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CHAPTER 1

Introduction

1.1 Background

The microwave filter is a component which provides frequency selectivity in mobile

and satellite communications, radar, electronics warfare, and remote sensing systems op-

erating at microwave frequencies. In general, the electrical performances of the filter are

described in terms of insertion loss, return loss, frequency-selectivity (or attenuation at re-

jection band), group-delay variation in the passband, and so on. Filters are required to have

small insertion loss, large return loss for good impedance matching with interconnecting

components, and high frequency-selectivity to prevent interference. If the filter has high

frequency-selectivity, the guard band between each channel can be determined to be small

which indicates that the frequency can be used efficiently. Also, small group-delay and am-

plitude variation of the filter in the passband are required for minimum signal degradation.

In mechanical performance aspect, filters are required to have small volume and mass, and

good temperature stability.

There are two methods of filter design. One was originated by Zobel and is well known

as the image parameter method. The second was originated by Norton and Bennett and

is known as the polynomial method or insertion loss method. The image parameter the-

ory filter is based on the properties of transmission lines. A simple network with lumped
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components is described in terms of this continuous structure. Several of such elementary

networks with equal characteristic terminal impedances, connected together to produce a

chain of ladder networks, will posses a transmission constant equal to the sum of all the in-

dividual transmission constants of the elementary sections [1]. In the insertion loss method,

a filter response is defined by a transfer function which is the ratio of the output voltage

to the input voltage of the filter. The ideal lowpass transfer function is characterized by a

magnitude function that is a constant in the passband and zero in the stopband. The cor-

responding phase is linear in the passband and the phase delay is a constant there. Since

such a lowpass network cannot be represented by a quotient of finite-degree rational poly-

nomials, it is necessary to seek some approximation to it [2]. This may be done by having

the amplitude, phase and delay stay within prescribed tolerances. The classical four class

solutions to the approximation problems are the Butterworth (maximally flat), Chebyshev

(equal ripple in the passband), inverse Chebyshev (equal ripple in the stopband) and elliptic

(equal ripple in the passband and stopband). It is of note that the former problems are all

special cases of the latter one. In practice, either method can be used depending on require-

ments. If one is forced to use hand calculation, then the image parameter approach is really

the only method available, except perhaps in the limited cases where tabulated insertion

loss designs can be used. Insertion loss method deals directly with frequency responses

and provides an elegant solution to the approximation problem. Today, most microwave

filter designs are done with computer-aided design based on insertion loss method. The

microwave filter design techniques pesented in this thesis also rely on the insertion loss

method.

It is not overstatement to say that the classic paper by Cohn paved the way for sub-

sequent works on microwave filters [3]. This paper describes direct-coupled microwave

filter where there are only couplings between adjacent resonators. As well known, the

direct-coupled microwave filter can support Butterworth and Chebyshev frequency re-

sponse which do not have transmission zeros in finite frequencies. Since Chebyshev re-

2



sponse has fairly good frequency selectivity than Butterworth response, it has been widely

employed in filter design. The importance of Cohn’s paper is that easy-to-use formulas are

given for Butterworth and Chebyshev response filter design. It is interesting to note how

much Cohn’s design formulas are simple compared with precedent Darlington’s work [4].

Wireless communications systems have been demanding tighter requirements in terms

of electrical specifications as well as drastic reductions of manufacturing costs and devel-

opment times [5]. Hence, the area of microwave filters, especially for mobile and space

applications, has experienced significant improvements in theoretical, technological, and

performance subjects. One of significant improvements in filter design theory was utilizing

cross-coupling between nonadjacent resonators. Early works by Kurzok described 3rd-

order and 4th-order filters with cross-coupling [6][7]. Cross-coupling gives a number of

alternative paths which a signal may take between the input and output ports. The multi-

path effect causes transmission zeros to appear in the transfer function, which, depending

on the phasing of the signals, may cause transmission zeros (or attenuation poles) at finite

frequencies or group-delay flattening, or even both simultaneously [8]. The cross-coupling

configuration makes it easy to design elliptic response filters. Since the transfer function

of the elliptic filter has transmission zeros (or attenuation poles) in finite frequencies, the

elliptic filter has much higher frequency selectivity than the Chebyshev filter. Also, the

cross-coupling technique facilitate the design of linear phase filters which have linear phase

in their passband. Since linear phase results in flat group-delay variation in the passband,

the linear phase filter do not necessitate the external equalizer for phase linearity. Hence,

the linear phase filter is also called self-equalized filter.

Along with the improvement in electrical performances of the filters, many efforts have

been made for the enhancement of mechanical performance. Especially, reducing the size

and volume of the filter has been main topic for filter designers. Since R. D. Richtmyer

[9] showed that dielectric objects can function much like metallic cavities, dielectric res-

onators have always been a good candidate for this purpose. Dielectric resonator filters
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have the advantages of not only small size but also good temperature stability. Another

major step in reducing the volume and mass of microwave filters was utilizing dual-mode

technique. The paper written by Williams [10] describes the fundamental theory with dual-

mode waveguide filter realization. Dual-mode filters use two orthogonal degenerate modes

of each resonator, the number of resonators can be reduced by a factor of two. Hence,

the small volume and mass were able to be achieved. Although dual-mode filter design

technique is initiated from non-planar filter structure, this technique has been also widely

applied to planar microwave filters.

Although the significant improvements of the microwave filter design theory and tech-

nology have been made as the specifications for the filter become more stringent, many

filter design techniques have not been exploited and still need to develop for advanced wire-

less systems. In satellite communication systems, non-continuous channels might be trans-

mitted to the same geographical region through one beam [11]. Individual conventional

single-passband filters might be connected in parallel to establish multiple passbands. One

of the methods to connect individual filters is using a power divider and a power combiner

at input and output ports, respectively. In this case, the individual filters can be designed

with ease using traditional filter design theory but 6 dB loss generated by both a power

divider and a power combiner is inevitable. Also, the divider and the combiner make the

total structure bulky. Since a multiple-passband filter has multiple passbands, signal di-

viding and combining structures are not needed. Hence, the multiple-passband filter can

make such wireless systems much more simple than the parallel-connected single-passband

filters. This advantage of multiple-passband microwave filters brought significant interests.

Since the polynomials, which are essential for insertion loss method, for multiple-

passband microwave filters are not well known. Hence, the most common method to syn-

thesize multiple-passbands microwave filters rely on optimization methods. Basic idea to

establish multiple passbands is putting transmission zeros inside the passband of the single-

passband filter to split it into multiple passbands. However, the performance or efficiency
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of optimization methods to find the ploynomials depends on initial values. Hence, the study

in this proposal embark on developing the analytic method for synthesizing the multiple-

passband microwave filters.

Another microwave filter design technique that great efforts need to be dedicated to-

ward is tunable microwave filter design technique since recent broadband receiving and

transmitting systems have increased the demand for frequency tunability of microwave

components. For example, frequency agile system for naval target control uses 19 channels

from 421.5 MHz to 448.5 MHz. This frequency agile system can obtain improved resis-

tance to interference and increased data link reliability. This system senses interference

and automatically changes frequencies to avoid it. This frequency change can be achieved

by switching from one filter to the other, but the system should have as many filters as

the number of the channels. Hence, compared with the bank of switched fixed-frequency

filters, one tunable filter can make frequency-agile systems much simple.

The performance of tunable filters may be described by the same criteria as used for

fixed-frequency filters. Most important additional parameters for tunable filters could be

tuning range, tuning speed, and tuning linearity. Not all of these requirements can be per-

fectly satisfied simultaneously by a certain tunable filter. Hence, the tunable filter design

should take into account the priority of the requirements. If system requirements neces-

sitate that the filter exhibit multioctave tuning range, an YIG (Yittrium-Iron-Garnet) filter

is an obvious choice [12][13]. It also has spurious-free response, low insertion loss due

to high quality factor of the resonator. However, it cannot by implemented in integrated

systems since its structure is not planar. Also, magnetic hysteresis effect limits the tuning

speed of the YIG filter. Fast tuning speed can be achieved by varactor tuning technique.

Since varactors can be easily integrated on coplanar waveguide and microstrip structures,

tremendous applications have been made to microwave tunable filters. General method to

tune the filter is to use varactors as part of the resonator. One of the varactors’ drawback

is power capacity. Since the varactors are originally non-linear devices, the large input
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signals generate harmonics. Recently developed technologies such as MEMS (microelec-

tromechanical systems) and BST (Barium Strontium Titanate) have also been applied to

tunable filters. MEMS varactors have small size and provide fast tuning speed and low

insertion loss. However, serious drawback of narrow tuning range due to poor capacitance

ratio is underestimated. Digital MEMS filters show wide tuning range but discrete center

frequencies that the filter can have result in relatively low frequency resolution. BST var-

actors are also small and can be easily implemented in integrated circuits. Also, they are

reported be suitable for high-power applications. However, they suffer from poor quality

factor.

Repeatedly, there is no perfect tunable filter satisfying all the requirements at the same

time. No matter what type of the tunable filter is used in the research, most research activ-

ities have concentrated on methodology of changing the center frequency of the filter and

have overlooked the characteristics of frequency responses of the filters. This has resulted

in different frequency responses and bandwidths as the filter is adjusted for different cen-

ter frequencies. However the tunable filter should have same performance for all channels

with different center frequencies. Hence, this overlooked important point in tunable filter

design is studied in this research.

Finally, with all many kinds of miniaturized filters, minimizing the size of the filter has

always received a great attention. Recent solid state device technologies make it possible to

implement miniaturized electronic circuits including microwave devices and components.

However, one of the exceptions is a distributed passive microwave filter and it still occupies

a lot of space of the entire circuit. The large dimension of the distributed filter stems from

the fact that it is usually made of a number of resonators whose dimensions are comparable

to the guided wavelength. Hence, many researchers made a lot of efforts to developing the

topologies of miniaturized resonators.

The resonators can be categorized into planar resonators and non-planar resonators.

Most common planar resonators are implemented using the microstrip structure. Microstrip
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patch resonators and microstrip line resonators are very representative of planar resonators.

Regarding the reducing the size of the resonator, the microstrip resonator line has great

advantages. Most successful method to reduce the size of the microstrip line resonator

is meandering the microstrip line of the resonator. The meandered microstrip line open-

loop resonator is smaller than λg0/8 by λg0/8, where λg0 is the guided wavelength at the

center frequency [14]. For further reduction of the resonator size using meandering the

microstrip line, the microstrip line should have very narrow line. However, in general, the

quality factor of the resonator becomes worse as the line becomes narrower. This disadvan-

tage of the meandered microstrip line resonator has been overcome by using HTS (High

Temperature Superconducting) materials but the required cooler reduces the miniaturiza-

tion advantage. On the other hand, non-planar resonators have relatively higher quality

factor than planar resonators. Although the non-planar resonators are bulky, these filters

are employed by the wireless systems where the electrical performances are much more

important than the size and volume of the filter. For examples, the waveguide cavity fil-

ters have found a lot of applications such as base stations of cellular systems and satellite

transponders. Although these systems, compared with handsets, allocate large spaces for

the filters, small filters are obviously more favorable. As delineated in the above, two major

methods, using the dielectric resonators and dual-mode techniques, have been utilized for

designing small non-planar microwave filters. Another approach for producing non-planar

filters with reduced size is utilizing the evanescent mode of the waveguide [15]. While the

waveguides of the waveguide cavity filters operate above their cutoff frequencies, those of

the evanescent mode filters operate below the cutoff frequencies. This technique showed

appreciable reduction in size and volume. The above-mentioned trend of the developing

small microwave filters shove this research into contriving prototypes of the miniaturized

planar and non-planar resonators for small microwave filter design.
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1.2 Thesis Overview

With the above-mentioned background, the work carried out during the course of this

thesis has been directed toward the design of microwave resonator filters for advanced

wireless systems. As modern and next-generation wireless systems use complex frequency

allocation and spatial coverage, the size and mass of the entire systems are mainly affected

by the microwave filters. For size and mass reduction of the advanced wireless systems,

this works particularly focuses on developing the design methods for multiple-passband

microwave filters, tunable microwave filters with a constant frequency response, and planar

miniaturized microwave filters. These filters can make a significant impact on the advanced

wireless systems by replacing the conventional microwave filters.

The organization of this thesis is as follows.

Following the Introduction, Chapter 2 provides the overview of fundamental theories of

microwave resonator filters which will be used in the rest of the thesis. Since the filters in

this thesis are designed by the insertion loss method, the transfer function and its polynomi-

als and the ripple constants are briefly explored. The characteristics of the polynomials and

frequency responses of all-pole filters, filters with transmission zeros, and self-equalized

filters are also provided in this chapter. Based on the equivalent circuit model of the mi-

crowave resonator filter, the coupling matrix theory, which will later be applied to the

filter design in the following chapter, is described. Based on the physical elements for im-

plementation, microwave filters can be categorized into lumped element filter, waveguide

filter, printed circuit filter, and dielectric resonator filter. The characteristics of theses filters

are also provided in this chapter.

Chapter 3 describes a synthesis method for symmetric dual-passband filters. Conven-

tional filter which has one passband can be easily synthesized since the polynomials for

the transfer functions are well known. Also, design tables are well established and can be

easily referred. However, the polynomials for the transfer function of the dual-passband

microwave filters are not easily obtainable and have been usually acquired by optimization
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methods whose convergence depends on the initial values and is not always guaranteed.

The proposed method employs frequency transformation techniques for finding the loca-

tions of reflection zeros and transmission zeros of a desired filter. From the reflection zero

and transmission zero information, the polynomials for the transfer functions are obtained.

This method can be used to design dual-passband filters with prescribed passbands and at-

tenuation level at stopbands directly without the need for any optimization processes. The

frequency transformation for symmetric dual-passband filters is also extended to include

asymmetric dual-passband responses. This flexible frequency transformation preserves the

attenuation characteristics of the lowpass filter prototype.

Chapter 4 expands the dual-passband microwave filter design theory to a synthesis

method for triple-passband microwave filters. Similarly to the dual-passband filter design,

a frequency transformation is newly developed for finding the locations of reflection zeros

and transmission zeros of the triple-passband filters in an analytical manner. Sometimes,

the number of obtained transmission zeros obtained by using the proposed analytic method

might be so large that some transmission zeros are redundant to satisfy the frequency se-

lectivity specification. In this case, some transmission zeros can be intentionally removed

to reduce the number of the cross- couplings. Small number of the cross-couplings is pre-

ferred with respect to physical filter implementation. The reflection zeros and transmission

zeros obtained by the frequency transformation are optimized after removing redundant

zeros to achieve a transfer function with reduced number of transmission zeros in order to

reduce the number of cross-couplings.

Chapter 5 describes an analytic design method for microstrip tunable filters. Especially,

this proposal focuses on developing the analytic design method for tunable microwave fil-

ters with a prescribed frequency response. An analytic approach for filter design makes it

possible to make the tunable filter have same frequency response when the center frequency

is adjusted. One possible way to obtain the same frequency response is using tuning ele-

ments not only for resonators but also the coupling structure. However, in the this design
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method, no tuning elements are used in coupling structures for reducing the tuning com-

plexity. Prescribed frequency response is achieved by designing the coupling structures

in such a way that their frequency responses closely follow those of the desired inverters.

Step-impedance microstrip line resonators are employed and the resonant frequencies of

resonators are adjusted by varactors.

Chapter 6 presents a miniaturized planar 2nd-order microwave filter. The building

block of this filter is a high-Q double spiral slot resonator backed by a conductor plane.

The provision of a float back conductor plane allows vertical integration of this filter with

other passive and active RF electronic components usually found in miniaturized wireless

transceivers. The conductor plane also provides a coupling mechanism between the input

and output of the filter giving rise to transmission zeros. It is shown that the location of

transmission zeros can easily be adjusted and significant out-of-band rejection be achieved

using only two miniaturized double-spiral resonators.

The final chapter of the thesis (Chapter 7) presents the conclusions and the suggested

works. The significance and contribution of this work is summarized. For the suggested

works, along with the miniaturized planar filter in Chapter 6, a miniaturized non-planar fil-

ter utilizing a meander resonator is shown. A proposed meander resonator has the quality

factor higher than 600, which results in low insertion loss of the filter. Since the resonator

has non-planar meander structure, a newly-developed fabrication process called ultrasonic

consolidation process is suggested to be used to implement such structure. Design ap-

proach and simulation result of the non-planar miniaturized microwave filter are briefly pre-

sented. Another suggested work, a highpass filter for the receiver of a frequency-modulated

continuous-wave radar is also discussed. The highpass filter can compensate for the ampli-

tude variation of received signal from a target. This highpass filter should have no infinite

attenuation in order not to lose signal. Since, no design method for this type of the high-

pass filter has been provided, a design method is presented and it is suggested that the filter

is applied to the receiver of the frequency-modulated continuous-wave radar in order to
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effectively increase the dynamic range of an analog-to-digital converter which follows the

highpass filter.
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CHAPTER 2

Fundamental Theories of Microwave Resonator Filters

2.1 Filter Network Theory

The microwave filter is vital component in a huge variety of electronic systems, includ-

ing mobile radio, satellite communications and radar. Such component is used to select

or reject signal at different frequencies. Although the physical realization of microwave

filters may vary, the circuit network theory is common to all. This section provides various

network theories for the design of microwave filters.

2.1.1 Polynomials

Filter design using insertion loss method begins with defining the low-pass transfer

function which is a ratio of output voltage to input voltage may be written as

Vout

Vin
=

amSm +am−1Sm−1 + · · ·+a1S +a0

bnSn +bn−1Sn−1 + · · ·+b1S +b0
= t(S) (2.1)

where S = σn + jΩ is the normalized complex frequency. This is the variable commonly

encountered in Laplace transformation theory. For this transfer function to represent a sta-

ble systems, the denominator of t(S) must be Hurwitz: that is, the roots of the denominator

must be in the left half-plane of the complex frequency domain. The ratio of the output
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amplitude to the input amplitude can be found by simply evaluating the transfer function

t(S) at S = jΩ. Because S = jΩ corresponds to a sinusoidal frequency, the letter Ω is often

said to represent real angular frequencies while the letter S is said to represent complex

frequencies.

If the amplitude of a sinusoid at the output of a network is smaller than the amplitude

at the input, then the signal is said to have been attenuated. The attenuation is usually

expressed in terms of decibels (dB) as

A(Ω) = 20log
∣∣∣∣

Vin( jΩ)
Vout( jΩ)

∣∣∣∣ . (2.2)

By our definition of the transfer function t(S), this can also be written as

A(Ω) =−20log |t( jΩ)| . (2.3)

In filter theory it is common practice to consider transfer functions that are ratios of

input to output; i.e., we work with

H(s) =
1

t(S)

=
bnSn +bn−1Sn−1 + · · ·+b1S +b0

anSn +an−1Sn−1 + · · ·+a1S +a0

=
E(S)
P(S)

.

(2.4)

It follows that the attenuation can be expressed as

A(Ω) = 20log |H( jΩ)| . (2.5)

The function H(S) will be referred to simply as an input/output transfer function. In

the passband of a filter, the arbitrary shape that we want to approximate is usually just

a constant. For simplicity the constant value can be normalized to unity; that is, in the
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passband,

|H( jΩ)| ≈ 1. (2.6)

It is convenient to eliminate this constant term and instead use the characteristic function

K(S) defined by

H(S)H(−S) = 1+K(S)K(−S). (2.7)

This equation indicates that H(S) and K(S) have the same denominator polynomial;

thus if H(S) is written as

H(S) =
E(S)
P(S)

(2.8)

and we can write K(S) as

K(S) =
F(S)
P(S)

. (2.9)

Making use of (2.7), (2.8), and (2.9), we can relate the polynomials by

E(S)E(−S) = P(S)P(−S)+F(S)F(−S). (2.10)

The attenuation of the network is given by

A(Ω) = 10log|H( jΩ)|2

= 10log
(

1+ |K( jΩ)|2
)

.

(2.11)

Thus, when either H( jΩ) or K( jΩ) is infinite, the attenuation is infinite. However, only

when K( jΩ) is zero is there an attenuation zero. The characteristic function is thus the more

useful, because it eliminates the unity constant and focuses attention on the attenuation
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zeros (reflection zeros) and attenuation poles (transmission zeros).

2.1.2 Reflection and Transmission Coefficients

In transmission-line theory transfer function t(S) is also called transmission coefficient

and defined as

t(S) =
transmitted wave

incident wave
(2.12)

and the reflection coefficient ρ is defined as

ρ(s) =±reflected wave
incident wave

. (2.13)

The sign of ρ is positive when the ratio is defined in terms of voltages and negative when

defined in terms of currents [16].

Since the reflected power plus the transmitted power must equal to the available power,

we obtain

|ρ(S)|2 + |t(S)|2 = 1. (2.14)

From (2.10) and (2.14), the reflection coefficient can be expressed by the polynomials as

ρ(S) =
F(S)
E(S)

. (2.15)

In terms of decibels, the transmission loss (often termed the attenuation) and reflection

loss (often termed the return loss) are defined as

A = 10log
1

|t( jΩ)|2
=−10log|t( jΩ)|2 dB

R = 10log
1

|ρ( jΩ)|2
=−10log|ρ( jΩ)|2 dB.

(2.16)
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From (2.14), the relationship between the transmission and return loss can be estab-

lished by

A =−10log
(

1−10−R/10
)

dB

R =−10log
(

1−10−A/10
)

dB.

(2.17)

It should be noted that the reflection and transmission coefficients are synonymous with

S11 and S21, respectively, in terms of scattering parameters.

2.1.3 Characteristics of Polynomials

In filter synthesis, we establish the polynomials P(S) and F(S) from their roots and

their roots are determined based on the specifications of the filter. The polynomial E(S)

can be obtained by (2.10). For the general case, that includes the realization of symmet-

ric and asymmetric Nth-order lowpass prototype filters, the polynomials have the certain

properties.

The roots of F(S) lie on the imaginary axis of where the degree is N. The roots rep-

resent frequencies at which no power is reflected, often termed reflection zeros. At this

frequencies, the filter loss is zero.

The roots of P(S) lie on the imaginary axis. Such roots represent frequencies at which

no power is transmitted, and the filter loss is infinite. These frequencies are referred to as

transmission zeros or attenuation poles. Its roots can also appear as pairs located symmet-

rically with respect to the imaginary axis. Such roots lead to linear phase filters. The roots’

degree is less than or equal to N.

E(S) is a Hurwitz polynomial of degree N. All its roots lie in the left half-plane of S.
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2.1.4 Normalization of the Polynomials

The input/output transfer function H(S) is defined in terms of the characteristic function

K(S) in (2.7) as

|H(S)|2 = 1+ |K(S)|2. (2.18)

Without loss of generality, we can introduce an arbitrary constant factor ε and restate

the relationship as

|H(S)|2 = 1+ ε2|K(S)|2 (2.19)

where ε is the ripple factor. It is employed to normalize the maximum attenuation of the

filter in the passband.

In the filter synthesis procedure, polynomials F(S) and P(S) are normalized so that their

highest coefficients are unity. This is accomplished by extracting the highest coefficients

of these polynomials and representing their ratio as a constant factor that can be readily

absorbed within the ripple factor. Thus, the ripple factor ε is used to normalize F(S) and

P(S), as well as the prototype amplitude response given by equation (2.19).

From (2.19), the transmitted power can be expressed by

|t(S)|2 =
1

1+ ε2|K(S)|2

=
1
ε2
|P(S)|2
|E(S)|2

(2.20)

where

|E(S)|2 = |F(S)|2 +
|P(S)|2

ε2 . (2.21)

Hence, the transmission and reflection coefficients are given by
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t(S) =
1
ε

P(S)
E(S)

ρ(S) =
F(S)
E(S)

.

(2.22)

The filter response depends on the choices of ε. For equi-ripple passbands, ε determines

the magnitude of the ripple. For maximally flat passband or non-equi-ripple passband, ε

is normally chosen with respect to the maximum permissible ripple. If the filter has the

maximum ripple A1 dB in the passband at Ω1, then

|t( jΩ1)|2 = 10−A1/10 =
1

1+ ε2|K( jΩ1)|2
. (2.23)

Hence, the ripple constant is determined to be

ε =

√
10A1/10−1

|K( jΩ1)|2
. (2.24)

The ripple constant can also be expressed by return loss as

ε =

√
1

10R1/10−1
1

|K( jΩ1)|2
(2.25)

where return loss R1 corresponds to the maximum ripple A1. For normalized lowpass filter

prototypes, Ω1 is referred to as the cutoff frequency and is normally chosen to be unity.

2.1.5 Generalization of the Transmission and Reflection Coefficients

In previous sections, we dealt with polynomials of the Nth-order filter which has finite-

frequency transmission zeros less than N. In general, the Nth-order filter can have at most N

finite-frequency transmission zeros. In this case, the transmission and reflection coefficients

are in the form
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t(S) =
1
ε

P(S)
E(S)

ρ(S) =
1
εR

F(S)
E(S)

.

(2.26)

In (2.26), the polynomials E(S), F(S), and P(S) are normalized so that their highest degree

coefficients are unity as in the previous section.

From the conservation of the energy equation (2.14), the third polynomial can be de-

rived from the two of the three polynomials as follows:

|E(S)|2 =
|F(S)|2

ε2
R

+
|P(S)|2

ε2 . (2.27)

Both E(S) and F(S) are Nth degree polynomials and their highest degree coefficients are

normalized to unity, whilst P(S), which contains the finite-frequency transmission zeros, is

of degree Z, where Z is the number of finite-frequency transmission zeros. For a realizable

network, Z must be less than or equal to N.

Since E(S) and F(S) are Nth degree polynomials whose highest degree coefficients are

unity, εR must be unity for cases that Z < N. When Z = N, that is P(S) is an Nth degree

polynomial, then the attenuation at S =± j∞ is finite and (2.14) can be expressed as

1
ε2

R

|F(± j∞)|2
|E(± j∞)|2

+
1
ε2
|P(± j∞)|2
|E(± j∞)|2

= 1. (2.28)

For Z = N (i.e. the fully canonical case), E(S), F(S), and P(S) are all Nth degree polyno-

mials and their highest-degree coefficients are unity. Therefore, at S =± j∞, we obtain

1
ε2

R
+

1
ε2 = 1. (2.29)

From (2.26) and (2.27), the transmitted power can be obtained in generalized form as
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|t(S)|2 =
1

1+ ε2

ε2
R

|F(S)|2
|P(S)|2

(2.30)

and the ripple constant can also be expressed in generalized form as

ε = εR

√
1

10R1/10−1
1

|K( jΩ1)|2
. (2.31)

The ripple factor εR can be found by substituting (2.31) to (2.29):

εR =
√

1+
(
10R1/10−1

) |K( jΩ1)|2. (2.32)

For Z = N, εR will have a value slightly greater than unity. If the attenuation at S =± j∞ is

very high, then the ripple factor εR will be almost unity. In this case, the transmitted power

expression in (2.30) and the ripple factor expression in (2.31) is almost identical to (2.20)

and (2.25), respectively.

2.2 Characteristic Functions and Frequency Responses

A filter is defined as a network which passes a certain portion of a frequency spectrum

and blocks the remainder of the spectrum [17]. By the term ”blocking,” we imply that the

magnitude response of the filter is approximately zero for that frequency range. Thus, an

ideal lowpass filter is a network which passes all frequencies up to a cutoff frequency and

blocks all frequencies above the cutoff frequency, as shown in Fig. 2.1.

Since the frequency response shown in Fig. 2.1 is not realizable, we approach the ideal

characteristic as closely as desired. The problem of obtaining a realizable transfer function

t( jΩ) is generally referred to as the approximation problem.

In this section, the approximation problem for obtaining the realizable transfer function

is described. Basic forms of the characteristic functions and the resulting response shapes
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Figure 2.1: Ideal amplitude spectrum for lowpass filter.

for the normalized lowpass prototype filters are provided.

2.2.1 All-Pole Filters

The characteristic function for the all-pole filter is characterized by

K(S) =
F(S)
P(S)

(2.33)

where P(S) = 1. Therefore, the transfer function is given by

t(S) =
1

E(S)
. (2.34)

There are no transmission zeros at finite frequencies. All transmission zeros are located at

infinity. The frequency response of the filter is determined by the polynomial F(S).

The roots of the polynomial F(S) are the reflection zeros and if these roots are all

located at the origin then this frequency response is characterized by a maximally-flat re-

sponse. This response is also known as the Butterworth response. For the Nth-order But-

terworth response filter, the characteristic function is given by
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Figure 2.2: Lowpass response of the 4th-order Butterworth filter.

K(S) = F(S)

= SN
(2.35)

and the transmitted power is given by

|t(S)|2 =
1

1+ ε2SN . (2.36)

The ripple factor ε defines the maximum amplitude variation over the passband. For ex-

ample, the choice of ε as unity implies that the half of the power is transmitted at the

cutoff frequency Ωc = 1. The amplitude response of a 4th-order maximally-flat filter with

ε = 0.1005 is shown in Fig. 2.2. This ripple constant corresponds to 20 dB return loss at

Ω =±1.

The roots of the polynomial F(S) can be located at finite frequencies and the character-

istic function is given by
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Figure 2.3: Lowpass response of the 4th-order all-pole filter with an arbitrary distribution
of reflection zeros.

K(S) = F(S)

= (S−S f 1)(S−S f 2) · · ·(S−S f N)
(2.37)

where S f i’s lie on imaginary axis. Fig. 2.3 shows lowpass amplitude response of 4th-

order all-pole filter with arbitrarily distributed reflection zeros. The reflection zeros are

S f = ± j0.95 and S f = ± j0.25. The ripple constant ε = 1.09953 makes the filter have

return loss of 20 dB at Ω =±1.

If the roots are located in such a way that the frequency response in the passband is

the equi-ripple response, then this response is generally known as Chebyshev response.

Fig. 2.4 shows lowpass amplitude response of 4th-order Chebyshev filter with 20 dB equi-

ripple return loss. The reflection zeros for Chebyshev response (equi-ripple response) can

be chosen via the Chebyshev polynomial [16]. The reflection zeros in Fig. 2.4 are S f =

± j0.9239,± j0.3827 and the ripple constant is ε = 0.80425.
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Figure 2.4: Lowpass response of the 4th-order Chebyshev response filter with 20 db equi-
ripple return loss.

2.2.2 Filters with Transmission Zeros

The characteristic function for the filters with transmission zeros is given by

K(S) =
F(S)
P(S)

=
(S−S f 1)(S−S f 2) · · ·(S−S f N)
(S−Sp1)(S−Sp2) · · ·(S−SpT )

(2.38)

where T represents the number of finite-frequency transmission zeros and must be equal to

or less than N. S f i’ and Spi’s lie on imaginary axis. Based on the location of roots of F(S)

and P(S), the filter can have equi-ripple response in the passband or the stopband or in both

of them. The filter response which is equi-ripple in both passband and stopband is called

elliptic function response. The characteristic function K(S) for elliptic function response is

expressed in terms of Jacobian elliptic function. However, in general, filters are designed

to have non-equi-ripple response in stopband for good near-band rejection characteristic
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Figure 2.5: Lowpass response of the 4th-order filter with 20 dB equi-ripple return loss
within the passband and transmission zeros at Sp =± j2.4 and ± j3.6.

while the passband response is equi-ripple. Fig. 2.5 shows a frequency response of 4th-

order filter with transmission zeros at Sp = ± j2.4 and ± j3.6. The reflection zeros for

equi-ripple response in the passband can be found via the characteristic function K(S) [18]:

K( jΩ) = cosh

(
N

∑
i=1

cosh−1
(

Ω−1/Ωi

1−Ω/Ωi

))
(2.39)

where Ωi is the location of the ith transmission zero. The reflection zeros can be easily

obtained from computing the reflection coefficient of the filter.

The filter with transmission zeros has higher selectivity near the passband than the all-

pole filter. However, the all-pole filter has better wideband selectivity. Fig. 2.6 compares

transmission coefficients shown in Fig. 2.2, Fig. 2.4, and Fig. 2.5. All filters have return

loss of 20 dB at Ω =±1.
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Figure 2.6: Lowpass responses of the 4th-order filters in Fig 2.2, Fig. 2.4, and Fig. 2.5.

2.2.3 Linear Phase Filters

The characteristic function for the linear phase filters is given by

K(S) =
F(S)
P(S)

=
(S−S f 1)(S−S f 2) · · ·(S−S f N)
(S−Sp1)(S−Sp2) · · ·(S−SpT )

(2.40)

where the roots of P(S) should locate symmetrically with respect to the imaginary axis. For

example, if Sp1 is σn1 + jΩ1, then the one of the roots of P(S) should be −σn1 + jΩ1. The

passband of linear phase filters could be maximally flat, equi-ripple, or non-equi-ripple.

2.2.4 Linear Phase Filters with Transmission Zeros

The characteristic function for the linear phase filters with transmission zeros is similar

to (2.40) except that the polynomial P(S) has the roots which lie on the imaginary axis
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Figure 2.7: Position of roots of P(S) and F(S) for the example of the linear phase filter with
transmission zero. × and ◦ indicates the roots of F(S) and P(S), respectively.
The roots of F(S) are S f =± j0.9731, ± j0.7802, ± j0.4903, and ± j0.1692.
The roots of P(S) are Sp=± j2.00 and ±0.60± j0.45

and the ones which locate symmetrically with respect to the imaginary axis. The roots

on the imaginary axis are for transmission zeros at finite frequencies and pairs of roots

which locate symmetrically with respect to the imaginary axis are for linear phase in the

passband. Fig. 2.7 shows the position of the roots of F(S) (S f ) and roots of P(S) (Sp) for

the example of the linear phase filter with transmission zero. A pair of roots of P(S) lies

on the imaginary axis and complex roots of P(S) lies in quadruplets in the S-plane. Fig.

2.8 shows the amplitude and group delay response of the filter. It is of note that the group

delay is equalized in the passband due to the complex roots of P(S). The group delay of

27



(a)

(b)

Figure 2.8: Linear phase filter with transmission zeros. (a) the amplitude response, (b) the
group delay response.
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the lowpass filter is given by

T (Ω) =−dφ(Ω)
dΩ

(2.41)

where φ is the phase of the t(Ω) in radians. The frequency response of a bandpass filter is

given by the conventional frequency transformation

Ω =
1
B

(
f
f0
− f0

f

)
(2.42)

where f0 is the center frequency and B is the fractional bandwidth. The group delay re-

sponse of the bandpass filter is then computed with

τ( f ) =
T (Ω)
2πB f0

[
1+

(
f0

f

)2
]

. (2.43)

2.3 Coupling Matrix

2.3.1 Circuit Model

In the early 1970s, Williams and Atia [10][19] introduced the concept of the coupling

matrix as applied to dual-mode narrow-band waveguide filters. The coupling matrix was

extracted from the voltage-current relationship of the equivalent circuit model. The equiv-

alent circuit model they developed was a narrow-band bandpass prototype shown in Fig.

2.9. The circuit is driven by a source of open-circuit voltage eS with resistance RS and

terminated by the load RL. The circuit model is composed of lumped-element series res-

onators which are coupled by transformers. i depicts the current flowing in each series

resonator. Self inductance and capacitance of each resonator are 1 H and 1 F. This results

in a center frequency of 1 rad/s and the couplings are normalized for a bandwidth of 1 rad/s

[20]. Each loop is coupled to every other loop through mutual couplings and these cou-

plings are assumed to be frequency-independent due to the narrow-band approximation. A
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Figure 2.9: A bandpass circuit prototype for an Nth-order filter.

voltage-current relationship for each loop in the circuit prototype shown in Fig. 2.9 can be

combined into the matrix form which is convenient to manipulate as follows:




eS

0
...

0

0




=




RS + j
(
ω− 1

ω
)

jM1,2 · · · jM1,N−1 jM1,N

jM2,1 j
(
ω− 1

ω
) · · · jM2,N−1 jM2,N

...
... . . . ...

...

jMN−1,1 jMN−1,2 · · · j
(
ω− 1

ω
)

jMN−1,N

jMN,1 jMN,2 · · · jMN,N−1 RL + j
(
ω− 1

ω
)







i1

i2
...

iN−1

iN




(2.44)

The voltage-current relationship in (2.44) is usually written in simplified form:

E = AI

=
(

j
(

ω− 1
ω

)
U+R+ jM

)
I,

(2.45)

30



where E is the matrix in left-hand side of (2.44) and U is the identity matrix. I, R, and M

are

I =




i1

i2
...

iN−1

iN




(2.46)

R =




RS 0 · · · 0 0

0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0

0 0 · · · 0 RL




(2.47)

M =




0 M1,2 · · · M1,N−1 M1,N

M2,1 0 · · · M2,N−1 M2,N

...
... . . . ...

...

MN−1,1 MN−1,2 · · · 0 MN−1,N

MN,1 MN,2 · · · MN,N−1 0




. (2.48)

Here, the matrix M is called the coupling matrix. Since all series resonators have the

same resonant frequency, the filter of the equivalent circuit model is synchronously tuned

circuit. For asynchronously tuned filter, we modify the bandpass prototype by including

hypothetical frequency-invariant reactive elements in each series resonator as shown in Fig.

2.10. These frequency-invariant reactive elements make resonators have different resonant

frequencies. In this case, the coupling matrix is given by
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Figure 2.10: A bandpass circuit prototype for an Nth-order filter.

M =




M1,1 M1,2 · · · M1,N−1 M1,N

M2,1 M2,2 · · · M2,N−1 M2,N

...
... . . . ...

...

MN−1,1 MN−1,2 · · · MN−1,N−1 MN−1,N

MN,1 MN,2 · · · MN,N−1 MN,N




. (2.49)

The goal of synthesizing microwave resonator filters is obtaining this coupling matrix

along with RS and RL with given lowpass transfer function. Therefore voltage-current

relationship for bandpass prototype needs to be expressed by lowpass terminology. The

lowpass-to-bandpass transformation is give by

Ω =
ω0

∆ω

(
ω
ω0
− ω0

ω

)
(2.50)

where ω0 and ∆ω are the center frequency and the bandwidth in rad/s of the bandpass filter,

respectively. Since the bandpass topology in Fig. 2.10 has the center frequency of 1 rad/s

and bandwidth of 1 rad/s, the voltage-current relationship for the bandpass topology given

in (2.45) can be expressed by lowpass terminology as follows:
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Figure 2.11: A lowpass circuit prototype for an Nth-order filter.

E = AI

= ( jΩU+R+ jM)I

= (SU+R+ jM)I.

(2.51)

Similarly, the bandpass prototype can be transformed to the lowpass prototype by re-

placing the series resonators by inductors as shown in Fig. 2.11 [21]. It is obvious that the

voltage-current relationship of the lowpass prototype in Fig. 2.11 results in (2.51).

The N×N matrix in (2.49) contains the values of the mutual couplings between the

nodes of the network [20]. If the coupling between sequentially numbered nodes, it is

referred to as a direct coupling. The entries on the main diagonal, Mi,i are the self-coupling,

whereas all the other couplings between the nonsequentially numbered nodes are known

as cross couplings. As mentioned earlier, the self-couplings account for differences in the

resonant frequencies of the different resonators. Because of the reciprocity of the passive

network, Mi, j = M j,i.
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The diagonal matrix SU contains the frequency-variable portion of the impedance in

each loop, giving rise to an N×N matrix with all entries at zero except for the the diagonal

filled with S = jΩ as follows:

SU =




S 0 · · · 0 0

0 S · · · 0 0
...

... . . . ...
...

0 0 · · · S 0

0 0 · · · 0 S




. (2.52)

For bandpass filters, the effect of the unloaded quality factor Qu of the resonator can be

taken into account by offsetting S by a positive real factor δ, where δ = f0/(BW ·Qu), f0 is

the center frequency, and BW is design bandwidth.

2.3.2 Scattering Parameter

The lowpass circuit prototype in Fig. 2.11 operates between a voltage source gener-

ating eS volts and an internal impedance of RS ohms and a load impedance of RL ohms.

The overall circuit including the source and load terminations can be represented by the

impedance matrix A as shown in Fig. 2.12. This impedance matrix can also be split into

the matrix’s purely resistive and purely reactive parts by

A = R+ jM+SU = R+Z. (2.53)

Now, the impedance matrix Z represents a purely reactive network operating between a

voltage source with internal impedance RS and a load RL.

From (2.45), the current in each loop can be found by

I = A−1E (2.54)
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Figure 2.12: A circuit network for an Nth-order filter. Impedance matrix A represents over-
all circuit including the source and load termination. Impedance matrix Z
represents a purely reactive network operating between a voltage source with
internal impedance and a load.

where A is the network open-circuit impedance matrix with the source and load impedances

included. The inverse of the square matrix A is given by

A−1 =
ad j(A)
|A| (2.55)

where |A| is the determinant of the square matrix A and ad j(A) is the adjoint of the matrix

A. The adjoint of the matrix is the transpose of the matrix whose (i, j) entry is the cofactor

ai, j which is the determinant of the (N−1)× (N−1) matrix obtained from A by removing

the row number i and the column number j multiplied by (−1)i+ j. Especially it is necessary

to find the current in the first and last loop and they are

i1 = A−1
1,1E

iN = A−1
N,1E =

vN

RL
.

(2.56)

The transmission coefficient S21 can be found by substituting (2.56) into the definition

[22]:
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S21 = 2
√

RS

RL
· vN

eS

= 2
√

RS

RL
·RLA−1

N,1

= 2
√

RSRL ·A−1
N,1.

(2.57)

The reflection coefficient at the input port S11 is given by

S11 =
Z11−RS

Z11 +RS

=
Z11 +RS−2RS

Z11 +RS

= 1− 2RS

Z11 +RS

(2.58)

where Z11 = v1/i1 is the impedance looking in at the input port. The potential divider at

the input port gives v1 and (2.56) yields i1. Therefore, Z11 is expressed as

Z11 =
v1

i1
=

eSZ11

Z11 +RS
· 1

eSA−1
1,1

(2.59)

which results in

1
Z11 +RS

= A−1
1,1. (2.60)

We can find the reflection coefficient at input port by substituting (2.60) into (2.58):

S11 = 1−2RSA−1
1,1. (2.61)

Similarly, the reflection coefficient at output port is given by

S22 = 1−2RLA−1
N,N . (2.62)
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Figure 2.13: A circuit network representation for an Nth order filter (a) using the N×N
matrix (b) using the (N +2)× (N +2) matrix.

Filter synthesis is determining the coupling matrix, RS, and RL so that the S parameters

given by (2.57) and (2.61) reproduce the predetermined insertion loss and return loss. It

can be performed either by using analytic methods or optimization methods. In analytic

methods, filter is synthesized by equating the coefficients of polynomials of t(S) with those

of (2.57). This process can also be executed by using optimization method [23].

2.3.3 (N +2)× (N +2) Coupling Matrix

Typically, the source and load terminations are nonzero, and can be normalized to unity

impedance by insertion of impedance inverters MS,1 and MN,L of impedance values
√

RS

and
√

RL, respectively, on the source and load side of the network. These inverters can be

absorbed in N×N matrix creating (N +2)× (N +2) matrix (see Fig. 2.13):

37



M =




0 MS,1 0 · · · 0 0 0

MS,1 M1,1 M1,2 · · · M1,N−1 M1,N 0

0 M1,2 M2,2 · · · M2,N−1 M2,N 0
...

... . . . ...
...

0 M1,N−1 M2,N−1 · · · MN−1,N−1 MN−1,N 0

0 M1,N M2,N · · · MN−1,N MN,N MN,L

0 0 0 · · · 0 MN,L 0




(2.63)

where MS,1 =
√

RS and MN,L =
√

RL. In addition to the couplings MS,1 and MN,L, it is

possible to include other couplings between the source and/or load terminations, and the

internal nodes within the core N ×N matrix. Also, it is possible to accommodate the

direct source-load coupling MS,L in order to realize fully canonical filter functions. The full

(N +2)× (N +2) coupling matrix is

M =




0 MS,1 MS,2 · · · MS,N−1 MS,N MS,L

MS,1 M1,1 M1,2 · · · M1,N−1 M1,N M1,L

MS,2 M1,2 M2,2 · · · M2,N−1 M2,N M2,L

...
... . . . ...

...

MS,N−1 M1,N−1 M2,N−1 · · · MN−1,N−1 MN−1,N MN−1,L

MS,N M1,N M2,N · · · MN−1,N MN,N MN,L

MS,L M1,L M2,L · · · MN−1,L MN,L 0




. (2.64)

Fully canonical filtering functions (i.e., Nth-degree characteristics with N finite-frequency

transmission zeros) can be synthesized by using the (N +2)× (N +2) coupling matrix.

For the (N +2)× (N +2) coupling matrix, the voltage-current relationship is expressed

as
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E = AI

= (R+ jΩW+ jM)I,
(2.65)

where E = [eS,0,0, · · · ,0]t , R is a (N + 2)× (N + 2) matrix whose only nonzero entries

are R1,1 = RN+2,N+2 = 1, W is similar to the (N +2)× (N +2) identity matrix, except that

W1,1 = WN+2,N+2 = 0, and I = [iS, i1, i2, · · · , iL]t . In this case the transmission and reflection

coefficients are given by

S21 = 2 ·A−1
N+2,1 (2.66)

and

S11 = 1−2 ·A−1
1,1. (2.67)

2.3.4 Coupling-Routing Diagram

Model of the circuit prototypes describes the coupling mechanism of the cross-coupled

filters and from which the coupling matrix has been extracted. However, using the mode of

the circuit prototype, it is not comfortable to observe which couplings between resonators

exist and which do not. Hence, the coupling-routing diagram is employed which provides

convenient insight into the coupling structure of the filter.

Fig. 2.14 shows the coupling-routing diagram of a 8th-order canonical structure filter.

It can be easily seen that the there are direct couplings between consecutively-numbered

resonators and the cross couplings between nonconsecutively-numbered resonators. Fig.

2.15 shows the coupling-routing diagrams of one of 6th-order and 8th-order inline structure

filters. Theses structures are also called cascaded-triplet structure and cascaded-quadruplet

structure, respectively.
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Figure 2.14: The coupling-routing diagram of a 8th-order canonical structure filter.

(a)

(b)

Figure 2.15: The coupling-routing diagrams of inline structure filters: (a) 6th-order filter;
(b) 8th-order filter.
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Although there is no coupling between the source and load in Fig. 2.14 and Fig. 2.15,

we might employ cross coupling between the source and load. The main reason to include

the source-load coupling is to increase the number of realizable transmission zeros. For

example, 6 transmission zeros can be established at most in 8th-order canonical structure

filter in Fig. 2.14. If we include the source-load coupling, it is possible to make 8th-order

filter have 8 transmission zeros.

The coupling-routing diagram are used to illustrate the relative phase shifts of multiple

signal paths and to understand how the transmission zeros are produced. Many illustra-

tive examples including cascaded-triplet structure, cascaded-quadruplet structure, and the

structure with nested cross couplings can be found in [24].

2.4 Physical Elements for Microwave Filter Implementa-

tion

Choosing the physical elements is one of the key issues in the realization of filters

and it is related to many factors such as frequency range, physical size, quality factor,

power handling capability, temperature drift, and production cost [25]. The several media

for implementation and corresponding filter technologies include lumped element filter,

waveguide filters, printed circuit filters, and dielectric resonator filters.

The main elements of a filter are reactances-lumped capacitances and lumped induc-

tances. It is possible to design some filters by using only capacitors and inductors. The

lumped element filters operate typically in hundreds of MHz’s, with unloaded quality fac-

tor in the hundreds. Their dimensions are much smaller than the operating wavelength and,

thus, at high frequencies it is difficult to implement the lumped element filter with good

performance. Hence, the distributed components are used for higher frequencies [25].

Microwave filters have been implemented in waveguide technology when low losses

and high power handling capabilities are required. For air-filled silver-plated rectangular
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and circular waveguide resonators, the quality factor of 10000 to 20000 can be achieved.

Also, for a 1 mm silver-plated gap can take up to 630 V peak voltage according to the

parallel plate model [26][27]. However, since waveguide structures are typically bulky

and have poor temperature stability, significant advances in reducing the mass, volume,

and temperature drift have been provided in the past [5]. For instance, the replacement

of traditional weighty materials like aluminum by lighter ones, such as Kevlar, have been

performed. Additionally, the use of graphite waveguides or carbon fiber technology has

also been successfully considered. When using these lighter materials, a deposit of silver

onto them is typically required to achieve the good quality factor. Excellent temperature

stability has been achieved by using Invar.

A small disc or cube of low-loss high dielectric constant material can also be used as

a microwave resonator. Such dielectric resonators are similar in principle to the rectangu-

lar or cylindrical waveguide resonators. If the dielectric constant is high, the electric and

magnetic fields of a given resonant mode will be confined in an near the resonator and will

attenuate to negligible values within a small distance relative to the free-space wavelength.

Therefore, radiation loss is minimal, and the unloaded quality factor of the resonator is

limited mainly by losses inside the dielectric body [28]. Two types of cylindrical dielectric

resonator filters are commonly used. One type is the dual-mode filter, operating in HE11

mode, providing low loss, smaller volume, and elliptic function realizations [29]. The other

type is the single-mode filter with all cylindrical dielectric resonators operating in T E01δ

mode, providing low loss, flexible layout structure [30]. The drawback of the dielectric

resonator filters is their inferior spurious response, and relatively low power handling ca-

pability.

Planar structures are mostly employed for microwave integrated circuits and mono-

lithic microwave integrated circuits. Microstrip lines, striplines, coplanar waveguide lines

belong to this category. Due to practical features including a small size, easy processing by

photolithography, and good affinity with active circuit elements, many circuits utilize the
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planar structure resonator. Another advantage of the planar structures is a wide applicable

frequency range which can be obtained by employing various kinds of substrate materials.

However, a major drawback of the planar structures is low quality factor, making it difficult

to apply such planar structures to narrow band filters [31].
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CHAPTER 3

Dual-Passband Microwave Filter

3.1 Introduction

Modern wireless communication systems require high performance microwave filters

with low insertion loss, high frequency selectivity, and small group-delay variation. For

high frequency selectivity, synthesis and design techniques for filters with transmission

zeros near passband have been developed [6][7][10]. For those filters, flat group-delay

in passband is accomplished using the external equalizer or the self-equalization design

technique [32][33]. Although microwave filter technology has gone through a series of

innovations, novel filter design techniques are still required as wireless systems evolve.

Since modern communications systems, especially satellite communications systems,

have complex frequency and spatial coverage plan, non-contiguous channels might need

be amplified and transmitted to one geographical region through one beam. Fig. 3.1 shows

an example of frequency and geographical coverage plan. In this case, an conventional

approach for implementing such a system includes designing individual single-passband

filters and connecting them using signal dividing or combining structures. Fig. 3.2 shows

a generic block diagram of a satellite transponder which can meet the frequency plan and

spatial coverage shown in Fig. 3.1. In this system, single-passband filters are designed

for each channel and non-contiguous channels are transmitted to one geographical region
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Figure 3.1: An example of frequency plan and spatial coverage of a satellite communica-
tion system.

through one beam. Here, signal dividing and combining structures such as circulator struc-

ture and manifold structure causes design complexity and increase in size and mass. On

the other hand, a novel approach is to include dual-passband filters which can reduce the

size and mass of the entire system. This approach requires the synthesis of an advanced

filtering function but makes the system simple compared with conventional approach. Fig.

3.3 shows a generic block diagram of a satellite transponder which employs dual-passband

filters. It is shown that dual-passband filters can simplify the entire system by replacing

individual single-passband filters connected in parallel.

Dual-passband filters of canonical structure with single-mode technique [34], that of

in-line structure with dual-mode technique [11], that of canonical structure with dual-mode

technique [35] have been designed and realized. Also, synthesis method of a self-equalized

dual-passband filter has been presented [36]. These deign methods are all based on the

optimization techniques in the filter synthesis process.

To avoid the numerical optimization, a method known as frequency transformation

technique has been introduced in designing dual-passband filters [37]. Basically this syn-
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Figure 3.2: A block diagram of a conventional satellite transponder for the frequency plan
and spatial coverage shown in Fig. 3.1.

Figure 3.3: A block diagram of a satellite transponder with dual-passband microwave fil-
ters.

thesis for designing a dual-passband filter is accomplished by applying a frequency trans-

formation to a lowpass filter prototype. Since the stopband response of the dual-passband

filter obtained by using the frequency transformation is not identical to that of lowpass filter

prototype, a few attempts are required to find a suitable placement of transmission zeros to

acquire the desired attenuation value. One of the frequency transformation in [37] can be

adopted for designing asymmetric dual-passband filter. However, this transformation can-

not provide the equiripple response in stopband which enables high frequency selectivity.

Filters with dual stopbands and the associated frequency transformation are presented

in [38]. Similar to the transformation in [37], this transformation also requires the op-

timization to achieve equiripple response in stopband and its applications to asymmetric
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dual-passband or dual-stopband filters are not discussed.

In this chapter, a synthesis technique for symmetric dual-passband filters using fre-

quency transformation without the need for optimization is presented. Two frequency trans-

formations are given and applied consecutively to the lowpass filter prototype to obtain the

dual-passband filter response. With this method, the dual-passband filters can be designed

with prescribed passbands and attenuation value in the stopband since the transformation

preserves the lowpass filter prototype characteristics. Also, the frequency transformation in

general form is given for designing asymmetric dual-passband filters. This transformation

is flexible enough to allow for the design of filters with two passbands of highly different

bandwidths. This transformation also preserves the lowpass filter prototype characteristics.

3.2 Design Theory

In this section, a procedure for designing dual-passband microwave filters using two

frequency transformations is introduced. Fig. 3.4 shows the frequency response of the

filter in 3 different frequency domains. ω domain is the actual frequency domain where

the filter operates and Ω is a normalized frequency for the lowpass prototype. Generally,

single-passband filters are designed in Ω domain and the frequency transformation is ap-

plied to make filter operate in ω domain. For dual-passband filter design, an intermediate

normalized frequency Ω′ is used. The frequency response in ω domain can be obtained by

applying two frequency transformations consecutively to the frequency response in Ω do-

main. The coupling matrix of the dual-passband filter is obtained from the transfer function

of the filter in Ω′ domain.

3.2.1 Lowpass Filter Prototype

Generally, the transfer function of an Nth-order lowpass filter prototype can be ex-

pressed by
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Figure 3.4: The frequency response of the filter in Ω, Ω′, and ω domain. The coupling
matrix of the dual-passband filter is obtained from the transfer function in Ω′
domain.

|t(S)|2 =
1

1+ ε2 |K(S)|2
(3.1)

where S = jΩ with the assumption that the characteristic function K(S) has only pure

imaginary poles and zeros in S domain, and ε is the ripple constant related to the passband

return loss R1 at Ω = Ω1 by
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ε =

√
1

10R1/10−1
1

|K( jΩ1)|2
. (3.2)

Since here we do not deal with self-equalized dual-passband filters, pure imaginary

reflection zeros and transmission zeros are sufficient for our design. For the case of pure

imaginary reflection zeros and transmission zeros, the characteristic function of the elliptic

function filter is given by [39]

K(Ω) = cosh

(
N

∑
i=1

cosh−1(xi)

)
(3.3)

where

xi =
Ω−1/Ωi

1−Ω/Ωi
(3.4)

In (3.4), Ωi is the location of the ith transmission zero. Note that the magnitude of K(Ω) is

1 at Ω1 =±1 for all N. Therefore, in this case, the ripple constant becomes

ε =
√

1
10R1/10−1

(3.5)

Once the transmission zeros are decided, the reflection zeros can be obtained easily from

computing the return loss of the filter. Based on the reflection zero and transmission zero

locations, we can rewrite the characteristic function as a rational function:

K(S) =
F(S)
P(S)

=

N
∏
i=1

(S−S f i)

Z
∏
i=1

(S−Spi)

(3.6)

where N is the number of reflection zeros and Z is the number of transmission zeros. N is
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also referred to as the order of the filter. Here, it is assumed that Z < N.

The basic idea in establishing two passbands is based on putting transmission zeros

within the passband of a single-passband filter to split it into two passbands. Since (3.3)

is valid for |Ωi|> 1, it cannot be used for computing the reflection zeros with given trans-

mission zeros. Therefore, this work presents frequency transformation technique for deter-

mining reflection zeros and transmission zeros of dual-passband microwave filters.

3.2.2 Frequency Transformation for Dual-passband Filters

Let’s assume that the dual-passband filter has two symmetric passbands and their pass-

band regions are specified by (ωb1,ωa1) and (ωa2,ωb2) (Fig.3.4). The coupling matrix is

obtained from the frequency response in the normalized frequency Ω′. For dual-passband

filter synthesis, the previous studies [35][36] start from Ω′ domain by finding the locations

of reflection zeros and transmission zeros of the filters by direct optimization.

In this chapter, we obtain the reflection zeros and transmission zeros of the dual-

passband filter by analytic frequency transformation technique. The frequency transfor-

mation from Ω to Ω′ can be expressed as follows:

S =
S′

c1
+

c2

S′
for Ω′ > 0

S =−
(

S′

c1
+

c2

S′

)
for Ω′ < 0

(3.7)

where S = jΩ and S′ = jΩ′. Since we are interested in how Ω domain maps to Ω′ domain,

we rewrite (3.7) so that

Ω =
Ω′

c1
− c2

Ω′ for Ω′ > 0

Ω =−
(

Ω′

c1
− c2

Ω′

)
for Ω′ < 0.

(3.8)
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Since 1 and −1 in Ω domain are transformed to 1 and Ω′
m in Ω′ domain for Ω′ > 0, re-

spectively, and 1 and −1 in Ω domain are transformed to −1 and −Ω′
m in Ω′ for Ω′ < 0,

respectively, we must enforce

1 =
c1

2

(
1+

√
1+4

c2

c1

)

Ω′
m =

c1

2

(
−1+

√
1+4

c2

c1

)
.

(3.9)

From (3.9), the constant in (3.7) and(3.8) can be expressed in terms of the band edge fre-

quency of the dual-passband filter in Ω′ domain:

c1 = 1−Ω′
m

c2 =
Ω′

m
1−Ω′

m
.

(3.10)

Similarly, the frequency transformation from Ω′ to ω for narrow bandpass filters is

expressed as

S′ =
s

d1
+

d2

s
(3.11)

where s = jω. The frequency transformation in (3.11) can be rewritten as

Ω′ =
ω
d1
− d2

ω
. (3.12)

Since band edge frequencies in Ω′ domain are transformed to those in ω domain as
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1→ ωb2

Ω′
m → ωa2

−Ω′
m → ωa1

−1→ ωb1

(3.13)

therefore, the relationship between the band edge frequencies in ω domain and the coeffi-

cients in (3.11) are as follows:

ωb2 =
d1

2

(
1+

√
1+4

d2

d1

)

ωb1 =
d1

2

(
−1+

√
1+4

d2

d1

)

ωa2 =
d1

2

(
Ω′

m +
√

Ω′2
m +4

d2

d1

)

ωa1 =
d1

2

(
−Ω′

m +
√

Ω′2
m +4

d2

d1

)
.

(3.14)

From (3.14), we can express d1, d2, and Ω′
m in terms of band edge frequencies of the

dual-passband filter:

d1 = ωb2−ωb1

d2 =
ωb1ωb2

ωb2−ωb1

Ω′
m =

ωa2−ωa1

ωb2−ωb1
.

(3.15)

Using (3.10) and (3.15), the constant in (3.7) can also be expressed in terms of band edge

frequencies of the dual-passband filter. Therefore, the frequency transformations can be
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expressed in terms of band edge frequencies of the dual-passband filter.

In addition, for convenient application to filter design, the frequency transformation in

(3.12) can be rewritten using real frequency as

Ω′ =
f

d1
− d2

f
(3.16)

and variables in (3.15) should be modified as

d1 = fb2− fb1

d2 =
fb1 fb2

fb2− fb1

Ω′
m =

fa2− fa1

fb2− fb1
.

(3.17)

where fa1 = ωa1/2π, fa2 = ωa2/2π, fb1 = ωb1/2π, and fb2 = ωb2/2π. Based on the pre-

scribed narrow passbands (ωb1−ωa1 , ωa2−ωb2) of the dual-passband filter, the frequency

transformations can be defined and, consequently, the transfer functions and coupling ma-

trices can be determined.

The following section describes the application of the frequency transformations and

then direct applications for designing dual-passband filters.

3.3 Filter Design and Measurement

3.3.1 Electrical Design

In this section, the filter with two passbands is designed and realized to describe the

presented filter synthesis theory. The passbands of the dual-passband filter are chosen to be

3.90 - 3.95 GHz and 4.05 - 4.10 GHz. Each passband is set to have 4 reflection zeros and a

maximum return loss of 20 dB. Minimum attenuation over stopbands is set to be 30 dB.

Since we are seeking a 4th-order passband response, we start from a 4th-order lowpass
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Figure 3.5: Frequency response of a lowpass filter prototype with the transmission zeros at
± j2.0.

prototype. Fig. 3.5 shows the frequency response of the lowpass filter prototype with the

transmission zeros at S =± j2.0, ±∞. This filter prototype has a pair of transmission zeros

at finite frequencies and their locations are determined based on the attenuation requirement

over stopband. Using (3.1) - (3.3), we can find the locations of the reflection zeros with

given transmission zeros, return loss, and the order of the filter. The reflection zeros of the

filter are found to be located at S =± j0.9330, S =± j0.4062. Since band edge frequencies

of the dual-passband filter are fb1 = 3.90 GHz, fb2 = 4.10 GHz, fa1 = 3.95 GHz, and fa2 =

4.05 GHz, we have Ω′
m = 0.5 from (3.17). From the frequency transformation in (3.7), the

reflection zeros and transmission zeros of the dual-passband filter at finite frequencies in

Ω′ domain can be determined:
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Figure 3.6: The frequency response of the dual-passband filter in Ω′ domain.

S′p1 =− j1.366, S′p2 =− j0.366, S′p3 =− j0.000,

S′p4 = + j0.000, S′p5 = + j0.366, S′p6 = + j1.366,

S′f 1 =− j0.978, S′f 2 =− j0.816, S′f 3 =− j0.613,

S′f 4 =− j0.511, S′f 5 = + j0.511, S′f 6 = + j0.613,

S′f 7 = + j0.816, S′f 8 = + j0.978.

(3.18)

Fig. 3.6 shows the frequency response of the dual-passband filter with reflection zeros

and transmission zeros in (3.18). With the given reflection zeros and transmission zeros of

the dual-passband filter in Ω′ domain, we can obtain the transfer function in the form given

by (3.1).
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|t(S′)|2 =
1

1+ ε′2|K(S′)|2

=
1

1+ ε′2
∣∣∣∣
F(S′)
P(S′)

∣∣∣∣
2

=
1

1+ ε′2
F(S′)F(−S′)
P(S′)P(−S′)

(3.19)

where

F(S′) = ∏
i

(S′−S′f i)

P(S′) = ∏
i

(S′−S′pi)
(3.20)

and the ripple constant is determined by the return loss R1 at Ω′
1:

ε′ =
√

1
10R1/10−1

1∣∣K( jΩ′
1)

∣∣2 . (3.21)

From (3.19), |t(S′)|2 can be expressed as a rational function as follows:

|t(S′)|2 =
1

ε′2
P(S′)P(−S′)
E(S′)E(−S′)

. (3.22)

Using the fact that |t(S′)|2 = t(S′)t(−S′), we can obtain the expanded form of the trans-

fer function t(S′). Using t(S′), we synthesize the filter circuit in such a way that the filter

exhibits the prescribed transmitted power ratio |t(S′)|2. The transfer function t(S′) is given

by
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t(S′) =
1
ε′

6
∑

i=0
aziS′i

8
∑

k=0
apkS′k

(3.23)

where

az6 = 1.0000, az4 = 1.9999, zz2 = 0.2500,

az0 = 0.0000, ap8 = 1.0000, ap7 = 1.0458,

ap6 = 2.8061, ap5 = 1.9203, ap4 = 2.3954,

ap3 = 0.9600, ap2 = 0.7015, ap1 = 0.1307,

ap0 = 0.0625, ε′ = 11.2390.

(3.24)

From the transfer function in Ω′ domain, the coupling matrix can be determined [10].

Since the 8th-order dual-passband filter has 6 zeros in finite frequencies, it can be of sym-

metric canonical structure and its coupling matrix is given by

M =




0 0.8302 0 0 0 0 0 −0.0851

0.8301 0 0.4080 0 0 0 0.1053 0

0 0.4080 0 0.4962 0 0.5076 0 0

0 0 0.4962 0 −0.2294 0 0 0

0 0 0 −0.2294 0 0.4962 0 0

0 0 0.5076 0 0.4962 0 0.4080 0

0 0.1053 0 0 0 0.4080 0 0.8302

−0.0851 0 0 0 0 0 0.8302 0




R = 0.5229.

(3.25)
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Figure 3.7: The frequency response of the dual-passband filter in real frequency domain.

The matrix similarity transformation can be applied to the coupling matrix to obtain dif-

ferent combinations of positive and negative inter-resonator coupling coefficients or/and

different coupling structures (e.g. asymmetric canonical structure) [40][41].

Applying the frequency transformation in (3.16), we can obtain the frequency response

of the filter in real frequency domain. Fig. 3.7 shows the frequency response of the filter.

Note that the passbands of the filter are 3.90 - 3.95 GHz and 4.05 - 4.10 GHz and attenuation

at stopbands is 30 dB, which shows the validity of this proposed synthesis method for dual-

passband filter using frequency transformation with prescribed passbands and attenuation

at stopbands.

3.3.2 Physical Design and Measurement

The coupling matrix in (3.25) can be realized for many types of filter structures. In this

work, we use stripline structure for the filter. Fig. 3.8 shows the conductor layer of the

dual-passband filter. This conductor layer is positioned in the middle of two metal-backed
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Figure 3.8: The conductor layer of stripline structure for the dual-passband filter.

dielectric layers. The thickness, dielectric constant, and loss tangent of the dielectric layers

are 1.574 mm, 2.2, and 0.0009, respectively.

The filter has square open-loop resonators and each of them has a perimeter about one

half-wavelength at the center frequency. Any coupling in the filter is that of the proximity

coupling, which is through fringe fields. The nature and the extent of the fringe fields

determine the nature and the strength of the coupling. At the resonant frequency, each

of open-loop resonators has the maximum electric fringe field at the side with an open-

gap, and the maximum magnetic fringe field at the opposite side. Because the fringe field

exhibits an exponentially decaying character outside the region, the electric fringe field is

stronger near the side having the maximum electric field distribution, while the magnetic

fringe field is stronger near the side having the maximum magnetic field distribution. It

follows that the electric coupling can be obtained if the open-gap sides of two coupled
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(a) (b)

(c) (d)

Figure 3.9: Coupling structures of coupled stripline open-loop resonators which are sepa-
rated by a spacing s and may or may not be subject to an offset p: (a) Electric
coupling structure. (b) Magnetic coupling structure. (c) Mixed coupling struc-
ture. (d) Mixed coupling structure.

resonators are proximately placed as shown in Fig. 3.9(a), while the magnetic coupling can

be obtained if the opposite sides are proximately placed as shown in Fig. 3.9(b). For the

coupling structures in Fig. 3.9(c) and Fig. 3.9(d), the electric and magnetic fringe fields

at the coupled sides may have comparative distributions so that both the electric and the

magnetic coupling occur [42]. In this case, we may need to find out which coupling is

dominant so that we can assign positive sign or negative sign for the coupling value of the

coupling structures. Since open-loop resonators can provide both the electric and magnetic

couplings between two resonators, these can be used for realizing both positive and negative

couplings as required by (3.25). In our design, positive and negative signs are assigned to

magnetic and electric couplings, respectively. Since M1,8 and M4,5 are negative, resonator 1

and resonator 8, and resonator 4 and resonator 5 have the electric coupling structure shown

in Fig. 3.9(a). Also, resonator 2 and resonator 7, and resonator 3 and resonator 6 have
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been determined to have the magnetic coupling structure shown in Fig. 3.9(b), since M2,7

and M3,6 are positive. This results in that the coupling structures for the other couplings

are automatically determined to have mixed coupling structures shown in Fig. 3.9(c) or

Fig. 3.9(d). It is of note that the sign of coupling values of these coupling structures does

not need to be figured out since these coupling structures can be either positive or negative

value as long as M1,2 = M7,8, M2,3 = M6,7, and M3,4 = M5,6 due to the matrix similarity

transformation.

Tapping position (d01) is determined by the external coupling coefficient (R) and the

spacings between two resonators are determined by inter-resonator coupling coefficients

(Mi, j). The external coupling coefficient can be measured by one-port reflection technique.

In this technique, the phase response of reflection coefficient (S11) of one excited resonator

is measured and the external coupling coefficient is given by

R =
∆ f±90◦

∆ f
(3.26)

where ∆ f = fb2− fb1 and ∆ f±90◦ are the absolute bandwidth of the filter and the frequency

difference of two frequencies at which the phase shift ±90◦ with respect to the absolute

phase at the center frequency f0, respectively [43]. Resonator-pair measurement is conven-

tional method to experimentally obtain inter-resonator coupling coefficient. In this tech-

nique, the two peaks are observed in the amplitude response of transmission coefficient

of a circuit consisting of two identical resonators. The inter-resonator coupling coefficient

(Mi, j) between resonator i and resonator j is expressed by

Mi, j =
f 2
p2− f 1

p1

f 2
p2 + f 1

p1
· f0

∆ f
(3.27)

where fp1 and fp2 are the lower and higher frequencies at which the peaks are observed.

Based on (3.26) and (3.27), tapping position (d01) and spacings between resonators (s) are

determined in such a way that the measured external and inter-resonator coupling coef-
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Table 3.1: Physical dimensions of the dual-passband filter.
Parameter Dimensions (mm)

b 1.26

r 8.10

g1 1.08

g2 1.28

g3 1.28

g4 1.20

d01 1.70

d12 0.50

d23 0.18

d34 0.78

d45 1.14

d36 0.66

d27 1.38

d18 1.42

ficients are identical to those in (3.25). The full-wave electromagnetic simulator Zeland

IE3D is used to calculate the coupling coefficients. The physical dimensions of the filter in

Fig. 3.8 are summarized in Table 3.1.

The entire filter structure has also been simulated using Zeland IE3D and Fig. 3.10 com-

pares the simulated and theoretical frequency response of the dual-passband filter. Since

the filter synthesis doesn’t take into account the losses of the filter, the loss factors are not

included in the simulated response in Fig. 3.10 for clear comparison. A good agreement

between theoretical and simulated frequency responses is shown. Simulated frequency re-

sponse has somewhat lower attenuation at higher stopband which is due to asymmetric

locations of transmission zeros. It has been reported that the asymmetric frequency re-

sponse is attributed to the frequency-dependent couplings [44]. The measured response of

the fabricated filter (Fig. 3.11) is compared to the simulation one in Fig. 3.12. The sim-

ulated response includes loss factors (conductor loss and dielectric loss) in order to take
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Figure 3.10: Synthesized and simulated frequency response of the dual-passband filter.

Figure 3.11: The fabricated conductor layer of the stripline structure for the dual-passband
filter.

63



(a)

(b)

Figure 3.12: Frequency response of the dual-passband filter: (a) S11, (b) S21.
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into account the losses of the fabricated filter. Measured response shows a reasonably good

agreement with the simulated response. There is however, a small frequency shift which

can be attributed to the fabrication error.

3.3.3 Sensitivity Considerations

There is random variation in the coupling and resonator tuning states, which is due to

component and manufacturing/assembly tolerances [45]. Therefore, the sensitivity analysis

is important for filter design, tuning, and fabrication due to aforementioned tolerances. We

have carried out the sensitivity analysis in order to see the effect of change of coupling

coefficients on the filter response. From these sensitivity analysis, acceptable bounds on

the errors in the elements of the coupling matrix can be determined.

In (3.25), many inter-resonator coupling coefficients are zero. In case that the filter

is implemented by using coaxial resonators [45] or dual-mode waveguide resonator [10],

these zero inter-resonator coupling coefficients are exactly zero. However, in some cases,

these coupling coefficients may not be zero in physical design and fabrication. For example,

stripline and microstripline resonators use proximity couplings and couplings which are

designed to be zero may not be zero due to the fringe fields. Fig. 3.13 and Fig. 3.14

show the frequency response of filter when these coupling coefficients are not zero and

vary randomly in a range of ±0.005 and ±0.01, respectively.

Also, all diagonal elements in (3.25), Mi,i for i = 1,2, ...,8, are zero, which means that

all resonators should resonate at the center frequency of the filter. Resonators may not be

synchronously tuned at the center frequency and this case has been investigated by applying

random variation less than±0.005 and±0.01 to self-couplings. Nonzero Mi,i indicates that

ith resonator resonates at

fri =
−Mi,i∆ f +

√
M2

i,i∆ f 2 +4 fb1 fb2

2
. (3.28)
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(a) (b)

Figure 3.13: Sensitivity to random variation in coupling coefficients. Random variation
less than ±0.005 is applied to all zero inter-resonator couplings in (3.25): (a)
S21, (b) S11.

(a) (b)

Figure 3.14: Sensitivity to random variation in coupling coefficients. Random variation
less than ±0.01 is applied to all zero inter-resonator couplings in (3.25): (a)
S21, (b) S11.

The frequency responses of the sensitivity analysis are shown in Fig. 3.15 and 3.16.

The last analysis has been carried out by applying random variation to nonzero inter-

resonator coupling coefficients. Random variation has been set to be less than ±1% and

±5% of original inter-resonator coupling coefficients. Fig. 3.17 and Fig. 3.18 show the

results of the quantitative analysis. It is observed that the frequency response variation of
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(a) (b)

Figure 3.15: Sensitivity to random variation in coupling coefficients. Random variation
less than ±0.005 is applied to all zero self-couplings in (3.25): (a) S21, (b)
S11.

(a) (b)

Figure 3.16: Sensitivity to random variation in coupling coefficients. Random variation
less than ±0.01 is applied to all zero self-couplings in (3.25): (a) S21, (b) S11.

transmission coefficient (S21) in the stopband between two passbands is larger than that in

the outer stopbands. This is because the stopband between two passbands is crowded with

the transmission zeros.
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(a) (b)

Figure 3.17: Sensitivity to random variation in coupling coefficients. Random variation
less than ±1% is applied to all non-zero inter-resonator couplings in (3.25):
(a) S21, (b) S11.

(a) (b)

Figure 3.18: Sensitivity to random variation in coupling coefficients. Random variation
less than ±5% is applied to all non-zero inter-resonator couplings in (3.25):
(a) S21, (b) S11.

3.4 More Examples

In previous section, we dealt with an 8th-order dual-passband filter with repeated trans-

mission zeros at Ω′ = 0. In this section, a 4th-order dual-passband filter with repeated

transmission zeros at Ω′ = 0 and a 8th-order dual-passband filter with no transmission ze-

ros at Ω′ = 0 are briefly discussed.
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Figure 3.19: Frequency response of a lowpass filter prototype with no transmission zeros
at finite frequencies.

Fig. 3.19 shows a 2nd-order lowpass prototype filter with no transmission zeros at

finite frequencies in Ω domain. The return loss and the order of the lowpass prototype filter

determines the location of the reflection zeros. Using the frequency transformation in (3.7)

with Ω′
m = 0.9, we can obtain the location of the reflection zeros and transmission zeros

of the 4th-order dual-passband filter in Ω′ domain and therefore its frequency response

can be obtained as shown in Fig. 3.20. Based on the locations of the reflection zeros and

transmission zeros in Ω′ domain, the transfer function and coupling matrix can be obtained

as described in the previous section. The transfer function is

t(S′) =
1
ε′

S′2
4
∑

k=0
apkS′k

(3.29)

where
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Figure 3.20: Frequency response of a dual-passband filter whose lowpass prototype is
shown in Fig. 3.19.

ap4 = 1.0000, ap3 = 029659, ap2 = 1.8496,

ap1 = 0.2670, ap0 = 0.8105, ε′ = 20.507,

(3.30)

and the coupling matrix is

M =




0 0.9488 0 −0.1644

0.9488 0 0 0

0 0 0 0.9488

−0.1644 0 0.9488 0




R = 0.1483.

(3.31)

Using the matrix similarity transformation, we can also have the coupling matrix with
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Figure 3.21: Frequency response of a lowpass filter prototype with no transmission zeros
at infinite frequencies

positive M1,4 and M4,1:

M =




0 0.9488 0 0.1644

0.9488 0 0 0

0 0 0 0.9488

0.1644 0 0.9488 0




R = 0.1483.

(3.32)

In case that it is difficult to implement the negative coupling, it is preferred to have the

coupling matrix whose elements are all positive such as (3.32). It is interesting to note that

there is no direct coupling between resonator 2 and 3 in the coupling matrices in (3.31) and

(3.32).

The filter with no transmission zeros at Ω′ = 0 can also be synthesized. This kind of
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Figure 3.22: Frequency response of a dual-passband filter whose lowpass prototype is
shown in Fig. 3.21.

filter can be designed with the lowpass prototype filter having no transmission zeros at

infinite frequencies in Ω domain. Fig. 3.21 shows a 4th-order lowpass prototype filter with

the transmission zeros at± j2.0 and± j4.5. Using the frequency transformation in (3.7), we

can obtain the locations of the reflection zeros and transmission zeros of the dual-passband

filter in Ω′ domain and therefore its frequency response can be obtained as shown in Fig.

3.22. Based on the locations of the reflection zeros and transmission zeros in Ω′ domain, the

transfer function and coupling matrix can be obtained as described in the previous section.

Since the 8th-order filter has 8 transmission zeros in finite frequencies, it might employ the

coupling between source and load.

3.5 Asymmetric Dual-Passband Filter Design

We have dealt with a synthesis method for designing symmetric dual-passband filters.

The frequency transformation for asymmetric dual-passband filters is given in [37], and it
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is possible to obtain two desired passband characteristics. However, it is not clear whether

equiripple responses both in the passband and stopband, which enables high frequency

selectivity, can be achieved or not.

In this section, we briefly explain the frequency transformation for asymmetric dual-

passband filters. The advantage of this frequency transformation is that the attenuation

characteristics of low pass prototype is preserved. Therefore it is possible to obtain equirip-

ple responses both in the passband and stopband. Fig. 3.23 shows typical transmission

responses of an asymmetric dual-passband filter in Ω and Ω′ domains. In Ω′ domain, we

have asymmetric passbands. Passbands are from −1 to Ω′
ma and from Ω′

mb to 1, respec-

tively. Fig. 3.23 shows for the case that Ω′
ma > 0 and Ω′

mb > 0. Ω′
ma and Ω′

mb are determined

by predetermined passbands in ω or f domains as symmetric dual-passband case.

The frequency transformation for asymmetric dual-passband filters can be obtained by

rewriting (3.7) in general form:

S =
S′

e1
+

e2

S′− jΩ′
z

for Ω′ > Ω′
z

S =−
(

S′

e3
+

e4

S′− jΩ′
z

)
for Ω′ < Ω′

z

(3.33)

where e1, e2, e3, and e4, are determined by the band edge frequencies in Ω′ domain which

are also determined by arbitrarily prescribed passbands of the filter. They can be found by

solving the simultaneous equations:
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Figure 3.23: A typical transmission response of an asymmetric dual-passband filter in Ω
and Ω′ domains. Frequency transformation from Ω domain to Ω′ domain is
performed using (3.33) with Ω′

ma > 0, Ω′
mb > 0, and Ω′

z > 0.

1
e1
− e2

1−Ω′
z
= 1

Ω′
mb

e1
− e2

Ω′
mb−Ω′

z
=−1

1
e3

+
e4

−1−Ω′
z
= 1

−Ω′
ma

e3
+

e4

Ω′
ma−Ω′

z
=−1.

(3.34)

Upper frequency region and lower one is bisected by Ω′
z which can be chosen arbitrarily

between Ω′
ma and Ω′

mb.

Fig. 3.24 shows the frequency response in Ω′ domain using the frequency transfor-

mation in (3.33) and a lowpass filter prototype in Fig. 3.5. It should be noted that the
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(a)

(b)

Figure 3.24: Frequency responses of asymmetric dual-passband filters in Ω′ domain : (a)
Ω′

ma = 0.1, Ω′
mb = 0.7, Ω′

z = 0.5 (b) Ω′
ma =−0.8, Ω′

mb = 0.2, Ω′
z =−0.3.
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frequency transformation in (3.33) is very flexible in designing asymmetric dual-passband

filters while preserving the attenuation characteristics of low pass prototype.

Based on the frequency transformation given in (3.33), the locations of the reflection

zeros and transmission zeros can be found in Ω′ domain, which makes it possible to obtain

the transfer function and the coupling matrix.

3.6 Conclusions

This chapter describes a synthesis method for a symmetric dual-passband filter. Fre-

quency transformations are established and applied to the lowpass filter prototype in order

to obtain the frequency response of the dual-passband filter. For analytic filter synthesis,

the frequency transformations have been given in terms of the prescribed passbands of the

dual-passband filter.

To validate the presented synthesis method, the 8th-order dual-passband filter with 6

transmission zeros and two passbands of 3.90 - 3.95 GHz and 4.05 - 4.10 GHz has been

designed, fabricated, and measured. The stripline structure has been used for filter design.

The measured frequency response of the designed filter has shown a good agreement with

the synthesized frequency response. This method has also been applied to the 4th-order

dual-passband filter with 2 transmission zeros and 8th-order dual-passband filter with 8

transmission zeors to show the validity of the method.

The frequency transformation for symmetric dual-passband filters has been generalized

for asymmetric dual-passband filters. This transformation is found to be flexible enough

to allow for designing bandpass filters with two passbands of significantly different band-

widths.
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CHAPTER 4

Triple-Passand Microwave Filter

4.1 Introduction

As modern communications systems use a complex arrangement of frequency alloca-

tion and spatial coverages, filters are required to have more complicated spectral responses

such as elliptic function response for high frequency selectivity, self-equalized response for

reduced group delay variation, and multiple-passband response for simultaneous transmis-

sion of multiple non-continuous channels.

Recently, microwave bandpass filters with two passbands have been reported. Dual-

passband filters can be used to transmit two non-continuous channels through one beam to

the same service coverage area. A dual-passband coaxial resonator filter was reported [34]

and dual-mode dual-passband circular waveguide resonator filters for satellite applications

were reported [11][35]. Furthermore, for reduced group delay variation in passbands, the

synthesis method for a self-equalized dual-passband filter is presented in [36]. Analytic

synthesis methods for dual-passband filters using frequency transformation techniques have

also been of great interests [37][40][46]. However, these analytic synthesis methods are

inadequate for designing triple-passband filters.

This work deals with developing a design methodology for triple-passband filters. A

frequency transformation is developed for the synthesis of triple-passband filter. The trans-
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fer function for the coupling matrix can be obtained from the frequency-transformed lo-

cations of reflection zeros and transmission zeros. In cases the frequency selectivity can

be compromised, some transmission zeros can be removed to reduce the number of cross-

couplings. A minor optimization (or trial-and-error method) is needed to obtain the re-

quired frequency response. The proposed method using frequency-transformed locations

of reflection zeros and transmission zeros allows for rather accurate determination of ini-

tial values. Compared to the direct optimization, this makes it easy to find the desired

transfer function with reduced number of transmission zeros. A 6th-order and a 12th-order

triple-passband filters are synthesized to validate the proposed method. A 12th-order triple-

passband filter is measured and the response shows a good agreement with theory. Finally,

the frequency transformation for designing asymmetric triple-passband filters is given and

discussed.

4.2 Design Theory

4.2.1 Transfer Fuction

It has been proved that the transmission zeros can be used to split a single passband into

multiple passbands. Due to the transmission zeros, the characteristic function of multiple-

passband filter can be written as a rational function:

K(S′) =
∏
i
(S′−S′f i)

∏
k
(S′−S′pk)

(4.1)

where S′ = jΩ′ and Ω′ is normalized frequency for multiple-passband filter. S′f and S′p are

reflection zeros and transmission zeros of the filter, respectively. This characteristic func-

tion determines the frequency response of the filter. With the given characteristic function,

the transmitted power of the filter can be written as
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∣∣t(S′)
∣∣2 =

1

1+ ε′2 |K(S′)|2
(4.2)

where ε′ is the ripple constant given by (3.21). Taking only the roots in left-half plane of S′

domain, we can obtain the following form of the transfer function.

t(S′) =
1
ε′

Z
∑

i=0
aziS′i

N
∑

k=0
apkS′k

(4.3)

where N and Z are the number of reflection zeros and transmission zeros, respectively.

Here, it is assumed that Z < N.

The reflection zeros and transmission zeros of the triple-passband filter can be obtained

by direct optimization method or analytic method depending on the filtering function. In

the following section, we introduce a frequency transformation for finding the locations of

reflection zeros and transmission zeros for a desired response analytically.

4.2.2 Frequency Transformation for Tripple-Passband Filters

Fig. 4.1 shows the frequency response of the filter in three different frequency domain.

Ω is normalized frequency for single-passband lowpass prototype and Ω′ is normalized

frequency for triple-passband filter. ω domain is actual frequency domain where the filter

operates.

The frequency transformation from Ω to Ω′ can be expressed as follows [47]:

S =
S′

c0
+

c1

S′− jΩ′
z
+

c1

S′+ jΩ′
z

(4.4)

where S = jΩ and unknown variables c0, c1, and Ω′
z are determined by Ω′

a and Ω′
b. Since

we are interested in how Ω domain maps to Ω′ domain, we rewrite (4.4) so that
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Figure 4.1: The frequency response of the filter in Ω, Ω′, and ω domain. The coupling
matrix of the triple-passband filter is obtained from the transfer function in Ω′
domain.

Ω =
Ω′

c0
− c1

Ω′− jΩ′
z
− c1

Ω′+ jΩ′
z
. (4.5)

1 in Ω domain is transformed to 1 and Ω′
a in Ω′ domain. Also, −1 in Ω domain is trans-

formed to Ω′
b in Ω′ domain. Therefore, unknown variables in (4.4) can be found by solving

the following equations simultaneously.
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1
c0
− c1

1−Ω′
z
− c1

1+Ω′
z
= 1

Ω′
b

c0
− c1

Ω′
b−Ω′

z
− c1

Ω′
b +Ω′

z
=−1

Ω′
a

c0
− c1

Ω′
a−Ω′

z
− c1

Ω′
a +Ω′

z
= 1.

(4.6)

Using (4.4), we can obtain the location of reflection zeros and transmission zeros in Ω′ do-

main analytically. In the case that some of the transmission zeros in Ω′ domain are redun-

dant for satisfying the frequency selectivity, these might be removed and other remaining

reflection zeros and transmission zeros can be adjusted.

The frequency transformation from Ω′ domain to ω domain is well-known transforma-

tion and can be expressed as

S′ =
s

d1
+

d2

s
(4.7)

where s = jω. This frequency transformation can be rewritten as

Ω′ =
ω
d1
− d2

ω
. (4.8)

Considering the fact that 1 and -1 in Ω′ domain is transformed to ωb3 and ωa1, respectively,

we can obtain d1 and d2 as follows:

d1 = ωb3−ωa1

d2 =
ωa1ωb3

ωb3−ωa1
.

(4.9)

We can decide Ω′
a and Ω′

b from the fact that -1,−Ω′
b,−Ω′

a, Ω′
a, Ω′

b, and 1 in Ω′ domain are

transformed to ωa1, ωb1, ωa2, ωb2, ωa3, and ωb3, respectively. Frequency transformation

given by (4.8) can also be expressed by using the real frequency variable as
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Ω′ =
f

d1
− d2

f
(4.10)

where

d1 = fb3− fa1

d2 =
fa1 fb3

fb3− fa1
.

(4.11)

It is worth while mentioning that frequency transformation technique is for narrowband

filters. Therefore, if bandwidths of passbands of the narrowband filter in Ω′ domain are

identical to each other, it can be approximated that the filter has three passbands with same

bandwidth in ω or f domain.

4.3 Filter Synthesis

In this section, a 6th-order and a 12th-order triple-passband filters are synthesized to

describe the presented filter synthesis theory.

4.3.1 6th-Order Filter

Fig. 4.2 shows 2nd-order single-passband lowpass prototype in Ω domain. A pair of

transmission zeros are located at S = ± j25.0 and return loss is set to be 20 dB. With the

given transmission zeros and return loss, the reflection zeros of the filter can be easily found

[39]. The reflection zeros are located at S =± j0.707. Using the frequency transformation

given in (4.4), we can find the reflection zeros and transmission zeros of the triple-passband

filter in Ω′ domain. For Ω′
a = 0.055 and Ω′

b = 0.890, the unknown coefficients in (4.6) are

c1 = 0.165, c2 = 1.800, and Ω′
z = 0.545. Fig. 4.3 shows the normalized frequency response

of the triple-passband filter. The reflection zeros and transmission zeros in Ω′ domain are
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Figure 4.2: The frequency response of a 2nd-order lowpass filter prototype with the trans-
mission zero at ± j25.0 and return loss of 20 dB.

S′f 1 =− j0.9814, S′f 2 =− j0.9038, S′f 3 =− j0.0390,

S′f 4 = + j0.0390, S′f 5 = + j0.9038, S′f 6 = + j0.9814,

S′p1 =− j4.2650, S′p2 =− j0.6102, S′p3 =− j0.4702,

S′p4 = + j0.4702, S′p5 = + j0.6102, S′p6 = + j4.2650.

(4.12)

From (4.1)-(4.2) with obtained S′f i and S′pk in (4.12), the transfer function in the form

of (4.3) can be obtained and the non-zero coefficients are as follows:

83



Figure 4.3: The frequency response of a lowpass filter prototype for triple-passband filter.

az0 = 1.497, az2 = 10.877, az4 = 18.784,

az6 = 1.000, ap0 = 0.012, ap1 = 0.129,

ap2 = 0.862, ap3 = 0.583, ap4 = 1.904,

ap5 = 0.493, ap6 = 1.000, ε′ = 125.332.

(4.13)

Since we have the transfer function in the form of (4.3), the coupling matrix can be

obtained easily. Since this 6th-order filter transfer function has 6 transmission zeros, the

filter can be implemented in canonical structure with a source-load coupling (see Fig. 4.4).

We can also have another transfer function with reduced number of transmission zeros by

removing some transmission zeros. The reason of removing some transmission zeros is to

reduce the number of cross couplings. For example, we can remove a pair of transmission

zeros at ± j4.265 and, using simple trial-and-error (or optimization), the location of reflec-

tion zeros and transmission zeros for the desired frequency response can be obtained. To
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Figure 4.4: The coupling-routing diagram of 6th-order canonical structure filter with a
source-load coupling.

preserve the bandwidth of the triple-passband filter, S11(−1) and S11(1) were set to -20

dB and the criteria of -20.5 dB < S11(Ω′
a and Ω′

b) <-19.5 dB was used for rearrangement

of reflection zeros and transmission zeros. Fig. 4.5 shows the frequency response of the

triple-passband filter after removal of a pair of transmission zeros and small adjustment of

reflection zeros and transmission zeros. The newly-obtained reflection zeros and transmis-

sion zeros in Ω′ domain are

S′f 1 =− j0.9814, S′f 2 =− j0.9039, S′f 3 =− j0.0386,

S′f 4 = + j0.0386, S′f 5 = + j0.9039, S′f 6 = + j0.9814,

S′p1 =− j0.6102, S′p2 =− j0.4760, S′p3 = + j0.4760,

S′p4 = + j0.6102.

(4.14)

From (4.1), (4.2), and (4.14), the coefficients of the transfer function in the form of

(4.3) for the frequency response in Fig. 4.5 can be obtained:
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Figure 4.5: The frequency response of a lowpass filter prototype for triple-passband filter.
This response is obtained by rearranging the reflection zeros and transmission
zeros of the frequency response shown in Fig. 4.3 after removing a pair of
outermost transmissions zeros.

az0 = 0.084, az2 = 0.599, az4 = 1.000,

ap0 = 0.012, ap1 = 0.128, ap2 = 0.861,

ap3 = 0.579, ap4 = 1.903, ap5 = 0.492,

ap6 = 1.000, ε = 7.247.

(4.15)

Since the frequency response shown in Fig. 4.5 has 4 transmission zeros, the filter can be

implemented in a canonical structure without a source-load coupling. Hence, in this case,

we can remove the source-load coupling shown in Fig. 4.4. The corresponding coupling

matrix is given in (4.16).
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M =




0 0.7660 0 0 0 −0.2805

0.7660 0 0.5431 0 0.0043 0

0 0.5431 0 0.0043 0 0

0 0 0.0043 0 0.5431 0

0 0.0043 0 0.5431 0 0.7660

−0.2805 0 0 0 0.7660 0




R = 0.2460.

(4.16)

The reflection zeros and transmission zeros of the filter response in Fig.4.5 can be de-

termined by direct optimization process. The convergence of the optimization depends on

the initial values. Therefore, the reflection zeros and transmission zeros in Fig.4.3 which

can be easily obtained by the proposed frequency transformation given by (4.4) are good

initial values for an optimization process or trial-and-error approach.

4.3.2 12th-Order Filter

Fig. 4.6 shows the frequency response of a 4th-order single-passband lowpass prototype

in Ω domain. A pair of transmission zeros are located at S =± j2.0 and the minimum return

loss in the passband is set to be 20 dB. With the given transmission zeros and return loss,

the reflection zeros of the filter can be easily found. The reflection zeros are located at

S = ± j0.933 and S = ± j0.406. For Ω′
a = 0.20 and Ω′

b = 0.60, the unknown coefficients

in (4.4) are c1 = 0.600, c2 = 0.267, and Ω′
z = 0.447. Using the frequency transformation

given in (4.4), we can find the reflection zeros and transmission zeros of the triple-passband

filter in Ω′ domain:
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Figure 4.6: The frequency response of a 4th-order lowpass filter prototype with the trans-
mission zero at ± j2.0 and return loss of 20 dB.

S′f 1 =− j0.9753, S′f 2 =− j0.8108, S′f 3 =− j0.6586,

S′f 4 =− j0.6052, S′f 5 =− j0.1897, S′f 6 =− j0.0912,

S′f 7 = + j0.0912, S′f 8 = + j0.1897, S′f 9 = + j0.6052,

S′f 10 = + j0.6586, S′f 11 = + j0.8108, S′f 12 = + j0.9753,

S′p1 =− j1.4450, S′p2 =− j0.5480, S′p3 =− j0.4472,

S′p4 =− j0.4472, S′p5 =− j0.3031, S′p6 = + j0.3031,

S′p7 = + j0.4472, S′p8 = + j0.4472, S′p9 = + j0.5480,

S′p10 = + j1.4450.

(4.17)

The frequency response in Ω′ domain is shown in Fig. 4.7. Since the frequency response of

12th-order filter has 10 transmission zeros, the filter can be implemented in the canonical

structure of which the coupling-routing diagram is shown in Fig. 4.8. As discussed in

88



Figure 4.7: The frequency response of a lowpass filter prototype for triple-passband filter.

Figure 4.8: The coupling-routing diagram of 12th-order canonical structure filter.

the previous section, the transfer function can be extracted from the locations of reflection

zeros and transmission zeros in Ω′ domain and finally the coupling matrix can be obtained.

In previous section, we removed a pair of outermost transmission zeros to reduce the

number of cross-coupled elements and rearranged the location of the reflection zeros and

transmission zeros for required response. In this section, the transmission zeros in stop-

bands between two passbands are removed. In other word, the overlapped transmission

zeros at ±Ω′
z are removed and reflection zeros and transmission zeros are rearranged. The
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rearranged reflection zeros and transmission zeros are

S′f 1 =− j0.9900, S′f 2 =− j0.9070, S′f 3 =− j0.7550,

S′f 4 =− j0.6205, S′f 5 =− j0.1890, S′f 6 =− j0.0860,

S′f 7 = + j0.0860, S′f 8 = + j0.1890, S′f 9 = + j0.6205,

S′f 10 = + j0.7550, S′f 11 = + j0.9070, S′f 12 = + j0.9900,

S′p1 =− j1.2000, S′p2 =− j0.3710, S′p3 =− j0.3050,

S′p4 = + j0.3050, S′p5 = + j0.3710, S′p6 = + j1.2000.

(4.18)

From (4.1), (4.2), and (4.18), the coefficients of the transfer function in (4.3) can be

obtained as follows:

az0 = 0.018, az2 = 0.345, az4 = 1.671,

az6 = 1.000, ap0 = 0.0005, ap1 = 0.0046,

ap2 = 0.0320, ap3 = 0.1398, ap4 = 0.4947,

ap5 = 1.0655, ap6 = 2.3645, ap7 = 2.9682,

ap8 = 4.4947, ap9 = 3.3058, ap10 = 3.5934,

ap11 = 1.2589, ap12 = 1.0000.

(4.19)

Fig. 4.9 shows the frequency response of the filter with reduced number of the trans-

mission zeros. Since the 12th-order filter has 6 transmission zeros, it can have the coupling-

routing structure shown in Fig. 4.10. The coupling matrix of the frequency response shown

in Fig. 4.9 is given in (4.20).
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Figure 4.9: The frequency response of a lowpass filter prototype for triple-passband filter.
This response is obtained by rearranging the reflection zeros and transmission
zeros of the frequency response shown in Fig. 4.7 after removing repeated
transmissions zeros at ±Ω′

z.

Figure 4.10: The coupling-routing diagram of 12th-order canonical structure filter.
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M =




0 M1,2 0 0 0 0 0 0 0 0 0 0
M1,2 0 M2,3 0 0 0 0 0 0 0 0 0

0 M2,3 0 M3,4 0 0 0 0 0 M3,10 0 0
0 0 M3,4 0 M4,5 0 0 0 M4,9 0 0 0
0 0 0 M4,5 0 M5,6 0 M5,8 0 0 0 0
0 0 0 0 M5,6 0 M6,7 0 0 0 0 0
0 0 0 0 0 M6,7 0 M7,8 0 0 0 0
0 0 0 0 M5,8 0 M7,8 0 M8,9 0 0 0
0 0 0 M4,9 0 0 0 M8,9 0 M9,10 0 0
0 0 M3,10 0 0 0 0 0 M9,10 0 M10,11 0
0 0 0 0 0 0 0 0 0 M10,11 0 M11,12
0 0 0 0 0 0 0 0 0 0 M11,12 0




R = 0.6295.

(4.20)

In (4.20), M1,2 = M11,12 = 0.7558, M2,3 = M10,11 = 0.5568, M3,4 = M9,10 = 0.4677, M4,5 =

M8,9 = 0.5718, M5,6 = M7,8 = 0.3003, M6,7 = 0.1301, M5,8 = −0.0022, M4,9 = 0.3638,

and M3,10 = −0.1158. In addition, the filter can be of cascaded-quadruplet structure (see

Fig. 4.11), since the Nth-order cascaded-quadruplet structure filter can realize up to N/2

transmission zeros. The corresponding coupling matrix is

M =




0 M1,2 0 M1,4 0 0 0 0 0 0 0 0
M1,2 0 M2,3 0 0 0 0 0 0 0 0 0

0 M2,3 0 M3,4 0 M3,6 0 0 0 0 0 0
M1,4 0 M3,4 0 M4,5 0 0 0 0 0 0 0

0 0 0 M4,5 0 M5,6 0 M5,8 0 0 0 0
0 0 M3,6 0 M5,6 0 M6,7 0 0 0 0 0
0 0 0 0 0 M6,7 0 M7,8 0 M7,10 0 0
0 0 0 0 M5,8 0 M7,8 0 M8,9 0 0 0
0 0 0 0 0 0 0 M8,9 0 M9,10 0 M9,12
0 0 0 0 0 0 M7,10 0 M9,10 0 M10,11 0
0 0 0 0 0 0 0 0 0 M10,11 0 M11,12
0 0 0 0 0 0 0 0 M9,12 0 M11,12 0




R = 0.6295.

(4.21)

In (4.21), M1,2 = M11,12 = 0.6069, M2,3 = M10,11 = 0.3438, M3,4 = M9,10 = 0.3239, M4,5 =

M8,9 = 0.5030, M5,6 = M7,8 = 0.0070, M6,7 = 0.7796, M1,4 = M9,12 = 0.4506, M3,6 =
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Figure 4.11: The coupling-routing diagram of 12th-order cascaded-quadruplet structure fil-
ter.

M7,10 =−0.4092, and M5,8 =−0.3993.

4.4 Measurements

In this section, the measured result of the 12th-order triple-passband filters is discussed

briefly. The coupling matrix obtained in the previous section, (4.20), is used for filter

design. The microstrip open-loop resonators are adopted in filter design. The Rogers 5880

substrate with dielectric constant of 2.2 and dielectric thickness of 0.787 mm is used for

filter design. Since the design procedure for microstrip open-loop resonator filters are well

described in [48], it is not repeated in this thesis.

A 12th-order triple-passband filter is designed to have the center frequency of 2 GHz

and the overall bandwidth ( fb3− fa1) of 200 MHz. Fig. 4.12 shows the microstrip layout of

the 12th-order triple-passband filter. The filter has microstripline open-loop resonators and

each of them has a perimeter about one half-wavelength at the center frequency. Similar to

coupled stripline open-loop resonators (See Chapter 3), coupled microstripline open-loop

resonators can have electric coupling, magnetic coupling, and mixed coupling. In this fil-

ter design, positive sign is assigned to magnetic coupling and negative sign is assigned to

electric coupling. Since M3,10 and M5,8 are negative, resonator 3 and resonator 10, and res-

onator 5 and resonator 8 have electric coupling structure. Also, resonator 4 and resonator

9, and resonator 6 and resonator 7 have magnetic coupling since M4,9 and M6,7 are positive.
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Figure 4.12: The microstrip layout of the 12th-order triple-passband open-loop resonator
filter. b = 2.42, r = 17.2, g1 = 2.02, g2 = g3 = g4 = g5 = g6 = 2.36, d01 =
0.30, d12 = 0.40, d23 = 0.70, d34 = 0.95, d45 = 0.52, d56 = 1.10, d67 = 3.00,
d58 = 10.10, d49 = 1.36, and d310 = 2.10. All dimensions are in mm.

Other direct couplings (couplings between consecutively-numbered resonators) can be ei-

ther positive or negative as long as the signs of direct coupling values are symmetric with

respect to the symmetric plane (see Fig. 4.12). For example, both M1,2 and M11,12 can be

negative. Also, both M2,3 and M10,11 can be negative.

Fig. 4.13 show the measured results of the 12th-order triple-passband filter, respec-

tively. Tuning process has been applied to the filter in order to compensate the errors.

The potential sources of errors are frequency-dependent coupling coefficients, discrepan-

cies between the actual and desired coupling coefficients, and unwanted couplings [49].

The tuning was mainly applied to the open gap of each resonator by trimming or using

some tuning elements as described in [50]. It is shown that three passbands are established

and the measured response agrees well with the synthesis results. Although this filter for

demonstration has somewhat high insertion loss and rounded passband edges caused by
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(a)

(b)

Figure 4.13: The measured and synthesized frequency response of the 12th-order triple-
passband open-loop resonator filter.
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finite Q-factor of resonators, its performance is good enough to show how the presented

synthesis method works.

4.5 Asymmetric Triple-passband filter

Previous sections have dealt with triple-passband filters with symmetric frequency re-

sponses. In this section, the frequency transformation for asymmetric triple-passband fil-

ters is briefly discussed. Fig. 4.14 shows the transmission responses of an asymmetric

triple-passband filter in Ω and Ω′ domain. This filter has three passbands which are from

−1 to Ω′
b1, from Ω′

a1 to Ω′
a2, and from Ω′

b2 to 1, respectively. Fig. 4.14 shows the case

of Ω′
b1 < 0, Ω′

a1 < 0, Ω′
a1 > 0, and Ω′

b2 > 0. For asymmetric triple-passband filters, the

frequency transformation can be written as follows:

S =
S′− jΩ′

0
c0

+
c1

S′− jΩ′
z1

+
c2

S′− jΩ′
z2

(4.17)

where unknown variables c0, c1, c2, Ω′
z1, Ω′

z2, and Ω′
0 can be determined by solving the

following equations simultaneously.

1−Ω′
0

c0
− c1

1−Ω′
z1
− c2

1−Ω′
z2

= 1

Ω′
a2−Ω′

0
c0

− c1

Ω′
a2−Ω′

z1
− c2

Ω′
a2−Ω′

z2
= 1

Ω′
b1−Ω′

0
c0

− c1

Ω′
b1−Ω′

z1
− c2

Ω′
b1−Ω′

z2
= 1

Ω′
b2−Ω′

0
c0

− c1

Ω′
b2−Ω′

z1
− c2

Ω′
b2−Ω′

z2
=−1

Ω′
a1−Ω′

0
c0

− c1

Ω′
a1−Ω′

z1
− c2

Ω′
a1−Ω′

z2
=−1

−1−Ω′
0

c0
− c1

−1−Ω′
z1
− c2

−1−Ω′
z2

=−1.

(4.18)
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Figure 4.14: The frequency response of the asymmetric triple-passband filter in Ω and Ω′
domain.

Fig. 4.15 shows the frequency response of the asymmetric triple-passband filter ob-

tained by using the frequency transformation in (4.17) and a lowpass filter prototype in

Fig. 4.6. Three passbands in the Ω′ domain are set to be from −1 to Ω′
b1 = −0.80, from

Ω′
a1 = −0.05 to Ω′

a2 = 0.25, and from Ω′
b2 = 0.60 to 1, respectively. From (4.18), un-

known variables are found as c0 = 0.4500, c1 = 0.5709, c2 = 0.2597, Ω′
z1 = −0.6087,

Ω′
z2 = 0.4198, and Ω′

0 = 0.1889. Note that each passband can be designed to have arbitrary

bandwidths.

4.6 Conclusions

This work have presented a synthesis method for triple-passband filters using frequency

transformation. This synthesis method is based on the frequency transformation technique.
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Figure 4.15: The frequency response of an asymmetric triple-passband filter in Ω′ domain.
Ω′

b1 =−0.80, Ω′
a1 =−0.05, Ω′

a2 = 0.25, and Ω′
b2 = 0.60.

A 6th-order and a 12th-order triple-passband filters have been synthesized to show the

validation of the proposed synthesis approach. The measured result of the 12th-order mi-

crostrip open-loop resonator filter has shown a good agreement with the synthesized re-

sponse. The frequency transformation for asymmetric triple-passband filters has also been

presented for general cases. This frequency transformation has been found to be general

enough to allow for designing triple-passband filters with arbitrary three passbands.
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CHAPTER 5

Tunable Microwave Filter

with a Constant Frequency Response

5.1 Introduction

Recently, tunable or reconfigurable microwave filters have found great demands for

their applications in adhoc radios and agile radar systems. Diode varactors [51][52][53][54],

MEMS (Micro-Electro-Mechanical Systems) capacitors [55][56], and BST (Barium-Strontium-

Titanate) varactors [57] have been widely used as tuning elements for such filters.

One of the drawbacks of reported tunable filters is that the frequency response (or band-

width) is not maintained as the center frequencies are adjusted. In these designs, only the

resonant frequencies of resonators are adjusted without adjustment of coupling coefficients.

In order to make filters with wide tuning range while maintaining their frequency response,

not only the resonant frequencies of resonators but also the coupling coefficients among res-

onators should be adjusted. Hence, filter architectures that allow for placement of tuning

elements for controlling the resonators and all coupling coefficients are needed. However,

as the filter structure becomes complex, a systematic tuning strategy is required to achieve

a prescribed frequency response.

Tunable filters with nearly same bandwidth over wide tuning range have been reported
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recently [58][59]. Although, these filters do not have tuning elements in coupling struc-

tures, bandwidths are maintained nearly constant over tuning ranges. In [58], analytic

approach to design a combline tunable filter with constant frequency response shape and

bandwidth is reported. This design approach could remove the drawbacks of the filter

reported in [53]. In [59], a two-pole tunable filter is presented and direct optimization

method is used for designing coupling structures for constant bandwidth and insertion loss

of the filter. However, a tunable filter with a prescribed filtering function (i.e. Butterworth,

Chebyshev) cannot be designed using direct optimization method given in [59].

In this paper, an analytic design method is described for microstrip tunable filters. With

this method, the tunable filter can be designed analytically with prescribed frequency re-

sponse. Two two-pole tunable filters which have tuning range of 1.1 - 1.5 GHz and 2.1

- 2.7 GHz with Chebyshev response are designed for demonstration. Also, 3rd-order and

4th-order tunable filters are designed to show the validation of the proposed analytic design

method.

5.2 Design Theory

Fig. 5.1 shows a schematic of a 2nd-order tunable microstrip filter introduced in [59].

This filter employs two step-impedance resonators which are coupled by capacitor circuits.

In [59], the capacitance values are determined by an optimization method in order to keep

a constant bandwidth and insertion loss within the tuning range.

In this section, we describe an analytic design method for tunable step-impedance mi-

crostrip resonator filters [60]. The proposed design method uses analytic approach, hence

the optimization process is not required. Also, this method enables designers to realize a

filter with prescribed filtering response, which is not easily done with optimization meth-

ods. The tunable filter is designed such that the center frequency can be adjusted from 1.1

GHz to 1.5 GHz and the equi-ripple bandwidth and return loss are kept constant to 20 MHz
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Figure 5.1: A schematic of 2nd-order tunable microstrip filter. Parameters in the parenthe-
ses are physical parameters.

and 20 dB, respectively. The filters discussed in this paper are assumed to be implemented

on the substrate with the height of 1.28 mm and the dielectric constant of 6.15.

5.2.1 Step-Impedance Resonator

Step-impedance microstrip resonators have been widely applied to microstrip filter

design for size reduction and harmonic control. Also, it has been shown that the step-

impedance microstrip resonator can have wide tuning range based on varactors’ position

and the ratio of the length of low-impedance section and that of high-impedance section.

In this work, we use the step-impedance microstrip resonator shown in Fig. 5.2. For res-

onant frequency and slope parameter calculation, input admittance of the resonator should

be derived. Input admittance of the resonator can be derived by using transmission line

theory [16]. If fringe capacitance at open ends and parasitic inductance and capacitance at

the step discontinuities are ignored, the input admittance, as seen from on end, is given by

Yin = jB = jYb
N
D

(5.1)
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Figure 5.2: A symmetric step-impedance microstrip resonator loaded with a varactor.

where

Yb =1/Zb

N =ωCv
(
Z2

aZb
(
tanθb− tan2θatanθb + tanθb

− tan2θatanθb
)
+2Zatanθa

(
Z2

b −Z2
a tan2θb

))

+
(
Zatanθb +Zbtanθa

)2

D =ωCv
(
Z2

aZb−2Z3
a tanθatanθb−Z2

aZbtan2θa

−Z2
aZbtan2θb−2ZaZ2

b tanθaθb

+Z2
aZbtan2θatan2θb

)
+Z2

a tanθb +ZaZbtanθa

−ZaZbtanθatan2θb−Z2
b tan2θatanθb.

(5.2)

The resonant frequency can be found by solving N = 0. Fig. 5.3 shows resonant frequencies

of the step-impedance resonator with La = 10 mm, Lb = 24.6 mm, Wa = 0.684 mm (Za = 80

Ω), and Wb = 7.274 mm (Zb = 20 Ω). The resonant frequencies of the step-impedance

resonator are calculated to be from f1 = 1.079 GHz to f2 = 1.518 GHz as the capacitance

of the varactor varies from 2.25 pF to 0.75 pF. Small discrepancies between the calculated

and simulated resonant frequencies are due to the parasitic elements that were ignored in

the analytical calculation.
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Figure 5.3: The resonant frequencies of the step-impedance resonator.

5.2.2 Coupling Elements

Fig. 5.4 shows a generalized Nth-order bandpass filter circuit using admittance invert-

ers. Admittance inverters are determined by the prescribed filter response and fractional

bandwidth. For 2nd-order Chebyshev function with 20 dB return loss, the (N +2)×(N +2)

coupling matrix is

M =




0 M01 0 0

M01 0 M12 0

0 M12 0 M23

0 0 M23 0




=




0 1.225 0 0

1.225 0 1.660 0

0 1.660 0 1.225

0 0 1.225 0




.

(5.3)
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Figure 5.4: A generalized Nth-order bandpass filter circuit with admittance inverters.

Figure 5.5: An inverter circuit with a series capacitor.

The values of the admittance inverters in terms of elements of the coupling matrix can be

obtained from

J01 =

√
Y0b
Qe

= M01

√
Y0b

BW
f0

J12 = M12b
BW
f0

(5.4)

where f0, BW , and Qe are the center frequency, the bandwidth, and the external quality

factor of the filter, respectively. Also, b is slope parameter of the resonator defined by

b =
ω0

2
dB(ω)

dω

∣∣∣∣
ω=ω0

(5.5)

and B is the imaginary part of the resonator input admittance given by (5.1).

There are numerous circuits useful as admittance inverters and a circuit shown in Fig.

5.5 is one of the inverting circuit for capacitor-coupled filters. With given values of admit-
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Table 5.1: Design parameters for the 2nd-order tunable filter.
Parameter f1 f2

C01 = C23 1.861 pF 1.467 pF

φ01 1 = φ23 2 -0.362 radian -0.378 radian

C12 0.912 pF 0.751 pF

φ12 1 = φ12 2 -0.243 radian -0.279 radian

tance inverters (Ji j), capacitance (Ci j) and electrical length of the transmission lines (φi j i,

φi j j) can be calculated using the following equations:

∣∣∣∣∣
Bi j√
YiYj

∣∣∣∣∣ =

Ji j√
YiYj√√√√

(
1−

(
Ji j

Yi

)2
)(

1−
(

Ji j

Yj

)2
)

φi j i =− tan−1




2
Y j

Bi j
Yi

Yj
− Yj

Yi
+

YiYj

B2
i j




φi j j =− tan−1




2
Yi

Bi j
Yj

Yi
− Yi

Yj
+

YiYj

B2
i j


 .

(5.6)

If Yi = Yj = Y0, (5.6) becomes well-known equations [22]:

∣∣∣∣
Bi j

Y0

∣∣∣∣ =

Ji j

Y0

1−
(

Ji j

Y0

)2

φi j i = φi j j =− tan−1
(

2Bi j

Y0

)
.

(5.7)

Ci j, φi j i, φi j j computed at frequency f1 and f2 are summarized in Table 5.1. Since
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Figure 5.6: A 2nd-order tunable filter with varactors. Cv01, Cv12, and Cv23 are for inverter
circuit and Cv’s are for adjusting the resonant frequencies of the resonators.

C01, C12, and C23 should vary as center frequency of the filter changes, varactors can be

used for C01, C12, and C23. Therefore, if we can ignore the difference of φ’s at f1 and f2,

2nd-order tunable step-impedance microstrip resonator filter can be designed as shown in

Fig. 5.6. However, this filter requires that 5 varactors should be adjusted to have specific

values as the center frequency is changed. To rectify this difficulty, an alternate approach is

pursued. In this approach, fixed capacitors and transmission line segments are used whose

frequency response closely follows those of the desired inverters. It was found that fixed-

value capacitors instead of varactors can be used in the inverting circuits [59].

Fig. 5.7 shows the alternative circuit which corresponds to J01 inverter. In this filter

design, Zi = Z0 = 50 Ω and Z j = Zb, since port 2 of the circuit in Fig. 5.7 is connected to

the low-impedance (Zb) transmission line section of the resonator. Since the circuit for J23

is symmetric to that for J01, only the circuit for J01 is discussed in this work. The magnitude

of S21 of the admittance inverter is given by

|S21|=
2

J01√
Y0Yb

1+
J2

01
Y0Yb

. (5.8)

The inverting circuit should have different S21 values as the center frequency of the filter is

adjusted. In this work, we present simple method to determine the elements of the inverter
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Figure 5.7: An inverter circuit for J01 inverter.

circuits. The capacitor values are determined such that the inverting circuit has required

|S21| value at f = f1 and f = f2. S21 of the circuit in Fig. 5.7 is given by

S21(ω) =
2

√
Z j

Zi
+

1
jωCi ja

√
ZiZ j

+ jωCi jb
√

ZiZ j +
(

1+
Ci jb

Ci ja

)√
Zi

Z j

.
(5.9)

Therefore, simultaneous equations for determining C01a and C01b can be established as

follows:

∣∣∣∣∣∣∣∣∣

2√
Zb

Z0
+

1
jω1Ci ja

√
Z0Zb

+ jωCi jb
√

Z0Zb +
(

1+
Ci jb

Ci ja

)√
Z0

Zb

∣∣∣∣∣∣∣∣∣
=

2
J01√
Y0Yb

1+
J2

01
Y0Yb

∣∣∣∣∣∣∣∣
ω=ω1∣∣∣∣∣∣∣∣∣

2√
Zb

Z0
+

1
jω2Ci ja

√
Z0Zb

+ jωCi jb
√

Z0Zb +
(

1+
Ci jb

Ci ja

)√
Z0

Zb

∣∣∣∣∣∣∣∣∣
=

2
J01√
Y0Yb

1+
J2

01
Y0Yb

∣∣∣∣∣∣∣∣
ω=ω2

.

(5.10)
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From (5.10), the values for the capacitors C01a and C01b are found to be C01a=2.883 pF,

C01b=1.601 pF. φ01 0 and φ01 1 can be determined from phase of S11 and S22 of the capaci-

tor circuit shown in Fig. 5.7. The transmission line sections are added to or absorbed into

connecting transmission line on either side. Since the transmission line section of length

φ01 0 is added to or absorbed into input feeding transmission line, length φ01 0 is meaning-

less. Therefore, only φ01 1 is needed and given by

φ01 1(ω) = tan−1 (S22(ω)) (5.11)

where

S22(ω) =

−
√

Z j

Zi
+

1
jω1Ci ja

√
ZiZ j

− jωCi jb
√

ZiZ j +
(

1+
Ci jb

Ci ja

)√
Zi

Z j
√

Z j

Zi
+

1
jω1Ci ja

√
ZiZ j

+ jωCi jb
√

ZiZ j +
(

1+
Ci jb

Ci ja

)√
Zi

Z j

. (5.12)

From (5.12), φ01 1 can be easily obtained at f1 and f2: φ01 1(ω1)=-0.430 radian and φ01 1(ω2)=-

0.517 radian. Since φ01 1 has negative values, the transmission line section needs to be

absorbed into resonator 1, hence the resonator becomes shorter. Also φ01 1 has differ-

ent values at different frequencies, hence the value of l01 1 is chosen to be the average of

l01 1(ω1) and l01 1(ω2).

Fig. 5.8 shows the circuit for J12 inverter. In this filter design, Zi = Z j = Zb. Similarly

to J01 inverter circuit, we can determine capacitor values by using the fact that S21 of the

circuit shown in Fig. 5.8 is

S21(ω) =
2

2+2
Ci jb

Ci ja
− j2ωCi ja + jωCi jb

ω2C2
i jaZb

+ jωCi jbZb

. (5.13)

Simultaneous equations for deciding C12a and C12b are
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Figure 5.8: An inverter circuit for J12 inverter.

∣∣∣∣∣∣∣∣∣

2

2+2
Ci jb

Ci ja
− j2ωCi ja + jωCi jb

ω2C2
i jaZb

+ jωCi jbZb

∣∣∣∣∣∣∣∣∣
=

2
J12

Yb

1+
J2

12

Y 2
b

∣∣∣∣∣∣∣∣∣
ω=ω1∣∣∣∣∣∣∣∣∣

2

2+2
Ci jb

Ci ja
− j2ωCi ja + jωCi jb

ω2C2
i jaZb

+ jωCi jbZb

∣∣∣∣∣∣∣∣∣
=

2
J12

Yb

1+
J2

12

Y 2
b

∣∣∣∣∣∣∣∣∣
ω=ω2

.

(5.14)

The obtained results by solving (5.14) are C12a=5.244 pF, C12b=13.053 pF. Similarly, once

the values of the capacitors are determined, we can also obtain φ12 1 and φ12 2 using the

method applied to φ01 1.

5.2.3 Filter Performance

Fig. 5.1 shows an entire structure of the 2nd-order tunable microstrip filter and Table

5.2 summarizes design results from the proposed analytic approach. These design results

are used in circuit simulation for validation of the proposed design method.

Fig. 5.9 shows the simulated frequency responses of the tunable filter designed us-

ing the proposed analytic approach. Circuit simulation has been performed using Agilent
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Table 5.2: Design result of the tunable filter.
Parameter Values

La 10.000 mm

Lb-l01 1 20.244 mm

Lb-l12 1 14.155 mm

Za 80 Ω
Zb 20 Ω

C01a 2.883 pF

C01b 1.601 pF

C12a 5.244 pF

C12b 13.053 pF

Figure 5.9: Frequency responses of the 2nd-order tunable filter.

Advanced Design System. Since the goal of this work is to provide the design method

for tunable filters with prescribed frequency responses, loss factors and other parasitic el-

ements were not taken into account in Fig. 5.9 in order to observe whether the frequency

responses varies as the center frequencies of the filters are adjusted by varactors. It is ob-

served that the frequency response of the filter designed using the proposed method rarely
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Table 5.3: Design parameters for the 2nd-order tunable filter.
parameter f1 f2

C01 = C23 0.669 pF 0.602 pF

φ01 1 = φ23 2 -0.295 radian -0.323 radian

C12 0.269 pF 0.265 pF

φ12 1 = φ12 2 -0.141 radian -0.178 radian

changes as the center frequency is adjusted by two varactors which are located at the center

of each resonator. It is worth mentioning that capacitance of fixed value capacitors can be

determined analytically to make the tunable filter have prescribed filtering function.

5.3 Design Example and Measurement

In this section, the design and measurement results of a 2nd-order tunable filter which

can be tuned from 2.1 GHz to 2.7 GHz are described for the validation of the presented

design method. Also, we discuss practical parameters which need to be considered in actual

application. The dielectric constant of the substrate is 6.15 and the dielectric thickness is

1.28 mm (Rogers RO3006). The filter is designed to have Chebyshev function response

with 20 dB return loss and the corresponding (N +2)× (N +2) coupling matrix is given in

(5.3).

Using the coupling matrix in (5.3) and (5.4)-(5.7), we can compute the required C’s and

φ’s and they are summarized in Table 5.3. Resonant frequencies and slope parameters are

extracted from simulation for accurate design. C12 have almost the same value at f1 and f2

but C01 and C23 should vary as center frequency of the filter is adjusted. Therefore, instead

of using the capacitor circuit shown in Fig. 5.8, we can use single fixed-value capacitor for

C12 and set C12 value to the average value of those required at f1 and f2 for J12 inverter.

Since two resonators are juxtaposed in layout design, there is gap capacitance between

resonators. Hence, C12 value should be chosen to be smaller than calculated value. For J01
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Figure 5.10: The schematic of the 2nd-order tunable microstrip filter.

Figure 5.11: The fabricated 2nd-order tunable microstrip filter.

and J23 inverter, the capacitor circuit shown in Fig. 5.7 is employed. From (5.10)-(5.12),

design parameters are found to be C01a = 0.831 pF, C01b = 0.556 pF, φ01 1(ω1) = −0.317

radian, and φ01 1(ω2) = −0.366 radian. l’s are determined to be the average of l(ω1) and

l(ω2).

Fig. 5.10 and Fig. 5.11 show the structure of the 2nd-order tunable microstrip filter and
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(a)

(b)

Figure 5.12: Measured and simulated frequency responses of the 2nd-order tunable mi-
crostrip resonator filter.
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the fabricated filter, respectively. Skyworks varactor SMV1405 is used in this design. The

measured frequency responses are compared with the simulated ones in Fig. 5.12. Tuning

voltage (Vt) has been increased from 0.5 V to 2.5 V . Electromagnetic field simulation result

has been obtained by using Zeland IE3D. Due to the insertion loss of the filter, 3-dB band-

widths, instead of equi-ripple bandwidth, have been observed. 90 MHz 3-dB bandwidth

has been observed within whole tuning range in simulation result. Also, it has been mea-

sured to be 93.75 MHz at Vt=0.5 V and 1.5 V , and 86.25 MHz at Vt=2.5 V . We have small

bandwidth variation in measurement while the bandwidth is constant in simulation. This

is due to the fact that commercially available capacitors which have nearest capacitance

values to the desired ones are used in filter fabrication. Also, small discrepancies between

simulation and measurement can be attributed to the fabrication error and the tolerances

of the capacitors. It should be noted that the shape of frequency responses are maintained

within wide tuning range (about 30%).

5.4 Design of Higher-Order Filters

In this section, application of the proposed design method to the higher-order tunable

filter is described. The design procedure described in the Section 5.2 is applied to 3rd-order

and 4th-order tunable filter design. Also, 20 MHz equi-ripple bandwidth is used in filter

design.

For 3rd-order and 4th-order Chebyshev response with 20 dB return loss, the (N +2)×
(N +2) coupling matrices are

114



Figure 5.13: Frequency response of a 3rd-order tunable filter. The design parameters are
Lb-l01 1=20.368 mm, Lb-l12 1=14.125 mm, Za=80 Ω, Zb=20 Ω, C01a=2.527
pF, C01b=1.929 pF, C12a=4.751 pF, C12b=21.701 pF. Since the circuit is sym-
metric, only half of the design parameters are provided.

M =




0 1.082 0 0 0

1.082 0 1.030 0 0

0 1.030 0 1.030 0

0 0 1.030 0 1.082

0 0 0 1.082 0




(5.15)
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Figure 5.14: Frequency response of a 4th-order tunable filter. The design parameters are
Lb-l01 1=20.424 mm, Lb-l12 1=14.130 mm, Lb-l23 2=14.130 mm, Za=80 Ω,
Zb=20 Ω, C01a=2.416 pF, C01b=2.028 pF, C12a=4.658 pF, C12b=24.616 pF,
C23a=4.497 pF, C23b=32.207 pF. Since the circuit is symmetric, only half of
the design parameters are provided.

M =




0 1.035 0 0 0 0

1.035 0 0.911 0 0 0

0 0.911 0 0.700 0 0

0 0 0.700 0 0.911 0

0 0 0 0.911 0 1.035

0 0 0 0 1.035 0




. (5.16)

Based on the coupling matrix and the design procedure described in the previous section,

the higher-order tunable filter can also be designed analytically with ease and the simulated

frequency responses for the 3rd-order and 4th-order tunable filter are shown in Fig. 5.13

and Fig. 5.14, respectively. In order to show the validity of the proposed design approach,
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circuit simulation has been performed using Agilent Advanced Design System. It is shown

that the equi-ripple bandwidth is preserved to be 20 MHz with small variation of the return

loss over the whole frequency tuning range. Small variation of the return loss is attributed

to the approximation made on determining l’s. It can be concluded that this proposed

design method make it possible to design higher-order filter analytically and results in

same bandwidth with acceptable small variation of the return loss over the entire frequency

tuning range.

5.5 Conclusions

In this chapter, an analytic design method for Nth-order tunable filters using step-

impedance microstrip resonators is presented. For constant frequency response shape and

bandwidth over the tuning range, inter-resonator coupling structure and external coupling

structures are designed to have specified coupling coefficients at lowest and highest center

frequencies.

A 2nd-order tunable microstrip filter which can be tuned from 1.1 to 1.5 GHz has been

designed for demonstration of the presented design theory. Also, a 2.1-2.7 GHz tunable

filter has been designed and measured to show the validity of the design method. The

measured responses agreed well with the simulated ones.

Finally, design results of 3rd-order and 4th-order tunable filters are provided to show

that the proposed design method can also be applied to higher-order tunable filter design.

Although this work presents the design theory for bandpass filters coupled by admit-

tance inverters, it can be easily modified for the filters coupled by impedance inverters.
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Figure 5.15: A capacitor-loaded step impedance microstrip resonator.

5.6 Appendix I: Step Impedance Resonator

This section provides the equations for deriving the input impedance of the step-impedance

microstrip resonator shown in Fig. 5.15. Input impedance at each step discontinuity is de-

rived as follows:

Z1 =
Zb

jtanθb
(5.17)

Z2 = Za
Z1 + jZatanθa

Za + jZ1tanθa

= Za

Zb
jtanθb

+ jZatanθa

Za + Zbtanθa
tanθb

=
Za

j
Zb−Zatanθbtanθa

Zatanθb +Zbtanθa

(5.18)

Z3 =
Za

j
Zb−Zatanθatanθb

Zatanθb +Zbtanθa
+

1
jωC

=
ZaZbωC−Z2

a tanθatanθbωC +Zatanθb +Zbtanθa

jωC
(
Zatanθb +Zbtanθa

)
(5.19)
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Z4 = Za
Z3 + jZatanθa

Za + jZ3tanθa

= Za

ZaZbωC−Z2
atanθatanθbωC+Zatanθb+Zbtanθa

jωC
(

Zatanθb+Zbtanθa

) + jZatanθa

Za + ZaZbωCtanθa−Z2
atan2θatanθbωC+Zatanθatanθb+Zbtan2θa

ωC
(

Zatanθb+Zbtanθa

)

=
Za

j
ωC

(
ZaZb−2Z2

a tanθaθb−ZaZbtan2θa
)
+Zatanθb +Zbtanθa

ωC
(
Z2

a tanθb +2ZaZbtanθa−Z2
a tan2θatanθb

)
+Zatanθatanθb +Zbtan2θa

(5.20)

Z5 = Zb
Z4 + jZbtanθb

Zb + jZ4tanθb

=
Zb

j
D
N

(5.21)

where

D = ωC
(
Z2

aZb
(
1− tan2θa

)(
1− tan2θb

)−2Z3
a tanθatanθb−2ZaZ2

b tanθaθb
)

+Z2
a tanθb +ZaZbtanθa−ZaZbtanθatan2θb−Z2

b tan2θatanθb

N = ωC
(
Z2

aZb
(
tanθb− tan2θatanθb + tanθb− tan2θatanθb

)
+2Zatanθa

(
Z2

b −Z2
a tan2θb

))

+
(
Zatanθb +Zbtanθa

)2
.

(5.22)

5.7 Appendix II: The Inverter Circuit

This section provides the derivation of (5.6). In this section, we use the conversion be-

tween S parameters and ABCD parameters with a source admittance Yi and load admittance

Yj [61]:

119



S11 =

A

√
Yi

Yj
+B

√
YiYj− C√

YiY j
−D

√
Yj

Yi

A

√
Yi

Yj
+B

√
YiYj +

C√
YiY j

+D

√
Yj

Yi

S12 =
2(AD−BC)

A

√
Yi

Yj
+B

√
YiYj +

C√
YiY j

+D

√
Yj

Yi

S21 =
2

A

√
Yi

Yj
+B

√
YiYj +

C√
YiY j

+D

√
Yj

Yi

S22 =

−A

√
Yi

Y j
+B

√
YiYj− C√

YiYj
+D

√
Yj

Yi

A

√
Yi

Yj
+B

√
YiYj +

C√
YiYj

+D

√
Y j

Yi

.

(5.23)

An admittance inverter is defined as a two-port passive circuit of which the input ad-

mittance is inversely proportional to the load admittance. Taking the admittance inverter

parameter as J, the ABCD matrix of the ideal admittance inverter is expressed as




0 ± j
J

± jJ 0


 . (5.24)

If the inverter is connected to input and output ports whose admittances are Yi and Yj,

respectively, then S21 and S11 are
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S21 =∓ j

2
J√
YiYj

1+
J2

YiYj

S11 =
1−

(
J2

YiYj

)

1+
(

J2

YiYj

) .

(5.25)

The other two coefficients S12 and S22 can also be obtained using (5.24) and S12 = S21

and S22 = S11. (5.25) indicates that there is ±90◦ phase difference between transmission

and reflection coefficients. Especially, the phase of transmission coefficient is ∓90 degree.

We derive (5.6) using the fact that the circuit shown in Fig. 5.5 has the same transmis-

sion and reflection properties as the ideal inverter at the frequency of interest. First, we can

obtain the Bi j using the magnitude of the transmission coefficient. Since the transmission

lines attached to the series capacitor in Fig. 5.5 has no effect on the amplitude of the trans-

mission coefficient, for simplicity, the series capacitor only needs to be taken into account

in calculating the magnitude of the transmission coefficient. The transmission coefficient

of the series element with susceptance Bi j shown in Fig. 5.5 is

S21 =
2√

Yi

Yj
+

√
Y j

Yi
+

1
jBi j

√
YiYj

. (5.26)

The magnitude of (5.26) is then

|S21|= 2√
Yi

Yj
+

Yj

Yi
+2+

YiY j

B2
i j

. (5.27)

Comparing (5.27) with the magnitude of the transmission coefficient of the ideal admittance

inverter
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|S21|=
2

J√
YiYj

1+
J2

YiYj

(5.28)

results in

∣∣∣∣∣
Bi j√
YiY j

∣∣∣∣∣ =

Ji j√
YiYj√√√√

(
1−

(
Ji j

Yi

)2
)(

1−
(

Ji j

Yj

)2
) . (5.29)

Next, we determine the length of each transmission line in such a way that the the

phases of reflection coefficients at input and output are zero, since those of the ideal in-

verter are zero from (5.25). The input port reflection coefficient of the series element with

susceptance Bi j is

S11 =

√
Yi

Yj
−

√
Yj

Yi
+

1
jBi j

√
YiYj

√
Yi

Yj
+

√
Yj

Yi
+

1
jBi j

√
YiYj

=

Yi

Yj
− Y j

Yi
+

YiYj

B2
i j
− j

2Yj

Bi j

Yi

Yj
+

Yj

Yi
+2+

YiYj

Bi j

.

(5.30)

Hence, the phase of the reflection coefficient is

∠S11 =−tan−1




2
Yj

Bi j
Yi

Yj
− Y j

Yi
+

YiYj

B2
i j


 . (5.31)

The phase of S22 can also be obtained in a similar way. Since these phases are not zero,

the series element is embedded between uniform transmission lines. Due to the around-
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trip along the transmission, double of the electrical length of transmission line should be

identical to the phase of corresponding reflection coefficient as given by (5.6). The negative

lengths of lines are absorbed in connecting lines.

It has been confirmed that the phase of transmission coefficient of the circuit shown in

Fig. 5.5 is 90 degree and the magnitude of reflection coefficient is equal to (5.25) with the

parameters given in (5.6). This indicates that the circuit shown in Fig. 5.5 is equivalent

to the ideal inverter at certain frequency. The approach described above is also applied to

derive (5.9)-(5.14).
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CHAPTER 6

Planar Miniaturized Microwave Resonator Filter

6.1 Introduction

In recent years, significant amount of effort has been devoted towards development of

high-performance microwave filters. Particular attention has been given to miniaturization,

tunability, low insertion loss characteristic, low cost, and multi-passband behavior. Novel

topologies employing source-load couplings [62][63] and non-resonating nodes have been

reported [64]. Also for tunability, varactors have been used in various filter’s resonators

[65][66]. The synthesis and realization methods for filters with multiple passband char-

acteristics have also been studied widely [34][35]. To reduce filter dimensions, lumped

elements are often used in miniaturized radio frequency (RF) transceivers. However, it is

well known that lumped elements at microwave frequencies have very poor quality factors

giving rise to significant insertion loss and poor out-of-band rejection. In addition, filter

designers must often times deal with undesirable self-resonance behavior of the lumped

elements at microwave frequencies. Recently a method for fabricating high performance

planar and highly miniaturized microwave filter have been introduced [67]. These filters

used slot-line, as opposed to microstrip line or co-planar waveguide, resonators with a

unique dual-spiral miniaturized configuration. It was shown that for a miniaturized trans-

mission line type resonator, slot-line resonators provide the highest Q. However, the strong
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near-fields around each resonator of these filters can easily interact with what might be

placed beneath the dielectric layer. Although transmission zeros can be introduced using a

finite ground plane, it is difficult to control their location.

In order to allow vertical integration of other RF components with this filter, this letter

presents a modified structure for the miniaturized double-spiral slot-line resonator filter.

This structure is formed by placing a conductor plane beneath the slot-line resonators which

can shield the backside of a filter formed by these resonators. The back conductor is also

used to obtain a controllable source-load coupling that allows placement of transmission

zeros in the filter response.

A two-pole miniaturized slot-line resonator filter with two transmission zeros operating

at 2.11 GHz is designed and realized to demonstrate the proposed concept. A very good

agreement between the simulated results and measured ones is shown.

6.2 Filter Structure and Design

Fig 6.1(a)and 6.1(b) show the structure of two-pole CPW-fed miniaturized slot-line

resonator filters one without and one with a back conductor plane. The performance of the

conventional slot-line filter (without the back conductor plane) is affected by components

or objects placed underneath the resonator and therefore the filter cannot be integrated into

multilayer circuits. Although it is possible to introduce transmission zeros in the filter

response their locations are mainly affected by the dimensions of the ground plane of the

resonator (top layer) and therefore not easily controllable as the size of the top ground plane

is a function of transceiver topology and other design rules. The modified filter structure on

the other hand shields the resonators from under layers and provides a way to control the

location of transmission zeros [68]. To control the transmission zeros, the resonator ground

plane on top is split into two parts with a gap shown in Fig. 6.1(b).

To understand the behavior of the proposed filter, let us consider the signal flow graph
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(a)

(b)

Figure 6.1: Two-pole miniaturized double-spiral slot-line resonator filters: (a) a conven-
tional structure and (b) a novel structure. The dimensions are all in mm and are
a=0.30, b=0.35, d=2.75, e=4.00, f =7.90, g=0.30, h=3.30, i=0.70, and k=1.70.

shown in Fig. 6.2. The source-load coupling (MS,L) enables the filter to have a pair of

transmission zeros.

According to the filter specifications, the transfer function of the filter can be obtained
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Figure 6.2: Signal flow in the two-pole filter with the source-load coupling.

by the proper choice of reflection zeros and transmission zeros. The transmitted power of

an Nth-order filter with N finite-frequency transmission zeros can be expressed in terms of

the transfer function t(S) and is given in (2.30):

|t(S)|2 =
1

1+
ε2

ε2
R

|F(S)|2
|P(S)|2

(6.1)

where S = jΩ and F(S) and P(S) are given by

F(S) =
N

∏
i=1

(S−S f i)

P(S) =
Z

∏
i=1

(S−Spi)

(6.2)

where S f i and Spi are reflection zeros and transmission zeros of the filter, respectively. In

(6.2), Z is the number of transmission zeros. If the filter has the source-load coupling, N

transmission zeros can be realized. The ripple constants ε and εR are given in (2.31) and

(2.32):
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ε = εR

√
1

10R1/10−1
|P( jΩ1)|2
|F( jΩ1)|2

εR =

√
1+

(
10R1/10−1

) |F( jΩ1)|2
|P( jΩ1)|2

(6.3)

where R1 is the prescribed return loss level in decibels (dB) at Ω = Ω1. In general, εR have

a value slightly greater than unity. Also, if the attenuation at S = ± j∞ is very high, then

the ripple factor εR will be almost unity. In this case, the transmitted power and the ripple

factor can be approximated to be

|t(S)|2 =
1

1+ ε2 |F(S)|2
|P(S)|2

(6.4)

ε =

√
1

10R1/10−1
|P( jΩ1)|2
|F( jΩ1)|2

. (6.5)

In our filter design, transmission zeros are determined to be at Spi = ± j28.0 with the

maximum in-band return loss of 20 dB. From (6.4), the transfer function can be obtained

as

t(S) =
1
ε
· S2 +az0

S2 +ap1S +ap0
(6.6)

where az0 = 784, ap1 = 2.991, ap0 = 5.005, and ε = 157.43. The transmission coefficient

S21 of the filter is given by

S21 = 2×A−1
N+2,1 (6.7)

where A−1 is the inverse matrix of A which is given by

A = R+SW+ jM. (6.8)
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Figure 6.3: Frequency response of the filter with the coupling matrix in (6.9).

Here R is a (N +2)× (N +2) matrix whose only nonzero entries are R1,1 = RN+2,N+2 = 1,

W is similar to the (N + 2)× (N + 2) identity matrix, except that W1,1 = WN+2,N+2 = 0,

and M is the (N +2)× (N +2) coupling matrix.

Finally, the (N +2)× (N +2) coupling matrix of the filter can be obtained by equating

(6.6) with (6.7) and is given by

M =




0 1.224 0 0.003

1.224 0 −1.661 0

0 −1.661 0 1.224

0.003 0 1.224 0




. (6.9)

The frequency response of the filter with the coupling matrix in (6.9) is shown in Fig. 6.3.

The filter is designed to have a center frequency of the 2.11 GHz and a bandwidth of 60

MHz.
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From the obtained coupling coefficients, the dimensions of the filter can be determined.

The coupling coefficient between the source and the load is mainly determined by the

distance between the two ground planes, a, and this can be determined by observing the

S21 response with the following relationship:

S21 =
2MS,L

1+M2
S,L

. (6.10)

The external coupling coefficients (MS,1, M2,L can be varied by changing the finger

length d and this can be determined by measuring the phase response of S11 with one

resonator and using

M2
S,1(= M2

2,L) =
∆ f±90◦

∆ f
(6.11)

where ∆ f and ∆ f±90◦ are the absolute bandwidth of the filter and the frequency difference

two frequencies at which the phase shift ±90◦ with respect to the absolute phase at the

center frequency f0 [43].

The coupling between the resonators is mainly determined by the length b. Since this

coupling cannot be measured without source-load coupling for this filter structure and all

the other couplings are known, the length b has been determined in the presence of source-

load coupling and external coupling by matching the measured reflection zero locations to

the theoretical ones.

Using this procedure the filter dimensions shown in Fig. 6.1(b) have been found and

are given in the caption. All dimensions are in mm and the slot width for both resonators

is a fixed value of 0.30 mm.
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(a)

(b)

Figure 6.4: (a) Fabricated 2nd-order slot-line resonator filter, (b) The frequency response
of the 2nd-order slot-line resonator filter.
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6.3 Fabrication and Measurement

A filter is fabricated on a Duroid 5880 substrate with a thickness of 0.787 mm, di-

electric constant of 2.2, and loss tangent of 0.0009. Fig. 6.4 shows the fabricated filter

and compares the measured and simulated responses of the filter. The measured frequency

responses of the filter show a good agreement with the simulated results. Note that a 2nd-

order filter can have two transmission zeros and the positions of transmission zeros are

nearly identical to each other. If the transmission zeros are designed to locate near to the

passband, the filter will have higher frequency selectivity. The simulated and measured

insertion losses are 1.7 dB and 2.0 dB. The insertion loss is mainly due to the finite qual-

ity factor of the resonator and theoretical value of the insertion loss can be calculated by

offsetting S of the matrix SW in (6.8) by a positive real factor δ as follows:

SW =




0 0 0 0

0 S +δ 0 0

0 0 S +δ 0

0 0 0 0




(6.12)

where δ = f0/(BW ·Qu), f0 is the center frequency, and BW is design bandwidth. Since

the unloaded quality factor of the resonator is 110, theoretical insertion loss is calculated

to be 1.7 dB. It is of note that the theoretical value is identical to simulated value.

6.4 Conclusion

In this letter, a miniaturized high-Q filter with very high selectivity using a conductor

plane backed double-spiral slot-line resonator filter is presented. This filter structure allows

vertical integration of multilayer circuits and source-load coupling. A prototype miniatur-

ized 2nd-order slot-line resonator filter at 2.11 GHz is fabricated which occupies an area

as small as 8 mm × 9 mm and presents two transmission zeros. The frequency selectivity
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can be adjusted by controlling the location of the transmission zeros. It is also shown that

simulation and measured results agree very well.
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CHAPTER 7

Conclusions

7.1 Summary

The motivation behind this work was to reduce the size and mass of modern and

next-generation wireless systems by developing novel filter architectures as well as de-

sign methodologies for the advanced microwave filters. The proposed microwave filters

can make a significant impact on the wireless systems by replacing bulky conventional mi-

crowave filters. This is accomplished as the size and mass of the entire wireless systems

are mainly determined by those filters. Current and future wireless systems, such as mo-

bile and satellite communications systems and radars, rely on wider frequency channels

than before, which in turn require more microwave filters for each wireless unit. With the

conventional design approach, the number of microwave filters equals that of allocated fre-

quency channels, which results in a substantial increase in size and mass of the wireless

systems.

In response to this motivation, this thesis has demonstrated new filter architectures and

analytic design methods to be applied to such filters: 1) multiple-passband microwave res-

onator filters, 2) tunable microwave resonator filters for frequency agility, 3) miniaturized

high-performance microwave filters. Existing design theories are not capable of designing

these microwave filters in a methodical fashion. Therefore, this work first embarked on
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developing new analytic design theories and procedures for such filters. This thesis has

demonstrated canonical design procedures for such filters.

7.1.1 Multiple-Passband Microwave Resonator Filters

Conventional wireless communications systems use a bank of microwave filters, one

filter for each of the frequency channel. Since multiple frequency channels are established

by a number of microwave filters which are connected in parallel using signal dividers

and combiners, the size and mass of the wireless system will increase in proportion to the

number of frequency channels. To address this issue in the next generation systems, this

work provides fundamental theories and analytic design procedures for multiple-passband

microwave filters. This work provides frequency transformation techniques for analytic de-

sign of multiple-passband microwave filters. Also, these advanced filters enable realization

of compact wireless systems. Finally, the electrical performance can be improved since the

performance deterioration caused by signal dividers and combiners in conventional wire-

less systems can be removed.

7.1.2 Tunable Microwave Resonator Filters

Unlike the aforementioned wireless communications systems, frequency-agile wireless

systems such as radars and tracking systems use one of a number of allocated frequency

channels and change the channel from one to the other as necessary. Since these systems

use many frequency channels, a switched bank of microwave filters is required, which also

results in increased size of frequency-agile wireless systems. For size reduction, a switched

bank of microwave filters can be replaced by a single tunable microwave filter which can be

electrically adjusted to operate at different channels. In this case, the tunable filter should

exhibit same performance as it operates at the different frequency channels.

This work provides two-dimensional microwave tunable filter architecture and analytic
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design procedure for such filter. It is of note that this proposed analytic procedure produces

filters that exhibit identical electrical performance at all of the various frequency channels.

7.1.3 Miniaturized Microwave Resonator Filters

In general, miniaturized microwave filters exhibit higher signal losses and lower se-

lectivity compared to their physically larger counterparts. In other words, two important

electrical performance characteristics of the microwave filter, small signal losses and high

frequency-selectivity, are not affordable for miniaturized microwave filters. This work fo-

cused on improving electrical performance of small-size microwave filters. It presented

transmission zero technique for electrical design of miniaturized microwave filters with

aforementioned good performance characteristic.

7.2 Future Work

This work can be of help to future researchers in the following area.

7.2.1 Non-Planar Miniaturized Microwave Resonator Filter

There has been increasing demand for the development of miniaturized and high per-

formance microwave and millimeter wave filters. With increasing demand for the develop-

ment of miniaturized and high performance microwave and millimeter wave filters, numer-

ous techniques and methodologies have been presented for reducing the size and volume

of the filters. Especially, most techniques are for planar structure filters. Step-impedance

resonator, miniature open-loop resonator, and miniature hairpin resonator have been pre-

sented for compact filter structure. Also, in the previous chapter, the miniaturized planar

microwave filter with slot-line resonators has been discussed. Although the planar structure

filters have good compatibility with other planar structure components such as amplifiers,

mixers, and oscillators, they suffers from the insertion loss due to the quality factor of the
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planar structure resonators. Since, in general, the quality factor is proportional to the vol-

ume of the resonator, the non-planar structure resonators have higher quality factor than

planar structure resonators. Dielectric-loaded cavity filters, bulk acoustic wave filters [69],

and Low Temperature Co-fired Ceramic (LTCC) filters can be categorized into the non-

planar miniaturized filter. The concept of dielectric resonators was proposed in 1930s and

was brought into practical use for miniaturizing microwave filters in the early 1960s. In

general, cylindrical dielectric resonators and coaxial block dielectric resonators have been

widely used in various applications. RF filtering in mobile terminals is dominated by sur-

face acoustic wave and bulk acoustic wave based filters due to their high performance, small

size, and low cost. As compared to SAW filter technology, BAW filter solutions can provide

lower insertion loss, better frequency selectivity due to the higher quality factor [69]. The

reason for this is that BAW is trapped inside the body of the device material while SAW is

trapped on the surface. The LTCC technology is a very widely used multilayer technology

for designing miniaturized RF passive components, owing to its three-dimensional (3-D)

integration capabilities, process tolerance, and low dielectric loss [70]. It provides an abil-

ity to embed passive components in layers while the active elements are mounted on the

surface layer [71].

In this work, an air-filled meander resonator filter is proposed. The resonator is minia-

turized by meandering the structure and it has low loss due to the air-filled structure. Since

the resonator has meandering structure, it is difficult to implement using conventional fab-

rication processes such as milling process. Hence, a newly-developed fabrication process

called ultrasonic consolidation process can be used to implement such structure.

Fig 7.1 shows a two-pole filter with miniaturized meander resonators. The resonator

is coupled by a microstrip line through a slot on the ground plane of substrate and inter-

resonator coupling is achieved by a slot on the vertical wall. The proposed resonator struc-

ture can be attached to the bottom layer of a microstrip line structure. Since this filter

doesn’t take the place of top surface of the circuit, we can save the space of top surface and
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Figure 7.1: The miniaturized two-pole filter with meandered resonators

overall circuit size can be reduced.

The size and the quality factor of the resonator depends on the number of layers, the

height of each layer, and the width of the resonator. Generally, the quality factor is inversely

proportional to the volume of the resonator. Hence, the trade-off between the size and the

quality factor should be performed.

The resonator of the filter shown in Fig. 7.1 is designed to have the center frequency

of 1.0 GHz. The resonator has 5 layers and the height of each layer is designed to be 3

mm. The width (from one open end to the other) and the length (from one vertical wall to

the other) of the resonator are 40 mm and 30 mm, respectively. If the meandered layer is

stretched out, the total length will be about 150 mm and this is approximately equivalent to

the half of the wavelength.

Fig 7.3 shows the simulated frequency response of the two-pole filter with miniaturized

meander resonators. The simulation was performed with the assumption that substrate

of the microstrip structure is Rogers 5880 and the resonator is made of aluminum. The

minimum return loss are shown to be 20 dB and and insertion loss is 0.6 dB. The quality
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(a)

(b)

Figure 7.2: Enlarged view for the meandered resonators in Fig. 7.1.

factor of each resonator is calculated to be higher than 600.

In this work, the main issue is to validate the proposed filter structure by implementation

and measurement. Also, making the filter shielded from the surroundings and designing

higher-order filters are the other main issue.

The resonator structure shown in Fig. 7.2 can be fabricated using ultrasonic consolida-

tion process. Ultrasonic consolidation is a micro-friction process. It differs substantially

from other direct metal processes in that the technologies of ultrasonic joining are applied

to produce true metallurgical bonds between layers of metal without melting [72]. The
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Figure 7.3: The frequency response of the miniaturized filter shown in Fig. 7.1

layer being consolidated is translated against the previously built volume at very high (ul-

trasonic) frequency, and with low amplitude. As the surfaces vibrate against each other,

surface contaminants such as oxides are fractured and displaced. These atomically clean

surfaces are then brought into close contact under modest pressures at temperatures that

typically do not exceed half the melting point of the metal.

Due to its unique properties, the ultrasonic consolidation process can be of help to

design and fabrication of non-planar miniaturized microwave filters as well as other mi-

crowave components.

7.2.2 High-Pass Filter for the Receiver of Frequency-Modulated

Continuous-Wave Radar

Frequency-Modulated Continuous-Wave (FMCW) radar uses frequency modulation of

the waveform to allow a range measurement and the target range is determined by the

range-related frequency difference between the echo-frequency ramp and the frequency of
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Figure 7.4: A block diagram of an FMCW radar system.

the ramp being transmitted.

FMCW radar has found many applications such as vehicle collision avoidance systems,

helicopter landing systems, and ice layer detecting systems. For example, a FMCW radar

for measuring snow thickness use frequency range of 2-8 GHz with the frequency sweep

time of 10 msec [73]. Due to the large frequency range, the radar use YIG oscillator for

signal generation. Also, FMCW has been used for a X-band collision avoidance radar

which has 1.5 GHz bandwidth and 256 usec sweep time [74]. In this system, FM signal is

generated by VCO which is controlled by a RAM table and a digital-to-analog converter

(DAC).

A W-band FMCW radar for helicopter landing systems has also been demonstrated

[75]. In this radar system, a direct digital synthesizer was used to generate the baseband

frequency modulated (FM) signal with fast sweep time (40 usec). Fast sweep time is es-

sential for almost real-time range detection and high resolution in range detection. This

baseband FM signal then has been up-converted to S-band and W-band consecutively.

A block diagram of FMCW radar for measuring range is shown in Fig. 7.4 [76]. The

transmitter frequency is changed as a function of time in a know manner. In practical

FMCW radar, the frequency cannot be continually changed in one direction only. There-

fore, the transmitter emits waves of a frequency that varies with time, oscillating above and

below the mean frequency, as in the triangular-frequency-modulation waveform shown in

Fig. 2. The modulation need not necessarily be triangular; it can be sawtooth, sinusoidal,
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Figure 7.5: A transmitting, receiving, and beat frequency of an FMCW radar.

or some other shape. The waves arrive at the receiver both by a direct connection and by

reflection from the target. Since the trip to the target and return takes time, the received

frequency curve is displaced along the time axis relative to the transmitted frequency. Also

there might be a displacement along the frequency axis due to doppler effect. This can be

disregarded for stationary target.

The resulting beat frequency as a function of time is also shown in Fig. 7.6 for triangular

modulation. The beat note is of constant frequency except at the turn-around region. If the

frequency is modulated at a rate fm over a range ∆ f , the beat frequency is

fb =
4R fm∆ f

c
(7.1)

where c is the speed of light and R is the range. Thus the measurement of the beat frequency

determines the range R.

The block diagram for the receiver is shown in Fig. 7.6 [75]. An amplifier is inserted

at the first stage, followed by a splitter. Two outputs are provided by a splitter at the

receiver. One is the direct baseband signal while the other is routed through a highpass

filter whose amplitude response below cutoff frequency is proportional to f 4. The inclusion
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Figure 7.6: The block diagram of the receiver.

of the highpass filter is that the range, in FMCW radars, is converted to frequency and a

monostatic radar has a R−4 amplitude variation with the range of a target. This highpass

filter compensates for that, and decrease the dynamic range required from the analog-to-

digital converter (ADC). However, for the close targets, the highpass filter has very high

attenuation (above 60 dB), and the signal is lost in the noise floor. Thus, both outputs are

provided in the receiver board.

For amplitude response which is proportional to f 4, the highpass filter should be of 4th

order and have butterworth response. The frequency response of this highpass filter in the

normalized frequency domain is shown in Fig. 7.7. Both return loss and insertion loss are

3.0103 dB at cutoff frequency which is set to be 1. Below cutoff frequency, amplitude of

transmission coefficient is almost proportional to f 4. However, the high attenuation at low

frequencies make the receiver have two pathes as shown in Fig 7.6. Hence, the receiver can

have only one path if the filter with decent, but not very high, attenuation at low frequencies

is provided.

Since highpass filters can be designed by using the lowpass-to-highpass frequency

transformation, we begin highpass filter design with lowpass prototype filter design. Fig.

7.8 shows the frequency response of the 4th-order butterworth-response lowpass prototype

filter without transmission zeros at finite frequencies and 4th-order butterworth-response

lowpass prototype filter with transmission zeros at S = ± j4.0. Since these filters have in-

finite attenuation at S = ± j∞ and S = ± j4.0, the corresponding highpass filters will have

signal loss if used in the receiver board of the above-described FMCW radar. By using

complex transmission zeros at stopband, we can avoid infinite attenuation at certain fre-
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Figure 7.7: The amplitude response of the normalized butterworth-response highpass filter.
The cutoff frequency is at Ω = 1.

quencies theoretically. However, there is no lowpass prototype presented for this frequency

response. Hence, in this work, an approximation method is used for developing the lowpass

prototype filter with no infinite attenuation.

Fig. 7.9(a) shows a 4th-order lowpass prototype filter with a pair of transmission zeros

at finite frequencies. The frequency response shown in Fig. 7.8(b) can be achieved by using

the prototype shown in Fig. 7.9(a). Since all refection zeros are at S f = j0 and a pair of

finite-frequency transmission zeros are at Sp = ± j4.0, the transmitted power is expressed

as

|t(S)|2 =
1

1+ ε2|K(S)|2

=
1

1+ ε2 |F(S)|2
|P(S)|2

(7.2)
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(a)

(b)

Figure 7.8: Amplitude responses of 4th-order lowpass prototype filters: (a) with no trans-
mission zeros; (b) with transmission zeros at S =± j4.0.
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(a)

(b)

Figure 7.9: Amplitude responses of 4th-order lowpass prototype filters: (a) with no trans-
mission zeros; (b) with transmission zeros at S =± j4.0.

where S = jΩ and F(S) and P(S) are given by

F(S) =
N

∏
i=1

(S−S f i)

P(S) =
Z

∏
i=1

(S−Spi)

(7.3)

where S f i and Spi are reflection zeros and transmission zeros of the filter, respectively.

From (2.25), the ripple factor ε is found to be 15 for R1 = 3.0103 at Ω1 = 1. The return

loss R1 = 3.0103 dB results in A1 = 3.0103 dB. From the transmitted power, the transfer

function can be found and is given by
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Figure 7.10: The frequency response.

t(S) =
1
ε
· S2 +az0

S4 +ap3S3 +ap2S2 +ap1S +ap0
(7.4)

where az0 = 16, ap3 = 2.638, ap2 = 3.480, ap1 = 2.698, and ap0 = 1.067.

Since the transmission coefficient of the lowpass prototype shown in Fig. 7.9(a) can be

derived easily in terms of prototype elements, we can find prototype elements by equating

the transmission coefficient of the prototype and the transfer function in (7.4). The proto-

type elements are found to be RS = 1 Ω, L1 = 0.6771 H, C2 = 1.7206 F, L2 = 0.0363 H,

L3 = 1.852 H, C4 = 0.8097 F, and RL = 1 Ω. In order to remove the infinite attenuation

at S = ± j4.0, a capacitor denoted Ca is added as shown in Fig. 7.9(b). Fig 7.10 shows a

frequency response of the filter prototype shown in Fig. 7.9(b) with various values of Ca.

Based on the design of lowpass filter prototype with no infinite attenuation, we can

remove high attenuation of the highpass filter at low frequencies, which allows that the

receiver can be designed to have only one path instead of two paths shown in Fig. 7.6. This

highpass filter is expected to compensate the amplitude variation of the received signal
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from the target keeping the signal for the close target alive, which leads to the effective

increase of the dynamic range of the analog-to-digital converter.
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