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ABSTRACT 
 
 

RIGOROUS ANALYSIS OF COMPOSITE FINITE ARRAY STRUCTURES 
 

by 
 

Rickie William Kindt 
 

Chair: John L. Volakis 
 
 

A particularly challenging problem for computational electromagnetics is the 

rigorous numerical analysis of electrically large and highly coupled systems.  The main 

challenge lies in the fact that excessive amounts of time and storage are required for 

accurate analysis of structures in this size class (on the order of 100λ or more), 

particularly when a high level of detail exists.  A popular topic in this research area is the 

large finite (antenna) array.  Large finite arrays require extensive amounts of 

computational resources to model, making the task difficult.  Thus, large arrays are 

typically analyzed using low-cost approximate methods. These methods can be limited in 

accuracy, depending upon the size of the finite array and how edge effects are treated.  

Further, approximate models are typically not adequate for the task of measuring 

isolation and coupling between multiple array systems, or even arrays in the environment 

of other structures.  Hence, existing methods are typically either too computationally 

expensive or not rigorous enough to address large finite arrays.  The work in this thesis is 

designed to fill the gap between these two bodies of research, developing a general 

analysis approach for array-type structures that overcomes the bottlenecks of the rigorous 

and expensive exact methods, without resorting to the approximations imposed by high-

frequency methods. 



 

  

This thesis begins by developing an existing rigorous method for arbitrary three-

dimensional structure analysis (the finite element-boundary integral method) into a 

decomposition method for finite arrays.  The proposed technique combines a domain 

decomposition approach on near-zone interactions with a far-zone decomposition (fast 

multipole method) on distant interactions, reducing matrix storage requirements to a 

small and fixed amount for any sized array problem in the same class.  This analysis 

approach is then extended to accomplish simultaneous solution of multiple and highly 

coupled systems of both the array and non-array type, as might be encountered in a 

realistic platform-supported antenna structure.  In this thesis, all the underlying methods 

necessary for this combined task are developed in detail and shown to provide excellent 

results with minimal computational resources. 
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CHAPTER 1 
 

INTRODUCTION 
 

 
 

A particularly interesting and challenging problem in the field of computational 

electromagnetics (CEM) is the rigorous frequency domain analysis of electrically large 

and highly coupled systems.  The challenge lies in the fact that excessive amounts of time 

and storage are required for accurate analysis of structures in this size class (on the order 

of 100λ or more), especially when a high level of detail exists.  A popular problem in this 

research area is the large finite (antenna) array.  Like any electrically large structure, 

large finite arrays require extensive amounts of computational resources to model, 

making the task difficult.  Composite array structures, potentially consisting of multiple 

arrays and other nearby structures, are particularly difficult to analyze due to the 

combination of strong intra-array coupling, complex materials, and the high tessellation 

densities required for detailed antenna and circuit structures.  One example in this target 

class might be the radar at the front end of an aircraft, designed to perform in the 

presence of a covering radome and absorbing materials.  A similar example might be a 

highly detailed array under a non-commensurate frequency selective surface (FSS), or 

perhaps even an antenna array that is conformal to an airplane fuselage.  On the largest 

scale, one might want to consider the case of a multi-functional communication and 

RADAR tower on a ship, featuring multiple large antenna arrays cluttered with nearby 
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scattering structures such as cannon turrets or parked aircraft on the ship deck.  Accurate 

coupling models in this class of problems are still lacking, where sensitive 

communication systems require as much as 90dB isolation from nearby radiating 

structures to function properly. 

A great deal of research has gone into rigorous analysis methods for accurate 

modeling of three-dimensional structures at microwave frequencies.  However, while 

powerful modeling tools already existed by the late 1990s, for very large structures these 

tools lack practicality.  This lack prompted the introduction of ‘fast methods’ to 

specifically address the challenges of larger structures.  A good example of a ‘fast 

method’ is the fast multipole method (FMM) [1].  The FMM is able to reduce the cost of 

conventional integral equation methods, typically having storage requirements of O(N 2) 

for a matrix system of size N, down to a more manageable O(N 1.5) or better.  Even so, the 

FMM lacks the necessary refinement to deal with very large structures such as complex 

finite arrays, dozens of cubic wavelengths or more in scale.  In this case, even O(N 1.5) 

storage requirements are more than many systems can handle.  Since even the popular 

fast methods are too computationally expensive for exact modeling of large-scale 

structures, approximate methods are typically used instead. 

On the high frequency end of the computational spectrum, asymptotic methods 

have been shown to achieve great success in the analysis of infinite as well as large finite 

array structures.  Array structures have been extensively explored in the literature, using 

high frequency methods and even full-wave methods, typically based on an infinitely 

periodic cell with some emphasis on edge treatment [2-6].  Another more recent approach 

to large array analysis combines a truncated discrete Fourier transform (TDFT) with the 
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method of moments (MoM), for an asymptotic high frequency analysis of large arrays 

with reduced unknown counts [7].  Approximate methods have been shown to generate 

satisfactory results for computations such as far-zone patterns.  However, for 

isolation/coupling-type problems, a prime example being two large finite arrays in close 

proximity, separated by structural features supporting radiation as well as possible 

surface wave interference, the accuracy of these asymptotic methods may not be enough.  

In particular, edge treatment for arrays will fail in the presence of nearby and highly 

coupled structures where the assumption is the existence of only the finite array 

environment.  Hence, asymptotic models alone may not be adequate for the task of 

measuring isolation or coupling between multiple array systems, a problem addressed this 

thesis. 

The isolation modeling of multiple electrically large structures can potentially be 

carried out as a piecemeal process, combining a physical optics (PO) approach with exact 

methods.  In this case, the most appropriate analysis tools are applied to the individual 

systems independently, and then linked in a decoupled hybrid fashion.  Though adequate 

for weakly coupled systems, such approximations typically cannot provide the accuracy 

necessary for realistic isolation studies of highly coupled systems.  The decoupled 

domain decomposition approach will fail for proximal systems with a high degree of 

coupling, particularly when current flows directly between the systems, such as through a 

surface-wave mode of coupling.   Further, setting the accuracy issue aside, when systems 

are highly coupled, the decoupled iterative system solution required for this type of 

analysis is not likely to converge.  This type of piecemeal analysis is often quite useful, 

but can only be applied correctly when the coupling is weak enough.  Clearly, for 
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simultaneous solution of large and highly coupled systems a rigorous analysis tool is 

needed. 

From the perspective of this thesis, existing analysis methods for array-to-array 

coupling are either too computationally expensive (rigorous/exact), or not rigorous 

enough (asymptotic).  In this thesis, an alternative hybrid approach is presented, capable 

of rigorous and simultaneous solution of large-scale coupling problems.  The proposed 

approach exploits existing capabilities in computational electromagnetic (CEM) research, 

implementing the refined accuracy of rigorous frequency domain methods to address 

large-scale array-type problems with an analysis cost approaching that of high frequency 

methods.  The content of this thesis is intended to fill the gap between conventional exact 

methods and asymptotic methods.  Specifically, the methods developed here overcome 

the bottlenecks of the rigorous and expensive exact analysis approaches, without 

resorting to the approximations imposed by high-frequency techniques (assuming field or 

current distributions) in order to achieve accurate analysis of large, highly coupled 

systems. 

To address the need for a rigorous formulation for analyzing three-dimensional 

structures of arbitrary shape (possibly consisting of metallic as well as inhomogeneous or 

anisotropic materials), a suitable implementation of the hybrid finite element-boundary 

integral (FE-BI) method is developed in the first part of the thesis.  Hybrid FE-BI 

methods have received much attention in the literature for the rigorous and effective 

analysis of three-dimensional, inhomogeneous structures [3, 5, 6, 8-12], and are 

considered to be well established, reliable CEM tools.  Though the emphasis is on 

rigorous structural analysis, using as few discretized elements as possible to exactly 
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model a structure is vitally important for large structure analysis, as large unknown 

counts have a cumulative effect on overall storage.  The FE-BI method used here 

employs curvilinear hexahedral basis elements, enabling rigorous analysis of arbitrary, 

curved-surface structures with fewer unknowns compared with a flat-facet approach to 

geometric representation [13, 14]. 

The remainder of the thesis is structured as follows: In Chapter 2, the underlying 

FE-BI formulation is developed and verified for a representative set of problems.  

Smaller example structures are considered in this chapter, as the exact treatment of the 

domain boundary with integral equations comes at increasingly large storage cost as the 

electrical size of the structure increases, making conventional FE-BI alone an inadequate 

approach for the analysis of electrically large structures.  The primary bottleneck of the 

conventional FE-BI approach lies in the roughly 2 2 2( ) ( )O N O n m=  (n=array elements, 

m=element unknowns, N=nm) storage requirements for the system matrix.   

An excellent way to overcome the storage issue is via the fast multipole method 

(FMM) [1].  FMM analysis achieves significant memory reductions by interacting distant 

portions of the geometrical structure (where rigor can be relaxed) with approximations of 

the free-space Green’s function.  This can be done in such a way that the results are 

exactly the same (numerically) as the conventional FE-BI approach to the same problem, 

but with reduced storage and computational cost.  Typically, a controlled degree of 

approximation is allowed in the solution for the sake of expediency.  For distant 

interactions, this approximation is allowable in the context of a numerical process that is 

iterative over solution error, and hence already approximate in nature.  In Chapter 3 of 

this thesis, the FMM approach to CEM analysis is developed and shown to allow larger 
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array modeling as compared to conventional FE-BI alone.  Though effective, it is 

demonstrated that FMM does not provide a significant enough improvement over 

conventional FE-BI for convenient analysis of large array problems.  The main 

shortcoming is that FMM does not exploit existing redundancies found in finite array 

structures – a critical exploit that must be adopted for effective large array analysis.   

Conceivably, it is possible to exploit structural redundancies in the near-zone 

environment of finite arrays for computational and storage savings.  Using a near-zone 

domain decomposition approach to specifically exploit the translational symmetry of 

finite array structures, the array decomposition method (ADM) is developed for FE-BI in 

Chapter 4.  ADM is designed to take advantage of redundant coupling paths in the finite 

array environment for storage and solution-time savings without compromising accuracy 

– i.e. the integrity of the rigorous, first-principle integral equations is preserved.  ADM 

achieves 2( )O nm  storage due to the block-Toeplitz nature of the resulting system of 

equations, with 2( log( ) )O n n m  solution complexity due to explicit fast Fourier transform 

(FFT) solution acceleration.  Further, the method allows a special preconditioning 

approach for arrays that results in a relatively small number of iterations for solution 

convergence.  In the development of ADM, the speed and accuracy of the method is 

examined for several array-type problems. 

To enhance the capability and scope of problems addressable via ADM, a 

generalized multi-dimensional solution approach is developed in Chapter 5 for 

partitioning structures more complex than simple linear and planar arrays.  By defining 

dimensions as vectors, using spacing and direction (translation) parameters, it is possible 

to decompose array interactions across multiple dimensions via a Toeplitz property.  As a 
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practical example, it is demonstrated how multi-dimensional analysis can transform a 

coupling study of two identical arrays into a single multi-dimensional array analysis 

problem with significantly better storage savings. 

While ADM is a fast and elegant solution method for finite array structures, the 

2( )O nm  storage requirements still place an upper limit on the size of the array that can be 

analyzed.  That is, the storage requirements of ADM increase linearly as the element 

count n increases.  Ideally, one would prefer a finite array method to have storage 

requirements proportional to the storage costs required of a single element analysis.  To 

achieve this, a near-zone decomposition (ADM) is combined with a far-zone 

decomposition approach (FMM) to form the hybrid array decomposition-fast multipole 

method (AD-FMM) in Chapter 6.  This dual decomposition approach results in roughly 

O(m2) near-zone matrix storage for any sized array of the same element.  AD-FMM 

maintains the excellent convergence properties associated with the physically based 

block-diagonal matrix system preconditioning of the standalone ADM algorithm.  

Further, far-zone coupling interactions, comprising the majority of large intra-array 

interactions, are explicitly accelerated via the FFT.  The most unique feature of this 

distinguished analysis method for finite arrays is that it does not have a matrix storage 

bottleneck – a limiting feature of all other rigorous analysis methods for finite structures.  

Indeed, the bottleneck for AD-FMM is the vector storage of the field and excitation 

coefficients, a cost shared by all exact methods though never before a storage bottleneck.  

It will be demonstrated that much larger problems can be solved using the AD-FMM 

approach as compared to the methods in the previous chapters, even on desktop 

computers.  
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As a potential obstacle, if m is large (the array element size), ADM can still be 

quite costly.  Expanding upon the benefits introduced by multi-dimensional analysis, the 

array elements themselves can also be decomposed into smaller divisions, allowing the 

O(m2) near-zone matrix storage requirements to be further reduced.  This has little to no 

effect for elements smaller in scale than a wavelength, but is especially important for 

large array elements (large m), particularly for elements that are several wavelengths 

long.  This decomposition reduces the total near-zone storage requirements via AD-FMM 

to a cost proportional to 2λ  for any sized array and array element.  With this critical 

development, AD-FMM is used to simulate practical finite arrays with validations of 

finite array measurements.  

 For future work, a final challenge is to bring the aforementioned methods together 

in a way that multiple systems can interact and be solved simultaneously, with maximum 

exploitation of redundant interactions.  In Chapter 8, a multi-dimensional, multi-system 

analysis method for array structures is presented.  In this approach, multiple systems are 

constructed from a pool of common dimensions.  Dimensional pooling allows self-system 

decomposition of each array-type structure, with cross-system decomposition on 

elements of different arrays sharing a common dimension.  From an organizational 

perspective, the matrix systems describing the coupling between two systems will have a 

Toeplitz property that can be exploited for cross-system storage reduction and 

acceleration via the FFT.  The benefits of this type of decomposition will be 

demonstrated for several composite array configurations. 

 In the simple and elegant forms of the ADM and AD-FMM in chapters 4-8, the 

domains of elements are interacted only through coupling via the free-space Green’s 
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function.  That is, both the ADM and the AD-FMM model array systems as though there 

were a crack, or bad electrical contact between elements of the array.  Under many 

circumstances, this choice may match well with structural conditions.  However, if it is 

necessary to model a good connection between adjacent elements, a current junction 

(field continuity) condition must be imposed.  This condition potentially disturbs the 

Toeplitz property of the matrix system, and must be treated diligently.  As a proposed 

solution, in Chapter 9, bridge systems are introduced as a means of enforcing Toeplitz 

properties in array systems with connected elements.  In combination with a multi-system 

analysis approach, bridge systems effectively address the issue inter-domain connectivity 

in an efficient, yet considerably more complicated manner that preserves Toeplitz 

properties.  With this final piece of the puzzle in place, it is possible to achieve accurate 

results for practical finite array systems requiring good electrical contacts between 

adjacent array elements. 
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CHAPTER 2 
 

CONVENTIONAL FINITE ELEMENT-BOUNDARY 
INTEGRAL METHOD 

 
 

The first step in developing methods to accurately analyze large composite array 

structures is to first ensure that the tools are built upon solid fundamentals.  In this thesis, 

a hybrid formulation combining the finite element method (FEM) with a surface or 

boundary integral equation (SIE or BIE) approach is employed as the underlying 

formulation.  This hybrid combination is typically referred to as the finite element-

boundary integral (FE-BI) method, and has been proven reliable many times over in the 

literature [2, 5, 6, 8, 9, 12-16].  The finite element method can easily handle arbitrary 

material combinations, including lossy, lossless, inhomogeneous, magnetic, and 

anisotropic materials, as well as embedded metallic structures [8, 16].  The FEM for 

three-dimensional analysis is fairly standard in its formulation, with the main difference 

amongst implementations being the way in which boundary conditions at the volumetric 

limits are enforced.  FEM is most robust when the fields at the volumetric boundary are 

matched to radiating surface currents modeled via integral equations.  In this hybrid 

approach, the FEM formulation is used to model the fields within the volumetric region, 

and the integral equations exactly match the FEM fields at the boundary of the volumetric 

domain with radiating surface currents satisfying the Sommerfeld radiation condition 

external to the structure.  The FE-BI approach allows simultaneous solution for fields 
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both internal and external to the volumetric region.  Hence, FE-BI is ideal for real-world 

structural analysis, easily modeling arbitrary three-dimensional structures in free-space, 

as well as multiple structures in the presence of each other.  From an application 

perspective, the FE-BI formulation is general enough to solve scattering, radiation, as 

well as microwave circuit-type problems. 

For the most part, the chosen formulations (FEM and BIE) are independent of the 

geometric elements used to tesselate the geometry.  To achieve accurate geometric 

representations, it is preferable that geometric features be modeled exactly or as near to 

exact as possible, suggesting the need for basis elements that conform to curved surfaces.  

For the purposes of this thesis, curvilinear hexahedral basis elements were chosen.  It has 

been demonstrated on numerous occasions that this choice of basis element results in 

fewer unknowns to achieve accurate results compared with a flat-faceted approach for 

curved geometries [11, 17].  In this thesis, it is critically important to achieve accurate 

modeling with as few unknowns as possible, since ultimately the analysis of very large 

array structures will only compound the cost of excessive discretization.  The details and 

consequences of the chosen formulations and geometric representations are examined in 

this chapter. 

 

2.1 Finite Element Method Formulation 

  

 The employed FEM formulation is quite standard, and can be easily derived from 

the differential form of the time-harmonic wave equation.  For details on how the FEM 
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formulation is generated, the reader is referred to several sources on the subject matter [8, 

13, 16].  For inhomogeneous media, the common resulting derivation is given by 

 
( ) ( ) ( )1 2

0 0 0

0 0

ˆ

                                                                   
i

r r
V S

i

V

E E k E E dV jk E H ndS

jk E J dV

µ ε η

η

−⎡ ⎤∇× ∇× − − ×⎣ ⎦

= −

∫ ∫

∫

i i i i i

i
. (2.1.1) 

In this equation, ,r rε µ  are the relative constitutive tensors for a general anisotropic 

media, whereas 0k and 0η  are the wave number and characteristic impedance of free-

space, respectively.  The bounding surface S encloses the volumetric structure V, 

modeled internally via the FEM (see Figure 2.1).  The first integral term on the left 

represents the relations of the vector electric fields within the structure, denoted by E , 

whereas the second term represents the relation of the fields at the boundary domain, and 

serves to relate E  and H  on S, as well as impose the radiation condition external to the 

FEM region.  The right hand side integral term is a generalization of impressed current 

excitations of volumetric extent Vi, within the FEM region, which will be used later to 

excite electromagnetic structures internally.    For a completely enclosed system in which 

the tangential electric fields are zero on the FEM boundary, (2.1.1) can be used to 

generate a unique solution internal to the bounding surface S.  However, typically one is 

interested in the field solution external to the structure as well.  In order to facilitate this, 

it is most robust to enforce boundary conditions on the FEM using an integral equation 

formulation for radiating currents ( ,J M ) on the bounding surface. 
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Figure 2.1. Illustration of an arbitrary volumetric structure for FE-BI analysis. 

 

2.2 Boundary Integral Formulation 

 

 For the type of problems addressed here, the structure is treated as a closed 

volume V, terminated in an enclosing surface S, as depicted by the arbitrary structure in 

Figure 2.1.  The FEM is used to enforce electric field continuity within the volume of the 

structure.  In order to generate a unique solution both inside and outside the volumetric 

region, it is necessary to enforce boundary conditions at the surface of the volume using 

integral equations.  The integral equations chosen to enforce a unique solution can take 

many forms, depending on the boundary conditions available.  For example, one may 

choose to enforce the tangential component of the incident electric fields incE  as 

boundary conditions, resulting in what is commonly referred to as the electric field 

integral equation (EFIE) formulation.  Alternatively, one may choose to enforce the 

tangential component of the magnetic fields incH  as boundary conditions, resulting in 

what is commonly referred to as the magnetic field integral equation (MFIE) formulation.  
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However, at frequencies corresponding to internal resonance frequencies of the enclosing 

surface shell, each of the aforementioned methods can generate incorrect solutions (even 

though they may not be physically possible).  That is, at certain frequencies, both MFIE 

and EFIE may be corrupted by spurious modes and not give a unique solution.  For a 

completely arbitrary structure, it is not possible to have a priori knowledge of where the 

resonant frequencies are, and it is thus preferable to have a generalized means of dealing 

with all structures without foreknowledge of troublesome frequencies. 

The potential for hybrid FEM-integral equation methods to suffer from an internal 

resonance issue is a common criticism.  Many methods have been devised for dealing 

with the internal resonance issue, a short survey of which is given in [18].  The approach 

presented here exploits the fact that eigenvalues corresponding to the internal resonance 

frequencies for the EFIE differ from those of the MFIE.  It has been reported that using a 

linear combination of the MFIE and EFIE will generate a unique (and correct) result [18, 

19].  This composite formulation is referred to as the combined field integral equation 

(CFIE).  The potential for the CFIE formulation to generate a correct solution is, of 

course, dependent on both the MFIE and EFIE formulations supporting the actual 

‘desired’ solution at the given frequency.  In other words, if either of the MFIE or EFIE 

formulations fail to give the correct result (for reasons aside from the internal resonance 

issue), then the CFIE will not give the correct result either.  Thus, the CFIE approach is 

risky in the sense that a correct solution to a generalized problem relies on two 

formulations being accurate, verses just one for the EFIE or MFIE alone.  Later in this 

chapter, it will be suggested that the MFIE formulation potentially suffers from a number 
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of weaknesses that must be adequately addressed in order to have confidence in the 

solution of a generalized problem involving completely arbitrary structures. 

Whereas numerous integral equation formulations exist for dealing with 

specialized problems such as layered media, in this work the FEM deals with arbitrary 

internal field conditions and the robust free-space Green’s function handles arbitrary 

coupling conditions external to all volumetric regions.  This approach is general enough 

to correctly deal with the situations where the specialized Green’s functions are typically 

employed, and also deal well with more arbitrary three-dimensional problems.  This 

makes it possible to model a large class of structures without having to specialize the 

code to achieve the same accurate solutions.   

The two main operators used in constructing the boundary integral equations can 

be most concisely stated as [12] 

 0 2
0

1( ( )) [ ( ) ( )] ( , )
S

L w r jk w r w r g r r dS
k

′ ′ ′ ′ ′ ′= + ∇∇∫ i  (2.2.1) 

 
and 
 

 ˆ( ( )) (1 / 4 )( ( )) [ ( ) ( , )]SK w r n w r w r g r r dSπ′ ′ ′ ′ ′= − −Ω × + ×∇∫ . (2.2.2) 
 
The integral in (2.2.2) with the dash signifies that a singularity condition exists and must 

be treated accordingly.  The variable ( )w r′  used in the operator equations has been 

generalized to represent either electric or magnetic source currents, and will be used as a 

common vector basis function (defined later) to construct these field quantities.  The Ω  

term represents the solid angle subtended by the testing location, and will be equal to 2π  

for smooth surfaces.  The kernel ( , )g r r′  used in this FE-BI implementation is the usual 

scalar free-space Green’s function given as 
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0

( , )
4

jk r reg r r
r rπ

′− −

′ =
′−

. (2.2.3) 

 
In future chapters, specialized kernels based on finite array analysis will be substituted 

into the formulation for (2.2.3). 

The various integral equation formulations are constructed by inserting the correct 

choice of electric and magnetic currents into (2.2.1) and (2.2.2).  The EFIE formulation is 

constructed as the combination of the L() operator applied to the electric currents ( )J r′  

and the K() operator applied to the magnetic currents ( )M r′ .  Specifically, for an incident 

field excitation incE , the relation is given by 

 0( ( )) ( ( )) incL J r K M r Eη ′ ′− = . (2.2.4) 
 
The MFIE is simply constructed as the dual of this equation, and is given by 
 

 0 0( ( )) ( ( )) incK J r L M r Hη η′ ′+ = . (2.2.5) 

Though it is straightforward to enforce the relation of the two formulations using duality, 

it will be shown that testing should be carried out differently for the EFIE and MFIE to 

achieve a well-conditioned system of equations.   

To generate a system of equations that gives a unique solution, the currents must 

be tested over the entire surface S of the enclosing structure.  This is done in such a way 

as to construct a linear m m×  matrix system, where m represents the unknown field 

coefficients used to construct the field solution.  In later chapters, when dealing with 

array structures, the notation N=nm will be used, where m represents the array element 

unknowns, n is the number of array elements, and thus N gives the total number of 

unknowns.  This chapter deals with single structures, or equivalently single element 



 

 17

arrays (n=1), and hence the special case N=m.  To generate an m m×  system of 

equations, (2.2.4) and (2.2.5) must be evaluated over the FEM domain boundary with an 

appropriate testing function.  The chosen testing procedure employs the same basis 

functions ( )w r , that are used to construct the surface currents.  This choice of testing 

function is commonly referred to as Galerkin’s method [20].  The EFIE and MFIE 

formulations can be tested with ( )tw r  or ˆ ( )tn w r× , or a combination of both.  The best 

choice is to test the EFIE equation (2.2.4) with ( )tw r  and the MFIE equation (2.2.5) with 

ˆ ( )tn w r× , a choice that can be shown to generate the most diagonal matrix equations.  

Applying the testing procedure to (2.2.4) and (2.2.5) gives have the new relations 

 0( ) ( ( )) ( ) ( ( )) ( ) inc
t t t

S S S

w r L J r dS w r K M r dS w r E dSη ′ ′− =∫ ∫ ∫i i i  (2.2.6) 

 
and 

 0 0ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ) inc
t t t

S S S

n w r K J r dS n w r L M r dS n w r H dSη η′ ′× + × = ×∫ ∫ ∫i i i . (2.2.7) 

 
Manipulating (2.2.6) and (2.2.7) into a set of equations that can be easily implemented 

requires expanding the expressions for the EFIE and MFIE by substituting (2.2.4) and 

(2.2.5) into (2.2.6) and (2.2.7), giving 

0 0 0 02
0

( )

ˆ(1 / 4 ) ( ) ( ) ( ) ( ) ( , )

1( ) ( ) ( , ) ( ) [ ( )] ( , )

inc
t

S

t t S
S S

t t
S S S S

w r E dS

w r n M r dS w r M r g r r dS dS

jk w r J r g r r dS dS jk w r J r g r r dS dS
k

π

η η

=

′ ′ ′ ′−Ω × − ×∇ +

′ ′ ′ ′ ′ ′ ′+ ∇∇

∫

∫

∫ ∫

∫ ∫ ∫ ∫

i

i i

i i i

 (2.2.8) 

 
for the EFIE, and  
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0

0 0 2
0

0 0

ˆ ( )

1ˆ ˆ( ) ( ) ( , ) ( ) [ ( )] ( , )

(1 / 4 ) ( ) [ ( )] ( ) ( ) ( , )

inc
t

S

t t
S S S S

t t S
S S

n w r H dS

jk n w r M r g r r dS dS jk n w r M r g r r dS dS
k

n w r n J r dS n w r J r g r r dS dS

η

π η η

× =

′ ′ ′ ′ ′ ′ ′× + × ∇∇

′ ′ ′ ′− −Ω × × + × ×∇∫

∫

∫ ∫ ∫ ∫

∫ ∫

i

i i i

i i

 (2.2.9) 

 
for the MFIE.  These expressions are still too general for direct implementation.  

Ultimately, it is necessary to apply a series of identities, manipulations, and the theorems 

in order to transform the EFIE and MFIE expressions into a form that can be readily 

implemented.  After applying the various required transformations, the final forms of the 

EFIE and MFIE formulations (as used in this thesis) are 

Electric Field Integral Equation 

0 0 0 0 2
0

( )

ˆ ˆ ˆ(1 / 4 ) ( ) [ ( )] ( ) ( , ) ( )

1( ) ( , ) ( ) ( ) ( , ) ( )

inc
t

S

t t S
S S

t t
S S S S

w r E dS

w r n M r dS n w r n g r r M r dS dS

jk w r g r r J r dS dS jk w r g r r J r dS dS
k

π

η η

=

′ ′ ′ ′⎡ ⎤−Ω × + × × ∇ ×⎣ ⎦

′ ′ ′ ′ ′ ′ ′+ − ∇ ∇

∫

∫

∫ ∫

∫ ∫ ∫ ∫

i

i i

i i i i

  (2.2.10) 

 

and 

Magnetic Field Integral Equation 

0

0 0

0 0 2
0

0 2
0

ˆ( ) [ ]

ˆ(1 / 4 ) ( ) ( ) ( ) [ ( , ) ( )]

1ˆ ˆ( ) ( , ) ( ) [ ( )] ( , ) ( )

1 ˆ ( ) ( , ) ( )

inc
t

S

t t S
S S

t t s
S S S S

t s

w r n H dS

w r J r dS w r n g r r J r dS dS

jk w r n g r r M r dS dS jk n w r g r r M r dS dS
k

jk l w r g r r M r dS dl
k

η

π η η

× =

′ ′ ′ ′−Ω + × ∇ × +

′ ′ ′ ′ ′ ′ ′× + ∇ × ∇

′ ′ ′ ′+ ∇

∫

∫

∫ ∫

∫ ∫ ∫ ∫

i

i i

i i i

i i
C S
∫ ∫v

.(2.2.11) 
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For details on the necessary transformations used to achieve these expressions, the reader 

is referred to [8, 13, 14].  Note that these expressions have at worst 21/ R  singularities on 

account of the ( , )g r r′∇  term, which is not a difficult issue for distant interactions.  For 

instances where the source and testing locations are closer than /10λ  however, care must 

be taken to reduce the order of the singularities to 1/ R  in order that the functions can be 

accurately integrated numerically.  As suggested in [21], by bringing the n̂×  operation 

under the inner integral for the terms with ( , )g r r′∇  in them, it is possible to reduce the 

21/ R  singularity to a manageable 1/ R  in the limit as the testing location approaches the 

source location.  This procedure works for self-cells, where the source and testing 

locations are on the same patch, as well as cases where the source and testing surfaces are 

coplanar and near.  However, if the surfaces are not coplanar, such as in a case involving 

adjacent surfaces at a sharp corner, then more careful singularity treatment may be 

necessary to achieve accurate solutions.  For real-world applications, it is not uncommon 

to have multiple, separately enclosed volumes with surfaces that come close to each other 

or even touch, or even geometries with problematic sharp corners.  In situations such as 

this, caution is necessary to ensure that the MFIE formulation can generate valid 

solutions. 

 

2.3 Geometric Representation 

 

 The basis elements chosen to tessellate geometric structures are 27-node 

curvilinear hexahedral elements of the type depicted in Figure 2.2.  The 12 quadratic 

edges forming the hexahedron are defined with three nodes.  For each of the six faces of 
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the element, quadratic lines are drawn between the center nodes of opposing edges, 

running through a node at the face center, thereby bisecting each face of the element into 

curved quadrants.  Similarly, quadratic lines are drawn between the center nodes of 

opposing faces, passing through a node at the center of the element interior and dividing 

the element into eight curved volumetric regions.  These versatile basis elements allow 

the generation of a volumetric mesh conforming very well to actual structural features 

(when curves exist).  Under most conditions, accurate field representations require that 

the mesh feature a minimum of 10λ  to 20λ  discretized edge lengths (assuming low-

order field expansions).  Detailed structural features that vary at a rate finer than this 

typically require discretization with a denser mesh, thereby providing more accurate 

representation of disturbed fields in these regions. 

 

 

Figure 2.2.  Curvilinear hexahedral elements used for geometric tessellation. 

 

 For curvilinear elements, it is not practical to carry out volumetric integration in 

Cartesian space.  To facilitate the numerical integration procedure more conveniently, 
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each conformal element is mapped onto a unit cube in parametric space.  Points in 

Cartesian space given by ( , , )r x y z  are mapped to parametric space via the 

transformation 

 
2 2 2

0 0 0

( , , ) ( ) ( ) ( ) ( , , )i j k
k j i

r u v w u v w r x y zα α α
= = =

=∑∑∑ , (2.3.1) 

 
where ()nα  are the Lagrange interpolation polynomials.  Specifically, 

 0 1 2( ) 2( 0.5)( 1),  ( ) 4( )( 1),  ( ) 2( )( 0.5)u u u u u u u u uα α α= − − = − − = − . (2.3.2) 
 
In this implementation, coordinates in parametric space are expressed in terms of the 

covariant unitary vectors  

 ,  ,  uvw uvw uvw
u v w

r r ra a a
u v w

∂ ∂ ∂
= = =

∂ ∂ ∂
, (2.3.3) 

 
which form the principle axes of the parametric unit cube, as shown in  Figure 2.3.  Once 

the conformal element has been mapped onto the unit cube in parametric space, 

numerical integration can then be conveniently carried out using Gaussian quadrature. 

It is important to consider how the fields are represented within the discretized 

volume.  In this implementation, edge-based vector field expansions are defined using 

low-order field approximations.  In this model, the field contributions associated with 

each edge of the hexahedral element are constructed from linear shape functions of the 

form 

 0 1( ) 1 ,  ( )f u u f u u= − = . (2.3.4) 
 
For a given direction in parametric space, these shape functions range in value from [0 1] 

over the same parametric range.  The vector fields are constructed in parametric space as 

combinations of these linear shape functions, relative to each of the covariant axes.  

Explicitly, the fields in each element take the general form 
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1 1

0 0

1 1

3 0 0
1 1

0 0

 ( ) ( )

1( , , ) ( ) ( )

( ) ( )

u
j k jk u

k j

v
i k ik vD k i

w
i j ij w

j i

f v f w E a

E u v w f u f w E a
G

f u f v E a

= =

= =

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= +⎢ ⎥
⎢ ⎥
⎢ ⎥
+⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑

∑∑

∑∑

, (2.3.5) 

 
where each uvw

ijkE  is a field coefficient corresponding to a unique edge of the parametric 

cube as depicted in  Figure 2.3.  In (2.3.5), 3DG  is the determinant of the metric tensor 

of the transformation (2.3.1), given explicitly as 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

3

          -

D
u u v v w w u v v w u w u w u v v w

u u v w v w v v u w u w w w u v u v

G a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

= + +⎡ ⎤⎣ ⎦

+ +⎡ ⎤⎣ ⎦

i i i i i i i i i

i i i i i i i i i
. (2.3.6) 

   
The basis functions used to construct the edge-based vector fields are constant along the 

axis associated with the edge, and vary linearly relative to the other two axes in 

parametric space (constant-linear-linear).  Applying the reverse transformation in (2.3.1), 

the field expansions will then be conformal with the geometry in real space.  The field 

expansions of (2.3.5) are substituted into the FEM equation (2.1.1) to form a solvable 

system of equations, a necessary step that will be addressed after surface basis functions 

for the integral equation formulation have been discussed. 
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Figure 2.3. Edge-based vector expansion based on uvw
ijkE . 

 

In the limiting case, as the fields in the FEM region approach the bounding 

surface, the vector field expressions simplify to a two-coordinate variation relative to the 

axes associated with the element face at the surface.  Specifically, the surface fields take 

the form 

 
1 1

3 0 0

1( , ) ( ) ( )u v
i i u j j vD i j

E u v f v E a f u E a
G = =

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑ . (2.3.7) 

 
To combine the integral equation formulation with the FEM formulation, it will be 

necessary that the field representations used in the integral equations match that of the 

FEM at the bounding surface given by (2.3.7).  This is facilitated most easily by using 

linear-constant vector edge-based field expansions for the integral equations.  As a 

consequence of meshing the volumetric FEM region with 27-node curvilinear hexahedral 
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elements, the structure surface is automatically discretized with 9-node curvilinear (bi-

quadratic) quadrilateral patches that can be used in association with the integral equation 

formulation.  The curvilinear patch is mapped to a unit square in parametric space using 

the transformation 

 
2 2

0 0

( , ) ( ) ( ) ( , , )i j
j i

r u v u v r x y zα α
= =

=∑∑ , (2.3.8) 

 
where the same Lagrange interpolation polynomials given in (2.3.2) are used.  Rather 

than performing integration procedures on the curvilinear surfaces in Cartesian 

coordinates, surface integration can be carried out in parametric space using 2D Gaussian 

quadrature. 

 

 

Figure 2.4. Cartesian-parametric surface transformation. 

 

 Similar to the three-dimensional model for volume elements, the patch 

coordinates in 2D parametric space are expressed in terms of the covariant unitary 

vectors 

 ,  uv uv
u v

r ra a
u v

∂ ∂
= =
∂ ∂

. (2.3.9) 
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The transformation of the surface elements is depicted in Figure 2.4.  Using parametric 

coordinates and the same shape functions defined in (2.3.4), it is possible to define a set 

of common basis functions for constructing vector surface fields.  The basis functions for 

the surfaces are defined explicitly as 

 1 2 3 42 2 2 2

1 1,  ,  ,  u u v vD D D D

v v u uw a w a w a w a
G G G G

− −
= = = = . (2.3.10) 

 
In these expressions, the determinant 2DG  is 

 ( )( ) ( )( )2 -D
u u v v u v v uG a a a a a a a a= i i i i . (2.3.11) 

 
A separate basis function wj is associated with each of the four edges of the patch as 

shown in Figure 2.4.  In parametric space, the field expansion associated with each basis 

on the surface will vary linearly in one dimension and remain constant in the other 

(linear-constant).  When transformed, these shape functions correspond to conformal 

rooftop elements in Cartesian space, used to represent the fields and currents on the 

structure boundary.  The electric fields on the boundary surface are expressed as 

 ( ) ( )
sN

S j j
j

E r w r E=∑ , (2.3.12) 

 
whereas the magnetic fields (constructed from the same basis functions) are given by 

 ( ) ( )
sN

S j j
j

H r w r H=∑ . (2.3.13) 

 
In these expressions, jE  and jH  are the unknown field coefficients for the electric and 

magnetic fields, respectively.  These surface field expansions match exactly with the 

definitions for the FEM field expansions at the limit of the bounding surface.  The actual 

number of edges SN  used to construct the field on the patch will vary, depending on the 
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boundary conditions.  For example, if the patch resides on a PEC surface, the electric 

fields on the surface will be zero, and thus SN  for ( )SE r  would be zero.  Similarly, if the 

patch is adjacent to a PEC surface, one or more of the unknown coefficients for the 

electric fields may be zero.  From these expressions, the electric and magnetic currents on 

the surface patches are found by the usual operations 

 ˆ( ) ( )SJ r n H r= ×  (2.3.14) 

and 

 ˆ( ) ( )SM r n E r= − × . (2.3.15) 
 
The individual current expansions are substituted into equations (2.2.10) and (2.2.11) to 

form a solvable system of equations.  The assembly of this system of equations is 

discussed in the next section. 

 

2.4 Matrix System Assembly 

 

 To solve the hybrid FE-BI formulation developed in the preceding sections, the 

FEM and BI formulations must be assembled into a linear system of equations.  To do so, 

it is necessary to express the formulation as a matrix equation consisting of matrix 

operators, linear field coefficients, and vector excitation coefficients.  When the field 

expansions of (2.3.5) are substituted into the FEM equation (2.1.1), the FEM system of 

equations takes the form 
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( ) ( )

( )

1 2
0

0 0 0 0

( ) ( ) ( ) ( ) { }

ˆ[ ( ) ( ) ] { } ( )
i

r r
V

s i

S V

w r w r k w r w r dV E

jk w r w r n dS H jk w r J dV

µ ε

η η

−⎡ ⎤
⎡ ⎤∇× ∇× −⎢ ⎥⎣ ⎦

⎣ ⎦
⎡ ⎤

− × = −⎢ ⎥
⎣ ⎦

∫

∫ ∫

i i i i

i i
. (2.4.1) 

 
Here, the more complicated FEM field relations of (2.3.5) have been represented with the 

more compact FEM basis function notation ( )w r .  Note that the second integral term 

comes into play only on the surface of the structure where the fields ( )SH r  reside.  This 

equation can be assembled into a representative matrix system of the form 

 
[ ] [ ] 0
[ ] [ ] [ ]

0

i i
II IS

s s
SI SS

s

E b
A A

E b
A A B

H

⎧ ⎫ ⎧ ⎫
⎡ ⎤ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭

. (2.4.2) 

 
In (2.4.2), the , , ,II IS SI SSA  sub-matrix operators are sparse, with [ ]IIA  and [ ]SSA  sparse 

symmetric, and [ ] ,[ ]IS SIA A  transposes of each other.  The [ ]B  sub-matrix only comes 

into play when boundary conditions state that non-zero tangential electric fields exist at 

the surface of the structure.  The excitation to the FEM system { }b  is implemented as an 

impressed current source of the general form 

 0 0{ } ( )
i

i i

V

b jk w r J dVη= − ∫ i . (2.4.3) 

 
A form of { }ib  more conducive to implementation will be discussed later.  The FEM 

matrix system (2.4.2) is not yet ready for solution, as the appropriate boundary conditions 

have not been imposed.  As it stands, there are more unknowns than equations.  In order 

to generate more equations, the integral equation formulation is used to enforce the 

boundary conditions over the FEM bounding surface.  Combining the integral equation 

system with the FEM system generates the desired m m×  system of equations. 
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 Following a similar assembly procedure with the integral equations, the 

expansions for the surface fields given in (2.3.12) and (2.3.13) are first inserted into the 

EFIE and MFIE equations (2.2.10) and (2.2.11).  Once these systems of equations are 

assembled, it is possible to extract the linear field coefficients and form the matrix 

equations.  Specifically, the EFIE equation takes the form 

 
[ ]

0 0

0 0 2
0

ˆ(1 / 4 ) ( ) [ ( )]

{ }
ˆ ˆ( ) ( , ) ( )      

( ) ( , ) ( )

{ } ( )1 ( ) ( , ) ( )

t s
S s

t S s
S

t s
S S s inc

t
St s

S S

w r n w r dS

E
n w r n g r r w r dS dS

jk w r g r r w r dS dS

H w r E dS
jk w r g r r w r dS dS

k

π

η

η

⎡ ⎤′−Ω × +
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′ ′× × ∇ ×
⎢ ⎥⎣ ⎦
⎡ ⎤′ ′ ′ −
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥′ ′ ′ ′∇ ∇
⎢ ⎥⎣ ⎦

∫

∫

∫

∫ ∫
∫

∫ ∫

i

i

i

i
i i i

. (2.4.4) 

 
In this expression, the notation ( )sw r  and ( )tw r  are used to differentiate between the 

source and the testing functions, respectively.  For matrix assembly, this expression can 

be more concisely written as 

 [ ] { } [ ] { } { }EFIE s EFIE s EFIEP E Q H b+ = . (2.4.5) 
 
The same procedure can be applied to the MFIE equation to form 

 

0

0 2
0

0 2
0

0

0

ˆ( ) ( , ) ( )

1 ˆ[ ( )] ( , ) ( ) { }

1 ˆ ( ) ( , ) ( )

(1 / 4 ) ( ) ( )

ˆ( ) [ ( , )

t s
S S

S
t s s

S S

t s s
C S

t s
S

t S s

jk w r n g r r w r dS dS

jk n w r g r r w r dS dS E
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with the more concise notation 
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 [ ] { } [ ] { } { }MFIE s MFIE s MFIEP E Q H b+ = . (2.4.7) 
 

The [P] and [Q] operators in (2.4.5) and (2.4.7) are dense on account that every 

source current must be interacted with every testing current to form the m m×  system of 

equations.  As previously stated, the CFIE formulation is formed by taking a linear 

combination of the EFIE and MFIE formulations.  Based on the stated form of (2.2.4) and 

(2.2.5), this is correctly done with the combination 

 
0

(1 )MFIE EFIEαα
η

− + . (2.4.8) 

 
In this expression, α is a number in the range [0 1], chosen to give the desired 

ratio of EFIE to MFIE, and 01 η  must be appended to the EFIE system to ensure 

consistent units between the two systems of equations.  In general, the MFIE yields a 

better-conditioned system of equations than the EFIE, and hence a lower value of alpha 

typically results in faster system convergence.   

Note that the integral equation formulations (2.4.5) and (2.4.7) alone are capable 

of generating unique solutions external to certain scattering-type targets.  However, for 

maximum robustness, the integral equation system should be combined with the FEM 

system of equations to form the m m×  matrix equation 
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. (2.4.9) 

 

In this expression, eb  comes from incH .  When solved, this combined system of 

equations is capable of generating simultaneous solutions both internal and external to the 

volumetric structure.  Moreover, when scaled properly, it is possible to use (2.4.9) for 
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solving problems with simultaneous external and internal source excitation.  An example 

of such a problem would be a microwave circuit operating in the presence of a radiating 

structure, in which one is interested in evaluating the effect of the radiating source on the 

circuit performance [22].  The hybrid FE-BI formulation used to assemble (2.4.9) is 

appropriate for analyzing a wide range of microwave circuits, antenna and radiating 

structures, as well as scattering problems. More importantly, the formulation is an 

excellent candidate for the rigorous array-type coupling problems to be discussed later in 

this thesis. 

It is worth noting that in (2.4.9), the [Q] operator appears on the matrix diagonal.  

This sub-matrix system contains the self-testing terms, where the field testing is 

performed on the same patch as the source currents.  For a well-conditioned system of 

equations, it is imperative that the self-testing procedure produces large matrix entries, as 

these values are closest to the matrix diagonal and have the greatest effect on the system 

condition.  In solving these types of problems, it is valuable to have the most well 

conditioned system possible, as this leads to the fastest solution time.  Notice that in both 

(2.4.4) and (2.4.6), the self-terms of the [Q] operators contain the product ( ) ( )t sw r w ri , 

which is highly diagonal, leading to the best-conditioned system of equations.  This 

verifies that the suggested choice of testing functions was most appropriate for the 

integral equation formulation testing.  An improper choice of testing function would have 

resulted in the product ˆ ( ) ( )t sn w r w r× i , which is least diagonal when ( ) ( )t sw r w r= , and 

leads to a poorly conditioned system of equations. 
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2.5 FEM Loading and Excitation 

 

 For scattering problems, system excitation is enforced at the surface of the 

volumetric region by the integral equations.  However, it is alternatively possible to load 

the FEM region with excitations of the impressed source type.  While it is possible to 

implement impressed sources as distributed surface or volumetric currents, as implied by 

(2.1.1), this thesis focuses on sources of the simpler lumped load type, as depicted in 

Figure 2.5. 

 

Figure 2.5.  Impressed current source used for FEM loading. 

 

 Lumped-element type sources have no physical extent, and therefore do not 

physically disturb the system.  These ‘probes,’ as they are commonly referred to, treat the 

volumetric problem as a black box Zsys, to which they either deliver power to or drain 

power from.  They are placed in parallel with discretized edges of the geometry, sharing 

the same voltage that exists across the common geometric edge.  Probes are general 

enough in nature that they can be treated as active or passive ports in the geometry, with 

an arbitrarily assigned impedance value Zg.  When the lumped elements are connected to 
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the geometry, they require both an impedance matrix entry in the FEM system, as well as 

an entry in the system excitation (when active).  The impedance matrix entry for an edge 

of length L has the general form 

 
2

0 0g
L

LZ jk
Z

η= , (2.5.1) 

 
where LZ  is the desired probe impedance [13].  Care must be taken to ensure the form of 

the impedance entry has been scaled to match the system of equations.  By entering a 

very large real-valued impedance, the probe will have very little effect on the system.  

Conversely, adding a probe of very low impedance would have the effect of shorting out 

the electric field along the probed edge of the structure, hence acting as a shorting pin.  

The probe has a corresponding entry in the excitation vector of the form 

 0 0
i i jb jk I e Lφη= − , (2.5.2) 

 
where iI  is the magnitude of the source excitation, and je φ  controls the phase.  It is 

important to note that this impressed current will be flowing through the parallel 

combination of the source impedance and the system impedance at the probe point, as 

illustrated in Figure 2.5.  The addition of the impedance and current excitation to the 

systems dictates that the unknown electric field solution will be relative to the parallel 

combination of the source impedance and system impedance at the point of probe entry.  

In other words, if one wanted to determine the input impedance of the system at the probe 

location, it is necessary to use a current divider rule to extract the fraction of the current 

entering the system.  The input impedance of the system can be computed as 

 
in

in in j

E LZ
I e φ

= , (2.5.3) 
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where inI  is the fraction of current flowing into the FE-BI system.  The effective use of 

these probes will be demonstrated in the results section at the end of this chapter.  As a 

general rule, they work more effectively in combination with electrically small edges, 

where the approximation of a constant voltage ( inE L ) across the load is a more valid 

assumption. 

 

2.6 Solution of the System of Equations 

 

 The system of equations in (2.4.9) can be solved in a number of ways.  In general, 

the solution to the system is found by inverting the matrix, or 
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. (2.6.1) 

 
However, the inversion of the matrix system comes at a very high storage and 

computation cost (O(N3)), and is typically avoided.  A good survey of solution methods 

for linear systems of equations can be found in [23].  The best solution approach is 

system dependent, but the fastest approach is typically an iterative solution procedure 

(O(N2)).  The form of (2.4.9) is non-symmetric, meaning that a simple conjugate gradient 

solver is not appropriate.  However, bi-conjugate gradient-based solvers for non-

symmetric systems are appropriate, and have been found to do a reasonably good job 

solving systems of equations of this type. 

In (2.4.9), the FEM sub-matrix is sparse, but not well conditioned.  If adequate 

memory resources are available, it is recommended that the FEM portion of the matrix be 

solved via a complete LU factorization [23].  With limited storage, larger systems will 
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require an iterative solution approach.  The computations in this thesis were performed 

using two iterative solvers that were found to give the best results.  Under certain 

conditions, it was found that an iterative solver based on the generalized minimum 

residual (GMRES) procedure produced the best results.  However, for most tasks, it was 

found that a stabilized version of the bi-conjugate gradient solver (BICGSTAB(L)) 

converged the fastest [24]. 

To assist the iterative solver, it is useful to augment the solution procedure with 

matrix preconditioners, the use of which is described in [23].  For sparse systems of 

equations, an incomplete LU factorization with zero fill-in (ILU(0)) resulted in 

reasonable improvement to the solution process with the smallest additional storage cost.  

However, using a preconditioner that pre-solves the entire FEM system (selective LU 

factorization), and only requires the solver to iterate over the BI matrix assembly 

generates faster solution times.  Another timesaving preconditioner combines the LU 

factorization of the FEM and [ ]Q  matrices (block-LU).  Though fast, this preconditioner 

has higher storage cost than the FEM LU factorization alone.   

 

2.7 Examples and Validations 

 

This section presents some basic examples designed to validate the underlying 

FE-BI formulation.  In later chapters, the reliability and validity of the base FE-BI 

formulation will be used as a reference for validating array-based methods. 
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Figure 2.6. Geometry of a microstrip quadrature hybrid circuit. 

 

The first example considered here is a microwave circuit of the type shown in 

Figure 2.6.  This example is designed primarily to demonstrate the feasibility of the 

chosen formulation for circuit applications involving port-to-port coupling 

measurements.  Further, this example validates the functionality of the FEM formulation 

for modeling structures using lumped-element sources and loads.  The primary mode of 

operation for this type of circuit is characterized by a signal entering port 1 and splitting 

two ways, with half the power exiting from each of ports 2 and 3, port 4 isolated.  Each 

arm of the circuit is 90-degrees in electrical length at the center design frequency, and 

hence the output signals at ports 2 and 3 are 90-degrees different in phase.  The S-

parameter sweep for this circuit is given in Figure 2.7, comparing the simulated and ideal 

results.  The simulated results match reasonably well with the ideal curves, though 

definite shifts are noticeable.  This is to be expected, as the ideal results assume an 

infinite ground plane and an ideal design (lossless transmission lines), whereas the FE-BI 

code has simulated a finite structure with physical bounds.  This example suffices to 

demonstrate the port-to-port coupling capabilities of the FE-BI formulation.   
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For reference, the structure was modeled using a total of 168 hexahedral elements, 

with an associated 397 FEM unknowns and 776 BI unknowns.  This number of elements 

and the resulting discretization is appropriate for structural analysis at the highest 

frequency considered in this example.  The required storage for the matrix system was 

10MB using COMPLEX(4) data types in FORTRAN 90.  The center frequency for this 

design was 2GHz.  The accuracy of this solution was calculated at 1.0% deviation from 

the exact solution using the criterion 

 2 2
||{ } [ ]{ } || / { }esterr b A x b= − . (2.7.1) 

In this expression, { }estx  is the estimated solution in solving the generalized system of 

equations 

 [ ]{ } { }A x b= , (2.7.2) 
 
which represents an arbitrary FE-BI system of the type (2.4.9).  A top view of the 

simulated structure is shown in Figure 2.8.  Notice that the mesh is very regular, with 

many elements of the same geometric size.  A common criticism of using hexahedral 

elements in conjunction with FEM for CEM applications is that the regular grids 

associated with these elements can lead to phase error propagation in the solution.  This 

criticism is unfounded, as the hexahedral mesh can easily be distorted to average out 

phase error from element to element.  However, this criticism is warranted when using 

completely regular meshes of the type shown in Figure 2.8.   
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Figure 2.7. S-parameter frequency sweep for hybrid circuit. 

 

Figure 2.8. Simulated hybrid circuit design. 
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Table 2.1. Permutations in Matrix Preconditioning for Directional Coupler. 

BICG-
STAB(8) 

Precond. 
Time 

Precond. Storage Iterations Solver 
Time 

Total Solve 
Time 

No Precond. 0sec 0MB 48 24sec 24sec

ILU 
Precond. 

5sec 7MB 14 12sec 17sec

FEM LU 
Precond. 

0.3sec 2MB 5 3sec 3sec

Block LU 
Precond. 

4.5sec 6MB 1 0.6sec 5sec

 

 

To compare the matrix preconditioning approaches mentioned in this chapter, the hybrid 

circuit example is evaluated at the center frequency of 2GHz for each of the mentioned 

preconditioners, and comparisons are given in Table 2.1.  In this comparison, the most 

commonly used BICGSTAB(L) solver is employed.  The advantage of pre-solving the 

FEM system of equations is evident, but clearly at a higher cost than ILU(0) 

preconditioning.  The point of this exercise is to demonstrate that pre-solving the FEM 

portion of the system leads to faster overall solution time.  For reference, the table was 

generated on a PC with an AMD Athlon XP 1800+ CPU. 

The next example considered here evaluates the radiation pattern from the 

antenna element shown in Figure 2.9.  This antenna design was used as the primary array 

element in a recently designed dielectric lens antenna [25].  The frequency of operation 

for the antenna is 24GHz, and the element is printed on Rogers Corporation RT/Duroid® 

5880 substrate.  The electrical permittivity of this material is 2.2rε = , and the substrate 

is 254 microns thick.  The shown antenna structure is 3.2λ wide and 5.3λ long at 24GHz.  
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The measured and simulated radiation patterns are shown in Figure 2.10, and are 

reasonably well matched at this high frequency.  For this structure, there are a number of 

challenges that make it more difficult to achieve good agreement between measurements 

and calculation.  One main reason for the difference is that a portion of the circuit was 

excluded from the simulation – only the microstrip feed and the radial stub nearest the 

microstrip-to-slotline transition were included.  It is believed the excluded circuit 

structure contributes to the anomaly on the right-hand side of the measured main beam.  

Multiple measurements were taken to verify the existence of this beam asymmetry.  As a 

further difference the antenna element was simulated as a standalone, isolated element.  

The measured structure was actually the central element of a linear array of several 

antennas.  Due to the size of the array, measuring the entire structure would have required 

too many resources for the conventional FE-BI formulation. 

 

 

Figure 2.9. Diagram of antenna structure for example 2. 



 

 40

 

Figure 2.10. Pattern comparisons for the antenna in example 2. 

 

For the antenna design in Figure 2.9, it is not possible to measure the input 

impedance of the antenna, due to the nature of the feeding circuit.  To validate the 

impedance measurement capabilities of the formulation, another antenna structure is 

considered, depicted here in Figure 2.11.  Figure 2.11 (a) shows the way this antenna is 

packaged, and a diagram of the features internal to the antenna is given in Figure 2.11 

(b).  The antenna measures roughly 25cm in length as shown, has a width of about 3.6cm, 

and is 0.3cm thick.  It is designed to operate in the frequency range of 1-5GHz.  This 

element, provided by Naval Research Labs (Pala, Kragalott, Dorsey), will be used again 

for array coupling studies in later chapters. 
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(a) 

 

 
(b) 

 
Figure 2.11. NRL antenna element layout (a) package, (b) detail. 

  

The discretization used for this antenna element is depicted in Figure 2.12.  Due 

to the unusual complexity of this particular structure relative to the frequency of 

operation, it is necessary to use edge ratios of nearly 30 to 1 in tessellating the element.  

Consistent use of FEM elements with the same edge ratio would result in a very large 

number of unknowns, making it impractical to analyze the structure with the 

conventional formulation developed here.  The element is modeled with 2075 FEM 

unknowns and 2920 BI unknowns. 

 

 

Figure 2.12. NRL antenna element discretization. 
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 The results for the NRL antenna impedance measurement are given in Figure 

2.13.  While these results match reasonably well only for a small range of the overall 

impedance measurement, namely the range from 2.5 to 3.5 GHz, the achieved match is 

relatively good considering the frequency range over which a single element 

discretization is used for the simulation.  In other words, better results could have been 

achieved at the higher frequencies by using a denser mesh.  Note also that the impedance 

appears quite erratic for an element that is supposed to have broadband performance 

capabilities.  This element achieves broadband characteristics only when embedded 

within the array environment.  In other words, this element depends upon the coupling 

from neighboring array elements to achieve broadband performance characteristics.  For 

this impedance measurement, the element was removed from the array environment and 

measured in isolation. 
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(a) real part 

 

 

(b) imaginary part 

Figure 2.13. NRL antenna element input impedance. 
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 As a second test of the input impedance calculation, consider the case of a patch 

antenna as shown in Figure 2.14.  The dimensions of the patch are 5.0cm by 3.4cm, and 

the material substrate has a thickness of 0.08779cm.  The material has a dielectric 

constant of 2.17, with a loss tangent of 0.0015.  The patch antenna has a resistive load of 

50Ω  located near one of the corners, and a coaxial feed point offset from the patch center 

as shown.  The exact geometric design is described in [26]. 

 

 

Figure 2.14. Patch antenna example geometry. 
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(a) Real component of patch input impedance 

 

(b) Imaginary component of patch input impedance 

Figure 2.15. Patch antenna input impedance. 

 

 For this example, the patch is analyzed twice.  Simulation 1 was performed with 

209 hexahedral elements, resulting in 353 FEM unknowns, 936 BI unknowns, and a 

matrix size of N=1289.  Simulation 2 was performed with 359 hexahedral elements, 

resulting in 699 FEM unknowns, 1500 BI unknowns, and a matrix size of N=2259.  In 
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Figure 2.15, the simulated values for the patch input impedance are plotted against the 

measured results.  It is clear that the simulations and measurements for the patch antenna 

are in good agreement.  At the higher frequencies, the denser mesh provides more 

accuracy, as expected. 

As a demonstration of matrix condition importance, at the patch resonant 

frequency of 2GHz, the matrix condition was computed for various ratios of MFIE to 

EFIE formulations.  The results are listed in Table 2.2.  Clearly the results show that the 

MFIE formulation results in a better matrix condition number, by an order of magnitude 

for a problem of the tested size.   

 

Table 2.2. Matrix Condition Study for Patch Antenna Problem. 

EFIE/MFIE 
Ratio 

Condition 
Number 

Iterations Solve Time 
No Precond. 

α  = 1.0 72207 45 28sec 

α  = 0.5 6202 25 15sec 

α  = 0.0 5402 17 11sec 

 

Perhaps more importantly, the effect of the FEM matrix on the overall system 

condition should be considered.  For this system of equations, the isolated FEM matrix 

has a condition number of 3486, whereas the [ ]Q  matrix alone has condition numbers of 

3373, 121, and 46 for α  = 1.0, α  = 0.5, and α  = 0.0 respectively.  Hence, using a direct 

solver on the FEM portion of the system when the resources are available will 

significantly improve the solution speed for any value of α. 
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 In a future section of this thesis, important coupling measurements will be made 

at the ports of large array structures separated by a distance.  In order to validate that the 

formulation is capable of handling such a task, the coupling (mutual impedance) between 

two dipoles separated by a variable distance is considered.  The coupling situation for the 

dipoles is depicted in Figure 2.16.  The mutual coupling Z12 is computed by measuring 

the ratio of the voltage induced across the port of dipole 2, to the current entering dipole 

port 1 at various side-by-side separation distances.  The dipoles are mostly PEC with a 

small dielectric gap at the center, across which the ports are placed.  The coupling results 

are shown in Figure 2.17, and match the expected form of the mutual coupling behavior 

of dipoles, as reported in [27].  

 

 

Figure 2.16. Geometry for side-by-side dipole coupling calculation. 



 

 48

 

Figure 2.17. Mutual coupling for side-by-side dipoles vs. separation distance. 

 

Having validated the formulation for a wide range of problem classes, it should be 

apparent that hybrid FE-BI is a robust technique for CEM analysis.  At this point, it is 

instructive to see how well conventional FE-BI can be used for finite array analysis.  This 

is in fact entirely necessary, as the main premise of this work is that exact methods such 

as conventional FE-BI are too computationally expensive for very large structural 

analysis, prompting the development of the advanced array methods in the later chapters 

of this thesis.  In this example, the base formulation developed in this chapter is used to 

analyze several arrays of the type shown in Figure 2.19. 
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Figure 2.18.  Tapered-slot antenna element for 10GHz operation. 

 

A diagram of the element used in this array is depicted in Figure 2.18.  The 

element is probe-fed at a distance / 4λ  from the slotline short when excited at 10GHz.  

At 10GHz, the element is relatively small, and radiates rather poorly.  However, it is 

necessary to construct arrays from electrically small elements when using conventional 

FE-BI for analysis, as will become apparent from the required storage for even small 

arrays.  It is important to note that the intention of this example is not to design an 

industrial quality array, but rather to validate the potential of particular formulations to 

analyze similar array structures.  The individual elements of the array are spaced 1.6cm 

apart in a two-dimensional grid.  A total of 1103 unknowns were used to tessellate each 

element, with 507 FEM unknowns and 596 BI unknowns.   
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Figure 2.19. Finite tapered-slot antenna array. 

 

Using the element of Figure 2.18, several array configurations were constructed 

as listed in Table 2.3.  The arrays were analyzed using a 64-bit Itanium server with 16GB 

of shared memory.  The HP rx4610 server has four 800MHz Itanium CPUs, though only 

a single processor was employed in the analyses appearing here.  The matrix structures 

are populated with FORTRAN 90 based COMPLEX(4) data types, requiring 8 bytes per 

data element.  The listed array configurations were all analyzed using the BICGSTAB(L) 

iterative solver with the ILU(0) matrix preconditioner.  As seen from the table, a 3 3×  

array of this element poses no serious challenge for conventional FE-BI analysis.  The 

10,000 unknown problem can be solved in a few hours time using a modest amount of 

memory.  The 6 6×  array has nearly 40,000 unknowns, and requires roughly 6GB of 
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storage.  The matrix fill time for this problem was approximately 2 hours, and the 

solution time was close to three days.  Clearly, this size problem is near the limit for 

conventional FE-BI analysis.  While it would be possible to squeeze a slightly larger 

problem into the 16GB of storage available on the server, it is clear that the problem size 

would only be marginally larger considering that the chosen preconditioner requires as 

much storage as the matrix itself, leading to the conclusion that very large structural 

analysis will not be possible with conventional FE-BI alone.  For future reference, a 

10 10×  array of the same element requires too much storage to solve via conventional 

means (45GB), and analysis was not attempted. 

 

Table 2.3. Array Computations for Conventional FE-BI. 

Array 
Size 

Unknown 
Count 

Matrix Storage 
Requirements 

Matrix Fill 
Time 

Solve 
Time 

3x3 9,927 368MB 7.5min. 3.7hrs.
6x6 39,708 5,880MB 1.9hrs. 3.1days

10x10 110,300 45,348MB *16hrs. -
*estimated data 

 

2.8 Discussion of Limitations 

 

 From the results presented in this chapter, it should be apparent that the hybrid 

FE-BI is a capable method for accurate electromagnetic analysis.  Also from the results 

presented, it should be apparent that this reliability comes at a high price – namely the 

storage requirements prohibit the analysis of large structures.  With this conventional FE-

BI approach, it was only possible to analyze a 6 6×  array with 20,000 unknowns.  In 

order to achieve accurate analysis for larger structures, it will ultimately be necessary to 
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take advantage of redundancies in the finite array environment.  Before the exploitation 

of redundancies in finite array-type problems is addressed, a more general approach to 

reducing the cost of exact integral methods will be examined.  Later in the thesis, focus 

will return to these general techniques for addressing specific weaknesses in the array 

methods.  In the next chapter, the fast multipole method (FMM) is explored as an attempt 

to address the main shortcomings of conventional FE-BI for arbitrary structure analysis. 
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CHAPTER 3 
 

THE FAST MULTIPOLE METHOD 
 

 

From the details given in the preceding chapter, particularly from the 

demonstration of limited capability of conventional FE-BI methods to analyze finite 

arrays, it should be apparent that FE-BI alone is not best suited for large structure 

analysis.  The main difficulty in using conventional FE-BI to analyze large structures is 

the O(m2) storage requirements of the method quickly exhaust system resources.  A 

simple calculation shows that a matrix system with m=11,585 unknowns will require a 

gigabyte of storage, assuming each matrix entry is 8 bytes.  It is therefore apparent that 

enhancements to the conventional algorithm must be made if FE-BI is to be used for even 

larger systems with possibly millions of unknowns. 

To recall, the FE-BI method was initially chosen for its excellent robustness in 

solving problems of nearly any type with complete rigor.  To avoid giving up this 

capability, in this chapter a powerful method for reducing the computational costs 

associated with FE-BI will be examined.  The primary bottleneck of conventional FE-BI 

lies in its dense integral equation matrices, and this will be a focus for improvements.  

The cost of this storage stems from the rigorous near-zone terms of the matrix system 

used for interacting all elements in the system, both near and far.  In a large structure, a 

significant portion of the interactions may be separated by many wavelengths.  For 



 

 54

regions of the structure that are far separated, corresponding to roughly a wavelength 

separation or more, rigorous interaction can be relaxed at virtually no cost to solution 

accuracy when done properly.  The procedure explored here for relaxing the rigor of 

distant interactions is called the fast multipole method, or FMM for short.  The 

application of FMM will reduce the O(m2) storage requirements of the conventional FE-

BI method down to O(m1.5) or better.  The reduction to O(m1.5) alone reduces the cost of a 

11,585 unknown problem by two orders of magnitude.  In later chapters the benefits of 

the FMM will be exploited to achieve much greater functionality when applied in 

combination with a near-zone decomposition approach for array-type systems. 

 In this chapter, a short exposition of the fast multipole method for electromagnetic 

analysis is given.  In this exposition, the details on the FMM will be explored with 

particular emphasis on implementation issues.  While there will be little in the form of 

new contributions in this chapter, the fundamentals of the FMM, as detailed here, will be 

used again in later chapters in new ways for far-zone array decomposition. 
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Figure 3.1. FMM cluster interaction within arbitrary system. 

 

3.1 Fast Multipole Method Formulation 

 

 To explain how the FMM is employed in analyzing an arbitrary problem, consider 

the discretized structure shown in Figure 3.1.  The FMM works by partitioning an 

arbitrary geometry into regular (or potentially irregular) regions.  The chosen partitioning 

scheme is somewhat subjective, but follows the rudimentary criteria that the partitioned 

regions should be smaller than a wavelength in diameter and not overlap each other.  This 

rule of thumb makes the FMM more efficient, and the reasons and considerations for this 

guideline will be made apparent shortly.  Each partitioned region of the structure is given 

a local origin lO .  The basis elements of the geometry surface are associated with the 

region for which the distance to the local origin of the region is smallest.  As an example, 

in Figure 3.1, the local regions to which source and testing basis functions are associated 
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are clearly depicted.  All basis elements falling within the pre-defined radii of a 

partitioned region will be associated with that local group.   

The process of grouping basis elements creates localized groups or cells that will 

be referred to henceforth as simply ‘clusters.’  The goal of this partitioning procedure is 

to circumvent the need for interacting individual basis elements with rigorous near-zone 

interactions, and instead interact groups of basis elements (that are far-separated) with 

inexpensive approximations of the coupling mechanism, i.e. the free-space Green’s 

function.  Clusters that are not far-separated will be treated in the usual way, i.e. via the 

rigorous near-zone integral equation formulation of the preceding chapter.  In FE-BI, 

FMM is applied to boundary integral currents on the surface structure.  This same 

procedure can be applied to volumetric integral equations as well [14]. 

Consider a source and testing location on the structure, positioned at ,m nr ′ ′  and ,m nr  

respectively, referenced to a global origin Og (see Figure 3.1).  Let the source and testing 

basis elements be given local indices m′  and m respectively, relative to a local clustering 

scheme.  The testing and source clusters are denoted with the indices n  and n′  

respectively.  As a generalization, the dense impedance matrix entry for this interaction 

will be of the form 

 
0 , ,

, , ,
, ,

( ) ( )
4

m n m njk r r

mn m n m n m n
m n m nS S

ea j w r w r dS dS
r rπ

′ ′− −

′ ′ ′ ′
′ ′′

′⎡ ⎤ =⎣ ⎦ −∫ ∫ . (3.1.1) 

 
Rather than describing this interaction using global coordinates, it can be equivalently 

described using local group coordinates in combination with a vector relating the position 

of the source and testing cluster groups.  The vector relating the position of these clusters 
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is given by nnρ ′ , as indicated in Figure 3.1.  Using these local coordinate relations, it is 

possible to rewrite the kernel in (3.1.1) as 

 
0 , , 0 , ,( )

, , , ,4 4 ( )

m n m n nn m n m njk r r jk d d

m n m n nn m n m n

e e
r r d d

ρ

π π ρ

′ ′ ′ ′ ′− − − + −

′ ′ ′ ′ ′

=
− + −

. (3.1.2) 

 
 
The advantage of this alternate expression will be made apparent below, as further details 

of the FMM are revealed. 

The FMM, as developed here, is based primarily on two identities.  These 

identities can be found in [28].  The first identity, based on Gegenbauer’s addition 

theorem, allows the expansion of the kernel of the scalar free-space Green’s function as 
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−
∑ ij

. (3.1.3) 

 
In this substitute expression, ()lP  are the Legendre polynomials, (1) ()lh  denote the 

spherical Hankel functions of the first kind, and ()lj  are the corresponding spherical 

Bessel functions of the first kind.  The values of these functions can be found in many 

references on mathematical functions, such as [28].  A second identity important for the 

FMM development is 

 , ,( ), ,
0 , ,

, ,

ˆˆ ˆ4 ( ) ( ) ( )m n m njk d dm n m nl
l m n m n l nn l nn

m n m n

d d
j k d d P e P k dk

d d
π ρ ρ′ ′−′ ′

′ ′ ′ ′
′ ′

−
− = Ω

− ∫ ii ij . (3.1.4) 

 
Combining (3.1.3) and (3.1.4), the kernel function can be rewritten as 
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The important aspect of this expansion is that it decouples the primed and unprimed 

components of the original Green’s function.   

Note that a large portion of the kernel as given in (3.1.5) is dependent only on the 

distance vector separating clusters.  It is essential at this juncture to isolate the terms in 

(3.1.5) that are strictly a function of the vector separating clusters, and group them into 

their own operator given by 

 (1)
0

0

ˆ ˆˆ ˆ[ , ] ( 1) (2 1) ( ) ( ))
L

l
L nn nn l nn l nn

l
k k l h k P kρ ρ ρ ρ′ ′ ′ ′

=

Τ = − +∑i i . (3.1.6) 

 
Notice that the infinite sum has been replaced with a truncated series, thereby allowing a 

controlled degree of accuracy and speed.  The important advantage of this step is that 

(3.1.6) can easily be pre-computed prior to solving the system of equations at low cost, 

and can potentially be re-used for any groups with the same vector separation within the 

arbitrary structure.  This lumped quantity is referred to as the translation operator.  The 

translation operator matrix will have entries for each of the paths between the n 

individual clusters (n2 total entries), as well as for K directions in k-space, the choice of 

which is described below.  In essence, the translation matrix is used to compute the effect 

of the clusters on each other in the far-zone, by shifting the far-zone influence (field 

signatures) of each group such that they line up in k-space for the selected set of k-space 

directions, as a cheaper alternative to interacting all basis elements within the clusters 

individually in the near-zone. 
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In effect, the FMM uses an approximation of the kernel in (3.1.5) given by 
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This approximate expression is attractive in the context of exact methods that employ 

iterative solvers to generate approximate solutions.  However, the conditions under which 

this approximate expression can be used are limited by some critical guidelines.  Because 

of the interchange of summation and integration order, the number of terms L in the 

summation cannot be allowed to be much larger than 0 nnk ρ ′ , or the Hankel function will 

oscillate wildly.  However, in order for the multipole expansion to converge, the value of 

L must be sufficiently large, so one cannot simply choose an arbitrarily small L.  That is, 

the value of L must be greater than the maximum value attainable by 0 , ,( )m n m nk d d ′ ′− , or 

0 ( )n nk D D ′+ , where Dn and nD ′  are the maximum radii of the testing and source clusters 

respectively, such that the partial-wave expansion in (3.1.4) converges.  Preferably, one 

would like to choose L as small as possible to minimize computational and storage costs, 

since smaller L values correspond to significantly fewer k-space directions.  In the end, 

one must choose a value of L as a trade-off between accuracy and storage requirements.  

Conceptually, this suggests a benefit in choosing smaller cluster diameters, which 

consequently allows a smaller value of L.  As a tradeoff, this increases the total number 

of clusters, which in turn increases the number of group interactions (translations) that 

must be pre-computed and stored.  It has been reported that one can optimize the 

computational cost when the number of clusters is chosen proportional to the square root 

of the total number of basis functions, or n N=  [1]. 
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 Once the cluster assignments have been determined, the number of terms used in 

(3.1.6) is found roughly by the relation [1, 29] 

 0 0( ) ln( ( ) )n n L n nL k D D k D Dα π′ ′= + + + + . (3.1.8) 
 
Here, Lα  is chosen to generate the desired accuracy for the application type and machine 

architecture, but should be approximately between 1 and 10.   

There also remains the issue of clarifying when the approximation (3.1.7) can be 

implemented.  As mentioned earlier, it is necessary that L  < 0 nnk ρ ′ .  This implies that 

the cluster separation nnρ ′  must be greater than 0L k  in order to use the FMM 

approximation.  For cluster groups separated by less than 0L k , the near-zone interaction 

of the conventional FE-BI method must be used.   

From a procedural perspective, the intention is to pre-compute critical structures, 

such at the translation matrix, prior to initiating the iterative solution procedure.  This is 

the means by which the FMM attains a potential solution speedup.  In fact, this is a 

necessary step, since the FMM increases the cost of the iterative solution procedure, and 

benefits mainly by pre-computing numerical entities prior to beginning the iterative 

solution.  The main speedup occurs through pre-computing the entries of the translation 

matrix (3.1.6).  Though this structure can be effectively pre-computed, unfortunately, the 

effect of distant clusters on each other must be updated at each iteration of the solution 

procedure.  As a note, though the influence of clusters upon each other is carried out in k-

space via the FMM, communication of this influence to and from the individual basis 

elements of the clusters must be carried out in the spatial domain through Fourier 

transforms.  This process will be made clearer shortly.  It is worth mentioning that a 

further advantage of pre-computing the translation operators is that for clusters on a 
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regular grid, the translation matrix will have a block-Toeplitz property.  In other words, it 

will not be necessary to compute translation operators for all n2 interactions within the 

partitioned structure grid – only the unique interactions, represented by unique cluster 

separation vectors.  This allows a beneficial storage reduction.  The Toeplitz property 

will again be exploited in later chapters when dealing with array interactions. 

The FMM requires the computation of signature functions for the fields in each of 

the clusters.  Signature functions are equivalently the Fourier transform of the basis 

functions, referenced to the center of the cluster to which the basis function belongs.  Pre-

computation of the signature function for a given cluster allows the convenient evaluation 

of the far-zone pattern for that cluster, simply by multiplying the field coefficients with 

the pre-computed signature functions.  For a common basis function ( )w r  used to 

construct the fields, the signature function of cluster n is given as 

 ,( )
,

ˆ[ , ] ( ) m n njk r
n m n

S

W k m w r e dSρ−= ∫ i . (3.1.9) 

 
Each of the n clusters will have a signature function sub-matrix ˆ,k m n

W⎡ ⎤
⎣ ⎦ that represents 

every basis element m within that cluster, computed for each of the k-space directions 

required to accurately represent the footprint of the cluster on the far-zone sphere.  The 

number of k-space directions is proportional to the size of the cluster, and is given by 

approximately 22L , where from before, L is the number of terms used in the summation 

(3.1.6).  Since 
k̂ n

W⎡ ⎤⎣ ⎦  is essentially the basis function mapped onto the far-zone sphere, 

{ }
*

ˆ, m nk m n
W x⎡ ⎤
⎣ ⎦  gives the radiation contribution of the surface currents in cluster n in the 

far-zone for the desired k-space directions.  These values are only calculated at discrete 
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points or directions in k-space and are therefore considered diagonal (vector vs. matrix) in 

form.  That is, information at different k-space directions is not communicated to each 

other.  As usual, S  is the volume/area of the geometry subtended by the currents of 

cluster n. 

 To demonstrate how the FMM works, consider the interaction of two clustered 

basis element groups as shown in Figure 3.1.  For rigorous integral equation interaction 

of the source basis elements in cluster n′  with the testing basis elements in cluster n , 

there will be a dense matrix of the form given in (3.1.1).  This is necessarily the case, as 

rigorous solution requires the individual interaction of every source element with every 

target element of each respective cluster to achieve a full matrix that can be solved.  If the 

clusters are far-separated, however, this rigor is not necessary.  By using the 

approximation to the Green’s function given in (3.1.7), the interaction of these groups can 

alternatively be represented as 

 , ,0
, ,2[ ] ( ) { } ( )

(4 )
m n m njk d jk d

mm nn m n L nn m n
S S

ka w r e dS w r e dS dkτ
π

′ ′−
′ ′ ′ ′ ′

′

⎡ ⎤
′≈ Ω⎢ ⎥

⎣ ⎦
∫ ∫ ∫i i . (3.1.10) 

 
The FMM is not actually implemented as a matrix element of the form given in 

(3.1.10).  Rather, this expression represents an iterative solution procedure that will be 

described in detail later.  Briefly, the two inner integrals of (3.1.10) are the pre-computed 

signature functions of the source and testing groups.  The quantity { }L nnτ ′  in (3.1.10) 

represents the pre-computed translation matrix entry for interacting the testing and source 

groups n  and n′ .  Essentially, the far-zone signatures of the source groups are first 

computed as outgoing plane waves, the source group influence is then translated in the 

far-zone to compute how it interacts with the testing group, and finally this influence is 
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transformed back into real space as incoming plane waves to individual testing locations 

via the outer integral.  Each of the quantities within the outer integral are vectors with a 

length equal to the number of k-space directions required for the signature functions.  In 

essence, the FMM reduces a dense matrix-vector interaction into a diagonalized vector 

operation, potentially resulting in solution acceleration.  The result on the near-zone 

integral equation matrices is that they now become sparse, as depicted in Figure 3.2.  The 

shaded regions represent the sparse data, corresponding to a 47% reduction in storage 

over conventional FE-BI, for which the dense matrix structure would be entirely shaded 

(full). 

 

 

Figure 3.2. Example sparse matrix structure at 47% fill. 

 

With conventional FE-BI, solution options include the use of direct solvers 

(matrix inversion, LU factorization), or indirect solvers (iterative methods).  In FMM 

there is still the option of inverting the now sparse matrix structure of Figure 3.2, 

however this will no longer lead to the final solution.  In order to solve the system when 
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the FMM has been employed, it is necessary to use an iterative solution approach.  This 

solution procedure is described in some detail below.  First, some enhancements to 

conventional FMM are examined in preparation for later consideration. 

 

3.2 FMM-FFT 

 

 

Figure 3.3. Toeplitz cluster grid for FMM-FFT. 

 

 Under certain conditions, it is possible to explicitly accelerate the FMM solution 

procedure using the FFT.  To do this, the geometry structure must be partitioned into a 

grid of clusters with regular spacing and consecutive cluster numbering, as depicted in 

Figure 3.3.  In the simplest implementation, the arbitrary structure is divided into a three-

dimensional grid of cells, or clusters.  Each cluster contains a number of the basis 

elements used to partition the structure.  When the structure is divided in this way, the 

translation matrix (3.1.6) will have a Toeplitz property, and can be recast as 
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 (1)
0 0
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where 

 1 1 1 1 2 2 2 2 3 3 3 3ˆ ˆ ˆ( ) ( ) ( )c c c c c c c c c c c ci i i i i iρ δ ρ δ ρ δ ρ′ ′ ′= − + − + − , (3.2.2) 
 
and 

 1 1 1 1 2 2 2 2 3 3 3 3ˆ ˆ ˆ( ) ( ) ( )ˆ c c c c c c c c c c c ci i i i i iδ ρ δ ρ δ ρρ
ρ

′ ′ ′− + − + −
= . (3.2.3) 

 
In these expressions, the source cluster index is given as ci′ , whereas the testing cluster is 

given the index ci , for each dimension of decomposition ( 1, 2, 3c c c ).  The cluster index 

for each dimension has the range 1..c ci n= , where cn  is the number of clusters in a given 

dimension.  In the case of Cartesian coordinates, it is most simple to make the assignment 

1 , 2 , 3c x c y c z= = = .  In general, however, the cluster spacing is denoted arbitrarily as 

cδ , and the direction of the clustering lattice is denoted as ˆcρ , for up to three arbitrary 

dimensions.  Though three levels of cluster grid have been allowed for, only two are used 

in Figure 3.3 for the planar structure. 

 Toeplitz storage of the translation operators takes the form 

 [ ] { }
1 1 2 2 3 3( )( )( )c c c c c c

L L i i i i i i
τ ′ ′ ′− − −

⎡ ⎤
⎢ ⎥

Τ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

% # $
" "

$ # %

, (3.2.4) 

 
where each { }Lτ  contains the k-space vectors for the translation between the source 

cluster at index 1 2 3, ,c c ci i i′ ′ ′ , and the target cluster at index 1 2 3, ,c c ci i i , with a matrix index 

given by the difference in the source and testing indices.  The overall size of [ ]LΤ  will be 
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1 2 3(2 1) (2 1) (2 1)c c cn n n K− × − × − × , where K is the total number of unique k-space 

vectors.  This quantity can be readily transformed via the FFT, and later used to 

accelerate the iterative FMM procedure for far-zone interaction.  This procedure is 

described in a later section. 

 

 

3.3 Multi-Level Fast Multipole Method 

 

 A popular enhancement to the FMM is the use of a multi-level version of the 

algorithm [14].  The multi-level FMM, or MLFMM for short, is characterized by 

clustering the problem at multiple levels, each consecutive level grouping the smaller 

clusters of the previous level into larger clusters.  For example, at the highest level, the 

system might be broken into four quadrants of four clusters, and then at the second-

highest level each quadrant is broken into four more quadrants, etc.  This minimizes the 

number of translation operators that need to be computed at each given level.  The multi-

level version of the FMM algorithm reduces the computational cost from the already low 

1.5( )O m  down to a potential ( log )O m m .  A potential benefit of this approach is that 

empty clusters at each level can be removed from the sparse translation matrix, and need 

not be stored.  For largely arbitrary and non-symmetric geometries, this is potentially 

quite beneficial.  The multi-level approach has not been explored in this thesis for reasons 

that will be made clear in later chapters when dealing with array-type problems.  Suffice 

it to say, here the FMM-FFT has been chosen instead for implementation, as it conforms 
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well with the array decomposition methods explored in later chapters.  However, 

occasionally the multi-level version of FMM will be used in comparisons. 

 

3.4 FMM Solution Procedure 

 

The solution of the system of equations does not differ much in terms of 

computational values when comparing the FMM and conventional FE-BI – matrix-vector 

product values from iteration to iteration are largely the same (ideally identical).  

However, from a procedural perspective, the methods differ significantly.  The FMM 

portion of the procedure can be summarized in a number of concise steps.  The first step 

is to compute the updated fields for each of the element groups n in the far-zone using the 

estimated field coefficient values { }estx  of the present iteration and the pre-computed 

signature functions: 

 { } *

ˆ ˆ,
{ }est

m nk k mn n
s W x⎡ ⎤= ⎣ ⎦ . (3.4.1) 

 
After this process, all information about individual basis functions cannot be accessed 

(there is no m index for { }k̂ n
s ) without transformation back to spatial domain.  In the next 

step, the fields of the source group are translated along the far-zone sphere to match up 

with the target element groups in terms of phase offset between the groups using the 

translation operator:   

 ˆ ˆ ˆ[ , ] [ , ] [ , ]L nn
n

g k n k s k nρ ′
′

′= Τ∑ . (3.4.2) 
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This is done for all source clusters and summed onto each target cluster over all k-space 

directions.  Notice again that the expansion is about the element itself (index n) rather 

than individual bases within the array elements.  In this notation, ˆ[ , ]g k n  represents the 

contribution of all source elements at the location of the testing cluster n in the direction 

k̂ .  For clusters that conform to a regular grid; with consecutive cluster indexing in each 

dimension, this process is convolutional, and can be alternatively performed as   

 { } ˆ
ˆ ˆ[ , ] [ , ]L n k

g k n k n n s ′′= Τ − ∗ , (3.4.3) 
 
assuming the general translation matrix ˆ[ , ]L k n n′Τ −  has been stored in an equivalent 

block-Toeplitz format, as in (3.2.4).  This procedure can be expedited through 

simultaneous convolutions for each of the k-space directions.  Alternatively, when the 

process is convolutional, it may be possible to accelerate the interaction explicitly with 

the FFT, via the procedure 

 [ ]{ } { }{ }{ }1
ˆˆ

ˆ[ , ] T
L n kk

g k n FFT FFT FFT s−
′= Τ , (3.4.4) 

 
where [ ] ˆ

T
L k

Τ  is the slice of the Toeplitz translation matrix for k-space direction k̂ .  If 

using an FFT is the intention, it is most practical to pre-compute the quantity 

[ ]{ }ˆTL k
FFT Τ  prior to the matrix-vector product operation as well.  If the quantity [ ] ˆ

T
L k

Τ  

is no longer needed for computations, then [ ]{ }ˆTL k
FFT Τ  can be computed in its space at 

no additional storage cost.  The size and dimension of the FFT depends on the way in 

which the problem was partitioned for clustering.  Note that the notation shown here is 

specific to the form of a one-dimensional cluster grid, with the implicit generalization 
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being applicable to two- or three-dimensional grids.  The contribution of each source 

element group as excitation on each target element group is then attained via the step 

 { }ˆˆ{ } [ , ]far
m n n k n

b W k m g dk= Ω∫ . (3.4.5) 

 
The quantity computed in (3.4.5) is the FMM contribution to the matrix-vector product 

operation of the iterative solution procedure.  In summary, the entire solution procedure 

including the near-zone interactions, can be summarized concisely as 

 { } ([ ] [ ] ){ }est
near farb A A x= + . (3.4.6) 

 
In this expression, [ ]nearA  represents the now sparse near-zone impedance matrix from 

the original formulation, and [ ] farA  constitutes the above FMM procedure for calculating 

the interaction of distant cluster interactions.  

 

3.4 Results and Examples 

 

 In this section, the benefits of FMM over conventional FE-BI are demonstrated.  

As a first example, the array configurations at the end of Chapter 2 are again analyzed.  

The comparisons are given in Table 3.1, and discussed below.  For the analysis, the same 

single processor HP rx4610 Itanium server from Chapter 2 is used. 
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Table 3.1. Comparison of Conventional FE-BI to FMM for Sample Array Configurations. 

Array Size  Standard FE-BI FMM 
Storage Requirements 368MB 161MB

Fill Time 7.5min. 5.7min.
3 3×   

9,927 Unknowns 
Solve Time 3.7hrs. 6.1hrs.

Storage Requirements 5,880MB 802MB
Fill Time 1.9hrs. 1.0hrs.

6 6×  
39,708 Unknowns 

Solve Time 3.1days 3.0days
Storage Requirements 45,348MB 3,589MB

Fill Time *16hrs. 11hrs.
10 10×  

110,300 Unknowns
Solve Time - -

*estimated 

 

For these comparisons, the ILU(0) preconditioner was used.  This preconditioner 

uses the same amount of storage as the system matrix for computing its preconditioning 

data.  Hence, for the sparse matrices associated with the FMM, ILU preconditioning with 

zero fill-ins can be most practical.  For less sparse matrices, the ILU(0) preconditioner is 

more expensive, and for a completely full integral equation matrix, ILU(0) is the 

equivalent of a complete LU decomposition.   

 Starting with the 3 3×  array, it is clear that the matrix storage has been 

significantly reduced by the FMM.  However, it is also clear that the additional overhead 

of the FMM for this small problem has caused the solution time to increase somewhat.  In 

fact, because of the overhead associated with the FMM algorithm, it requires a problem 

of the 6 6×  array size before solutions speeds of conventional FE-BI and FMM 

accelerated FE-BI break even.  That is, for the 6 6×  array, both the conventional FE-BI 

and the FMM solution procedures took roughly 3 days.   
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Next, recall that with conventional FE-BI, it was not possible to attempt analysis 

of the 10 10×  array, because the required storage was too large.  With FMM, it is possible 

to analyze this structure, as it only requires 3.5GB of matrix storage.  However, the 

combination of inferior matrix preconditioning and degrading matrix condition leads to a 

situation where even with FMM, the problem does not solve in over a week of continuous 

run time.  That is, the solution process oscillates, diverging rather than converging.  

Hence, even with a reasonable answer to the matrix storage issue through the FMM, one 

is still faced with potential solution difficulties due to matrix condition.   

This discovery prompts a brief discussion on parallel implementations of common 

codes.  Because the condition of matrix systems tends to get worse with increasing 

system size, there will always be a limit on the maximum system that can be solved in a 

given class of problems, using a given class of iterative solution procedures, independent 

of system resources.  It is common practice to use parallel, distributed memory networks 

to divide the solution procedure across multiple systems to share in the solution process.  

It is incorrect to surmise that this distribution process can be continued indefinitely, to 

address larger and larger problems with the same code.  This is because there is an 

independent solution criterion based on the system condition that must be considered as 

well.  To be effective, the distributed solution procedure must be combined with an 

improved solution approach that specifically addresses the matrix condition issue. 
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Figure 3.4. Seven-element array used for FMM comparisons.  

 

The actual performance of the FMM will typically be problem dependent, and 

often implementation dependent as well.  In this next example, the performance of the 

FMM-FFT algorithm will be evaluated.  For this comparison, the seven element linear 

array shown in Figure 3.4 is used.  The entire array structure is four wavelengths wide, 

with each element approximately 1.2λ in length.  The unknown count is 5621, with 1617 

FEM unknowns and 4004 BI unknowns.  Typically, a structure of this size can expect 

approximately a 65% to 75% reduction in the BI storage of this problem via FMM.  For 

the comparison, the same solver (BICGSTAB(L), L=8) from previous problems is used.  

These comparisons were run on a single processor AMD Athlon MP 1900+ desktop PC.  

The results of the comparison are listed in Table 3.2. 
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Table 3.2. Comparison of FMM Implementations for Seven-Element Array. 

Seven-Element  
Array 

Conventional 
FE-BI 

Multi-level
FMM 

FMM-FFT 

Matrix Storage 228MB 76MB 72MB 
Iteration Count 32 31 31 
Solution Time 5.7min. 5.8min. 2.5min. 

Solution + Fill Time 6.6min. 6.6min. 3.2min. 
 

Each of the solution approaches use the same exact matrix preconditioning, in 

which only the FEM portion of the matrix system is pre-solved via LU decomposition.  

Thus, aside from differences in numerical operation count and errors from approximating 

the Green’s function for the FMM, the number of iterations for the solution and the 

residual error at each iteration should be the same for a conventional FE-BI or FMM 

accelerated analysis of the same problem.  Notice that all the methods in Table 3.2 take 

roughly the same number of iterations to converge, though each method has a slightly 

different iteration count due to the aforementioned issues.  As with the previous 3 3×  

array example, the MLFMM implementation has a slightly longer solution time than the 

conventional FE-BI, again due to the small problem and excessive overhead.  However, 

the FMM-FFT implementation does show a solution speedup over both methods, even 

for this small problem.   

For the FMM-FFT analysis, the structure was partitioned into a cluster grid of size 

12 1 4× × , corresponding to an FFT of size 24 1 8× × .  For this implementation, the FFT 

algorithm works with factors of 2, 3, 4, and 5 [30].  In general, while both the MLFMM 

and the FMM-FFT implementations feature logn n  solution acceleration, the FMM-FFT 

implementation is more efficient for this type of problem, leading to greater solution 
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acceleration.  For reference, the multi-level FMM can potentially achieve better storage 

savings for the same degree of accuracy.  Further, the MLFMM has advantages when 

empty clusters exist.  For this particular geometry, there are no empty clusters in the 

cluster grid, and hence the FMM-FFT algorithm performs ideally well.  Again, the reason 

for interest in the FMM-FFT algorithm is that it is a natural choice to use in later chapters 

on more complex array-type problems. 

 

3.5 Conclusion 

 

 In conclusion, the benefits and shortcomings of the fast multipole method for 

implementation within FE-BI have been discussed.  The results of this chapter make it 

clear that advanced methods for array analysis will be necessary when the unknown 

counts reach into the millions, judging by the difficulty with tens of thousands of 

unknowns as attempted here.  In the next chapter, a method specifically designed to 

exploit the redundancies in the near-zone interactions of finite-array problems is 

explored. 
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CHAPTER 4 
 

ARRAY DECOMPOSITION METHOD 
 

 

 In the previous chapter, it was demonstrated that a generalized decomposition 

method such as the fast multipole method is not ideal for analyzing array-type problems 

when applied in an arbitrary manner.  That is, while it was shown that the FMM achieved 

significant storage savings, the method did nothing to improve the condition of the matrix 

system, or shorten the solution process.  Further, it stands to reason that a finite array-

type problem consisting of regularly spaced, identical elements would have a great 

amount of redundancy that could be exploited in some way for improved analysis. 

 It has been recognized for some time that finite array interactions can be 

decomposed based on array element interactions for both solution as well as storage 

benefits.  In this chapter, a general analysis method for FE-BI is introduced for efficiently 

decomposing the near-zone interactions of the finite array environment.  This method 

decomposes the near-zone interactions of array elements based on the properties of 

translational symmetry and the spatial dependence of the free-space Green’s function.  

The block-Toeplitz property of the resulting matrix system is exploited for reduced 

storage and solution acceleration with discrete Fourier transforms.  The requirement for 

the proposed method is that elements be geometrically identical, insomuch that they are 

meshed exactly the same, and feature the same local basis element numbering.  However, 
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excitation and impedance loading can be unique for each element.  Compared to a 

conventional FE-BI analysis of the same problem with storage requirements of 2 2( )O n m , 

this method has 2( )O nm  storage requirements, where the number of array elements is 

given by n , and the number of unknowns per array element is given by m .  The 

presented method preserves the framework of the FE-BI method for rigorously enforcing 

the coupling interactions between each of the individual array elements, and hence does 

not introduce any approximation into the solution.  This near-zone decomposition method 

is referred to as the array decomposition method (ADM). 

As pointed out in previous chapters, the exact treatment of the domain boundary 

with integral equations comes at increasingly large computational and storage 

requirements as the electrical size of the structure increases.  In recent years, much 

attention has been given to fast techniques for reducing these costs.  To review a bit of 

history, methods such as the fast multipole method (FMM) presented in the previous 

chapter, multilevel fast multipole method (MLFMM), as well as the adaptive integral 

method (AIM) have been shown to significantly reduce storage requirements of the BI 

matrix [1, 31-33].  These methods are only the most recent in a long history of techniques 

designed to accelerate conventional electromagnetic analysis, the first dating back as far 

as the early 1970s.  Van Koughnett was perhaps the first to exploit the Toeplitz nature of 

array systems in CEM [34].  Around this same time, Bojarski was formulating scattering 

problems in k-space and applying fast Fourier transform (FFT) solution methods using 

early iterative techniques [35].  Shortly thereafter, Preis exploited Toeplitz matrix 

properties in conjunction with antenna problems and suggested some rapid inversion 

algorithms [36].  These k-space methods later evolved into the Spectral Iteration 
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Technique (SIT) in the late seventies [37-39], and the method apparently continues to be 

used today [4].  The conjugate gradient-FFT (CG-FFT) method was introduced later and 

allowed for more robust convergence properties [40-46], albeit for simplistic planar 

structures.  To this date, the CG-FFT method continues to be one of the fastest solution 

approaches for planar geometries. 

Like any electrically large problem, large finite arrays require massive numbers of 

unknowns to model rigorously, making the task difficult.  Typically, large arrays are 

modeled using approximate methods based on infinite array analysis [2, 3, 5, 6, 47]. 

These methods can be limited in accuracy, depending upon the size of the finite array and 

how edge effects are treated.  More accurate approximation methods for large array 

analysis have been explored recently, combining asymptotic high frequency based 

truncated discrete Fourier transforms (TDFT) with the method of moments (MoM) to 

achieve drastically reduced unknown counts and fast solution for array problems [7].  

However, rigorous port-to-port coupling calculations, as well as multiple, highly coupled 

systems in the near-zone of each other typically cannot be addressed using these 

approximate methods.  Thus, a demonstrated need exists for a fast and rigorous means of 

modeling finite arrays for realistic problems. 

In this chapter, a fast method for the accurate analysis of finite arrays of three-

dimensional structures is introduced.  Like conventional FE-BI methods, the formulation 

is rigorous and thus exactly models edge effects in finite arrays.  Moreover, ADM 

exploits the translational symmetry of finite arrays and the free-space Green’s function to 

reduce storage requirements and accelerate solution times via the FFT.  In particular, like 

the earlier CG-FFT method, ADM implements the FFT to speed-up the solution process 
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while rigorously enforcing the boundary conditions in the spatial domain.  Moreover, the 

resulting block-Toeplitz matrix equation from the unique extended FE-BI formulation in 

ADM is the basis to achieve significant storage savings for the costly near-zone 

interactions. 

For accuracy, ADM uses FE-BI to rigorously model each array element.  

Consequently, it is demonstrated that the LU factorization of the FE-BI sub-matrix of an 

isolated array element can be used as a highly efficient block-diagonal preconditioner on 

the overall matrix system.  This feature, exclusive to the unique expansion of the FE-BI 

matrix equation in ADM, results in a distinct solution advantage over earlier fast 

methods.  In addition to performing orders of magnitude faster, it is shown that ADM 

achieves results that are indistinguishable from conventional FE-BI methods for array-

type problems, thus benefiting from the same rigorous analysis of conventional FE-BI in 

a fraction of the time.  Perhaps more importantly, ADM significantly extends the range of 

problems that can be rigorously treated with limited resources, making it possible to 

model complex array problems using even a simple 32-bit desktop PC.  

 

4.1 Review of Conventional FE-BI 

 

To understand how the ADM is implemented, it is helpful to summarize the 

underlying FE-BI formulation which was presented in Chapter 2.  For simplicity, the 

exposition in this chapter is based on the same reliable FE-BI formulation used in the 

previous chapters of the thesis.  Other formulations and basis functions can be employed 

if desired, since ADM is not specific to the modeling technique.  As in the case of 
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conventional FE-BI, ADM benefits from using the finite element method (FEM) to 

model as much of the volumetric geometry as possible, as opposed to exclusive use of 

integral equations methods that require significantly more matrix storage.  Below, the 

conventional FE-BI formulation is developed in the context of a single isolated array 

element, and then extended to the specific case of finite arrays.   

 Consider the coupling paths within an arbitrary structure such as the antenna 

element shown in Figure 4.1, or even an entire array of elements (treated arbitrarily), as 

shown in Figure 4.2.  In any case, the generalized impedance matrix elements from the 

integral equations use the same indexing, and will be of the form 

 
0

0[ ] ( ) ( )
4

m mjk r r

mm m m
m mS S

ea jk w r w r dS dS
r rπ

′− −

′ ′
′′

′=
−∫ ∫ i , (4.1.1) 

 
where m  and m′  refer to the testing and source basis within the structure, respectively.   

 
Figure 4.1. Illustration of source and testing basis interaction within a single element. 
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Figure 4.2. Interaction paths within array treated as arbitrary structure. 

 

When treating array structures in this arbitrary manner, the formulation does not take 

geometric considerations into account, and the system of equations will always take the 

same general form.  Recall from Chapter 2 that for this type of generalized interaction, 

the system of equations for conventional FE-BI can be compactly written as 

 
0

0

II IS i i

SI SS s s

s e

A A E b
A A B E b

P Q H b

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

. (4.1.2) 

Regardless of the problem geometry, whether it is a single antenna or an array of 

antennas treated arbitrarily, the matrix assembly in conventional FE-BI will be organized 

as in (4.1.2).  This is due to the generalized procedure that is used to apply the 

conventional FE-BI formulation to an arbitrary problem.  The matrix system in (4.1.2) is 

non-symmetric, and convergence properties of the system can be classified as generally 

poor, especially for large problems, as evidenced by the results of the last two chapters.  

The perspective of this chapter is that an alternative assembly of the matrix operators, 

grouped by element interaction verses the operator type grouping of (4.1.2), will achieve 
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significant solution and storage benefits for array-type problems.  This procedure is 

outlined in the next section, where the conventional FE-BI formulation is expanded for 

array-type problems to specifically exploit the translational symmetry of finite arrays. 

 

4.2 Expanded FE-BI Formulation and Assembly for ADM 

 

To implement the ADM, it is necessary to first expand the system of equations 

such that sub-matrix entities are grouped by element interaction, rather than operator 

type.  Once the expansion has taken place, it will be possible to implement a beneficial 

decomposition of the matrix system.  To facilitate this implementation, new notation 

based on array interactions is introduced.  For simplicity, the exposition is based on linear 

arrays, for which the expansion is simple to visualize.  This is done with the 

understanding that the concepts presented here, along with the notation, can easily be 

extended for planar and even multi-dimensional arrays.  In a later chapter, the notion of 

multi-dimensional array analysis will be introduced to allow significantly more freedom 

in the approach to array-type problems and more specifically, multiple array-type 

problems.  To begin, first consider the decomposition of a linear array.  Let the indices 

,n n′  represent the testing and source array elements, respectively, as depicted in Figure 

4.3 for a simple two-element array.  As a note, for the decomposition methods introduced 

here, it is necessary that the array elements be numbered consecutively in each 

dimension, and have a common lattice spacing for all elements in a given dimension.  

Within each element, basis functions are given the local index m .  Because each element 

of the array is meshed exactly the same, the local basis function m  of one array element 
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corresponds to the same local basis function m  of all other elements in the array.  For 

array interactions, the matrix impedance entries for integral equations can be expressed in 

the form 

 
0 , ,

0 , ,
, ,

[ ] ( ) ( )
4

m n m njk r r

mm nn m n m n
m n m nS S

ea jk w r w r dS dS
r rπ

′ ′− −

′ ′ ′ ′
′ ′′

′=
−∫ ∫ i . (4.2.1) 

 
In the notation used here, the vector pointing from the global origin to the mth basis 

function of the nth array element is denoted ,m nr .  As an example, the notation 35 12[ ]a ′ ′  

implies that the fifth basis function (source) of array element two is being tested at the 

location of the third basis function of array element one.   

 

Figure 4.3.  Expanded indexing for array interactions. 

 

With this expanded notation, it is possible to reorganize the system of equations 

such that the coupling coefficients of the array are assembled into separate sub-matrices 
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for each array element interaction.  Before generalizing this expanded notation, consider 

first the simple two-element array shown in Figure 4.3.  For ADM, the expanded system 

of equations will be assembled in matrix notation as 
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 (4.2.2) 

 

In this representation, the isolated domains of the individual array elements now form 

sub-matrices along the main diagonal of a larger matrix structure.  Thus, all interactions 

within array element one (self-coupling) are represented with the upper left sub-matrix, 

while all interactions within array element two appear in the lower right sub-matrix.  The 

isolated element domains are linked through cross-coupling sub-matrices, found in the 

upper right and lower left brackets of the matrix in (4.2.2).  For example, array element 

two couples to array element one through the upper right sub-matrix, and array element 

one couples to array element two through the lower left sub-matrix.  For the formulation 

presented here, a closed domain for each element is assumed (array elements do not 

touch) and thus no FEM terms appear in the mutual coupling sub-matrices.  For cases 

where array elements share a common cell boundary, such as a continuous substrate 

where array elements are joined physically, it is necessary to define FEM operators to 

handle these junctions.  Further, it is necessary to introduce bridge systems between the 

elements in order to preserve Toeplitz conditions.  For this, a multi-system approach must 
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be adopted.  This additional complexity will be treated in a later chapter, as it requires 

advanced concepts to model efficiently.  In the formulation presented here, it is assumed 

that array elements do not touch, or if the elements do touch, the condition is treated as a 

crack, or bad electrical contact. 

For ADM, the matrix system for an n  element linear array takes the expanded 

form 
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which can be cast in more compact notation as 
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. (4.2.4) 

The impedance sub-matrices [ ]nna ′  of (4.2.4) denote the individual coupling between the 

elements n  and n′ , { }1{ } { } { } T
nx x x= "  is a block-vector containing the vector field 

coefficients for each array element, and { }1{ } { } { } T
nb b b= "  is also a block-vector 

containing the excitations of the array elements.  In other words, each { } ,{ }n nx b  pair 
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contains the field and excitation coefficients of array element n , respectively.  Notice 

that in this expansion, all the self-coupling terms (along matrix diagonal) are of the form 
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whereas the cross terms are the inter-element coupling matrices given by 
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Hence, all the FEM information in the matrix structure now appears along the main 

block-diagonal of the matrix system.  As will be described later, this can be exploited to 

reduce the number of iterations for system convergence quite significantly.  The 

expanded system of equations is exact, and will certainly lead to the same exact solution 

obtained via the standard FE-BI formulation.  In other words, (4.2.3) can be reorganized 

to the equivalent form of (4.1.2), or vice versa, and thus one can expect the same solution 

for ADM and conventional FE-BI.  However, the organization as in (4.2.3) has unique 

benefits that allow ADM to achieve significant storage reduction and solution speed-ups, 

as described below. 

Note that in (4.2.3), the system has been grouped by the physics of element 

interactions.  This intuitive layout leads to the strongest self-coupling terms being located 

along the main diagonal of the matrix system with the nearest neighbor coupling terms 

adjacent to the main diagonal (for consecutively numbered array elements).  This matrix 

restructuring induces a degree of symmetry, albeit ‘block’ symmetry, that (2.4.9) does not 

have.  The matrix structure is block-Toeplitz, allowing for direct reduction of the dense 
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integral equation matrix storage from 2 2( )O n m  down to roughly 2( )O nm , with n  being 

the number of array elements and m  being the number of BI unknowns per array 

element.  The way this decomposition is achieved is the subject of the next section. 

 

 

Figure 4.4 Expanded indexing for array decomposition. 

 

4.3 Decomposition of Near-Zone Interactions 

 

The expanded system of equations in (4.2.4) has a non-symmetric block-Toeplitz 

property, implying that a significant amount of the matrix information is redundant.  Note 

that the relation in (4.2.1) is written in terms of vectors referenced to a global origin.  
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However, (4.2.1) can also be expressed in terms of local array element vectors and 

translation vectors relating the local origins of individual array elements, as depicted in 

Figure 4.4.  Specifically, it is possible to re-write (4.2.1) as 
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Consider now the consequence of a sequential numbering scheme imposed on the 

elements of the array.  For a finite array with equally-spaced elements and consecutive 

numbering, it is possible to express the kernel function in terms of the difference between 

the source and testing array elements, or explicitly 
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Equation (4.3.2) is the general form of the ADM kernel for finite arrays.  In (4.3.2), xδ  is 

the fixed spacing between elements of the array, and ˆxρ  is the direction of the array axis 

(assumed along x for simplicity), and md  is the vector from the local array element origin 

to the basis function m location.  The pair ,x xi i′  are the sequential numbers of the source 

and testing elements, respectively.  To be precise, (4.3.2) is only valid for linear arrays.  

The ADM kernel for two-dimensional arrays could equivalently be expressed as 
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In a planar array, it is required that elements be numbered consecutively in both 

dimensions, and hence each element is given a pair of indices ,x yi i , where 1..x xi n= , 
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1..y yi n= , n being the number of elements in a given dimension.  The kernel (4.3.2) can 

easily be used to create a unique and efficiently stored set of coupling coefficients. 

To summarize, each element in an array of identical elements will have the same 

basis numbering within the local coordinate system.  The coupling between any two 

elements of a linear array, as depicted in Figure 4.5, can then be described in terms of the 

identical local coordinate systems ( ,m md d ′ ), plus the separation between the local 

coordinate systems ( ˆ( )d d d di i δ ρ′− ), for each dimension d.  Consequently, the entire sub-

matrix representation of the coupling from array element one to array element two, 21[ ]a ′ , 

will be the same as the coupling sub-matrix from element two to element three, 32[ ]a ′ , 

since the vector separating the origins of elements one and two ( 2 1ρ ρ ′− ) is identical to 

the vector separating elements three and two ( 3 2ρ ρ ′− ), or 

3 2 2 1 ˆ ˆ(3 2 ) (2 1 )x x x xρ ρ ρ ρ δ ρ δ ρ′ ′ ′ ′− = − = − = − .  Clearly then, for sequentially numbered 

array elements, all unique coupling paths within the array can be represented by the 

difference in the array element indices, or ( )[ ] [ ] [ ]nn n n pa a a′ ′−= = .  In other words, for a 

linear array with sequential numbering of array elements, the coupling sub-matrices 

within [ ]A  have the property ( )[ ] [ ] [ ]nn n n pa a a′ ′−= = , for any ,n n′  pair.  Conceptually, the 

sum of the coupling seen at each element in the array is still unique, since the array is 

finite and the analysis methods exact.  However, the isolated coupling contribution 

between any two elements of the array can have the same exact form.  Because of this 

redundancy, it is possible to store only a sub-set of the terms in the matrix system without 

loss of information.  As a side note, though one might expect a reciprocal property 

between [ ]pa  and [ ] pa − , in general, this is not the case when using CFIE and multiple 
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basis functions per array element.  More specifically, the coefficients in [ ]1a  and [ ]1a−  

are not ordered the same – the two matrices likely contain identical coefficients in a 

different order.  For details on this aspect of the expansion, the reader is referred to 

Appendix A.  In any case, from an implementation perspective, it is preferable to 

preserve both coupling matrices, such that the FFT can be used to efficiently accelerate 

the solution process. 

The block-Toeplitz property of the ADM kernel results in only the first column 

and first row of coupling sub-matrices in (4.2.4) having unique values, indicated by the 

unshaded region in  

 

 . (4.3.4) 
 

The ADM kernel, as stated in (4.3.2), will only map to one of the unshaded sub-

matrices of (4.3.4), and hence the shaded sub-matrices need not be computed or stored.  

For example, the coupling paths from source locations on array element one to testing 

locations on array element two 21[ ]a ′  are the same as the paths from the corresponding 

source locations on array element two to testing locations on array element three 32[ ]a ′ .  

The same applies from element three to four 43[ ]a ′ , four to five 54[ ]a ′ , and so on. Of 

these, only 21[ ]a ′  is stored, as it is in the first column of (4.3.4).  The rest of the 

interactions get mapped to 21[ ]a ′ .  Likewise, the coupling paths from array element one to 
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four 41[ ]a ′  are the same as the corresponding paths from element three to six 63[ ]a ′ , and 

so on (only 41[ ]a ′  is stored and mapped).   

 
Figure 4.5.  Illustration of redundant coupling paths in a 1 6×  array. 

 

In summary, for a n  element linear array, the coupling terms for the entire matrix 

of equation (4.2.4) can be uniquely represented by a single block-vector of length 2 1n −  

expressed as  

 1
1 1 0 1 1{[ ] [ ] [ ] [ ] [ ] }D

n na a a a a− − −Π = " "  (4.3.5) 

The superscript on Π  indicates that the notation used in (4.3.5) is only appropriate for 

linear arrays.  The terms in (4.3.5) are unique, and can be used to fully reconstruct 

(4.2.4), though there is no reason to do so.   

A matrix-vector multiplication with a Toeplitz matrix is equivalently a discrete 

convolution operation.  Consequently, the matrix-vector multiplication operation of 

(4.2.4) can be equivalently performed with the windowed convolution operation 

 1 { } { }D x bΠ ∗ =  (4.3.6) 
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Rather than representing a normal convolution of two sequences, in the general case, 

operation (4.3.6) represents a block-convolution operation with matrix-vector 

multiplications between the impedance sub-matrices of Π  and the array element 

unknown vectors { }nx .  In other words, rather than a standard convolution with 

multiplication and sum operations between vector points, the block-convolution has 

matrix-vector multiplication and sum operations.  To illustrate this more clearly, the 

matrix-vector multiplication for a two-element array as in (4.2.2) is equivalent to the 

expanded block-convolution operation 

 1 0 1 1 2 1 2{[ ] [ ] [ ] } {{ } { } } {{ } { } }a a a x x b b− ∗ = , (4.3.7) 

which can be broken down as 

 1 0 1 1 2 2 1 1 0 2{ } [ ] { } [ ] { } { } [ ] { } [ ] { }b a x a x b a x a x−= + = + . (4.3.8) 

The above operation can easily be expanded to two-dimensional arrays.  In this 

case, two indices are used to define the individual elements within the array.  Thus, for a 

1 2n n×  planar array, the unknowns are represented with the notation  

 [ ]

2

2

1 1 1 2

1,1 1,2 1,

2 2,1 2,2 2,

,1 ,2 ,

{ } { } { }

{ } { } { }
{ }

{ } { } { }

n

D n

n n n n

x x x

x x x
x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

# % #
"

, (4.3.9) 

where 
1 2,{ }i ix  represents the unknowns on the array element at position 1 2,i i  of the array 

grid, with 1 11,2,...,i n= , 2 21, 2,...,i n= .  Again the Toeplitz property applies, and the 

coupling between the array element at location 1 2,i i  with the array element at location 

1 2,i i′ ′  can be represented as 
1 1 2 2 1 2( )( ) ,[ ] [ ]i i i i p pa a′ ′− − = .  Thus, it is possible to conveniently store 
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the coupling terms for a planar 1 2n n×  array in a two-dimensional matrix with indexing 

based on the differences in the element indices as 

 

1 2 1 1 1 1 2

2 2

2 2

2 2

1 2

1,1 1, 1 1,0 1,1 1, 1

1,1 1, 1 1,0 1,1 1, 1

2
0,1 0, 1 0,0 0,1 0, 1

1,1 1, 1 1,0 1,1 1, 1

1 ,1

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [

n n n n n n n

n n

D
n n

n n

n n

a a a a a

a a a a a

a a a a a

a a a a a

a

− − − − − − − −

− − −

− − −

− − − − − − − −

− −

Π =

" "
# % # $ #

" "

# $ # % #
"

1 1 1 1 21 , 1 1 ,0 1 ,1 1 , 1] [ ] [ ] [ ]n n n n na a a a− − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦"

 (4.3.10) 

As a side note, this analysis uses the notation 1 2 3, ,n n n , etc., for array dimensions in lieu 

of , ,x y zn n n  to illustrate that the analyses are not limited to simple x-,y-,z- dimensions.  In 

a manner similar to the operation in (4.3.6), for planar arrays it is possible to equivalently 

perform the matrix-vector multiplication with the windowed operation 

 [ ] [ ]2 22 { } { }D DD x bΠ ∗ =  (4.3.11) 

This operation is a two-dimensional block-convolution involving matrix-vector 

multiplications between the coupling sub-matrices in (4.3.10) and the array element 

unknown vectors in (4.3.9).  In the end, this operation will be performed with the FFT, so 

further elaboration on the block-convolution process is not necessary.  The above can be 

expanded to treat three-dimensional grids as well, by introducing a third dimension for 

storage and performing three-dimensional convolutions.  Visually, this is burdensome to 

represent.  Consequently, in this chapter, consideration will be limited to the case of 

planar arrays.  In implementation, however, ADM can be very conveniently extended to 

multiple dimensions. 
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Before considering the FFT acceleration of ADM, the savings achieved through 

the Toeplitz property will be considered.  For ADM, there are 1 2(2 1)(2 1)n n− −  BI 

coupling terms (of cost 2( )BIO m ) to store for a 1 2n n×  array, as opposed to 2 2
1 2n n  terms for 

conventional FE-BI storage.  A similar property exists for one- and three-dimensional 

arrays.  The total BI storage savings achieved by utilizing the Toeplitz property of the 

coupling interactions is tabulated in Table 4.1 for common array geometries.  In these 

relations, 2( )BIO m  is the storage cost for the boundary integral terms for a single array 

element.  The FEM cost is considered separately below.  The savings in Table 4.1 also 

apply to the time required to assemble the matrix (fill time), an additional cost that should 

not be overlooked. 

 

 

 
Table 4.1.  BI Storage Requirements for Conventional FE-BI vs. ADM. 

Array 
Dimension 

Conventional 
BI Storage 

ADM Storage 

1n×  2 2( )BIO n m 2( )BIO nm  

1 2n n×  2 2 2
1 2( )BIO n n m 1 2( )BIO n n m  

1 2 3n n n× ×  2 2 2 2
1 2 3( )BIO n n n m 1 2 3( )BIO n n n m  

 

To evaluate the FEM savings, it should be pointed out that the sub-matrices along 

the diagonal of the main matrix in (4.2.3) represent the isolated domains of individual 

array elements.  Consequently, since all array elements are represented identically, the 

sub-matrices on the diagonal have identical operator coefficients, and only one block of 

the matrix diagonal will be stored (because of the block-Toeplitz storage).  Since the sub-
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matrices along the diagonal include all the FEM terms of the system, it is possible 

represent the FEM portion of the entire array with the storage requirements of a single 

array element.  Table 4.2 summarizes the FEM storage savings of ADM for various array 

geometries.  The FEM storage cost for a single array element is proportional to ( )FEMO m .  

Again, these savings apply to matrix fill time as well.  For implementation purposes, it is 

more efficient to store the FEM and BI terms in separate storage structures, and only 

apply the FFT on the BI structures.  There is no advantage in applying the FFT to the 

FEM terms. 

 
Table 4.2.  FEM Storage Requirements for Conventional FE-BI vs. ADM. 

Array 
Dimension 

Conventional 
FEM Storage 

ADM Storage 

1n×  ( )FEMO nm ( )FEMO m  

1 2n n×  1 2( )FEMO n n m ( )FEMO m  

1 2 3n n n× ×  1 2 3( )FEMO n n n m ( )FEMO m  
 
 

4.4 ADM Matrix Preconditioning 

 

It has been suggested above that significant storage and fill time reduction is 

achieved by exploiting the repeatability of the array elements and the resulting block-

Toeplitz matrix structure.  Consideration is now given to how the solution process can be 

improved through matrix pre-conditioning.  As pointed out earlier, the block-diagonal 

terms of the matrix in (4.2.4) consist of the FE-BI sub-matrices of isolated array 

elements.  Given the relatively small size of 11[ ]a ′  in the context of an array problem, 

performing an LU factorization on this sub-matrix comes at comparatively minor 
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computational and storage cost.  In the implementation of ADM, the complete LU 

factorization of a single array element is used as a block-diagonal preconditioner for the 

larger finite array matrix system.  It will later be demonstrated that this block-diagonal 

preconditioner, based on the physics of the problem, is highly effective in reducing 

solution time.  It is important to note that this unique preconditioning approach is only 

possible due to the particular block-Toeplitz organization of the system of equations in 

ADM.  That is, it cannot be applied to general systems of the type (4.1.2). 

 

4.5 Matrix-Vector Product Acceleration 

 

 Having discussed storage savings and preconditioning of the matrix, the means by 

which the Toeplitz property of the matrix system can be used to accelerate the matrix-

vector product operations is now considered.  As shown in (4.3.6) and (4.3.11), the 

matrix-vector product can be formulated as a block-convolution operation.  Since this is a 

discrete convolution operation, it is not necessary to increase the size of the FFT beyond 

the dimension of the matrix information already stored.  However, it should be noted that 

rather than storing only (2 1)n −  or 1 2(2 1)(2 1)n n− −  terms for linear and planar arrays, 

respectively, resulting in odd-dimensioned data arrays, it is possible to instead use (2 )n  

or 1 2(2 )(2 )n n  memory locations (or some other desired product of multiples) for 

improved FFT performance at slightly higher storage cost.  In this implementation, a 

mixed-radix FFT is implemented that works with multiples of 2, 3, 4, and 5 [30].  

Implementation aside, it is important to note that the problem at hand is formulated and 
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solved in the spatial domain - the discrete FFT is simply used to accelerate the matrix-

vector product. 

Acceleration of the matrix-vector product operations via the FFT requires three 

steps.  First, the FFT is performed on the BI portion of the system matrix, as it appears in 

(4.3.5) or (4.3.10).  This is a pre-computed quantity, denoted 

 { }FFTΠ = Π� . (4.5.1) 

For linear arrays, this FFT operation will be a one-dimensional block-FFT operation.  To 

demonstrate the concept of a block-FFT operation, the [ ]a  terms of Π  are represented 

with the indices [ ]kj pa , where , 1, 2,...,k j m=  are the indices of the BI terms within the 

[ ]a  sub-matrices and 1, 2,...,1p n n n= − − − , the number of [ ]pa  terms in Π  of (4.3.5).  

The operation in (4.5.1) can be carried out with 2m  simultaneous one-dimensional FFT 

operations of length (2 1)n −  on dimension p  of Π .  As mentioned above, it is 

preferable that this operation be performed on the BI terms only, so that additional 

storage is not required for transforming the FEM terms.  Similarly, for planar arrays, it is 

necessary to perform a two-dimensional block-FFT on the coupling equation (4.3.10).  

The operation in (4.5.1) is performed only once, prior to solving the system of equations, 

and need not be performed with each matrix-vector product operation. 

The next step is to apply the FFT to the unknown vector { }x , creating a block-

vector of length 2n-1 – the same length as Π� , giving the spectral representation of { }x  

denoted as 

 { } {{ }}x FFT x=� . (4.5.2) 
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By representing { }x  with the indices { }j ix , where 1,2,...,i n= , the indices of the array 

elements and 1,2,...,j m= , represents the element unknowns, the operation in (4.5.2) can 

be carried out with m  simultaneous one-dimensional FFT operations, extending the 

length to 2 1n − .  Likewise, for a planar array of dimension 1 2n n×  a corresponding two-

dimensional block-FFT must be performed on the dimensions 1 2,n n  of the matrix of 

unknown vectors (4.3.9), extending the data size to 1 2[2 1,2 1]n n− − .  Compared to 

(4.5.1), this is an inexpensive operation. 

In the case of one-dimensional arrays, the next step is the consolidation operation 

 ( ){ } { }
m

k p kj p n j p
j

z x−= Π∑ � �� , (4.5.3) 

for each point 1, 2,...,k m= , 1, 2,..., 2 1p n= − , of { }x� .  Similarly, for planar arrays the 

operation 

 
1 2 1 1 2 2 1 2, ( )( ) ,{ } { }

m

k p p kj p n p n j p p
j

z x− −= Π∑ � ��  (4.5.4) 

is performed.  The final result of the matrix-vector product operation is obtained via the 

inverse transform operation 

 1{ } ( {{ }})b W FFT z−= � , (4.5.5) 

where W  is a windowing function to extract the needed terms from the inverse FFT 

operation.  The windowing function will depend on how the resulting data from the FFT 

operation is ordered, as this depends on the specific FFT implementation.  Thus, for the 

BI terms, each matrix-vector product operation will consist of steps (4.5.2), (4.5.3) or 

(4.5.4), followed by (4.5.5).  As a special note, in the case where a single expansion 

function per array element is employed with no FEM, ADM reduces to a limiting case 
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similar to the CG-FFT method, in which (4.5.1), (4.5.2), and (4.5.5) are standard point-

by-point FFT operations, and { }z�  is simply { }Tx Π�� . 

 As a solution cost analysis, the operation count of ADM will be examined.  But 

first, using common array notation, the cost of conventional FE-BI can be stated as 

2 2( )O n m .  For ADM, the block-Toeplitz matrix must be converted to the spectral domain 

using 2m  FFT operations of cost 2 1n − .  However, this is a one-time procedure that 

should not be considered in the context of solution cost (consider it a one-time overhead 

cost).  During the actual solution procedure, the data vector is converted to spectral 

domain with m  FFT operations of cost 2 1n − .  This is followed by 2nm  multiply-sum 

operations.  Finally, there are m  inverse FFT operations of cost 2 1n − .  This requires 

2m FFT operations plus 2nm  multiply-sum operations, for a cost of roughly 

2( log )O mn n nm+ .  Though it is hard to make a direct comparison of the solution cost, 

for array-type problems the 2n  terms are the most costly, none of which exist for the 

ADM.  In general, ADM can be considered an ( log )O n n  method.  However, it is more 

instructive to simply apply the methods to array analysis and observe the direct 

comparison. 

 

4.6 Results 

 

In applying ADM to practical problems, again consider the arrays of the TSA 

element shown in Figure 2.18.  The tested array configurations for this section are listed 

in Table 4.3.  The electrical volume of the arrays range from 3λ  to 3400λ , and the 
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unknown counts range from a few thousand up to nearly a million.  In the example 

configurations presented here, ADM is compared to the conventional FE-BI only.  In a 

later section, it will also be compared with FMM and other advanced array methods. 

 

Table 4.3.  Tested TSA Array Configurations. 

Array Size 2 2×  4 4×  6 6×  8 8×  16 16×  30 30×  
FEM Unknowns 2,028 8,112 18,252 32,448 129,792 456,300

BI Unknowns 2,384 9,536 21,456 38,144 152,576 536,400
Total Unknowns 4,412 17,648 39,708 70,592 282,368 992,700

 

As a first step, the proposed ADM is validated using the standard FE-BI method, 

in order to verify that the method generates the same valid results.  The solutions 

achieved via both methods can be compared by computing the error 
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where { }E  is the resulting electric field vector at each node in the geometry.  For both 

methods, the same iterative solver [24] was employed to achieve the solution within a 

specified margin of error.  In this evaluation, the tolerance was set so that convergence is 

achieved when the residual error 2 2
||{ } [ ]{ }|| / { } 0.01b A x b− <  , where { }x  is the 

solution estimate.  Using this relation, it was determined that for a 6 6×  array of tapered 

slot antennas, the resulting error between solutions is 0.63%, or less than the one percent 
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solution error.  For further validation, Figure 4.6 compares the radiated field patterns for 

the 6 6×  TSA array as computed at 10GHz using the standard FE-BI formulation and 

ADM.  As observed, the far-zone patterns obtained from ADM match identically with the 

conventional FE-BI results.  For comparison, Figure 4.6 also includes the typical finite 

array approximation results, generated using the 6 6×  array factor times the pattern of a 

TSA element in an infinite periodic array.  No edge treatment has been applied to the 

infinite array solution.  This approximation is only instructive, and as expected, is seen to 

lead to significant inaccuracies in the sidelobe region, since unlike ADM, it assumes the 

same field distributions on all elements of the array. 

 

 

Figure 4.6.  Validation of fields obtained from new formulation. 

 

 Next, the matrix fill and storage requirements of ADM are compared for the 

example array configurations.  The results in this section were generated on an unloaded 

(no other processes running) 800MHz HP Itanium utilizing 16GB of shared memory and 
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a single processor, as in previous chapters.  Although it is simple to implement parallel 

algorithms for both the matrix-fill and matrix-vector product operations in ADM, this 

capability was not enabled for the comparisons of this chapter.  This avoids the additional 

parameter of evaluating the effectiveness of the parallel algorithms for each 

implementation.  The large amount of shared computational resources on the Itanium 

makes it possible to analyze small finite arrays using conventional FE-BI.  However, 

tapered slot antennas require significantly more unknowns per element to model 

accurately, and the required resources quickly escalate when approaching a 6 6×  array 

using standard FE-BI.  Consequently, a 6 6×  array of the given element is the largest that 

can be analyzed on the Itanium with conventional FE-BI, as determined in previous 

chapters.  Beyond this size, it is necessary to approximate the cost of the conventional 

FE-BI for array analysis.  This estimation can be extrapolated fairly accurately using the 

relations of Table 4.1, since solution time is highly dependent on matrix system size.  

However, in reality, solvability of a matrix is not linearly based on the size of the matrix, 

as increasing matrix size also has an effect on the matrix condition.  Table 4.4 compares 

the fill time and storage requirements of the standard FE-BI formulation and ADM for 

the example TSA array configurations.  As expected, when the problem size increases, 

standard FE-BI methods quickly become impractical with respect to storage and fill time 

considerations.  However, using ADM, it is possible to model TSA arrays well beyond 

6 6×  in size, even for arrays of electrically large TSA elements.  In these examples, 

storage and fill time is reduced by a factor of 18 for an 8 8×  array, and the savings for a 

30 30×  array is over two orders of magnitude.  More specifically, for the 6 6×  array, the 

storage is reduced from 6GB down to 500MB, and the fill time goes down from 47 
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minutes to only 4.5 minutes.  In the 30 30×  array case, the storage reduces from 3.8 

terabytes down to only 16 gigabytes, and the fill time drops from 20 days to merely two 

hours.  Thus, ADM is able to address problems well beyond the capability of standard 

FE-BI solvers, using modest resources.  The total storage cost of ADM is even more 

considerable when compared with conventional FE-BI. 

 

 

Table 4.4. Demonstration of Storage and Fill Time Savings. 

Storage (MB) Fill Time Array 
Size Standard FE-BI ADM Standard FE-BI ADM 
2 2×  119 42 37 s 19 s
4 4×  1,203 228 9.2 min 1.8 min
6 6×  6,091 563 47 min 4.4 min
8 8×  *19,251 1,046 *2.5 h 8.1 min

16 16×  *308,020 4,469 *1.6 days 35 min
30 30×  *3,807,000 16,225 *20.2 days 2.2 h

*Estimated result 

 

The effectiveness of the proposed block-diagonal preconditioner is now 

evaluated.  The iterative solver used in these examples computes two matrix-vector 

product operations per iteration [24].  A slight amount of memory and computational 

time is, of course, required to compute the preconditioner data.  This is less than 9MB 

storage and 30 seconds computation time for all cases listed here.  The FFT is not 

implemented in ADM for these results, and will be considered individually in the next 

section.  Again, it is not possible to compute the solution times for array configurations 

beyond the available storage limits, and thus for arrays larger than 6 6×  in size, it is 

necessary to extrapolate solution times.  For the 6 6×  TSA array (39708 unknowns), the 
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number of iterations reduced from 2600 down to only 10, and the corresponding solution 

time was reduced by a factor of 263, or more than two orders of magnitude.  Beyond the 

6 6× , note that the solution time savings factors begin to taper off, an unexpected result, 

most likely due to limitations in the memory bandwidth of the Itanium.  However, for the 

30 30×  array with nearly a million unknowns, the solution process would take an 

estimated five years for conventional FE-BI, assuming the solution procedure would even 

converge.  This is in contrast to an estimated 82 days for ADM without FFT.  A single 

iteration on this large problem took 18 hours for ADM without the FFT, and based on the 

number of iterations required for the ADM with FFT solution (116, see Table 4.5 below), 

that extrapolates to over 80 days to reach convergence. 

  

Table 4.5.  Effectiveness of Proposed Block-LU Preconditioner (no FFT). 
 

Iterations  Solution Time Array 
Size Standard 

FE-BI 
ADM 

no FFT 
Standard 

FE-BI 
ADM 

no FFT 
2 2×  2,488 4 50 min 7 s 
4 4×  2,400 7 13.8 h 2.6 min 
6 6×  2,600 10 3.1 days 17 min 
8 8×  *2,650 13 *9.8 days 1.3 h 

16 16×  *2,700 44 *157 days 2.6 days 
30 30×  *2,750 116 *5.3 years *82 days 

*Estimated result 

 

In this section, the additional benefit of using the FFT to accelerate the matrix-

vector product operations in ADM is evaluated.  Two matrix-vector product operations 

are calculated per iteration in both cases, and the block-LU preconditioner is used in the 

BICGSTAB(L) iterative solver.  The results are listed in Table 4.6. 
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Table 4.6.  Evaluation of FFT Speed-ups for ADM. 
 

Solution Time Array 
Size ADM 

Standard 
Matrix-Vector 

Product 

ADM FFT 
Matrix-Vector 

Product 

2 2×  7 s 16 s
4 4×  2.6 min 1.2 min
6 6×  17 min 3.5 min
8 8×  1.3 h 7 min

16 16×  2.6 days 1.5 h
30 30×  *82 days 16.4 h

                                            *estimated result 

 

Note that the overhead required to convert the matrix system to the spectral domain is not 

reflected in these results, as it is trivial in comparison to the overall solution times.  The 

results clearly indicate a significant speed-up using the FFT for matrix-vector product 

calculations.  In this case, for the 30 30×  array, the solution time was accelerated from an 

estimated 82 days to half a day – an additional speed-up of over two orders of magnitude. 

 To evaluate the cumulative benefits of all ADM features, the storage and 

complete solution-time comparisons between standard FE-BI and ADM with block-

diagonal-LU preconditioning and FFT matrix-vector product acceleration are 

summarized in Table 4.7. 
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Table 4.7.  Combined Benefits of ADM. 
 

Storage (MB) Total Solution Time Array 
Size Standard FE-BI ADM Standard FE-BI ADM 
2 2×  119 42 50 min 35 s
4 4×  1,203 228 13.8 h 2.9 min
6 6×  6,091 563 3.1 days 7.8 min
8 8×  *19,251 1,046 *9.8 days 15.1 min

16 16×  *308,020 4,469 *157 days 2.1 h
30 30×  *3,807,000 16,225 *5.3 years 18.6 h

*estimated result 

 

As seen from Table 4.7, even for the 6 6×  TSA array there is an overall speed-up of 

nearly three orders of magnitude (8 minutes for ADM vs. 3.1 days with conventional FE-

BI).  For the 16 16×  TSA array with 280,000 unknowns the solution time is only two 

hours as opposed to half a year (projected) with conventional FE-BI.  As a problem size 

of one million unknowns is reached, as in the case of the 30 30×  array, ADM achieves 

more than three orders of magnitude speed-up in solution time (5.3 projected years down 

to 18.6 hours), and the problem size is reduced from a unsolvable 3.8 terabytes to a more 

reasonable 16 gigabytes. 

 

4.7 Conclusion 

 

An extension of the FE-BI method for analyzing finite array structures was 

presented in this chapter.  The proposed method, referred to as the array decomposition 

method (ADM), exploits the translational symmetry of finite arrays and the properties of 

the free-space Green’s function to reduce storage and computation requirements without 

adversely affecting solution accuracy.  The validity of the method was demonstrated by 
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comparing with the standard FE-BI formulation and the resulting storage savings were 

demonstrated and discussed.  A preconditioning method exclusive to the matrix 

expansion of ADM was also proposed and demonstrated to be highly effective.  The 

block-Toeplitz property of the matrix equation was used to accelerate the matrix-vector 

multiplication operations of the iterative solver with FFT methods.  It was demonstrated 

that speed-ups of more than three orders of magnitude are achieved for practical 

modeling applications such as a 30 30×  array (one million unknowns) of tapered-slot 

antennas, achieving results in hours instead of years. 

ADM is appropriate for both scattering and radiation problems.  In the analysis 

presented here, ADM is developed in conjunction with the hybrid FE-BI method, making 

it suitable for analyzing arrays of virtually any type of three-dimensional inhomogeneous 

structure. Moreover, ADM is ideal for applications that involve phased-array steering, 

excitation weighting, or port-to-port coupling, since it is rigorous and correctly treats 

edge effects in finite arrays.  Perhaps most significantly, ADM significantly extends the 

range of applications that can be modeled on a desktop PC or workstation. 

It is important to keep in perspective that the ADM presented here is only 

intended as a smaller piece of a much larger picture.  ADM alone is rather limited in 

scope, being only strictly valid for freestanding arrays in free-space.  Only when ADM is 

implemented as part of a larger picture can it truly be appreciated. 

There are two main weaknesses that prevent ADM from being an ideal analysis 

method for finite array structures.  The first weakness is that ADM is strictly a near-zone 

decomposition method.  That is, all interactions within the finite-array environment are 

treated exactly using the rigor of near-zone integral equations. However, for distant 
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interactions within the array environment, this rigor is not necessary, nor hardly prudent.  

The rigor results in a linear increase in required system resources at the rate of 2( )O nm  

for array size n.  To overcome the linear increase in required resources, it is possible to 

neglect very far array interactions and still achieve accurate results with a controlled 

degree of approximation [48].  As a more viable alternative, in Chapter 6 the near-zone 

decomposition benefits of ADM are augmented with a far-zone decomposition approach 

for finite arrays.  The combined near-zone/far-zone decomposition approach features the 

benefits of both ADM and FMM, while setting aside the main shortcomings of both 

methods alone.  This new approach results in matrix storage requirements of 2( )O m  - the 

same as a single element analysis. 

The other weakness of ADM that needs to be addressed is the 2( )O m  cost of the 

single element storage.  For very large array elements, where the 2( )O m  cost is already 

prohibitive, it will not be possible to make much headway using ADM.  However, in 

Chapter 7 it will be demonstrated that using the concepts of multi-dimensional analysis, it 

is possible to alleviate this cost considerably.   

In the next chapter, the analysis methods presented here are extended into a 

generalized, multi-dimensional analysis method.  Later, this development will make it 

possible to improve single-system analysis and also work more effectively with multiple 

systems. 
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CHAPTER 5 
 

ARRAY DECOMPOSITION IN MULTIPLE DIMENSIONS 
 

 

 In Chapter 4, the array decomposition method (ADM) was presented for 

decomposing finite array analysis.  In this chapter, the capabilities of ADM are expanded 

for multi-dimensional analysis.  This chapter focuses strictly on dimensional analysis of 

the translation type.  That is, the focus is on translational symmetry, where dimensions 

will be defined as vectors, having a direction (axis), and a spacing (magnitude).  This 

distinction must be made to exclude consideration of rotational type dimensions - 

dimensions defined with an offset and angular spacing (for cylindrical surfaces).   

This chapter is intended to give a brief introduction to multi-dimensional analysis, 

as the number of single-system configurations that can benefit from multi-dimensional 

decomposition is quite small.  However, in Chapter 8 where simultaneous solution of 

multiple systems is considered, many benefits can be realized from the multi-dimensional 

approach. 

 

5.1 Introduction to Multi-Dimensional Analysis 

 

 Perhaps the most common type of finite array is the linear array, an example of 

which is shown in Figure 5.1 (a).  Linear arrays are typically one-dimensional arrays, in 
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which the elements are placed on a regularly spaced lattice for a given dimension, 

typically along the x-axis, y-axis, or z-axis.  However, in the general case, it is not 

necessary that linear arrays are one-dimensional.  Likewise, the most common two-

dimensional arrays are planar arrays, of the type shown in Figure 5.1 (b).  Planar arrays 

are typically characterized by an array element with regular spacing in two orthogonal 

directions, say x̂  and ŷ .  Usually, the element spacing in each dimension is the same, 

though occasionally the spacing in each dimension may differ, or one dimension may be 

shifted to minimize co-polarized coupling (triangular or diamond-type lattices).  

However, generally speaking, planar arrays are not necessarily strictly two-dimensional, 

and two-dimensional arrays are not always planar.  This is a subtle rule of general multi-

dimensional array analysis.  An example to explain these statements is given below. 

 

(a) one-dimensional array 

 

(b) two-dimensional array 

Figure 5.1. Common array types. 
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 Consider the array structure shown in Figure 5.2.  This particular structure 

represents a common measurements setup in which the coupling may be studied between 

two arrays of the same antenna element type.  Notice that this structure qualifies as a two-

dimensional array, but happens to be linear as well.  This example introduces the topic of 

this chapter, namely a generalized method for analyzing arrays using a single multi-

dimensional specification.  The class of problems appropriate for multi-dimensional 

analysis is characterized by a strict set of conditions.  The first condition is that in any 

given dimension, elements must be numbered consecutively in a positive sequence 

starting with the same index for all dimensions and all systems.  That is to say, in later 

chapters, where multiple systems are considered simultaneously, the element indices 

must all start with the number 1 and increase at the same rate for all systems (1, 2, 3, 

etc.).  The second condition is that elements in each dimension must be spaced at regular 

intervals, i.e. non-uniform spacing cannot be accommodated.  These two principles are 

fundamental to multi-dimensional decomposition. 

 

 

Figure 5.2. Two-dimensional linear array. 
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 With these conditions in place, a general definition for array dimension can be 

given.  For the class of problems considered in this thesis, a dimension is defined with a 

spacing parameter dδ  and a unit direction vector ˆdρ .  The importance of these rigid 

conditions and definitions is that all array systems following these conventions will have 

a block-Toeplitz property for all dimensions, thereby allowing decomposition of array 

interactions across all dimensions simultaneously.  Further, as strict as the conditions may 

be, they allow any number of directions and element spacings, with any possible 

combination thereof. 

Similar to the kernel (4.3.2) given for the standard ADM, the multi-dimensional 

ADM kernel can be stated simply as  

 
0 1 1 1 1 2 2 2 2ˆ ˆ ˆ( ) ( ) ( )

1 1 1 1 2 2 2 2

( )
ˆ ˆ ˆ4 ( ) ( ) ( )

m m ndims ndims ndims ndimsjk d d i i i i i i

m m ndims ndims ndims ndims

eg R
d d i i i i i i

δ ρ δ ρ δ ρ

π δ ρ δ ρ δ ρ

′ ′ ′ ′− − + − + − + + −

′

=
′ ′ ′− + − + − + + −

"

"
(5.1.1) 

 
In this expression, the spacing of each dimension is given by dδ , where d is the 

dimension number, and the direction is specified by ˆdρ .  This kernel is used to form 

impedance matrix entries of the form 

 0[ ] ( ) ( ) ( )mm nn m m
S S

a jk w d w d g R dS dS′ ′ ′
′

′= ∫ ∫ i . (5.1.2) 

 
Note that the form of the basis function ( )mw d  and its evaluation are dependent only on 

the array element characteristics, and are completely independent of the kernel used in 

the coupling calculation.  In general, multi-dimensional analysis conforms to simple rules 

of vector addition.  The path of the source element influence to the testing location 

undergoes a transformation through each dimension, multiplying the spacing dδ  by the 
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difference in element indices ( )d di i′−  for dimension d, imposing an additional vector sum 

for each dimension of the array.  Strict adherence to the rules outlined above results in a 

cascading block-Toeplitz matrix structure that can be maximally exploited to avoid 

calculation/storage of redundant coupling terms. 

 

 

Figure 5.3. Decomposition illustration for two-dimensional array. 

 

 As an example, consider the 4 3×  array shown in Figure 5.3.  Essentially, the 

array is constructed from three four-element sub-arrays with some fixed separation.  For 

this array, the form of the system is given as 



 

 113

. (5.1.3) 
 
In this expression, the matrix entries have been first arranged into coupling sub-matrices 

for individual element interactions, which in turn are arranged into sub-matrices for sub-

array interactions.  In (5.1.3), all redundant terms have been shaded, leaving only the 

unique interactions within the matrix system.  It can be seen that only the first row and 

first column of each sub-matrix assembly is unique.  That is, the first row and first 

column of the sub-array coupling blocks are kept, and at the lower level, the first row and 

first column of the individual element interactions (within the sub-array coupling 

systems) are kept. 
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Figure 5.4. Decomposition illustration for three-dimensional array. 

 

 As a second example, consider an array structure of one more dimension than the 

one in Figure 5.3, shown here in Figure 5.4.  This structure has been constructed simply 

by adding an additional dimension d=3 to the array in Figure 5.3.  The coupling equation 

for this array structure will have the form 

. (5.1.4) 
 
Again, the redundant terms have been shaded out.  The matrix system can be seen to 

consist of three levels of sub-array organization, for which only the first row and first 
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column at each level are preserved.  For dimension 3, the lowest quadrant is shaded out.  

At dimension 2, the four lower right sub-matrix systems of each 3 3×  assembly are 

shaded out.  At level 1, where single element interactions are considered, only the first 

row and first column of element interactions need to be preserved.  Though the form of 

this structure is complex, the kernel in (5.1.1) will only map to one of the unshaded areas 

of (5.1.3) or (5.1.4). 

 The complexity of this structure makes it much simpler to use a block-Toeplitz 

storage scheme.  The matrix elements for a multi-dimensional block-Toeplitz system can 

be stored most efficiently and conveniently as simply 

 [ ]
1 1 2 2

0( )( ) ( )
( ) ( ) ( )

ndims ndims
mm m mi i i i i i

S S

a jk w d w d g R dS dS′ ′′ ′ ′− − −
′

′= ∫ ∫"
i  (5.1.5) 

 
In other words, for the multi-dimensional system, the matrix entries, which consist of all 

sub-element (basis function) interactions between the source and testing array elements, 

are simply stored and accessed through the difference in their element indices for each 

dimension.  This is entirely analogous to the case of simple arrays in the previous 

chapter.  In this expression, there are no redundant terms. 

 The integral equation storage cost for a single system using multi-dimensional 

analysis can be precisely calculated as 

 
1

(2 1)
ndims

d BI
d

n m
=

−∏ , (5.1.6) 

 
where BIm  are the number of basis coefficients in a single array element for the integral 

equations, and n is the number of array elements in dimension d, for d=1..ndims, where 

ndims is the total number of dimensions.  As in the previous chapter, the FEM storage 



 

 116

cost is simply ( )FEMO m  for arrays of any number of elements/dimensions, where FEMm  is 

the number of FEM unknowns in a single array element.   

 

5.2 Multi-Dimensional Analysis Examples 

 

 This chapter closes with a few examples demonstrating practical uses for multi-

dimensional analysis.  In later chapters, additional techniques will be developed that can 

benefit more from multi-dimensional analysis as well.  Specifically, this topic will be 

touched upon again in Chapter 7, when elements within an array lattice are further 

decomposed to achieve additional acceleration, and also again in Chapter 8, when dealing 

with multiple systems. 

 

 
Figure 5.5. Two-array verses three-dimensional array problem. 
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 A practical example of multi-dimensional analysis comes from considering a 

problem of the type shown in Figure 5.5.  In this example, the coupling between two 

10 11× arrays is considered.  The element of the array is modeled with 857 FEM 

unknowns and 1500 BI unknowns.  The configuration shown in Figure 5.5 has a total of 

259,270 unknowns.  At the system level, the impedance matrix for this problem will have 

the form 

 . (5.2.1) 

In this expression, each ijZ⎡ ⎤⎣ ⎦  represents the coupling from array j to array i.  At 

first glance, this appears to be a straightforward analysis of two identical arrays.  Per the 

arguments detailed in this chapter, this coupling system can also be formulated as a single 

three-dimensional array using the principles of multi-dimensional analysis.  The primary 

advantage of formulating the problem as a three-dimensional array is that the required 

matrix storage is 3/4 of that required when formulated as a two-array configuration using 

ADM.  This configuration would take 1,363GB of storage with conventional FE-BI.  

Treating this problem as a two-array configuration would require 30GB with ADM.  

Though the details of a two-system decomposition have not yet been presented, this topic 

will be addressed in a later chapter on multiple system analysis.  However, treating this 

system as a single three-dimensional array would require only 22GB, exactly 3/4 that 

required for a two-system decomposition.  These results are summarized in Table 5.1.   

It is conceivable that there are circumstances when having a 22GB problem would 

be beneficial compared to the 30GB problem.  However, even greater benefits from 

multi-dimensional analysis will be realized after the methods of the next few chapters are 
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developed.  For the multi-dimensional analysis approach to work, it is only necessary that 

the second array not be rotated – it can be shifted or translated in any direction.  In a later 

chapter, a similar but more complex array of this class will be considered.  This later 

example will explicitly take advantage of the three-dimensional array formulation for this 

type of problem.  

 

Table 5.1. Comparison of Storage Requirements for System in Figure 5.5. 

Solution Method Matrix Storage
Conventional FE-BI 1,363GB

Two-Array ADM 30GB
Multi-Dim ADM 22GB

 

 

As a second practical example, consider the case of arrays with a triangular 

lattice, as shown in Figure 5.6.  The array in Figure 5.6 (a) can easily be realized using a 

two-dimensional, planar array.  However, the array in Figure 5.6 (b) is more challenging.  

In order to model this array and maintain the Toeplitz property of array element 

interactions, it is necessary to use a three-dimensional array description.  In other words, 

the array in Figure 5.6 (b) can be analyzed as a 3 2 2× ×  array.  This is a case of a planar 

array that is not simply two-dimensional.  The array in Figure 5.6 (c) cannot be 

constructed as a single, multi-dimensional array.  Hence, while a number of real-world 

array structures can be realized in a single, multi-dimensional description, it is often the 

case that a composite structure will require a multi-system approach for proper analysis – 

a topic addressed in a later chapter.   
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(a) 

 

(b) 

 

(c) 

Figure 5.6. Array configurations with a triangular lattice. 
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5.3 Conclusion 

 

 In conclusion, a brief introduction to multi-dimensional analysis has been given.  

As mentioned, the utility of multi-dimensional analysis is limited for single array 

systems.  However, when the topic of multiple system interaction is addressed, the 

benefits of multi-dimensional analysis will become more apparent.   

It was demonstrated that multi-dimensional analysis makes is possible to analyze 

a two-array coupling problem as a single array problem of three dimensions.  This 

capability was shown to reduce the cost of analyzing the system by 25% over a two-

system interaction approach.  In the next chapter, a method is presented that will further 

reduce the cost of array analysis to the point that finite array analysis will require the 

same fixed amount of storage for any number of elements in the same array class. 
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CHAPTER 6 
 

ARRAY DECOMPOSITION-FAST MULTIPOLE METHOD 
 

 
 
 

In previous chapters of this thesis, methods for rigorously analyzing large 

structures were examined.  In Chapter 3, the fast multipole method (FMM) was presented 

and shown to be highly successful at reducing the cost of arbitrary structure analysis [1].  

For arbitrary problems, the 1.5( )O N  to ( log )O N N  memory requirements of FMM can 

make large problems solvable, compared to a conventional approach with 

2( )O N =O(n2m2) storage limitations (N=nm, m=array element unknowns, n=number of 

array elements, N = total number of unknowns).  FMM reduces the near-zone matrix 

storage requirements by transferring the burden of distant interactions to the iterative 

solution process, thereby increasing the cost of each iteration.  Because of this, an 

excessive number of iterations would lead to a negative impact on solution speed, a 

situation that can easily occur with a lack of effective preconditioning.  Moreover, even 

though the 1.5( )O N  to ( log )O N N  storage requirements of FMM are better than the 

2( )O N  limitations of conventional methods, for increasingly large problems one is still 

faced with a worse than linear increase in matrix storage.  Further, it was demonstrated at 

the end of Chapter 3 that FMM does not improve the condition of a matrix system.  In 

other words, when large systems become ill-conditioned due to their size, FMM will not 



 

 122

be able to solve the problem, even if the sparse near-zone matrix system fits in available 

storage, or can be distributed across multiple systems.  Hence, there are practical limits 

on the size of the problem that can be analyzed with FMM alone.   

In this chapter, the focus is again on the analysis of a particular type of problem – 

standalone, finite array-type structures.  In Chapter 4, ADM was shown to significantly 

reduce storage when used in combination with the finite element-boundary integral (FE-

BI) method to model array elements.  ADM is a near-zone decomposition method, 

featuring O(nm2) memory requirements, which exhibits a linear increase in required 

memory with problem size and therefore slightly better storage than FMM (for large 

problems and small m).  ADM significantly increases solution speed by applying the fast 

Fourier transform (FFT) to the integral equation matrix operations, and further, 

demonstrates superior convergence rates (over conventional FE-BI) due in part to the 

block-symmetric matrix layout having a better disposition towards effective 

preconditioning schemes [49].  Though successful, this method has two main 

shortcomings.  First, for large m  (array element size), the storage may already be 

prohibitively large (i.e. the 2( )O m  individual element cost may be high).  Secondly, for 

large arrays, the matrix storage continues to grow at a linear rate (per dimension), and 

thus is still a bottleneck for large array analysis, making the method nearly as impractical 

as FMM for very large array analysis.   

 The shortcomings of both FMM and ADM prevent them from being ideal array 

analysis tools.  For array analysis, it would be ideal to combine the independent methods, 

ADM and FMM, into a single approach that maintains the good features of both methods 

while rejecting their shortcomings.  This task is the theme of this chapter. 
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In this chapter, a hybrid approach to finite array-type problems is presented that 

combines the benefits of near-zone decomposition (ADM) [50] with the benefits of a far-

zone decomposition (FMM) [51] for analyzing array-type problems.  The chapter focuses 

specifically on applying the fast multipole method in a way that takes advantage of 

structural redundancies, much like the ADM from Chapter 4.  The most obvious 

shortcoming of applying a generalized solution method such as FMM to an array-type 

problem is that this approach fails to exploit known redundancies in the problem 

geometry.  Finite array-type problems consisting of regularly spaced and identical 

elements exhibit translational symmetry that can typically benefit from some form of 

decomposition approach.  The analysis method presented here is innovative for several 

reasons.  First, the combination of near-zone and far-zone decomposition for array-type 

problems has the effect of truncating the near-zone matrix storage.  That is, the near-zone 

matrix size is fixed for any sized array of regularly spaced and arbitrary elements in the 

same class.  This results in trivial matrix fill times, and for all practical purposes, matrix 

storage requirements that are on the same order as the storage of a single array element, 

viz. 2( )O m  compared with 2 2( )O n m  for conventional FE-BI.  For large problems, 

overall storage is dominated by the solution vector, rather than the system matrix.  That 

is, for a problem having an overall solution vector of length N , the total storage is 

limited to O(N) or O(nm).  This represents a significant improvement over both ADM 

(O(nm2)) and FMM ( 1.5 1.5 1.5( ) ( )O N O n m= ).  It is important to note that a distinction 

between matrix storage and total storage must now be made, since the matrix storage 

does not account for the majority of the storage as with previously considered methods.  

In addition, since each element of the array can be modeled with an identical unit cell, 
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this method only computes a single set of Fourier coefficients (signature functions) for 

the unit cell basis functions, as compared to the conventional FMM which arbitrarily 

computes coefficients for every array element at n  times higher cost.  Moreover, the far-

zone element interactions (translations) have an inherent Toeplitz property corresponding 

to the array lattice that results in reduced far-zone storage and allows the FFT to be 

explicitly applied in accelerating the solution process, similar to what is done for the 

FMM-FFT of Chapter 3.  Furthermore, this hybrid approach, to be referred to as the array 

decomposition-fast multipole method (AD-FMM), benefits from the same disposition 

towards effective preconditioning as ADM [50], resulting in solution convergence in 

relatively few iterations.  Most importantly, AD-FMM is completely rigorous, as tuned 

by the FMM parameters, providing accurate solutions to large coupling problems with 

negligible resource requirements.  It will be shown that AD-FMM elegantly combines the 

benefits of both ADM and FMM, avoids the main shortcomings of the methods, and 

features additional benefits not found in either method alone. 

In this chapter, the details of how AD-FMM works are presented, with the storage 

and CPU requirements compared to the methods of previous chapters. 

 

6.1 Near-Zone Decomposition 

 

 One of the main components of AD-FMM is the near-zone decomposition 

(ADM).  For the most part, in AD-FMM the near-zone decomposition procedure is 

performed exactly as described in chapters 4 and 5.  To summarize, the important benefit 

of the ADM is that the expanded system of equations has a block-Toeplitz structure, 
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resulting in only the first row and first column of the overall system matrix being stored, 

depicted here as 

 . (6.1.1) 
 

The form of (6.1.1) assumes a linear array of n elements, but can easily be 

expanded for the case of multi-dimensional arrays as detailed in Chapter 5.  The shaded 

region represents the redundant coupling sub-matrices that are not stored.  Unlike the 

ADM, for AD-FMM, there will be no FFT acceleration of the near-zone interactions.  

This is no longer necessary, as the majority of the array interactions, which are carried 

out entirely in the near-zone with ADM, will now be performed in the far-zone with AD-

FMM.  The remaining near-zone terms still have a block-Toeplitz property that is 

exploited for storage savings, but using the FFT on the small number of remaining near-

zone terms in AD-FMM has no benefit.  Once the far-zone decomposition has been 

applied, the required near-zone storage will shrink to nothing more than a few terms in 

the upper left-hand corner of (6.1.1) (self-element interactions and nearby element 

interactions). 
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Figure 6.1. Depiction of element clustering grid for AD-FMM. 

 

6.2 Far-zone decomposition 

 

After introducing the same near-zone decomposition on the array structure, a far-

zone decomposition on the element interactions within the array is applied.  For 

convenience and efficiency, the array is partitioned into an FMM-type clustering grid 

using the element lattice of the finite array, as shown in Figure 6.1.  The chosen FMM 

cluster spacing is identical to the array element spacing, with the same element 

numbering and spacing used for the far-zone clusters as well.  Using a similar procedure 

as the conventional FMM for arbitrary cluster locations, all elements of the array are 

treated as identical clusters of basis functions.  In the AD-FMM model, the basis 

functions of each array element are given a local vector position md  referenced to the 
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center of the element’s lattice position lO  (see Figure 6.1).  Unlike the general case of 

FMM for arbitrary structures, in an array of identical elements, each element and hence 

each basis function cluster is of the same geometric extent, and can be treated simply as a 

unit cluster.  The unit cluster has a maximum radius of extent D  that encompasses every 

basis function of the array element.  This is related to a near-zone of influence Rnear.  

Recall that for conventional FMM, cluster sizes and spacing are typically constructed in a 

way so as to avoid overlapping.  In AD-FMM, there is neither degree of freedom – both 

the array element size and lattice spacing are pre-specified.  The degree to which cluster 

radii overlap has a significant effect on the overall cost of the near-zone storage for AD-

FMM, and has an important impact on solution accuracy as well. 

Consider first the simple case of a linear array.  The elements of the array (for 

each dimension) are given an index n.  The basis functions of each array element are 

given a local number m, that result in identical local basis numbering for each element of 

the array.  That is, the same local numbering is used for every basis of every element, just 

as in ADM.  In this notation, the global vector pointing to the mth local basis location of 

array element n is given the notation ,m nr .  Here, an effort has been made to use the same 

notation of Chapter 4 for the array element numbering (n) and local basis numbering 

within the elements (m), as was used in Chapter 3 for cluster numbering (n) and local 

basis numbering within the clusters (m).  In Chapter 4, the impedance sub-matrix entry 

describing the coupling between testing and source array elements ,n n′  (4.2.1) was given 

as 
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, ,
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−∫ ∫ i . (6.2.1) 

 



 

 128

This choice of notation was intentional, as the same notation was used in (3.1.1) 

to describe the coupling between FMM clusters ,n n′ .  Hence, in the simplest 

implementation of AD-FMM, the concepts of array element and cluster are combined, 

and it is possible to use the same notation for treating array elements as clusters without 

loss of generality. 

It is instructive to draw a few parallels between the FMM and ADM analyses, to 

see how they are alike, and exactly how they differ.  To initiate the near-zone 

decomposition, the coupling interaction between array elements is first recast in terms of 

local element vectors and position vectors relating elements of the array, restated here as 
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Again, notice that this same procedure was initiated for the FMM cluster interactions, in 

order that (3.1.3) could be applied.  The intention is, of course, that distant array element 

interactions can be treated using the approximate expansion to the Green’s function 
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In other words, element interactions in the far-zone are treated via the FMM.  The 

impedance matrix entries of (6.1.1) corresponding to the coupling between far-separated 

elements will now be equivalently performed as 
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This equation has the same form as (3.1.10), used to interact distant clusters in the far-

zone.  Similarly, here the array elements are being treated as clusters and interacted in the 

far-zone. 

To couple distant elements via the FMM, it is required to pre-compute translation 

operators for mapping the fields of any given element of the array onto any other 

element.  Since conditions of regular spacing of the element clusters and sequential 

numbering in each dimension have been imposed, the unique translation operators are 

defined by the difference in their array numbering, and are given by 

 (1)
0 0

0

ˆ ˆ[ , ] ( 1) (2 1) ( ) ( ))
L

l
L nn l nn l nn

l
k n n l h k P kρ ρ ρ′ ′ ′

=

′Τ − = − +∑ i . (6.2.5) 

The quantities in the translation operator expression are the same as in Chapter 3, though 

the variables have a different context for AD-FMM.  In this expression, nn n nρ ρ ρ′ ′= −  is 

the vector separating the source and testing array elements.  For AD-FMM, the matrix 

structure [ ]LΤ  will have a dimension for each dimension of the array, plus one additional 

dimension for the k-space data ˆ 1..k K= .  The number of k-space directions, as before, is 

roughly 22K L� , which will likely be higher than that required in Chapter 3, assuming 

the array elements are larger than the typical FMM cluster size.   

Recall from Chapter 5 that the form of the multi-dimensional kernel used for 

near-zone decomposition was given as 

 
0 1 1 1 1 2 2 2 2ˆ ˆ ˆ( ) ( ) ( )

1 1 1 1 2 2 2 2

( )
ˆ ˆ ˆ4 ( ) ( ) ( )

m m ndims ndims ndims ndimsjk d d i i i i i i

m m ndims ndims ndims ndims

eg R
d d i i i i i i

δ ρ δ ρ δ ρ

π δ ρ δ ρ δ ρ

′ ′ ′ ′− − + − + − + + −

′ ′ ′ ′

=
− + − + − + + −

"

"
.  (6.2.6) 

 
In this expression, element indices in each dimension are denoted with i=1..n, up to a 

maximum number of dimensions ndims.  The direction of each dimension is denoted ˆdρ , 



 

 130

and the cluster spacing is given as dδ .  This kernel allows a multi-dimensional 

decomposition of the near-zone interactions, leading to systematic reductions in the near-

zone storage.  Similarly, to perform a far-zone decomposition on an array with ndims 

dimensions, the multi-dimensional translation matrix takes the form 

 (1)
0 0

0

ˆ ˆˆ ˆ[ , ] ( 1) (2 1) ( ) ( ))
L

l
L l l

l
k k l h k P kρ ρ ρ ρ

=

Τ = − +∑i i , (6.2.7) 

 
where 

 1 1 1 1 2 2 2 2ˆ ˆ ˆ( ) ( ) ( )ndims ndims ndims ndimsi i i i i iρ δ ρ δ ρ δ ρ′ ′ ′= − + − + + −"  (6.2.8) 
 
and 

 1 1 1 1 2 2 2 2ˆ ˆ ˆ( ) ( ) ( )ˆ ndims ndims ndims ndimsi i i i i iδ ρ δ ρ δ ρρ
ρ

′ ′ ′− + − + + −
=

"  (6.2.9) 

 
Notice that (6.2.7) has the same form as (3.2.1), written here for an arbitrary number of 

array dimensions.   

It is assumed here that the translation matrix is non-symmetric block-Toeplitz, 

verses symmetric block-Toeplitz.  That is, only the first column and first row of the 

translation matrix (for each dimension) have been stored, as was done for the near-zone 

terms in the previous chapter.  The number of entries for each dimension of the array will 

be 2nd-1, nd being the number of elements in dimension d .  Note that it is possible to 

reduce the far-zone storage by an additional factor of two, simply by exploiting the 

similarities in the mapping of nn n nρ ρ ρ′ ′= −  and n n n nρ ρ ρ′ ′= − .  However, this option is 

not pursued in this implementation, such that the Fourier transform of the translation data 

can be pre-computed and stored for later acceleration of the translation/interaction of 
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array elements via the FFT.  Specifically, it is possible to pre-compute the FFT of the 

translation operators as 

 0
ˆ ˆ[ ] { [ , ]}L LFFT k kρ ρΤ = Τ� i . (6.2.10) 

 
The FFT will be performed on each dimension of the array and be of a size reflecting the 

number of terms in the [ ]LΤ  matrix for that dimension.  In other words, an array of size 

1 2n n×  will require K FFTs of size 1 2(2 1) (2 1)n n− × −  – one for each k-space direction.  

In the implementation used for this thesis, a split-radix FFT was employed that allows 

FFTs of combined multiples of 2, 3, 4, and 5 [30].  As a note, if 2n-1 is not a combination 

of these multiples, the size of the FFT can be increased to the next highest product of 

these multiples, or else a discrete Fourier transform (DFT) will be used instead.  The cost 

trade-off between using a larger FFT size vs. a less efficient but smaller DFT has to be 

considered.  In most cases, the Fourier transforms are not the bottleneck in the solution 

process, and thus typically this cost consideration can be overlooked, choosing instead 

the simplest implementation. 

The consequence of the far-zone decomposition on near-zone matrix storage is 

now illustrated.  With ADM alone, the near-zone matrix storage is restricted to the first 

column and first row of the original system matrix (in each dimension), as depicted in 

(6.1.1).  The unique sub-matrices of the first column and first row of (6.1.1) represent all 

the rigorous array element interactions, for both near- and far-separated elements, the 

nearest array interactions being closest to the upper left-hand corner.  When the FMM is 

used to interact the far-separated element interactions, only the near-separated element 

interactions will remain in (6.1.1), with the distant element interactions in the first row 

and first column of the system matrix removed for treatment via the FMM.  Hence, with 
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the FMM expansion applied on top ADM, the near-zone matrix reduces to roughly the 

unshaded area of the matrix system 

 . (6.2.11) 
 
It should be immediately apparent that the number of near-zone terms remaining will be 

exactly the same for any number of elements n in a given array type.  That is, a linear 

array of 10 elements has the same near-zone storage as an array with 1000 elements 

(same element, same spacing).  The near-zone matrix storage is now on par with the 

storage of a single element, 11[ ]a ′ .  Typically, for 0 2λ  element spacing, and elements 

with a near-zone radius or roughly 0λ , one might expect near terms from at most one or 

two neighboring elements in each dimension.  However, the required near-zone storage 

depends on both the geometry of the array element and the array lattice.  Any linear array 

will have the same storage for any number of elements (in the limit), and any planar array 

will have the same storage for any number of elements as well.  However, a planar array 

will likely have more storage than a linear array.  This is an important distinction, though 

the amount of storage will still be fixed in either case (in the limit). 

As alluded to earlier, because of the truncated near-zone storage, it is not 

necessary to apply the FFT in accelerating the near-zone interactions, as is done in 

standard ADM.  Of course, the near-zone portion of the matrix-vector product operation 

will still have a convolutional form.  However, since the number or near-zone terms is 

now considerably smaller, there is no advantage in using the FFT.  Pre-computing the 

FFT for the near-zone terms would require a vector size proportional to the data vectors, 
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which is typically (for large arrays) much larger in extent than the near-zone storage 

vector.  Pre-computing FFT data of this size would nullify the storage advantage 

achieved by combining the near-zone decomposition with the far-zone decomposition, 

and hence should not be done.   

 

6.3 AD-FMM Implementation Notes 

 

In the conventional FMM, it is necessary to compute the signature functions of 

each cluster with the Fourier transform procedure 

 ,
,

ˆ[ , ] ( ) m njk r
n m n

S

W k m w r e dS= ∫ i , (6.3.1) 

 
where ,m nr  points from the global origin to basis function m of cluster n.  This same 

procedure can be carried over to AD-FMM, but is not necessary.  The signature functions 

can be equivalently written in terms of local cluster vectors md .  In AD-FMM, each 

element cluster is identical, and hence ,m n md d= .  This allows the computation of a single 

signature function, based on the unit cluster of AD-FMM, given simply by 

 ˆ[ , ] ( ) mjk d
m

S

W k m w d e dS= ∫ i . (6.3.2) 

In AD-FMM, this common signature function is used for all array elements to compute 

their far-zone patterns.  A general FMM approach to the same array would result in n 

times as much storage for signature functions, which can be considerable for very large 

array structures.  

The number of k-space directions for each array element, 22K L� , is again found 

from 
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 0 02 ln( 2 )LL k D k Dα π= + + . (6.3.3) 
 
As in Chapter 3, Lα  is chosen to generate the desired accuracy for the application type 

and machine architecture.  In AD-FMM, D  is a fixed parameter.  That is, unlike the case 

for conventional FMM, the cluster radius D is determined by the array element size – a 

fixed parameter. 

As with conventional FMM, to use (6.2.5) it is necessary that L  is not larger than 

0 | |nnk ρ ′ , otherwise the Hankel function will oscillate, causing inaccuracies in the 

translation operators.  This imposes the primary criterion that determines which elements 

can be treated as being in the far-zone.  Specifically, the far-zone condition is 

 0/nearR L k> . (6.3.4) 
 
Any two array elements separated by less than nearR  will be treated as being in the near-

zone, and thus contribute to matrix storage.  While a larger L  gives greater accuracy, it 

also increases nearR , the necessary distance between array elements for which the far-

zone expansion is applicable.  For a typical array element separation of around λ/2, one 

or two adjacent elements in each dimension will require rigorous near-zone treatment.  

Next, the solution procedure for AD-FMM is reviewed. 

 

6.4 AD-FMM Solution Procedure 

 

 The solution procedure begins by evaluating the near-zone portion of the iterative 

solution procedure.  The near-zone portion of the iterative solution procedure can be 

represented with the generalized expression 
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 [ ] { } { }est near
nearA x b= . (6.4.1) 

 
Because of the block-Toeplitz nature of the near-zone storage, this is equivalently carried 

out as a convolution of sub-matrix-vector product operations given by 

 0{[ ] [ ] [ ] } { } { }est near
near neara a a x b− ∗ =" " . (6.4.2) 

 
In this expression, [ ]neara  signifies the furthest array element interaction that is carried 

out in the near-zone for a given dimension.  As stated in the previous section, the near-

zone storage is proportional to 0[ ]a .  In fact, under certain conditions, 0[ ]a  will represent 

the majority of the near-zone interactions.  Hence, if the procedure given in APPENDIX 

B is employed, where the self-cell interactions are preconditioned out from the iterative 

solution procedure, a large portion and potentially the majority of the near-zone 

interactions can be pre-solved.  In general, the near-zone interactions take up a significant 

portion of the iterative solution time.  Hence, a significant portion of the iterative solution 

cost can be completely avoided.  This statement comes with the caveat that the 

preconditioning procedure must be performed at every iteration of the solution procedure 

as usual, a cost that cannot be avoided. 

The far-zone portion of the iterative solution procedure is represented with the 

general expression 

 [ ] { } { }est far
farA x b= . (6.4.3) 

 
This portion of the matrix-vector product operation is performed in the following way.  

First, the far-zone fields of each array element are generated from the pre-computed far-

zone basis function expansions and stored in a vector grid via the step 

 { } *
ˆ

ˆ( , ){ } ,est
m nk n

m
s W k m x=∑ , (6.4.4) 
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where { }est
nx  is the estimated unknown current vector of array element n , and the 

summation determines the combined effect of all basis functions within the element in 

the far-zone.  For this implementation, ˆ,k n
s⎡ ⎤
⎣ ⎦  will be a matrix with the same dimensions 

as the array, plus an additional dimension for k̂ .  The coupling between source and 

testing elements can then performed via the arbitrary-dimensional convolution 

 { } { }ˆ ˆ0
ˆ ˆ[ , ]n L nk k

g k k sρ ρ= Τ ∗i . (6.4.5) 
 
The dimension of the convolution will be the same as that of the array.  For large 

systems, this is an expensive operation, but can easily be accelerated with FFT operations 

of the same dimension as the finite array.  To achieve { } ˆn k
g  via the FFT, it is necessary 

to perform the equivalent operation 

 { } { }1
ˆ ˆ ˆ{ { }[ ] }n n Lk k k

g FFT FFT s−= Τ� . (6.4.6) 
 
Hence, the convolution in (6.4.5) is replaced with 2K  FFT operations on { } ˆn k

s  (forward 

and inverse) of a size and dimension matching ˆ[ ]L k
T�  as computed in (6.2.10), plus 

1

(2 1)
ndims

d
d

K n
=

−∏  point-by-point multiplications between ˆ[ ]L k
T�  and { } ˆn k

s� .  The overall 

savings of this alternative solution approach is proportional to the size of the array, and 

the exact cost will be explored later.  The coupling for each basis m of array element n is 

then extracted via the inverse transformation 

 { } ˆ
ˆ{ } [ , ]far

m n n k
b W k m g dk= Ω∫ . (6.4.7) 

Thus, { } farb  represents the portion of the matrix-vector product carried out in the far-

zone.  This result is simply added to the near-zone contribution of the matrix-vector 

product operation to give the combined results, or 
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 [[ ] [ ] ]{ } { } { } { }est near far
near farA A x b b b+ = + = . (6.4.8) 

 
Below, a detailed discussion of the storage and CPU requirements of AD-FMM is given. 

 

6.5 Storage Cost and Performance Analysis 

 

 In this section, the storage and computational cost of AD-FMM are explicitly 

evaluated, as compared with other methods.  The two costs (storage and computation) are 

evaluated separately, since it is insightful to highlight the differences between the various 

approaches.  Consider a volumetric antenna array element of arbitrary materials and 

shape, as shown in Figure 6.2.   

 

Figure 6.2. Tessellation of a tapered-slot antenna element. 

 

 Suppose that upon tessellation and assignment of boundary conditions there are 

FEMm  FEM edges or unknowns and BIm  boundary integral unknowns for each antenna 

element.  Roughly speaking, there will be ( )FEMO m  FEM storage and 2( )BIO m  boundary 

integral storage in a conventional FE-BI formulation for this single element.  Consider 
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now an arbitrary linear array of n  antennas, with the total number of FEM unknowns 

equal to FEM FEMN nm= , and the total BI unknowns equal to BI BIN nm= .  For a 

conventional FE-BI approach, there will be ( )FEMO nm  FEM storage, and 2 2( )BIO n m  

boundary integral matrix storage. 

 Next, consider a generalized FMM expansion of the same array problem, again 

implemented for FE-BI.  Like the conventional FE-BI, FMM will have ( )FEMO nm  FEM 

storage for the finite array.  Regarding the integral equation terms, FMM reduces the 

problem storage down to a best case ( log( ))BI BIO nm nm  for a multi-level implementation. 

 For ADM, since the method exploits the repeatability of the array elements, the 

FEM storage is only ( )FEMO m , the same as for a single element.  Thus, the FEM storage 

is n  times less than that of conventional FE-BI and FE-BI with FMM.  For the boundary 

integral equation terms, the storage is 2( )BIO nm , which is typically larger than the 

corresponding FMM storage for large array elements.  Though it may require slightly 

more BI storage, ADM has the advantage that matrix fill times are considerably faster 

than FMM because of much lower overhead.  As will be shown later, the same is true for 

solution times.  In the limit, ADM has a linear increase in BI matrix storage. 

 For AD-FMM, like standard ADM, the FEM storage is merely ( )FEMO m .  

However, unlike FMM or ADM, both of which experience the greater than linear 

increase in the BI matrix storage, AD-FMM has only 2( )BIO m  integral equation 

coefficient storage, i.e. the same order of magnitude as that of a single element.  This is 

remarkable because it will allow solution of very large finite arrays using rigorous means.  

However, this cost analysis comes with some caveats, because additional overhead exists 
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for the AD-FMM approach to finite arrays verses the simpler analysis of a single array 

element.  For example, it is necessary to store the far-zone signatures of the array element 

for AD-FMM, along with the translation operators for interacting the elements in the far-

zone.  However, as the clusters are aggregated to a regular grid, the translation operators 

have a Toeplitz property with the required storage of ( )O nK , K  being the number of 

points or k-space directions used to represent the element signatures in the far-zone.  

Upon implementation, for very large problems the memory requirements to storing 

solution vectors, excitation vectors, and solver work vectors will exceed the storage of 

the translation operators, assuming that the number of far-zone directions K  will be less 

than the number of surface unknowns per cluster, or BIK m< .  Hence, the total storage 

requirements for larger problems will be proportional to the length of the overall solution 

vector, or ( ( ))FEM BIO n m m+ = ( )O N . 

 A performance analysis on the FEM portion of the matrix-vector product reveals 

that both conventional FE-BI and FE-BI with FMM have a solution cost of ( )FEMO nm .  

However, both ADM and AD-FMM pre-solve or precondition the FEM portions of the 

overall matrix system prior to the iterative solution process [50], thereby avoiding this 

cost entirely.  This is critical, as iterations over FEM matrix systems are typically costly 

due to the conditions of these systems.   

The computational cost of the BI portion of the matrix-vector product for 

conventional FE-BI is proportional to its storage cost of 2 2( )BIO n m .  The same principle 

applies to MLFMM, which has a cost of ( log( ))BI BIO nm nm .  However, it is instructive to 

remark that this estimate does not reflect the cost of excessive iterations.  The 
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computational cost of ADM is based on BIm  FFT operations of cost logn n , plus n  

matrix-vector products with 2
BIm  operations.  This gives a combined total cost of 

2( log( ))BI BIO nm m n n+ .  Though it is hard to make a direct comparison, in practice there 

is very little overhead for ADM, resulting in significantly faster solution times as 

compared to FMM or FE-BI for finite arrays.  This can be directly observed in the results 

of the next section.   

By comparison, AD-FMM has a near-zone computational cost of 2( )BIO nm , plus a 

far-zone cost of roughly ( log( ))O Kn n .  For large problems, the far-zone cost is largely 

dominated by the translation operations, which can be reduced to ( log )O Kn n  operations 

using the FFT.  In the same way that the FEM operations can be pre-computed, it is also 

possible to avoid a large fraction of the BI matrix-vector product cost for the near-zone 

interactions using block-diagonal preconditioning.  Again, the fractional savings depends 

on the array element size and spacing.  For example, in a case where the element spacing 

is larger than the array element diameter, the near-zone CPU cost is reduced to zero, as 

the near-zone interactions can be entirely pre-computed.  A cursory glance shows that the 

computational cost of ADM and AD-FMM are on par.  Assuming that BIK m< , one may 

expect the solution times for AD-FMM to be faster than ADM.  However, due to the 

additional overhead cost associated with AD-FMM, whether or not AD-FMM is faster 

will be implementation dependent.  The storage cost and performance analysis of the 

various methods discussed here are summarized in Table 6.1.  This table does not reflect 

the total storage cost ( ( ( ))FEM BIO n m m+  for AD-FMM). 
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Table 6.1. Storage Cost and Performance Analysis of a Finite Array Problem. 
 

 Storage 
Cost FEM 

Storage Cost BI Computational 
Cost - FEM 

Computational Cost - 
BI 

Conventional 
FE-BI 

( )FEMO nm  2 2( )BIO n m ( )FEMO nm 2 2( )BIO n m

Conventional 
MLFMM 

( )FEMO nm  ( log( ))BI BIO nm nm ( )FEMO nm ( log( ))BI BIO nm nm

ADM ( )FEMO m  2( )BIO nm - 2( log( ))BI BIO nm m n n+
AD-FMM ( )FEMO m  2( )BIO m  - 2( log( ))BIO nm Kn n+

 

 

6.6 Multi-Level AD-FMM 

In theory, it would be possible to use a multi-level approach to AD-FMM.  The 

multi-level approach has not been explored in this thesis for several reasons.  First, in the 

way the FMM is applied to array-type problems in later chapters, especially in multi-

system analysis, there tends to be a very low occurrence of empty clusters, reducing the 

weight behind the argument for the multi-level approach.  Rather, the approach presented 

in this thesis features a large block-Toeplitz translation matrix using a single level 

algorithm with multiple dimensions.  Secondly, AD-FMM benefits highly from the fact 

that the cluster signature functions are all the same, and hence only one set it computed 

for an entire array system (which may be very huge).  In a multi-level implementation, 

this advantage would be lost, although some re-use of information would likely be 

available at various levels in the multi-level approach as well.  Moreover, by sticking 

with the single level implementation, the additional overhead of interpolations between 

interaction levels be avoided.  Additionally, the single-level implementation has the 

advantage of explicit acceleration with a FFT for automatic ( log )O n n  solution 
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complexity.  Further, parallel implementations of the single-level AD-FMM are far easier 

to achieve. 

While explicit evaluation of the far-zone coupling with the FFT is expedient, in 

reality a multi-level approach might have some benefits.  For example, the FFT must 

explicitly treat the near-zone translations as well, though the translation operators are null 

for these matrix entries.  Likewise, if the element decomposition leads to empty clusters, 

this creates further waste in the translation matrix.  In any case, the near-zone interactions 

will likely continue to be the factor of highest cost, and hence the need for a multi-level 

AD-FMM algorithm is not a priority. 

 

6.7 AD-FMM Results 

 

 In this section, the storage cost and performance of the various methods discussed 

up to this point are evaluated using a specific array example.  The analysis is carried out 

on two-dimensional arrays of various sizes ranging from 3 3×  to 64 64× .  To form the 

array, the antenna element (see Figure 6.2) is placed on a regularly spaced grid of 6.25cm 

in x and y -- exactly 0 2λ  at 2.4GHz, the frequency used in this analysis.  The element is 

a double-sided exponentially tapered-slot antenna, fed via stripline and matched with a 

double-Y balun (not depicted here).  The element dimensions are 11.45 5.0 0.1524× × cm.  

For the evaluation cases, this element is modeled with FEMm = 805 and BIm = 892 

unknowns, based on the tessellation depicted in Figure 6.2.  Modeling this type of 

structure is challenging due to the detailed feed characteristics and the electrically large 
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element size.  This combination of conditions can easily lead to edge ratios of 50 to 1 at 

lower frequencies.  For reference, the storage cost of this single element is about 14MB.   

To begin, the E-plane and H-plane patterns for the 5 5×  array of Figure 6.3 are 

compared.  The corresponding patterns for all methods are shown in Figure 6.4, and it 

can be seen that the results from all methods are nearly identical.  The MLFMM plots 

deviate the most from the other methods, as a low cost 1.0Lα =  was used for maximum 

storage savings at the cost of some accuracy.  While a 5 5×  array may seem small for a 

test case, for this electrically large element, a conventional FE-BI solution requires 

roughly 8.5GB of matrix storage (apart from the challenges associated with the poor 

conditioning of the matrix).  Hence, this 5 5×  array problem is near the practical analysis 

limit for conventional FE-BI.  For equivalent comparisons, the analysis was performed on 

the Itanium server of previous chapters. 

 

Figure 6.3. 5 5×  array used for consistency comparisons. 
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(a) 

 

(b) 

Figure 6.4. Pattern comparisons of each method for the 5 5×  array, a) E-plane, b) 

H-plane. 
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 To demonstrate the effectiveness of AD-FMM, the aforementioned methods are 

now compared with AD-FMM for arrays of several sizes.  Of particular interest is the 

required matrix storage for each problem, the matrix fill time, the number of required 

iterations for solution, and also the full iterative solution time for each of the methods.  

Each figure of merit has its own virtues.  The storage requirements are a measure of how 

well the method can be implemented on various platforms, in the sense that a user with 

no memory constraints may opt to choose the method with the fastest solution times.  The 

matrix fill time is significant as well, as this affects the overall solution time, and serves 

to further distinguish AD-FMM from other implementations of FMM.  The required 

number of iterations reflects on the matrix conditioning and the effect of the employed 

matrix preconditioning method, whereas the CPU time per iteration reflects directly on 

the CPU speed of the method.  Table 6.2 summarizes the results for the various figures of 

merit on several example arrays of different sizes. 

 For many of the test cases, the more expensive methods (FE-BI, MLFMM) cannot 

solve the problems with the allotted resources (or time constraints), and the required 

resources were projected as needed.  For FE-BI and MLFMM, it is difficult to accurately 

project the solution times.  Preconditioning options differ for these large systems, and the 

number of iterations for convergence can be very large (if the system converged at all).  

For these test cases, extra memory was allotted for the conventional FE-BI and MLFMM, 

such that an LU factorization could be used to pre-solve the FEM portions of the matrix 

system.   

The results for AD-FMM given in Table 6.2 speak for themselves.  AD-FMM is 

superior to all other methods compared here for finite array analysis.  In all AD-FMM 
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test cases, a block-diagonal preconditioner was employed with the BICGSTAB(L) 

iterative solver, having the equivalent of eight matrix-vector product operations per 

iteration (L=4) [24].  The overall storage cost for AD-FMM consists of the matrix 

storage, the unknown and excitation vector storage, the far-zone basis representations and 

the pre-computed translation operators.  While the 64x64 array required only 193MB for 

matrix storage, a total storage of 432MB was required for carrying out the solution (not 

counting solver work vectors).  This particular problem has crossed the size threshold 

beyond which unknown and excitation storage exceeded matrix storage.  As a conclusion, 

a rigorous analysis of a 7-million unknown problem has been performed using less than 

half a gigabyte of total storage.  Being able to rigorously solve such large systems in a 

reasonable amount of time is significant in itself.  What is not shown in the table is the 

overhead time associated with the FMM based methods necessary to calculate and fill the 

far-zone operators.  For the conventional MLFMM, this cost can be quite high.  However, 

for AD-FMM the overhead cost is quite low, due to the efficiency of the hybrid 

decomposition approach. 

 Finally, it is worth noting that the matrix preconditioning for the array 

decomposition methods is quite good, as evidenced by the low number of iterations (to 

achieve 1% solution error).  As mentioned, good preconditioning is critical for iterative 

solution methods, especially for FMM methods that shift the computational burden to the 

iterative procedure.  Better preconditioning methods for the FEM matrix systems were 

employed in this chapter compared with previous chapters, resulting in a much smaller 

number of iterations for the conventional FE-BI and MLFMM.  However, due to the high 
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cost of this effective preconditioning method, it was not possible to analyze an array 

larger than 5 5×  using either conventional FE-BI or MLFMM. 

 

Table 6.2. Evaluation of AD-FMM for Various Finite Array Problems. 

Array Size 3 3×  5 5×  16 16×  32 32×  64 64×  
Unknowns 15,273 42,425 434,432 1,737,728 6,950,912

FE-BI 1.1GB 8.5GB 868TB 13PB 217PB
MLFMM 162MB 502MB 5.3GB 21GB 88GB

ADM 193MB 612MB 7.2GB 29GB 121GB

Matrix 

Storage Requirements 
AD- 193MB 193MB 193MB 193MB 193MB

FE-BI 24m 3h *14d *218d *9.5y
MLFMM 5m 18m 6h *28h *5d

ADM 8m 25m 5h *20h *3d

Matrix Fill Time 

AD- 7m 7m 7m 7m 7m
FE-BI 6 108 - - -

MLFMM 6 69 - - -
ADM 2 4 19 *62 *100

Iterations 

AD- 2 4 19 62 100
FE-BI 2m 1h - - -

MLFMM 1m 51m - - -
ADM 6s 27s 42m *7h *25h

Iterative Solution 

Time 
AD- 10s 1m 1h 17h 2d

FE-BI 1.1GB 8.5GB 868TB 13PB 217PB
MLFMM 175MB 536MB 5.6GB 23GB 94GB

ADM 194MB 613MB 7.2GB 29GB 121GB

Total Storage Cost 

AD- 200MB 201MB 214MB 258MB 432MB
FE-BI 26m 4h - - -

MLFMM 6m 1h - - -
ADM 9m 26m 6h *1d *4d

Total Solution Time 

AD- 8m 9m 1h 17h 2d
* estimated results 
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6.8 Concluding Remarks 

 

The main theme of chapters 4-6 was the exploitation of known geometrical 

redundancies and the decomposition of these redundancies into re-usable cells where the 

Toeplitz property of finite array interactions results in reduced storage and accelerated 

solution.  The concept applies to many simpler problems, such as large flat or smoothly 

curving surfaces (viz. a cylindrical airplane fuselage), and is in no way limited to antenna 

array analysis.  To reiterate, one of the main themes of this thesis is that explicit 

decomposition of a problem into identical cells (when possible) is extremely 

advantageous in terms of storage reductions and solution speeds, as compared to 

generalized solution approaches that are insensitive to geometric redundancies.  The near-

zone (ADM) and far-zone (FMM) decomposition combination leads to remarkable speed-

ups for finite array-type problems. 

 The details of the method presented in this chapter present a major advance in 

rigorous analysis of large finite arrays, unhindered by the restrictions of matrix storage 

limitations.  However, it is understood that the AD-FMM presented in this chapter is not 

without its weaknesses.  For very large array elements, or closely packed arrays of 

elongated elements, the near-zone storage can potentially become prohibitively large.  

This drawback can be somewhat alleviated by partitioning the array elements into smaller 

clusters using intra-element decomposition, as explained in the next chapter.  

Further, as a stand-alone method, AD-FMM has limited utility.  The analysis of a 

freestanding array does not match well with the way arrays are found in the real world.  

The full advantage of AD-FMM is realized when implemented for multiple systems.  In 
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other words, finite arrays can be modeled in their actual environment, which may be on 

the surface of a vehicle or in the presence of other structures.   

As a side note, it is important to consider the ramifications of using methods that 

are not limited by matrix storage.  Typically, problems with large matrix storage are split 

up using distributed memory and analyzed in pieces on multiple machines, with the full 

solution vector is present on all nodes.  From the analysis presented here, one can 

conclude that AD-FMM has the potential of analyzing problems for which it is not 

possible to store the entire solution vector on a single machine, assuming 32-bit memory 

addressing, making the popular 32-bit PC-based distributed cluster model obsolete.  That 

is, using AD-FMM, it is easily possible to analyze problems with 100 million or more 

unknowns, requiring over two gigabytes to store the solution and excitation vector alone, 

(assuming COMPLEX(8) data types), thereby exceeding the limit of 32-bit addressing.  

The advent of this type of problem may bring about the necessity of a new paradigm in 

distributed processing methods, a challenge to be explored in future work. 
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CHAPTER 7  
 

AD-FMM WITH INTRA-ELEMENT DECOMPOSITION 
 

 

 

When the near-zone of the array element is too large, the simplest implementation 

of AD-FMM, which uses the entire array element as a single FMM cluster, may fail to 

provide adequate storage savings.  The worst-case example of this condition is an array 

element that is less than a wavelength in width, but several wavelengths or more long.  

An end-fire tapered-slot antenna is good example of an antenna element of this type.  In 

the limit, even for large array elements of this type, AD-FMM will continue to exhibit 

O(N) storage.  That is, even for elements with a large near-zone influence, the near-zone 

storage will still be fixed for arrays with any number of elements.  However, it may be 

that this fixed amount of storage is a prohibitively large quantity in itself. 

In this chapter, an approach is introduced that can alleviate the potential storage 

burden caused by array elements with prohibitively large near-zone influences.  For 

simplicity, this additional level of complexity was avoided in Chapter 6, as it requires 

advanced concepts of multi-dimensional analysis to treat properly.  In this chapter, the 

AD-FMM approach of using the entire array element as a single FMM cluster will be 

complicated by decomposing the element into sub-dimensions of smaller clusters.  This is 
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done with the intention of creating clusters of smaller near-zone influences, thereby 

potentially reducing the overall near-zone storage cost.  This procedure complicates the 

far-zone decomposition, typically resulting in grids of more than three dimensions for 

most array type problems.  As a note, the introduction of this piece of the puzzle to the 

AD-FMM makes it possible to reduce the cost of analyzing array and non-array-type 

systems simultaneously.  That is, non-array-type systems can be decomposed into regular 

clustering grids and interacted with the clustering grids of the array type systems for 

cross-system decomposition.  This is a topic addressed in the next chapter on multiple 

system analysis. 

In this chapter, the benefits of intra-element AD-FMM will be examined for 

several practical problems involving electrically long tapered-slot antenna arrays that 

greatly benefit from this additional level of decomposition.  It will be demonstrated that 

intra-element decomposition makes it practical to analyze real-world arrays of electrically 

long tapered-slot antennas using limited resources. 

  

7.1 Intra-Element Decomposition 

 

 Under many conditions, the simple and elegant option of using an entire array 

element as the cluster for AD-FMM will suffice to produce excellent results.  However, 

under some conditions, this model may not be adequate to generate a small enough 

matrix system to work with on machines with limited resources.  The general class of 

problem for which entire-element AD-FMM fails to provide adequate results is 

exemplified by elements with an extensive near-zone influence.  This can result in 
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excessive near-zone matrix storage when too many adjacent array elements fall within the 

near-zone radii of their neighboring elements.  Though AD-FMM will still produce O(N) 

matrix storage in the limit (for larger arrays), as a practical consideration, the near-zone 

storage may be a fixed, but still prohibitively large amount.  The logical solution to the 

problem is to reduce the near-zone influence of the element, which can be accomplished 

by decomposing it into smaller sub-sections as depicted in Figure 7.1.  The efficient 

implementation of this capability is the topic of this chapter. 

 

 

Figure 7.1. Illustration of intra-element decomposition on antenna array. 

 

 At the element level, intra-element decomposition is no different than applying 

FMM-FFT to a generalized problem.  In other words, the array element is simply being 

decomposed into additional dimensions of sub-clusters, in a sense treating the array 

element with a decomposition approach for arbitrary structures.  The difficulty comes 

when this decomposition is then combined with the array decomposition already in place 

on the array lattice.  For example, in the general case for conventional planar arrays, there 

will be two dimensions of clusters conforming to the array lattice, and then potentially 
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three more sub-dimensions, used to decompose the element into smaller clusters.  It is 

important to realize that all dimensions (now five in total) maintain their Toeplitz 

relations, and it is hence possible to implement a higher-dimensional FFT to accelerate 

the solution of the array and cluster interactions simultaneously.  Algorithms for multi-

dimensional FFTs exist precisely for uses such as this, and are no more difficult to 

implement than 2D FFTs when done correctly. 

 Consider the array element of the structure shown in Figure 7.1, assuming a 

frequency for which the width of the element is proportional to a wavelength.  Because of 

its electrical size, it is beneficial to decompose the element into several clusters along 

both the length and width of the array element as illustrated by the wire grid.  This creates 

a two-dimensional lattice of basis clusters, denoted as the first and second dimensions in 

Figure 7.1 (dimensions noted in circled numbers). Assuming the model of the FMM for 

far-zone coupling, this results in a two-dimensional translation operator table for intra-

element cluster interactions.  The elements then must be considered in the finite array 

environment.  For the example case of a planar array, this allows two more dimensions of 

decomposition.  In the example of Figure 7.1, there are 14 clusters in dimension 1, 3 

clusters in dimension 2, four elements in dimension 3, and three elements in dimension 4.  

Using the multi-dimensional model for the FMM analysis, the result will be a modified 

translation operator of the form 

 (1)
0 0

0

ˆ ˆˆ ˆ[ , ] ( 1) (2 1) ( ) ( ))
L

l
L l l

l
k k l h k P kρ ρ ρ ρ
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Τ = − +∑i i , (7.1.1) 
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ρ
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and 

 

1 1 1 1 2 2 2 2 2 2 3 3

1 1 1 1 2 2 2 2

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )ˆ

c c c c c c c c c c c c

ndims ndims ndims ndims

i i i i i i

i i i i i i

δ ρ δ ρ δ ρ

δ ρ δ ρ δ ρρ
ρ

′ ′ ′− + − + − +

′ ′ ′− + − + + −
=

" . (7.1.3) 

 
This translation operator accommodates for three potential dimensions of sub-clustering 

of the element itself, in combination with an arbitrary number of array dimensions ndims.  

The operator definition is a modified version of the model suggested for multi-

dimensional analysis of arrays in Chapter 5.  Here it has been applied to the FMM 

clustering procedure, expecting the decomposition to adhere to the same conditions 

outlined for multi-dimensional analysis of arrays.  It is required (arbitrarily) that the 

clusters in each dimension be numbered consecutively in increasing order, starting with 

the index 1.  In the expression (7.1.1), distinction for the clustering dimensions have been 

made with the subscripts 1, 2, 3c c c , etc.  The cluster interactions, translating from source 

cluster to testing cluster, will follow the same vector sum rules of the multi-dimensional 

array analysis, transforming first across each dimension of the cluster grid and then 

across each dimension of the array.  Though the assumption of at most three clustering 

dimensions has been made, in theory a multi-dimensional decomposition could be 

applied to the clustering as well (to reduce the occurrence of empty clusters). 

One main difference in the intra-element decomposition model for whole-element 

AD-FMM is that the near-zone and far-zone decomposition models are now disjoint, 

dimension wise.  That is, there are more dimensions in the far-zone decomposition than 

in the near-zone decomposition.  In intra-element AD-FMM, the near-zone kernel is 

given by 
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which is three dimensions less in extent than the far-zone kernel 
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where 

 1 1 1 1 2 2 2 2ˆ ˆ ˆ( ) ( ) ( )ndims ndims ndims ndimsi i i i i iρ δ ρ δ ρ δ ρ′ ′ ′= − + − + + −" . (7.1.6) 
 
This reduces the elegance of the AD-FMM model, but it is strictly an implementation 

issue and does not detract from the usefulness of the method. 

 

 

Figure 7.2. Depiction of reduced near-zone influence with intra-element decomposition. 
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As a visual aid, to help comprehend a common situation where intra-element 

decomposition is important, observe Figure 7.2.  The radius of near-zone influence for 

the entire element encompasses many of the neighboring elements.  All the interactions 

within the radius must be treated in the near-zone at high computational and storage cost.  

However, if the element is decomposed into sub-clusters, the region of influence will be 

potentially reduced to at most the nearest adjacent element, but no further.  Again, this 

decomposition is intended to reduce the near-zone storage cost of AD-FMM to a small 

and manageable number. 

 

7.2 Implementation considerations 

 

 The introduction of the intra-element decomposition significantly increases the 

choices facing how the method is implemented.  For instance, there is a choice as to how 

much information to leave in the near-zone for preconditioning purposes.  In entire-

element AD-FMM, as well as standard ADM, the entire element is used as a near-zone 

preconditioner, in the sense that the isolated element matrix is pre-solved and only the 

coupling between array elements is iterated over in the solution procedure.  With intra-

element decomposition, there is now the option of placing some of the self-cell element 

interactions in the far-zone, thereby reducing the overall cost of the near-zone storage.  

However, when it comes time to precondition the system solution, this choice will result 

in poorer solution performance, as significant portions of the intra-element interaction are 

no longer pre-solved.  Hence, it may (or may not) be beneficial to treat some of the intra-

element interactions in the near-zone, even when they are technically in the far-zone. 
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 Another implementation issue occurs in deciding when the single-cell AD-FMM 

model is justified, verses when the problem should be split up into multiple systems.  An 

important consideration to make is that the models examined thus far have typically 

created well-populated clusters on the FMM grid.  An array-type problem that had a 

distributed element, such that it could not be partitioned well into a continuous grid, 

would probably be a better candidate for multi-system analysis presented in the next 

chapter.  The array elements examined thus far have been typically planar in nature, and 

efficient to partition with a regular grid.  A larger array element object with a more 

distributed nature (think large dielectric shell), could result in a less effective clustering 

model. 

 

7.3 Results 

 

The benefits of using an intra-element decomposition approach are now 

evaluated.  As a first example, consider the benefit in analyzing the structure depicted in 

Figure 7.2.  At the analysis frequency, the elements of the array are 3.3λ in length.  For 

various analysis methods, the required near-zone matrix storage is listed in Table 7.1.  

Due to the problem complexity, a multi-level FMM solution was not attempted. 

 

Table 7.1. Near-zone Storage Requirements for Structure in Figure 7.2. 

FE-BI 
(Conventional) 340.8GB

ADM 7.5GB
AD-FMM    1.1GB
AD-FMM  

(Intra-Element) 0.1GB
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 The benefits of intra-element AD-FMM are very clearly demonstrated in these 

results for this type of structure.  This particular structure is analyzable via any of the 

array decomposition methods, as compared with the conventional FE-BI approach with 

much higher storage cost.  In particular, intra-element AD-FMM exhibits over three 

orders magnitude in storage savings for a problem this size.  Again, for either of the AD-

FMM implementations (whole-element or intra-element), an array will have the same 

storage listed in Table 7.1 for any number of elements (100 100× , 2000 500× , etc) in the 

same two-dimensional configuration. 

 

 

Figure 7.3. NRL array measurement setup. 

 

A more difficult problem is now considered.  In this section, validations of the 

intra-array coupling for the structure pictured in Figure 7.3 are presented.  The array 

consists of a horizontal and vertical egg crate arrangement of the element from Figure 

2.11.  The horizontally polarized array is 10 11×  in size, and the vertically polarized array 
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is 11 10×  in size.  In this configuration, only the central 8 8×  grid of elements in each 

polarization are excitable, the surrounding elements being parasitic only.  The elements 

of the array are rigidly connected via a metallic post running the full length of the 

elements.  This post serves to create a current bridge between the elements, allowing the 

necessary modes required for the array to function at lower frequencies.  Additionally, 

the array is surrounded with supporting fins that have been neglected in the analyses of 

this thesis for simplicity. 

Because the necessary tools have not yet been developed to model this array 

exactly, in this section an accurate approximate model based on the techniques developed 

thus far will be used.  Though there is not a storage problem for this analysis, there are 

several difficulties that must be overcome.  As a first difficulty, it is not possible to model 

the structure of Figure 7.3 correctly using a single unit cell.  With the single-cell model, 

the closest approximation to the actual structure is using a 10 10×  array of the element 

shown in Figure 7.4.  The resulting approximate structure is shown in Figure 7.5, where it 

can be seen that the dummy elements along two of the outer edges of the array are 

unaccounted for.  Still, this model produces reasonably close results, and will suffice for 

the analysis at hand.  As a further approximation, for this analysis it is necessary to 

neglect the connecting post between the elements, as the formulation is not yet equipped 

to model this current junction.  That is, the array analysis assumes that there is a crack 

between adjacent elements.  This is necessary in a single array analysis approach, or the 

Toeplitz property of the array system will be lost.  The nature of this difficulty will be 

addressed in Chapter 9, where the problem is dealt with efficiently.  For this particular 

array system, the designers went to great lengths to ensure that good electrical contacts 
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were made between all elements of the array.  Hence, in this case, the assumption of bad 

electrical contacts between adjacent array elements is not a good one. 

 

 

Figure 7.4. Unit cell for the dual polarized array element. 

 

The unit cell element consists of 1,714 FEM unknowns and 3,764 BI unknowns.  

Using this approximate model, the array in Figure 7.5 consists of 171,400 FEM 

unknowns and 376,400 BI unknowns, for a total of 547,800 unknowns.  In this example, 

the structure is analyzed at the single center frequency of 3.02GHz.  Though this number 

of unknowns is not significantly high, it is a rather high density of unknowns for an array 

that is only 10 10×  ( 4 4λ λ× ) in extent.  The high detail of this array element, combined 

with its electrical size, make it a particularly difficult element (and array) to model. 
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Figure 7.5. Approximate analysis model for intra-array measurements. 

 

First, the required resources for analyzing this structure are evaluated, and the 

results are listed in Table 7.2. In order to analyze this structure with a conventional FE-BI 

approach, a total of 1,735GB of storage would be required.  This is a completely 

unreasonable number, suggesting that advanced fast methods are necessary.  However, 

the complexity of this problem is also too high for the conventional MLFMM algorithm 

used in previous chapters.  As a result, it was not possible to even calculate the required 

resources for analyzing this difficult problem.  Had the analysis computation been 

successful, the result would most likely have shown that the required resource to be far 

higher than the ideal ( log )O N N  storage predicted for MLFMM.  This is likely the case, 

as the dense basis representation required for the array model, is much higher than the 

typical /10λ  meshing required to achieve ( log )O N N  storage.  Using ADM, which uses 
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Toeplitz storage of the near-zone interactions only, the storage cost reduces to 42GB, 

almost two orders of magnitude improvement over conventional FE-BI.  While this 

would now be an analyzable problem on a distributed memory system with at least 48MB 

of memory, a more manageable solution would be preferable.  The standard AD-FMM, 

which uses the entire element as a cluster, reduces the cost down to 21GB.  This is only a 

marginal improvement over the ADM model, due entirely to the fact that the near-zone 

influence of this element is so high that it encompasses nearly half the elements in the 

array.  The problem of the large near-zone influence is clearly solved by using AD-FMM 

with intra-element decomposition.  With the intra-element decomposition employed, the 

storage requirements reduce to a manageable 0.4GB – more than three orders of 

magnitude improvement over the conventional FE-BI approach.  For larger arrays of this 

type, the matrix requirements for conventional methods would increase exponentially, 

whereas the storage requirements for AD-FMM would remain constant at 0.4GB.  

Further, this small amount of storage is truly phenomenal, considering the density of field 

representation required to model this antenna structure. 

 

Table 7.2. Performance and Storage Requirements for the array in Figure 7.5. 

 Matrix Storage 
Conventional FE-BI 1,735GB 

MLFMM - 
ADM 42GB 

Standard AD-FMM 21GB 
AD-FMM with Intra-

Element Decomposition
0.4GB 
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Figure 7.6. Embedded linear array layout. 

 
(a) co-polarized 

 
(b) cross-polarized 

Figure 7.7.  Patterns for linear array embedded within structure of Figure 7.5. 
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Consider the use of AD-FMM in computing field patterns of the array structure.  

As indicated in Figure 7.6, row 8 at the center of the array structure is excited uniformly.   

The pattern comparisons are shown in Figure 7.7, where both the co-polarized and cross-

polarized measurements are compared.  The patterns are measured in a compact range, 

exactly as shown in the setup of Figure 7.3.  As indicated by the plots, AD-FMM 

achieves adequate agreement, even with the approximate model of Figure 7.5.  The cross-

pol. levels are calculated to be about 8dB lower than the measurements.  However, it is 

expected for calculations of cross-pol. to be lower with ideal calculations. 

 

Figure 7.8. Array element indexing guide. 
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Figure 7.9. Intra-element AD-FMM results comparison. 

 

 Consider next a more difficult measurement setup in which an element near the 

center of the array is excited and then the voltage ratios are measured at other ports of the 

array (S12 = Vout/Vin).  The excited element is indicated by the central discolored 

element in Figure 7.5, and is marked as the shaded element (index 9,4 or 94) in the 

central region of Figure 7.8.  The element indexing can be interpreted as follows.  The 

element positions are indexed by row and column, referring only to the central 8 8×  

portion of the array.  The row numbers are on the range [1 16], counting alternating rows 

of vertical and horizontal elements, and the column numbers are on the range [1 8], with 

one index per each of the eight elements in a row.  The comparisons (at center frequency 

3.02GHz) for the S12 values are given in Figure 7.9, plotted against the element index 

given as [row,col].  In other words, an index of 21 is row 2, column 1, whereas an index 

of 145 is row 14, column 5.  As shown, the quality of the agreement between 

measurements and simulation is relatively close.  Most of the results are within 5dB of 

the expected values, with significant differences of 10dB or more in some cases.  The 

results show better agreement near the excited element, and larger discrepancies at 

further distances from the fed element.  This is due in part because of the multi-path 
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effects that plague these lower power measurements.  In other words, the inaccuracies 

occur furthest from the radiating source element.  However, most importantly, it is 

critical to recall that the model used here is not exact and neglects the critical supporting 

posts between elements of the array.  This connection is necessary to allow currents to 

flow directly between the array elements.  The importance of these connections is 

evidenced by the fact that initial designs of the manufactured array operated poorly, until 

electrically sound connections were made between the elements.  It is expected that better 

agreement can be achieved once the direct current paths between elements are allowed in 

the simulations.  This critical coupling component is developed in Chapter 9. 

 

7.4 Conclusion 

 

It must be commented that AD-FMM with intra-element decomposition achieves 

the same accuracy as the original FE-BI formulation upon which it is based.  In other 

words, the results of this section would be the same if conventional FE-BI were used to 

analyze the array.  Of course, as addressed above, such an analysis is prohibited by 

storage and solution time considerations.  Likewise, these results would be the same for 

ADM, or FE-BI with MLFMM.  The prime difference here is that using any of the other 

methods to solve problems of this type is not practical.  AD-FMM with intra-element 

decomposition is the only viable way to approach dense finite array problems from both 

the standpoint of storage and solution time, when rigor is required.  Further, it must be 

noted that this type of measurement comparison cannot be made with infinite array 

approximations, semi-infinite array approximations, or even approximations where the 
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central array elements are modeled with a given field distribution, with only the edge and 

corner elements are modeled as having different excitations.  These methods assume that 

array elements in the central portion of the array have the same field distributions.  

Clearly, in a case where only a single array element is excited, this is not a viable 

assumption. 

 In summary, a very effective analysis method for finite arrays has been proposed.  

With the addition of intra-element decomposition to the AD-FMM, the single system 

array tools have matured to a point where accurate, fast, and low-cost analysis of large 

finite arrays is possible for both large and small array elements.  In the next chapter, these 

tools will be extended for simultaneous solution of multiple systems, thereby achieving 

potentially accurate modeling capability for a wide range of real world structures. 
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CHAPTER 8 
 

RIGOROUS INTERACTION OF MULTIPLE SYSTEMS 
 

 

 

Many real-world systems of the finite array type can be decomposed into identical 

repeating cells, and in some cases, where more than a single array is involved, multiple 

sets of like cells.  In previous chapters, it was shown that array decomposition methods 

can be used to greatly simplify and accelerate the storage and solution process of finite 

array-type structures.  In this chapter, these array techniques (ADM, AD-FMM) are 

extended to simultaneously consider multiple finite arrays-type systems, each consisting 

of a different set (and number) of like elements.  An example problem that benefits 

highly from this type of decomposition would be a finite antenna array (system 1) with an 

extended ground plane backing it (system 2), and a radome of arbitrary periodicity 

forming a cover over the array (system 3).  The method detailed in this chapter is 

specifically tailored to address this type of problem.  For brevity, the combined 

techniques of this chapter are referred to as the multi-cell array decomposition method 

(multi-cell ADM or multi-cell AD-FMM), or simply multi-system ADM/AD-FMM.   

The multi-cell array decomposition method is applicable to complex structures 

with repeating features, which are treated as array structures, and also arbitrary systems, 

which can be treated simply as single element arrays.  It is true that a completely arbitrary 
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structure devoid of repeating features will not benefit greatly from the array 

decomposition methods presented in previous chapters.  However, in some cases, at least 

a portion of a structure could benefit from array decomposition of repeating features.  

One approach might be to neglect including the non-repeating portion of the structure in 

the analysis, an approximation that may not be very accurate.  Alternatively, using the 

approach presented here, the arbitrary portion of any system that cannot be decomposed 

into repeating cells can be treated as a separate, single-element array, and interacted 

simultaneously with other systems without array-type decomposition.  As an alternative, 

it is also possible to use the FMM-FFT technique of Chapter 3 to decompose completely 

arbitrary structures into regular clustering grids, thereby allowing cluster-level 

decomposition, and then use the methods of this chapter to achieve cross-system 

decomposition between the arbitrary structures.  This capability is inherent in the intra-

element decomposition method presented in the previous chapter. 

This chapter is intended as an introduction to multi-system analysis.  Though the 

concepts of this chapter can be used for fairly accurate solutions to composite array-type 

structures, the algorithms still lack the ability to model current continuity between array 

elements, and therefore will not be accurate for all problem types.  This critical piece of 

the coupling equation was purposely left out up to this point, as it requires concepts of all 

the preceding chapters, including concepts presented in this one, to correctly model the 

mechanism of currents flowing directly between elements of the array. 
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8.1 Introduction to Multi-Cell Decomposition Approach 

 

Much like the conventional ADM, the multi-cell ADM decomposition is carried 

out across common dimensions.  Here, the focus is again strictly on spatial or 

translational-type dimensions having translational symmetry.  A translational dimension 

is defined solely by a spacing parameter dδ  and a direction ˆdρ , where d is the dimension.  

By this definition, dimensions can be differentiated by a unique spacing between 

elements, or by aligning an array lattice in a different spatial direction, or both.  In this 

way, complex systems can be constructed using multiple dimensions of unique 

specification.  As in previous chapters, it is mandatory that element indices in each 

dimension be consecutively numbered.  To enable cross-system decomposition, an 

arbitrary number of systems are constructed from a table of common dimensions d, 

ranging from d=1..ndims.  For each dimension, a self-system Toeplitz property will exist 

that can be used to decompose intra-system interactions, as described in previous 

chapters.  Similarly, in this chapter, for systems sharing a common dimension, a cross-

system Toeplitz property will exist for inter-system element interactions that can be 

exploited to decompose the system matrix even further. 

Because of the complexity of the multi-system analysis scheme, this chapter 

begins with a simple example in which three systems of a single common dimension are 

simultaneously interacted.  These systems are shown in Figure 8.1.  Each system consists 

of an independent number of elements, denoted ,d sn , where d denotes the dimension, and 

s denotes the system.  However, all three systems share a common element spacing of 1δ  

and the axis of the array 1ρ̂  is the same for all systems.  Systems 1, 2, and 3 are defined 
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as having (BI) unknown counts per array element of 1m , 2m , and 3m , respectively.  In a 

conventional approach to this problem, the total matrix storage requirements would be 

2 2 2 2 2 2
1,1 1 1,2 2 1,3 3( )O n m n m n m .  However, using a combination of self-system and cross-system 

decomposition, this cost can be reduced to  

 
3 3

1, 1,
1 1

( ( 1) )s t s t
t s

O n n m m
= =

+ −∑∑ , (8.1.1) 

 
simply by exploiting the block-Toeplitz features of the system.  This is the maximum 

possible near-zone storage cost, assuming far-zone decomposition (AD-FMM) has not 

been implemented.  The computational and storage costs are explained below. 

 

 

Figure 8.1. Illustration of dimensional decomposition for multiple structures. 

 

 For the three-system configuration shown in Figure 8.1, the near-zone matrix 

system (or far-zone translation matrix) will be of the form 
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. (8.1.2) 

In (8.1.2), the redundant terms have been shaded in, accounting for the cost reduction 

given above.  The shading gives a general idea that Toeplitz-based reductions are taking 

place across multiple systems.  The larger sub-arrays along the diagonal of (8.1.2) 

represent the coupling within the independent systems (intra-array coupling).  The larger 

sub-arrays at off diagonal locations represent the coupling between systems (inter-array 

coupling).  It can be seen that for all cases, only the first column and first rows of the 

element interaction sub-matrices 
t sm ma⎡ ⎤⎣ ⎦  are being stored in both the self-system and 

cross-system coupling sub-matrices.  Each sub-matrix 
1, 1,

t s
t s

m m i i
a⎡ ⎤⎣ ⎦  of (8.1.2) is of size 

t sm m , and represents the interaction of source basis elements sm  with testing basis 

elements tm , for source array element number 1,si  onto testing array element number 1,ti , 

between the source system s and the testing system t.  Again, both systems share a single 

common dimension d=1. 

 In (8.1.2), there are nine sub-systems, one each for the intra-system coupling, and 

one each for cross-coupling between systems.  Because these three systems share a 

common dimension, the sub-systems are all non-symmetric block-Toeplitz, and hence 
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each individual sub-system can be reduced from a conventional storage cost of 

1, 1,( )t t s sO n m n m  down to 1, 1,(( 1) )s t s tO n n m m+ − , where 1,sn  and 1,tn  are the number of 

source and testing array elements in the source and testing systems, respectively.  This 

reduction corresponds to the unshaded portion of each sub-system in (8.1.2).  Further, the 

contribution of each sub-system to the matrix-vector product operation of the iterative 

solution process can be accelerated with the equivalent of s tm m  fast Fourier transforms 

(FFT) of length 1, 1, 1s tn n+ − .  This assumes that only ADM is applied, and not AD-FMM.  

If AD-FMM is employed, the amount of near-zone storage will be dependent both upon 

the array element spacing within the individual systems, as well as the separation 

between the systems.  As an example, if the systems are far-enough separated such that 

they are completely in the far-zone of each other, then there will be no near-zone storage 

of the cross terms for AD-FMM, and hence all off-diagonal terms in (8.1.2) would be 

shaded.  For AD-FMM, the far-zone is determined by the cluster size for each system, 

and not the system size.   

 As mentioned, for AD-FMM, the translation matrix will have the same general 

form as (8.1.2), except that each element-interaction sub-matrix 
t sm ma⎡ ⎤⎣ ⎦  will be replaced 

with a translation operator { }
t sL m mτ , containing a number of k-space entries dependent on 

the radii of the source and testing array elements (or sub-clusters if intra-element 

decomposition is employed).  Specifically, the number of k-space directions 2K L≈ , 

where 0 ( ) / 2s tL k D D> + .  In this expression, k0 is the wave number of free-space, 

whereas Ds and Dt are the radii of the source and testing clusters, respectively.  In multi-
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system decomposition, it is possible that these cluster diameters will be different, 

particularly when whole-element AD-FMM is employed. 

This simple example has been used to introduce the concepts of multi-cell 

analysis.  In the next section, these relations will be generalized to multiple systems of 

multiple dimensions and extended to generate a most robust implementation. 

 

8.2 Generalized Multi-System Multi-Dimensional Decomposition 

 

 

Figure 8.2. Arbitrary system interaction in multiple dimensions. 

 

 Having introduced the concept of multi-cell decomposition for a simple example, 

a general formulation for decomposing multiple systems with arbitrary numbers of 

dimensions is now presented.  A more complicated structure that may be considered is 

shown in Figure 8.2.  The structure consists of two dual-polarized tapered-slot antenna 

arrays in an egg crate configuration.  The horizontal elements form 10 11×  arrays, while 

the vertical elements form 11 10×  element arrays.  Within the arrays there are other 
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details that will be overlooked here, such as connecting posts between elements.  The 

arrays are backed by a common ground plane of finite extent, and are surrounded by 

metallic shielding.  One array is shown as covered by a frequency selective surface of a 

different periodicity.  A potential solution approach would be to analyze this 

configuration as an arbitrary structure.  However, it is obvious that some amount of 

decomposition on redundant features might be beneficial.  This particular structure has an 

infinite number of decomposition options available.  The approach taken in this chapter 

would be to decompose the independent systems, and then partition the continuous 

ground plane and shielding structures using the same lattice as the array dimensions.  

Using this approach, some portions of the ground plane or shielding structures may be 

left over after the decomposition, since the array lattice may not exactly partition these 

structures into like cells.  The excess portions at the ends or corners could be discarded 

from the analysis, or potentially treated as another system.  The benefits of such an 

approach are now examined.  

The necessary tools for the multi-dimensional, multi-system near-zone 

decomposition are considered first.  The generalized form of the near-zone kernel for 

interacting multiple systems with arbitrary dimensions is of the form 

 
0

( )
4

jk Reg R
Rπ

−

= , (8.1.3) 

 
where 

 1, 1, 1 1 2, 2, 2 2ˆ ˆ( ) ( )
ˆ( )

m m t s t s

ndims,t ndims ndims ndims ot os

d d i i i i
R

i i r r
δ ρ δ ρ

δ ρ
′

′

′ ′− + − + − +
=

′+ − + −"
. (8.1.4) 

 
This expression is appropriate for an arbitrary number of dimensions given by ndims, as 

well as an arbitrary number of systems, nsys.  For multi-system analysis, the systems can 
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be numbered in any sequence, though it is recommended for simplicity that the source 

and testing systems s and t, be numbered consecutively from , 1..s t nsys= .  An analysis 

of the near-zone kernel (8.1.3) is performed by walking through the decomposed 

coupling path from the source basis function sm  to the testing basis function tm .  First, it 

is necessary that the offset between systems be accounted for, where the source and 

testing systems are referenced to the global origin via the global vectors osr  and otr , 

respectively.  This is in contrast to previous decomposition models, in which the global 

offset played no role.  As previously, the elements of the array systems are required to be 

numbered consecutively as , ,1..d s d si n= , where ,d si  is the element index in dimension d 

for system s, and ,d sn  is the total number of elements.  The coupling influence must be 

transformed through each dimension of the array systems as , , ˆ( )d t d s d di i δ ρ′− , where dδ  is 

the element spacing in dimension d, and ˆdρ  is the direction of the transform dimension.  

The source and testing array element indices are given by ,d si′  and ,d ti , respectively, for 

the given dimension d.  As stated in the previous section, all systems are constructed 

from the same set of common dimensions.  In the most general formulation, the minimum 

number of elements per dimension for any system is 1, and hence it is necessary to 

transform through all the dimensions for both systems.  That is to say, if ndims=2, and 

system s is a linear array with n elements in dimension 1, it still has 1 element in 

dimension 2.  This is an important concept to master in order to fully appreciate multi-

dimensional, multi-system analysis, and is required for general implementation. 

 For the near-zone storage then, the unique array element interaction sub-matrices 

in Toeplitz storage are indexed as 
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1, 1, 2, 2, , ,

1, 1, 2, 2, , ,

( )( ) ( )

[ , , , , , ]

                                                      
t s

t s t s ndims t ndims s

t s t s ndims t ndims s t s

m m i i i i i i

i i i i i i m m

a
′ ′ ′− − −

′ ′ ′Π − − − =

⎡ ⎤⎣ ⎦ "

…
, (8.1.5) 

 
where these matrix entries are determined by inserting the multi-system, multi-

dimensional kernel (8.1.3) into the EFIE and MFIE equations (2.2.10) and (2.2.11).  The 

Toeplitz matrix structure for the near-zone decomposition has the same number of 

dimensions as the array systems, with sub-matrix sizes dependent on the number basis 

interactions for the elements or clusters.  For standard ADM, this structure can be 

transformed via FFT for fast matrix-vector multiplication, though this step is avoided for 

AD-FMM.  The matrix system will be of the form (8.1.2), though it can be more 

generally expressed as 

 

11 12 1

21 22

intra- inter- inter-
system system system
coupling coupling coupling

inter- intra-
system system
coupling coupling

inter-
system
coupling

nsys

nsy

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

#

# %

1 ,

intra-
system
coupling

s nsys nsys

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

"

 (8.1.6) 

 
The intra-system coupling matrices occur along the system diagonal, whereas the inter-

system coupling matrices appear off the main diagonal.  The intra-system sub-matrices 

will be N N× .  However, it is important to realize that the inter-system sub-matrices are 

not N N×  – they will be 1 2N N× , where in most cases 1 2N N≠ , and hence the sub-

systems are not square.  This has to be considered, particularly if the cross-system 

interactions are to be accelerated via the FFT. 
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For Toeplitz storage of multi-system ADM, in which AD-FMM has not been 

implemented, the number of terms will be 

 , ,
1 1 1

( ( 1) )
nsys nsys ndims

d s d t s t
s t d

O n n m m
= = =

+ −∑∑∏ . (8.1.7) 

 
Similarly, for ADM the interaction between source system s and testing system t can be 

accelerated using t sm m  simultaneous FFTs of size/dimension  

 1, 1, 2, 2, , ,( 1) ( 1) ( 1)s t s t ndims s ndims tn n n n n n+ − × + − × × + −" . (8.1.8) 
 
Efficient consideration of cross-system interactions implies a need for multi-dimensional 

FFT algorithms.  This will be applied to the far-zone interactions of AD-FMM, or the 

near-zone interactions of ADM. 

 Now the far-zone components of the multi-system analysis approach are 

examined.  Here the additional complexity of intra-element decomposition is also 

addressed.  The generalized far-zone translation operator for multiple systems and 

arbitrary numbers of dimensions will be of the form 

 (1)
0 0

0

ˆ ˆˆ ˆ[ , ] ( 1) (2 1) ( ) ( ))
L

l
L l l

l
k k l h k P kρ ρ ρ ρ

=

Τ = − +∑i i , (8.1.9) 

 
where 

1, 1, 1 1 2, 2, 2 2 2, 2, 3 3

1, 1, 1 1 2, 2, 2 2 , ,

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )
c t c s c c c t c s c c c t c s c c

t s t s ndims,t ndims,s ndims ndims o t o s

i i i i i i

i i i i i i r r

δ ρ δ ρ δ ρ
ρ

δ ρ δ ρ δ ρ

′ ′ ′− + − + − +
=

′ ′ ′ ′− + − + + − + −"
, (8.1.10) 

 
and 

1, 1, 1 1 2, 2, 2 2 2, 2, 3 3

1, 1, 1 1 2, 2, 2 2 , ,

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ

c t c s c c c t c s c c c t c s c c

t s t s ndims,t ndims,s ndims ndims o t o s

i i i i i i

i i i i i i r r

δ ρ δ ρ δ ρ

δ ρ δ ρ δ ρ
ρ

ρ

′ ′ ′− + − + − +

′ ′ ′ ′− + − + + − + −
=

"
. (8.1.11) 
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The system offsets , ,,o t o sr r′  and the dimensional transformations for the far-zone 

interactions are treated exactly the same as for the near-zone interactions.  Namely, the 

global system offsets must be referenced to relate separation of the individual systems, 

and it is necessary to transform the source influence through all ndims dimensions.  

Though the assumption of three clustering dimensions has been made, in theory a multi-

dimensional decomposition could be applied to the clustering as well.  To use intra-

element decomposition most effectively in multi-system analysis, it should be that the 

cluster dimensions are the same for every system in the simultaneous analysis.  That is, 

the cluster size and lattice should be the same for all systems, thereby allowing cross-

system decomposition across the cluster dimensions as well.  It is implicit in the 

definition of (8.1.9) that this be the case, otherwise it would not be correct to decompose 

the system based on the difference in cluster indices , ,cd t cd si i′− .  Hence, even for 

completely arbitrary systems that are not of the array-type, so long as the same cluster 

grid layout is used for each of the systems, the inter-system interactions can be 

decomposed for storage savings and solution acceleration as well.   

 The intention is that the translation operators are stored in Toeplitz format for fast 

FFT solution procedures.  The multi-dimensional, multi-system form of the Toeplitz 

translation operator for each source and testing system interaction is of the form 

 { }
1, 1, 2, 2, 3, 3, 1, 1, 2, 2, , ,

, ( )( )( )( )( ) ( )
[ ]

c t c s c t c s c t c s t s t s ndims t ndims s
L t s L i i i i i i i i i i i i

τ ′ ′ ′ ′ ′ ′− − − − − −

⎡ ⎤
⎢ ⎥

Τ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

% # $
" "

$ # %

. (8.1.12) 

 
As usual, the number of k-space directions K in { }Lτ  will be proportional to the cluster 

sizes for the source and testing system clusters.  As a note, the same rules for cluster 
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interactions apply for multiple systems as apply for single systems.  Namely, clusters 

must be separated a distance proportional to the sum of the interacting cluster radii as 

defined in previous chapters to be considered in the far-zone.  The far-zone interactions 

can be accelerated with K simultaneous FFTs of size and dimension 

 1, 1, 2, 2, 3, 3,

1, 1, 2, 2, , ,

( 1) ( 1) ( 1)
( 1) ( 1) ( 1)

c s c t c s c t c s c t

s t s t ndims s ndims t

n n n n n n
n n n n n n

+ − × + − × + − ×

+ − × + − × × + −"
. (8.1.13) 

 
The cluster dimensions and array dimensions can be ordered as desired without loss of 

generalization, with the forethought that the dimensions with the most entries should be 

transformed first for highest efficiency.   

The storage cost of the translation operators will be proportional to 

 
3

, , , , ,
1 1 1 1

( ( 1) ( 1) )
nsys nsys ndims

d s d t ci s ci t s t
s t d i

O n n n n K
= = = =

⎡ ⎤
+ − + −⎢ ⎥

⎣ ⎦
∑∑ ∏ ∏ . (8.1.14) 

 
It is not typically the case that the translation operator storage is a significant portion of 

the storage requirements.  However, if the number of clusters in each dimension are 

excessively large compared to the basis density of the clusters, it is possible for the 

translation storage to become more significant.   
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8.3 Multi-System Results 

 

 As a first example, the array in Figure 7.5 will be reconsidered from a multi-

system approach.  The composite structure is constructed from four distinct array 

systems, as depicted in Figure 8.3.  The four systems include a 10 10×  array of 

horizontally polarized elements, a 10 10×  array of vertically polarized elements, a 10 10×  

array of connecting posts, and a 10 10×  array of back plane material.  Of course, with the 

multi-system approach it is possible to construct near exactly the structure in Figure 7.3, 

using the 10 11× array of horizontally polarized elements, the 11 10×  array of vertically 

polarized elements, and a corresponding 11 11×  array of connecting posts.  However, the 

point of this example is to compare the single-system and multi-system approach to the 

same problem.  As a note, the connecting posts employed here do not provide electrical 

contact between the elements – they are only designed to correctly simulate the scattering 

conditions of the finite array environment. 
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Figure 8.3. Construction of composite finite array structure using multi-system approach. 

 

Table 8.1 compares the storage requirements for a multi-system approach to this structure 

with the single system approach of Chapter 7.  These results show that for standard 

ADM, the single-system approach has identical storage requirements as the multi-system 

approach.  This is to be expected, as the matrix system has the same exact entries in each 

case, simply in a different arrangement.  However, for ADM there will be a difference in 

the matrix system preconditioning approach.  This difference will result in larger storage 

requirements for the single-system method, and consequently a smaller number of 

iterations to achieve convergence.  That is, in the single-system approach, the self-cell 

matrix block contains more information, corresponding to the four self-cells of the multi-

system approach, plus the strong mutual-coupling interaction of these cells.  In the single-

system approach, these interactions are pre-solved and used to accelerate the system 
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solution, whereas in the multi-system approach, the strong mutual-coupling interactions 

between the four self-cells must be iteratively solved for, at the expense of a larger 

number of iterations for convergence. 

 Unlike the case for the ADM, the two AD-FMM comparisons show a slight 

improvement for the multi-system approach verses the single-system approach to the 

array problem.  This reduction is a consequence of the multi-system approach achieving a 

more efficient clustering scheme.  That is, the multi-system clustering grid conforms 

more closely to the array structure, resulting in a lack of empty clusters, and hence more 

efficient storage.  Thus, in the case of the intra-element AD-FMM approach, the storage 

reduces from the already low 0.4GB down to 0.25GB, nearly four orders of magnitude 

improvement over conventional FE-BI at a storage cost of 1,735GB. 

 

Table 8.1. Comparison of Near-zone Storage for Single- vs. Multi-System Approaches to 

Array Problem. 

Near-zone matrix 
Storage 

Single-system 
approach 

Multi-system 
approach 

ADM 42GB 42GB 
Standard AD-FMM 21GB 18GB 

AD-FMM with Intra-
Element Decomposition

0.4GB 0.25GB 

 

 

 Note that when a multi-cell approach to this problem is utilized, there are nearly 

an infinite number of combinations that could be chosen for analysis.  For example, using 

the multi-system approach with only the element previously used in the single-system 

analysis (see Figure 7.4), it is possible to model the composite structure as two 5 10×  
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arrays, or perhaps four 5 5×  arrays, to name just a few alternatives.  However, the 

greatest matrix savings is realized with the full 10 10×  element approach, as this results 

in the removal of more redundant coupling terms, and allows larger, more efficient FFT 

operations.  As a further note, care must be exercised in using multi-cell models in which 

the systems have strong coupling.  An example of strong coupling occurs when the 

elements of the two systems are interleaved, a condition that leads to a significant 

increase in iterations for convergence. 

One advantage the multi-system approach has over the single-system approach is 

that the array geometry of Figure 7.5 can be modeled exactly, minus the good electrical 

contacts between adjacent elements.  That is, the full 10 11× horizontally polarized and 

11 10×  vertically polarized arrays can be modeled, whereas the previous approaches 

neglect the outer rows of dummy elements on both sides.  The cost of the two approaches 

are compared in Table 8.2.  The exact model requires 606,028 unknowns, 10.6% more 

than the approximate model.  For ADM, this added cost results in an 11.9% increase in 

near-zone storage cost.  However, as expected, the near-zone cost of the AD-FMM 

methods do not increase at all, since the near-zone influence remains the same.   

 

Table 8.2. Comparison of Storage Cost for Exact and Approximate 

Representations of Array in Figure 7.5. 

Near-Zone Matrix 
Storage 

Approximate 
Model 

Exact Model 

Standard FE-BI 1,735GB 2,134GB 
ADM 42GB 47GB 

Standard AD-FMM 18GB 18GB 
AD-FMM with Intra-

Element Decomposition
0.25GB 0.25GB 
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Figure 8.4 Simulation geometry for two-array coupling problem. 

In this example, two arrays of the type depicted in Figure 7.5 are considered 

simultaneously.  Again, the unit cell of Figure 7.4 is used.  The arrays are placed seven 

wavelengths apart at the analysis frequency of 3.02GHz, as shown in Figure 8.4.  For 

various solution approaches, the results are tabulated in Table 8.3.  The conventional FE-

BI approach considers the entire problem (both arrays) as a single arbitrary structure.  

The two-array approach treats each array as an independent system, where as the multi-

dimensional, single-system approach treats the entire structure as a single multi-

dimensional array.  Recall that for the ADM, the multi-dimensional approach resulted in 

exactly ¾ the matrix storage of the two-array approach.  On a similar note, using AD-

FMM with a multi-dimensional, single-system approach results in exactly ½ the matrix 

storage of the two-array, multi-system approach.  That is, the multi-system approach 

requires two self-coupling systems (one for each 10 10×  array), whereas the multi-

dimensional, single-system approach has only a single self-coupling matrix used for both 

arrays, as allowed with Toeplitz storage.  This accounts for the storage difference 

between the single- and multi-system approaches.  For the AD-FMM cases, the cross-

coupling terms are handled in the far-zone. 
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Table 8.3. Comparison of Advanced Solution Methods for Array in Figure 8.4. 

Solution Method Matrix Storage 
Conventional FE-BI 6,940GB 

Two-Array Multi-Sys ADM 168GB 
Multi-Dim Single-Sys ADM 126GB 

Two-Array Multi-Sys Whole-Element AD-FMM 36GB 
Multi-Dim Single-Wys Whole-Element AD-FMM 18GB 

Two-Array Multi-Sys Intra-Element AD-FMM 0.5GB 
Multi-Dim Single-Sys Intra-Element AD-FMM 0.25GB 

 

The array layout of Figure 8.4 is now analyzed for inter-array coupling.  The 

actual measurement setup is shown in Figure 8.5.  In the measurement configuration, the 

arrays are placed on a metallic ground plane approximately 24 12λ λ×  in size.  For the 

measurement, the 8 8×  array of horizontal elements in the first array is excited uniformly 

and scanned electronically at increments of 10 degrees, towards the second (receiving) 

array.  At each scan increment, the coupling is measured as various ports of the receive 

array.  The locations of the receive elements are depicted in Figure 8.4. 
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Figure 8.5 Measurement setup for intra-array coupling. 

 

 Figure 8.6 shows the inter-array coupling results for the measurement 

setup, comparing measurements with the simulation geometry of Figure 8.4.  It is 

observed that the agreement between measurements and simulations is reasonably close, 

though there are marked differences.  The simulation geometry does not have the ground 

plane of the measurement setup, and recall from Chapter 7 that the array model is not 

exactly the same as the measured structure, as it is missing two outer rows of dummy 

elements, and some critical structural supports (connection posts between elements and 

supporting fins on the outside of the structure.  Though a more exact simulation model is 
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possible with the tools developed in this thesis, this example serves to demonstrate the 

inter-array coupling capabilities of AD-FMM. 

 

 

Figure 8.6 Inter-array coupling vs. scan angle. 

 

8.4 Conclusion 

 

The developments presented through this chapter represent a collection of very 

robust analysis methods for the rigorous analysis of nearly any type of structure, from 

entirely arbitrary structures to large finite arrays, as well as any combination thereof.  Of 

course, these developments have stopped short of being able to analysis an entire navy 

ship at microwave frequencies, an interesting problem and a subject of considerable 

interest in industry.  However, the objective of this thesis is to push rigorous analysis 

methods for electromagnetic structures as far as possible, without resorting to the 

approximate methods that would be necessary to handle a problem the size of an entire 
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ship.  Indeed, the developments of this thesis have pushed the analysis capabilities of 

rigorous analysis methods to new limits.  However, a critical component of inter-system 

coupling remains to be dealt with.  The developments of past chapters model arbitrary 

volumetric structures as closed domains.  In the case of array elements, each element is 

treated as an independent closed structure.  When two closed volumetric structures are 

placed near to each other, such as in a finite array where adjacent array elements touch, 

the formulation developed thus far treats this condition as an electrical disconnect, as if 

an infinitesimal gap exists between the element structures.  The subject of the next 

chapter deals with how to bridge this gap, such that electrical currents can flow freely 

between element domains. 

Regarding implementation issues, the methods in this thesis have made 

considerable progress towards allowing large, complex structure analysis on conventional 

personal computers and smaller workstations.  However, it is worth commenting that the 

methods presented in this thesis can very easily be implemented on distributed memory 

networks with reasonably scalable results.  For the AD-FMM methods, the near-zone 

interaction matrices between array elements and even between multiple systems can be 

used to create simple matrix division schemes for distributed storage and processing.  

This is most advantageous, as the near-zone interactions represent the most expensive 

portion of the solution process.  Likewise, inter-system and intra-system far-zone 

coupling can be distributed using the same pre-existing sub-matrix divisions.  This 

approach is very effective and far simpler than an arbitrary scheme of decomposing the 

matrix interactions for distributed processing. 
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CHAPTER 9 
 

INTRA-CELL DOMAIN CONNECTIVITY 
 

 

The thesis ends with a chapter on domain connectivity.  This issue is addressed 

last, owing to the fact that large, interconnected array problems require concepts from all 

the preceding chapters to correctly and thoroughly address the inherent difficulties.  In 

previous chapters, the analyses have been limited to applications in which the domains of 

individual systems or array elements are closed and coupled via the free-space Green’s 

function only.  As a consequence of this choice in formulation, if the closed volumetric 

domains of any two systems (such as adjacent array elements) touch, the condition is 

modeled as though a bad electrical contact or gap exists, and no current is allowed to 

flow directly between domains.  In some situations, this modeling choice may be more 

correct than to assume current flows freely between the systems.  However, in situations 

that require direct current flow between element domains, such as for broadband arrays 

supporting low frequency modes across multiple elements of the array, it will be 

necessary to model the electrical contact between adjacent systems for correct results.  

For the gap condition, where the coupling between adjacent systems is carried out 

through the radiation mechanism of the free-space Green’s function, system interactions 

can be conveniently treated with the integration testing procedure given in previous 

chapters.  However, when the domains of closed volumetric structures are joined 
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electrically, it is necessary to enforce current continuity by defining a current that flows 

directly between adjacent domains.  To do this, one must introduce field or current 

constructs in the form of additional basis functions to handle the resulting junction 

condition.  While this additional complexity may seem trivial at first glance, in the 

context of array systems, where symmetry must be maintained, junction treatment is far 

from trivial.  Further, under many conditions it will be necessary to open the closed 

domain structures, a situation that must be correctly remedied for formulations relying on 

a closed structure (MFIE). 

For array-type problems, the required decomposition is quite cumbersome, with 

many components to consider, each of which deserves careful attention.  Before 

approaching the array problem, connectivity between arbitrary non-array-type systems 

will be examined.  Under certain conditions, such as when entire faces of adjacent 

domains overlap, the complexity of the systems may be decreased through a 

condensation process, resulting in fewer unknowns of lower complexity than prior to 

joining the systems.  Conversely, when only the edges of adjacent systems are collocated, 

it is necessary to increase the complexity of the overall system, introducing additional 

elements to bridge the gap between adjacent systems, where no elements existed 

previously.  For completeness, these conditions will be addressed separately.   

In previous chapters, an attempt was made to validate the intra-array coupling of 

the structure in Figure 7.3.  Using the disjoint domain approaches in those chapters, 

agreement with measurements was only relatively close.  Using the domain 

interconnectivity developments of this chapter to augment advanced array methods such 
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as AD-FMM, it should be possible to achieve better agreement with the intra-array 

measurements. 

 

9.1 Connecting System Domains 

 

 Consider the general case of two arbitrary, closed-domain systems with a portion 

of each domain overlapping, as suggested in Figure 9.1.  In the figure, the systems have 

been separated to show the features of the inner structure, but it is clear which faces of 

the separate domains overlap.  In this illustration, the systems or cells are drawn as cubic 

structures with a regular mesh grid.  Though the cells have been illustrated in this way, 

there is no requirement for cubic cells or regular grids, and certainly no guarantee of this 

condition for arbitrary structures.  The only condition for proper enforcement of 

boundary conditions is that the overlapping faces have a matching mesh where individual 

basis elements meet.  This condition is necessary to enforce current and field continuity 

between cells, using the same basis functions as the underlying formulation for 

constructing fields and currents.  If faces touch, or even just portions of faces, the parts 

that do touch must have matching meshes, or the decomposition will be invalid. 
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Figure 9.1. Two closed systems with overlapping domains. 

  

When modeled individually, the systems are modeled as closed systems, meaning 

that surface currents are defined over all external surfaces of the structure.  Therefore, 

these surface currents are defined both directly on and flowing over the faces that will be 

collocated when the systems touch.  Consider first the currents labeled b. in the above 

figure.  If these surface currents on system 1 are allowed to persist when the systems are 

directly overlapping, they will be radiating directly onto the opposing surface from 

system 2 at a distance of zero.  Hence, testing on the opposing surface will create a 

potential singularity condition.  Further, there will be currents on the opposing surface at 

exactly the same physical location, also radiating.  Additionally, the collocated surfaces 

of both systems must be used for testing of the combined system, and the paths to the 

collocated surfaces are identical.  This implies a possible condition of identical row 

entries in the system of equations, a condition leading to a singular matrix system.  In the 

end, it will be necessary to remove these surface currents, thereby opening the closed 
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domains.  The open domains can potentially cause problems with formulations requiring 

closed domains (MFIE), and must be treated accordingly.   

There are additional issues to consider.  First, when the systems are touching, 

there should be field continuity between the systems at coincident faces.  Based on the 

developments of previous chapters, an appropriate mechanism for this energy transfer has 

not been implemented, but can be through the FEM.  Further, though there are surface 

currents defined that flow from adjacent faces of the system to the collocated face, 

denoted by a. in Figure 9.1, there are no currents defined that flow from system to 

system, or adjacent face to adjacent face, as depicted with c.  Allowing both currents to 

persist, one flowing over the sharp corner at adjacent faces of system 1, one flowing 

between systems, would necessitate a current divider rule for proper enforcing of 

Kirchhoff’s current law.  Needless to say, it should be apparent that additional boundary 

conditions must be enforced for the case where separate systems overlap, as it is not 

sufficient to use the methods developed in previous chapters without modification for 

overlapping domains.  In the following sections, efficient solutions to these problems are 

addressed in detail.  

 

9.2 Surface Continuity 

 

 Before considering volumetric structures, it is instructive to look at the simpler 

case of thin-surface systems.  Take the simple example of two separate surface structures 

placed exactly next to each other such that their edges overlap, as depicted in Figure 9.2.  

In this case, both structures are perfect electric conductors (PEC) supporting only electric 
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currents.  This choice makes it possible to avoid the additional complexity of FEM 

volumetric field continuity issues and focus directly on the specific problem of currents 

flowing across the outer surfaces of joined systems.  This analysis uses the same surface 

currents developed in Chapter 2.  The current constructs for curvilinear, bi-quadratic 

patches are defined in (2.3.10), and depicted in Figure 2.4.  For open surface structures 

such as the two shown in Figure 9.2, the currents are constructed from basis elements that 

define the flow of current from surface element to surface element only, and hence there 

are no basis elements defined at the open edges, as shown in Figure 9.2.  That is, there is 

no basis function defined at open edge of the quad patch surface structures, since there is 

no outward flowing current at the truncated edge.  Thus, if the surface structures were 

allowed to touch, a current would not be able to flow across the gap, since no mode exists 

to do so.   

 

Figure 9.2. Depiction of overlapping surface structures. 

 



 

 196

 

Figure 9.3. Enabling current continuity through additional unknowns. 

 

To facilitate current flowing between the structures, it is necessary to define 

rooftops across the gap, as depicted in Figure 9.3.  To support this current, additional 

unknowns (new basis functions) have been defined along the outermost edge of system 1, 

where the gap between system 1 and system 2 exists.  These unknowns did not previously 

exist in the two-structure system, and hence constitute an additional analysis cost.  In this 

case, no condensation process occurs.  Though the unknowns have been associated with 

system 1 in this case, in reality, a portion of the testing and radiation associated with 

these unknowns requires integration on the adjacent quads of system 2 as well.  That is, 

although the unknown coefficients have been associated with system 1 in this case, these 

coefficients correspond to rooftops defined on both systems.  The unknowns along the 

outermost edge of system 1 define the surface current flowing from the outermost quad of 

system 1 to the adjacent and corresponding quad of system 2.  From a record keeping 

perspective, this choice of enforcing domain connectivity can be undesirable. 

Alternatively, it is possible to facilitate current flow between adjacent systems 

without disturbing the structure of the original systems.  This is done by creating a 

secondary bridge system that overlaps the original systems, as shown in Figure 9.4.  To 
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distinguish between primary and secondary systems, secondary systems have no physical 

structure of their own.  They are mathematical and not physical constructs.  While the 

secondary systems support unknowns, the coefficients are associated with basis functions 

(rooftops) on other physical systems.  For bridge systems, the source and testing locations 

are on separate systems, and hence the coefficients in the matrix of the auxiliary 

secondary system will be generated from testing and acting as source currents on these 

other systems.  In this process, care must be taken to observe the self-testing requirements 

of equations (2.2.10) and (2.2.11).  That is, where bridge systems overlap with primary 

systems, self-testing procedures must be enforced. 

 

 

Figure 9.4. Surface structure connectivity via bridge systems.  

 

The system of equations for this open-surface system would be of the form 

 
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

1 111 13 12

3 331 33 32

2 221 23 22

{ } { }
{ } { }
{ } { }

Z Z Z x b
Z Z Z x b
Z Z Z x b

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

. (9.2.1) 

 
This system consists of only electric field integral equations, as the PEC surfaces only 

support electric currents, and the system is open.  This system of equations can be 

enforced using the formulation of (2.2.10), where the magnetic currents have been set to 
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zero.  In general, the same concepts apply to situations where there are magnetic currents 

as well.   

This section serves as an introduction to surface current bridge systems for 

domain connectivity.  In a later section, this concept will be extended to the more 

complicated case of array analysis.  For arbitrary surface system analysis, the bridge 

system approach results in an increase in the number of systems proportional to the 

number of systems with collocated edges, and an increase in unknowns equal to the total 

number of collocated edges. 

 

9.3 Volumetric Continuity 

 

The task becomes more difficult when considering volumetric FEM regions as 

well.  Again consider the joining of two systems as depicted in Figure 9.1.  It is assumed, 

as should be the general case for a volumetric-type problem, that the solution is being 

generated for fields both inside and outside the systems.  The assumption is that surface 

currents have been defined over the entire outer surfaces of both systems, including on 

the surface regions that will touch once they are joined, as depicted in Figure 9.1.  As 

mentioned, allowing these currents to persist as the systems are joined is problematic, and 

hence the surface currents must be removed.  However, upon removing these currents, 

both systems will no longer be closed systems, and a decoupled consideration of the 

individual systems will not be valid.  That is, it will be necessary to solve the systems of 

equations simultaneously, as the coupling between the systems will be necessary in 

creating a complete and closed combined system.  This differs from previous chapters, 
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where the isolated domains of individual systems made it possible to use a decoupled 

system solution approach.  Here, the two systems under analysis have been opened to 

facilitate their joining, and are no longer valid systems when isolated. 

Consider two separate solutions to this domain connectivity problem.  As in the 

case for surface system continuity, the first approach does not increase the number of 

systems under consideration, and in this sense, does not increase the complexity of the 

combined problem.  The first solution approach is depicted in Figure 9.5.  In this figure, 

the joined systems have been separated to give an inside view as to how they are 

connected.  As previously stated, the surface currents defined on the quads in the 

overlapping region have been removed.  For system 2, the unknowns across the entire 

overlapping surface have been removed, including around the outermost edge of the 

overlapping region.  Necessarily, for system 2, this means that the surface currents still 

associated with the system on the remaining closed portion of its boundary do not flow 

all the way to the edge of the now-opened area.  Previously, an unknown coefficient 

existed at this outermost edge.  In the treatment of system 1, the unknowns along the 

common surfaces are not removed, but it is necessary to change the way in which they 

are used.  The unknowns around the outermost edge of the overlapping region of system 

1 are used to form a current bridge to the adjacent (when joined) quads of system 2.  

Necessarily, this implies that in the source and testing procedure for surface currents of 

system 2, references will be made to unknowns in system 1.  That is, the quads on the 

non-overlapping surface at the outermost edge of the overlapping region for system 2 will 

be testing and radiating using the unknown current coefficients associated with system 1.   
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Figure 9.5. Volumetric system connection without bridge system. 

 

In this connectivity model, the unknowns over the entire overlapping face of 

system 1 will be used to ‘complete’ the hexahedral FEM elements of system 2 in the 

overlapping region.  This allows for seamless enforcement of field continuity in the FEM 

across the joined face.   The method considered above is most likely the least complex 

solution to facilitate joining the domain of separate systems.  It does not result in an 

increase in the number of systems under analysis, and results in an overall reduction in 

unknowns.  However, this approach is not well suited for dealing with array-type 

structures, and instead a modified approach is recommended.   

In the second approach, the unknowns on the overlapping surfaces of both 

systems 1 and 2 are removed and associated with a secondary bridge system.  This bridge 

system, denoted as system 3 in Figure 9.6, is used to create a current bridge between 
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systems 1 and 2, as well as to create a path for enforcing field continuity in the FEM 

region.  The current bridge, denoted as a. in Figure 9.6, consists of basis elements 

associated with the edges surrounding the open regions of systems 1 and 2.  In this case, 

the edges corresponding to the surface current coefficients of the bridge system 

completely encircle the open regions of systems 1 and 2, enabling a current to flow 

between the systems at the point where the open perimeters of the systems meet.  Again, 

it is vital that the meshes align where the systems touch, or the decomposition will not 

work. 

In addition to providing field coefficients along the open perimeter where the 

systems meet, the bridge system also provides field coefficients within the overlapping 

face region.  These unknowns are used to ‘close’ or ‘complete’ the volumetric hexahedral 

elements on the open portions of both systems 1 and 2.  Both the field coefficients on the 

perimeter of the bridge system, as well as those within the perimeter, are used to enforce 

field continuity between systems via the FEM.  Similar to the case for surface integral 

equations, the basis elements of the bridge system use the volumetric elements of the 

primary systems 1 and 2 for testing procedures.  For the two-system case shown in Figure 

9.6, the system of equations will take the form 
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The details of this expansion are now explained.  The self-coupling sub-matrices 

of systems 1 and systems 2, in the upper left and lower right of the matrix system (9.3.1), 

are created using the same procedure that created (2.4.9), and are the same as the upper 

left and lower right sub-matrices of (4.2.2), except that the open regions of these systems 

have now been excluded from consideration.  Also, as in (4.2.2), systems 1 and 2 couple 

only via integral equations, represented by the sub-matrices in the lower left and upper 

right of (9.3.1).  The sub-matrix directly in the center of (9.3.1) represents the interactions 

within the bridge system itself.  Geometrically, these interactions actually happen 

between physical portions of systems 1 and 2, with the understanding that 

mathematically, the coupling coefficients are stored in a separate, non-physical bridge 

system 3.  The terms in this sub-matrix represent interactions associated with the field 

coefficients of the bridge system only.  That is, the surface integral terms [ ]33
P

′
 and 

[ ]33
Q

′
 represent the external coupling associated with edges along the domain 

connectivity perimeter.  The terms 33 33 33 33[ ] ,[ ] ,[ ] ,[ ]II IS SI SSA A A A′ ′ ′ ′  represent FEM interactions 

between adjacent edges on the system faces of the internal bridge region (given as b. in 

Figure 9.6), i.e. they are evaluated only at the limit of the FEM element faces they 

connect.  The 33[ ]B ′  sub-matrix handles the relation between 3
sE  and 3

sH  on the surface 

regions of systems 1 and 2 associated with the edges of system 3 at the connecting 

perimeter.   

The remaining sub-matrices of (9.3.1) handle the coupling between the bridge 

system and the primary systems 1 and 2.  Though these are cross-coupling matrices, they 

contain self-testing information as well.  That is, the unknown coefficients of the bridge 
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system correspond to the edges of surface quads belonging to systems 1 and 2.  When an 

edge from the bridge system is tested on a quad in system 1 or 2 connected to that edge, 

self-testing procedures must be carried out.  This accounts for the presence of the #3[ ]B ′  

and 3#[ ]B ′  terms in these cross-coupling sub-matrices.  Likewise, the [ ]P  and [ ]Q  

operators in these sub-matrices will have potentially strong terms. 

 

 

 

Figure 9.6. Volumetric domain connectivity via bridge system. 

 

Again, it seems like an additional complexity to create a third system, where only 

two were necessary previously.  As a third option, it would be possible to condense the 

systems into a single matrix of the form (2.4.9).  However, In the case of array systems, 

this would defeat the purpose of removing redundant interactions via the Toeplitz-based 

expansion.  In the next section, it will become apparent that the bridge system approach 

results in maximum reuse of system redundancies for array-type problems. 
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9.4 Surface Array Element Connectivity 

 

The domain connectivity approaches discussed thus far are now extended to the 

case of array-type problems, starting first with a simple surface-based analysis.  Consider 

a linear array of identical PEC surface elements as shown in Figure 9.7.  As required for 

ADM and AD-FMM, each element has exactly the same structure, and the same number 

of unknown field coefficients.  As discussed previously, there is not a mode for current to 

flow between the surface elements, as there is no basis function defined at the edge of the 

element.  Hence, one solution is to simply add unknowns to the leading edge of each 

element, such that current can flow between elements of the array, as shown in Figure 

9.8.  Additional basis functions have been added to each of the elements in the array, 

except for the last array element, which has no adjacent element. 

 

 

Figure 9.7.  Linear array of surface-based structures prior to connectivity. 

 

This is one correct solution to the problem.  However, if this approach is taken, 

the elements of the array will no longer be identical.  Hence, it is not possible to preserve 

the Toeplitz interaction property for all elements of the array.  This is not entirely an 

unacceptable approach.  In essence, this approach creates two new systems – an array 
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structure of one less element than the original system with Toeplitz properties preserved, 

plus an additional system consisting of a single element from the end of the original 

array.    

 

 

 

Figure 9.8. Linear surface array with domain connectivity. 

 

This is one solution to the array problem, and is not the preferred one.  The main 

problem with this approach is that there are now two unit cells of approximately the same 

cost as the single unit cell of the previous systems.  This increases the preconditioning 

cost two fold.  Moreover, this approach reduces the length of the array systems, creating 

less efficiency in matrix storage as well as solution procedures.  Further, it introduces 

cross-coupling systems that cannot be decomposed.  The effect of this decomposition 

approach on the matrix structure is illustrated in Figure 9.9, where as before, the 

redundant terms have been grayed out.  
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(a) before connectivity 

 

(b) after connectivity 

Figure 9.9. Cost analysis of domain connectivity approach. 

 

In order to avoid this cost, it is preferable to use the bridge system approach, 

depicted in Figure 9.10.  In this approach, the structure of the original array system is left 

intact, and bridge systems are introduced between the elements of the array.  When 

placed between identical array elements, the bridge systems will be identical as well, thus 

creating an array of bridge system elements.  The size of this array will be one element 

less than the original linear array.  With this domain connectivity model, the cost of 

analyzing the original array has not increased – the system remains unchanged.  To 

facility current flow between elements of the array, a second array system has been 

introduced at additional cost.  The matrix structure corresponding to this approach is 

shown in Figure 9.11.  The original linear array matrix system appears in the upper left 
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corner of the new matrix system, and a new system for the bridge array appears in the 

lower right corner.  The two systems are interacted through cross-coupling sub-matrices.  

The bridge system array has the same spacing and direction as the original system, and 

hence the cross-coupling systems can be decomposed via Toeplitz interactions as well.  It 

is clear that this approach is more efficient than the latter approach. 

 

 

Figure 9.10. Linear surface array connected with bridge elements. 

 

 

Figure 9.11. Cost representation of domain connectivity for bridge system 

approach. 

 

Both approaches to the surface-based array element problem increase the cost and 

complexity of the overall system.  It is not possible to reduce the cost of analyzing 
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surface-based systems, since unknowns are being added, not taken away.  The same two 

approaches can be taken to analyzing planar arrays of surface-based elements.  In the first 

approach to a planar array of surface elements, where now there are touching element 

edges in two dimensions, there will be four distinct systems of dimensions 

1 2( 1) ( 1)n n− × − , 1( 1) 1n − × , 21 ( 1)n× − , and 1 1× , as depicted in Figure 9.12. 

 

 

 

 

Figure 9.12. Planar surface array without current bridges. 

 

 Alternatively, the approach using bridge elements between the array elements 

does not disturb the structure of the original system, introducing bridge element arrays of 

one less element in each dimension, as depicted in Figure 9.13.  This results in three 

distinct systems with dimensions 1 2n n× , 1 2( 1)n n− × , and 1 2( 1)n n× − .  All three arrays 

share the same element spacing in each dimension, thereby allowing multi-dimensional 
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cross-system decompositions.  It can easily be seen that this approach is more efficient 

that the previous approach.  With the superior efficiency of the bridge array approach 

demonstrated, the other approach will now be abandoned.  The concept of bridge systems 

will now be used to analyze arrays of volumetric elements. 

 

 

Figure 9.13. Planar surface array with current bridge arrays for domain connectivity. 

  

9.5 Volumetric Array Element Connectivity 

 

 Now that surface-structure array systems has been discussed, it is time to grapple 

with the more difficult problem of volumetric array elements requiring continuity of FEM 

fields as well as surface currents.  There is a marked increase in complexity associated 

with each additional dimension of volumetric element arrays, and hence it is instructive 

to first consider the case of a linear array of unit cells, as depicted in Figure 9.14.  Again, 

the unit cells are drawn as cubic structures, with the understanding that the analysis 

presented here applies to any arbitrarily shaped array elements.          
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Figure 9.14. Linear array of volumetric cells with bridge elements. 

 

It is clear from the diagram that as the single four-element linear array undergoes 

the domain interconnectivity process, it is transformed into four distinct systems.  These 

systems are now described.  Between the elements of the original array, bridge systems 

have been introduced (system 2).  The form of these bridge systems is the same as those 

described in Figure 9.6.  Since the original array elements are all identical, the bridge 

systems between each of the array elements will be identical as well, and have the same 

element spacing as the original array.  The exact extent of the bridge system element can 

be determined by testing for overlapping surfaces between adjacent array elements in 

each dimension.   Further, the size of the bridge element array is one element smaller than 

the original array in the dimension of overlap.  In terms of unknown count, the cost of 

this array is exactly the same as the reduction in cost achieved through condensation of 

collocated element edges between the original array elements.  In other words, while the 

bridge element array has been introduced, two times the number of unknowns from the 

opposing faces of the adjoining array elements of the original system have been removed, 

thus reducing the overall unknown count.   
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Consider again the testing procedure that determines which portions of adjacent 

elements overlap in each dimension.  The corresponding surfaces of the lagging edge of 

the first array element and the leading edge of the last array element have been 

partitioned into separate systems 3 and 4 as shown in Figure 9.14.  By doing this, it is 

possible to preserve the majority of the original array at its original size, with the same 

elements, minus the portions of the elements that overlap with each other.  In other 

words, the complexity of the elements in the primary array are now reduced, as they do 

not have a leading or lagging surface corresponding to the overlapping region.  Unlike 

the bridge systems, systems 3 and 4 support surface currents around their perimeter and 

across their face as well.  In essence, these systems correspond to the surface field 

coefficients that have been stripped away from the elements they came from.  Because 

they are still associated with a volumetric FEM element, albeit in another system, it is 

important to realize that they maintain a well-defined surface normal. 

Using this model, the cost of the overall system has not increased.  Rather, the 

storage cost has been reduced, at the complexity tradeoff of additional systems that 

require simultaneous consideration with a multi-system analysis approach.  Where before 

there was only a single linear array, there are now four total systems.  For a bridge system 

decomposition of linear arrays, there will always be a resulting increase of three systems 

(to four total). 

The complexity increases significantly as the focus advances to planar arrays of 

volumetric elements.  The domain connectivity model for an example planar array of 

volumetric elements is shown in Figure 9.15.  The first step is to simply apply the same 

procedure used for the linear array to the planar array.  That is, for each dimension of the 
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array, a testing procedure is applied to determine if adjacent elements in that dimension 

overlap.  In each dimension that has overlapping surface area, three new systems will be 

created.  As before, there will be a bridge array between the elements of the array in each 

dimension where the overlap occurs, as well as new surface systems at the lagging edge 

of the first array element and the leading edge of the last array element in each 

dimension.  It is instructive to divide the domain connectivity procedure into two phases.  

Let this domain connectivity procedure be referred to as phase 1.  The phase 1 domain 

connectivity procedure results in a number of new systems equal to 3×  the number of 

overlapping dimensions.  For the two-dimensional array shown in Figure 9.15, the phase 

1 domain connectivity procedure results in 6 new systems (3 2× ).  The size of the bridge 

systems will be the same as the original array system, minus one element in the 

dimension that the overlap occurred.  The size of the end systems will be the same as the 

original array, with only a single element in the dimension of the overlapping regions. 

 

 

Figure 9.15.  Planar array of volumetric elements with bridge elements. 
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 The phase 1 domain connectivity procedure is not adequate to ensure proper 

system modeling for arrays of more than a single dimension.  To make the domain 

connectivity procedure general, it is necessary to undergo a second phase of testing for 

overlaps, this time on the additional systems created in the first phase of overlapping 

domain testing.  Again, this will create three additional systems in each dimension that an 

overlap is detected, for each of the array systems.  There will be a bridge array system 

between each of the adjacent elements, plus additional new systems at the lagging edge 

of the first element of the array, and the leading edge of the last element in the array.  For 

the array shown in Figure 9.15, this will ultimately result in a total of 16 systems (from 

one originally).  It is important to realize that this domain connectivity procedure results 

in a number of open systems.  Therefore, it is critically important to stress the 

simultaneous solution of systems that undergo the domain connectivity process.  It is not 

possible to solve the systems independently, and then link them in a decoupled, iterative 

process.  The systems must be solved simultaneously via the multi-system analysis 

approach of the previous chapter. 

Because the decomposition is performed on volumetric array elements, in the end 

there will be less unknowns total than if domain connectivity is not enforced.  Again, the 

size of these systems will be the same as the original array system, minus one element in 

the dimension that the overlap occurred.  This system of expansion is valid for any 

number of array dimensions, with the concept in mind that the expansion is only applied 

on dimensions that feature overlap between adjacent elements. 
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9.6 Results and Comparisons 

 

 This concludes the introduction to domain connectivity for finite array systems.  

The inclusion of this domain connectivity model should suffice to properly model the 

necessary modes across adjacent array elements.  For validation, the results of intra-

element domain connectivity are now observed in the intra-array coupling measurements.  

Figure 9.16 shows the new comparisons with the added current paths between adjacent 

elements.  For these results a CFIE parameter of 0.9 (90% EFIE, 10% MFIE) was used.  

It is observed that while the simulation results are reasonably close to the measurements, 

the agreement is not significantly better than the results obtained in Chapter 7.  Mainly, 

this discrepancy is due to a problem in using the MFIE for thin geometries.  

Unfortunately for the simulated geometry, it was not possible to use EFIE alone, as the 

system of equations would not converge in a reasonable amount of time, as explained 

below.  However, this example serves the purpose of demonstrating domain connectivity.  

 Improved results could likely be obtained by either developing a geometric model 

that works well with the MFIE, for example, by introducing air layers to offset the 

problem of thin geometries, or by researching improvements to the system of equations 

generated by the EFIE formulation.  The domain decomposition approach presented in 

this chapter results in a highly coupled system of equations.  This is because individual 

systems are physically linked by direct current flow between adjacent domains.  For 

improved solution convergence, it may be necessary to explore more effective 

preconditioning methods that pre-solve the strong system connections, rather than 

attempting an iterative solution over this strong coupling between systems. 
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Figure 9.16. Intra-array coupling with domain connectivity. 

 

9.7 Concluding Issues 

 

 This concludes the final chapter of this thesis.  The purpose of this thesis was to 

develop rigorous analysis methods for finite arrays and their supporting structures.  In 

summary, it has been demonstrated that the analysis of complex finite array systems can 

be realized with limited resources and a reasonable degree of accuracy.  The main 

contribution of this work is the development of an analysis method for finite arrays that 

results in a fixed and manageable amount of matrix storage for any sized array in the 

same class.  That is, 10 10×  element arrays and 1000 1000×  element arrays have the same 

(matrix) storage requirements for the same element and lattice spacing.  For rigorous 

analysis methods, this is a new development. 
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 The next level of enhancements to the developments presented here might include 

a decoupled solution approach for weakly coupled systems.  This would allow the 

analysis of much larger systems, where portions of the problem could be solved 

independently, using the pre-solved incident fields from the other systems as external 

excitation.  An example of this might be a classroom propagation model, in which the 

walls, floors, source excitation and scattering targets (chairs, desks, students, etc.) could 

all be interacted as separate systems with a decoupled, iterative solution approach.  This 

propagation model works well when the systems involved are not strongly coupled, but 

may fail to converge otherwise.  In general, the decoupled solution approach could be 

applied to any structures that are in the far-zone of each other with reasonable results.   

 This approach could be used for in part for analyzing large navy ships at 

microwave frequencies.  Using the hybrid, decoupled solution approach, it would be 

possible to interface with additional methods, such as high frequency codes.  For 

problems as large as an entire ship, distinct portions of the geometry could be analyzed 

with the most appropriate analysis tool.  The pre-solved ship sections can then be 

interacted with each other using a decoupled iterative approach until the desired level of 

convergence is reached.  

On another front, the advanced array methods presented in this chapter are only as 

accurate as the underlying formulation upon which they are based.  Therefore, one 

important future development would be to improve upon the underlying FE-BI 

formulation.  Specifically, the EFIE formulation is not well suited to iterative solution 

procedures.  This problem is magnified as the size of the system increases, placing 

potential limits on the maximum system size that can be analyzed with the array methods.  
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Additionally, the MFIE formulation, which has excellent convergence properties, does 

not provide accurate solutions for thin geometries, such as might commonly be found in 

structures made from dielectric substrates.  By improving these issues in the underlying 

formulation, the performance of the advanced array-based methods can be improved as 

well.   

Additionally, implementing higher order basis functions for the field 

representations could make it possible to analyze even larger structures.  Higher order 

field expansions would allow the use of fewer total basis elements, which translates into 

less unknowns and therefore lower necessary system resources.  Again, saving unknowns 

in the array element translates into compounded savings for large arrays.  This is 

particularly of issue when the potential to analyze arrays with millions of unknowns can 

be realized with these advanced array codes. 

This concludes the thesis. 
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APPENDIX A. 
 

ILLUSTRATION OF NON-SYMMETRIC TOEPLITZ PROPERTY 

 
In the case where a linear array is modeled with a single expansion function per 

array element, it is indeed true that [ ] [ ]mn nma a′ ′=  as illustrated in Figure A.1.   

 

Figure A.1. Illustration of equivalent coupling [ ] [ ]mn nma a′ ′=  for single expansion 

function. 

 

However, in the general case where multiple basis functions are used to model each array 

element, and the numbering scheme is not specified, there is no guarantee of reciprocal 

matrices.  To illustrate this, consider the example of two tapered slot antennas with a 

simple linear numbering scheme for the basis functions, as depicted in Figure A.2.  As 

noted earlier, the indices within the brackets refer to interaction between basis functions, 

whereas the indices outside the brackets refer to the element interactions.  From Figure 

A.2, it is clear that the coupling paths 15[ ]mna ′  and 15[ ]nma ′  are not the same.  

Consequently, it must be that [ ] [ ]mn nma a′ ′≠ .  This is an important result to recognize 

since it directly affects storage and the implementation of the FFT.  
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Figure A.2.  Illustration of property [ ] [ ]mn nma a′ ′≠ for general case. 

 

Moreover, in the case where CFIE is used in the formulation, the [ ]P  and [ ]Q  operators 

will not be symmetric. 
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APPENDIX B. 
 
USE OF THE BLOCK-DIAGONAL-LU PRECONDITIONER WITH 

ARRAY DECOMPOSITION 

 

 It is possible to save valuable cycles of the matrix-vector multiplication operation 

when using the block-diagonal LU preconditioner in combination with the array 

decomposition.  In the associated matrix system [ ]A , the blocks along the diagonal are all 

self-cells, which can be represented as [ ]M .  Since the block-diagonal preconditioner is 

equivalently the inversion of this block (functionally so), it can be represented as 1[ ]M − .   

Now divide the matrix system [ ]A  into three equivalent matrices [ ]L , [ ]U , and 

[ ]D , representing the lower, upper, and block-diagonal regions of [ ]A , respectively, such 

that [ ]A  = [ ] [ ] [ ]L U D+ + .  Thus, the operation 

 [ ]{ } { }A x b=  (B.1) 

is equivalent to 

 [ ]{ } [ ]{ } [ ]{ } ([ ] [ ] [ ]){ } { }L x D x U x L D U x b+ + = + + = . (B.2) 

The preconditioned matrix-vector operation is given as 

 1 1[ ] [ ]{ } [ ] { }M A x M b− −= , (B.3) 

or equivalently 

 1 1 1 1[ ] [ ]{ } [ ] [ ]{ } [ ] [ ]{ } [ ] { }M L x M D x M U x M b− − − −+ + = . (B.4) 

However, in (B.4) the operation  

 1[ ] [ ] [ ]M D I− = , (B.5) 

where [ ]D  = [ ]M  and 
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 1[ ] [ ] [ ]M M I− = . (B.6) 

Consequently, since [ ]{ } { }I x x= , it is possible to replace the matrix-vector operation 

(B.4) with the equivalent operation 

 1 1 1[ ] [ ]{ } { } [ ] [ ]{ } [ ] { }M L x x M U x M b− − −+ + = . (B.7) 

Since the diagonal block [ ]D  contains all the FEM operations of the matrix-vector 

product as well as all the self-cell coupling terms, it is possible to skip this step and save 

some potentially expensive operations during the iterative solution. 
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