal plane is located at z = L.

In the first step of the design procedure, the annular slots are modeled as magnetic

current frills with voltage, Vn, across them, as shown in Figure 6.2 (b). As in the

previous chapters, the analytical formulas derived for the fields radiated by a magnetic

current frill are used to relate the voltages Vn to the prescribed z-directed electric-field

focal pattern (see Appendix A):

2
N∑

n=1

Vnfnm(z = L, ρ = ρm) = Efocal
z (ρm) (6.1)

where m = 1 · · ·N and n = 1 · · ·N , fnm(z = L, ρ = ρm) is the z component of the

electric field at ρm = (m− 1)s due to the nth magnetic current frill, Efocal
z (ρm) is the

desired z-directed electric-field focal pattern. The matrix equation (6.1) is solved for

the voltages Vn, given a prescribed focal pattern.

In the next step, the annular slots are modeled as ports in the finite element
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commercial electromagnetic solver, Ansys HFSS, to obtain their impedance matrix

ZN+1N+1. The N + 1th row and column of ZN+1N+1 represents the exciting coaxial

connector. For the time being, we will ignore the N +1th row and column of ZN+1N+1

and consider only ZNN . Later in subsection 6.3.1, we will use ZN+1N+1 to relate

voltages on the slots to the the incident voltage on the coaxial connector. Knowing

the voltages, Vn, from step 1, the impedance matrix, ZNN , can be used to find the

currents, In, across the slots:

In = Z−1
NNVn (6.2)

In the final step, the ratio of voltage to current across each slot is computed to

find the required loading impedances, Zn:

Zn =
Vn

In

(6.3)

The required impedances, Zn, are predominantly reactive. Hence, their resistive

part can be neglected, as in the previous chapters. The required reactance of each slot

is then realized by uniformly placing M lumped element inductors/capacitors across

each slot, as shown in Figure 6.1. The inductors/capacitors values can be computed

by noting that the lumped elements across each slot are in parallel with each other:

Ln =
MXn

ω

Cn =
1

ωMXn

(6.4)

where Xn = Im{Zn} and ω is the angular frequency. It should be noted that the

discontinuities introduced by the lumped impedances cause fringing fields around the

elements. These fringing fields slightly change the overall impedance of each slot. To

characterize the effect of fringing, a linear slot is considered in a separate scattering

simulation. The linear slot is backed by the same grounded dielectric slab and loaded
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with the lumped element impedances computed using (6.4). The width of the linear

slot is assumed to be w and its length is 2πbn/M . A plane wave is then used to

excite the linear slot. From the reflection coefficient, the overall impedance of the

slot, including the effect of the fringing fields, can be computed. Such simulations are

used to adjust the values of the calculated lumped element impedances to compensate

for the effect of fringing.

6.3 Simulation Results

In this section, planar NFPs designed in the previous section are examined through

analytical and numerical analysis. First, we analytically study the planar NFP to

obtain expressions for the voltages across its annular slots when they are loaded

with the elements computed using (6.4). The voltages are then used to analytically

predict the near-field pattern formed by the planar NFP, using the formulas given in

Appendix A. Next, we examine the designed plates in full-wave simulation. It will

be shown that patterns produced in full-wave simulation are in close agreement with

analytical prediction, thereby verifying the design procedure.

6.3.1 Analytical Analysis

When the planar NFP is loaded solely with reactive impedances Xn (neglecting

the real parts), the voltages induced across the annular slots, V ′
n, slightly differ from

the design values, Vn. In order to accurately predict the focal patterns produced by

the NFPs with reactive impedances, Xn, we analytically solve for the voltages V ′
n. We

follow the procedure outlined in [87] and assume the structure is excited by a coaxial

connector with voltage V ′
N+1 = Vexc, where Vexc is an arbitrary value, determined by

the incident power. Then, we solve for the voltages V ′
n as a function of Vexc. To do

so, we first note that V ′
n are related to I ′n through the matrix impedance, ZN+1N+1,

as follows:
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


I ′1
...

I ′N

Iexc




= Z−1
N+1N+1




V ′
1

...

V ′
N

Vexc




(6.5)

The loading reactances, Xn, also relate the voltages, V ′
n, and currents, I ′n. There-

fore,




V ′
1/jX1

...

V ′
N/jXN




=




Y11 Y12 · · · Y1N+1

Y21 Y22 · · · Y2N+1

...
. . .

...

YN1YN2· · ·YNN+1







V ′
1

...

V ′
N

Vexc




(6.6)

where Yij are the elements of YN+1N+1 = Z−1
N+1N+1. The right hand side of (6.6) can

be separated into two parts:




V ′
1/jX1

...

V ′
N/jXN




=




Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N

...
. . .

...

YN1YN2· · ·YNN







V ′
1

...

V ′
N




+ Vexc




Y1N+1

...

YNN+1




(6.7)

The equation above is then rearranged to find V ′
n:




V ′
1

...

V ′
N




= Vexc




1/jX1 − Y11· · · −Y1N

−Y21 · · · −Y2N

...
. . .

...

−YN1 · · · 1/jX1 − YNN




−1 


Y1N+1

...

YNN+1




(6.8)

Once V ′
n are known, fields at all points in space using can be found (12), (20), (21)

in [51].
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6.3.2 Full-wave Simulation

In this subsection, two different planar NFPs are studied through full-wave sim-

ulation. We consider NFPs with N = 6 slots, which are terminated by a metallic

rim at R = 42 mm. Throughout this chapter, the wavelength is assumed to be

λ = 300 mm, corresponding to an operating frequency of 1.0 GHz. The slots are

selected to be w = 0.4 mm wide and s = 6 mm = 0.02λ apart. The inner and outer

radii of the slots are chosen to be an = ns − w and bn = ns. The focal plane is at

L = 20 mm = λ/15. The substrate is a 0.813 mm (32 mil) thick Rogers RO4003C.

The coaxial excitation has inner and outer radii of 0.635 mm and 2.05 mm respec-

tively, which correspond to the dimensions of a standard SMA connector.

We will consider two different focal patterns. A truncated, subwavelength Bessel

focal pattern:

Efocal
z (ρ) = e(−ρ2/2σ2)J0(qρ), (6.9)

where J0 is the zeroth-order Bessel function, q determines the null-to-null beamwidth

of the main lobe of the Bessel function, and σ determines the full width at half-

maximum (FWHM) of the Gaussian truncating function. It was shown in the previous

chapter that a NFP designed to produce such a focal pattern forms an evanescent

Bessel beam that retains its shape and beamwidth over a near-field distance. We will

refer to this plate as a Bessel beam NFP. For comparison purposes, we also consider

a plate that can produce an Airy focal pattern:

Efocal
z (ρ) =

J1(q
′ρ)

q′ρ
, (6.10)

where J1 is the first order Bessel function and q′ determines the null-to-null beamwidth

of the focal pattern. We will refer to this plate as Airy pattern NFP.

The first NFP is designed to produce a Bessel focal pattern with q = 7.6k, where k

is the free space wavenumber. This focal pattern is truncated by a Gaussian function
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with σ = 23 mm = 0.076λ. We will refer to this plate as Bessel beam NFP 1.

The plate was designed using the procedure outlined in the previous section, and

its loading impedances are listed in Table 6.1. Each loading impedance is realized

using M = 16 lumped element impedances computed using (6.4). The values of the

calculated impedances are adjusted to account for the effect of fringing fields. They

are also listed in Table 6.1.

Table 6.1: The impedance values required to load the designed planar NFPs with the
corresponding lumped inductors/conductrs used to realize them.

Bessel beam NFP 1 Airy pattern NFP
n Xn(Ω) Lumped element Xn(Ω) Lumped element
1 12.07 30.54nH 14.48 36.65nH
2 7.13 17.83nH 6.89 17.24nH
3 0.9 1.87nH 1.62 3.73nH
4 −6.7 1.44pF 30.64 77.5nH
5 10.57 26.31nH 2.51 5.85nH
6 4.71 11.38nH 0.86 1.54nH

The second plate was designed to produce an Airy pattern with q′ = 12.11k,

resulting in a focal pattern with null-to-null beamwidth of λ/10, equal to that of

Bessel beam NFP 1. The required impedances of this plate as well as the loading

inductors/capacitors used to realize them are also listed in Table 6.1.

The Bessel beam NFP 1 was simulated using HFSS. The normalized, z-directed

electric-field focal pattern produced by this plate is plotted in Figure 6.3, and labeled

Ideal Bessel beam NFP 1 (simulation). The focal pattern produced by this plate was

also computed using the voltages obtained using (6.8). The computed focal pattern is

also shown in Figure 6.3, and labeled Ideal Bessel beam NFP 1 (computed). The close

agreement between the two graphs verifies the design procedure presented in the pre-

vious section. Plotted in Figure 6.3 and labeled Ideal Airy pattern NFP (simulation)

is the focal pattern produced by the Airy pattern NFP using the lumped element

impedances listed in Table. 6.1. The focal pattern of this plate has also been com-
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Figure 6.3: Normalized z-directed electric-field focal patterns. The focal pattern pro-
duced by the Bessel beam NFP 1 with lumped element impedances listed
in Table. 6.1 is labeled as Ideal Bessel beam NFP 1 (simulation). The
focal pattern computed for this plate using the voltages obtained by (6.8)
is labeled as Ideal Bessel beam NFP 1 (computed). The graph Ideal Airy
pattern NFP (simulation) represents the focal pattern produced by the
Airy pattern NFP with lumped element impedances listed in Table. 6.1.
The focal pattern computed for this plate using the voltages obtained by
(6.8) is labeled as Ideal Airy pattern NFP (computed).

puted using the voltages obtained using (6.8). The computed focal pattern is labeled

Ideal Airy pattern NFP (computed). Again, the two graphs exhibit close agreement.

As expected, the focal patterns produced by Bessel beam NFP 1 and Airy pattern

NFP have approximately the same null-to-null beamwidths. It should be noted that

the results for Bessel beam NFP 1 and Airy pattern NFP are reported at 1.004 GHz

and 0.996 GHz, respectively. These slight frequency shifts can be attributed to the

approximations made in deriving the analytical equations in Appendix A. Similar

frequency shifts have also been reported for NFPs studied in the previous chapters.

While the focal patterns in Figure 6.3 verify the design and operation of the planar

NFP, it is important to note that the exact impedance values listed in Table 6.1

may not be available in practice. To include fabrication constraints, the NFPs were

simulated using practical inductor and capacitor values. Inductors and capacitors

were selected from the Coilcraft 0402HP series and the Murata GJM155C series,

respectively. Using the S-parameters provided by the manufacturers, the inductors
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and capacitors were simulated in the Agilent ADS Microwave circuit simulator to find

their values at 1.0 GHz. The nominal values of the inductors and capacitors as well

as their values and quality factors (Q) at 1.0 GHz are listed in Table 6.2.

Using the inductors/capacitors values at 1.0 GHz listed in Table 6.2, the Bessel

beam NFP 1 and Airy pattern NFP were resimulated in HFSS. Their focal patterns

are shown in Figure 6.4 and labeled Practical Bessel beam NFP 1 (simulation) and

Practical Airy pattern NFP (simulation), respectively. For comparison purposes, the

patterns produced by the plates with ideal inductor and capacitor values listed in

Table 6.1 are also shown. It should be noted that the results for practical NFPs are

reported at 0.995 GHz and 0.982 GHz, respectively. These small frequency shifts can

be attributed to the slight difference between the practical component values listed

in Table. 6.2 and the theoretical ones in Table 6.1.

Figure 6.4 demonstrates close agreement between the patterns produced by the

plates loaded with ideal and practical impedance values. This close agreement sug-

gests that planar NFPs can be fabricated to produce prescribed focal patterns despite

practical tolerances. In the next section, the designed NFPs are fabricated and their

performance is examined experimentally. In the rest of this section, the performance

of the practical NFPs is studied through full-wave simulation. From this point for-

ward, Bessel beam NFP 1 and Airy pattern NFP refer to plates loaded with practical

impedance values (Table 6.2).

As was shown in the previous chapter, a beam with a Bessel pattern given by (6.9)

nearly retains its shape and beamwidth over a near-field distance. To examine this

property, the electric-field patterns produced by Bessel beam NFP 1 at various axial

distances, z, are shown in Fig 6.5. The plate produces a subwavelength beam with a

nearly constant shape and beamwidth from z = 10 mm = λ/30 to z = 60 mm = λ/5.

At distances less than z = 10 mm, the pattern varies from the desired Bessel pattern

because of the plate’s discretization. Beyond z = 60 mm, the pattern starts to
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Table 6.2: The inductors/capacitors used to load the practical planar NFPs with
their corresponding values at 1.0 GHz. The inductors are selected from
0402HP Coilcraft collection while the capacitors are selected from Murata
GJM155C collection. The only exception is 1.9 nH which is selected from
0402CS Coilcraft collection.

Bessel beam NFP 1 Airy pattern NFP
n nominal at 1.0 GHz Q nominal at 1.0 GHz Q
1 30nH 31.31nH 67.1 36nH 37.51nH 62.9
2 18nH 18.53nH 58.2 16nH 16.46nH 63.2
3 2nH 2.01nH 59.3 3.6nH 3.61nH 70.6
4 1.5pF 1.53pF 368 68nH 75.06nH 58.1
5 27nH 27.78nH 69 5.6nH 5.64nH 78.9
6 11nH 11.21nH 77.1 1.9nH 1.91nH 37

differ from the desired Bessel shape due to the truncation of the Bessel focal pattern.

The electric-field patterns produced by the Airy pattern NFP are shown in Fig 6.6.

Neither shape nor the beamwidth are preserved in this case.

The ability of Bessel beam NFP 1 to retain its beamwidth is evident from a

plot of FWHM vs. axial distance, shown in Figure 6.7. The FWHM of the beam

produced by the Airy pattern NFP as well as a plate with the same dimensions

without loading impedances (unloaded plate) are shown. The FWHM of the beam

produced by the Bessel beam NFP 1 stays almost fixed while the beamwidth of the

Airy pattern NFP and the unloaded plate changes dramatically with axial distance.

The Bessel beam NFP 1 produces an FWHM = 0.0554λ at z = 10 mm which

becomes FWHM = 0.1044λ at z = 60 mm: 1.88 times wider. Over the same

distance, the FWHM of the unloaded plate changes from FWHM = 0.04492λ to

FWHM = 0.2128λ: 4.74 times wider. The FWHM of the Airy pattern NFP is only

shown up to z = 40 mm, since its sidelobe becomes comparable to the main lobe

around z = 40 mm, as shown in Figure 6.6. Its FWHM changes from 0.04788λ to

0.1308λ (2.73 times larger), only over the distance from z = 10 mm to z = 40 mm.

In order to further illustrate the ability of planar NFPs to produce beams with
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Figure 6.4: Normalized z directed electric-field focal pattern. The graphs Ideal Bessel
beam NFP 1 (simulation) and Practical Bessel beam NFP 1 (simulation)
are the focal patterns produced by the Bessel beam NFP 1 loaded re-
spectively with theoretical values (Table 6.1) and practical values (Table
6.2). The graphs Ideal Airy pattern NFP (simulation) and Practical Airy
pattern NFP (simulation) are the focal patterns produced by the Airy
pattern NFP loaded respectively with theoretical values (Table 6.1) and
practical values (Table 6.2).

desired properties, we also designed a second Bessel beam NFP: Bessel beam NFP 2.

This plate produces a beam narrower than Bessel beam NFP 1. Specifically, q = 7.6k

of Bessel beam NFP 1 has been increased to q = 9.6k for Bessel beam NFP 2. The

truncating Gaussian function is similar: σ = 0.08λ for Bessel beam NFP 2 compared

to σ = 0.0767λ for Bessel beam NFP 1. This slight change in σ was introduced to

ensure that the required inductors and capacitors can be easily realized using available

components. The performance of Bessel beam NFP 2 is shown in Figure 6.7. Bessel

beam NFP 2 produces a beam with narrower beamwidth compared to that of Bessel

beam NFP 1. However, its narrower beamwidth has been achieved at the cost of a

shorter range: its sidelobes become comparable to the main lobe around z = 40 mm,

while Bessel beam NFP 1 could retain its shape up to z = 60 mm (see Figure 6.5).

The performance of Bessel beam NFP 1 with frequency variation is studied in

Figure 6.8. At lower frequencies, Bessel beam NFP 1 produces a beam with FWHM

slightly narrower than at the operating frequency. However, the pattern exhibits

a larger variation of FWHM with axial distance. At higher frequencies, the plate
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Figure 6.5: The normalized z-directed electric-field patterns produced by the Bessel
beam NFP 1 at various axial distances.
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Figure 6.6: The normalized z-directed electric-field patterns produced by the Airy
pattern NFP at various axial distance.

produces a beam with FWHM wider than at the operating frequency. This frequency

response is similar to the one described in the previous chapter for the corrugated

NFP.

Finally, the evanescent nature of the beams produced by the plates is examined in

Figure 6.9. In this figure, the amplitudes of Ez(ρ = 0, z) are normalized with respect

to their values at (ρ = 0, z = 0) and are shown on a dB scale. The decay rate of

Bessel beam NFP 1 is almost exponential. This is theoretically expected since an

evanescent Bessel beam decays as e−
√

q2−k2z. The decay rates for the Airy pattern

NFP and the unloaded plate are also shown for comparison. The Airy pattern NFP

exhibits a high decay rate close to the plate, which tapers off as the axial distance
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Figure 6.7: The FWHM of the simulated patterns produced by different devices as a
function of axial distance.
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Figure 6.8: The simulated performance of the Bessel beam NFP 1 with respect to
frequency variation. The operating frequency is 0.995 GHz.

increases. This is expected since the propagating spectrum of the beam produced

by this plate becomes dominant at larger distances, while the Bessel beam NFP 1

essentially does not have a propagating spectrum. In the case of the unloaded plate,

the evanescent spectrum is not enhanced due to lack of loading impedances. Thus, it

exhibits a high decay rate close to the surface. Bessel beam NFP 2 exhibits a higher

decay rate compared to Bessel beam NFP 1 since it has a larger q value. The decay

rates shown in Figure 6.9 are consistent with those reported in the previous chapter

for corrugated NFPs.

The full-wave simulation results reported in this section confirm the ability of

planar NFPs to engineer the electromagnetic near field. In the next section, planar
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Figure 6.9: The simulated decay rate of the patterns produced by different devices as
a function of axial distance.

NFPs are fabricated and measured. Their experimental performance is shown to be in

agreement with simulation results. This will be the first experimental demonstration

of evanescent Bessel beams at microwave frequencies.

6.4 Measurement Results

In this section, the planar NFPs designs pf the previous section are examined in

experiment. The designed plates were fabricated using standard PCB technology.

First, six annular slots were milled into a copper-clad 0.813 mm (32 mil) Rogers

4003C substrate. The annular slots dimensions were the same as the ones described

in the previous section. A circle with radius R = 42 mm containing the annular slots

was then cut out of the substrate. Next, the lumped components listed in Table 6.2

were placed on the annular slots using silver epoxy. Finally, the outer rim of the

circular slab was short circuited using copper tape and a standard SMA connector

was soldered to the plate. A planar NFP fabricated through this process is shown in

Figure 6.10.

To test the fabricated plates, the setup shown in Figure 6.11 was used. In this

setup, an open-ended semi-rigid coaxial cable (scanning probe) with an inner con-

ductor of radius 0.46 mm and outer conductor of radius 1.8 mm was used to measure
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Figure 6.10: A fabricated planar NFP.

the z-directed electric-field patterns formed by the NFPs. To further enhance the

received signal, the inner conductor of the semi-rigid probe was extended 4.5 mm.

This probe was mounted to an xyz-translation stage to scan the near-field patterns

generated by the plates. The fabricated plate was connected to port 1 of the vector

network analyzer and its z-directed electric-field patterns were measured by the scan-

ning probe connected to port 2 of the network analyzer. In the measurements, the

distance between the outer conductor of the scanning probe and the surface of the

plate was considered to be the axial distance, z. For example, the outer conductor of

the probe was placed 20 mm away from the surface of the plate when measuring its

focal pattern (focal plane is L = 20 mm).

The focal patterns measured in this manner are shown in Figure 6.12 (a)-(d) and

labeled Measurement. Plotted in the same figures and labeled Simulation, are the

simulated focal patterns using Ansys HFSS. The full-wave simulation captures the

effect of the scanning probe. The measured and simulated focal patterns reported in

Figure 6.12 exhibit close agreement, thereby verifying the design and operation of the
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Figure 6.11: Setup for measuring the z-directed electric-field patterns formed by ex-
perimental plates.

planar NFPs.

It should be noted that the measurement results shown in Figure 6.12 are reported

at 1.012 GHz for Bessel beam NFP 1 (compared to 0.995 GHz for the simulation re-

sults), at 1.007 GHz for Airy pattern NFP (compared to 0.982 GHz for the simulation

results), and at 1.026 GHz for the Bessel beam NFP 2 (compared to 1.005 GHz for

the simulation results). These slight frequency shifts can be attributed to the 2− 5%

tolerances in the values of the lumped components and the substrate’s dielectric con-

stant.

The abilities of the designed NFPs to retain their shape and subwavelength beamwidth

with distance varies. This difference can be observed experimentally by examining

the beams radiated by the fabricated plates, as shown in Figure 6.13 (a)-(d). In

these plots, the measured z-directed electric-field pattern at each axial cross-section,

(x, z = z′), is normalized to its value at (x = 0, z = z′). Figure 6.13 (a) clearly

illustrates the ability of Bessel beam NFP 1 to create a beam with fixed beamwidth

and shape. It is further highlighted by examining the beam emitted by the Airy

pattern NFP (Figure 6.13 (b)). This plate produces a beam as narrow as Bessel
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(b) Airy pattern NFP.

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

ρ/λ

N
or

m
al

iz
ed

 |E
z|

 

 

Measurement
Simulation

(c) Unloaded plate.

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

ρ/λ

N
or

m
al

iz
ed

 |E
z|

 

 

Measurement
Simulation

(d) Bessel beam NFP 2.

Figure 6.12: The measured and simulated focal patterns of various plates. The Mea-
surement plots are the focal patterns measured using the setup shown
in Figure 6.11. The Simulation plots are the focal patterns obtained
from the full-wave simulation of the measurement setup with the scan-
ning probe present. (a) Bessel beam NFP 1. (b) Airy pattern NFP. (c)
Unloaded plate. (d) Bessel beam NFP 2.

126



z(mm)

x(
m

m
)

 

 

7.5 20 30 40 50 60
−40

−20

0

20

40

0

0.2

0.4

0.6

0.8

1

(a) Bessel beam NFP 1

z(mm)

x(
m

m
)

 

 

7.5 20 30 40 50 60
−40

−20

0

20

40

0

0.2

0.4

0.6

0.8

1

(b) Airy pattern NFP

z(mm)

x(
m

m
)

 

 

7.5 20 30 40 50 60
−40

−20

0

20

40

0

0.2

0.4

0.6

0.8

1

(c) Unloaded plate

z(mm)

x(
m

m
)

 

 

7.5 20 30 40 50 60
−40

−20

0

20

40

0

0.2

0.4

0.6

0.8

1

(d) Bessel beam NFP 2

Figure 6.13: The measured beam emitted from various plates. The measured field at
each cross-section, (x, z = z′), is normalized to its value at (x = 0, z =
z′). (a) Bessel beam NFP 1. (b) Airy pattern NFP. (c) Unloaded plate.
(d) Bessel beam NFP 2.

beam NFP 1 at the focal plane (z = 20 mm), but its shape and beamwidth vary

rapidly with increasing distance. A rapid variation of shape and beamwidth can also

be observed for the unloaded plate shown in Figure 6.13 (c). Figure 6.13 (d) shows

that Bessel beam NFP 2 maintains a beamwidth narrower than the other structures.

However, this narrow beamwidth has been obtained at the cost of a shorter range:

up to z = 40 mm.

A more quantitative measure of Bessel beam NFP 1 ’s ability to retain its beamwidth

is depicted in Figure 6.14, which plots its experimental FWHM vs. axial distance. For

comparison purposes, we have also plotted the FWHM of the fabricated Airy pattern

NFP, the unloaded plate, and Bessel beam NFP 2. The experimental Bessel beam

NFP 1 exhibits an almost constant FWHM while the FWHM of the Airy pattern
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Figure 6.14: The measured FWHM of various devices as a function of the axial dis-
tance.

NFP and the unloaded plate changes dramatically with the axial distance. Specif-

ically, the FWHM of the unloaded plate changes from 0.03997λ at z = 7.5 mm to

0.226λ at z = 60 mm: 5.65 times larger. Over the same distance, the FWHM of the

experimental Bessel beam NFP 1 changes from 0.05555λ to 0.1197λ: only 2.15 times

larger. The measured FWHM of the Airy pattern NFP and Bessel beam NFP 2 is

plotted only up to z = 40 mm, since sidelobes became comparable to the mainlobe

beyond z = 40 mm. The experimental FWHM graphs in Figure 6.14 exhibit the same

trends as the full-wave simulation results of Figure 6.7.

The performance of the fabricated Bessel beam NFP 1 with frequency variation

is examined in Figure 6.15. At the frequency of operation, 1.012 GHz, the plate ex-

hibits an almost constant FWHM. At higher frequencies, the plate exhibits a wider

FWHM which varies more with distance than at the operating frequency. At lower

frequencies, the plate produces a narrower beamwidth compared to the operating fre-

quency. However, this narrow beamwidth is achieved at the cost of larger beamwidth

variation with distance. The experimental frequency response shown in Figure 6.15

is consistent with the simulation results, shown in Figure 6.8 and, those reported for

earlier experimental NFPs in previous chapters.

In the last part of our experiments, we examine the evanescent nature of the
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Figure 6.15: The measured frequency response of Bessel beam NFP 1. The frequency
of operation is 1.012 GHz.

0.01 0.02 0.03 0.04 0.05 0.06
−80

−70

−60

−50

−40

−30

−20

−10

0

z(mm)

N
or

m
al

iz
ed

 E
z(ρ

=
0,

z)
 (

dB
)

 

 

Bessel beam NFP 1
Airy pattern NFP
Unloaded plate
Bessel beam NFP 2

Figure 6.16: The measured decay rate of the patterns produced by different devices
as a function of axial distance.

patterns generated by the fabricated structures. To do so, we measured the electric

field at ρ = 0 as a function of axial distance z. The measurement results for each

plate are normalized to their value at z = 7.5 mm and are shown on a dB scale in

Figure 6.16. As expected, the experimental Bessel beam NFP 1 exhibits an almost

exponential decay rate, while the decay rate of Airy pattern NFP is large close to the

plate and levels off as the axial distance increases. The decay rate of the unloaded

plate is large close to the plate and tapers off with axial distance. Bessel beam NFP

2 exhibits the largest decay rate since it produces the narrowest beamwidth.
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6.5 Conclusion

Planar near-field plates (NFPs) were presented that can be fabricated using stan-

dard circuit board technology and produce desired subwavelength focal spots. The

proposed planar plates consisted of annular slots on a grounded dielectric slab ex-

cited by a coaxial connector. The annular slots were loaded with lumped element

impedances to produce desired subwavelength near-field patterns. A step-by-step

procedure for designing these plates was outlined. Different NFPs were designed

to highlight the ability of NFPs to produce various patterns: Bessel beam NFP 1

and 2 were designed to generate evanescent Bessel beams with different beamwidths,

while Airy pattern NFP was designed to generate an Airy pattern with the same

beamwidth as Bessel beam NFP 1. The designed plates were compared to a plate

with the same dimensions but no loading elements. The proposed structures were

fabricated using printed circuit board technology. The fabricated plates were shown

to produce near-field patterns in close agreement with simulation, thereby verifying

the proposed design and operation. Furthermore, the Bessel beam NFPs produced

experimental beams with nearly fixed shape and subwavelength beamwidth over near-

field distances. Over the same distance, neither the beamwidth nor the shape were

preserved by the Airy pattern NFP or the unloaded plate. Such planar NFPs will find

applications in near-field imaging and probing systems, biomedical targeting devices,

and high density data storage. Finally, development of planar NFPs addresses the

three major issues of the initial NFP. Namely, planar NFPs can be (1) fed through a

waveguide (coaxial connector), (2) generate a desired 2-D subwavelength focal spot,

and (3) be easily fabricated and integrated with other hardware.
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CHAPTER VII

Summary and Future Work

7.1 Summary

This thesis work arose from the need to produce subwavelength electromagnetic

field confinement at extended distances. Such a capability could be crucial for ap-

plications such as high resolution imaging and probing, high density data storage,

biomedical targeting devices, and wireless power transfer. However, efforts to engi-

neer the electromagnetic near field have faced a major obstacle: the diffraction limit.

Due to this limit, subwavelength focal patterns can only be achieved at extremely

close distances

Near-field plates (NFPs) have been proposed as a novel solution for overcoming the

diffraction limit. NFPs are non-periodically patterned surfaces or arrays which can

produce prescribed near-field patterns that overcome the diffraction limit [13–16].

The first experimental NFP was reported in [15, 16] and consisted of an array of

interdigitated capacitors. This plate focused microwave radiation emanating from

a cylindrical source to a prescribed subwavelength focal pattern, thereby verifying

the NFPs’ ability to overcome the diffraction limit. However, the NFP configuration

of [15, 16] had some major limitations, preventing it from practical use. Namely,

it was excited by a line source while a waveguide excitation is preferred in many

applications. In addition, it could only produce a one-dimensional focal pattern: a
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line focus. Finally, its topology was not simple to integrate with other devices.

Over the course of this thesis, we have advanced the NFP concept through several

stages, addressing a major issue in each stage. In the first stage, a fully analytical

description of the NFP concept was introduced. This analytical treatment provided

an intuitive understanding of NFP designs and their operation. Furthermore, the

distinct features of NFPs and their similarities and differences with existing structures

(such as metamaterial superlenses and antenna arrays) were explained.

In the next stage, a NFP that could be directly fed through a waveguide was

developed. This plate was referred to as linearly corrugated NFP. It consisted of

linear non-periodic corrugations that tailored the near field emitted by a central slit.

A procedure for designing the plate was outlined. Its design and operation was then

verified through simulation and experiment.

The linearly corrugated NFP could only produce a one dimensional subwavelength

focus (focal line), while a two dimensional focus is desired in most applications. Also,

it was excited using a slit which may be difficult to feed in practice. Therefore,

concentrically corrugated NFPs were developed consisting of a coaxially-fed central

aperture surrounded by periodically-spaced, concentric grooves. An experimental

NFP was demonstrated that produced a prescribed subwavelength focal spot. It was

used as a probe to image two closely spaced dipole sources. The NFP probe achieved

images with significantly higher resolution compared to a conventional coaxial probe.

These promising results were a major step toward establishing NFPs as devices that

can achieve significant subwavelength resolution enhancement, opening new oppor-

tunities in near-field probing, biomedical targeting devices, and high density data

storage systems.

To further highlight the unique ability of NFPs to sculpt the electromagnetic

near field, we designed concentrically corrugated NFPs that can generate evanescent

Bessel beams. Evanescent Bessel beams resist diffraction and retain their shape and
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subwavelength beamwidth over a near-field distance. These beams have been difficult

to produce in the past, and therefore, had not found their place in practice. The field

tailoring capabilities of NFPs have opened new ways for practical, yet simple, methods

for generating them.

While a concentrically corrugated NFP was capable of producing unprecedented

near-field patterns, it was costly to fabricate. Furthermore, it could not be imple-

mented using standard printed circuit board (PCB) technology. In many applications,

a planar structure implemented using PCB techniques is preferred since it can be eas-

ily integrated with other electronics. To address this issue, we designed, fabricated,

and experimentally demonstrated a planar NFP that can be fabricated using low-

cost PCB technology. This work concluded the thesis by addressing the three major

limitations of earlier NFP designs. The developed planar NFP was excited through

a waveguide, could generate a desired 2-D subwavelength focus, and was simple to

fabricate and integrate with other hardware.

7.2 Future Work

This work on NFPs has opened new opportunities, as well as new challenges.

The most important challenge facing NFPs’ practical use is their high reflection. As

noted in Chapter 2, NFPs are reactive surfaces which might exhibit a pronounced

impedance mismatch with free space. Therefore, they suffer from high reflection. For

example consider the NFP of Chapter 2. This plate was excited by a line source and

formed a subwavelength focal pattern. However, the majority of the electromagnetic

field incident from the line source is reflected by the NFP, as shown Figure 2.10. In

many practical applications, it is highly desired that the NFP funnels the field by the

line source into the desired subwavelength focal pattern, resulting in a unidirectional

near field.

For this purpose, we are revisiting the design procedure outlined in Chapter 2.
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As in Chapters 3-6, the aperture current densities can be directly related to the focal

pattern (without back propagation). Now let us assume that the amplitude of the

subwavelength focal pattern is designed to be M times larger than the incident field

from the line source. By adjusting the value of M , the field radiated by the NFP and

the source are suppressed in the backward direction, but are enhanced in the forward

direction. The phenomenon is similar to that observed in Yagi-Uda antennas [88],

where the far-field is unidirectional. The NFP acts as a director element. As a result,

we will refer to such a NFP that can produce a unidirectional near-field pattern as

a “Yagi-Uda NFP”. As an example, we have designed a NFP that produces a focal

pattern with an amplitude 2.1 times larger than that the line source alone. The

focal pattern produced by this NFP, as well as the pattern due to the line source,

are shown in Figure 7.1. This new NFP produces a pattern with a significantly

narrower beamwidth and higher amplitude compared to the line source alone. In

Figure 7.2, a two-dimensional plot of the electric field produced by this new NFP is

shown. Comparing Figure 7.2 to Figure 2.10, it is evident that the new NFP design

does not suffer from high reflection. In fact, the subwavelength near-field pattern is

unidirectional. This Yagi-Uda NFP exhibits promising features for high resolution

probing and sensing, as well as wireless power transfer systems that can be explored

in future work.

In Chapters 3-6, we used waveguides to feed NFPs. Naturally, a NFP with waveg-

uide feed produces a unidirectional beam. Another advantage of a waveguide feed is

that it can be impedance matched to the NFP. Due to the large impedance mismatch

between the NFP and the waveguide, the impedance matching scheme will be highly

sensitive to the input impedance of a NFP which is a function of its surroundings.

This phenomenon can be used in future to develop a highly sensitive probing and

sensing device of passive targets with subwavelength resolution. It should be em-

phasized that the required matching structure will be significantly narrowband and
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Figure 7.1: The focal pattern produced by a Yagi-Uda NFP. The pattern produced
by the line source is also depicted for comparison.

Figure 7.2: A two-dimensional plot of the magnitude of the electric field generated
by Yagi-Uda NFP.

sensitive to losses. As a result, a more advanced matching structure compared to the

double stub tuner used in Chapter 4 will be required [3].

While most of the work in this thesis has focused on NFPs at microwave frequen-

cies, it should be noted that the NFP design and operation is frequency independent.

As a result, NFPs can also be implemented at frequencies other than microwave fre-

quencies. For example, nano-circuit elements proposed in [24] are good candidates for

realizing optical NFPs. Nanostructured NFPs that allow one to stipulate the gener-

ated near-field pattern will be beneficial in many optical applications. For example, it

could lead to near-field scanning optical microscopy (NSOM) with extended operat-
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ing distances. It may also be used to develop lithography techniques with arbitrarily

high resolutions. Similarly, it can be used to increase the density of data storage

devices. As a result, research on optical NFPs constitutes a major future direction

with numerous potential applications.

NFPs could also be used to improve targeting capabilities in medical devices such

as those used in transcranial magnetic stimulation (TMS). Specifically, the use of

NFPs may lead to increased electromagnetic field penetration, while maintaining

a small stimulated volume within the brain. In TMS, an electric field is used to

induce an electromotive force within brain tissue in order to excite neurons. The

super-resolving power of a NFP could perhaps be used to precisely direct neuronal

stimulation in TMS. Work on this subject has already begun [89,90].

NFPs may also find use in wireless non-radiative power transfer systems. Specif-

ically, megahertz receiving and transmitting devices based on NFPs could provide

specific advantages over the resonant coils that have been used to date [4]. NFPs

could be designed to provide magnetic field illumination to only certain areas of a

confined environment, where electronic devices are typically placed. For example,

tailored “energy hotspots” could be established on the top of desks or countertops

using NFPs. NFPs may also radiate less energy to the far field than the single or

multi-turn loops used in wireless non-radiative power transfer systems due to the

oscillatory (in and out-of-phase) currents supported by them. Finally, tailoring the

magnetic near-field illumination with transmitting and receiving devices based on

NFPs may increase the range and efficiency of wireless power systems.

7.3 Publications

The work presented in this thesis has resulted in the following peer-reviewed jour-
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APPENDIX A

Near Field of a Magnetic Current Frill

Analytical formulas for the electric and magnetic fields produced by a magnetic

current frill in its near zone have been derived in [51]. These formulas are repeatedly

used throughout this thesis. For convenience, they are summarized in this appendix.

A magnetic current frill, M , is considered as shown in Figure A.1. The voltage across

this frill is V . Its inner and outer radii are a and b. The z component of the electric

field due to this magnetic frill is given by:

Ez(ρ, z) =
V

2π ln(b/a)

∫ π

0

e−jkra

ra

− e−jkrb

rb

dφ′ (A.1)

where k is the free space wavenumber, ra =
√

z2 + ρ2 + a2 − 2ρa cos(φ′) and rb =
√

z2 + ρ2 + b2 − 2ρb cos(φ′). In the equation above, (ρ, z, φ) refers to the observation

point, while (ρ′, z′, φ′) refers to a point on the magnetic current frill.

The ρ component of the electric field is given by:

Eρ(ρ, z) =
zV

2π ln(b/a)

∫ b

a

(α1K(P ) + α2E(P ))dρ′ − j
V k5(b2 − a2)

120 ln(b/a)
ρz (A.2)
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Figure A.1: Schematic of a magnetic current frill.

and its magnetic field is given by:

Hφ(ρ, z) =
ωεk3(b2 − a2)V

24 ln(b/a)
ρ +

jωεV

2π ln(b/a)

∫ b

a

(β1K(P ) + β2E(P ))dρ′ (A.3)

where ω is the angular frequency, ε is the free space permittivity, K(P ) is the complete

elliptical integral of the first kind defined as
∫ π/2

0
dθ√

1−P sin(θ)2
, and E(P ) is the complete

elliptical integral of the second kind defined as
∫ π/2

0

√
1− Psin(θ)2dθ. The other

unknowns in (A.2) and (A.3) are defined as:

α1 = − 4
PR3 + k2

R
( 2

P
− 1)− k4RQ

6P

α2 = 4
QR3 (

2
P
− 1)− 2k2

RP
− k4R

12
( 2

P
− 1)

β1 = 2
R
( 2

P
− 1)− 2k2RQ

3P

β2 = − 4
PR

+ k2R
3

( 2
P
− 1)

R =
√

z2 + (ρ + ρ′)2

P = 4ρρ′
R2

Q = 1− P (A.4)
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