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CHAPTER 1

INTRODUCTION

D[FFRACT ION theory originated over 100 years ago from the consideration of wave
scattering by edges [PomNcarg, 1892; SoMMERFELD, 1896], a topic which remains to
this day at the heart of this challenging discipline. This stems not only from interest in
the intrinsic scattering properties of edges but also, more pragmatically, from their role in
determining the scattering characteristics of complex bodies. Indeed, under the localiza-
tion principle, scattering from intricate geometries can be expressed in terms of coherent
contributions from distinct scattering centers, such as edges and corners, together with ap-
propriate specular components. Applications abound in a wide range of fields concerned
with electromagnetic, acoustic and elastic wave scattering. In electromagnetics these are
epitomized by radar cross section analysis and synthesis as well as the study of wave prop-
agation in the presence of man-made obstacles. For the latter, the problem of propagation
in urban environments leaps to mind, and this has been the subject of recent interest with
the spread of wireless technology. Whereas these applications are mainly concerned with
(exterior) edges having reentrant angles less than r, there are also cases where one is pre-
dominantly concerned with interior edges (or corners) — those whose reentrant angle is
greater than r — and a good example is provided by rectangular guiding structures such
as waveguides and aperture antennas with non-perfectly conducting or corrugated walls.
There is therefore a strong incentive for a thorough characterization of edge scattering and
the canonical geometry of choice is the wedge which includes the half-plane as a special
case. The wedge geometry provides much flexibility: a wide range of configurations are
possible by varying its opening angle as well as the boundary conditions characterizing
each of its faces. The boundary conditions may be, in the simplest cases, of the Dirichlet
or Neumann type or, in more complicated cases, mixed conditions approximating non-
penetrable surfaces or transition conditions for penetrable ones. Despite the disarmingly
simple nature of the geometry, the solution of Helmholtz’s equation in wedge-shaped re-



gions remains notoriously difficult, if at all possible, especially when mixed or penetrable
boundary conditions are used.

It was not until the later part of the the XIX™ century that the mathematical theory of
diffraction was put on a rigorous footing. The first publication on the subject is by the
French mathematician Poncarg [1892] who, using separation of variables, studied polar-
ization by diffraction of cylindrical waves impinging on half-planes and wedges. His work
dealt mainly with perfectly conducting surfaces though he did provide some discussion of
metallic (non-perfectly conducting) structures. It is however SoMmMeRFELD [1896], with his
rigorous solution for the perfectly conducting half-plane, that is today acknowledged as the
founding father of mathematical diffraction theory. In that celebrated paper Sommerfeld
solved the problem by introducing an angular spectral representation for the fields, an
approach which would some 50 years later form the basis of the powerful Sommerfeld-
Maliuzhinets technique. An English version of the solution is presented in his Lectures
on Theoretical Physics [SOMMERFELD, 1964] and a rigorous treatment of the angular spec-
trum representation within the framework of the Laplace transform is provided by Bubaev
[1995]. Sommerfeld’s paper catalyzed a number of research efforts. MacDonaLp [1902]
provided an extensive analysis of the perfectly conducting wedge six years later in which
he considered the two dimensional cases of scattering due to plane waves and line sources
as well as the three dimensional case of point source illumination. The case of arbitrary
plane wave incidence on a wedge was also examined by CarsLaw [1919] using an exten-
sion of Sommerfeld’s approach. See Jones [1964], Bowman et al. {1969] and Ruck [1970]
for more thorough surveys of works published in that period.

The brunt of the geometries examined in those early days had perfectly conducting sur-
faces corresponding to the cases of greatest mathematical simplicity since only Dirichlet
and Neumann boundary conditions are required. However, the growing interest in elec-
tromagnetic waves and their applications would spur a desire to model more accurately
actual geometries and attention would soon turn to problems having non-perfectly con-
ducting surfaces. There are unfortunately no exact solutions in such cases and it is only
with the advent of adequate approximate boundary conditions [see for reference Sentor
AND Vorakis, 1995] in the early 1940s that they would be dealt with — albeit approxi-
mately — rigorously and accurately. The two most widely-used boundary conditions ap-
proximating non-perfectly conducting surfaces are the impedance and resistive boundary
conditions. The former approximate interfaces (possibly corrugated or rough) with non-
penetrable (lossy) media and yield surprisingly good accuracy when properly employed
[Sentor anD Vorakis, 1995]. The operating principle behind impedance boundary condi-
tions is actually quite intuitive. If we consider an interface with a lossy medium, elec-



tromagnetic waves are increasingly confined to the interface with increasing loss; it is
therefore not surprising that, if the loss is sufficiently high, a properly defined bound-
ary condition will succeed in capturing the salient properties of the interface. The most
widely used impedance boundary condition is the first order standard impedance bound-
ary condition which, since it has historically been attributed to LeonTtovick [1948] — but
see [SENIOR AND Vouakis, 1995, pp. 10-11] for an interesting discussion of its origins —
it is also known as the Leontovich boundary condition. It was conceived while studying
radio wave propagation over lossy media and can be considered as a special (lowest or-
der) case of the generalized impedance boundary condition which arose from the work of
Ryrov [1940]. The resistive boundary condition is used to approximate thin lossy dielectric
sheets and its origins can be traced to the early part of the XX"™ century. The reader is re-
ferred again to [SeniOr aND VoLakis, 1995] for a thorough discussion. It is also referred to,
more accurately, as a resistive transition condition since it imposes a relationship on field
components on either side of thin penetrable sheets. Wedges characterized with one or two
resistive conditions present significant challenges as the fields must be solved in both the
interior and exterior of the structure.

The appearance of these boundary conditions would enable the modeling of the mate-
rial characteristics of real-life geometries with much more fidelity. Furthermore, the advent
of more sophisticated analysis techniques at roughly the same period in time would make it
possible to obtain solutions even when the faces of the wedge are characterized with mixed
boundary conditions, leading to the first major advances in electromagnetic diffraction the-
ory in this area since the early part of the XX" century. The problem of scattering from a
half-plane with common (isotropic) impedance faces illuminated at normal incidence was
solved by Sentor [1952] and he subsequently extended it to the case of oblique incidence
[Sentor, 1959a). Senior used the Wiener-Hopf function-theoretic technique — see for ref-
erence [NosLg, 1958] — which provides the means of finding solutions for a large number
of canonical problems but can be brought to bear only on rectangular geometries such as
half-planes and right-angled junctions. A technique suitable to more general wedge con-
figurations was proposed by MaLwzumers [1950, 1958a,b]. Maliuzhinets', a student of
Fock and Leontovich, used as a starting point the angular spectral representation proposed
over 50 years earlier by Sommerfeld and successfully reduced the problem to equivalent
functional difference equations for the spectra. This function-theoretic technique is now
referred to as the Sommerfeld-Maliuzhinets method and has been recently reviewed by
Oswpov anD Norris [1999] and Norris anp Ostpov [1999]. Following this approach, Mal-
iuzhinets obtained a solution to the problem of the wedge of arbitrary angle and differing

!See the short biography by Manara et al. [1998] for interesting notes and a list of publications.



face impedances [MaALIuzHINETS, 1958a]. It is also noted that SEnior [1959b) and WiLLiams
[1959], using the Wiener-Hopf technique, provided solutions for the wedge with common
face impedances under condition of non-oblique illumination. Maliuzhinets’s approach
and the (Maliuzhinets) functions he derived to solve the difference equations have been
extended in a number of investigations: a few examples are provided by the first in a series
of papers by TuzaiLix [1970] and the recent effort of Avbeev [1994].

The majority of the problems involving impedance wedges for which exact solutions
are available correspond to the case of normal incidence, that is, when the incident wave im-
pinges normally on the edge of the structure. It turns out that diffraction from impedance
structures under oblique (non-normal) incidence is much more difficult due to coupling
between the field components. The handful of geometries that have been solved, us-
ing mainly either the Wiener-Hopf or the Sommerfeld-Maliuzhinets technique, are the
planar impedance junction [Vaccaro, 1980; Senior, 1986; Rosas, 1988b], the impedance
half-plane [Bucct aND FRANCESCHETTI, 1976; Roias, 1988b], the right-angled wedge with
one perfect electrically conducting face [Vaccaro, 1981; Senior aND VoLakis, 1986; Ro-
ias, 1988a; Manara anD NEepa, 2000], the polarization independent anisotropic impedance
wedge [BErNARD, 1998], and the right-angled wedge with specific anisotropic impedance
faces examined by LyaLiNov aNDp Znu [1999]. The problem of the impedance half-plane
with distinct face impedances has also been recently reexamined by LUNEBERG AND SERBEST
[2000] using the Wiener-Hopf technique. Hurp aNp LUNEBERG [1985] considered the dif-
ficult problem of the anisotropic half-plane under skew illumination (see also SENIOR AND
Lecaurr [1998] for an approximate solution) but the results are complicated and not
amenable to a solution. The fundamental problem of the right-angled wedge with com-
mon isotropic impedance faces at skew incidence remains to this day unsolved, a testament
to the complicated nature of the analysis involved.

In the context of the Sommerfeld-Maliuzhinets approach, with which we concern our-
selves in this work, the fields tangential to the edge are first expressed in terms of integrals
of unknown angular spectra. These must be meromorphic and free of poles and zeros in
a prescribed strip of analyticity (save for an optics pole required to reproduce the specu-
lar components of the incident and reflected fields) and fulfill a specific growth condition
dictated by the edge condition. The latter is an important consideration to fully specify
the solution of the problem and until recently [Ipemen, 2000], particularly in the case of
impedance and resistive surfaces, it had not yet received its due share of scrutiny.> The im-
position of the boundary conditions together with a theorem put forward by MaLuzuiNeTs
[1958b] then leads to a pair of first order difference equations for the spectra having pe-

*See also the texts by Jones {1964] and Van Braper [1995] for further discussion and references.



riods related to the open angle of the wedge. In the special case of normal incidence the
technique leads to uncoupled difference equations whose coefficients are rational trigono-
metric functions and solutions subject to the required constraints are readily obtained in
terms of Maliuzhinets functions [MaLuzHINETS, 19584a]. At skew (non-normal) incidence,
the equation pair is generally coupled and solutions, listed in the previous paragraph, are
obtainable only for a few particular wedge/angle combinations for which uncoupled first
order equations for linear combinations of the spectra can be found. In general the equa-
tion pair cannot be decoupled and we are faced with, equivalently, solving a second order
functional difference equation whose coefficients are rational functions of trigonometric
polynomials. A pair of associated first order difference equations can be obtained from
the second order one but these, as we shall see in Chapter 2, typically involve branched
functions and Maliuzhinets technique does not apply.

The solution of functional second order difference equations is not a well understood
process, and only a few specialized attempts have been published. An example is the sec-
ond order difference equation obtained by DeMETRESCU et al. [1998] in their consideration
of the penetrable composite right-angled wedge using the Sommerfeld-Maliuzhinets tech-
nique. Unfortunately, the solution given is flawed since it fails to fulfill the requirement
for meromorphism in the entire plane. Another example is the work of Gaupin [1978]
who considers the second order difference equation that arises in the study of the quan-
tum mechanical problem of two electrons interacting with a localized magnetic moment.
The particular equation studied is of a high order of complexity and the ensuing analysis
prohibitively complicated. The objective of the present work is to develop a technique for
solving functional second order difference equations of the class that arises in the applica-
tion of the Sommerfeld-Maliuzhinets technique.

To first shed light on the origin of the difference equations, Chapter 2 provides an
overview of the formulation required for the anisotropic impedance wedge of arbitrary
open angle illuminated by an obliquely incident plane wave. Using the Sommerfeld-
Maliuzhinets technique, the second order difference equation and its associated first order
equation pair are derived. The results are then specialized to the cases of the half-plane
with common anisotropic impedance faces as well as to the cases of both the exterior and
interior right-angled wedges with common isotropic impedance faces. The fina!l section
presents the difference equations that arise in the study of a certain penetrable compos-
ite wedge [DeMETREscU et al., 1998]. These are simpler in nature than the ones obtained
for the impedances structures and are used to develop the solution technique. We bear in
mind however that the ultimate objective is to solve the previously derived equations for
the impedance half-plane and the right-angled wedges.



The foundations of the approach are presented in Chapter 3. Exploiting the inherent
periodicity involved, the second order difference equation can be factored as a product of
two first order difference operators as demonstrated in Chapter 2. General solutions of the
second order equation can therefore be expressed as linear combinations of solutions to the
first order equations together with arbitrary periodic coefficients. A problem that imme-
diately arises is that the first order equations generally have branched coefficients, a con-
sequence of the factorization process. Fortunately, there exist independent meromorphic
linear combinations of branched solutions and these are discussed in detail at the beginning
of the chapter. With this information in hand, the focus is on the difficult problem of solv-
ing branched first order difference equations. Proceeding by construction, it is shown how
inhomogeneous solutions to the first order equations can be immediately found by taking
their logarithmic derivative and exploiting the periodicity. The resulting solutions are how-
ever ill-defined: they are expressed in terms of a path integral in the complex angular plane
and the strip of analyticity which is of concern is populated by both poles and branch point
singularities. Appropriate homogeneous solutions, which take the form of multiplicative
factors, are introduced in order to eliminate the undesired singularities while preserving
the desired analytical properties of the solution. This is not a trivial task as very specific
parity and order requirements must be fulfilled. The poles are cancelled by introducing
homogeneous solutions such that the residues of their poles exactly cancel those of the
inhomogeneous solution. The branch point singularities now remain and it is shown that
the requirement for a continuous meromorphic spectral function is equivalent to requiring
that all branch point to branch point integrals vanish within the strip. In the language of
elliptic integral theory, this is the same as requiring that all modules of periodicity of the
integrals involved vanish. This is accomplished once again by adding appropriate homo-
geneous solutions, this time such that the sum of the periodicity modules appearing is null.
This process may involve, depending on the degree of complexity, trigonometric elliptic or
hyper-elliptic forms and the resulting system of equations is solved using a bilinear rela-
tion of Riemann. The latter is derived by applying the residue theorem on a two-sheeted
Riemann surface. Meromorphic solutions of the second order difference equation follow
immediately from the results given at the beginning of the chapter. The approach is con-
ceptually simple but a number of subtleties are encountered and discussed. The bilinear
relations of Riemann, the key to carrying out the solution fully analytically, are discussed
at the end of the chapter.

In Chapter 4, the aforementioned equation associated with the penetrable composite
wedge is solved using the proposed technique. The solution is carried out step by step
and the appropriate bilinear relation of Riemann corresponding to this specific case is also



derived. A pair of meromorphic solutions are constructed and it is shown that they both
recover known limiting functions. The chapter closes with the discussion of a pair of
mathematical generalizations of the equation just solved. In terms of complexity, they
correspond to intermediates between the penetrable wedge and the anisotropic half-plane.
The second of these generalized equations distinguishes itself by requiring a much more
complicated analysis for the elimination of branch point contributions and is examined in
detail in Chapter 5. The construction of meromorphic solutions fulfilling the analyticity
requirements is also more difficult due to a shortfall in the number of degrees of freedom.
Both analytical and partially numerical solutions are provided.

Experience from Chapters 4 and 5 suggests that the problem of the anisotropic half-
plane, which in the context of this approach has a large number of singularities in the strip
of analyticity, will be difficult using the direct method followed in those two chapters. A
variant of the technique which circumvents the problems due to a large number of singu-
larities is developed in Chapter 6. This consists in the insertion of an intermediate step
where the first order equations are manipulated to obtain another pair of first order equa-
tions where the period is now reduced by half. This halves the strip of analyticity and
greatly simplifies the elimination of singularities. However, it is achieved at the price of
compromising the order and this, together with a large number of poles, significantly com-
plicates the construction of solutions to the second order equation. Since these difficulties
cannot be overcome analytically at this time, various approaches requiring the numerical
identification of zeros are presented.

The problem of the anisotropic half-plane is examined in Chapter 7 and, despite the
advances made in the preceding chapters, it remains a formidable problem; an approximate
solution is first presented. Two analytical procedures for constructing exact solutions are
next examined. The first is based on the direct approach taken in Chapters 4 and 5. The
preliminary analysis follows through quite easily but an impasse is reached at the stage
where contributions from branch points must be eliminated. The cause of this is a shortage
of degrees of freedom and indications are that some form of beneficial symmetry is being
overlooked. The second approach relies on the method of period reduction discussed in
Chapter 6 and the elimination of branch point contributions can be now carried through.
However, the number of poles introduced in the strip of analyticity is such that the con-
struction of meromorphic solutions, though possible in principle, is not now feasible in
practice.

Chapter 8 closes this thesis by summarizing the results obtained and making a number
of recommendations for future work.



CHAPTER 2

GENESIs OF THE DIFFERENCE EQUATIONS

HE Sommerfeld-Maliuzhinets technique is applied to the unsolved problem of the
Tanisotropic impedance wedge illuminated by an obliquely incident plane wave and
the difference equations, the second order one as well as the subordinate first order pair,
are derived. This work focuses on finding solutions to a few particular subcases of the
problem for which the difference equations are of the same nature. Indeed, it will be shown
below that the equations for the anisotropic impedance half-plane as well as the right-
angled isotropic impedance wedge, a canonical problem whose solution is one of the most
sought after, are of the same form. These equations are however of a relatively high degree
of complexity and expressions of lower complexity are first considered in order to develop
a suitable solution technique as well as to build insight. It turns out that a generalization
of the difference equation that arises in the analysis of a penetrable composite right-angled
wedge fulfills this requirement.

2.1 The anisotropic impedance wedge

The formulation provided is, for the time being, general and applies to a wedge with
an angular opening of 2 whose faces are characterized by impedance (mixed) boundary
conditions as shown on Figure 2.1. Such boundary conditions are used to approximate
interfaces with non-penetrable (lossy) media and provide good accuracy under those con-
ditions, making it possible to analyze a two media problem as a one medium problem with
approximate boundary conditions. In terms of the cylindrical polar coordinates (p, ¢, z)
with the z axis coincident with the edge of the wedge, the upper and lower faces are ¢ = ®
and ¢ = -® respectively (Figure 2.1(b)), and subject to the first order impedance boundary
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(a) Three dimensional view of the impedance wedge.

(b) Two dimensional cross-section of the wedge.

Figure 2.1: A three-dimensional view (a) and two dimensional cross section (b) of the
anisotropic impedance wedge of opening angle 2& with upper and lower faces respectively
characterized by the impedance tensors #* and 7. The edge of the structure coincides with
the  axis and is illuminated by a plane wave propagating along the unit vector k;.



condition
AXE=Zp -axHxH), ¢ = z®, 2.1

where /i = ¢ is the outward unit vector normal and 7* are the tensor impedances normal-
ized to the free space impedance Z. The surface impedances are

b4

~

= PP + 22 (22)

~3n

and since the tensors are diagonal in the p, z coordinates, the special impedance com-
binations recently considered by LvaLmov anp Znu [1999] are excluded. For isotropic
impedances

m=n.=n0,  m,=no=n; (2.3)
for anisotropic impedances the same on both faces
My =M, =M  N=0; =0 2.4)
and for polarization independent impedances
mn: =1, mni=1. (2.5)

If the lower face, for example, is a perfect electric conductor (pec)

n,=0, n;=0, (2.6)

M, =00, N, =00, 2.7
The wedge is illuminated by a plane electromagnetic wave whose z components are
Ei=ee™r  ZH = peithr (2.8)
with (see Figure 2.1(a))

k; = —% cos ¢y sinf — ysingg sinB + Zcos 2.9)

10



where —® < ¢y < ® is the direction of incidence and 3 is the angle measuring the skewness
of the incident wave. A time factor ¢’ has been suppressed. Owing to the symmetry of the
structure, the scattered (and therefore the total) field must have the same z dependence as
the incident field. Taking advantage of this and using Maxwell’s equations to express the
field in terms of E. and H., the p components become

| 0 14
E, = ~—{cosf—E.+-—(ZH.);, (2.10a
? jksin-ﬁ{ ﬁép p6¢( )} )
| 0 10
ZH, = ——— {cosS—(ZH. -——E:}, 2.10b
g jksin‘ﬂ{ o)~ pas (2.100)
enabling us to write the boundary conditions (2.1) as
7] d jk . 5
-—FE.-cosff—(ZH.) £+ —sin"BE. =0, (2.11a)
p Bﬁp m;
lﬁ-(ZH)+cosﬁiE + jkn* sin’ BZH. = 0 (2.11b)
pdp " dp T T '

on ¢ = +®. Because the surface impedances are anisotropic, it is not possible to express
the boundary conditions in terms E, and H,, and this rules out the simplifying procedure
used, for example, by SENIOR AND VoLakis [1995].

Following MaLiuzuiNets [1958a] the z components of the total fields are written as

e—jk:cosﬂ o
E.p.$,2) = . f ghtesinBeose g (0 + ¢)da, (2.12a)
2mj y
e-jk:wsﬂ o
ZH.(p.$,2) = , f ghesinBeosa o (o + ¢)da, (2.12b)
2nj y

where ¥ is the Sommerfeld double loop contour shown in Figure 2.2 and s, ;(a) are un-
known angular spectra. It is required that s, () be free of branch points in the entire @
plane, free of poles in the strip [Re a| < ® apart from an optics pole at @ = ¢y necessary to
reproduce the incident field (and since this can be inserted in the final stages of the analy-
sis it will be ignored), and of an order as |Im | — oo consistent with the edge condition.
More precisely, this stipulates that if |E., H.| < Mp~"*%¢’ where M, £ and b are positive
and bounded, then s (@) ~ O{expl(1 - €)|Im af]} as {Im a| — oo [MaLWZHINETS, 1958D;
Ostrov anp Norris, 1999]. The quantity € depends on the angle of the wedge as well as
the type of boundary conditions used. When (2.12) are inserted into (2.11), d/dp can be

11
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replaced by jk sin 8 cos @ and, using integration by parts, d/d¢ by jkp sinBsina. If we write

se(a) m; (a) m(a)
s(a) = , M*(a) = 2.13)
su(@) mye(a@) my,(a)
where
mi(a) =sina —l;- sinB, (2.14a)
/4
my,(a) = sina + n; sinf, (2.14b)
my(a@) = —cosacosp, (2.14¢)
mhe(a) = -meh(a)v (2 l4d)
the boundary conditions then demand
ME(a@)s(a £ D) = M*(-a)s(—a £ ). (2.15)

It is clear from the symmetry of the contour y = ¥, Uy, in Figure 2.2 that (2.15) is sufficient
to satisfy (2.11), and that it is also necessary was shown by MaLuzHiNETs [1958b].
If B = m/2, corresponding to incidence in a plane perpendicular to the edge, m.,(a) = 0

12



and the matrices M*(a) diagonalize. It is then a simple matter to show that

S(@+20) m(-a-®) m,(a~-)
sda -20) mi(a+®) m_ (-a+®d)

(2.16)

with a similar equation for s,(@). This is a first order difference equation of period 40
whose right-hand side is a rational function of sin @ and cos a, and the solution satisfying
the required conditions is easily expressed in terms of Maliuzhinets functions
[MaLiuzuivets, 1958a]. While solutions are readily obtained for the cases of normal in-
cidence, the case of oblique incidence is more complicated. When 8 # n/2 the matrices
are no longer diagonal, but if some linear combinations of s.(a) and s,(a) can be found
to make them so, the problem can still be solved. There are a few particular wedge an-
gles/impedance combinations for which this is possible, e.g. one face pec or pmc, the
other impedance isotropic, and ® = nn/4 (n = 1,2,3 or 4), and most of these special cases
have been explored [Vaccaro, 1981; Senior, 1986] with the most recent contributions being
provided by Bernaro [1998] and Manara anp Nepa [2000]. In general, however, there is
no linear combination that diagonalizes M*(a), and we are then faced with second order
difference equations.

2.1.1 The second order difference equations

To see how these equations arise, suppose we diagonalize the matrix for the upper face
by writing

t.(a)
t(a) = [ = M'(a)s(a + D) 2.17)
()
so that
s(@ + @) = (M* (@) t(e) (2.18)
and (2.15) then implies
t(a) = t(-a), ta+20) = t(-a -29). (2.19)

Note that the requirement on s, 4(a) to be free of poles in the strip [Re a| < ® together with
(2.17) and (2.19) implies a similar one on . 4(a) in the strip |Re a] < 2®. Furthermore,
in the limits where first order equations are obtained the solutions are reciprocals of one
another and must therefore also be free of zeros in the same strip. It is assumed that t(a)

13



must fulfill the same requirement. We now proceed to obtain another matrix equations
involving ¢(a) using the boundary condition for the lower face in (2.15)

M (@)s(a — D) = M (—a)s(—a — D). (2.20)
In terms of ¢(a), this becomes
M (@) {M (@-20))" @ -20) = M(-e) M (- - 20))" @ +20).  (2.21)

This can be rewritten more compactly as

N(a)t(a - 29) = N(-a)t(a + 2P) 2.22)
with
_ _ -1 ne(a) ng(a)
N(@) = M (@) {M (@-20)] = : (2.23)
ne(a@) np(a)
where
|
= ——im M -2 -
Nee() M-(@ = 20) (m_(@Im} (@ - 20) + mey(@Imen(a - 20)}, (2.24a)
1 _ e
ne(@) = o Ma@ima(a - 20) - ma(@Im; (a - 20)} (2.24b)
| . -
np(a) = mlmeh(a’)mlm(a’ = 20) - my(@)men(a - 2‘1’)}, (2.24¢)
1 - +
n(a) = ma_—m{mhh(a)mn(a =20) + m(a@)m(a - 2(D)}. (2.24d)

The boundary condition at the lower face then gives
Nee(@)t(@ = 20) + np(a)ty(a — 20) = n(-a).(a + 2®) + ny(—a)y(a + 2P), (2.25a)
npe(@)te(a — 20) + nyy(a)ty(a - 20) = np(-alt(a + 20) + ny(~a)t(a + 29), (2.25b)
on making use of (2.19). By eliminating t,(a + 2®) we obtain

th(a - 20) = X (o)t.(a + 20) - Y (a).(a - 20) (2.26)
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where

_ Nee(=a@)npy(—@) — nep(—a)n,(-a)

X.(a) = . 2.27
(@) Nep(@)npu(—a) — npp(@)np(—a) 227)
n(@n(—a) — np(a)n,(—a)
Y.(e) = , 2.28
(a) neh(a)nhh(—a) - nhh(a)"eh("a) ( )
Hence
ta +29) = X.(a + 40)t.(a + 6) - Y.(a + 4D)t.(a + 20) , (2.29)

and when (2.26) and (2.29) are substituted into (say) the first of the equations (2.25) the
result is

t.(a + 6®d) - a.(a).(a+2®) + b.(a)t.(a-20)=0 (2.30)
with
_ Y(a+40)-Y.(-a)
a/a) = X@+d0) 2.31)
__ Xl )
ba) = X eTid)" (2.32)

Equation (2.30) is a second order difference equation of period 4® for #.(a). The anal-
ogous equations for #;(a@) can be deduced by making the duality transformation n..(@) &
nu(@), nen(@) & —ny(@), and is

t(a + 60) — a;(a)ti(a + 20) + b,,(a)t;,(ar - 2@) =0 (233)

where

Y;,(a +4¢) - Y;,(—a)

= 2.
aa) X, (a + 40) ’ (2.34)
_ X
by(a) = Xi(a 1 40)’ (2.35)
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with
Ne(—a@)np(—a) — n(—a)n,(—a)
Nee(@)e(—@) — Mp(@INe(—a) '

= nhe(a)nee(_a) - neh(a)nhe(—a)
nee(a)nhe(—a) - "he(a)"ee("a) )

Xi(a) = (2.36)

Yi(a) (2.37)

Equations (2.33) has the same form as (2.30), and in both cases the coefficients are rational
functions of sina and cos@. No methods to directly solve such second order difference
equations are currently known. We proceed by obtaining a pair of related first order equa-
tions which are more amenable to a solution.

2.1.2 The first order difference equations

The key to the methods presented here for reducing the second order difference equation
to a pair of associated first order ones lies in the periodicity of the functional coefficients.
If the coefficients have the same period as the difference equation (examples are the half-
plane for which ® = x and the junction of two half-planes for which ® = x/2), it is then

a simple matter to reduce the equation to a pair of first order difference equations. Writing
(2.30) as

(@ + 60) - p(at(a + 20) - qa)|t.(a + 20) - p(a)t.(a - 20)} =0 (2.38)

with
pla) + q(a) = a.(a), (2.39)
pla)q(a) = b.(a), (2.39b)
shows
1 _ el 1 40
)+ @)  vb(a) (240

where vb,(a)r(e@) = p(a), and beth r(@) and its reciprocal are thus admissible solutions.
Alternatively, one could proceed by rewriting (2.30) as

Li(a)=0 (2.41)
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where £ = Dgg — a.(@)Dso + b.(a) and Dyq is the 4® difference operator. Since both a.(a)
and b.(a) are 40 periodic, the difference operator can be factored and written as

L =Dso — a.(@)Dsg + b (@) = [D4o + P(G)I{Dw + q(a)]

(2.42)
= Dso - {p(@) + q(a)|Dio + pla)g(@)

which recovers the equations for p(a) and g(a) given above. This approach is equivalent to
the preceding one save that it arguably puts more emphasis on the equivalence between the
second order difference equation and the pair of associated first order difference equations.
It is expedient to proceed by postulating solutions of the form

_ n{a) —n(e)
@ @@ @43)
and doing so yields
\/ a@ _ [ade) \/ avbl@)
2+b. 2 Vb, (@) -2 VB,
) = (@) () _ Yal) (a) (2.44)

a,(a) +1+ ae(a) -1 4 Vb,(d) w1+
2vb.(a) 2vb.(a) a.(a) -2 vb.(a)
The beauty of the above is that r(a) goes explicitly to its reciprocal, the other solution of

(2.40), by changing the branch of the square root. The associated first order difference
equations, one for each branch of the square root, are then

t(a +29) ‘/(—t Aa)+1 -1

= 2.45
1.(a - 20) Y i@ T+ 1 ¢4

where
Ha) = 4vb(@) (2.46)

 aa)-2vb(@)

However, the right-hand side of (2.45) is not, in general, a rational function of sina and
cos @, and the occurrence of branched functions is a major complication. Indeed, in such
instances Maliuzhinets’s technique does not apply and a more general approach, which
constitutes the core of this work, must be sought.

If the period of the coefficients is an integer multiple of the period 4® of the equation,
the method proposed in [DeMETREscuU et al., 1998] is to increase the period of the equation
to at least equal the period of the coefficients. Consider, for example, a #/2 or 37/2 wedge
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for which ® = /4 or 3n/4. Writing
t(a) = t,(a +40) + d\(a)(a) + di(a)t.(a - 4D), (2.47)

substituting into (2.30), and then choosing d (@) and d»(e) to eliminate the terms involving
t,(a + 6®) and £, (e - 2®), we obtain

d(a) =a.a+2D), d-(a) = b.(a - 20). (2.48)

Use has been made above of the fact that, for the values of ® being considered, both a.(a)
and b.(a) are 8® periodic. The resulting equation for £/(a) is

t.(a + 100) — al(a).(a + 20) + b (a).(a - 6®) =0 (2.49)
whose period is 8®, and the coefficients are

a.(a) = a(a + 4d)a.(a) - b.(a + 4®) - b.(a),

(2.50)
b.(a) = b(a +4d)b.(a),

whose period is 4@, a consequence of the 8® periodicity of a.(e) and b.(a). Since this is a
submultiple of the period of the equation, the previous method can now be used to reduce
(2.49) to a pair of first order equations, and in terms of the solution

t(a) = t(a +4D) + a,(a + 20).(a) + b.(a - 20)(a - 4D). (2.51)

2.2 The anisotropic half-plane

We specialize the result of the previous section to the case of the isolated anisotropic
half-plane where ® = n. In the general case where the upper and lower faces have different
impedances, the coeflicients of the second order difference equation have period 2 and the
second order difference equation has period 47, (2.30) can be reduced to a pair of first order
equations using the technique described in Section 3, but no solutions of these equations
have not yet been obtained. Even if one of the faces is a pec or pmc, the problem remains
intractable.! If the impedances are different on the two faces but isotropic, so that Mp==1",
M, = 1, the second order difference equation satisfied by both t.(a) and #,(e) now factors
by inspection into first order equations and their solutions are easily obtained in terms of

'The recent work of Manara anp Nepa [2000] may however provide clues on how to diagonalize the
matrix in (2.15).
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$=-n "= NP + n:22 z

Figure 2.3: The anisotropic haif-plane with ® = r.

Maliuzhinets functions [MaLiuzHINETS, 1958a].
If the impedances are anisotropic but the same on both faces, see Figure 2.3, then
N, =M, =MNp,N; =10 =n;and m_(xa) = -m; (Fa), m; (+a) = -m],(Fa), giving

ml, (@) + m},(-a)m},(~)

a,a) = ay(a) =

2

meh

(@) + m} (a)m; (a)

{m;(—a)m;h(a) - m;(a)m,'.'h(—a)}-

2 2

(m2 (@) + m (@ Im} (@))m2 (@) + mi(~am}, (~a)}

be(@) = by(@) = {mf,,(a) +mi(~a)m;,(~a) }2

m (a) + m (a)m},(a)

(2.52)
From (2.45), the corresponding first order equations satisfied by both .(a) and #,() are

Ha +2m) _ m(@) +mi(-a)m)(-a) £ Vz@ + 1 - |
Ha - 21) m (@) + mi(a)n), (@) +Vz@) +1+1

(2.53)

with

(@) + mi@mi @) (@) + miy(-aymy(-a) 254)

(5 inesios}

Aa) =
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When the expressions (2.14) for my,.(@), m},(+a) and m}, (+a) are inserted, we obtain

(a) = n(a)h(a) (2.55)
where
t{a +2n) _ (sina —siné)(sina - siné,) (2.56)
t(a@—-2m)  (sina +sinf,)(sina + sin6,) '
and
he+2n) _ + \/(sinz @ - sin® 61) (sin2 @ - sin® 62) - ysina 25
@=-2m) \/(sinz a - sin® 61) (sin2 @ - sin® 62) +ysina
with
. 1 1 1V (n ) ,
sin@; » = — .+ — F , — — +4(——l cos- 33, (2.58)
' " 2sing l" o ‘j(" np) n: }
, 1 T m: }
sind; s = — — £ COS —-13, (2.59)
= g 2B
and
1 |
=(p.-—]—. 2.60
4 (IL 'lp) sing ( )

The required solution of (2.56) is

n@ =vrfa+ 20 )uefe-2+8)ue(o+ I -0)ufa-Z46) 6

where () is the Maliuzhinets half-plane function [MaLuzuNers, 1958a]. The nature of
(2.57) is complicated by the presence of the square root and both approximate and exact
solutions are discussed in Chapter 7. Note that the square root has no less than sixteen
branch points in the 47 wide strip of analyticity, as illustrated in Figure 2.4.
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Figure 2.4: The 4x strip of analyticity with the branch points and associated cuts for the
square root appearing in (2.57).

2.3 The isotropic right-angled wedge

The cases where ® = /4 (see Figure 2.5(a)) and ® = 37/4 (see Figure 2.5(b)) corre-
sponding to right-angled wedges having open angles /2 (the interior right-angled wedge)
and 3r/2 (the exterior right-angled wedge) are now examined. Because of the complicated

nature of the resulting expressions, attention is confined to isotropic impedances for which

n, =n: =n"and n; = n; = n". In the equations for the coefficients that immediately
follow, the upper (lower) sign applies to ® = n/4 (® = 37/4). Making the appropriate
substitution for @ and simplifying, the coefficients of the second order difference equation
(2.30) for t.(a) are

1
ala)= + 2cosasinﬂ{(l e M cosasinﬂ)(l + Fcosasinﬁ)(l - sinasinﬁ)

PSNPO N
. (l - n—l_sinasinﬁ)(l -sin“asin"B ¥ Fcosasnnﬂ)}

. {(l + 17" sinasinf

)

1 . . 2 ) ind
(1 - ”—_ sinasmﬂ) [n"(l -sin”asin"g) - ’;—+sm'ﬂ

21
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+— sin® a sin® B cos’ B
”+

(2.62a)



(b)

Figure 2.5: The isotropic right-angled (a) interior wedge with ® = n/4 and (b) exterior
wedge with ® = 3x/4.
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and

2 P [ .
(! Fn* cosasinﬂ)(l F %cosasinﬂ)(l —-sin“asin“g + —+cosasmﬂ)
be(a’) = - 1 1

. 1 . . . 2 | . )
1 +q* cosasmﬁ)(l + Fcosasmﬂ)(l —sin*asin’B ¥ Fcosasmﬁ)

(2.62b)

The analogous results for a;(a) and b,() can be obtained by making the transformation
nt -

When 8 = n/2 (incidence in a plane perpendicular to the edge), the associated first
order difference equation is

t.(a + 20) _

nere 9
t.(a - 20) (2.63)

and 1,(a) is simply a 4@ periodic function, as is #,(@). Alternatively, if the lower face of the
wedge is perfectly conducting (n~ = 0), then

t.(a +20) _

t(a-20) -1, (2.64)

showing that t.() is an 8® periodic function. For both wedge angles, the solutions of the
diffraction problems are available [SENIOR, 1986; SENIOR AND VoLakis, 1986].

Since the coefficients (2.62) have period 2x, whereas the difference equation (2.30) has
period 7 (or 3m), it is convenient to double the period of the equation so that its period
becomes an integer multiple of the period of the coefficients. The resulting equation is
(2.51) and its coefficients are as given in (2.50). These are the same for both wedge angles,
and by the method described in Section 2.1.2, the second order difference equation can be
reduced to the same two first order equations for both #(a) and 1, (a).

If sind; = 1/(n*sinB) and siné; = n*/sinp, and if f(a) = #(a/2), the first order
difference equation can be written as

i@’ +8d) =*yya)-ysina
o' - 8®) . fy(a') +ysine’

(2.65)
where @’ = 2a and

wa') = (cos @ +cos 26:)(cos @’ —cos 26, )

. (cos @’ +cos 24, )(cos @' -cos 20, ) +¥’sin‘a’ (2.66)
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with

cosf
sin’g

y = 4j 2.67)

In the particular case when the impedances are the same on both faces of the wedge (y* =
" =nimplying §; =4, = 4., 6; =46, = 6;), we have

y@') = (sin’ o’ - sin’ &) (sin’ &’ - sin? &) (2.68)
where

sin’ 8, + sin® 6, = sin® 26, + sin® 26;, — ¥,

) ] ) ) (269)
sin &, sin“ d, = sin” 26, sin~ 26, ,
and the first order difference equations (2.65) are then
= + ,J(sin*a’ - sin® 6, ) (sin* @’ - sin* &) — ysine’
(@’ +8d) ‘/( )( ) 2.70)

fo' - 80) \/(sinz @ ~ sinzél) (sin2 a - sin® 62) +ysine’

For a /2 wedge these are identical to the equations (2.57) for an isotropic impedance half-
plane, and for a 37/2 wedge the equations differ only in having period 12x rather than 4x.
It is thus recognized that obtaining solutions to the class of first order difference equations
given in (2.70) will unlock both the problems of the interior isotropic impedance wedge as
well as the anisotropic impedance half-plane. It would also provide insight into the problem
of the exterior isotropic wedge though the latter, whose difference equations are of period
12, is expected to be significantly more challenging.

2.4 The penetrable composite right-angled wedge

The first order difference equations obtained in the previous sections for the anisotropic
half-plane and the right-angled wedge have a relatively high degree of complexity as will
become apparent later in this work. It is advantageous to consider an equation of lower
complexity to simplify the development of a technique to solve second order difference
equations. The penetrable composite right-angled wedge examined by DeMETRESCU er al.
[1998] and illustrated in Figure 2.6 leads to a considerably simpler equation. The structure
consists of abutted semi-infinite perfectly conducting and resistive half-planes illuminated
at normal incidence. The added complication here arises from the fact that we are dealing
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Figure 2.6: The penetrable composite right-angled wedge with ® = 3r/4. The upper face
is a resistive sheet with resistivity R, and the lower one is a perfectly conducting half-plane.

with a penetrable structure, leading to a different class of problems than the previously
discussed impedance wedge. However, it yields the somewhat simpler difference equation®
os’a - }sin’f

——t(a) +ta-21)=0 2.71H)
cosla —sin~ 6

Ha+2r)-2

which has period 2x, where sin = Z/2R,, R, is the surface resistivity of the resistive sheet
and Z, is the free-space impedance. The related first order difference equations are

20~ 3cin2f—-Llcind
,((H_,r)_j:‘/cos a-—3sin g lsmO

(2.72)

fa - n) i:‘/coszar— 3sin* 8+ Lsind

A more general second order difference equation which has the above as a special case is

cos & — cos? 4

t(a+37r)—2{l -2—
cos-a — cos-6

} Hao+m)+tla-n)=0 (2.73)

which has associated first order equations

Ha+7) _ u(e) — u(d)
Ha-n) g(a) = u(a) + u(6)’ &1
Ha+r) 1 u(@)+u(@) (2.74b)

Ha-m) gl@) u(e)-u@)

*For convenience and without loss of generality, a negative sign is associated with the functional coeffi-
cient as opposed to the positive one in [DemeTrescu et al., 1998].
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Figure 2.7: The 2x strip of analyticity with the branch points and associated cuts for the
square root (2,75).

with
u(a) = Vcos®a — cos?é. (2.75)

The associated cuts in the 27 wide strip of analyticity are illustrated in Figure 2.7 and,
relative to the case of the anisotropic half-plane shown in Figure 2.4, it is seen to have a
much simpler nature with only four branch points in the strip of analyticity. The parameters
6 and ¢ are allowed to vary independently in what follows. We note however that equation
(2.71) is recovered from (2.73) by letting

2

cos’ 6 = = sin’é, cos> 6 = sin” @, (2.76)

L

and that, within the context of the problem of the penetrable wedge, the parameters 6 and &
are not independent.

2.5 Summary

An abridged derivation — the reader is referred to [SENIOR AND Legautr, 2001] for
more details — of the difference equations for an anisotropic impedance wedge of open
angle 2 under oblique plane wave illumination was provided. The second order func-
tional difference equation, itself obtained from a pair of coupled meromorphic first order
difference equations, was recast as a pair of uncoupled, but branched, first order difference
equations. The expressions were specialized to the cases of the anisotropic half-plane with
common face impedances as well as the isotropic impedance exterior and interior right-
angled wedges, also with common face impedances. Interestingly, the equations obtained
all share the same form, the only difference being in the period of the equations for the
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exterior right-angled wedge. Their solution is discussed Chapter 7. Lastly, a generalized
equation (solved in Chapter 4) based on the one obtained for a penetrable composite right-
angled wedge at normal incidence was presented; its inherently simpler nature makes it
ideal to develop a solution technique. The proposed approach, together with a number of
important notions, is presented in the chapter that follows.
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CHAPTER3

FuUNDAMENTAL NOTIONS

NUMBER of important fundamental notions which constitute the core of the pro-
Aposed method are now developed. It was shown in the previous chapter that the
second order difference equation can be reduced to a pair of associated first order differ-
ence equations at the cost of introducing branch points. Since the solution to the second
order equation must be expressed in terms of the branched solutions of the first order equa-
tion, meromorphic combinations of branched functions are first examined in detail. The
construction of the branched solutions, a process fraught with subtleties, is next discussed.
The initial step is the application of a logarithmic derivative to the first order equation and,
to obtain a well-defined solution, a procedure for the successive elimination of contribu-
tions from singularities is presented. The completion of this task requires bilinear relations
of Riemann which are also discussed. The relevant elements are then gathered to provide
an overview of the proposed method. The chapter closes with a brief discussion of elliptic
integrals of the first kind and two useful mappings are presented.

3.1 Meromorphic solutions

The solutions of the second order difference equation (2.30) are required to be mero-
morphic in the complex @ plane as well as free of poles and zeros in the 4® wide strip
which we denote by Sip = {|Re a| < 20). The solution must also satisfy a certain order
condition when |Im @] — oo as governed by the edge condition. In the majority of the cases
examined in this work the desired function will be O(1) as [Im @| — co. We obtained a pair
of related first order difference equations (2.45) and they must now be used to construct
solutions to the parent second order equation. This procedure is, at first glance at least,
far from obvious since the solutions to the first order equations, a general representation of
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which is

w(a + 20, +u) _ _ u(@) - f(e)
wla - 20, +u) gl +u) = u@) + f(a)’ Gl
wia +20,-u) ol —t) = u(@) + f(a) (3.1b)

w(a - 20, —u) " ue) - fla)’

where u(a) denotes a square root term, are necessarily branched. These are representative
of the equations that arise for the cases of interest, see for example the homologous equa-
tions for the anisotropic half-plane (2.57), those for the isotropic right-angled wedge (2.70)
or those for the composite right-angled wedge (2.74). A quick note on notation is in order.
Throughout this work u(e) is used to denote square root terms, f(a) denotes solutions to
the second order difference equations and solutions to first order difference equations are
identified by w(a, u). Note also that the inclusion of u(a) — or just u to lighten the notation
— as an argument indicates a branched function. Before resuming our discussion, we also
note that, of course, w(e, ) is also a solution to the second order difference equation but
the converse is not true for t(a). The two equations in (3.1) only differ in the branch of
u(e). Hence, if w(a, u) is a solution of (3.1a), then w(a, —u) is a solution of (3.1b), and
this follows from the reciprocal symmetry of the right-hand sides of (3.1a) and (3.1b) with
respect to the branch of u(a). Both solutions to the first order difference equation pair
are therefore embodied in w(a, u) and it is sufficient to restrict out attention to (3.1a). In
terms of the solutions of the first order difference equations, solutions to the second order
equation (2.30) are the linear combinations

Ha) = Ci(a)w(a, u) + Cr(a)w(a, —u) 3.2)

where C| 12(a) are 4 periodic functions. We recall however that meromorphic solutions
t(a) are sought, a requirement which such combinations generally fail to fulfill. Before
attempting to solve for w(a, ), it is imperative to find out whether or not combinations of
the form (3.2) can be used to obtain branch-free solutions t(a).

3.1.1 The meromorphic constructs

Fortunately, it is indeed possible to linearly combine branched expressions such that
the result is branch-free. The answer lies in constructing solutions which are symmetric
with respect to the choice of the branch of u(e), a long-known procedure mentioned by
SomMERFELD [1964] as well as AppeLL [1976]. The two simplest such expressions that are
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linearly independent are

1z(a) = w(a, u(a)) + w(a, —u(a)), (3.3a)
(@) = w(a, u(a)) - wa, -u(a))’ (3.3b)
u(a)

and both are specialized versions of the solution (3.2). Heuristically, they are seen to be
invariant if we let u(a@) — —u(a) and therefore certainly seem to provide a basis for branch-
free solutions. The property is verified more rigorously by examining, using Taylor expan-
sions, the behavior of the combinations in the neighborhood of branch points of u(a). As
made obvious in Section 3.2.1, it is appropriate to consider expressions of the form
pé)
w(a, u) = ex (34)
P w©“

where p(a) is a rational meromorphic function free of singularities in the neighborhood of
branch points of u(a). In the neighborhood of a branch point' &, we therefore have

Pa) | Va<e Y aua -6y (3.5)

u(a) nx-1

where the a, are constants, and, integrating term by term,

p(&) n_
f i Vo - ;;An(a 8" = Va - 6P(a) (3.6)

where P(e) is a polynomial and A, are constants. Therefore, in the neighborhood of a
branch-point 6,

w(a, tu) = exp f i”(f;)dg Z(:tl)"(a - 8" PY(a). (3.7

Upon substitution into (3.3a) the fractional powers mutually cancel and

ts(@) = 2 Z(a -8)"Pa), (3.8)

n20

!The letter 6 is used to denote a branch point of u(a) throughout this work.
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an expression which is independent of the branch of u(e). Since 1/u(a) = Q(a)/ Ya -6
for @ = § with Q(a) a polynomial, a similar procedure for (3.3b) gives

[A((Y

(2n+1)/2 p2n+l _ _an 2n+t
\/5__ ;( - 8t (g) = 20(e) é(a SP@™.  (39)
Both (3.3a) and (3.3b) are therefore meromorphic in the neighborhood of the branch points
of u(a); we conclude that it is indeed possible to construct such expressions from linear
combinations of branched expressions which, in this instance, are the solutions to the first
order equations. Their examination is postponed for a short while, it is first verified that the
branch-free forms (3.3) are meromorphic in the entire complex a plane.

3.1.2 Analytic continuation

It is worthwhile to examine at this juncture the continuation of t(e) outside the strip of
analyticity via the first order difference equations for w(a, «). This will explicitly show that
the solution #(e) is free of branch points outside the strip of analyticity S;o and has both
poles and zeros there, a characteristic shared with the Maliuzhinets functions. Suppose
that Re @’ € [2d,4®] such that o’ lies in a strip adjacent to the strip of analyticity. Then
a = a' - 4®d so that Re @ € [-2d, 2d], and from the first order difference equation (3.1a)

w(a', u) = wla + 40, u) = ga + 20, uyw(a, u) = g(a, u)'wia, ), (3.10)

where it is assumed, consistent with the cases we are concerned with in this work, that
gla +2®,u) = gla,u) or g(a + 20, u) = 1/g(a, u). The branch-free expression rz(a’) is
then

ts(@’) = wla', u) + wa', —u)

= g(a, w)*'wie, u) + g(e, u)*' w(a, —u)

wa)” + fay 2u(@)f(@) @3.11)
= waF = f@r {w(ar u) + w(a, —u)} @) - f@y [w(a, u) - wia, _u)}
_ e ) + f(a) 2u(a)* f(a)
= —u(a)z _ f(a)l- (@) F ——_—u(a)z — f(a)3 tala),
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a meromorphic linear combination of tz(e) and t5(@) which are themselves meromorphic.
Similarly, assuming® u(a’) = u(a + 49) = u(a), then

|
tha") = m{w(a', u) - w(a', —u)l
_u(@)? + f(a) wia,u) - wa, ~u) 2f(a) _
~ u(@)? - flay u(a) ¥ W - f@y [wie.) + wia,-w} (3.12)
u(@)® + f(a)® 2f(a)

= ——————= @) F

u@y - f(@) (e

u(@) - fley
and a meromorphic linear combination of meromorphic functions is again recovered.
Hence, the continuation of both of the branch-free forms tz(a) and 15() outside the strip of
analyticity can be expressed as meromorphic linear combinations of the branch-free func-
tions evaluated within the strip of analyticity. The expressions are thus branch-free but may
now have both poles and zeros. In fact, by iterating this procedure, the function #,(a) and
ts(a@) can be continued to any arbitrary point in the plane, and it can be appreciated from
(3.11) and (3.12) that the order of the poles will increase as we move further away from
the strip of analyticity. The solution therefore has an infinite number of denumerable poles
in the a plane and, consequently, if it is O(1) as |Ima] — oo say, it must also have an
infinite number of denumerable zeros. More generally, this also applies if the function is
O {exp(] — g)lIm al} (with ¢ positive real). This property is shared with the Maliuzhinets
functions, see for example [MALIUZHINETS, 19584].

Provided we can construct branched solutions w(a, +u) which are well-defined, then the
expressions (3.3) will allow us to construct solutions to the second order difference equa-
tion that are meromorphic in the entire complex o plane. Of course, this addresses only the
singularities associated with branch points, any poles of w(a, ) must be eliminated subse-
quently if pole-free (and zero-free) solutions #(e) are sought in some strip of the complex
@ plane. The impetus is now to find solutions to the first order difference equations.

3.2 Solution to first order equations

The second order equation was reduced to a pair of branched first order equations and
it was shown in the previous section that their solutions could be linearly combined to
construct meromorphic solutions to the parent second order equation. Unfortunately, the
resulting first order difference equations generally involve branched expressions and the

*The other possibility of interest u(a + 4®) = —u(a) is also acceptable. It results in an overall change of
sign.
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methodology put forward by MavLwzuiNers [19584a] does not apply. In fact, it turns out
that the cases which can be solved by Maliuzhinets’s approach are special cases of the
more general branched first order equations obtained. The intricacies of obtaining well-
defined branched solutions of these first order equations are now examined. The approach
followed, while conceptually simple, has its share of subtleties. We proceed by applying
a logarithmic derivative to the first order difference equation which results in a solution
expressed in terms of a path integral. However, the resulting integrand has both poles and
branch points meaning that the path integral is initially ill-defined. In order to mitigate this,
appropriate 4® periodic expressions offsetting the singularities of the integrand are added.

3.2.1 The logarithmic derivative

Throughout much of this work, solutions are sought to first order difference equations
of the form

w(a +20,u)

_ _ u(a) - f(a)
w(a - 20, u)

s = @+ f@)

(3.13)

where u(a) is the square root of a trigonometric polynomial such as the ones found in the
equations of the anisotropic half-plane (2.57), the isotropic right-angled wedge (2.70), or
the composite right-angled wedge(2.74a). Consistent with the cases of interest, the function
f() is a trigonometric polynomial, possibly a constant, which is such that f(e)/u(a) — 0
as [Im a| — oo. The initial step in solving for w(a, ) is to apply a logarithmic derivative to
the first order equation (3.13). Doing so results in

d d d
% Inw(a + 20, u) - 9 Inw(a - 20, u) = I In g(a, u) (3.14)

and, consistent with the form assumed for g(a, «) in (3.13) as well as that of u(a) mentioned
above, if we write du(a)/da = x(a)/u(a) where x(a) is a trigonometric polynomial, then

d l _d u@)-fl@) 1 xa)f(a)- fa@u@)®  ha)
—Ing(a, u) =

da da In )+ f(@)  u@) u@) - fa) " u(a) (3:15)

where h() is a meromorphic function. It can also be shown that, with the assumptions
made above, h(a)/u(a) — O (exponentially) as [Ima] — co. For the cases considered
herein, it is sufficient to restrict ourselves to cases where h(a +2®)/u(a+2®) = +h(a)/u(a)
or h(a + 20)/u(a + 2®) = —h(a)/u(a). This periodicity is exploited by writing

h(a)

S—- Inw(e, u) = vy(a,u) = Ca— (3.16)
da u(a)
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where C is some constant to be determined. Substituting in the left-hand side of (3.14),

_ h(a +2®) N h(a - 20)
vo(a + 20) — vo(a - 20) = Cla + 2<D)——u(a +20) Cla + 2¢)—_u(a 20
=+C(a + 2(1))M FCla + 2(1:0)’M 3.1
u(a) u(a)
= j:C4d)h—(a—)
u(a)

and (3.14) is satisfied if C = £1/4®. A tentative solution to the first order equation (3.13)
is then?

w(a, u) = exp fu vo(€, u)dé (3.18)
with

a h(a) hia +20) _ h(a - 2d) _ h(@)

vola, u) = i4¢ u(a)' u(a + 20) - u(a - 2®) - iu(a)'

(3.19)

Consistent with equation (3.13), it is seen that vg(a, u) = —vy(a, —u) and hence w(a, u) =
I/w(a, —u), in concordance with g(a, ) = 1/g(a, —u). Furthermore, since h(a)/u(a) van-
ishes exponentially fast as {Im @] — oo, it follows that vy(a, «) also vanishes in that limit.
The form proposed in (3.18) is however ill-defined owing to the presence of the polar and
the cyclic periods* due to, respectively, the poles of h(e) and the branch points of 1/u(a).
[n order to obtain a single-valued integral expression, we must consider instead

w(a. u) = exp fa {vo(g-', u) + vao (€, u)]dg, (3.20)

ay

where the added term vyo(a, u) represents a sum of 4@ periodic terms — also referred to
as unit periodics — having the same symmetries as vy(a, «) and specifically selected to
remove the offending periods.

It is appropriate to discuss more precisely at this juncture what is meant by 4 periodic
functions as, not surprisingly, not all 49 periodics are acceptable. For example, it can be
shown with little effort that arbitrary constants will fail to provide proper “homogeneous
solutions”. To clarify this, consider the case where v, () is temporarily assumed to be
meromorphic and has poles with integer residues. The 4® periodic functions added must

3The integral is taken on a Riemann sheet dissected with branch cuts. As shown later, the branched
function u(a) is added to the limits to denote integrals taken on the Riemann surface.

*We borrow here the terminology used by Seringer [1981] when characterizing differentials of the third
kind.
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a-2d + joo — a+20 + joo

a-20 @ a+20

-20 0 20

Figure 3.1: The strip of analyticity Sip = {@ : |Re a| < 2®} with the original path of
integration from a - 2 to a + 2® as well as the resulting path after deformation out to jeo.

be such that, if
wao(a, u) = exp f vin(§)dE (3.21)

then

wipla +29,u)

= 22
wao(a — 20, u) . (3.22)

so that its addition to the integrand of w(a, u) in (3.20) does not jeopardize the equality in
(3.13). It is insightful to examine (3.22) when {Im a] — co. By direct substitution,

+20
exp f Vao(§)dE +20
wip(a +20,u) a0 = exp f vio(£)dE (3.23)

( - 2¢9 u) - -2
Hod exp f vio(€)dE

an

and closure of the contour at infinity, as shown in Figure 3.1, yields
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+20
exp f 10(§)dE = exp(27] )" Res)

-20
-20+joo +20+joo +20
- exp ( + + ) vao(€)de
a-20 a=-2®+jo a+2D+joo
+20+joo
= exp vio(£)dE (3.24)
a-20+joo

where the contributions from the vertical paths along @ + 2 vanish by virtue of the period-
icity of the integrand, and the contributions from any pole vanish due to the assumption of
integer residues. This highlights, besides the needed periodicity, specific requirements on
the behavior of vyp(e) as [Im a] — oo which, in this instance, must be such that the above
expression equals unity in order for (3.22) to hold. The two simplest cases where this holds
are (i) when vyp(a) » 0 as IIm a| - oo and (ii) when vio(@) — Cy, as |Im a| — oo, where
Ca is a specific constant. Indeed, the above expression then requires

+20+joo
exp f . j Vio(£)dE = exp (40C.) (3.25)
@-2D+joo
and since we must have 40C,, = 27jZ, then’ C,, = jnZ/2®. An example of such a function
is vip(@) = (7Z/2®) tan na/49. In the majority of the cases examined in this work, it will
be sufficient to restrict our attention to the first case given above, i.e., vo(a) = 0 as
[Im @] — oo. The above also implies that if the right-hand side of (3.22) was some arbitrary
constant C, then equality would only hold for specific 4¢ periodic integrands that do not
vanish as |Im @] — o and it would then be required that exp(4®C.) = C. There will be
instances in Chapters 6 and 7 where C = ~1; appropriately chosen unit periodics that do
not vanish as |Im a| — oo will be introduced. This analysis also applies when the integrand
is branched provided the cyclic periods have all been eliminated.
The above technique of path closure at infinity also makes it possible to verify explicitly

that w(a, u) as given in (3.20) is indeed a solution of the difference equation (3. 13). From
(3.24),

w(a + 20, u) _ .
wla - 20, 1) eXp (2”" Z Res)
+20-joo +20+joo +2Q
' eXP( + + ){ Vo(€, u) + vag(&, u)}d§ (3.26)
a-20 a-20+joo a+20+joo

and the restriction to meromorphic functions has now been lifted since both vy(a, u) and
Vio(a, u) are functions of u(a). Without loss of generality, the restriction to integer residues

SThroughout, Z denotes the set of integers, C the set of complex numbers, and R the set of real numbers,
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is maintained; the reason for this is discussed in Section 3.2.3. We also recall that v4o(a, ),
now assumed to vanish as [Im @] — oo, is chosen such that the sum vy(a, u) + vio(a, u) is
free of cyclic periods in the strip and this implies that the Cauchy-Goursat theorem and, by
extension, the residue theorem apply. In other words, we need only concern ourselves with
contributions from eventual poles with integer residues. The contribution from the portion
of the path in (3.26) that lies entirely at infinity vanishes as both members of the integrand
vanish in that limit, the remaining portion of the path integral becomes

=20 +2Q+joo
( f’ + f ){vo(_{-', u) + vy (£, u)]df
a-20+jco a+20

, f' Vol + 20, 1) = vo(€ - 20, )}deé
a+jo

d
= ’ —Ing(&,
a+joo d‘f ng(§ u)df

= Ing(a, u)

(3.27)

where use has been made of (3.14), (3.16) and the fact that g(a, «) goes to unity as |Im o} —
oo, This allows for the explicit recovery of g(a, «) by direct substitution of w(a, u) as given
in (3.20) into the first order difference equation (3.1). There is however one problem with
the above to be addressed: the logarithmic derivative of a functional quantity multiplied by
an arbitrary constant is independent of that constant.

This ambiguity can be resolved by examining the solution and the first order equation
in the neighborhood of +joo. Indeed, suppose we had instead of (3.1) the equation

w(a + 2P, u) _ (@) - fla@)

w(a - 20, u) B u(@) + f(a) (3.28)

for some arbitrary constant C. It is disquieting to realize that the logarithmic derivative of
the right-hand side is independent of the constant C, casting a veil of suspicion on the entire
procedure given above. The development shown in (3.27) is unsatisfactory in this respect
and a variation of this procedure is now considered where, instead of closing the contour of
integration out to joo, the behavior of the solution is directly examined in the neighborhood
of joo. Letting @ — a + joo in the first order equation (3.13) results in, recalling that
fla)/u(a) - Oas [Ima| — o,

w(a +2® +joo,u)  u(e + joo) - fla+joo) _
w(a - 20 +joo,u)  u(a + joo) + fa +joo)

(3.29)
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Figure 3.2: The strip of analyticity S2, = {a : [Real < 2x} with the branch cuts of
u(a) indicated by the thick solid lines. The thinner line indicates a path starting from an
arbitrary point ag, going to the branch point & and then connecting to points @. located on
either side of a branch cut.

implying

+2P+jco
exp f’ [vo(€.u) + vio(é, w)de = 1. (3.30)

=2P+jo

Since vg(e, ) — 0 as |Im a| — oo the above reduces to

+20+4joo
exp f vap(€, u)dé = | 3.31)
a-20+jc0
from which it is concluded that vy(a, u) corresponds to the case where C = | in (3.28). Any
other value of C would have to be accommodated with the appropriate choice of vyg(a, u).
Demonstration (3.27) is on its own ambiguous to a multiplicative constant C but, since the
analysis just carried out shows that this is unity, the proposed vq(a, ), once its periods are
eliminated, does indeed satisfy the desired first order equation.

3.2.2 The lower limit of integration

An important point which has yet to be addressed is the nature of the lower limit aq in
(3.20). It is clear that as far as the solution w(a, «) given in (3.20) is concerned, an arbitrary
lower limit will result in a scaling of the solution. This may not seem of consequence
on its own but it does have serious ramifications for the branch-free forms (3.3). To see
this, consider the points @, and a_ which are adjacent and on opposite sides of a branch
cut as shown in Figure 3.2. For the sake of illustration, the branch point configuration for
u(a) = VcosZa — cos? 4 is used and this has branch points at +6 and +(x — §). With an
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arbitrary ag, we have from (3.3),

ty(ay) =exp( f + f ’)v(a, u)dar+exp( f + f .)v(a,—u)da, (3.32)
an ') @y [}

te(al) =exp(f+f~)v(a,u)da+exp(f+fa-)v(a, -u)de, (3.33)
[ ) é @ ')

where v(a, 1) = vo(a, u) + vip(a, u). In order for the branch-free function tg(a) to be con-
tinuous, we require fs(a,) = tg(a-). This can be verified by rewriting, say, the expression
for ty(a-) in terms of @, using

f We,u)da = - f e, wda = j: Ve, -u)da (3.34)
since v(a, u) = —v(a, —u). We therefore have
ty(a.) = exp f+j:-)v(a,u)da+exp(f+f_)v(a,—u)da
= exp f - j: *)v(a.u)da+exp( f - f: ')v(a,—u)da
= exp|- f + j: ')v(a,-u)dmexp(— f N j: ')v(a,u)da (3.35)

and equality between (3.32) and (3.35) requires

exp f v(a, u)da = exp - f v(a, u)da (3.36)

which, since it must hold for all values of &, implies @ = 6. Assuming that ¢, is a branch

point distinct from 4, a similar analysis now shows

exp f " v(a, u)da = exp - f | v(a, u)da, 3.37)
Om bm

where 6,, and &, are distinct branch points, and the equality is generally satisfied if

f v(a, u)da = jrZ. (3.38)
Om
In fact, the branch point to branch point integrals must all identically vanish. Such an

assertion is unfounded within the scope of the analysis just presented and will be made
clear in the upcoming section which deals with the elimination of the singularities. It is
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shown there that in order to avoid poles that arise in the limits where 6 — 7/2 or 0, the
branch point to branch point integrals must all vanish. It can therefore be concluded that
we require

f " v, uda =0, (3.39)
Om

where d,, and &, are any two branch points in the strip of analyticity. This also eliminates
any ambiguity with respect to the choice of the lower limit. Indeed, in this light, (3.39)
implies that the lower limit @y must simply be a branch point — any branch point — in
the strip of analyticity. Apart from its simple nature, this requirement also has computa-
tional benefits since the numerical evaluation of integrals can be made less computationally
demanding by choosing the branch point that lies closest to the upper limit @, a welcome
advantage when carrying out integrations on a dissected plane.

3.2.3 Elimination of singularities

As mentioned above, the 4® periodic function v, are required in the integrand of
w(a, u) in (3.20) to render the path integral well-defined despite the presence of poles,
leading to polar contributions, as well as branch points, leading to cyclic contributions,
in vo(a, u). The presence of poles will generally make a path integral such as the one
in (3.20) multi-valued. A pole of residue Res will give rise to a polar period equal to
2rjRes and, depending on the orientation of the integration path and its winding number
around the pole, the contribution to the integral will be 27jZRes. In the case of (3.20),
polar periods arise at the zeros of u(a)® - f2(a) — see (3.15). Fortunately, the quantities
involves are all trigonometric polynomials and the poles will therefore arise in a periodic
fashion, simplifying their elimination. This serves two purposes as it not only eliminates
their associated polar periods but goes towards fulfilling the requirement for a solution
that is pole-free in the strip of analyticity. They can be eliminated by introducing the 4®
periodic

1 %0+ Lnst PnCOS (’2%) + B, sin (’2(_;)
u(a) uXa) - fa) ’

vi(a,u) = (3.40)
and the number of degrees of freedoms ¢, and &, is considerably reduced by the need to
match the parity of vo(e, u) as well as the order requirement. The remaining constants ¢, or
i}, are chosen to eliminate the residues and obtained by straightforward algebra. Interest-
ingly, it will also be shown in future chapters when specific examples are considered that
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Figure 3.3: The strip of analyticity Sa, = {a : [Re a| < 2r). The thick lines indicate the
branch cuts of u(a), the positive and negative signs indicate relative changes in sign of u(a)
across the different cuts. The clockwise cycles a and b used to define the cyclic periods
are as indicated. Note that cycle a crosses from the upper Riemann sheet (solid line) to the
lower Riemann sheet (dashed line) whereas b is confined to the upper sheet.

the sum of vg(e, u) and v (e, u) recovers the logarithmic derivative of the known solution in
the particular limit when the branch points vanish. In other words, in the instance where the
right-hand side in (3.13) is branch-free, the above procedure of pole elimination is sufficient
for the construction of the known solutions expressed in terms of Maliuzhinets functions.
We also note in passing that poles with integer residue Z do not compromise path indepen-
dence. Indeed, their capture leads to an additive 27jZ contribution in the exponent of (3.20)
which has no effect on the final value of w(a, u). This is the reason why integer residues
are assumed in most of the developments which require applying the residue theorem.

In a fashion similar to polar periods, a cyclic period arises from the non-zero con-
tribution incurred when integrating along a loop encircling a branch cut in S,9, thereby
making the path integral multi-valued. To better illustrate this, consider the case where
ula) = Veos?a@ — cos? (see (2.75)) whose branch points are shown in Figure 3.3 along
with a particular configuration of branch cuts. For future reference, the figure also provides
the definition of the cycles a and b required when considering the matter of the cyclic peri-
ods. A cyclic period is then, for example, obtained when integrating vq + v along the cycle
b which encircles the branch cut joining the branch points § and -6 + . As in the case of
the polar periods, it is strictly speaking not required for the cyclic periods to vanish iden-
tically to avoid jeopardizing single-valuedness since periods equal to 27jZ do not change
the value of (3.20). This ambiguity is resolved by considering values of é for which the
branch points vanish. As § — a/2 the branch points of 1/u(e) in vg(a, u) coalesce into
poles at +7/2 and their associated cyclic periods then become polar periods. Consequently,
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the cyclic periods associated with the cycle b in Figure 3.3 must be annulled, as opposed to
setting them equal to some non-zero integer multiple of 2x;j, to eliminate poles that would
otherwise arise as § — /2. We observe that this requirement is equivalent to annulling the
integral of vy + vso along the cuts between & and & — 6. There is also a similar requirement,
which is not obvious when solely considering integration on either of the Riemann sheets,
on the cyclic periods associated with the cycle a which loops from one Riemann sheet to
the other. Its necessity is revealed by examining either of the symmetric forms in (3.3)
together with the requirement for continuity as carried out in the previous section. More
crucially perhaps, it can be appreciated that in the limit where 6 — 0, 1/u(a) gives rise to
a pole at @ = 0 whose residue will be null if the cyclic period on cycle a is set to zero. In
short, the above implies, taking advantage of the even parity, the need to annul the cyclic
periods of vo(a, u) + vae(a, u) on the cycles a and b shown in Figure 3.3. Alternatively, this
can be thought of as requiring that all branch point to branch point integrals vanish in Sy
and under this condition all branch points within the strip are equivalent integration-wise.
This is stated mathematically in (3.39) and it ensures that the resulting expressions will
remain free of poles despite coalescing branch points in certain limits. Interestingly, the re-
quirement for vanishing branch point to branch point integrals is independent of the choice
of branch cuts: the same result would be obtained if we were carrying out the analysis on
the Riemann surface (as opposed to a dissected Riemann sheet).

The degrees of freedom required to eliminate the cyclic periods will be provided by
4 periodic functions which give rise to elliptic integrals of the first and third kind. Since
integrals of the first kind have cyclic periods which are not parameter dependent, meaning
that they are constant for a given configuration of branch points, their contributions on the
various cycles will be adjusted by means of an associated multiplicative constant. On the
other hand, the cyclic periods of integrals of the third kind are functions of the location of
its logarithmic singularities, their contributions along the cycles can be adjusted by chang-
ing the location of the singularities. This will be made clearer when elliptic integrals are
discussed in the next section. Adding such expressions as required to the function vyo(a, u)
and enforcing vanishing cyclic periods will produce an equation system consisting of N
equations in N unknowns, N being the number of cyclic periods to eliminate. The resulting
system is however highly non-linear but it will be shown that it can be solved analytically
by resorting to relationships known as the bilinear relations of Riemann. We defer any fur-
ther discussion of the cancellation process until the next chapter where a specific example
is considered.
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3.3 The bilinear relations of Riemann

We now examine, albeit briefly, some rather remarkable relationships involving the
cyclic periods (or periodicity modules) of elliptic and hyper-elliptic integrals. The motiva-
tion for this is that expressions obtained when enforcing vanishing cyclic periods have the
same nature as relationships known as the bilinear relations of Riemann. This allows for
rewriting quantities involving cyclic periods, some of which are functions of an unknown
pole, in terms of an integral of the first kind where the pole now appears explicitly as its
argument. It is unclear how, within the framework of this technique, one could otherwise
proceed to obtain an analytical solution to the problem. The treatment presented here is
more classical in nature and is tailored after the one given by AppeLL [1976). A more
contemporary approach is provided by SPRINGER [1981].

We consider the rational function f(z, u) which, for simplicity, we assume to have null
residues. In accordance with the notation used above, u(z) denotes a branched function
where

w(z) = Y(z - 6))(z - 62)(z = 63)(z ~ bs) (3.41)

and the branch points and associated cuts are illustrated in Figure 3.4. The function exists
on a two-sheeted Riemann surface whose members are connected by the pair of cuts illus-
trated in the figure. This is topologically equivalent to a torus (a handlebody of genus one)
as illustrated in Figure 3.5, and can be visualized by first deforming each of the Riemann
sheets into a sphere with two dissections (the branch cuts) and then joining the spheres
at the cuts. The behavior of the integral of a function f(z, u) defined on such a Riemann
surface is now considered. Define®

2.)
F(z,u) = f € u)dé (3.42)

(o.40)

which is assumed to represent an elliptic integral. It is ill-defined on the Riemann surface
since the latter is not simply connected. In order to correct this, the dissection pair a, b are
introduced with the understanding that they cannot be crossed when carrying out the path
integral in (3.42). Dissection b forms a loop (or a cycle) on the (say) top Riemann sheet
whereas dissection a loops from one Riemann sheet to the other by crossing the branch
cuts as shown in Figure 3.4. The portion of the path on the bottom sheet is indicated by
the dashed line. The cycles associated with the dissections, also identified as a and b, are

SThe inclusion of u(e) in the limits of the integral indicates that it is carried on the (usually dissected)
Riemann surface.
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Figure 3.4: A generic Riemann surface of genus one with branch points J; and associated
cuts. The dissections a and b have been introduced to make the surface simply connected.
Dissection b is confined to the upper sheet while dissection a loops from the upper sheet
(solid line) to the lower sheet (dashed line).

Figure 3.5: The torus, handlebody of genus one, which is topologically equivalent to
the Riemann surface shown in Figure 3.4. It has been made simply connected by the
dissections a and b.



termed the canonical cycles. Provided the dissections are not crossed, the resulting sur-
face is now simply connected. In other words, all paths between a pair of given points on
the surface are homotopic (or equivalent.) This is perhaps better appreciated on the torus
in Figure 3.5 where the dissections are indicated. If one proceeds to cut the torus along
the dissections, the resulting surface can be flattened into a manifestly simply connected
rectangular sheet. This rectangle is known as the Poincaré fundamental polygon — con-
temporary treatments of this material such as the one in SpriNGer [1981] are often carried
out on the fundamental polygon of the Riemann surface of interest. It also follows that Rie-
mann surfaces associated with higher genera require the introduction of larger numbers of
dissections [ApPELL, 1976; SPRINGER, 1981]. The process of dissecting the surface, besides
making F(a, u) well-defined, also implies that the Cauchy-Goursat theorem as well as the
residue theorem are now applicable on the surface. This is an important consideration since
the residue theorem is required to derive the bilinear relations of Riemann.

3.3.1 The cyclic periods

The branch point contributions to the path integral, the cyclic periods, are now defined.
We proceed by evaluating the elliptic integral F(z, u) at the two points 8, and 8_ which are
adjacent but on opposite sides of the a cycle as shown in Figure 3.4. It follows that

o ult)
FB.,u)= F(y1,u)+ fﬂ f& u)dé, (3.43)
(.u)
ﬂo-u)
F(B_,u) = F(ys,u) + S, u)dé, (3.44)
(ys.4)

and F(B,,u) — F(B_, u) = F(y,,u) - F(y,, u) since the infinitesimally distant path integrals
are equal. This holds for all the 8., 8- pairs along the cut a and implies that the discontinuity
across it is constant and given by

Ya.ld)

B = F(Bs,u) - F(B_,u) = F(y,,u) - F(ys,u) = f€ u)dé = ff(f, u)d¢. (3.45)
b

(y1.4)

Similarly, by considering the adjacent points @, and - on each side of the dissection b,
one obtains

@y t)

Fla,,u) = F(y,u) + f(€, u)dé, (3.46)
(r1.0)
a..u)

F(a-,u) = F(ys,u) + f(&, u)dé, (3.47)

(r2.4)
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so that F(a,,u) - F(a-,u) = F(y,,u) - F(y2,u) and

Y14}

A = Fla,,u)~ Fla-,u) = F(y,,u) - F(ys,u) = S, u)d¢ = ff(f. u)dé. (3.48)
(r2.u) a
The quantities % and ‘B are defined as the cyclic periods or the periodicity modules of
Sf(z,u). It is worth noting that if the dissections a and b are removed from the surface, the
path integral (3.42) becomes multi-valued and given by

Flzu) = f fE udE+ 7% + Z,B, (3.49)

where the integers Z, > indicate the capture of an arbitrary number of cyclic periods. It can
be appreciated that functions defined on Riemann surfaces with higher genus have a larger
number of cyclic periods, see for example the analysis carried out on a surface of genus
three in Chapter 5. Despite the added complications, the concepts introduced herein are
sufficient.

3.3.2 The residue theorem on a Riemann surface

An extension of the Cauchy-Goursat theorem, the residue theorem is one of the funda-
mental results of complex analysis and it simply states that, over a simply connected region,
the integral along a closed path equals 27j times the sum of the residues of the integrand
that are captured [CHURCHILL AND BrROWN, 1990; AHLFoRS, 1979]. For the Riemann surface
of genus one considered in the previous section, it was seen that a pair of dissections was
required to make it simply connected. Any contour integral enclosing the dissection pair
must therefore take into account the contribution from the path, denoted aUb, enclosing the
dissections. Applying the residue theorem to the path aUb that encloses the two dissections
on Figure 3.4 therefore yields

Luda =211 ) Res (3.50)
[,

where the residues are those of f(a, u) on the entire Riemann surface. With this information
in hand, now define the elliptic integral of the first kind

)
d¢
u) = £ 3.51
Fl(z u) »](:).uo) “(g) ( )
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which is finite and free of poles on the Riemann surface. An example of an elliptic integral
of the third kind is

) u(€) +u(a) u)+ ll(b))
Fulz ) = _ 3.52
(@) L).uo) 2u(§) ( £-a §-b “ o

which has a logarithmic residues +1 at z = (a,u(a)) and -1 at z = (b, u(b)). Note that
the poles at (a, u(a)) and (b, u(b)) are arbitrarily located on the Riemann surface. Looking
ahead to the integrals of the third kind encountered throughout this work, it is illustrative to
consider the case where we have a pole of residue +1 at z = (a, u(a)) and a pole of residue
-1 at z = (a,—u(a)) on the other Riemann sheet. This produces a co-focated pole-zero
pair where a change of Riemann sheet leads to a change in sign of the residue. The above
expression then becomes

u(a) |
Fi(z,u) = j; o ;(BE——a-dg (3.53)
We denote the cyclic periods associated with the integral of the first kind F\(z, u) by 9,
and B, and those with the integral of the third kind F3(z, u) by %; and B;. Note that while
A, and B, are constant, the cyclic periods of the integral of the third kind %; and B; are
functions of the location a of the pole of the integrand.

An enchanting relationship between the cyclic periods of F(z,u) and F3(z, u) can be
obtained by applying the residue theorem on the Riemann surface in Figure 3.4 in the
following fashion

f;w 1z, w)dFs(z,u) = f Fi(z, u)“((a; ! dz 2NJZRCS (3.54)

We first show by explicitly evaluating the path integral that, remarkably enough,

f F|(Z, u)dF;(z, u) = 911233 - %1913. (355)
aub

Consider first the dissection b in Figure 3.4. The contribution /, from the path integral
enclosing it is given by the sum of the integrals from y, to y, (outer path or + side) and
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from v; to ya (inner path or — side), viz.

ya.t) Y2.4)
1b=f F1(0+)dF3(G+)+f Fi(a-)dF;(a.)

(n1.40) (y3.u)

Y3.1) ¥3.4)
= f Fi(a,)dF5(a,) - Fi(a_)dF;(a.) (3.56)
(y1.1) (y2.u)
and, for the sake of clarity, a. is used to indicate the path on the positive (exterior) edge of
b and a- the path on the negative (interior) edge of the dissection. The last member of the
right-hand side of the above can be rewritten in terms of an integral on the outer path (a.)
since, from (3.48), A, = Fi(a+, u) — Fi(a-,u). Moreover, since Fi(a,,u) and Fi(a_, u)
differ by a constant (see (3.45)) along the dissection, dF3(a,, ) = dF3(a-,u). Making use
of both of these properties

Y3.4) Y4.44)
f Fi(a-)dFs(e-) = f {Fi(@..u) -2 |dFs(@.) (3.57)

(y2.0) (y1.u}

and the expression for /, is then

Ya.4) y4.u2)
Iy = f Fi(a)dFy(a,) - f {Fi(@., ) - )dFy(a.)

(yi.40) (1)
Ya.li)
=AU f dF;(a,)
(Y1)
= W{F3(s, 1) = Fy(pi, w))
= A,B, (3.58)

where use has been made of (3.45). Similarly, the contribution from the portion of the path
enclosing dissection a is given by

Y1) ¥3.4)
1a=f Fl(ﬁ-)dFs(ﬁ-)+f Fi(B., wydF5(B,, u)

(ra.u) (ys.u)

Y3.4) Y3.u)
= ‘f lFl(ﬂ+) - %l]dFB(ﬂ-) +f F\(B,, u)dF5(B,, u)

(ya.u) (ys.u)

y3.4)
=B, f dF3(B., u)

(ys.u0)

= -B,%;. (3.59)
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Finally, summing the contributions /, from (3.59) and I, from (3.58),
f F[(Z. u)dF;(z, u) = Ql|%3 - ‘B.Qi;. (360)
aub

Repeated use will be made of this fundamental result throughout the remainder of this
work. By the residue theorem (3.50) this quantity must equal the sum of the residues of the
integrand. In this instance there are two such contributions, namely,

Res {Fl(z, u)M—l—} = Fi(a, u(a)), 3.61)
“(Z) i—a z=(a.u(a))
and
Res {F.(z, i L} = —F\(a, -u(a)). (3.62)
uiz)z—a e ta.u(a)

The application of the residue theorem (3.54) on the Riemann surface depicted in Figure
3.4 therefore yields

%85 - B1Y; = 47j{F1(a, u(@)) - Fi(a, -u(a))} (3.63)

and the difference of products of cyclic periods is expressed in terms of an elliptic integral
of the first kind. This is often derived by considering differentials on Riemann surfaces and
is thus known as a bilinear relation for differentials of the first and the third kind. Such
relationships can be derived for elliptic and hyper-elliptic integrals and, together with a
related set involving integrals of the second kind, are commonly referred to as Riemann’s
bilinear relations [SPRINGER, 1981]. Note that if two integrals of the first kind were used
in (3.54), the sum of residues would be zero. The salient feature of equation (3.63) is that
whereas the dependence on the location of the pole a is implied on the left-hand side, it
shows up explicitly on the right-hand side and its extraction is then, in principle at least,
a relatively simple matter. It is this essential feature that makes possible an analytical
treatment of the problem in the context of the current approach. Indeed, it will be seen
that the process of elimination of the cyclic periods leads to equalities between known
quantities and expressions equivalent to the left-hand side of (3.63), the only unknown
being the location a of the pole. Invoking (3.63), an equality can then be obtained between
known quantities and expressions equivalent to the right-hand side of (3.63). The inversion
for the unknown pole is then possible using the Jacobian elliptic sine function (see Section
3.5). We recall that since periodic expressions — elements of vyq(a, ) — are required
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Figure 3.6: Schematic overview of the proposed technique.

when eliminating the cyclic periods, the derivation of the appropriate bilinear relation in
the forthcoming chapters is carried out with some modifications. Likewise, the inversion
for the unknown pole will require a transformation to recast trigonometric integrals of the
first kind to the standard form, a topic addressed in the last section of this chapter.

3.4 Opverview of proposed technique

It is useful at this juncture to briefly pause to paint a coherent picture of the technique
proposed by summarizing the material covered so far. This short overview, a schematic
representation of which is provided in Figure 3.6, follows more closely the order in which
the various steps of the analysis must be carried out. The starting point of the analysis is a
second order difference equation with period 4® to which a pair of meromorphic solutions
are sought that are free of poles and zeros in a strip of width 4®. The solutions, which
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are related to unknown spectral functions, must also satisfy a certain order requirement
dictated by the edge condition as |Im @] — oco. This is geometry specific and, in this
work, solutions that are O(1) as |Im a| — oo are sought. We proceed to derive, as shown
in Section 2.1.2, a pair of associated first order difference equations which are more easily
solved. Their solution is however a subtle affair since the obtained expressions are generally
branched and the standard solution technique put forward by Maliuzhinets does not apply.
A general way to proceed is to take the logarithmic derivative of the first order equations,
as discussed in Section 3.2.1, to obtain a tentative solution in path integral form. The latter
is unfortunately ill-defined due to the singularities, both poles and branch points, of the
integrand that arise in the strip S;o. Appropriate 4® periodic functions — they must satisfy
certain growth conditions as discussed in Section 3.2.1 — must be introduced to negate the
effect of poles (polar periods) and branch points (cyclic periods) as discussed in Section
3.2.3. While the elimination of the polar periods is algebraic in nature, the elimination of
the cyclic periods is much more challenging and requires the use of bilinear relations of
Riemann, an example of which is derived in Section 3.3. We also note that by combining
the requirement for continuous meromorphic solutions and the elimination of the cyclic
periods, it was shown in Section 3.2.2 that the lower limit of integration of the path integral
can be any branch point in S;p. Once the effect of the singularities has been mitigated, the
solution w(a, u) is well-defined and, using the meromorphic constructs of Section 3.1.1,
meromorphic solutions of the second order equation are obtained. The final step is the
elimination of unwanted poles and zeros in the strip of analyticity. This is surprisingly
challenging and not discussed in this chapter. Instead, it is dealt with on an individual basis
in the chapters that follow. In Chapter 4, the technique is applied to solve the generalized
equation (2.73) of period 2 related to the composite wedge. Chapter 5 provides another
application of technique where the same equation with the period doubled to 4r is solved.

3.5 The elliptic integral of the first kind and its inverse

We close this chapter with a short intermezzo giving a quick overview of relevant fea-
tures of the elliptic integral of the first kind and its inverse, the Jacobian elliptic sine func-
tion. Although perhaps considered archaic by some today, elliptic function theory is an
important part of classical mathematics and was the focus of much attention at the turn
of the last century. Consequently, there are a vast number of treatises in the literature.
These range from classic texts by Hancock [1910] and NeviLLe [1951] to more contempo-
rary treatments such as those of LawpeN [1989] and McKean ano Mol [1999]. Common
references like ABRAMOWITZ AND STEGUN [1964] and WHrTTAKER AND WaTsoN [1952] also
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provide good coverage of the salient points. The material covered here does not give jus-
tice to the rich and fascinating theory of elliptic integrals and functions, we only provide a
small glimpse of items relevant to this study and introduce notation to simplify forthcoming
analysis.

We first examine one of the standard representations. In Legendre’s standard form, the
etliptic integral of the first kind is expressed as

¢ dr ¢ odr
F(z,k) = f = f . (3.64)
@4 o JI-)( =K1 Jo r(n.k)

where k is termed the modulus of the integral. It is, in essence, a generalization of a circular

inverse function and recovers an inverse sine function when k = 0. The root r(z, k) in the
denominator has branch points at z = +1 and z = x1/k whose cuts are by convention
chosen as shown in Figure 3.7. The integral (3.64) is confined to one sheet of the Riemann
surface and specific integration paths are specified in the complex plane so as to make it

single-valued. Indeed, the square root r(z,k) = /(1 —z2)(1 - k2z2) exists on a Riemann
surface of genus one and its integral is thus multi-valued when taken on the entire Riemann
surface. The cyclic periods that arise due to the branch points are related to the so-called
complete integrals of the first kind which are defined as

l‘
K = dr . (3.65)
o (1 =72)(1 - k2r?)
17k
iK' = dr (3.66)

L A=) (1 -k

and are as indicated in Figure 3.7. The superscripts in the limits indicate the positive side of
the branch cut. The corresponding cyclic periods are therefore 4K, which loops around the
cuts stretching from —1 to 1, and 2jK’, which loops between the branch points | and 1/k,
going from one sheet to the other. The multi-valued integral of 1/r(z, k) on the Riemann
surface may be written as

() dr 2 dr
=+ +4KZ, + 2iK'Z,, (3.67)
»I(:,r(O)) r(T, k) £ r(T, k) ! ! 2

where the integers Z, , indicate the capture of an arbitrary number of cyclic periods. The
integral F(z, k) is well defined and is finite for all z. If k € R, then if z is in the upper-right
quadrant it follows (see Figure 3.7) that F(z, k) € [-K,0] x [0, jK’] and so forth. It must
be stressed that when k € C, a range of F(z,k) € [-K, 0] x [0, jK’] does not correspond to
a quadrilateral domain anymore due to the change in the topology. Conversely, the quadri-

52



joo

. K’ :

K iK' K K K -K
7 L N\ T N NN NN\ -
] l II‘— \;/
X K
K

_joc

Figure 3.7: The branch points and cuts (thicker lines) associated with the elliptic integral
of the first kind. The corresponding periods are as indicated; the + and - signs indicate
relative changes in the sign of the root.

lateral domains will not correspond to parallelograms but to deformed curvilinear ranges
and this will be explicitly shown below when we consider mappings of the integral of the
first kind. This makes it generally not practical to refer to the domain of F(z,k) in terms
of quadrants (say, Re z > 0 and Im z > 0) and we choose instead to refer to the range of
F(z, k). The fundamental range of F(z, k) on the top Riemann sheet, regardless of the value
of k, is [-2K, 2K] % [0, jK'] and this is termed the fundamental period parallelogram. If the
negative branch of the square root is assumed, then F(z, k) spans [-2K, 2K] x [0, —-jK’].

The inverse of F(z, k) is provided by the Jacobian elliptic sine function sn which, pro-
vided F(z, k) lies in the fundamental period parallelogram, satisfies

sn[F(z,k),k] =z

and it follows from the domain of F(z, k) that sn(z, k) will, in any given period, have both
a pole and a zero. The elliptic sine is also doubly periodic with periods 4K and 2jK’ in
accordance with the multi-valuedness of F(z, k) when it is defined on the entire Riemann
surface. Hence,

sn(z+ 4KZ, + 2jK'Z,, k) = sn(z, k) (3.68)

and, following tradition, K and jK’ are also called the quarter-periods of the elliptic sine
function.” For computation purposes, the elliptic sine function can be evaluated by means

"Despite the fact that jK” is actuaily a half-period.
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of the following Fourier series expansion representation [Hancock, 1910; Lawpen, 1989]
T n -
snz = ﬁ";ocosecﬁ[z-(2n+ iK'} (3.69)

and this is the approach used throughout most of this work. It is appropriate to now examine
two transformations which are relevant to the following chapters.

3.5.1 The cos a transformation

The elliptic integral of the first kind with 2 periodic integrand

Varl@) = f € (3.70)
where the denominator is the square root (2.75) that arises in the problem of the composite
wedge, is required for the elimination of the cyclic periods in both Chapters 4 and 5. It is
emphasized that the path integral is taken on the top Riemann sheet dissected by branch
cuts and not on the equivalent Riemann surface. Its inversion will be required and, to recast
it in terms of Legendre’s standard from, the transformation

= 28 3.71)
cosé
is used. Its application to V, (e, u) yields
V)(a)= f & = {F(°°S“, cosa) - K} (3.72)
5 yJcos? & ~cos?d cos
where
k = cosé (3.73)

and the cyclic periods of F(x, k), 4K and 2jK’, as verified by direct computation, are related
to those of V; (@, u), A}, and B, by

Ay, =4K', B} =4k (3.74)

Function V, (, u) can be thought of as providing a mapping from the e plane to the v plane
as indicated in Figure 3.8 (areal valued ¢ is assumed) where the path integrals along various
segments are given. Each of the quadrants A, in the & plane are mapped to a distinct period
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Figure 3.8: The periods of V._,'R(a. u) on the top Riemann sheet. It is assumed that the
branch points are real and the corresponding cuts are indicated by the thick solid lines.

parallelogram V,, in the v plane so that

V)
aeA, —veV, (3.75)

and the period parallelograms V, are as shown in Figure 3.9. For instance, it is easily
verified that for real § (see Figure 3.8)

v! B! Al
eeRA — YV, = [0, -E{I X [O, ——4‘51 = [0,j2K] x [0, -K"] (3.76)

and so on for the other domains A,. These definitions will simplify some of the ensuing
analysis. It was mentioned above that it is beneficial, and simpler, to describe the range
of V1 (a, u) as opposed to its domain. This is better understood by considering the inverse
mapping of Vz'n(ar, u) obtained from its representation in terms of F(z, k) (3.72) together
with the elliptic sine function given in (3.5). Indeed, they imply

@ = arccos [k sn (K -j Vz',,(ar, u))] = (VZ',,)-l %) G

and its application to the period parallelograms® <V, , illustrated in Figure 3.9 produces
the original domains A, » in the a plane illustrated in Figure 3.10. Note that when ¢ is
real, which is the case for Figure 3.10(a), the recovered domains are the same as the ones
illustrated in Figure 3.8. However, when & is complex, as is the case in Figure 3.10(b), the
A, domains are not quadrilaterals anymore. Alternatively, one could choose to operate

81t is sufficient (o restrict our interest to @ € Via.
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Figure 3.10: The inverse mapping (Vz'”)-l of the P, (light gray) and P> (dark grey) period
parallelograms shown in Figure 3.9 back to the domains A; and A; in the @ plane. The
cases provided are (a) 6 = | implyingk = I, K = 1.709 and K’ = 2.087;and (b)d = 1 +j
implying k = 0.834 - j0.989, K = 1.272 - j0.323 and K’ = 1.290 + j0.646. Case (a)
reproduces the expected A, (light gray) and A, (dark gray) quadrilaterals shown in Figure
3.8; case (b) illustrates how the corresponding original domains are deformed when § is
complex.
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Figure 3.11: The periods of Vj”(a) on the top Riemann sheet. It is assumed that the
branch points are real and the corresponding cuts are indicated by the thick solid lines.
Contributions along noteworthy paths are indicated in terms of the cyclic periods Aix and
Bjn. The region is partitioned in the four quadrants B,.

with the quadrilateral domains from Figure 3.8 even when 6 is complex but this would
result in curvilinear period parallelograms V.

3.5.2 The sin a/2 transformation

The analysis in Chapter S requires two integrals of the first kind, one of which is the 2x
periodic Vz'n(ar) which was just examined. The second one is

cos £

o 2 dg
5 yJcosi¢ —cosé

which has a 4 periodic integrand and where the branched denominator remains wu(a) given

Viel@) =

(3.78)

in (2.75). For real-valued 6 the dissected « plane is as shown in Figure 3.11. The contribu-
tions to the integral along the various paths are indicated and we note the definition of the
two periods A;, and B}, of the integral. We confine our interest to the strip Re a € [0, 2x],
the values for which we seek to invert V}x(a). Following our convention for Vz'n(a) the
cyclic period B} loops clockwise around the cuts whereas A}, loops clockwise between
the cuts. The four quadrants B,, n € {1,2, 3,4}, are mapped to the v plane by V; (a) to four
corresponding period parallelograms ‘W, such that

Vie
a€eB,—veW, (3.79)
and this is illustrated in Figure 3.12. The inversion of V] () is required in Chapter 5 and
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Figure 3.12: The ranges ‘W, of ij(a, u) corresponding to each of the B, subdomains

in Figure 3.11 with @ = VI+k*K and @ = V1 +k%jK’. The lower parallelograms
correspond to the case where @ has a negative real part.

we proceed by first recasting it in terms of Legendre’s standard form (3.64) by means of
the transformation

sin £
T=—%. (3.80)
sin §
Applying it to (3.78),
£
cos 2 VI + &2
V! (@) = L__dr= Vit R F(—”‘sin‘-',k)—x
5 yJcos?& —cos?é k
(3.81)
L sinf  §) A, 6
= F = tan - | - —£ COS —
cos § (sm% 2) 4 2
where
k= tang (3.82)
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and the cyclic periods in the @ plane are related to the complete integrals of the first kind
by

4K 2K’
Ap=—5  Bi= c(’)? (3.83)

If @ € B, U B,, the inversion is obtained by solving for F above and applying the elliptic
sine function described on page 53. This produces

a=2 arcsin{ sn (K + Vi (a), k)} = (Vj,,)_‘ (v) (3.84)

k l
where, corresponding to the range a, the domain of the inverse mapping is v € W, U ‘W,.
This restriction on the value of v arises due to the range of the arcsin function which is
limited to Re a € [-7, §]. This is problematic if v € ‘W3 U ‘W, implying thata € B3 U B,
in which case the above inevitably fails — a then lies outside the range of arcsin. To
remedy this, we start off by noting that if Re @ € [r, 27] (see Figure 3.11) we can write

' ! cos £
V(@)= ==+ —;—" + 2 de¢
2 < -5 /c0s? £ ~ cos? &
(3.85)
n-a cos §

— pl
-B4lr+

) 2 dg
] Jcos? & —cos?é

where 21 — a € B, U B.. Hence, if v € W3 U ‘W, then

@ = 21 — 2 arcsin { sn (K -2iK’ + Vi (a), k)} (3.86)

k l
which correctly produces @ € B; U B,. Equations (3.84) and (3.86) provide the means
of inverting Vj”(a) given in (3.78) for @ € B,. They are also useful to illustrate how the
subdomains B, are deformed when the branch point é is complex. This is shown in Figure
3.13 which depicts the subdomains when (a) é is real (6 = 1) and when (b) é is complex
(6 = 1 +j). The recovered subdomains are seen to correspond to the quadrants of Figure
(3.11) when the branch point is real, and the resulting distortion of B, for complex branch
points is evident.
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Figure 3.13: The inverse mapping (Vj”)—l of the ‘W, period parallelograms shown in
Figure 3.12 back to the domains B, in the « plane when (a)§ = 1 and (b) 6 = 1 +j. The
thick solid line indicates the branch cut. The corresponding values for the cyclic periods are
K = 1.7130and K’ = 2.0777 when é = 1; K = 1.4833+j0.1436 and K’ = 1.7991 -j0.8240
when § = 1 + j. Case (a) reproduces the subdomains depicted in Figure 3.11.
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CHAPTER 4

THE PENETRABLE WEDGE: EqQuaTioN witH PERIOD 277

HE procedure developed in the previous chapter is now applied to the second order
Tfunctional difference equation (2.73) which, as discussed in section 2.4, is a general-
ization of the equation obtained by DeMETRESCU et al. [1998] in their analysis of a penetrable
composite right-angled wedge. Following the prescription given, a logarithmic derivative
is first applied to the first order difference equations to obtain branched solutions expressed
in terms of a path integral. They are made well-defined by adding appropriate unit peri-
odics to eliminate the singularities of the integrand. Meromorphic solutions of the second
order equation follow by taking linear combinations of the branched solutions. Analysis
and computations demonstrate that they have the required analytical properties and recover
known expressions in proper limits.

4.1 The difference equations

A pair of solutions is sought to equation (2.73),

cos2§ — cos’ @

t(a+37r)—2{l -
cos-a — cos- 8

}t(a+n)+t(a—7r)=0, @.1
which is repeated here for convenience. It is easily specialized to the equation obtained by
DeMEeTrEscU ef al. [1998] using the substitutions given in Section 2.4. Within the context
of the problem, the parameters 6 and ¢ are both functions of the resistivity R, of the wedge
and they are such that Re 8 € [0,7/2] and Re 6 € (0, #/2]. As remarked back on page 26,
the parameters 6 and ¢ are allowed to vary independently for the more general equation
(4.1). The solutions must be meromorphic, free of poles and zeros in the strip Sz, = {a :
IRe a| < 2r}, and O(1) as |[Im a| — co. We proceed to factor the second order difference
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Figure 4.1: The strip of analyticity S», = {@ : |Re a| < n} with the branch points and
associated cuts for the square root u(a) = Vcos? e - cos? 6 appearing in (4.4) and (4.6).
The thick lines indicate the branch cuts of u(a), the positive and negative signs indicate
relative changes in sign of u(a) across the different cuts.

operator as in Section 2.1.2 and obtain

(Dr - gle, w)}{Dx - gle, -w)tce) =0, 4.2)

where

g(a, tu) =

xl
+u(@) - u() _ (u(a) - "(9)) _ 4.3)

+u(a) + 1) “ua) + u(d)

In agreement with its counterpart r(a) discussed on page 16 we note that
g(a,u) = 1/g(a, —u) — the roots obtained when factoring the operator are the reciprocals
of one another. In this instance

u(@) = Veos? a — cos? 6 (4.4)

which has branch points at @ = +6, (x — &) in S», and the associated cuts are chosen so
that «(a) has the same symmetries as cos a, viz.

u(a@) = u(a + 21 = u(-a) = —u(a + n). 4.5)

The strip of analyticity S», together with the branch points and the corresponding cuts of
u(a) are illustrated in Figure 2.7. From (4.2), the pair of first order equations corresponding
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to (4.1) are

w(a + m, +u) _ _ u(a) - u(6)
wla -, +u) gla,+u) = u(a) + u(8)’ (4.6a)
w(a + m, —u) _ o u(a) + u(d)
wla - 7, —u) g(a,~u) = u(e) - u(8)’ (4.6b)

and each of the two branches of w(a, u) corresponds to the solution of one of the first
order difference equations; both solutions are embodied in w(a, ). It is sufficient to solve,
say, for w(a, u) in (4.6a) as the other branch of its solution w(a, —u) then satisfies (4.6b).
Consistent with the fact that g(a, u) = g(—a, u), the function w(a, «) can be constructed
such that w(-a, u) = w(a, —u) = 1/w(a, u) since

w(—a + m, u) w(a + m,u)

SrE—— =g(-a,u) = gla,u) = 4.7

w(a —m,u)
Once w(a, ) is obtained, the branch-free expressions (3.3) provide the fundamental build-
ing blocks from which meromorphic solutions to the second order difference equation can
be assembled.

4.1.1 Limiting cases of interest

Before proceeding to obtain the general solution w(a, «) to the first order difference
equation (4.6a), it is useful to consider the limiting cases — there are two — where the
branch points vanish. This information will be useful when characterizing the behavior of
the branched solution w(a, ). The first of these is the limit § — /2 when u(a@) — cosa
and the second one is the limit § — O when u(e@) — jsina.! In both cases the second
order difference equations (4.1) can be factored by inspection into a pair of uncoupled first
order difference equations whose right-hand sides are meromorphic rational functions of
trigonometric polynomials. In these instances, the solution of the second order difference
equation is the same as the solution of the first order difference equation since both are
meromorphic; there is no need to resort to branch-free linear combinations. These solutions
are readily available and are expressed in terms of Maliuzhinets functions.

'As shown in Section 4.2.5.2, the case when § — 0 is more complicated if one considers the limiting
behavior of u(a) with its cuts as defined in Figure 4.1.



4.1.1.1 Thelimité = x/2
In this instance u(@) — cos @ and the first order equation (4.6a) becomes

w(a + m,u) _ cosa —cosé
w(@ - mu) cosa+cosé

4.8)

and since (4.6b) goes simply to the reciprocal of (4.8), its solution in that limit is provided
by 1/w(a, u). From the identity

cosa +cosb = 2 cos %(a - b)cos %(a +b) (4.9a)
cosa —cosb = —2sin %(a - b)sin %(a-&-b) (4.9b)
we have
cosa_cosg=cos§(a—0+§+§) sin%(a+0—§+§) @10
cosa +cosé sin%(a—0+§+§) cos & (a+0 2+ §) .

and it immediately follows, since the Maliuzhinets function ¥¢(a) satisfies [MALIUZHINETS,
1958a]

Yao(a +29) cos Ha+d)
o(a = 20) ~ sin a+%)’

“4.11)

that

U2 (@ + 3 - 6)

u) = Wia) =
w(a,u) = ¥ (a) P (a T1s 0)

4.12)

which is meromorphic, free of poles and zeros in S»; and O(1) as [Ima| — oo. It is
useful to consider an integral representation. Since [MaLiuzuivers, 1958a] (sign errors
were corrected in [SENIOR aAND VorakKis, 1995])

m/»(a)—exp;; f X-rsingy, @.13)

cosé

substitution into (4.12) provides, after manipulation,

(@) = exp f ﬁ(f siné cosf - @sinfcos &) + % sin 6(cos & — cos 6) o, @.14)
0

cos? & — cos?f
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Solutions such as ¥ () that are expressed in terms of Maliuzhinets functions can be com-
puted from approximations such as the one provided by HErMAN et al. [1983] — a listing
of the algorithm is also given in [SENtor AND Vorakis, 1995]. Alternatively, and this is the
approach taken by the author, one can proceed by numerical integration of (say) (4.14).
The above is particularly useful to verify the behavior of the constructed w(a, &) and it will
be shown that our solutions will recover ¥(a) and 1/'¥)(a) identically as § — n/2.

4.1.1.2 The limité - 0
In this instance w(ar) — jsina and the first order equation (4.6a) become

w(a +m,u) sina -siné

= = - 4.15)
w(a —nmu) sina +siné
and once again the solution to (4.6b) is provide by 1/w(a, «). From the identities
. . | |
sina + sinb = 2cos E(a - b)sin E(a + b) (4.16a)
l
sina —sinb = 2sin %(a - b)cos 5(0 +b) (4.16b)
we have
sina - sin @ sin%(a+0—§ ’5') cos%(ar—0+’5'+§) @17
sina +sing cos%(a+6—§ g) sin%(a-0+§+§) '
and therefore, using (4.11),
¢2 1(% - )
w(a, u) = Pa(a) = cos = m22 (4.18)

2 l//,r/1(0+ £- 9)!//,,/'7(0— 3 +0)

which is meromorphic, free of poles and zeros in the open strip S, and O(1) as [Im a| — .
Since

l//n/z(a-lH'%-9)!//::/2(0-”—%*'9) _ sina-sind

://,,,g(a+7r+§-6)¢,,,2(a+;r_ z +9) " sina +siné’

4.19)

the cos a/2 term provides the required change in sign and exactly cancels the growth of the
denominator but inevitably leads to zeros (V) or poles (1/'¥>) at @ = +x on the edges of
the strip. It appears that a solution free of poles and zeros in the closed strip and of order
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unity is unattainable. Using (4.13) and

cos = = exp-l f - cos.fdf (4.20)
2 2,

siné
in (4.18) results in the integral representation
2]

£ . { . 1 e
2sinfcosé — (3 - 3)cosfsiné — ;sin2¢ -
\Pg(a)=exp—f"{ (- -) 1 +l| cos&
0

cos? & — cos? @ 2 siné

de. 421)

4.2 General branched solution

We follow the procedure outlined in Chapter 3 and proceed by first taking the loga-
rithmic derivative and then subsequently add 2 periodic functions to annul the polar and
cyclic periods of the integrand. The requirement for vanishing cyclic periods leads to a
system of two equations in two unknowns, the solution of which is the focus of subsequent
sections.

4.2.1 The logarithmic derivative

Applying a logarithmic derivative to the first order difference equation (4.6a) results in

d d d
T Inw(a + 7, u) - i Inw(a - mu) = T Ing(a, u)

_ _u@) 2sinacosa 4.22)

u(a) cos’a —cos*d

and the right-hand side conforms to the general form given in (3.15) in the previous chap-
ter’s general treatment. Letting vo(a, u) = d/de In w(a, u) enables us to rewrite the above
as

u@ 2sinacosa
u(a) cos®*a —cos? 6

vola + m,u) ~ vole — m,u) = - 4.23)

and, letting

u(@) 2sinacosa

vo(a, u) = —Ca
’ u(a) cos’a —cos28’

(4.24)
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substitution in (4.23) yields

9 . .
C(a+7r)(—u() 2sinacosa u(@) ZSlnacosa)

—Cla-m|-

u(a) cos?a — cos? 6) (@ n)( u(e) costa - cos* @

u(f) 2sinacosa
u(a) cos®a —cos? 8’

=2nC (4.25)

Enforcing equality with the right hand-side of (4.23) implies C = —1/2x. Therefore,

u) @ sinacosa o d
n = ~3-3g 8@ 4.26
u(@) m cos’a—cos?f  2rda ng(a, u) (4.26)

vo(@) =

Since vg(a, u) corresponds to the logarithmic derivative of w(a, ), the latter can be written
as

w(a,u) = expf“[vo(g-‘.u) + vz,,(f,u)ldg. 4.27)

where va;(a, u) consists of, as yet, undefined 2x periodic function chosen to obtain a well-
defined — single-valued with respect to the choice of the path of integration — path inte-
gral. The function vy(a, u) is even, aperiodic and vanishes as |Im a| — o. Within the strip
Sar it has branch points associated with 1/u(a) and poles at the zeros of cos’a - cos’ 6.
It will be shown below that vo,(a, u) consists of three functions: v(a, «) to eliminate the
polar periods, and vén(ar, u), vi_,r(a, u) to eliminate the cyclic periods.

Since the logarithmic derivative of g(a, u) is identical to that of Cg(a, u) where C is
some constant, we must resort to the technique proposed in Section 3.2.1 on page 33 and
examine if w(a, u) satisfies the first order equation (4.6a) when [Ima| — 0. In order
to do so, we first assume that va,(a, u) is such that the integral is single-valued and that
vi(a,u) = 0 as [Imal — oo. Under those circumstance, the right-hand side of (4.6a)
becomes

IIm aj~v

= expr lvo(g, u) + var(€, u)}d§ — 1 (4.28)

w(a + m, u)
w(a — m, u)

as both integrands vanish exponentially fast as [Im @] — oo. The left-hand side becomes

_ xu(@) — u(f) iim ai—oo
- +u(a) + u(6)

gla, u) (4.29)

which puts in evidence the contribution of an eventual multiplicative constant. The agree-
ment of both of the above expressions suggests that vy(a, u)+va,(a, «) is indeed the solution
sought provided va,(a, u) annuls the periods the vo(a, u). The cancellation of the polar pe-

68



riods is now examined in detail.

4.2.2 Elimination of polar periods

The function vo(a, u), besides the branch points of u(a), has poles at the zeros of cos® a—
cos® 6 in the strip Sy, that is, when @ = 16, +(r — 6). Adding to the fact that they must
be eliminated to fulfill the requirement for a solution free of poles in S, these poles have
generally non-integer residues

Res vo(a, u) = =49 (4.30)
2 u(a)
These have an adverse effect on the path integral of w(a, u) in (4.27): their contributions
are non-integer multiples of 2xj which make the integral ill-defined.

The 2r periodic function v;(e, u) introduced to eliminate the polar periods must have
the same even parity as vo(a, u), vanish as [Im @] — oo and provide the two required de-
grees of freedom to eliminate the offending poles. The two expressions fulfilling these
requirements are

_u(@) ¢, t+¢ cosa

f L3 - 4.3 l
vie, u) u(a) cos® a - cos* @ (4.31)
and
9) cosa(yl + ¢ cosa
v (e, u) = u(6) cosely, + ¢ ) (4.32)

u(@) cos’a - cosf

[n both instances the () term is added for convenience. The fact that we can apparently
arbitrarily select one or the other is perplexing, but it turns out that within the confines
of the approach they are fully equivalent expressions. Prior to demonstrating this we first
determine the coefficients ], and ¢/, a rather simple exercise compared to the forthcoming
analysis for the cyclic periods. Given that vy(a, u), v|(a, u) and v{'(a, u) have the same
parity, it is sufficient to enforce

=0 (4.33)

Res {vo(ar,u)+v'l(a,u)] "
a=60.~

and similarly for v{'(@, u). This produces a set of two equations in the two unknowns ¢/, for
vi(a, u), or ¢/ for v{'(a, u). Carrying out the algebra, it can be shown that

1 8 1
@ = (5 - ;) sin@cos 6, 9 = =3 siné, (4.34)
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and

1 1 6)sing
- i el e - =~ —— 4.35
%o =—5sm8 ¢ (2 n) cos @ #3)

The resulting expressions are therefore

u(g) —2 sinfcos § + 1 sinB(cos @ — cos @)

vi(a,u) =

4.36
u(a) cos’a — cos? @ (4.36)

and

u(6) cos @ -?r sin@cosa + ! sinf(cos @ — cos 6)

Wia,u) =

= \ 437
u(a) cos 6 cos?a — cos’ d (4.37)

with either being equally valid for the elimination of the poles. It was hinted at above
that they were actually equivalent in the context of the solution procedure. This interesting
property is due to the introduction of the 2x periodic functions vgf (a, u) related to the elim-
ination of the cyclic periods. While a detailed discussion is presented in the next section,
the demonstration of this equivalence between (4.36) and (4.37) warrants the immediate
introduction of one of these functions, namely

v{,,(a, u) = (4.38)

u(@)
Two factors are responsible for the equivalence. The first is that (see next section) the final
solution will involve in the integrand the function v, (a, «) multiplied by a coefficient to
be determined. The second is that the functions vi(a, u) and v{'(a, u) actually differ by a
constant times v} (a, w), i.e.,

" , (l 0)
vy (a,u) =vi(a,u) +|= - -

cosQu(a) 439

2 r

There is therefore equivalence between the two up to an additive multiple of 1/u(a) so that

vi(a@, u) and v{(a, u) produce the same expression once the solution process is completed.
We choose to use

., u(f) cos @ —2 sinfcos @ + 3 sinf(cos & ~ cos f)
vila,u) = v{(a,u) = 2

~ - (4.40)
u(a)cos @ cos-a — cos- 6

in our solution. The main reason for this choice lies in its simple nature when 6 = r/2
since the leading coefficients then go to unity. However, another benefit can be discerned
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by examining more carefully the sum

u(f) cosa i(asinacosd-Osinfcosa)+ i sinb(cosa — cosd)

vola, u) + vi(a,u) =

u(a) cosé@ cos?a - cos? 4 ’
4.41)
and comparison with the integral representation for ¥ () (4.14) reveals
0 d —n/2
vola, u) + vi(a, u) = 5(—) Qe € In¥,(a) 6—”’) i In¥(a), (4.42)
w(a) cosf da da

explicitly recovering the known exact solution in that limit. A similar equality holds if
vi(a. u) is instead used but its demonstration requires the added consideration of the func-
tion vi”(a. u). In a nutshell, v|(a, u) has poles arising at @ = +x/2 in the limit which are
cancelled by those of véx(a, u). This will be reexamined in more detail in the next section
when the behavior of the completed solution w(a, u) is considered when § — n/2. It is
however recognized that in the simpler case where the right-hand side of (4.6) is mero-
morphic, and (4.27) thus free of branch points, the known solutions expressed in terms
of Maliuzhinets are recovered by simply following this procedure of pole elimination, an
approach that naturally leads to the construction of the cancellation term v/'(a, u).

At this stage, the partial solution to the branched first order difference equation (4.6a)
is

w(a, u) = exp f. [Vo(&, ) + vi(€, u) + vael€, w)de, (4.43)

and the sum vp(a, u) + vi(a, u) is now free of poles in the strip of analyticity S,,. The
multi-valuedness associated with the presence of branch points common to both vy(a, )
and v|(a, u) is now dealt with by eliminating the cyclic periods of the integrand.

4.2.3 Elimination of cyclic periods

In order to obtain a well-defined solution such that continuous branch-free solutions
can be constructed from w(a, «) by means of the symmetric meromorphic combinations
(3.3), it was shown in Section 3.2.3 that all branch point to branch point integrals within
the strip of analyticity have to be eliminated identically. This is equivalent to the elimi-
nation of the cyclic periods of the integrand in the two-sheeted strip of width 2x. In this
instance, as shown in Figure 4.2, the contribution from the two cycles a and b only must
be eliminated if the even parity of the integrand is taken advantage of. To do so, even
2r periodic functions are sought that provide two degrees freedom with which the cyclic
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Figure 4.2: The clockwise cyclic paths a and b used to define the cyclic periods occurring
in the strip Sa,. Note that cycle a crosses from the upper Riemann sheet (solid line) to the
lower Riemann sheet (dashed line) whereas b is confined to the upper sheet.

periods can be eliminated. A number of efforts were originally made in a vain attempt to
avoid the introduction of additional poles in the strip S,, by relying on functions of form
¥, cos” @/u(a) where , are constants to be determined and n > 0. Such an undertaking
was doomed to fail since it requires the use of terms which either tend to some arbitrary (pa-
rameter dependent) constant or which increase super-exponentially as [Im @] — oo. This
presents two insurmountable problems. First, an arbitrary non-vanishing behavior when
|Ima| — oo will generally, as discussed in Section 3.2.1, compromise the viability of the
solution. Secondly, in both instances the order of the solution as [Im a|] — oo is altered
and its correction, at least in the case of super-exponential growth, is far from obvious.
This led to the inevitable conclusion that some of the functions used to eliminate the cyclic
periods, in order not to compromise the order requirement, must reintroduce poles in S,,.
Acknowledging this, the two 2x periodic functions used to eliminate the cyclic periods are

u(l) cosa sin{
u(a) cos{ cosa —cosd

1
i@, ) = — v%k(a, u) =

@) 4.44)

They are both even, vanish as [Im @] — oo — hence they are acceptable 27 periodics —
and both give rise to elliptic integrals upon integration; the superscripts indicate the type of
elliptic integral produced. The first is particularly attractive since it gives rise to an integral
of the first kind, as discussed in Section 3.5.1, and is free of singularities in the strip of
analyticity. The second gives rise to an elliptic integral of the third kind and has poles
(the integral has logarithmic singularities) at @ = +{ in Sa,. In contrast to vo(e, ), see
(4.30), the poles of v3 (a, u) have residues +1 implying polar periods of +2xj which do not
compromise the single-valuedness of the path integral. However, the satisfaction of the
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requirement that the solution be free of poles in S,, requires the subsequent elimination of
the £ poles and this will be carried out when the branch-free solutions are constructed in
Section 4.3. It is convenient to define the cyclic periods

a b

Inspection of (4.45) reveals that the periods Agn and ng associated with the integrals of the
third kind are functions of the pole ¢, providing one of two degrees of freedoms required to
annul the periods of vo(a, u) + vi(a, u). In contrast, the periods A;n and B;K associated with
the integral of the first kind are constant and a multiplicative constant x must be introduced
to produce the additional degree of freedom. The solution to the first order equation (4.6a)
is then

w(a, u) = exp f {vo(f, u) + vi(&, u) + xv{,,(g, H)+ O'V?,_,,(.f, u)}d§ (4.46)

where the two unknowns to be determined are the explicit « and the implicit {. The quan-
tity o = 1 has been introduced to avoid loss of generality in the definition of the term
associated with the integral of the third kind. It accounts for the eventuality where the sign
of the residues of vin(a, u) must be changed, thereby swapping poles and zeros of w(a, u)
between the two Riemann sheets. Its proper definition will be determined in the course of
the analysis and, to reduce clutter, it is omitted in what follows pending its reintroduction
when appropriate.

An equation system made up of two equations with two unknowns is now obtained by
enforcing vanishing cyclic periods on the cycles a and b or, equivalently, vanishing branch
point to branch point integrals. Mathematically, we have

f(vo +v +avy +v3)de =0 = f(vo + vy + vy, + 3 )da = 0, (4.47a)
a -0

T-0*
f (vo + vy +kvi +v3 )da =0 ) (vo + vy + kvl + 3, )da = 0, (4.47b)
b ed

with the superscripted positive sign in the limits indicating the corresponding side of the
branch cut (see Figure 4.2) along which to integrate. Defining

Agyl = f [vo(ar, u) + vi(a, u)lda, Bo. = f [vo(a, u) + vi(a, u)}dar, (4.48)
a b
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together with the periods defined in (4.45) enables the rewriting of (4.47) as

Aol + KA}, + A3 =0, (4.492)
By. +«B;, + B3 =0, (4.49b)

with the explicit unknown « and the implied unknown { on which depend A3_and ng. This
non-linear system can be solved exactly and the manner in which this is achieved becomes
apparent by eliminating  from (4.49) to produce

A;, B3, - B} A3 = B! Ag, - A} By, (4.50)

where the only unknowns are A3 and B3 . The left-hand side should look familiar: it has
the same form as the left-hand side in (3.60) and (3.63), relationships obtained when we
studied the bilinear relations of Riemann. The technique used in Section 3.3 can there-
fore by employed here to rewrite the left-hand side of (4.50) to provide a more explicit
dependence on the unknown ¢. This is the focus of the next section.

4.2.4 Determination of x and

The key to inverting for { in (4.50) lies in following an approach akin to the one pre-
sented in Section 3.3 but it must be slightly modified since the functions involved are now
2r periodic. Consider therefore the application of the residue theorem on the Riemann
surface delimited by the contour C, shown in Figure 4.3. In essence, the periodicity of the
integrands now being considered is exploited to confine the analysis to a strip of width 2z
in the complex plane. Alternatively, one could proceed by mapping this strip to the entire
plane to obtain an equivalent Riemann surface. Our objective is to carry out the analysis
presented in Section 3.3.2, with the modified path given above, to derive an alternative ex-
pression for the left-hand side of (4.50) in which the unknown ¢ appears more explicitly
as the argument of an elliptic integral of the first kind, paving the way for its inversion by
means of the Jacobian elliptic sine function. To achieve this, we seek to evaluate

f Vi@, u)dV3 (e, u) = 27j ) Res, 4.51)
C
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Figure 4.3: The contour C = Cyp UC ., UC 1o on the upper (solid line) and lower (dashed
line) sheets of the Riemann surface. The thicker inner lines are the canonical dissections a
and b introduced to make the Riemann surface simply connected. The path Cq.p denotes
the portion of the contour enclosing the dissecting cycles a and b.

where the elliptic integral V, (@, u) of the first kind and V._?R(a, u) of the third kind are
defined? as

a.lu)
Vida,u) = f Vo (€, u)dé, ne{l,3}.

6.0)

The path of integration C,, shown in Figure 4.3, delimits a strip of width 2 centered at
the origin of both Riemann sheets and encloses the dissections and branch cuts contained
therein. For 27 periodic functions the enclosed surface is topologically equivalent to a torus
— a handlebody of genus one — as shown in Figure 4.4. The canonical dissections a and
b are introduced to make the surface simply connected, a key requirement in order for the
Cauchy-Goursat theorem to apply and this is more easily appreciated from the dissected
torus in Figure 4.4. Examination of the integral in (4.51) shows that only C,_s, the portion
of the path enclosing the branch cuts and dissections, provides a contribution. The rest
of the integral vanishes either by symmetry, as for the parts along Re @ = +x on C,,, or
identically, as in the case where |Im a| = +c0 on C,. Evaluation of the integral along C,_s

?Recall that the inclusion of the branched u() in the limits indicates integrals taken on the Riemann
surface.
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Figure 4.4: The torus, handlebody of genus one, is for 2 periodic functions topologically
equivalent to the Riemann surface enclosed by the path C in Figure 4.3. It has been made
simply connected by the dissections a and b.

produces, see (3.60),
f Vi (@, u)dV3 (e, u) = AL B3 — B o 4.52)
Cnub

where following our convention capitalized letters denote cyclic periods on cycles identi-
fied by the corresponding lower case letters. The cycles defined by the dissections a and b
in Figure 4.3 are the same as the cycles a and b shown in Figure 4.2 so that A}, = A} and
B3, = B . We therefore obtain, in light of (4.50), the remarkable result

f Varla, 0)dVi (@, u) = 03,83 - B A3 = Al B - B AL, (4.53)
G

which, by virtue of (4.51), can be expressed as a sum of residues. On the Riemann surface,
the integrand in (4.51) has residues at the zeroes of cosa — cos ¢ on both Riemann sheets
ata = (£, zu()) and @ = (-¢, +u()). They are given by

a.u)
:Ff Vé,,(f, u)dfv a= (gv +u)

u(l) cosa sing [ 0

u(@) cos{ sina Jsg

V3 (€, u)dé

a,0)
a=(,tu) if V‘Lr(g’ wdé, a = (=L, +u)

@0)
(4.54)

and one must mindful of the dissections when carrying out these path integrals on the
simply connected Riemann surface.
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The key to obtaining simple expressions lies in exploiting the symmetry between the
location of the four poles in order to express the residues in terms of V. () where, since
u(a) is omitted, the integral is taken on the upper Riemann sheet dissected with branch cuts.
From the symmetry of the poles, the analysis can be restricted without loss of generality
to the case where ¢ is located in the 0 < Re @ < n strip, corresponding to the domains
A, and A, introduced in Section 3.5.1. The cases where { € A, (or VZ‘”({, u) € V) and
{ € A,y (or V) (£, u) € Vs) are considered separately. The associated paths of integration
are respectively given in Figures 4.5 and 4.6. Consider for example the path required for
the evaluation of the residue at @ = ({, u({)) depicted in Figure 4.5(a). The path of inte-
gration starts at @ = 6 on the lower Riemann sheet in order to avoid crossing the canonical
dissection b situated on the upper sheet. It then goes from ¢ to the branch pointata = é-n
where it crosses to the upper Riemann sheet and doubles back to @ = (£, u({)). Accounting
for the contribution to the integral from the different loops as indicated, the path integral on
the dissected surface is

I4709) A
f V(&, u)dE =
(

4,0

B, Al Al |
-3-+ 5 _T+£vh(§'“)d§

- By, + V2 Q)

ol

(4.55)
A

s)_.

where the last integral is the direct path integral from 6 to { on the upper Riemann sheet
as indicated by the removal of u(a) from the limits. All of the other cases have similar
representations due to the symmetry of the location of the residues with respect to the
branch points. In the instance where { € A,, one obtains the residues

Res|,_ iy = = (At = Bir + V2(0)), (4.56a)
Res|,_ o) =+ —2lﬂ - V,L,(g)), (4.56b)
Resln({'_u(m = +(-V2',,({)), (4.56¢)

Res|,_ ; uep =" '125! - Bl + vz',,(g)), (4.56d)

where use has been made of the fact that V. (£, u(0)) = -V, (¢, —1({)). The + signs in front
of the parentheses distinguish the contribution of the integral of the third kind from the path
integral as shown in (4.54). Other paths could be chosen when carrying out the integration
but, since the surface is now simply connected, the final result would not differ. The sum
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Figure 4.5: Depiction of the path used for the evaluation of the residues in (4.54) when
¢ € A,. The thick straight lines represent the branch cuts and the elliptic lines the canonical
dissections. The thin lines indicate the path followed on the upper (solid lines) and lower
(dashed lines) sheets, avoiding the crossing of the dissections, from a = ¢ to the desired
pole. The four cases above account for the four possible poles at (a) a@ = (Z, u({)), (b)

a = (=4, u() () a = (,-u)) and (d) a = (=, —u())).
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Figure 4.6: Depiction of the path used for the evaluation of the residues in (4.54) when
{ € A,. The thick straight lines represent the branch cuts and the elliptic lines the canonical
dissections. The thin lines indicate the path followed on the upper (solid lines) and lower
(dashed lines) sheets, avoiding the crossing of the dissections, from a = § to the desired
pole. The four cases above account for the four possible poles at (a) @ = (£, u({)), (b)

a = (={,u({) (c) a = (¢, ~u({)) and (d) @ = (-{, ~u({)).
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of residues is therefore

Y Res=-AL +2BL +4VL(), (€A, 4.57)

In the case where { € A, we have, from Figure 4.6,

Res|a =) (A’ +V, ({)) (4.58a)
Al:r 1 1
-(-;u(o) = +( > B, - Vz,,({)), (4.58b)
Res|a_({ gy - *'( B;, - V2, )). (4.58¢)
A}
ResL_( ~L-u) ( »;x + Vzl,-r(f))v (4.58d)

and the sum of residues is now
Y Res=-AL -2BL +4VLQ), (e (4.59)

The case when { lies between A, and A, is not considered explicitly here as either (4.57)
or (4.59) will apply, depending on how the elliptic integral and the elliptic sine function are
defined numerically. From the discussion of the elliptic integral of the first kind V, (a, u)
given in Section 3.5.1, VZ‘"(a) € V. if @ € A, > and we therefore write, combining (4.57)
and (4.59),

D Res=-AL 2B, —4VL(Q), Vi eV. (4.60)

with the upper (lower) sign corresponding to V, (V). Alternatively we could have written
instead { € A, ,, a less convenient choice perhaps for the forthcoming analysis. Substitu-

tion of the result of the path integral (4.53) and the sum of residues (4.60) in the residue
theorem (4.51) yields

I 1

B;,
Vi) =-—=+ T +ajA, Vi) eVia. (4.61)

where { is the quantity sought. We have defined above for convenience

1
A= (AL Bow ~ BiAoa). (4.62)

and have also reintroduced o from equation (4.46). One may suspect that the sign change
associated with the B»,/2 term might likely be unnecessary since it corresponds to a change
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of an entire cyclic period Ba,; this will become more obvious once { is expressed in terms
of an elliptic sine function. Before doing so, (4.61) is used to find the corresponding range
in which A must lie given the range of V:}”({). Using the case when V?Lr({) € V, as an
example, and recalling (see (3.74)) that

k=cosd, A, =4K', Bi =4k, (4.63)

the cyclic periods are first expressed in terms of the periods K and K’ so that V) ({) €
[-2K,0] x [-jK’,0]. Equation (4.61) implies that jK’ + 2K + oA € [0,2jK] x [0,K’]
so that oA € [0,-2K] x [0, —jK’]. Similarly, for the case where Vzln({) € V,, we have
oA € [0,2K] x [0, —=jK']. These results are summarized as follows:

. Pt = [0,-2K1x [0,—jK'] o = +1,
Vi) €V, = A€ (4.64)
P7 =1[0,2K] x[0,jK’] o=-l,

and

P; =[0,2K] x [0, -jK'}] o = +I,
P; = [0,-2K] x [0,jK'] o =~-1.

Vi) eVy = A€ { (4.65)

The period parallelograms P, are illustrated in Figure 4.7.

We are now in a position to obtain closed-form expressions for ¢ in terms of A and its
range. We proceed as in Section 3.5.1, and obtain a closed-form expression for { using
the Jacobian elliptic sine function sn. Taking into account the ranges defined above and
substituting the expression for V._}x(a, u) (4.61) into the one for its inversion (3.77), we
obtain after some algebraic manipulations

arccos [ksn(jK' + 3K + oA, k)], AeP]
[ = (4.66)
arccos [ksn(jK’ - K + oA, k)], AeP]

which is an explicit expression for {. The correct expression to use in (4.66) as well as the
correct definition for o = +1 follow from locating A in the appropriate P parallelogram in
Figure 4.7. For instance, if A € P; theno = —1 and { = arccos [ksn (jK’ — K - A, k)]. The
multiplicative constant « follows immediately from (4.49a) or (4.49b). It is apparent that
(4.66) can be simplified since the +3K and -K in the argument of the Jacobian function sn
represent a difference of 4K, one period of the elliptic sine function. Letting #” = PTUP],
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Figure 4.7: The regions P and P3 in terms of the complete integrals of the first kind
K and K’ with & = cosd. The parallelograms P indicate the various ranges in which
A must lie when carrying out the inversion for {2, with equation (4.66). We also define
P =PFUP;.
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Figure 4.8: The behavior of x when 8 = 0.25(1 + j) as a function of 8. The range of § is
from 1.57 at point 1 to 0.01 at point 8. The corresponding values of « are given in Table
4.1.

one obtains the slightly more compact result
¢ = arccos [ksn (K’ + 3K + oA k)], AeP. (4.67)

It is interesting to examine the behavior of « and ¢ as a function of ¢ for a fixed value
of 8. A plot of the values assumed by « in the plane as a function of ¢ is provided in Figure
4.8. The values for the eight sample points indicated on the figure are given in Table 4.1.
Note that « tends to zero as 6 — /2, this will be demonstrated analytically shortly. The
corresponding plot for £ is provided in Figure 4.9 and the values at the sample points are
given in Table 4.2. Note that { apparently tends to & as  — 0, but this has yet to be proved
analytically. Once ¢ and « are known (and the auxiliary o = 1), w(a, u) constitutes a
well-defined branched solution to (4.6a). Its properties, in particular its behaviors when the
branch points vanish, are now examined.

4.2.5 Properties of the branched solution

A solution to the first order difference equation (4.6a) has now been constructed and
has the form

w(a, u) = exp f [Vo(€, w) + Vi€, w) + V3, (€, ) + VA&, w)dz. (4.68)
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Point ] 4
1 1.57 9.94055 - 107° — j2.45286 - 1078
2 1.25 1.49975 - 1072 - j3.79812 - 1073
3 1.00 4.02549 - 1072 - j1.08545 - 1072
4 0.75 6.29989 - 1072 - j1.97355 - 102
5 0.50 6.94261 - 1072 - j3.09402 - 1072
6 0.25 5.68014 - 107 - j5.13024 - 1072
7 0.05 5.15650- 1072 - j7.23819 - 102
8 0.01 5.26927 - 1072 - j7.53512 - 102

Table 4.1: Corresponding values of § and { for the points indicated in Figure 4.8.

0.101

Im{
0.05 |

0.00

n
2.65 Re .

Figure 4.9: The behavior of £ when 8 = 0.25(1 + j) as a function of §. The range of & is

from 1.57 at point 1 to 0.01 at point 8. The corresponding values of ¢ are given in Table
4.2,
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Point 0 {
1 1.57 2.69458 +j9.72932 - 10+
2 1.25 2.71672 +j9.74614 - 107>
3 1.00 2.76460 + j9.80415 - 107>
4 0.75 2.83888 + j9.78570 - 102
5 0.50 2.93723 +j1.04880 - 10~
6 0.25 3.04405 + j1.14004 - 107!
7 0.05 3.11198 +j7.57454 - 1072
8 0.01 3.12925 + j3.62956 - 102

Table 4.2: Corresponding values of § and « for the points indicated in Figure 4.9.

where
vol@) = u(@ a s:nacos ar7 ' (4.69)
u(a) m cos-a —cos*é
-fsinfcosa + & sinf(cos a — cos b
(@) = u(6) cosa —; ' (, )' 470)
u(a) cos 8 cos- a —cos- 6
vé,,(a, u) = —l— CNAY)
u(a)
and
Vg,, (@) = u(f) cosa sind 4.72)

u(a) coscosa -cos{

The pole { and the sign o are determined from (4.67); the coefficient x from (4.49). The
lower limit @y may be any branch point in the strip Sa,, i.e. @ € {6, +( — 6)}. Further-
more, since the integrand has an even parity, the elimination of the cyclic period on cycle
a looping from -4 to ¢ is equivalent to enforcing a null integral from O to 6, implying that
ap = 0 is also an allowable choice. This signifies that the solution obtained is normalized
to unity at @ = 0. The solution is multi-valued in the sense of the branch u(a) and each of
these two branches corresponds to a solution of one of the equations in (4.6). Despite the
fact that the integrand has branch points commensurate with those of u(a), the path integral
in (4.68) is well-defined following the process of polar and cyclic period elimination car-
ried out in the previous section. A byproduct of the procedure is that w(a, «) has poles and
zeros in Sa, associated with the integrand of the third kind v-"z”(a, u). Indeed, from (4.44)
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va (@, u) has residues®, taking the positive branch of u(a),

u({) cosa  sin{

u(@) cos cosa — cos{lo=yr =l “-73)
and in the strip S,, w(a, u) therefore has the poles and zeros
w(a, u) ~ u, (4.74a)
a-¢
a-¢
—u)~TE 4.
w(a, —u) P (4.74b)

which, of course, have periodically occurring counterparts in the complex a plane outside
the strip. Similarly, the solution is free of 8 related poles in the strip but, much like Mal-
iuzhinets’s functions and as inferred by the difference equation (4.6), it has periodically
occurring 8 poles and zeros outside the strip whose order increases with distance from the
strip. The solution goes to its reciprocal when @ — —a or when u(a) = -u(a) and hence
w(a, u) = 1/w(-a,u) = 1/w(e, —u). Since the integrand vanishes as |[Im a| — oo then, as
required,

w(a,u) ~O(1) as|lma| = oo. 4.75)

4.25.1 The limité — n/2

As § — n/2, w(a, u) recovers the known solution ¥, (a) given in (4.12) with an added
multiplicative contribution from the integral of the third kind associated with v%x(a, u). The
key step in understanding the limiting behavior of w(a, u) is the determination of both
and ¢ in that limit. This can be achieved by solely considering the equation system (4.49).
As § — r/2, (4.49b) becomes, with the use of the representation for vy + v; in terms of
¥ 1(a, 8) (4.42) together with the fact that u(a) — cos a,

lim f" {1lnw,(a)+ K, Sin¢ }da:O, (4.76)

e-nf2 da cosa cosa - cos{

and since both the first and the last member of the integrand are analytic in the neighbor-
hood of /2 in the limit, their contribution vanishes and we are left with only a contribution
of mjk (a half-residue from a Cauchy principal value) from the middle term. Hence, in order

3In what follows it is assumed for simplicity that o = 1. The reader should bear in mind that expressions
involving VJZX(Q, u) have to be changed accordingly if instead o) = —1.
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for equality to hold,
Kk — 0, 4.77)

in agreement with the behavior of « in Figure 4.8. It now follows that (4.49a), in the limit,
becomes

lim f{—d— In%¥,(a) + —S'"g—} da =0 (4.78)
0 da C

e—nf2 osa@ —cos{

where the middle term has been removed in accordance with (4.77). The two remaining
terms can be evaluated explicitly. We have, taking the limit,

/2 n/2
f” —q- In¥(a)da = In¥(@)] =In¥(n/2) 4.79)
o da 0
since ¥ (0) = 1. The other term gives
"2 sing tané +tan2[”  anf+1
f ———da=In —| = In 7 (4.80)
o Cosa—cosd tan § - tan § | tan — |
and (4.78) then implies
s—n/2 g 1 +¥(n/2)
—52tan”! ———. 4.81
¢ T @) (4.8

When 8 = 0.25(1 + j) this yields £ = 2.69458 + j9.72932 - 107* which is identical to the
value given in Table 4.2 for 6 = 1.57 . Since « vanishes when ¢ = /2, the solution w(a, )
in (4.68) assumes the simple form

tan 3 +tan §
w(a, u) = ——;————‘-‘I’l(a). (4.82)
tan 3 —tan $

and, similarly,

tané-tang |
= = (4.83)

w(a, —u) = ,
tan § + tan § ¥1(@)

where the rational term is the contribution from v?,_x(a, u) in the limit. The recovery of
the known solution ¥ () is made possible by appropriately constructing the branch-free
solutions, the topic of the next section.
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It can also be shown that if vi(a, ) given in (4.36) , as opposed to v{'(a, u), had been
used to construct the solution the same limit (4.82) is recovered. Indeed, using (4.39) and
(4.42),

40 €020 & - (1)

u(a) coséd da 2 n

sin@ u(6)
cos B u(a)

vola, u) + vi(a,u) = (4.84)

and (4.49b) becomes

limf_{a%ln‘l‘l(a)—(—l-—g) sinf _k_,__sing }da=o (4.85)

e—xf2 2 nmjcosa cosa cosa—cos{
implying that

K— (l - g) siné@. (4.86)
2

Using this value of « in conjunction with v|(e, «) in (4.49a) now reproduces (4.78) and the
limiting value of { remains unchanged. This only serves to underline the previously made

statement back on page 70 that v} (a, «) and v{'(a, ) are equivalent within the framework of
this construction process.

4.25.2 Thelimité = 0

This is considerably more complicated than the case § — /2 considered above. Firstly,
the function u(a) = Vcos?a - cos?é6 — Vcosla - | and the cuts now span the real axis.
The function in that limit is free of branch cuts but it becomes a dissected version of tjsina.
This is inevitabie as the function u(a), as defined, is even and the end result is therefore a
version of sin a suitably dissected so as to obtain an even function. The resulting dissections
and the value taken by u(a) in that limit are shown in Figure 4.10. Secondly, singularities
arise at @ = £ which further complicate matters. This limit, in particular the behavior of
the pole £, is not well understood and only a partial treatment is given here. The multiplica-
tive constant « is itself determined using (4.49a). If it is assumed* that u(a) — —jsina as

*This may seem unjustifiable given the previous remarks on the behavior of «(a). It is however valid in
the context of the branch-free solutions.
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—jsina -jsina

jsina jsina

Figure 4.10: Configuration of the 2 strip of analyticity when 6 — 0 when the cuts then
stretch across the real axis. The values assumed by u(a) in the plane are indicated. The
positive and negative signs indicate relative changes in sign of u(a) across the different
cuts.

0 — 0, we obtain

) sin(d) « sinacosa
lim - = - — 5
e=0 J_,. sina m cos*a — cos- 4§

_sin(@) cosa —£sinfcosa + 3 sinf(cosa - cos ) (4.87)

sina cosé cos? @ - cos? @
j sin({) cosa  sin{
sina  sina cosl cosa —cos{

+ K }da=0

which has half-residue contributions at @ = 0 (or, alternatively, taking the Cauchy principal
value) from all terms save the first one yielding

x-,-j{—1+(1-9) ! +'+°°s{} (4.88)

2 \2 ~mJcosé cosl

where { is undetermined. Using the above value of « the expression for w(a, u) becomes,
after some algebra and still assuming the above limit,

fa fsinOcosf—(g—%)cosOsin{;‘—}sinZ{ 11 -cosé
w(a, i) = exp {- -=
0

cos® & — cos? 6 2 siné

l+cosd 1 +sin{cos§-‘ sing
cos{ siné cos{sinécosa~cosd

}dg (4.89)
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which, after comparing with (4.21), becomes

l+cos |1 sin{cosé  sind
cos{ siné cos¢sinécosa —cosd

w(a, u) = exp fﬂ {%In‘[‘g(.fH- }d.f. (4.90)
0

The limiting value of ¢ should be obtainable by enforcing vanishing cyclic periods on the
b cycle going from O to x but the presence of a pole in the integrand at @ = 7 makes this
non-trivial. As shown in Figure 4.9, numerical computations suggest that { tends to a value
in the neighborhood of mas § — 0. If this is the case, the above neatly tends to the known
solution ‘¥»(e) as the extra terms involving { then vanish. However, this appears incorrect
due to the fact that d/da In ¥»(£), while satisfying the requirement for a vanishing cyclic
period (or polar period in the limit) on the loop a, does not obviously satisfy a similar
requirement from O to x.

4.3 Branch-free solutions

We now proceed to construct a pair of branch-free solution having the desired analytical
properties in S»,. The means to do so were introduced back in Section 3.1.1 where the
branch-free constructs (3.3)

ts(@) = w(a, u(a)) + w(a, —u(a)), (4.91a)
_ w(a, u(a)) - wa, —u(a))
- u(a) )

ta(a)

(4.91b)

were discussed. It was shown that provided the branched function w(a, u) is well defined,
the resulting expressions are branch-free. As such, (4.91) constitute meromorphic solutions
but, as pointed out in (4.74), w(a, 1) has poles and zeroes in the 2r strip of analyticity.
Consider therefore the linear combination

n(@) = Qi(@)|ts(@) + n(@aa)) (4.92)

where Q(a) and ri(a) are both unit periodics. In order to satisfy the order requirement,
Oi(e) and ri(a)/u(a) are O(1) as |Ima] — oo. The trick here is to choose ri(a) such
that the poles can be eliminated analytically without violating the order requirement. The
approach used is best shown by rewriting ¢, (@) in terms of w(a, +u), viz.

ri(a)

ti(a) = Q\(a) {(l + ———) w(a, u) + (l - rl(a))w(a, —u)}. (4.93)

u(a) u(a)




The benefit is that the poles and zeroes of w(a, +u) are known from (4.74), and, if r|(a) is
chosen such that a double zero is introduced at a pole of, say, w(a, —u), then the expression
in curly braces has a known pole-zero pair. Consider therefore the case where

LG (@+) (4.94)

u(a)

which implies that the second term in braces in (4.93) has a simple zero coincident with
that of w(a, u) and the term in curly braces has a pole at @ = { due to w(a, u). Explicitly,

(1 + rl(a))w(a’u) + (l - w)w(a‘ —u) ~ (l + _':l_(ill) ﬂ +(0 +{)2a_-'_{- (495)

u(a) u(a) wa)a-¢ a+{

The function r|(a) is constructed by assuming a 2x periodic trigonometric form
ri(@) =po +picosa+pasina (4.96)

and enforcing the requirement (4.94). It can thus be shown that

sin® ¢
P = cos{(—po + @) )
R 4.97)
=sin{{po + cos’¢
PRV T Uy )
with py arbitrary. Choosing py = 0, then
(@) = cos{sin"dcosa + sm{cos~65ma. (4.98)

u(¢)

It is now only required to choose the unit periodic Q,(a) to eliminate the pole at @ = ¢ and
the zero at @ = —¢ of the term in curly braces in (4.93), leading to the choice

tan  —tan &
Q@) = ——— (4.99)
tan 3 + tan 3
which is O(1) as [Im a| — o, as required. The solution is therefore
IS a
tan3 —tan
tia) = —_— {(l + rl(cz)) w(a, u) + (l - C'—@) w(a, -u)} (4.100)
tan 5 +tan § u(a) u(a)
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with r (a) given in (4.98). This is free of poles and zeros in S, and O(1) as [Im a| — oo.
Since ri(a) — cosa and u(a) - cosa as § — n/2, then

(@) = 0,(a) {(1 + °—°S-‘5)‘P‘(a) + (1 - 2‘°’—‘5)Q'(")} =¥(@ (4101

cosa/Q(a) cosa/\¥(a)

where (4.82) and (4.83) (together with (4.99)) have also been used. The solution #;(a)
therefore recovers ¥ (), given in (4.14), the known solution when 6 = n/2. The other
limit of interest where § — 0 is, as mentioned in the previous section, much less obvious.
Despite this there are a number of similarities with the § — /2 case. Indeed, the factors
1 £ ri(a)/u(a) once again assume limits of O or 2 depending on the branch of u(a), as
before. However, in this instance the limiting value is also a function of @. Indeed, now
ri(a@) — sin{ sina/u({) so that,

ri(@) s—o sinsina _

l u(a) ’ w(uia)

t 1 (4.102)

depending on both the value of @ and {. Assuming { fixed, which is certainly the case
in the context of a given problem, then r (a)/u(a) will go to 1 on the upper (lower) half
of the plane, and -1 on the lower (upper) half of the plane. This relatively complicated
behavior does have its benefits. Indeed, since the u(e) terms appearing in the definition of
w(a, u) will have the same behavior, it implies that, within the framework of the branch-free
solutions, it will be allowable to consider u(a) as behaving as, say, —jsina in that limit.
It is however impossible to complete the analysis without determining the limiting value
of £ and this, as discussed in the previous section, is currently unknown. All these results
do however suggest that the solution is closely related (if not exactly equal) to the ¥.(a)
solution. This is supported by numerical computations which suggest

t(@) 25 wy(a). (4.103)

The technique was implemented in Fortran 77 and typical results are shown in Figure 4.11
which gives |t;(a)| computed along the real axis for a particular 6 and a variety of 6. We
observe that fi(a) — ¥,(a) as § — n/2, and to ¥1(a) as § — 0. As required, the solution
has continuous real and imaginary parts with the corresponding plots given in Figure 4.12.

A second solution obtained by following a similar process is

hia) = Os(a) {(l - E@) w(a, u) + (l + -@) w(a, —u)} . (4.104)

u(a) u(a)
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Figure 4.11: Magnitude of the branch free solution rj(a) given in (4.100) when =
0.25(1 + j) for various values of 6. The thicker lines correspond to the known limiting
functions ¥(a) per (4.12) for § = /2 and W2 (a) per (4.18) for § = 0.

93



4 .
\ ¥i(a)
3t 6=125
6=1.00
0=0.75
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Figure 4.12: The (a) real and (b) imaginary part of the branch free solution ¢,(a) given in
(4.100) when 6 = 0.25(1 + j) for various values of 6. The thicker lines correspond to the
known limiting functions ¥(a) for 6 = 7/2 and ¥a(e) for 6 = 0.
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and the elimination of the pole at @ = ¢ is now sought instead. This necessitates

r(a)
u(a)

~(a-¢) (4.105)

and the first term in braces in (4.104) will therefore now have a simple zero at @ = ¢
coincident with that of w(a, —u) and the only pole is that of w(a,-u) at @ = —{. Once
again, write

ra(a) = pp + 01 cosa + pa sina, (4.106)

and enforcing the requirement (4.105) with gg = 0 leads to

cos sin’ &
o= _(a)
we (4.107)
_ _sin{cos" é
- u(a)
so that
(@) = cos{sin“dcosa — sm{cos*ésma. (4.108)
u({)
Elimination of the pole at @ = ¢ and the zero at @ = —{ in (4.104) leads to
tan § +tan & I
Q@)= —2- 2 - (4.109)
i} tanf{-tang Qil@)
and
{ a
Lia) = — {(l - m) w(a, u) + (l + r_(a)) w(a, —u)} 4.110)
tan; —tan § u(a) u(a)

with ra(a) given in (4.108). This is free of poles and zeros in S», and O(1) as |[Im a| — oo.
Notice however that, since w(—a, u) = w(a, —u), Q\(-a) = @2(a) and r|(-a) = rx(a),

ta) = n(-a); 4.111)

the solution #,(e) is the reflection across the origin of #;(a). Accordingly,

h(e) S—nf2 I
B ¥ (a)

4.112)
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Figure 4.13: Magnitude of the branch free solution r2(a) given in (4.110) when 6 =
0.25(1 + j) for various values of 8. The thicker lines correspond to the known limiting
functions 1 /¥ (e) for § = n/2 and ¥2(a) ford = 0.

whereas, since ;(a) is even as § — 0, f>(a@) shares this limit with ¢;(a) and
540
(@) — Ya(a). 4.113)

However, a second solution can be obtained in that limit and it is given by 1/¥1(a). The
behavior of f,(a) is shown in Figure 4.13, an expected result given (4.111) and the behav-
ior of £;(a) shown in Figure 4.11. We have therefore succeeded in constructing a pair of
branch-free solutions to the second order difference equations (4.1). They have the desired
analyticity properties and recover known solutions in the limits when the branch points
vanish or, equivalently, when the second order equation trivially factors into a pair of un-
coupled meromorphic first order equations.

4.4 Generalizations

A measure of the complexity of the equations under study is provided by the width of
the strip of analyticity and the number of singularities, both poles and zeros, found therein.
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The configuration of concern throughout this chapter is a strip of width 27 containing four
poles, due to vy(a, ), and four branch points, as pictured in Figure 4.1. This is significantly
simpler than the topology associated with the anisotropic half-plane illustrated in Figure 2.4
which has width 47 and contains no less than 16 poles (on each sheet) as well as 16 branch
points. To gain insight into how to attack the problem of the half-plane, two variations are
examined. The first is for the case of a strip of width 2 where the number of singularities
populating the strip is doubled to eight. This is, in essence, the case of the anisotropic half-
plane with a strip of analyticity reduced from 4x to 2x. For the second case, the width of the
strip of analyticity is doubled to obtain a strip of width 4x enclosing eight poles and eight
branch points. In both instances, the equations considered are mathematical extensions of
the physical equations.

4.4.1 Generalization I: Doubled number of singularities

We consider a first order equation of the form

w(a +m,u) _ u(@)Fysina
w(@—-mu) ul@)tysina

4.114)

where y € C and

u(@) = /(sin’ e - sin® 8, (sin’ @ - sin’ &) 4.115)

This is the same as equation (2.57) obtained in the case of the anisotropic half-plane but
has a reduced period 2. The cuts of the branched function u(a) are such that it is even
symmetric and

u(a) = u(—a) = u(a + m). (4.116)

The resulting configuration is as shown in Figure 4.14. We proceed by taking the logarith-
mic derivative of (4.114) and since

d Ing(a, u) = k(a) ( ?finel s.inoa _ .2‘s‘in 6, s-in’a ) @117)
da u(a@) \sin"@ —sin° 6, sin” @ —sin” 6,
where
k(@) = 751091 sin 6, -sm‘a’ @.118)

sinf; —siné»
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Figure 4.14: The configuration of the strip of analyticity of width 2r in the case of the first
generalization. This is, in essence, the configuration shown in Figure 2.4.

a solution of the form
w(a, u) = exp f{vo(g, u) + va(€, u)]d{" (4.119)

is sought where

a d a k(a) ( 2siné,; sina 2sinésina )
vola,u) = ———Ing(a,u) = —— = -— —1. (4.120
olex, ) 2nda J 2nu(e) \sin*e - sin*g, sin’a —sin* 6, )

This has poles at @ = +6, 3, (7 - 6, »). To eliminate them, choose

e = @ ( _f@8) __ fla) ) @.121)
u(@) \sin*a@ -sin“g; sin"a -sin" 6,
where, to maintain the required odd parity,
1 6 . 1.
f(a,8) =|= - —]cos@sina — = sinacosa. (4.122)
2 r 2

It is observed that while the individual members of (4.121) are non-vanishing as |Im a| —
o0, the difference of the two does since they tend to the same limit. Summing up vo(a, u)
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and vi(a, u), we have

vola, 1) + vi{a,u) =

k@) & (-1)"2sing, cose - % cos d, sina + 1(cos b, - cosa) sina

- — . (4.123)
(@) £ sin"a@ - sin~ 6,
In the limit 8, = 6,, (4.114) becomes
w(a +n) =s!na+s!n01 s!na—s!n()g 4.124)
w(@-n) sina-siné;sina +siné,
which, in terms of Maliuzhinets functions, has a solution
‘¥i(a, 6))
(a) = 4.125
w(a) ¥y(a.6) ( )
with
Unp\@ + 35— 0)Yrpla-3+6
¥y(e,6) = — ( i )” zlo-§+9) (4.126)
Y (E - 9)
Comparison with (4.18) and (4.21) shows
d , ¥;ia.0
Vol ) + vy ) = @) 4 Fale8) 4.127)

u(a) da . ¥3(a, 62)

and since k(a)/u(a) — 1 as 8; — 6,, the known solution is then recovered.

The elimination of the cyclic periods requires, at first glance at least, three degrees of
freedom since we are dealing with functions having an odd parity. The contribution from
-0y to d, therefore vanishes, leaving us to deal with the elimination of the branch point to
branch point contributions (see Figure 4.14) from ¢, to 4., 6, to 1 — 8> and &7 - &, to 1 -~ 2.
The requirement for an odd parity requires the use of elliptic integrands of form

] _sine _ w(d) k(@) 2cossina
Pl )= (%) = u(@) k() sin*a - sin*¢{

u(a)’

(4.128)
which provide two degrees of freedom: one from a multiplicative constant associated with

véx(ar, u), and one from the pole { of VZ_K(a, u). Interestingly enough, it turns out that two
degrees of freedom are sufficient to annul all of the cyclic periods due to the symmetry
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properties of the the expressions involved. It can be shown that if

f 2 [Vo(&, ) + vi(€, ) + kv, (€, 1) + Vi (€, w)} dE = 0 (4.129)
4

then

-0
f Vo€, ) + viE, ) + VL, (€, ) + V3 (€, )} dE =
-4

1d k(&) smfcosf
_— 257 )y d¢=0. (4.130
f {2(1“5‘ BE.u+ u¢) Z( sin’ £ - sin’ 0} ( )

It is therefore sufficient to enforce (4.129) as well as

-0

j; l (Vo(€, u) + vi(€, ) + KV (€, ) + Vi (€, w)] dE = O (4.131)
!

in order to eliminate all three cyclic periods in the strip of analyticity. This is the same
level of complexity as for the problem of the penetrable wedge which also required only

two degrees of freedom.

While the elimination of the cyclic periods is apparently straightforward, the construc-
tion of branch-free solutions will be more complicated than for the more elementary case
solved earlier. Indeed, the term associated with the integral of the third kind now has dou-
ble the number of poles due to the sin> @ — sin® ¢ term in the denominator required to obtain
the desired symmetry.

4.4.2 Generalization I1: Doubled periodicity

We now consider a more direct extension of the equation solved previously. The in-
crease in complexity now comes from doubling the periodicity of equation (4.6a),

w(a + 2m, u) _ _ u(a) - u(®
w(a - 2m,u) §(a,u) = u(a) + u(@)’ (4.132)
with, as in (4.4),
u(a) = Vcos?a - cos?é, (4.133)

and is defined such that u(a) = u(a+2n) = u(-a) = —u(a+n). This yields the familiar con-
figuration found in Figure 4.1 but extended to a 4x strip as shown in Figure 4.15. Initially
at least, the construction of the solution follows closely the analysis presented earlier in this
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Figure 4.15: The configuration of the strip of analyticity of width 4x in the case of the
second generalization. This is, in essence, the configuration shown in Figure 4.1 with the
period doubled.

chapter. Application of a logarithmic derivative to obtain vo(a, ) is straightforward and so
is the elimination of the polar periods. However, the elimination of the cyclic periods is
considerably more complicated since the analysis must now be carried out on a Riemann
surface of genus three. This complication warrants a thorough investigation, and is carried
out in the next chapter.

4.5 Summary

The technique developed in Chapter 3 was applied to solve a second order functional
difference equation which is a generalized version of the one obtained for the problem
of the penetrable composite right-angled wedge. A pair of meromorphic solutions were
obtained which are free of poles and zeros in the strip S», and which, as required, are
O(1) as |Im a| — oo. The solutions tend to known solutions in the limits where the second
order equations trivially factors into a pair of uncoupled meromorphic first order difference
equations. This is shown explicitly for the limit § — a/2 and numerically when § — 0.

Two generalizations were also examined at the end of the chapter; they correspond
to natural mathematical extensions of the problem solved. In the first one, the first order
difference equation considered leads to a strip of analyticity of width 2z but with double
the number of branch points. This corresponds to the case of the anisotropic impedance
half-plane with the period reduced to 2x. It was shown that the process of cyclic period
elimination is of the same complexity as the one for the equation of the penetrable wedge.
The second generalization doubles the period of the equation for the penetrable wedge.
This effectively doubles the width of the strip of analyticity and the number of singularities
that must be addressed. The elimination of cyclic periods is now more complicated and is
the focus of the next chapter.
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CHAPTER S

MATHEMATICAL EXTENSION OF THE PENETRABLE WEDGE:

EquartioN witH PERIOD 47

SOLUTIONS of the second order equation for the problem of a penetrable composite
right-angled wedge were derived in the previous chapter. A mathematical extension of
that equation, obtained by doubling its period from 2x to 4n, is now considered. This is
the second generalization mentioned at the end of the last chapter and it provides a test of
the applicability of the method in scenarios of increased complexity. Whereas the analysis
up to and including the elimination of the polar periods follows closely that of the original
equation, significant differences arise in the elimination of the cyclic periods since part of
the analysis must now be carried out on a Riemann surface of genus three. Furthermore,
the scarcity of degrees of freedom makes the construction of meromorphic solutions hav-
ing the desiring analyticity properties difficult, and both analytical and partially numerical
approaches are presented.

5.1 The difference equations

The second order functional difference equation is the same as the one for the penetrable
wedge (4.1) save that its period is now doubled to 4, viz.

cos?é — cos* @

t(a+57r)—2{l - 22—
cos- @ — cos- 6

}x(a+n)+r(a—37r)=0. é.1
A pair of meromorphic solutions free of poles and zeros in the strip S, = {@ : |[Re | < 2n)
and O(1) as |Im @| — oo is now sought. Recall that, within the scope of the generalized
equation, the parameters 6 and § are allowed to vary independently — see page 26 for more
details. Factoring the difference operator, as done in Section 2.1.2, produces the expected
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Figure S.1: The strip of analyticity Si» = (@ : |Re a| < 2r}. The thick lines indicate
the branch cuts of «(a); the positive and negative signs indicate relative changes in sign of
u(a) across the different cuts.

first order equation pair

wla + 2r, +u) a _ u(a) - u(d)
w(a - 27, +10) 8(a, +u) = u(@) + u@)’ (5-23)
w(a + 27, —u) o u(a) + u(@) ,
wa—2r-w S T we) (5.26)
of period 41 where
u(a) = Vecos?a - cos?é. (5.3)

The same definition for u(a) is kept: the branches of u(a) are chosen to have the same
symmetry as cosa, hence u(@) = u(-a) = —u(a + n). The resulting 47 wide strip of
analyticity is illustrated in Figure 5.1. Comparison with Figure 3.3 shows, as expected,
that the strip of analyticity has been doubled and now contains eight branch points at @ =
+6, £(6 — 1), £(6 + 1), (=4 + 2x). From the symmetry of the equation pair, it is sufficient
to restrict our attention to (5.2a) and, as before, we construct w(a, «) such that w(-a, u) =
w(a, —u) = | /w(a, u).

S.1.1 Limiting cases of interest

The limiting cases of interest are those where the branch points vanish, they are the
same as those in Chapter 4 since u(a) remains unchanged. These correspond to § — n/2
when u(a@) — cosa and § — 0 when u(a) — jsina. In both instances the second order
difference equations (4.1) can be factored by inspection into a pair of first order differ-
ence equations whose right-hand sides are meromorphic rational functions of trigonometric
polynomials. Their solutions are readily available and expressed in terms of Maliuzhinets
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functions [MALIUZHINETS, 19584].

5.1.1.1 Thelimité — n/2
In this instance u(a) — cos a and the first order equation (5.2a) becomes

w(a +2r,u) cosa —cosé
w(a - 2m,u) cosa +cosé

(5.4)

and since (5.2b) is the reciprocal of (5.4), its solution in the limit is | /w(e, u). From Section
4.1, it follows that

w(a, u) = ¥i(a) = g———:’r— (5.5)

which is meromorphic, free of poles and zeros in S;, and O(1) as {Ima| — . This
should be compared with ‘¥,(e) in (4.12) which has the same form but involves the ¢, 2 (@)
function. An integral representation is obtained by making use of (see {MALIUZHINETS,
1958a] and, for corrections, [SENIOR AND VoLaKis, 1995])

[ nsiné -2 V2nsinf +
Yela) = exp-§ j: ¢ = ngg. (5.6)

cosé

Substitution in (5.5) provides, after manipulation,

—% cos@siné + ¢, + ¢ cosg + @3C0Ss€ + 4 COS 3?"
WYi(a) = exp
0

5.7
cos2 & - cos? 6 ds -
where
|
¢ = 1 sinfcos 4,
= l( coso+sin0)+lcos-0-(cosg+sing)
173 7 T T g\ AR
o 1\ . (5-8)
Y3 = (5; - Z)smo,

= l(—cosg+sin 9)
=3 ; Y3

As for the case of the 2x periodic equation considered in the previous chapter, the above
will enable us to demonstrate that the general solution recovers the limiting functions ¥4(a)
and 1/¥4(a) identically as § — n/2.
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5.1.1.2 Thelimité - 0
Now u(@) — jsin @ and the first order equation (4.6a) become

w(a +2m,u) sina —sinf
w(a -2nr,u) sina +siné

(5.9

and once again the solution to (5.2b) is provided by 1/w(a, ). From the material in Section
4.1.1, it follows that

w(a, u) = ¥s(a) = cos < w;(i -0)
4 c//,,(a+§—0)¢,,(a—§+0)

(5.10)

which is meromorphic, free of poles and zeros in the open strip S, and O(1) as |Im a| — co.

[t invites comparison with (4.18) which is the corresponding solution when the period is
2r. Since

k’/n(0-27f+§—9)%(0"27f-§+9)__sina—sinO (5.11)
:p,,(a+2yr+§-0)¢,,(a+2:r—§+0)— sina +sin6’ .

the cos a/4 term provides the required change in sign and also exactly cancels the growth of
the denominator. However, it inevitably leads to zeros (‘¥'s) or poles (1/¥s) at @ = +2r on
the edges of the strip. Based on the properties of the Maliuzhinets functions, it is apparently
impossible to construct a solution to (5.9) that is O(1) as |Im a] = oo and simultaneously
free of poles and zeros in the closed strip S,.

5.2 General branched solution

The approach followed is the same as in Chapter 4 though it must now be adapted to
the strip S, instead of S, and this will have ramifications on the logarithmic derivative
as well as the elimination of the polar periods. Furthermore, the requirement for vanishing
cyclic periods now leads to a system of four equations in four unknowns which can be
decoupled into two systems of two equations in two unknowns.
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5.2.1 The logarithmic derivative

Applying a logarithmic derivative to the first order equation (5.2a) results in

d d
— Inw(a + 2rm,u) - i Inw(a — 2, u) = — Ing(a, u)
da de da

_ u(@) 2sinacosa
" u(a) cosla - cos?6

(5.12)

which is exactly the same as in (4.22) save for the period occurring in the left-hand side.
This distinction will alter the form of vo(a, u). If we let vo(a,u) = d/dainw(a, u) and
proceed as in Section 3.2.1, we obtain

a u(d) sinacosa
21 u(a) cos?a —cos?f

ad
= —— = 5.13
Vo(@, u) = === In g, u) (5.13)
and this differs by a minus sign from the corresponding expression (4.26) obtained in the
previous chapter. A tentative solution to (5.2a)

wia, u) = exp f' Vo€, u) + van(€, w)de, (5.14)

immediately follows where v,.(a, u) is a yet undefined 4x periodic function which elimi-
nates the periods of vg(a, ) to obtain a well-defined path integral. The function vo(a, u)
is even, aperiodic and vanishes as [Im a| — oco. Within the strip S, it has branch points
commensurate with those of 1/u(a) and poles at the zeros of cos® @ - cos® 9. The function
var(@, 1) now consists of five functions: v, (a, u) to eliminate the polar periods, and v} (a, u),
vi.(@,u), v} (a,u), v3 (a,u) to eliminate the four cyclic periods that arise. This should be
contrasted to the solution in the last chapter where only two functions were required to
annul the cyclic periods. At the end of Section 4.2.1, it was showed that examination of the
limit as |Im a] — oo was sufficient to dismiss uncertainty with respect to what is seemingly
an arbitrary coefficient when taking the logarithmic derivative. The same analysis shows
that (5.14) indeed satisfies (5.2a).

5.2.2 Elimination of polar periods

In addition to the branch points of u(a) the tunction vy(a, u) has poles in the strip S, at
the zeros of cos® a —cos’ @ at @ = +6, +(7 ~8), £(x +6), +(2r — 8). The poles have residues

Res vo(a, u) = :—n{% (5.15)
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which, being generally non-integer, jeopardize the single-valuedness of the path integral
in (5.14). Of course, since a solution that is free of poles is sought, the mere presence
of poles, regardless of their residue, warrants their elimination. The 4x period function
vi(a, u) introduced to eliminate the poles must have the same even parity as vo(a, u), vanish
as |[Im a| — oo and provide the four required degrees of freedom to eliminate the offending
poles. In this instance we are faced with no less than four possible combinations. Indeed,
the function v, (e, u) will generally have the form

_ u() 1 3 na
vila,u) = P " ;% cosT (5.16)

which is even and vanishes as [Ima| — . We require, however, only four degrees of
freedom as opposed to the six provided by the constants ¢, in (5.16). Examination of the
cos na/2 terms at the 8 poles show that the g, and ¢, terms are dependent since they share
the same symmetry at the poles. Similar consideration shows that the ¢, and the ¢, terms
also form a dependent pair. Since only one member from both pairs is admissible, the
general solution will involve one member of {¢g, ¢4}, one member of (¢, ¢s), ¢2 and ¢; for
a total of four possible combinations. Though not explicitly demonstrated here, indications
are that each of those four possible choices ultimately leads to the same final solution once
all cyclic periods have been eliminated. This stems for the fact that we must now introduce
two integrals of the first kind in the course of eliminating the cyclic periods as compared
to only one in the 2z case. Moreover, when combined with v,(a, u), the first leads to terms
having the same symmetry as the {gy, @4} pair above whereas the second leads to terms
having the same symmetry as the {g|, g5} terms. To prove the equivalence, one has to show
that the combination of v (a, «) and the two terms leading to integrals of the first kind is
invariant regardless which of the four combinations of ¢, is chosen above. This may be
difficult — or tedious — to show generally but is a simple matter when either § — /2 or
- 0.
In light of our experience for the equation with period 27, we choose

3
u(f) cos @ Yo + @1 €S § + 2 COS @ + 3 €OS F
u(a) cos 6 cos?a — cos? 8

vila,u) =

5.17)
where all the terms in the numerator are even and 4r periodic. This has the benefit of

remaining free of poles in the limit as § — m/2 since the two leading coefficients go to
unity. A system of four equations in four unknowns is obtained by enforcing Res {vo(a, u)+
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n(a, u)} = 0 and identically recovers the coefficients in (5.8). Comparison with (5.7) shows

(e ) + e u) = & 52 d 1y @), (5.18)
u(a) cosé da

which reduces to d/de In ¥4(e) when § = /2. Again, in the simpler case where the right-
hand side of the logarithmic derivative of the first order equation (5.12) is meromorphic,
so that the integrand of w(a, u) in (5.14) is free of cyclic periods, the known solutions
expressed in terms of Maliuzhinets can be recovered by following the above procedure of
pole elimination. Note that the requirement for a solution free of poles will automatically
lead to the above choice of v;(a, u) since the three other possibilities, when considered on
their own, have poles in the limit as § — /2. The solution to the first order equation (5.2a)

is now
w(a, u) = exp f) (vo(&, ) + Vi€, ) + vanl€, w))dE, (.19)

where the sum vg(a, u) + vi(a, u) is free of poles in Sy,. We now turn our attention to the
elimination of the multi-valuedness that arises from the presence of the branch points of

wa).

5.2.3 Elimination of cyclic periods

To mitigate the adverse effect of the branch points on the single-valuedness of the
path integral in (5.19), we must enforce vanishing branch point to branch point integrals
throughout the strip Sy, as discussed in 3.2.3. Exploiting the even parity of the integrands,
we are faced with eliminating the contributions from the four cycles a, b, ¢ and d shown
in Figure 5.2. Unit periodics, i.e. 4r periodic functions, providing four degrees of free-
dom are therefore required and, following cur discussion on the behavior of functions as
|Im @] — oo, they must also vanish in that limit. We introduce the following four even 47
periodic terms:

u({ar) cosa sin {a,

1
, =— = 2
Varl@: 4) u(a)’ Ve, u) u(@) cos s, cosa —cos (520
and
v} (@, u) = : v (a,u) = uldur) cosa l sin% (5.21)
T u(@)’ e u(@) €os&yr2cos g — cos S '
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Figure 5.2: The clockwise cyclic paths a, b, ¢ and d used to define the cyclic periods
occurring in the strip S4,. Cycles a and ¢ cross from the upper Riemann sheet (solid linc)
to the lower Riemann sheet (dashed line) whereas b and d are confined to the upper sheet.

These all give rise to elliptic integrals with the first pair being 27 periodic and the second
4r periodic. The subscript identifies the periodicity of the term while the superscript iden-
tifies the type of elliptic integral to which it gives rise. Hence v} (a, u) is 27 periodic and
gives rise to an elliptic integral of the first kind while v3 (e, u), also 27 periodic, gives rise
to an elliptic integral of the third kind with logarithmic singularities at +a,, £(¢, + 27).
Likewise, v3 (e, u) is 47 periodic and gives rise to an elliptic integral of the third kind with
logarithmic singularities at +¢i,. The use of expressions associated with integrals of the
third kind — with poles having non-vanishing residues — results from the impossibility of
introducing the required number of degrees of freedom without violating the order require-
ment. It must be emphasized that the poles of both v3, (a, u) and v} (a, u) have residues +1
and their polar periods therefore do not disrupt the single-valuedness of the path integral.
For future reference we define the cyclic periods

13 _ 1.3 3 _ [ .3
Ajpar = f Varar(@, w)da, Byrin= jb‘vm‘x(a, w)da,

aq

(5.22)
C,Lﬁ = f vé;f_4”(a, u)da, Dl_;z = f véf_“"(a, u)da,
[ d
and, as in Chapter 4,
Agsl = f[vo(a, u) + v((a, u)]da (5.23)

with similar definitions on cycles b, ¢ and d. Inspection of (5.20) and (5.21) reveals that
the periods associated with the integrals of the third kind are functions of the poles {2,
and &4, providing two of the four degrees of freedoms required to annul the periods of
vo(@, u) + vyz(a, 1). In contrast, the periods associated with the integrals of the first kind are
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constant and two multiplicative constants, k», and ., must be introduced to produce the
two additional degrees of freedom. The solution to (5.2a) then takes the form

w(a, 1) = exp f { Vo(€, ) + Vi(€, u) + KagVi (€, ) + T2V3 (€, 1)

an

+ KapVig (€, 1) + O3pvi (£, u)}d.f (5.24)

where the four unknowns to be determined are «ay, {5, and 4z, {yr. The quantities o>, = %1
and o, = %I have been introduced to avoid loss of generality in the definition of the
terms associated with the integrals of the third kind. They account for the eventuality
where the sign of the residues of VZ_R(ar, u) or vik(a, u) must be changed, thereby swapping
poles and zeros of w(a, u) between the two Riemann sheets. Their proper definition will be
determined in the course of the analysis and, to reduce clutter, they will be omitted in what
follows pending their reintroduction when appropriate.

An equation system consisting of four equations in the four unknowns is obtained by
enforcing vanishing cyclic periods on the cycles a, b, ¢ and d. Doing so for the cycle d, for
example, leads to

d+2r
f (vo +v + Kv_,,v—l,_” + vgx + x.;,,vl,, + vix) da=0 (5.29)
.23 of

with the superscripted negative sign in the limits indicating the corresponding side of the
branch cut (see Figure 5.2) along which to integrate. Upon use of the cyclic periods defined
in (5.22) this becomes

Doy + k3eD + D3+ k4Dl + D3 =0 (5.26)

T

which is further simplified by exploiting the symmetries D} = -B!, D} = -B3 and
D, = B.,. We finally obtain
Doy - k32B}, — B3, + k4B, + D} =0, (5.27)

L

a relationship equivalent to (5.25). Repeating the same process for the a, b and ¢ cycles
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yields

Ao + KarAy, + A3+ K AL + A3 =0, (5.28a)
Bost + kB, + B3, + kipBl, + B, =0, (5.28b)
Cov1 — KAy, — A3, +C; =0, (5.28¢)
Dq,i - k2,B), — B3, + kB, + D} =0, (5.28d)

with the explicit unknowns k», and ;. and the unknowns ¢, and {4, implied by the presence
of cyclic periods associated with the integrals of the third kind. This seemingly intractable
system can be fully solved analytically. The quantities associated with the 4x periodic
elliptic integrals can be decoupled by adding equation (5.28a) to (5.28¢c) and (5.28b) to
(5.28d) to obtain

K‘;,rA‘lm + Ain + Ci)r = -(A()+| + C0+|), (5293)
2k4z Bl + B, + D}, = =(Bgs1 + Do), (5.29b)

and the elimination of k. produces
Al (B, + D3,) - 2B}, (A, + C3y) = ~Al (Bowi + Dout) + 2B}, (Aget + Cont)  (5.30)

in which the only (implicit) unknown {;, determines the periods A} , B}, C;_ and D,

Despite appearances, the above equation can be inverted to obtain ;. and this is described
in Section 5.2.4. Once {4, has been obtained, the value of x;, immediately follows either
from equation (5.29a) or (5.29b). One can then proceed to solve for {», by subtracting
equation (5.28c) from (5.28a) and (5.28d) from (5.28b) to obtain, respectively,

2k, AL, + 243, = ~kip AL — A+ C2 - Aoy + Cout, (5.31a)

2k B, +2B3, = B} + D3~ By,y + Doyy, (5.31b)

and the elimination of k», gives

1
AV B}, - By A} = E{A{,r (-B3, + D}, — Bous + Dou1)

= By, (—uAl, — AL + Cop - Aoy + Conl)] (5.32)

where the only unknown is now ¢, the value of which determines the periods A3 and B3 .
This equation is of the same type as (4.50) and the solution procedure is similar.
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Figure 5.3: The contour Ca = Caup U Ceup U Ceuj U Cg,, U C 221 U C 10 0N the upper (solid
line) and lower (dashed line) Riemann sheets. The thicker inner lines are the dissections
a,b,¢,0,¢fand g2 introduced to make the Riemann surface simply-connected. The path
Caup denotes, for example, the portion of the contour enclosing the dissecting cycles a and
b.

5.2.4 Determination of {s, and x,,

The procedure required to solve for {4, and «, follows the same approach as the one
given in Section 4.2.4. However, the cyclic periods appearing on the left-hand side of (5.30)
are now related to 4x periodic expressions and the application of the residue theorem must
be carried out on the Riemann surface delimited by the contour C, of width 4x shown in
Figure 5.3. Again, the path of integration is chosen such that it encloses a portion of the
strip equal in width to the period of the integrand. We therefore consider

f Vide, u)dVi(e, u) = 21 ) Res, (5.33)
C,

with the elliptic integrals defined as

@,it)
Vila,u) = f Vi (€, w)d€, ne{l,3}

6.0)

We also recall the distinction made between V? (a, u) and V7 (a): the first is defined on the
dissected Riemann surface whereas the second is defined only on the top sheet (positive
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Figure 5.4: Handlebody of genus 3, the topological equivalent of the Riemann surface in
Figure 5.3. It has been made simply-connected by introducing the dissections a, b, ¢, 9, ¢, f
and g1.2.

branch) of the Riemann surface. For 4x periodic functions, the enclosed surface is now
the topological equivalent of a handlebody of genus three (a sphere with three handles) as
shown in Figure 5.4 and it can be appreciated that making it simply-connected involves a
larger number of canonical dissections than the torus of section 4.2.4. To do so [ApPELL,
1976], three pairs of dissections a,b; ¢,d and ¢,f are required as well as the two auxiliary dis-
sections g, and g». They are shown in both Figures 5.3 and 5.4; the simple-connectedness is
once again better appreciated by examining the handlebody representation of the Riemann
surface. To keep the analysis relatively straightforward it is beneficial to draw the dissec-
tions such that only members belonging to the same dissection pair, a and b for example,
intersect. This, while simplifying the evaluation of the path integral around the dissections,
entails the rather intricate set of dissections shown in Figure 5.3. Carrying out the integra-
tion it is seen that only Cyup U Cup U Coyy, the portion of the path enclosing the dissection
pairs, contributes. The rest of the integral vanishes either by symmetry, as for the parts
along Re @ = +27 on C.a,, or identically, as in the case where [Im a| = +o0 on C,. The
contributions from the paths enclosing the three dissection pairs, following the analysis in
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Section 3.3 pertaining to equation (3.60), are

f Vi (a,u)dV; (@, u) = A, B3, - B, A, (5.34)

Cuub

f Vigla,w)dV; (e, u) = €, D] - D) (5.35)
Ceud

f Vi (@, u)dV; (a,u) = €33 -3, €. (5.36)
C:u[

Comparing the cycles defined by the dissections with those defined in Figure 5.2, together
with symmetry, it is possible to rewrite the above canonical periods in terms of the cyclic
periods defined in (5.22). The cyclic periods are defined on intervals between adjacent
branch points and extending these definitions to the negative real axis, by means of the
even parity of the expressions, the branch point to branch point intervals in S, are then
defined as shown in Figure 5.5(a). The canonical cycles a, b, ¢, ,¢ and f from Figure 5.3
are then partitioned into branch point to branch point contributions, as shown in Figures
5.5(b), 5.5(c) and 5.5(d). By comparing with Figure 5.5(a), they are then easily expressed
in terms of the cyclic periods and it can then be shown that

A=C, (5.37a) ? =8B, (5.37d)

B = -B, (5.37b) ¢E=A+B+2C, (5.37¢)

C=A+B+C+D, (5.37¢) §=D, (5.37f)
leading to

Ql-i}r%gtr - %lnmizr = B‘lmcgn - C-:RB‘::.;(’ (5.38a)

Q:-:zrggtr - Q:-i/rgix = A-':erix - Btlt in + Ctll;rBifr - B-:)rcgn + D-i;rBi;r - B-:KDiII” (5.38b)
Glfr&%x - e&in&in = A‘:RDZR - D«lt grr + B}tnD?t;r - DinBix + 2(C~:II’D3R - Dl}rcin) (5380)

Summing up these contributions,

f Vj,,(ar, u)de,,(a, u):( + f + f )V}K(a, u)de,,(a,u)
Ca Caun Cewo Ceus

= AtlttrBitr - Bi Z}r + AinDirr -D -llirAitr +2 (Cx:xD -::;r -D ‘llkci'r)

= A‘Iur (Bix + Din) - 28‘:" (A?"' + Ci" )
(5.39)
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Figure 5.5: Figures used to express the canonical periods in terms of the basic cyclic
periods (e.g. 9 in terms of A, B, C, D). The canonical paths, see Figure 5.3, on the (solid
lines) upper and (dashed lines) lower sheets in (b). (c) and (d) are written as chains of
branch point to branch point segments — ¢ into a sequence of ¢, for example — which are

(d) Canonical cycles ¢ and f

easily expressed in terms of the basic cyclic periods given in (a).
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Figure 5.6: The paths used to evaluate the integrals in (5.40) when an({.;,,) € ‘W;. The
four branch cuts are indicated together with the dissections (thicker lines) illustrated in
Figure 5.3. The paths (thinner lines) go from & to each of the the four symmetric poles
of vi (e, u) on the Riemann surface. They lie on both the upper (solid lines) and lower
(dashed lines) Riemann sheet and do not cross the dissections.

where on the last line we have made use of D}, = B}, and C;, = 0. This is remarkable in
that it reproduces the left-hand side of (5.30) and can be expressed in terms of residues in
accordance with (5.33). The integrand in (5.33) has residues at

(Lsr) cosa sin%‘ @) e
— : Y
u(a) cosly, sm% D) r et
= X

a@.u)
¥ f Vi (€, 0)dE, @ = (L, 1)
60 (5.40)

aw)
t f Vi€ WE, @ = (=Lup, £u0)
©0

which are expressed in terms of V| ({s,) and V, (27 — {s,) after carrying out the path inte-
grals on the dissected Riemann surface. In order to do so, the cases where Vi (Lir) lies in
the four subdomains ‘W, 134, as described in Section 3.5.2, must be considered separately.
This is carried out by expressing the paths taken by the integrals in (5.40) in terms of the
cyclic periods A}, and Bﬂ‘,,r of the integral of the first kind. The paths are illustrated in Fig-
ure 5.6 for the case when V] ({i,) € ‘W, and Figure 5.5(a) is once again useful to find the
equivalent path expressed in terms of the cyclic periods. In this instance,
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Lagott)
f Vi, w)de = AL+ VL (&), (5.41a)

6,0)
‘(-Ur u) Al
f Vir(&, u)dE = +281, Vi (Lan)s (5.41b)
60)
{ka'“)
fo V];,,(f, u)df = B«lm - VJ,,({M% (54|C)
6.0)
‘Qn-"“) Al
f Vinlé,10dE = =2 — BY + Vi (L), (5.41d)
(6,0)

and if V}”({J,,) € ‘W, the sum of the residues is therefore
D Res = A}, +4B}, - 4V}, (Lur). (5.42)
Carrying out this procedure for the three other cases, the sum of residues becomes

—A), +4B) -4V (Ly), Vi (L) €W,

ZRes =

A«ll;r - 4B‘l;,r - 4V4l,r(§4zr)v VJ,.,({M) € (W?.v (543)

-A}, -4V, (21 - L), Vi (i) € W3 UW,.

Using (5.39) and (5.43) in (5.33), it is possible to express the unknowns an({.;,,) and
ij(er ~ {sz) in terms of known quantities so that we can invert for {,,. If we still use
the case where Vj”(gy,,) € "W, as an example, the residue theorem (5.33) together with
(5.39) and (5.43) implies

A',t Cin
Virldon) = =% + Big = o (Aie(Biy + Dip) — 2843, + Ci))
(5.44)
A',r Tin
= -2 +Bl,+ {A4,,(BO+1 + Dou1) - 2B}, (Ao +Con)}

where use has been made of (5.30) on the last line and the sign o, from equation (5.24)
has been reintroduced. The only unknown in the above equation is {y,. More generally, we

have
1
—=E B, + &1\4.«, Vi (i) €W,
i cos &
V4;|»({4)‘l’) - Al o 2 (545)
& Bt S Vil W,
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and

A o
V(27 = Lin) = —f + —=
CoS 5

2

Asr, Vi (lir) € W3 UW, (5.46)

where we have defined

cos §
8rj

Asr = == {A}(Bow + Dov) - 2B (Aout + Cou)}. (5.47)
Looking ahead to the inversion process, it is convenient to specify from (5.45) and (5.46)
the corresponding range of Ay, in terms of the periods K and K’ from the range of V) ({4r).
Recalling from (3.83) the useful relationships
4K

)
k=tan-, Ay=—s, B, =
2 cos §

2jK’
b (5.48)
Cos 3

it is a simple task to show that

Ay € Q = [0, K] X [-jK', -2iK"], 0 4p = +I
Villin) €W, = ¢ (5.49a)
Aur € Q) =[0,-K]x[[K',2iK"), 04 =-1

Aur € @ = [0,K] % [K’, 2K"), Top = +1
Vi(lin) € Wa = | (5.49b)
Ay € Q; = [0,-K] X [-jK',-2jK'), 04r = -1

A4n € Qa = [09 K] X [_jK"jK']v Tar = +1
Vi) € WsUW, = ¢ (5.49¢)

Aur € @ = [0,-KI X [JK",jK'), o4r = -1.

The inversion is made possible by first solving for V| in (5.45) and (5.46). Using the
sina/2 transformation described in Section 3.5.2 to recast it in terms of Legendre’s form,
the inversion then follows by direct application of a Jacobian elliptic sine function sn. This
produces the following explicit expressions for {y,

2 —~ 2 arcsin [sin g s (Tanlans k)] , A €@
far = §2arcsin [sin 250 (2K’ + TarAun, k)] , Nir €@ (5.50)

2 arcsin [sin 250 (-2jK" + Cuxlan, k)] , A e @™

The proper expression and the sign of ¢y, = +1 are selected by using Figure 5.7 to deter-
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Figure 5.7: The ranges @3, @; and @5 in terms of the complete integrals of the first kind
K and K’ with k£ = tan ‘,’:. The parallelograms Q indicate the various ranges in which A4,
must lie when carrying out the inversion for {4, with equation (5.51) or (5.50).
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mine period parallelogram Q in which the quantity Ay, lies. The multiplicative constant 4,
immediately follows from (5.29). While expression (5.50) is useful when implementing
the procedure, it can be simplified given that the arguments of the elliptic sine function all
differ by a multiple of the fundamental period 2jK’. Since sn(x) = sn(x + 2jK’Z), equation
(5.50) can be rewritten as

27 - 2 arcsin [sin 250 (Tanan, k)] , Asr € Q™
Lo = 5.51)
2 arcsin [sin £ s (Canans k)] , Ar e @ U Q@™

It is insightful to examine the behavior of both k4, and . as functions of the branch point 6
for a fixed value of 4. The behavior of x4, (and »,) as a function of § is illustrated in Figure
5.8 when 8 = 0.25(1 +j). The values for the sample points labeled on the figure are given in
Table 5.1. It can be observed that «,, tends to zero as § — x/2, and to some non-zero value
as § — 0. This will be verified analytically when the properties of the solutions w(a, )
are examined. The corresponding plot for £, is provided in Figure 5.9 and i, apparently
tends to 27 when § — 0.
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Figure 5.8: The behavior of (solid line) k2, and (dashed line) x4, when 8 = 0.25(1 + j) as
a function 4. The range of é is from 1.57 at point 1 to 0.01 at point 8. The corresponding

values of x2, and ky, are given in Table 5.1.

Point é K2y Kan
1 1.57 -5.260-107% +j1.457-10°° 8.493-10°% -j2.214- 1078
2 1.25 -7.890- 1073 +j2.208 - 1073 1.272-1072 - j3.369 - 1073
3 1.00 -2.089-1072 +j6.114 - 1073 3.371-107 - j9.385 - 103
4 0.75 -3.214-1072 +j1.066 - 1072 5.189-107% - j1.652 - 1072
5 0.50 -3.486- 1072 +j1.601 - 1072 5.625-1072-j2.511-1072
6 0.25 -2.824-107% +j2.580 - 102 4.551-1072 - j4.084 - 1072
7 0.05 -2.571-1072 +j3.618 - 1072 4.126-1072 - j5.715- 1072
8 0.01 -2.633-107% +j3.767- 1072 4.217-1072-j5.942- 1072

Table 5.1: Corresponding values of & and a4 for the points indicated in Figure 5.8.
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Figure 5.9: The behavior of {4, when 8 = 0.25(1 + j) as é. The range of § is from 1.57 at
point 1 to 0.01 at point 8. The corresponding values of (s, are given in Table 5.2.

Point é Lan
] 1.57 5.796 +j1.015 - 107"
2 1.25 5.822 +j1.015- 107!
3 1.00 5.877 +j1.016 - 107!
4 0.75 5.960 +j1.028 - 107!
5 0.50 6.068 +j1.076 - 107!
6 0.25 6.181 +j1.165- 107!
7 0.05 6.252 +j7.687 - 1072
8 0.01 6.270 +j3.677 - 1072

Table 5.2: Corresponding values of § and £y, for the points indicated in Figure 5.9.
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5.2.5 Determination of {5, and «,,

Equation (5.32), in which the only unknown is {3, has the same form as (4.50) and the
same analysis is required to invert for {>,. Recalling the results obtained in Section 4.2.4, it
was shown there that by applying the residue theorem on a Riemann surface of genus one
made simply connected, the following relationship can be obtained

AL B, - BLAY, =2mj (AL, £2B, - 4V3(D).  VA(Lw eV (5.52)

with the positive (negative) sign corresponding to v, (“V,). Equation (5.52) together with
(5.32) imply

| Aélr Bé)r . 1
Vl}r({) = —T + -5— + 0'2,,_]1\1_,,, VZR({’ u) € 'Vl'g. (553)

where, in contrast to (4.62),

1
l6r

A {AL(~B}, + D}, - Boyi + Dovt) = Bly(=KsnAly ~ AY + €3 = Aot + Con))-

(5.54)

The inversion now follows directly from (4.67) and is given by
Lar = arccos [ksn (K’ + 3K + 0a,A2p, k)], A €P°. (5.55)

where the period parallelograms P, which denote the allowable range for Aa,, are illus-
trated in Figure 5.10. The value of k., follows from (5.31). Notice that, with the chosen
notation, the analysis is exactly the same as carried out in Chapter 4 save for a different
expression for A. Before closing this section, we examine the behavior of «», and {,, as
functions of § with 6 fixed. The behavior of ka, is provided in Figure 5.8 (along with y,). In
the same fashion as «,, k2, tends to zero as § = x/2 and to some non-zero value as § — 0.
A plot of ¢a, is given in Figure 5.11; it apparently tends to a value in the neighborhood of
maséd - 0.
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Figure 5.10: The regions P* in terms of the complete integrals of the first kind K and K’
with k = cosé. The parallelograms P indicate the various ranges in which A, must lie
when carrying out the inversion for {», with equation (5.55).
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Figure 5.11: The behavior of {2, when 8 = 0.25(1 + j) as & varies from 0.01 (point 7) to
1.57 (point 1). The values of 6 and {>, at the sample points are given in Table 5.3.

Point I} o
1 1.57 3.120 - +j3.470 - 107
2 1.25 3.122 +j3.297 - 1073
3 1.00 3.125 +j2.960 - 1073
4 0.75 3.131 +j2.532- 1073
5 0.50 3.136 +j2.105 - 1073
6 0.25 3.140 +j1.562 - 1073
7 0.05 3.141 + j4.092 - 10~*
8 0.01 3.142 + j8.401 - 1073

Table 5.3: Corresponding values of & and {», for the points indicated in Figures 5.11.
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5.2.6 Properties of branched solution

As for the 27 case, we have now succeeded in constructing a branched solution to (5.2a)
having the form

w(a, 1) = exp f {vo(a', u)+vi(a,u)+ Kg,,vék(af', u)+ (rg,,vi,,(a’, u)

an

+ KipVig(a@', u) + T4pvy (@, u)}da’ (5.56)

with
vol@. ) = @ u(@ s:narcosar1 ' (5.57)
2r u(a) cos*a — cos* 6
+ 2COS £ + 93OS @ + 4 COS 2
vi(a,u) = u(B) cosla) g1+ $2€08 5 ~ L > Lokt . (5.58)
u(a) cos(9d) cos- a — cos- 6
]
el U) = —, 5.59
Vap(a, u) o) (5.59)
vg,,(a, ") = u(lry) cosa sinda, ’ (5.60)
u(a) cosfr,cosa — cosla,
(@ 1) 083 (5.61)
vy, u) = ) .
M (-hr
sin <5~
Ve, = W) cose 1 0 (5.62)

A
u(@) coslix2cos - cos &

where the coefficients g, are given in (5.8), the quantities ;. and k4, by (5.51) and (5.29),
and the quantities {>, and Ky, by (5.55) and (5.31). The lower limit a; may be any branch
point in the strip Sz, i.e. ag € {£6, £(r — 6), £( + 6), £(2n — 6)}. Furthermore, since the
integrand has an even parity, @ = 0 is also an allowed lower limit. The solution is multi-
valued in the sense of the branch u(a) and each of the branches corresponds to a solution
of one of the equations in (5.2). Despite the fact that the integrand has branch points
commensurate with those of u(a), the path integral in (5.56) is well defined following the
process of polar and cyclic period elimination carried out in the previous section. Aside
for the poles and zeros introduced by this procedure, w(e, u) is otherwise free of poles and

126



zeros in S,. Indeed, from (5.20) vﬂ_x(a, u) has residues' , on the positive branch of u(a),

u(&rr) cos? sin o, - £ (5.63)
u(a@) COSayr COS @ — COS {ar la= 1727, 2(L2e-1)
and v; (e, u) residues
R u({sy;) cosa | sin b I (5.64)
es - = =%l .
u(@) €0sdur2cos % — cos & la=ssir
Therefore w(a, u) has, in the strip S, the poles and zeros
@+ @+ (- 8) @+
w(a, u) ~ , (5.65a
(@ A=l @~ (W= L2n) @ = lun )
and
(e, —u) ~ 28 @2 (7 o) @ = b (5.65b)

@+l @+ (T=0o) @+ lan

These are of course also periodically located outside the strip and they are of order unity
throughout. This differs from the 8 poles and zeros — due to vy(a, u) — which have been
eliminated from the strip but occur periodically outside the strip. In their case, however,
their order increases the further they are from S, due to the e coefficient found in vo(a, u),
a behavior reminiscent of the Maliuzhinets’s functions. Like its predecessor in Chapter 4,
w(a, u) goes to its reciprocal when @ — -a or when u(a) — —u(a) and hence w(a, u) =

1/w(-a,u) = 1/w(a, ~u). Since the integrand vanishes as [Im @} — oo as required, then
w(a, u) ~0(1), |Ima|—> . (5.66)

5.2.6.1 Thelimitd — n/2

As § — n/2, w(a, u) recovers the known solution ¥,;(a) given in (5.5) with an added
multiplicative contribution from the integrals of the third kind associated with "32::. sola, u).
The limiting value can be exactly defined by determining the limiting values of k2.4, as
well as {>.4,. This can be carried out when § — m/2 by considering the equation system

'It is now assumed for simplicity that oyr4, = 1. The reader should bear in mind that expressions
involving v3 (@, u) and v}, (e, u) have to be changed accordingly if instead a4z = —1.
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(5.28). For example, (5.28b) becomes

w/2+e .
lim f {L‘(i) cosa d InWy(a) + koy—— + 02 ullar) cosa  sindor
e=0 Jp-e \u(@) cosé da u(a) u(a@) cosda, COS @ — COS {oy
e s Lan
Cos 3 u(lsn) cosa | sin <=
F K==+ O = 2 da. (5.67)
Tu@) " u@) coslir2cos 2 _ cos :_;._} (

In the limit the integral is taken over a vanishing interval about @ = #/2 and the only
contributing terms are those with singularities at @ = x/2: the second member xz,,vén(a, u)
and the fourth member K4,vjk(a. u). This leads directly to

Kap + K4z COS % =0. (5.68)

The same also applies to (5.28d) which involves a vanishing interval about @ = 37/2 and
once again v} (a,u) and v} _(, u) are the only contributing terms. In this case, taking the
limit yields

Koy — Kap COS g =0. (5.69)
The above implies
Ko 50, Ky 250, (5.70)

in agreement with the results plotted in Figure 5.8. Consequently, the contributions from
the integrals of the first kind vanish in that limit.

The values for the poles {54, follow from (5.28a) and (5.28c). Since, from (5.18),

s—a2 d
vola, u) + vi(a,u) — o In¥4(a), é.71)
and, noting the two anti-derivatives
sin¢ tan § +tan £
————df=In ——— (5.72)
Cos§ —cos{ tan $ - tan §
and
'Y { @
I sinz tan % +tan §
f' S————df=ln——2, (5.73)
2cos £ —cos tan% - tan &
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equation (5.28a) and (5.28c¢) then respectively become, as § — n/2,

(;r)tan%+ltan%1+tan§
2

=1 (5.74)
2/tan % - 1tan % —tan 2
and
‘I’4(3?")[tan‘-;i—l 2tan%+tan%"tan{“—"—tan%___] 5.75)
Wi(%) \tan % + 1) tane —tan Zan &8 +tan§
Solving for {2, and s, in the above equation pair yields the quadratic in tan {,./4
s 3\ e (5) Wa(E) + 1 3
tan® &7 4 (tan 2 +tan —J—I) (') (3' ) tan £ 4 tan % tan 2F = 0, (5.76)
) O P I A
and, for {5y,
Lan n
tan < —tan £
en(y) S
“"tan %t +tan g
{>z = 2arctan Z . 5.7
o\ fan st —tan g
l - 4 (E) {an

Sdr x
tan 3 +tan8

When § = /2, equation (5.76) gives a value of &, = 5.796 +j0.1015 - 107! and (5.77) a
value of {5, = 3.120+j3.470- 1073, in agreement to the accuracy provided with the values in
Tables 5.2 and 5.3 obtained by carrying out the entire inversion procedure when § = 1.57.
Since the « vanish when é = /2, the solution w(a, u) in (5.56) assumes the simple form

tan%ﬂan%tan%ﬂan%

w(a,u) = ¥i(a), (5.78)

{$x

tan% —tan ¢ tan % —tan ¢
and, similarly,

tan‘%—tan%tan%—tan% |

"y, ’
tan % + tan ¢ tan &= + tan % Ya(a)

w(a, —u) = (5.79)

where the rational terms are the contributions from v%,m (@ 1). The recovery of the known
solution ‘P4(a) is achieved by properly constructing the branch-free solutions, the topic of
the next section.
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5.2.6.2 Thelimité —» 0

As noted in Section 4.2.5, the other limit of interest § — 0 is considerably more com-
plicated and is not currently well understood. The best we could do right now is derive
the limiting values of the k and express them in terms of the poles . In essence, we could
obtain a form equivalent to (4.90) but now with unknowns >, and ;,. Moreover, apart
from the behaviors indicated in Figures 5.9 and 5.11, the limiting values of the ¢ poles are
not well understood. We postpone further study of this limit, since it is more appropriate to
pursue it once the simpler case in Section 4.2.5.2 is completed.

5.3 Branch-free solutions

We now have in hand well-defined solutions to the first order equations (5.2) which
are also solutions, albeit unacceptable individually, to the second order difference equation
(5.1). The reason for this is that w(e, u) still has branch points as well as poles and zeros
in the strip Sy Meromorphic solutions to the second order difference equation can be ob-
tained through the use of expressions (3.3). We recall however that solutions free of poles
and zeros in the strip Ss, are required, and we therefore seek to use specific linear combi-
nations of (3.3) to finalize the construction of the solutions. Knowledge of the poles and
zeros of w(a, u) is required to successfully complete this endeavor and this is provided in
(5.65).2 With this information the poles of any linear combinations involving (3.3) are eas-
ily determined. Zeros are by nature more elusive and we rely on knowledge of the limiting
functions in order to determine their number as well as general location. The cancella-
tion of the poles and zeros is also complicated by the order requirement on the solutions
which must be O(1) as |Im a] — oo. We first present an entirely analytic approach from
which two independent solutions are obtained, and its only drawback is that the proposed
solutions vanish as 6 — 0. Though knowledge of (5.10) circumvents this difficulty, we
also provide two additional approaches where the limiting functions do not vanish in that
limit and this is achieved at the cost of numerically locating zeros. In the following, we
use the primed functions f,(a) to denote intermediate branch-free solutions of the second
order difference equation (5.1) which still have undesired poles and zeros in the strip Sy,

whereas the unprimed functions ,(a) denote the appropriate branch-free and pole/zero-free
solutions.

*We still assume 2, = o4y = 1 for simplicity in what follows.
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5.3.1 Analytical solution

We proceed by constructing two meromorphic solutions of the second order equation
(5.1) t}(a) and ry(a) sharing a common pole at ¢;, but having distinct unknown zeros «,
and a» and then use a linear combination to obtain an expression with a known pole/zero
pair. Proceeding in a manner similar to the technique presented in Section 4.3, we write

{(a) = Qz"z(“) {(1 + ’:((:)))w(a, ) +(1 - 2((:)))w(a, —u)}, (5.80)

which is a linear combination of the branch-free forms (3.3). The functions (@) and
QOs:(a) are 4r periodic; ri(a) is a trigonometric polynomial used to introduce zeros at
appropriate locations in the a plane while the external multiplicative function Qx,(a) is a
rational trigonometric function used to annul poles and zeros. Once again, we introduce
double zeros coincident with the poles of either w(a, u) or w(a, —u) to produce a simple
zero in the term in curly braces above. Specifically, if we require

r(a)

|- 2@ ~ @+ G0+ G - 2m) (@ + L) (5.81)

then the second term in braces in (5.80) has simple zeros coinciding with those of w(a, u)
at @ = —{a,, 2 - {5, and is finite at @ = ~y,. This implies

ri(a) _ ri(a) o @+l +(fop—-2n)a—-a
(1 + (@) ) w(a, u) + (l @) )w(ar, u) =l — o —20) 2= Lon (5.82)

where | is the unknown location of a zero in the S,, strip. While the exact location of
a; is not easily determined, its general location is known when § is in the neighborhood of
n/2. Indeed, as 6 — n/2 we have ri(a)/u(a) — | and

u(ae) u(a)

-

% {(l + rl(a))w(a, u) + (l - M) w(a, -u)} 6—‘—"/2-» w(a, u), (5.83)

and we conclude with the help of (5.78) that when § is in the neighborhood of 7/2, a; is
in the neighborhood of -¢,,. Choosing () to eliminate the poles and zeros associated
with {5, gives

tan & —tan &

Q@) = (5.84)

42

tan 5 + tan%
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so that

f(e) ~ —2 (5.85)
@ = Gun
The 4 periodic function r|(a) is obtained by letting
. a .
ri(@) = py +prcosa + p3sina + p; cos = + ps sin — (5.86)

2 2

and enforcement of (5.81) produces

pL= T cos(gl‘z,, v {u({q_,,) - u(;“)(sinz 8 COS {2, COS L4, — COS” § SiN Loy SiN {4,,)} ,
(5.87a)
sin*§
) = el —Gon + ——], 5.87b
pa = cos{ ( Gon + u({z,,)) ( )
Py = sindar (;b, N ICT(()gS':(;) (5.87¢)

with p;y = ps = 0. We note that, in agreement with the analyticity requirements, the function
QOa(a) and the ratio ri(a)/u(a) are O(1) as [Im a] — 0. A related meromorphic solution
to the second order difference equation sharing the same pole but having a different zero is

() = 2= {(1 - '“‘”)w(a, u) +(1 + ﬂ) w(a, -u)}, (5.88)
- u(a)

2 u(a)

where, following the same kind of procedure as for r|(a), r2() is now chosen such that

r:a) 2y a2
e " (@ G e~ G - 20, (5.89)
riya)
t e T @t b (5.90)
and hence
@) ~ T2 (5.91)
- @ - (i

By the same reasoning as above, the zero a; is also in the neighborhood of a@ = -{;, when
¢ in in the neighborhood of 7/2. The meromorphic solutions f{(a) and £;(a) then share the
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same pole and a linear combination can be used to introduce a zero at @ = —{, such that

a+{4}r

I’I(O') +Xl‘3(a) ~ '(;—{ (5.92)
= Qdrn
and this requires
11(—Lar) s SiN iz COS L4z — U({sx)(P2 SIN L4r + P3 €OS L)
__ = —Q2 (~lin) = : . 5.93
15(~ar) G4 )sm Jan COS Lyx + U(L4x (P2 SIN J3r + P3 COS Lig) 5:93)

An acceptable solution of the second order difference equation (5.1), free of poles and zeros
in Sy, and O(1) as {Im @} — oo, is then

tan % — tan % , ,
n(a) = ————{fi(@) + xti(@)}, (5.94)
tan T‘ + tan Ky
and
n@ B v, ne@=>o. (5.95)

The first limit stems from the known behavior for w(a, «) given in (5.78) together with the
fact that as & — m/2, | — ri(a)/u(e) — O and y — 0. The second limit follows since
t; - t,and y — —1 as § — 0. Though undesirable, this is not a serious drawback as a pair
of linearly independent solutions are provided by (5.10) and its reciprocal.

Following the same prescription as above, a second independent solution £2(a) can be
derived by seeking instead a common pole at -, and it can be shown that

(@) = n(-a), (5.96)

but we now have, using the same arguments as above,

s—mf2 1

a—0
hia) — m, hla) — 0. (5.97)

Both 7,(a) and t2(@) recover the same limit as § — 0; this is also the case for the numerical
approaches described below and it will generally be necessary to use one (or both, in this
particular case) of the known solutions (5.10) to obtain a pair of independent solutions.
Sample curves for |f,(e)| are provided in Figure 5.12 for various values of 6 when 6 =
0.25(1 + j). We observe that t(a) — ¥i(a) as é — n/2, and 1(e) — Oasé — 0. Due
to their vanishing nature as § — O, the solutions #,(a) and t(a) fall short of the more
ideal behavior obtained in Section 4.3 where the solution varies smoothly as a function of
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Figure 5.12: Magnitude of the branch-free solution #;(a) givenin (5.94) when 8 = 0.25(1+
j) for various values of 8. The thicker line corresponds to the known limiting function
W,(a), per (5.5), for 6 = n/2. The case for § = 1.57 is indistinguishable from ¥;(a).

¢ between the two known solutions when 6 = n/2 and § = 0. We now examine alternatives
to this purely analytical approach to partially overcome this shortcoming.

5.3.2 Numerical solutions

By foregoing an entirely analytical approach, it is possible to construct solutions which,
unlike #; »(a), do not vanish as § — 0 and still recover the known solution ¥,(e) as § —
n/2. In such cases we must resort to the numerical identification of zeros and we consider
two such variations. However, these approaches have so far been only partially successful
as the procedure fails when § = 0.

In the first instance we proceed by writing

reon = Q@) ri(a) _ (@) _
Ha) = > {(l + @) )w(ar. u)+ (l @) )w(ar, u)}, (5.98)
and, as in Section 4.3, we choose r;(a) such that — compare with (5.81) —
_r @) - 2 2
1 @) (@ + ar) (@ + ({2r — 27)), (3.99)
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requiring

.« . .
COS {2, Sin” § cos @ + sin {2, cos* § sina

u(&an)

ry(a) = , (5.100)

and (5.65) now implies that

(@-a))a-a)

. (5.101)
(a' - {4}r)(a + {-hr)

(@) ~

Knowledge on the location and behavior of the zeros a, and a; is again obtained by exam-
ining the limiting behavior

52 tan & +tan g

f(a) » — Yy(a), (5.102)
tan %¥ —tan §

which suggests that, as § — n/2, the two zeros a; » will coalesce with the pole at @ = ~¢,,
to produce a simple zero. We therefore expect the zeros e, » to gravitate near the pole at
—{4x when 6 is in the neighborhood of 7/2 and computations show this is indeed the case.
In order to obtain a solution free of poles and zeros, the final solution will now have the
form

. . R | e
sin 5t sin % sin {({ir — @) sin 5({ir + @)

tx(@) = () (5.103)

sin® & sinj(a; - @)sin }(a: - @)

where it is necessary to locate the zeros @, and a» of t;(@) numerically. The solution t3(a)
is such that

r(a) ik Yy(a), (5.104)

as desired, and it also tends to a known non-zero function as § — 0. In that limit &>, —
Lar = 21, f(a)/u(a@) — 0, and a; — -2x leading to

ty(a) 2% L 0Ty (‘Ps(a) + ) - T(a), (5.105)
2sin H(e, - @) ¥s(a)

where @, corresponds to a (specific) zero of ¥s(a) + |/¥s(a). Note that the zeros of
cos a/4 at +2x coincide with the poles of 1/¥s(a). The limiting function T(a) is however
flawed as the aforementioned zero a; strays outside of the strip S, when 6 = 0, thereby
jeopardizing the analyticity of the solution as the zero cancelling term in @ then gives rise
to a pole within the strip. The solution t3(a) is therefore valid only when ¢ is not in the
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Figure 5.13: Magnitude of the branch-free solution t3(e) given in (5.103) when 6 =
0.25(1 + j) for various values of 6. The thicker lines corresponds to the known limiting
function ‘Y4(a), per (5.5), for § = n/2 and T(a), per (5.105), for§ = 0.

neighborhood of zero. A second solution is provided by r;(—a) which recovers |/¥,(a)
when § — x/2 and, as for t3(e), T(a) when § — 0. Sample curves for |t3(a)| are provided
in Figure 5.13 for various values of § when 8 = 0.25(1 +j) along with the limiting functions
Y,(a) and T(a).

Interestingly, it is possible to reproduce the more desirable behavior obtained in Sec-
tion 4.3 where the 2r periodic equation was solved. There, the solutions obtained vary
smoothly between two known limiting functions ¥ (a) as 6 — x/2 and Wa(a) as 6 — 0.
A similar result can be achieved here but at the cost of having to numerically locate four
zeros. Turning once again to a familiar form, we write

f(a) = Qg(a) {(l + ::((:)) )w(ar, u) + (l - ::((:)))w(a, —u)}. (5.106)

and examination of the behavior of the solution in Section 4.3 suggests using

. 9 . .
COS L4z SIN~ 6 COS @ + Sin &4 cOS> F sina

“(g-hr)

, (5.107)

rya) =
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so that

ry(a)

u(a)

~ (@ + &)@ + (Lir - 27)). (5.108)

Selection of (5.107) comes about by considering the limiting values assumed by ¢ and .
and picking ry(e) so that, in the limits § — 0, 7/2, the expressions | £ ry(a)/u(a) assume
values of 0 or 2, recovering the behavior obtained when dealing with the equations with
period 2. The term in braces in (5.106) is then such that

{} _atdy, (¢ —ai)(@ - m)(e@ —a3)(@ — as) (5.10)
@ = §, (@ + $an)@ = L)@ + ($2n — 27))@ + ({2r +277)) '
and the pole and zero associated with £, are eliminated by choosing
tan %’- —-tan§
Qi) = — . (5.110)
tan =% +tan g

In the limit as § — /2 we have

a+{2,, Q+({23—21()

a—{qoy a—(fn—2n) .11

(@) ~

which implies that, when § is in the neighborhood of x/2, the poles at @ = -{5, and
@ = =, + 2r will each have a closely located pair of zeros @,. Once the location of these
zeros has been obtained numerically, the desired solution may be written as

4 ER: 7%
(@) = S50 = S0 [l_[ bl ]zg(a) (5.112)

-1
| - cos o net SiNg(an - a)

so that t4(a) is free of poles and zeros in Sy,. It is easily shown that

o—n/2

ty(a) — ‘P4(a), 5.1 13)

and since ry(a)/u(e) = +1 as § — 0, albeit in a branched fashion, it can also be shown
(numerically) that

ti(@) 25 wy(a). (5.114)

Figure 5.14 provides sample curves for |14()| for various values of § when 6 = 0.25(1 + ).
The behavior obtained should be compared with that of Figure 4.11 on page 93 as the
solution now varies smoothly between the two limiting functions ‘¥, s(e) as a function of 8.
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Figure 5.14: Magnitude of the branch-free solution #(a) given in (5.112) when 8 =
0.25(1 + j) for various values of 6. The thicker lines corresponds to the known limiting
function Wy(a), per (5.5), for § = /2 and ¥s(a), per (5.10), for§ = 0.

Once again, a second solution is provided by #,(-) and this recovers 1/¥,(a) as § — 7/2
and Ws(a) as 6 — 0. This approach also displays, however, a problem similar to the
previous case since one of the numerical zeros strays slightly outside S,, when & ~ 0.001
which, strictly speaking, means that the solution also fails in that limit. It is unclear at this
time if this is due to numerical inaccuracies or a fundamental limitation of the approach. It
is intriguing that this almost succeeds in recovering ¥s(a) but ultimately falls short.

5.4 Summary

The proposed technique was successfully applied to a generalization of the equation
for the penetrable wedge solved in Chapter 4 where the period of the difference equation is
doubled from 27 to 4x. This doubles the width of the strip of analyticity and hence doubles
the number of poles and branch points found therein. The analysis parallels closely the one
given in the previous chapter with two important distinctions. The first is that the elimi-
nation of the cyclic periods now required analysis on a Riemann surface of genus three.
This was substantially more complicated that the one done previously but was nevertheless
carried out fully analytically. Secondly, the construction of meromorphic solutions free of
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poles and zeros in the strip of width 4x presented a significant challenge due to a paucity of
degrees of freedom. Solutions could be constructed analytically but only just. Furthermore,
despite recovering the desired solution when § — 71/2, the solutions vanish as § — 0. Two
attempts at circumventing this were made by constructing meromorphic solutions whose
zeros must be located numerically. In the first instance it is required to locate two zeros nu-
merically whereas the second one requires the identification of four zeros. Given the added
complication of numerically locating zeros, their behavior is at best marginally superior to
the analytical solution: both are almost successful in recovering known limits when § — 0
but ultimately fail when § is in that neighborhood.
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CHAPTER 6

TraeE METHOD OF PERIOD REDUCTION

COMPARISON of the results in Chapters 4 and 5 shows that a larger number of branch
points in the strip of analyticity generally calls for analyses on Riemann surfaces of
higher genus and this significantly complicates the derivation of the bilinear relation of
Riemann. Looking ahead to the problem of the anisotropic half-plane, which has sixteen
branch points in the strip of analyticity, this provides an incentive to develop a variation
of the technique presented in Chapter 3 where the analysis required to eliminate the cyclic
periods is simplified. This is achieved by deriving first order equations whose period is re-
duced by half, thereby halving the width of the strip of analyticity and this in turn halves the
numbers of singularities that must be dealt with. The resulting reduced equation, obtained
in a purely algebraic approach, has symmetry properties which differ fundamentally from
those of the original equation and this has interesting ramifications on the properties of its
solution. Unfortunately, the simplification comes at the price of making the construction
of the branch-free solutions much more difficult. Two variants of the technique, termed the
method of global elimination and the method of split elimination, are discussed.

6.1 Benefits of a reduced period

Two closely related second order difference equations were solved in the proceeding
two chapters. In Chapter 4 an equation of period 2x associated with the problem of the
penetrable composite wedge, discussed in Section 2.4, was solved. This was followed in
Chapter 5 by a solution to an equation of the same form but with the period doubled to 4x.
A comparison of the analyses required, particularly the part pertaining to the elimination
of cyclic periods, reveals that an increase in the number of singularities in the strip of
analyticity entails a more complicated analysis. In this light, there is cause for concern
if one contemplates the problem of the anisotropic impedance half-plane, introduced in
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Section 2.2, whose strip of analyticity is populated by no less than 16 branch points. This
is better appreciated by comparing the strips of analyticity of the equation of period 2,
period 47 and that of the anisotropic half-plane which are collected for convenience in
Figure 6.1. Simply put, the number of branch point singularities in the strip of analyticity
for the anisotropic half-plane is twice that of the equation with period 4r tackled in Chapter
5, a solution which required analysis on a Riemann surface of genus three. Indications are
therefore that direct attempts to solve the problem of the anisotropic half-plane will at best
be very difficult and this is the subject of more discussion in Chapter 7. A reduction of
the period of analyticity of the first order difference equation would reduce the problem
to one with a strip of analyticity of width 2rr, corresponding to the inner strip in Figure
6.1(c). This is the same as for the first generalization discussed in Section 4.4.1 for which
a solution was sketched out using only two degrees of freedom. The prospect of such
a simplification warrants a close examination of the derivation and solution of equations
with reduced period. To garner insight, we first apply it to the case of the second order
difference equation of period 4r solved in the previous chapter whose strip of analyticity is
illustrated in Figure 6.1(b).

6.2 Preliminary Analysis

We consider again the second order difference equation

cos?é — cos* 8

t(a+57r)—2{l -2 ———
Cos-a@ — cos-6

}t(a+n)+t(a—37r)=0 (6.1)

which was solved in Chapter 5. As shown there, (6.1) can be recast as the pair of first order
difference equations of period 47

F
w(a + 2n, tu) - (e, +u) = (u(a) - u(O)) 62)
w(a — 2r, +u) u(a) + u(0)
where
u(a) = Veos2a —cos?é. (6.3)

Solutions to (6.1) are sought that are meromorphic, O(1) as |Im a| — oo and free of poles
and zeros in the strip Sy,. This, as carried out in Chapter 5, can be achieved by first
obtaining well-defined branched solutions to (6.2) and taking proper branch-free linear
combinations. In this chapter the overall approach remains mostly unchanged save for the
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Figure 6.1: A comparison of the strips of analyticity for the (a) equation of period 2
solved in Chapter 4, (b) equation of period 4x solved in Chapter 5 and (c) the anisotropic
half-plane discussed in Section 2.2.
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introduction of an intermediate step where a first order difference equation of period 27
is derived from the above first order equations of period 4x. The key lies in rewriting the
right-hand side of (6.2) as

ua) - u(§) _ cos(e) - cos(6) (cos(a) + cos(d) ) (6.4)

u(@) + u@)  cos(a) +cos(@) \ u(a)+ u(d)

The first member on the right-hand side is familiar: it corresponds to g(a, u) when 6 = /2
and, writing

wi(a + 2n) _ cos(a) - cos()

= , (6.5)
wi(a-2r) cos(a) + cos(8)
it follows immediately from Section 5.1.1.1 that
Un (a +35- 6)
wi(a) = Yy(a) = —————. (6.6)
4nla~5+9)

Recall that W,(a) is free of poles and zeros in S,, and O(1) as |Im @] — oo. The second
member on the right-hand side of (6.4) is significantly more interesting — and more com-
plicated. The possibility of reducing the period is opened up by the presence of the square.
Indeed, note that if

wa(a + 7, tu) cosa —cosd

wala — m, tu) - +u(a) — u(6) = 8@, £u) (6.7)
then
wa(a + 2m, u) _ wala +2mu)  waa,u) _ (cos(a) + cos(8) )2 (6.8)
wa(a = 2m, u) waa,u) wa(a - 2m,u) u(a) + u(d)
and the solution to (6.2) can be written as
w(a, u) = Cyr(@)w(@)wa(a, u) (6.9)

where C,.(e) is a 4n periodic function. We now seek a solution w;(a, «) to (6.7) which
is well defined in the strip S», shown in Figure 6.1(a) as opposed to S, shown in Figure
6.1(b). The cancellation of cyclic periods should introduce a minimum number of poles
and zeros and while it is also desirable for wa(a, «) to be O(1) as |Im a] — o, we shall
soon see that this is not possible. This is hinted at by the form of g.(a, «) in (6.7) which
differs from its previously encountered counterparts where g(a, u) = 1/g(e, —u). The effect
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of this loss of symmetry will be made clear when the construction of a solution is carried
out. It must also be mentioned that, like its predecessors, the first order difference equations
(6.2) also have a parent second order difference equation given, in this particular case, by

(cos a — cos O)t(a + 4r) + 2u(B)(a + 2n) — (cosa + cos f)r(a) = 0. (6.10)

Properly constructed solutions of equation with reduced period (6.7) will therefore also
satisfy the second order equation (6.10). Furthermore, branch-free solutions to (6.10) are
also possible if the branch-free forms (3.3) are used.

6.2.1 Construction of the branched solution

A branched solution to the difference equation with reduced period (6.7) is sought.
Taking the logarithmic derivative of (6.7), we have

(6.11)

d d P osi
—wa(@ + ) ~ —wale —mu) = 1 — u(@) cosa\ cosfsina
da da

u(a) cos8 | cos?a — cos® 8’

which leads to a preliminary solution

wa(a, u) = exp f{vo({-’,u) + var(€, u)]d§ (6.12)

where, from (6.11), it follows that

(6.13)

a u(@) cosa) cosfsina
2w\

vola, u) = — .
’ u(a) cos 8 cos® @ — cos2 8

This is somewhat similar to its counterparts (4.26) for the penetrable wedge and (5.13) for
the extension with period 4x but, as suggested by g.(a, u) above, the symmetry vo(a, u) =
—vo(a, ~u) has now been lost. Consequently, as opposed to having poles on one Riemann
sheet and corresponding poles with negative residues on the other sheet, vo(e, u) has poles
at @ = (6, —u(8)), (£(r — 6), —u(r — 6)) but is free of poles on the sheet +u(a). However,
it still vanishes as [Im a| — oo, like its predecessors. The obligatory 27 periodic functions
in (6.12), which eliminate the polar and cyclic periods of the integrand, are required to
obtain a well defined path integral. Once this condition is fulfilled the lower limit ag may
be chosen to be any of the branch points in the strip of width 2x.

We now turn to the familiar exercise of polar period elimination. Exploiting the even
parity of vo(a, u), a total of two degrees of freedom are required to eliminate its poles. We
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introduce the 2 periodic function

vi(a,u) = (l (6.14)

u(@) cosal ¢ +yrcosa
u(a) cos 8 | cos?a — cos? 6

which has the same symmetry properties as vo(a, «): it vanishes as [Im @] — oo, is even, and
has poles only on the —u(e) Riemann sheet. It should also be noted that (6.14) is the only
such expression available if the order requirement is observed. Enforcement of vanishing
residues leads to

{1 6\.
‘pl:-%sin()coso, and <p2=§(§—;)sm0. (6.15)

Summing up vo(a, «) and v(a, u), we obtain

vola, u) + vi(a,u) =

u(a) cosf

1 (I u(@) cos a)

d

-

Y(@cos@sina - Gsinfcosa) + § sinb(cos a — cos 6)

-~ - (6.16)
cos* @ — cos- 0
which, in view of (4.14), becomes
1 u@ cosa\ d
=—|1 - == _ . 6.17
vo(a, u) + vi(a, u) 3 (l @) cose) o In¥(a) (6.17)
Intriguingly, this implies
s)2 u(a) = +u(a)
vo(a, u) + vi(a, u) — (6.18)
o In'¥(a) u(a) = -u(a),

where the distinct behavior of the solution on the different branches of «(a) is made clear.
With the elimination of the polar periods, the solution (6.12) is now

wa(a, u) = exp fa [Vo(€,u) + vi(€,u) + vanlE, w)}dE (6.19)

where, if we were to proceed as in Chapters 4 and 5, we would select the remaining 27
periodic functions va,(e,u), which eliminate the cyclic periods, so that they vanish as
IIma| — oco. However, if we do so the resulting expression fails to satisfy the differ-
ence equation (6.7). To see this we resort to the technique introduced in Section 3.2.1 and
inspect the first order difference equation when |Im @] — oco. Assuming vy.(a, 1) is such
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that the cyclic periods have been annulled, the left-hand side of (6.7) becomes

w»(a +r,u) im al—eo
w@-mu) P f, {vo + v1 + varlde == (6.20)

since by assumption all the terms in the integrand vanish in that limit. On the other hand,
the right-hand side of (6.7) becomes
€osa@ —Cos@ [Im aj~oo

ga, tu) = T1(@) — 0 > +1. (6.21)

We are led to conclude that under the current assumptions w»(a, ) satisfies the first order
equation (6.7) when u(e) = +u(a) but fails to do so when u(e) = —u(a). More precisely,
wa(a, u) actually satisfies

wy(a + 1, +u) _ cosa —cosé
wala — &, £u) w(a) F u(d)

= xg-(a, u). (6.22)

Despite this, it is easily verified by inspection that wa(a, u) still satisfies the original first
order equation (6.8) and this may prompt us to admit wa(a, 1) as an acceptable solution
regardless of the fact that it only partially satisfies (6.7). Close scrutiny of its analytic
continuation, however, reveals that while branch-free solutions can be constructed from
(3.3) in the srip S,y their continuation outside the strip fails to be meromorphic. To see
this, suppose that @ € Sy, N Si;. Then the continuation of wa(a, u) to the outer strip by
means of (6.22) produces

cosa + cosf
cos?a — cos* @
. [u(a){w(ar = 2n,u) + wla - 2n, -u)} - u(O){W(a -2, u) - wia - 2n, —u)” (6.23)

wa(a, i) + wala, ~u) =

which, letting u(a) — —u(a), is manifestly branch dependent. This may lead one to forego
(6.22) and rely instead on (6.7) to carry out the continuation but such an approach is in-
admissible since it leads to discontinuities at @ = +r, a hardly surprising result given that
wa(a, u) does not satisfy (6.7). Any notion that w=(a, u), as proposed above, couid serve
as an acceptable solution despite the discrepancy noted in (6.22) is therefore effectively
quenched. The sign error in (6.22) must somehow be corrected and this can apparently be
achieved only by introducing terms that are non-vanishing as |Im a| — oo.
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6.2.2 The higher order term
It is recognized that if a function w(a, 1) can be constructed which satisfies

Wola + 1, 2u) _

= %I, 6.24
Wela — T, +u) * ( )

then the product wa(a, u)ww(a, u) is effectively a solution to the difference equation (6.7).
The only acceptable expression found so far which makes this possible and allows a grace-
ful recovery of the limiting case § — /2 is provided by

Wao(a, u) = exp fa {vm(&u)+vh(§,u)]d§ (6.25)
where
: J_ _cosa ,
Voola, i) = 4(1 u(a))' (6.26)

This has a number of interesting properties. We first confirm that w.(a, u) is indeed
a solution to (6.24). It is assumed. as we must always do, that all the cyclic periods
have been eliminated with a suitable 2x periodic function va.(a, u), itself vanishing as
lImal — oco. Equation (6.24) is then verified by direct substitution of we(a,u). Clos-
ing the path of integration out at Im @ — oo (see Figure 3.1) produces, since va,(a, u) — 0
and £ cosa/u(a) » +! as|Imal = oo,

Wola + 1, 2u)
Wela = m, 2u)

= exp f M[vm(f, u) + van(é, iu)}d.f

+0+jo0
= exp fd {vm(.f, tu) + va (€, iu)]d.f
a-m+joo 6.27)

=expfa i(l:l)d{-‘
= #|,

tulfilling (6.24) explicitly. Any contribution from residues is ignored above as they are
legitimately assumed to have integer values. We also note that

son2 0 w(a) = +u(a)
Vool, £68) — { . (6.28)
2 u(a) = -u(a)
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and, hence,

1 u(a) = +ula)
exp f Veol&, )€ = (6.29)

ela/? u(e) = ~u(a).

The solution to the first order equation with reduced period (6.7) then has the form

wa(a, u) = exp fa{vo(g-', u) + vi(€, u) + Vo(€, u) + var(é, u)]df (6.30)

where the (as yet) unspecified 2 periodic function va.(a, u) are chosen to eliminate the
cyclic periods. In the previous two chapters, a change of the branch of u(a) resulted in a
change in sign of the integrand of w(a, u) so that w(a, u) = 1/w(a, —u). Instead of this neat
relationship, inspection of (6.30) reveals the wa(a, u) and wa(a, —u) satisfy

¥ (e)

wala, —u) = .
wa(a, u)

6.31)
[t is also noted that wa(a, u) can be slightly generalized. Direct substitution in (6.27) shows
that -v.(a, 1) is also a suitable expression. This is accounted for by introducing the nota-
tion

ws(a, u) = exp f{vo(g‘, u) + vi(€, u) £ voo(€, u) + v (€, u)ldf. (6.32)

Thus, the reduction in period, while alleviating difficulties with the elimination of the
cyclic periods, introduces its own share of complications. A reduction of the strip of an-
alyticity is a double-edged sword: the number of singularities captured is halved but the
solution must nevertheless be made free of singularities in the wider strip. Since the elim-
ination of the polar periods by means of v(a, u) is carried out in the reduced strip, 6 poles
remain in outer strip 7 < |Re a| < 2. It would seem that the stage at which these are best
dealt with is during the construction of the final meromorphic solutions, a difficult process
to begin with. Needless to say, these “extra” 4 poles only further complicate matters.

Another added complication is provided by the non-vanishing term v.(a, u), and its
presence marks a significant departure from the solutions constructed in Chapter 4 and 5.
Since the desired solutions to the second order equation (6.1) must be O(1) as |Im a| — oo,
a way must be found to correct the order of the solution. From the expressions for wi(a, u)
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and v (a, u), it can be shown that as [Im a| » oo
w; (@, +u) ~ O(1), (6.33)
wi(a,—u) ~ 0 (exp xélm a) , (6.34)

and the order of w3(a, —u) differs depending on whether Im a tends to +o0 or —co. The
branch-free form (3.3a) then behaves as

o) Ima -
w3 (a, u) + wi (e, —u) ~ (6.35)
0(exp i|Im al) Ima - Fx.
Since
oFials o(l) Ima - +oo
i (6.36)
cosa/ 0(exp —%l[m al) Ima - Foo,

this provides, under the guise of a 4z periodic, a function which exactly cancels the order in
(6.35) though the cosine in the denominator will likely introduce poles at the edges of the
strip. Bearing this in mind, the form (6.36) is used to correct the order when constructing
branch-free expressions.

Once the cyclic periods are eliminated, solutions to the second order equation (6.1)
are sought by means of branch-free combinations (3.3) of w;(a, u)wa(a, u) and particular
attention has to be paid to the elimination of the poles and zeros in the outer strip as well
as to the order correction. The technique presented does allow us to also solve another
class of difference equation, namely the one given by (6.10), whose associated first order
difference equations are (6.7). These equations, which are perhaps less firmly embedded
in the realm of physics, are interesting in their own right due to their peculiar symmetry
and their associated solutions wa(a, +u) (6.30) whose order and singularities are branch
dependent. Furthermore, since (6.10) is itself meromorphic, meromorphic solutions are
allowable using the branch-free expressions (3.3).

6.2.3 The cyclic periods

The analysis required to eliminate the cyclic periods parallels very closely the one de-
veloped in Chapter 4. This comes as no surprise: the expressions being dealt with have the
same even parity and the strip of analyticity has the exact same configuration. Only two
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Figure 6.2: The clockwise cyclic paths a and b used to define the cyclic periods occurring
in the strip Sz, Note that cycle a crosses from the upper Riemann sheet (solid line) to the
lower Riemann sheet (dashed line) whereas b is confined to the upper sheet.

cyclic periods, associated with the cycles a and b shown in Figure 6.2.3, must therefore be
eliminated. Contrast this to the direct approach carried out in Chapter 5, where four cyclic
periods had to be annulled using a much more intricate analysis on a surface of genus three.
There is an important dissimilarity between the expressions v,(a, u) found in this section
and those employed in previous analyses: they have both unbranched and branched parts
as opposed to being strictly branched. In the process of eliminating the cyclic periods, only
the branched portion of the expressions is considered.

Two different approaches to the problem of cyclic period elimination are considered. In
both instances, the analysis required to eliminate the cyclic periods parallels closely the one
carried out in Section 4.2.3: only two degrees of freedom are required and the derivation
of the required bilinear relationship is carried out on the dissected torus. As mentioned
above, the construction of branch-free solutions is made difficult in both approaches due
to the large number of poles to be annulled and the required correction to the order. In the
first approach, termed the method of global elimination, the cyclic periods of the branched
portion of vg, v; and v, are simultaneously annulled. In the second approach, termed
the method of split elimination, two pairs of 2x periodic functions are introduced: one
to eliminate the cyclic periods of vy and v, only, the other to eliminate those of vu(a, u).
Compared to the global approach, this leads to interesting symmetries in the solution but
it is achieved at the price of introducing an extra pair of poles during the process of cyclic
period elimination. The extra set of poles makes the construction of meromorphic solutions
with the desired properties quite difficult. Due to the distinctively different nature of the
solutions obtained with the two methods, the process of constructing branch-free solutions
is examined separately for each of the two methods. We first consider the more intuitive
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global elimination.

6.3 The method of global elimination

The most obvious way to complete the construction of the branched solution wZ (e, u)
(6.32) is to use va.(a, u) to simultaneously cancel the cyclic periods of all the terms in the
integrand, including the higher order term v (a, u). The benefit of this approach is that it
introduces only one set of ¢ poles. Despite its apparent simplicity, the requirement for a
solution in Sy, makes the construction of a branch-free solution difficult. We present a few
of the possibilities investigated, all of which involve some numerical work to locate zeros.

6.3.1 Elimination of the cyclic periods

This leads to the same equation system, with a few minor changes, as the one obtained

in Section 4.2.3. As just mentioned above, we require only two degrees of freedom and the
final solution is'

wi (e, 1) = exp fu {Vo(€, u) + Vi€, ) + Vol 1) + Ky Vi, (€, 1) + T3, (€ w2 f))de, (6.37)

(L]

with the 2 periodic v;f(a, 1), both of which give rise to elliptic integrals, defined in (4.44):

u(fy) cosa sing;
u(a) cosl cosa—cosd;

v (a,u) = va (@, u; 1) = (6.38)

u@)’
Note that the pole associated with v3 (a, u; {) now appears explicitly in the function def-
inition to simplify the forthcoming analysis. We also choose to indicate this explicitly in
the associated cyclic periods by writing A3 (£,) and A3 (¢1). The two degrees of freedom

«1 and ¢, are readily obtained from the analysis in Section 4.2.3. Accounting for v.(a, u),
we now define

Adslea = f {Viler, ) + Vi(@, u) + Vio(a, w)da, (6.39a)
Byt = f {vo(a, u) + vi(a, u) + V. (e, u))da. (6.39b)
b

'To avoid clutter, the analysis that follows applies to w3 (a, u). It is exactly the same for w3 (e, u) though
different values for «; and £; are then obtained.
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where the primes indicate the branched portions so that

a u(@)cosa cosésina
(at) = —— , 6.40
o(@ ) 27 u(a) cos @ cos? @ — cos? § (6.40a)

u(f) cosa ¢, +pacosa

vila.u) = " u(a) cosf cos’a — cos2 6’ (6.40b)
: _ _cosa
vi(a,u) = 1u@) (6.40¢)

The constants ¢, and - are given in (6.15). We remark that the branched portion of v (e, u)
given above has an exact anti-derivative

cosé . sina
f ) d¢ = jarccosh pror (6.41)

and has cyclic periods A, = =27 and B/, = 0. Enforcement of vanishing cyclic pertods on
the cycles a and b gives

Afs1re + K1As, + A3(0) =0, (6.42a)
By, 1se + k1B + B3 (1) = 0, (6.42b)

with the periods A.'_,f and B.'_,f defined per (4.45). The analysis provided in Section 4.2.3

now applies verbatim if we let Ag.) — Ay, |, and Bo,y — By, |, .. Hence,
Z1 = arccos [ksn(GK' + 3K + (A, k)], A € P, (6.43)
where
| | | Y
A= oy (A’.!JrBO+l+m - Bz;ernm) ’ (6.44)

and the period parallelograms P are identified in Figure 5.10. In (6.43), the parameter
k = cos §/2 with K and K’ defined in the standard fashion (see Section 3.5.1). The constant
k; follows immediately from either equation in (6.42), completing the construction of the
branched solution to equation (6.37).

6.3.2 Properties of the solution

The solution just constructed solves the first order difference equation (6.7) and, to-
gether with the branch-free combinations (3.3), can be used to obtain meromorphic so-
lutions to the associated second order difference equation given in (6.10). We note that
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this procedure can be readily carried out using the branch-free solution given in Section
4.3 in a fully analytic manner if we are willing to admit solutions which are not O(1) as
[Im a| — oo. Our goal however is to find solutions to equation (6.1) which, from Chapter
5, does admit a solution O(1) as [Im a| — oo that is free of poles and zeros in the wider Sq,.
The solution w*(a, u) to (6.2) is, from (6.9),

w' (@, u) = wi(a)w;(a, u)

W¥,(a)exp fa[vo(.f, u) + vi(€, u) + veola, u) + K V3 (€, 1) + o V3 (€, 1 {.)}d{-’.
(6.45)

This shares many properties with the solution w(a, «) described in Section 5.2.6 under
the direct approach yet it is provides a significantly greater challenge when constructing
proper meromorphic solutions. There are two main reasons for this. The first is the need to
construct a pole and zero free solution in the wider strip S, as opposed to S,,. The second
is the needed correction in the order to offset the growth (or decay) due to v.(a, u).

The wider strip is populated by 8 poles, from vy(a, u), as well as {; poles, from
vgn(ar, u; &1). The poles and zeros of w(a, u) associated with the poles of v32”(a, u; ) follow
from (5.65). The @ poles are due to vg(a, u) + v|(a, 1) and this has residues, on the —u(a)
Riemann sheet only,

Res {vo(a, u) + vi(a, u)Ha:ﬂ._,’t Oy 216)

L@ cos@sina - Gsinfcos a) + L sinf(cos a — cos 6)
N { 2

= ) (6.46)
-2sina cos 2a a=1(22-6),+(1-6)

which produces
Res {vo(a, u) + vi(a, u)' =+, a = 2(r+6,—-u), =(-2r + 6, -u). (6.47)

[nterestingly, the elimination of the polar periods in the narrow strip is sufficient to produce
integer residues outside the strip; if it were not so the integral would still be ill-defined out
of the strip S»;. The end result is that, in addition to the {; poles found on both Riemann
sheets, we must also deal with the 8 poles which solely reside on the —u(e) sheet. Noting
that Ws(a), given in (5.5), is free of poles and zeros in S,,, we therefore have, assuming
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(1'+{l G+(27f—{|)
a-§ a-Qr-g)

wi(a, u) ~ (6.48a)

and

a-fa-Qr-4) a-(r+8)a-(-2n+6)
e+l a+Qr-0) a+(r+Pa+(-2r+6)

wi(a, —u) ~ (6.48b)
where ¢ is used instead of £} to reduce clutter.

The limiting behaviors of w*(a, u) and w*(a, —u) are easily obtained. Following the
same approach as in Sections 4.2.5 or 5.2.6, it is a simple task to show that k, vanishes as
6 — n/2. It immediately follows, making use of prior analysis, that

son2 tan +tang

w*(a, u) > T - Y. (a) (6.49)
tan 5= tan 3

and

4] a
s—a2 tan s —tan 3 .
w(a, —u) y — =2 Ly (a)e Y (a), (6.50)
{) a
tan 5 + tan 3

which is in agreement with (6.31). Moreover, using the properties of Maliuzhinets’s func-
tions, it can be shown that

cos{(@ -G +mcosta—6) |

Yi(a) = (6.51)

cos 3(a + 8 - m)cos H(e + ) ¥i(a)
and (6.50) becomes

s-r2 tané —tan g cos {(a - 0+ 1) cos L(a - §) etite

wi(a, —u) (6.52)

tan ‘-,—_' + tan § cos 1@ +6-mcos Ha +6) Yia)

providing a glimpse of how w*(a, u) recovers expressions related to the desired limiting
functions W4(a) and its reciprocal. Note also that both (6.49) and (6.52) are in agreement
with (6.48).
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6.3.3 Branch-free solutions

Itis not obvious how a fully analytical approach can be used to obtain branch-free solu-
tions to the second order equation (6.1) based on the branched solution (6.45). Experience
suggests the use of the approaches, or variations thereof, employed in Chapter 5 where
the very same equation was solved fully analytically. Both the elimination of the 8 and ¢,
poles as well as the required correction to the order must be borne in mind. The approach
followed to correct the order of w(a, «) so as to remove the exponential growth (or decay)
associated with v(a, u) was previously hinted at in Section 6.2.2: we make use expression
(6.36) in the construction of the branch-free solutions in order to obtain the desired order.

The most general approach is a liner combination of (3.3a) and (3.3b) which leads us to
contemplate once again the forms

’.2
ti(a) = % (l + @) wi(a, u) + (l - ﬁ)w’(a, -u)}, (6.53)
2 u(a) u(a)
@) = — (1-4(0)) £ )+(| +'§(a)) V(e - )} (6.54)
Ja) = 00) @) w(a, u @) w(a, —u) ¢, .

where?r|(a) is the familiar 4x periodic polynomial with five degrees of freedom p,:

(14

. a .
ri(@) = p; + pacosa + p3sina + p; cos 5 tPssin 3

(6.55)

Function ry() has the exact same form save that it uses g, instead of p,. Since the func-
tions r,(a) are, based on preceding approaches, used to introduce a double zeros, we can
effectively eliminate two poles while simultaneously creating two zero in the term in curly
braces above. Apparently, the best approach here is to use this freedom to eliminate the ¢,

poles. This uses up four degrees of freedom and duplicates the functions r, »(a) used back
in (4.98)

pi(l =cos({; +a)) +cos () sin*dcosa + sinZ; cos® dsina

u(&1) '

ra) =

(6.56)

and

_oi(l =cos({; - a)) +cos g, sin*§cosa — sin{; cos® dsina
- ur) '

We drop the + superscripts henceforth but it is implied that r,(e) is distinct depending on the choice of
the superscript.

ra(a)

(6.57)
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This leaves a single degree of freedom, the arbitrary constants p, and g, which were set
to zero in most of the prior analyses. This will enable us to discretely eliminate a single
pole of our choice. The form of r,(a) chosen above leads to symmetric poles and zeros
in the term in curly braces and their elimination is easily carried out with Q(a), which is
then identical to Q.(c) in (5.84). In short, the procedure followed to eliminate the {; poles
is identical to the one followed in Chapter 4 (¢ poles) or in Chapter S (>, poles). This
completes the elimination of the ; poles and leaves only the 8 poles to be dealt with as
well as the required correction in the order of the solution. The best way to proceed from
here on is unclear; a myriad of possibilities are available and many were examined. A small
sample of those which were seriously entertained are presented below. Since our goal is to
proceed as fully analytically as possible, we first present an aimost fully analytical solution
and then go one to examine solutions which involve locating a progressively larger number
of zeros numerically.

6.3.3.1 Approach I: Fully analytical 4 pole elimination

We seek a solution where the 8 poles are eliminated fully analytically. This can be
achieved by choosing p, in (6.55) such that the coefficient 1 — ri(a)/u(a) eliminates the
pole of w(a, —u) at @ = 2 — 6. A short analysis produces

_ =u({))u(B) — cosfcos { + cos” §cos(Z; +6)
- u(Q))(1 - cos(¢y - 6)) '

(6.58)

In the same fashion, we define ro(a) such that 1 + ra(a)/u(a) also eliminates the pole of
w(a, —u) at @ = 2 - 6. The constant g, in this case is given by

u({1)u(8) — cosfcos g +cos’dcos(() — 6)
I —4 .

(6.59)
u())(1 - cos({y +6))

Both 1,(a) and t2(a) now share a common pole at @ = —x —  which can be eliminated with
a linear combination. Define

t3(a@) = fj(a) + ¥ 5(a) (6.60)

where y is chosen to eliminate the common pole of #(e) and #(a). Examination of the
residues gives

u(@) ~- ri(a)

—_— . (6.61)
u(@) + ry(@)le=-r-g

x:=-0%e)
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Figure 6.3: Magnitude (solid lines) of the normalized branch-free solution #(a) given in
(6.62) when 8 = 0.25(1 + j) for various values of . The thicker dashed line corresponds
to the known limiting function ‘¥s(a), per (5.5), for 6 = n/2. The change in curvature of
fi(a) near -2 occurs roughly when 6 ~ 0.80.

We now make use of our knowledge of the desired order correcting function (6.36) and
write, finally,
il
h(a) = %S:n—w' [eT (@) + e 5 (@) ; (6.62)
sin ;(a; — a)

it can be showed that as § — 7/2, £5(e) — Yi(a) and the (numerically located) zero
a; — 2r. Hence, in that limit, the known solution W4(e) (5.5) is recovered. The solution
ti(a) has a somewhat disenchanting behavior near -2, the result of an interacting pole-
zero pair in the neighborhood of @ = -2 just outside the strip of analyticity. As § — n/2,
the pair is closely located and its effect highly localized. The behavior of f(e) is illustrated
in Figure 6.3 for a large number of values of §. It is seen that whereas the behavior is
as expected in the limit as § — 7/2, the limiting behavior as § — 0 is not easily related
to known solution in that limit such as Ws(a) or its inverse. Mathematically, () is a
legitimate solution to the second order equation (6.1) but it is nowhere as well behaved as
the ones obtained in the previous chapter. In an attempt to recover the more ideal behavior
obtained in Chapter 5, variations of the procedure just presented are examined.
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Figure 6.4: Magnitude (solid lines) of the normalized branch-free solution #;(a) given in
(6.63) when 6 = 0.25(1 + j) for various values of 8. The thicker dashed line corresponds to
the known limiting function ¥s(e), per (5.5), for 6 = n/2.

6.3.3.2 Approach II: Fully analytical @ pole elimination

This is almost identical to solution [, save that we now consider

-ja/4

ti(e) = t3(a) (6.63)

sin $(a) - @)
and omit the linear combination of 3 (a) and £; (@) used in (6.62). The zero a, is once again
located numerically and, since Im @ — o0 as § — n/2, the normalized solution f;(a)/#;(0)
recovers the known solution in that limit. As illustrated in Figure 6.4, this produces a less
uniform convergence as § — n/2 and tends to an unknown solution as § — 0. Removal of
the linear combination does partially eliminate the undesirable behavior near @ = -2x but
indications are that this is achieved at the cost of a non-uniform convergence to ‘¥4(e) as
0 - m/2.

6.3.3.3 Approach III: Numerical elimination of —x - 6 pole

In an effort to recover a better behaved branch-free solution, we consider using i (a)
directly, dispensing with the linear combination used to cancel the pole at @ = —r - 0. This
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Figure 6.5: Magnitude (solid lines) of the branch-free solution () given in (6.64) when
6 = 0.25(1 + j) for various values of 5. The thicker dashed line corresponds to the known
limiting function W;(a), per (5.5), for é = /2.

leads to the expression

sinj(@y—@) sinla; etieM

tua) = t (@) (6.64)

sin §(@| - @)sin (a2 - a) 2
where @y = - - 6 and the zeros a;, associated with the pole at @ = ~r - 6, and @,
associated with the order correcting term, must be located numerically. As § — 7/2, the
known solution Ws(a) is recovered since @, —» ~n - 9 and Ima, — . The behavior
of the magnitude of fy(@) is given in Figure 6.5. Once again, the solution overshoots the
limiting function W,(a), a rather sharp departure from the results obtained in Chapters 4
and 5. For values as small as § = 0.75, the solution () has already partly overshot the
desired limiting function ¥,(a). The behavior when é — 0 is similar to the one in Figure
6.4. The increase in values in the neighborhood of —2x is due to a pole which sits just
outside the strip of analyticity. All of the solutions presented so far are afflicted by this
pole, solution [ to lesser extent since there is a closely situated zero in that case. This pole
is in fact the 47 periodic counterpart of the one eliminated analytically using p, and o;.
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Figure 6.6: Magnitude (solid lines) of the branch-free solution #yv(a) given in (6.65) when
8 = 0.25(1 + j) for various values of . The thicker dashed line corresponds to the known
limiting function ‘W4(a), per (5.5), for & = n/2.

6.3.3.4 Approach IV: Numerical elimination of 2x - @ pole

In the previous approach, the pole at 2r —  was eliminated analytically whereas the
one at —r — § was eliminated numerically. We now follow the same procedure but choose
ri(a) so that 1 + ri(@)/u(a) eliminates the pole of w(a, —u) at @ = —-x ~ 6 and then proceed
to eliminate the remaining pole at @ = 2w — 6 numerically. To distinguish the resulting
function ¢;(a) from the closely related (6.53), it is denoted as #{(a). Hence, f}() is free of
{1 poles and has a pole at @ = - — 6 whereas t;(a), also free of {; poles, has a pole at
@ = 2 — 6. Eliminating the remaining 6 pole and correcting the order, we have

sinf(ag—a) sinia, o

hv(a) = () (6.65)

sin {(a; —a)sin (@2 -a) 2
where @y = 2r ~ 6 and the zeros a;, associated with the pole at @ = 27 - 6, and a»,
associated with the order correcting term, must be located numerically. As shown in Figure
6.6, this seemingly minor change has a dramatic effect on the behavior of fiy(a). Indeed,
we now recover a function that converges smoothly towards the limiting function ¥,(a).
Furthermore, the increase in the neighborhood of @ = —2x has been eliminated altogether.
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6.3.4 Summary of global elimination

Apart from those presented above, numerous other combinations were examined and
so far none has successfully recovered the desired behavior obtained in the earlier chapters.
The upshot is that these efforts have made apparent a number of features. For instance, the
method chosen to eliminate poles, whether by means of p; and g, or by employing linear
combinations appears to have far reaching consequences on the behavior of the branch-free
solutions. On the one hand, linear combinations of 5(a) when the 2z — 8 pole is eliminated
with p and g, are typically plagued with an undesirable behavior near @ = —2x and this is
exemplified in Figure 6.3. On the other hand, those where the linear combination is used to
eliminate the —m — 6 pole, as seen in Figure 6.6, display a much more acceptable behavior.
A variation of solutions III and IV was also examined where the 6 poles were eliminated
solely by means of numerically locating zeros when p; = 0 and g, = 0. This failed rather
miserably as some of the numerical zeros migrate outside the strip of analyticity for values
of ¢ as large as 0.75. This has the unfortunate consequence that the 4x periodic zero can-
celling terms reintroduce poles in the strip of analyticity, further emphasizing how critically
dependent the solution is on the method chosen to eliminate the poles. On a related note,
it is also apparent that using the constants p; and o, to eliminate poles generally seems to
jeopardize the recovery of at least one limit and should therefore be avoided if possible. A
comparison of solutions III shown in Figure 6.5 and solution IV in Figure 6.6 provides a
quick snapshot of the capricious nature of the process. At first glance, they are both equiv-
alent: in the first the 27 — 6 pole is eliminated using p;, 0| and the —x — 6 pole is dealt with
numerically; in the second, this is reversed and the 27 — @ pole is eliminated numerically.
Yet, their behaviors are quite dissimilar in both limits of ¢ that are of interest. This may be
an indication that the procedures lead to poles having different orders and/or residues out-
side the strip of analyticity. Clearly, more consideration is required to shed light on these
issues.

6.4 The method of split elimination

An alternative to the global approach which is not quite as intuitive and harder to justify
at this point is to take a two-step approach to the problem of cyclic period elimination. In
this method, two separate pairs of elliptic integrands are introduced to annul the cyclic pe-
riods, thereby annulling individually the cyclic periods of vo(a, u)+v(a, u) and of v (a, u).
This yields expressions which are more symmetric than for the case of the method of global
elimination, albeit at the substantial cost of introducing an extra set of { poles. This is ad-
mittedly a hard-sell at this juncture given our current inability to recover the solution from
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Chapter S using the simpler global elimination just discussed. However, it turns out that to
reduce the period of the difference equation for the problem of the anisotropic half-plane
this is the only known way to proceed since, for reasons explained in the next chapter, the
method of global elimination fails to apply in that context. The construction of a branch-
free form in this case will be conducted using a fully numerical approach and we do succeed
in recovering the known limitsas § —» /2 and § — 0.

6.4.1 Elimination of the cyclic periods

This is relatively simple given our current experience. Much like the case for the global
elimination, we recover relationships which differ only slightly from those obtained in
Section 4.2.3. Following the prescription outlined above, we write

wa(a, 1) = wa(a, uywiy,(a, u)

= exp ,r {Vo(é" W) + Vi€, ) + Kovig(€,u) + Tava (€, {“)} «“ (6.66)

an

- exp r{tvm(a. u) + x,,vé,,(f, u) +a'bv§x(§, u, {b)}df
ay

where w,(a, t) is a solution to (6.22) while way(a, u) is a solution to (6.24). The + super-

script is omitted below to avoid making the notation too cumbersome. Since it indicates a

change in the sign associated with v (a, u), only the quantities , and ¢, are affected by its

choice; it follows from symmetry that x} = —«;, {; = ¢, and o, = ~0,. We define

Ay, = f {v(',(a, u) + vi(a, u)}da, (6.67a)
By, = f {v{)(ar, u) + vy(a, u)lda, (6.67b)
b

where the primed integrands refer to the branched portion of the respective unprimed func-
tion as given in (6.40). Enforcing vanishing cyclic periods over the cycles a and b produces

Aget + KaAy + A2 (L) =0, (6.68a)
B, + kB, + B3 (L) =0, (6.68b)

with the periods Aé;f and B;f defined in (4.45). The dependence on ¢, is explicitly indicated
to avoid confusion with the forthcoming analysis for wa(a, u). Following once again the
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analysis in Section 4.2.3, we obtain
£, = arccos [ksn (K’ + 3K + o ,A k)], A, € P, (6.69)

where

1 , ,
Ag= ar (A‘Lr 041 ~ Bé:ern) , (6.70)

and the period parallelograms are identified in Figure 5.10. In (6.69), the parameter k =
cos /2 with K and K’ defined in the standard fashion (see Section 3.5.1.) The constant K,
follows immediately from either equation in (6.68).

Repeating the analysis for wy,(a, u) we define

Al = f vl (@, u)da, B = f v (@, u)da, (6.71)
a b

where the primed integrand refers to the branched portion of v.(a,u) given in (6.40c).
As noted on page 152, v (a, u) has an exact anti-derivative and it is easily shown that
A, = jn/2and B, = 0. Unfortunately, since A, is not an integer multiple of 27j, vanishing
cyclic periods must be enforced. Doing so over the cycles a and b produces

AL + kAL, + A3 (5) =0, (6.72a)
B, + KB}, + B3 (&) =0, (6.72b)

with the periods A, and Bj? defined in (4.45). Paralleling the analysis in Section 4.2.3,
&y = arccos [ksn (K’ + 3K + apAy, k)], Ay € P, (6.73)

where

Ap = % (A3.B. - BLAL). (6.74)

The period parallelograms # are identified in Figure 5.10 and the parameter k = cosé/2
with K and K’ defined as above for the case of {,. Either equation in (6.72) can now be used
to obtain k,. The determination of «,, and £, completes the construction of the branched
solution w*(a, ) and we now turn our attention to obtaining branch-free solutions.
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6.4.2 Properties of the solution

This alternative solution wa(a, u) to (6.37), like its predecessor obtained by global elim-
ination, can be used to obtain meromorphic solutions to the associated second order differ-
ence equation given in (6.10). Once again, this can be achieved in a fully analytic manner,
though one must now resort to using the constant term in r(a) as well as linear combina-
tions of #/(@) and t>(a) given in Section 4.3. This procedure however precludes the recov-
ery of the known solution even as § — /2 and the expression recovered is not O(1) as
IIm @} — oo. It can thus be appreciated that even at this stage, the method of split elimina-
tion yields results which are of a higher complexity than the method of global elimination.
We turn to constructing a solution to equation (6.1) from the branched function

w(a, u) = wi(a@)wi(a, u) = Vi(@)wal(a, u)wy(a, u). (6.75)

This shares many properties of the solution constructed by global elimination. Again, the
removal of the poles in the strip Sy, and the correction of the order make obtaining the
desired branch-free solution a difficult task. In fact, it is even more so in this case as two
sets of poles ¢, and ¢, (versus one when using global elimination) must now be contended
with. The functions wa,(a, u) and w3, (@, u) have? poles and zeros such that

e+, a+Q2r-L,)

Wa(@, ) ~ =— L a-@r=C) (6.76a)
a-f,a-Qr-{) a-(t+0)a-(-2r+8)
W ) e AT @r—() et r O at(nh) (6.760)
and
N ~a+{,, a+Qr-¢4)
way(a, u) a-4 a-Qr-0) (6.77a)
wiy(a, —u) ~ 2% 2= @n = 4) (6.77b)

e+l a+Ar-4)

The corresponding expressions for w3, (@, u) are simply the reciprocal of those for w3, (e, u).
Equations (6.76) and (6.77) when taken together identify the poles and zeros of w*(a, u) in
the strip Sy,. Needless to say, the complete elimination of these singularities is a daunting

Mt is assumed that o, = o = L.
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task. In the limit as § — x/2, we have

la a I @
s—r2 tan2 +tan2tan* +tan $

w'(a, u) > [2 2 [2 2y,() (6.78)
tan;"—tan%tan;"—tan%

and

s—n2 1an% —tan % tan 2 - tan £ cos 1(a — 6 + 1) cos H(a - §) etite

wh(a, —u)

» , (6.79)
tan % + tan § tan £ + tan £ cos j(a@ + 6 - 7) cos Ha +6) ¥u(a)
where use has been made of (6.51). These results are a simple extension of their counter-

parts encountered for the global elimination. They are, of course, in agreement with (6.76)
and (6.77).

6.4.3 Branch-free solutions

Results obtained with the method of global elimination during the investigation of a
large number of branch-free forms have revealed that in many instances, barring numerical
zeros straying out of Sy, the more highly numerical approaches (requiring the numerical
identification of larger numbers of numerical zeros) generally produce better behaved so-
lutions. Recognizing this, we attempt to construct branch-free solutions by attacking the
problem without resorting to the use of constants or linear combinations to eliminate poles.
Our starting point are the branch-free forms

ti(@) = @ {(l + m) wi(a, u) + (l - "_fgg) wi(a, —u)}, (6.80)
2 u(a) u(a)
3 B
ti(a) = 2Ql(ar) {(l - l;((aa))) w(a, u) + (l + %) wi(a, -—u)}, (6.81)

where r(a) is the familiar 47 periodic polynomial (see (6.82) and (6.83)) having five de-
grees of freedom. Proceeding as in Section 4.3, we eliminate the ¢, poles by using r(e) to
introduce double zeros at the poles of w*(e, —u) which results in

.2 . .
cos {, sin’ cos @ + sin{, cos? S sina

u(a)

n(ae) = (6.82)

and

. . .
cos{,sin"dcosa —sind, cos’dsina

u($s)

ra) = (6.83)
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Since we have resigned ourselves to using a more numerical approach we have set the
constants p; and g, to zero. The hope is that such a maneuver will facilitate the recovery of
known limiting functions. Setting

tan% —tan 2
Q@) = —F——, (6.84)
tan 3 +tan §
the branch-free solutions (6.80) and (6.81) are now free of , poles. This leaves us with the
8 related poles, the ¢, poles, as well as the required correction to the order. The core of the
solution is the combination

et (@) + e ()
(4
cos &

(6.85)

which is O(1) as [Im @] — co. More importantly perhaps, complex analysis in the @ plane
shows that the numerator is always zero at @ = +2x, making possible a correction to the
order without introducing additional poles. This is one of the advantages that the method
of split elimination has over the method of global elimination: the latter has much more
asymmetric expressions and it is unclear how a similar feat could be accomplished. All
that is required now is to eliminate the 8 and ¢, poles. Write
_ Isini2r -9 -a)sini(r+6+a)
i) = 2" sin 12r-6) sini(r+96)

sin $(¢, — @) sin 3 + @) sin §(2n - §, - @) sin {(-27 + {, - a)

sin i{b sin i{b sin i(zn - &) sin %(_2” +3) (6.86)

[1[ sinta, e*tH(a) + e (a)

P 1
not SIN (@, —a) cos ja

which can be slightly simplified using trigonometric identities but is more instructive in
the provided factored representation. The first six normalized factors annul the 8 poles of
wa,(@, -u) in the outer strips, see (6.76b), and the ¢, poles of w3, (a, —u), see (6.77b). The
product of factors that follows annuls the zeros a,, which must be located numerically, and
offset the order of the six preceding terms. The results are shown in Figure 6.7 which gives
the magnitude of tv(a) for a variety of § and known solutions are seemingly recovered in
both limits. There is however a problem when § — 0 since one of the numerical zeros
strays outside the strip Sy, when § ~ 0.01. It is unclear whether this is a fundamental flaw
in the process or if it is due to numerical inaccuracies. Regardless, solution ty(a) is invalid
when § ~ O since it is then not pole-free in S;;,.
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Figure 6.7: Magnitude of the branch-free solution tv(a) given in (6.86) when 8 = 0.25(1 +
j) for various values of 6. The thicker lines corresponds to the known limiting functions
Wi(a), per (5.5), for 6 = n/2 and 1/¥s(a), per (5.10), for 6§ = 0. The § = 1.57 curve
is juxtaposed with ¥(a). The small glitch between 7 and 2 is attributed to insufficient
accuracy in the value of one of the zeros a,,.
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6.5 Possible alternative

In both the global and split elimination approaches, the key problems arise when con-
structing the branch-free solutions. The large number of poles coupled with their asym-
metry as well as the required correction to the order make this process difficult at best and
puts purely analytical approaches out of reach. A variation to both approaches that shows
promise is to employ

_ _l_ _ cos(a) u({) sind
vil@nu) =7 (l cos(¢) u(a)) cosa —cos ¢ (6.87)
as a substitute to the currently used
vg,, (@) = u({) cos(a) sing (6.88)

" u(a) cos({) cos @ — cos {

when eliminating the cyclic periods. The apparently more complex (6.87) actually has a
number of advantages over vi_x(a, u), the most important of which is that it has poles only
on the —u(a) Riemann sheet, a characteristic shared with vo(e, ) and v,(a, u). The upshot
is that the number of poles introduced in the elimination of cyclic periods is reduced by half
as all of the poles in the integrands are now confined solely to the ~u(a) Riemann sheet.
Preliminary indications are encouraging. In the case of global elimination, this means that
if we consider

ua) u(a)

tri(a@) = {(l + @) w(a, u) + (I - rf_m_).) wi(a, —u)} , (6.89)

the term 1+r{(a)/u(e) can be used to introduce four zeros coinciding with those of w(a, —u)
or, alternatively, | - ri(a)/u(a) can be used to directly eliminate the poles of w(a, —u).
This can be achieved without resorting to constant terms in r (@) or linear combinations, a
source of problems as we have seen. This approach is also applicable to the method of split
elimination though it is unclear at this point what its ramifications are on the symmetry of
the solution. The key worry here is that it may jeopardize the ability to correct the order
without introducing poles. However, at the very least, it reduces by half the number of
¢ poles in both instances. It is perhaps a more reasonable way to proceed, since it takes
advantage, after all, of symmetries ingrained in the expressions involved.
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6.6 Summary

A modified version of the technique was presented where, in an effort to simplify the
elimination of the cyclic periods, first order difference equations with reduced period were
derived. The technique was applied to the second order equation solved in Chapter 5 and
analysis was now required on a surface of genus one instead of genus three. The price
paid was the need to introduce terms that are non-vanishing as |Im @ — oo and the need
to eliminate additional poles. Consequently, the construction of the desired meromorphic
solutions is significantly more difficult and cannot be achieved fully analytically: zeros
had to be numerically identified to complete the solutions. A large number of attempts
were made in the context of the method of global elimination but the preferred behavior
of Chapter 4 was not achieved. These efforts did show however that constants and linear
combinations tend to disrupt the recovery of limiting functions and should preferably be
avoided when eliminating poles during the construction of meromorphic solutions. The
all out numerical approach taken in the method of split elimination almost succeeded in
recovering known limits but the solution fails in the neighborhood of § ~ 0. The best hope
to alleviate these difficulties is the alternate integrand of the third kind vs(e, ) discussed in
the previous section which halves the number of poles introduced during the elimination of
the cyclic periods.
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CHAPTER7

THE AN1SoTROPIC IMPEDANCE HALF-PLANE

HE problem of the anisotropic half-plane with common face
Timpedances illuminated at oblique incidence is now examined. Owing to the large
number of singularities present in the strip of analyticity, the associated difference equa-
tions are considerably more complex than those solved in Chapters 4, 5 and 6. These
difficulties can be side-stepped by making an approximation to the square root term that
appears and this is used to construct an approximate solution. The difference equations
then all involve ratios of trigonometric polynomials and their solutions are expressible in
terms of Maliuzhinets functions. A discussion of possible exact treatments based on the
material from the preceding chapters follows and two alternatives are discussed. In the
first, a direct approach is taken as in Chapters 4 and 5. As suspected, the main problem
with such an approach is the elimination of the cyclic periods. The second approach is
based on the method of period reduction of Chapter 6, which simplifies the elimination of
the periods at the cost of introducing more poles in the strip of analyticity. In both cases,
shortages in the number of degrees of freedom preclude the completion of fully analytical
solutions.

7.1 The difference equations

Consider the anisotropic half-plane shown in Figure 7.1 illuminated by an obliquely
incident plane wave characterized by an azimuthal angle ¢, and a skew angle 8 — see
(2.8) and Figure 2.1(a). The difference equations derived in Section 2.2 were obtained by
specializing the generalized formulation of the anisotropic impedance wedge. We avoid
the general but heavier notation employed therein and revert instead to the one employed
by Sentor anp Lecaurr [1998]. Recall that the quantities ¢.(a) and t,(a), related to the
unknown spectral functions s.(a) and s,(a), were defined in Section 2.1.1 when diagonal-
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Figure 7.1: The anisotropic half-plane with ® = r.

izing the matrix expressions for the spectral functions s, () in (2.15). The second order
difference equation satisfied by either r.(a) or #,(@), which must both be even by virtue of
(2.19), may be written as'

() ter + 6m) = 20T + (T =T ela + 20 + (T e - 2m =0, (T.1)

which is (2.53) under a different guise. We have defined
772 = cos® acos’ B + (sin a+0 1 sinﬂ) (sina + 1. sin §) (7.2)
o
where o) = +1 and o=, = 1 so that, for example,
I =cos’acos’ B + (sin o+ ”lp sinﬂ) (sina - 7. sinB). (7.3)

The quantity 8 is the skew angle of the illuminating wave (see Figure 2.1(a)) where 8 = 7/2
corresponds to normal incidence. In that particular case, the second order equation reduces

'Equations (2.17) in this work, where 1, 4(a) are defined in terms of s, x(a + x), differ from those used in
[Sentor anp Lecautr, 1998] which instead express £ 2(a + ) in terms of s, 4@+ ) so that £y 2(@ + 1) =t p(a).
This also results in a change of @ — @ — & in the coefficients of the difference equations.
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to the first order difference equations

t(a +2m) _ (sina - l/ry,,)2 (7.4)
tla-2n) \sina+1/n,)’ )
th(a + 2m) _ (sina -n. )2 (15)
(e -2r) \sina+n.)’ '

which are also respectively satisfied by s.(e — 7) and s,(a - 7). Letting sin8, = 1/n, and
sin#, = n., the solutions to (7.4) and (7.5) are then written

t(@) = ¥¥(a, 6)), (7.6)
@) = ¥i(a, 6), (1.7

where, in terms of the Maliuzhinets half-plane function y(a),

U (@ +0-2)¢p(a-0+12)

\{’(,(Q', 9) = w" (0 ’r)
T2 (7.8)
f £ sinfcos¢ + g sin g + 92 co8£ +p3c08 X + g, sin 2¢
= exp ——— d¢
0 sin“ ¢ —sin- @
and
I 36 36
$r=-7 (cos 7" sin —2—), (7.9a)
1 6
h=|— - — 7.9b
ne(i-2). asm
1 6 .86
03=-7 (cos 3 +sin 5), (7.9¢)
1

Note that 1, 4(a) ~ exp }Ilm al as [Im a| — oo which is consistent with the order require-
ment for this particular problem. The function W¢(a, 6) actually satisfies

Ye(a + 21, 0) _ sina-sinf
We(a —271,6) sina +sind

(7.10)
but the minus sign is of no consequence since the function Ws(a, 8) is squared in the solution

t.»(@). This should be compared to ¥s(a, 8) defined in (5.10).
The second order difference equation (7.1) can be recast as a pair of first order difference
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equations by using either technique given in Section 2.1.2. Adhering to our convention of

denoting solutions to first order difference equations by w(a, u), the resulting expressions

are

wia +2m,+u) I % ‘/(sinl @ — sin’ 61) (sin2 a - sin® 61) —-vysina

w(a - 2r, +u) T

+ \[(sinz a - sin’ 61) (sin2 @ — sin’ 62) +ysina
and, letting w(a, u) = wi(a@)wa(a, u), we have

wi@+2r) I _ (sin@ - siné,)(sina - sin6,)
wi(@—-2r) T+~ (sina +sin8)(sina + sin6»)

and

walar + 27, +1) + \/(sinz a - sin’ §) ) (sin’ & - sin’ &) - ysine
- — = g(a, +u) = :

[ . 2 . 2 . 2 .
* (sm' a - sin” 6,) (sm"a - sin” 62) +ysina

wa(a = 2r, +u)

with

A l LY (e ,
sinf,, = Ssng {n:+E:F \j(rk—ﬂ_p) +4(;7:— l)cos ﬂ}.

l X R
sind; s = —— — +cos —“—l},
' smﬂ{ P\,

and

1y |
=)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

Note that when 8 = n/2, §, = §,, sind, = sind, = ,/r;,,/n:, sinf, = 1/, and sin6, = 7..

The square root u(a) is, from above,

u(e) = \/ (Sin2 @ -sin’§ ,) (sin2 a - sin’ 62)

(7.17)

and its cuts are chosen such that u(a) = u(-a) = u(a + x). The associated dissections in
the strip of analyticity are illustrated in Figure 7.2. The root u(e) is also such that on the

positive branch (top Riemann sheet) u(a) = sind, siné, when sin@ = 0. This implies that
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=2r + 6 ~I + 6y 62 n+dy
=2t +4, -+ 6 4, T+6;
o = 0 3 2
-t -6 —6. -4, r -6,
| _ _ _ -
+ + + +
-6 -6 r-6 w6 |

Figure 7.2: The 4r strip of analyticity with the branch points and associated cuts for the
square root (7.17) appearing in (7.13).

when 8 = /2, u(e) = sin> 8, - sin® @ = sin’ 6, — sin’a.

The two required solutions t.(a) and t,(e) are expressed as linear combinations of
wi(@)wa(a, u) using the branch-free expressions (3.3). They must satisfy (7.1), be
Olexpl(1 — €)lIm al}} as |Im @] — oo (here ¢ is positive real), and be free of singulari-
ties in the strip Sy, apart from a simple (optics) pole at @ = ¢y. A solution to equation
(7.12) that is free of poles and zeros in Si;, is, since Wq(a, 6) satisfies (7.10),

wi(a) = Y¢(a, 6,)¥s(a, 61) (7.18)

and as |Im a| - o,

wi(a) ~O0 {exp (%Ilm al)} . (7.19)

The crux of the problem lies in finding the solution wa(a, u) to (7.13). As always, it is
useful to examine the solution when 8 = x/2 and the branch points vanish. Equation (7.13)
then becomes

wala + 21, +u) sina —sin6, sina +sin6, ) '
—— = g(a, ={— - - - 7.20
wala - 2r, +u) 8(a xu) {sma +siné; sina — sin 02} ( )
and using once again (7.10), the solution wa(a, +u) in that limit is
Ye(a,6)\"
£l 6 1
(@, =W = — 7.21
wa(a, tu) = wa(a) (‘f’a @ 02)) (7.21)

which is O(1) as |Im @| — . Since w(a, u) = w,(a)wa(a, u) it can been appreciated, using
(7.18) and (7.21), that the solutions (7.6) and (7.7) are recovered. We now examine an
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approximate solution to (7.13) that recovers the known expressions when 8 = /2 (normal
incidence) and when 7, = n, (isotropic impedance.)

7.2 Approximate solution

The complications due to the branch points of u(a) can be avoided by approximating
the square root. The difference equations then all involve rational trigonometric functions
and are amenable to solution using Maliuzhinets functions. Consider those sin @ for which
Isinal < |sindal. This is not an unreasonable approximation if |sind;»| > 1 and we
recall that, under a steepest descent approximation, the integrals in (2.12) are dominated
by the behavior of the integrands at the saddle points on the real axis of the & plane where
Isinal < |. We then have

5 ) . . 2 . . 1 1 1 . 3
\/(sin'a—sin'dl)(smza—sm'dg)=sm6| smég{l ——( — )sm'a}
2\sin° 8, sin" 6

(7.22)

consistent with the definition of the square root in (7.17), thereby eliminating the branch
points of g(a,«). This is an exact representation if sind, = siné, corresponding to an
anisotropic half-plane at normal incidence (8 = n/2) and an isotropic (1, = 1) half-plane
for arbitrary 8. With this simplification the expression for g(a, u) becomes

_ (sina - sin 6, )(sina + sin 8,)

g(a) (7.23)

"~ (sina + sin 8, )(sina - sin 1)

where
. ] siné; sinda ( | ) \j( 1 )
sinfy > = — — S \F|:— )+ A\ ——
sinB sin* 4, + sin" 6, Mo o

and from the expressions (7.15) for sind; » we obtain

2

+2(sin® 8, + sin® 6,) sin’ ﬂ} .

(7.24)

3 —coszﬂ(l:- - l)

sinf; 5 = 5 silnﬁ L il {42 (rk - l)+ \j(n: + —l-) +4coszﬁ(ﬁ - l)}
%+coszﬁ(ﬁ- 1) Mo Mo T
o

o
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It is assumed that O < Re 6, Re 6, < x/2, and the square root is such that when 8 = /2

sin@; = =s—-n. - —|+|n.+ —|; = — =sinb,, (7.26)
) M !l o '

-1 l |
sinf, = =<|n. - —) + ( .+ —)} =7, =sinbs. (7.27)
2 {( Np 4 Mp

We are now able to express wa(a, u), like its counterpart w) (a), in terms of the Maliuzhinets
half-plane function. Since (7.13) can now be approximated as

wa(a +2m, tu) {(sina —sinf,)(sina + sin6») }t' (1.28)
wala - 21, +u) | (sina + sin, )(sin @ — sin B2) -
it follows that
wa(a, u) = wae)*' = {%(L’él)}:l (1.29)
- i ‘{’G(Qv é:) ’

and wa(a) ~ O(1) as [Im a] — . The combinations (3.3) are not required since wa(a) is
meromorphic; the solutions to the second order difference equation (7.1) are given by

t(a) = C(a)wi(a@)w:a), (7.30)
n(a) = Ch(a)M, (7.31)
wa(a)

where C,.(a) and C,(e) are 4x periodic functions. Functionally, this is the same scenario as
the one dealt with in the previous chapters when the limit § — /2 and the branch points
vanish.

In view of the order restriction on s.(a) and s;(), the even parity requirement on ¢, ,(a),
and the requirement for a simple pole at @ = ¢, we now write

C.(e) = Aga) +a, + b, cos ‘-2'- (1.32)
Ci(@) = Axg(a) + ay + by cos % (7.33)
where
1 cos %
Y 2 734
7 2 cos g._ sin @- ( )
2 2
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and A,, A;. a,, a,, b, and b;, are constants to be determined. From (2.17)

ta-nm= (— sina + ;’l— sin ,B) s.(@) + cos a cos Bsy(a), (7.35a)
/]
ty(a - ) = (- sina + . sin B)sy(a@) ~ cos @ cos Bs.(a), (7.35b)

and, to reproduce the incident field when a = ¢o, we require

A.wi(do — mwa(dp — 1) = (— singg + ;;— sin B) e. + ¢os ¢q cos Sh., (7.36a)
(4
A;,M = (—singg + n. sinB)h. — cos ¢, cos Pe.. (7.36b)
wa(do — 1) ) i )

Equation (2.18) and (7.2) imply

s.a) = r—l_-_-{(—- sina + 1. sinB).(a@ — 1) ~ cos a cos Bty(a — 7()}. (7.37a)
sp(a) = FIT {(— sina + r;i sinﬂ) ty(a — 1) + cosacos Bt (a) - :r} . (7.37b)
p

and the remaining four constants are needed to eliminate the poles of I/~ at a = 6,
n - 6, 8, and 7 - 6,. Based on the expression for s.(), the requirements are

(-sin@, + n.sinB)t.(6, — nr) = cos B, cos B1,(6, - n), (7.38a)
(—sin@, + n.sinB)t.(6,) = —cos @, cos Bty(6,), (7.38b)
(=sin 6, + n. sinB)t.(6> — 1) = cos 6 cos Bt,(62 — 1), (7.38¢)
(-sin6, + n. sinB)t.(62) = — cos 6> cos Bt,(6), (7.38d)

which are four equations from which a,, ay, b, and by, can be determined. It is easily verified
that these also eliminate the poles from the expression for s,(a). The determination of t.(a)
and 1,(a@) and, from (7.37), s.(@) and su(a), is now complete and it is seen that s.(a),
sp(a@) ~ O(1) as [Im a| = oo. As shown in [SENIOR AND LEGauLT, 1998, Appendix A}, the
expressions for s.(a) and s;,(a) reduce to the known solutions when 8 = n/2.

With s.(a) and s,(a) specified as above, the expressions for the total field components
E. and ZyH. are as given in (2.12). The contour can be closed using paths from joo — x/2
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=60 0 n/4 :r) 2 37:1/4 ¢

¢o (radians)
Figure 7.3: The normalized non-uniform backscatter echowidth when e, = I, h. = 0 (E-
polarization), n, = 2and ., = 4: (——)B=n/2, (— —)B =nr/3and (---) B = n/6.

The angle ¢p = 0 corresponds to edge-on illumination and ¢¢ = 7/2 to illumination from
above.

to —joo ~ 37/2 and —joo + /2 to joo + 3m/2 shown in Figure 2.2, leading to the result

e-ituzcosp w2t
E.(jp,¢) = 27 f g opsing °°s"{s,(a +o-nm)-sa+¢+ n)]da
~/2~joo

+2an Res (7.39)

with a similar expression for ZyH.. The residues are those of the optics pole, giving rise to
the incident wave if ¢ > ¢ — x and the reflected wave if ¢ > & — ¢y, as well as those of any
surface wave poles of ¥, but apart from contributions of these types, the diffracted field
forkgp > 1 is

e iko(zcos B+psinB)-jn/4
\2rkop sin B

Since s.(@) and s,() have been expressed in terms of the Maliuzhinets half-plane function,

Ed(p.¢) = {58 - m) - 5.9 + m)}. (7.40)

the computation of the field is a simple task. In Figure 7.3 the backscattered (¢ = ¢y) far
field amplitude based on the non-uniform representation (7.40) is plotted as a function of
$0,0 < ¢o < m, form, = 2,n. = 4 and B = /2 (normal incidence), /3 and n/6. The
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quantity plotted is the normalized non-uniform echowidth defined as

Ed

c 1
—=~1lim2 -
1 /lhm erE,:

/ pox

. (7.41)

We now consider an exact treatment of the problem. From the previous section, it is
clear that this entails obtaining an exact solution of the difference equation (7.13). Two
approaches are considered: a direct approach and one based on a reduction of the period.

7.3 Exact solution: Direct approach

We now examine the solution of the branched first order equation (7.13) by means of a
direct approach as carried out in Chapters 4 and 5. We first proceed to take its logarithmic
derivative

—d— Inws(a + 2, u) — i In wa(a - 21, u)
da da

= i Ing(a, u) (7.42)
da

_ k(a) ( 2sinf cosa 2sinfxcosa )
w(@) \sina —sin’8;, sin*a —sin’6,

where

sinf; sin6, - sin’ @
k(a) = = , 74
(@=y sinf, — siné, (7:43)

and we note that

d
Res — Ing(a,u) =

da

+1 sina = +siné,
(7.44)

Fl sina = £sinbs.

Making use of the periodicity of d Ing(a, u)/da, it can be shown that if dwa(a, u)/da =
vo(a, u), then equation (7.42) is satisfied if

ki 2si sin 6,
e, ) = =0 ( 2endicose _ 2nen ) (7.45)
4ru(a) \sin"a -sin“@; sin"a —sin" 6,
The solution therefore has the form
wa(a, u) = exp f [Vo(«f, u) + var(é, u)}d& (7.46)
@
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where the 47 periodic v4,(a, «) is needed to eliminate the polar and the cyclic periods of
vo(@, «) in order to obtain a well defined path integral. The function vy(a, u) is odd, in
contradistinction to all of the cases previously examined which had even parity, and it
vanishes as [Im a| = oo. Within the strip Sy, it has branch points associated with 1/u(a)

and poles at the zeros of sin® @ — sin 6, , for a total of 16 branch points and 16 poles per
sheet.

7.3.1 Elimination of polar periods

To eliminate the polar periods, introduce

k , , 0
Vl((l, u) = (a) ( . 1f(a 01)1 - = ')f(a 0-)1 ) (747)
u(@) \sin"a —sin" 4, sin’ @ - sin* 6
where, in order to match the parity of vy(a, u),
L a ) . la .
f(@,6) = ¢;sin 3 + @asina + g3 sin — *@asin 2a. (7.48)

Vanishing residues of vg(a, 1) + v|(a, ) are enforced and solving the resulting system of
four equation in four unknowns g, recovers the values given in (7.9). It follows that

vola, £u) + vi(a, tu) = tm (i In¥¢(a, 6,) - i In Y¢(a, 03))
u(a) \da da

B—r/2 d \{‘6(0. a)
— +—1
idar n Ye(a, 6-)

(7.49)

and (7.21) is recovered, as required, when 8 = x/2. It is worth pointing out that whereas the
individual members appearing in the parentheses of (7.47) are O(1) as |Im | — oo, their
difference vanishes since the dominant terms are the same for both f(a, 6,) and f(a, 8-). In
agreement with previous cases, vo(a, #) and v (a, ) both vanish as |Im a| — oo.

7.3.2 Elimination of cyclic periods

Barring the discovery of currently unknown favorable symmetries, the elimination of
the cyclic periods requires a total of seven degrees of freedom. Indeed, exploiting the parity
of vo(a, u)+vi(a, u), we can limit our attention to the right-hand portion of S, as illustrated
in Figure 7.4. The segments s, are branch point to branch point half-cycles over which the
integrals must vanish. We need not concern ourselves for now with path s, because its
contribution vanishes identically since vo(a, u) and v;(e, «) are odd. This leaves the seven
segments s, to 5,. Much effort has been devoted to finding symmetries of vg(a, u) and
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[ 10 [ 17 2r

Figure 7.4: The branch point to branch point half-cycles over which the integrals must
vanish.

vi(a, 1) to simplify the analysis but so far they remain elusive. Consequently, vanishing
integrals must be individually enforced over the seven branch point to branch point paths
sp to s;,, which requires seven degrees of freedom. This is an intriguing result: in all of the
previous cases, an even number of degrees of freedom was required. This fitted perfectly
with the method proposed in this work since the degrees of freedom are introduced in pairs
with one degree associated with an elliptic integral of the first kind and the other with an
elliptic integral of the third kind. It is unclear how the proposed approach applies when an
odd number of degrees is called for. The issue is further beclouded by the small number
of acceptable odd expressions that are associated with integrals of the first kind. The three
obvious choices are

sinf  sina sin 3¢

m' ll(_a)‘ an u(a) ' (750)

All other options lead to non-vanishing expressions as {Im a| — oo and are therefore in-
admissible. Together with the associated expressions leading to the integrals of the third
kind, this yields a total of six degrees of freedom for a shortfall of one degree of freedom.
Assuming we managed by some means to produce a seventh degree, a somewhat obscure
proposition, the result would be a system of seven equations which would have to be de-
coupled into equation pairs as done in Chapter 5. No obvious symmetries indicate how
this process can be carried through straightforwardly. The one redeeming feature is that,
due to the vanishing period across the origin, the analysis would apparently be confined to
surfaces of genus three. Besides the prohibitive analysis required there is another, though
not so serious, source of puzzlement. Looking for example at the solutions in Chapter 4,
the expressions obtained are naturally normalized to unity when a = 0 and smoothly re-
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cover the known solution in the appropriate limits. This is not the case here due to the odd
parity: the path integral from, say, d, to the origin does not identically vanish. Our solution
will therefore require normalization in order to recover the known limits. The only way
to achieve this without resorting to normalization is to enforce a vanishing integral from O
to §,, which would bring the path s, back into play and increase the number of required
degrees of freedom to eight, making it once again even. While this suggests that part of
the answer probably lies in a better understanding of how to approach the problem when
the integrand is odd, the shortfall in degrees of freedom and the complexity of the analysis
suggest that a beneficial symmetry is being overlooked. If such a symmetry, as the one
employed in Section 4.4.1, could be brought to bear, the number of required degrees of
freedom could easily be reduced to five or perhaps four. The direct approach remains at an
impasse until these questions can be addressed.

7.4 Exact solution: Method of period reduction

In the aftermath of the complications experienced in the direct approach, it is logical
to turn to the method of period reduction of Chapter 6 which is tailor-made to deal with
large numbers of branch points. It will be seen that the only variant which applies is the
method of split elimination and an cutline for carrying out the solution using this technique
is provided. We proceed by first obtaining an equation with reduced period 2 related to
the original equation for w(a, u) of period 47 (7.11)

22 .2 .2 .2 .
wia + 21, tu) [ :t‘/(sm a - sin 61)(sm a - sin 62)—'ysma

m =t (7.51)
@l + ‘/(sinz @ - sin? 6.) (sin2 @ - sin® 63) +ysina
7.4.1 The reduced equation
We seek w,(a, u) — r stands for reduced — such that
we(a + m, +u)
—————— = g,(a, tu) (7.52)

wa —r, tu)
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Figure 7.5: The configuration of the strip of analyticity of width 2 for the reduced equa-
tion (7.52). It corresponds to the inner part of the 4z wide strip illustrated in 7.2.
and

wa + 2r, +u)

= +m,+u)g(a -7t
w(a — 2r, +u) g(a +m tulgila = 7, £u)

— £ \/(;nz @ - sin’ ;) (sin @ - sin’ 6,) - ysina (7.53)

_F

+ \/(sinz @ - sin® 6[) (sinz a - sin® 62) + ysina.

A moderate amount of algebra shows that

- = ‘/(sin' a - sin” 6,) (sin' a - sin” 63) —-ysina {(sin a - sin8,)(sina — sin6y) }2

r ‘/(sinz a - sin® (S.)(sin2 a — sin® 63) +ysina utysina
(7.54)
and the first order difference equation with reduced period to solve is
wa + 1, tu) = o.(@, £u) = (sina +sin 6, )(s’in a +sin 92)' (755)
wea - m, tu) u—~ysina

Once w,(a, u) has been obtained, the branched solution to (7.55) will have form w(a, «) =
Cir(@)w, (e, 1) where Cy () is a unit (47r) periodic. It must be noted that, as was the case in
Chapter 6, the behavior of g.(a, u) is branch dependent when {Im of — oo since g,(a, tu) -
+1; it will be necessary to introduce terms that are non-vanishing as [Im a| = oo in order
to compensate for this behavior. However, the solution can now be constructed in the strip
S, which, for this particular problem, is illustrated in Figure 7.5. This duplicates the strip

183



of analyticity examined in Section 4.4.1 where it was shown, provided the expressions have
the right symmetry, that the complexity of the analysis was of the same order as the one
required for the 2 periodic second order difference equation dealt with in Chapter 4. If
the solution did not require higher order terms the process of elimination of cyclic periods
would be fairly straightforward; it is unfortunately not the case.

7.4.1.1 The limit 8 — x/2

First restricting ourselves to the case where u(a) = +u(a), it can be shown that when

B=n/2,

we(a +m, +u) sin, +sina
we(a-nm, +u) sinf, -sina

(7.56)

and, from the expression for We(a, 8) (7.8) and the equation (7.10) that it satisfies, it follows
that we expect to recover w,(a, +u) = ¥+(a, §,), where

'sl’n/!(a'*'o- ’g')wm(ar—0+ %)

¥.(a,0) = - - (7.57
Va2 (9 - 5)
The integral representation of '¥7(a, 6) follows immediately from (4.18),
£ 8 _ 1 : Lo
2sinfcosé - (; - ;) cosgsin€ ~ 3sin2¢
y = - T i . 7.58
(@) = exp j: cos? & - cos? 6 d& (7.58)

[t is instructive to compare this with the expected expression for £,(a) provided in (7.6). In-
deed, for a given 4 periodic Cy.(a), we have w(a) = Car(@)w,() implying that '{’g(a. 6,) =
Car(a, 6,)¥+(a, 6)). Interestingly, it can be showed, using the properties of Maliuzhinets's
functions — see for example [MaLIUzZHINETs, 1958a] or [SENIOR AND VoLaK's, 1995]) — that

Ya(m) ! ,
Y4(a, 8)=4 \Pg(d, 6,)) (759)
Yt (g) (cos £ +cos %L) (cos 2 +sin %l)
leading to
l .p"(%r) a 6, a . 6
Cix(a, 6)) = 3 ) (cos 3 *cos ?) (cos 3 +sin 3-) (7.60)

and this enables us to recover identically the desired solution ‘I’g(ar, 6,) from the reduced
equation. If we now turn to the case where we have the branch —u(a), algebraic manipula-
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tions yield

wi(a+m~-u) siné, +sina
wla —n,—-u) sind,-sina

(7.61)

and, from (7.57), we now expect to recover w,(a, ~u) = V;(a, 6;) with ¥+(a, ) defined in
(7.57). This also recovers the desired solution (7.7) since

w(a, —u) = Wi(@, 6y) = Canla, )W, (@, —u) = Cin(a, 62)¥+(2, 62) (7.62)

with Cy (e, 8) defined in (7.60).

7.4.2 The logarithmic derivative

A general solution that still applies when 8 # 7/2 is now sought. Taking the logarithmic
derivative of (7.55),

vola + mu) — vole — mu) =

i k in 6,
cosa|[i+ K@) __sinb___ [, _ (")) % | (7.63)
u(a)) cos- a - cos- 8, u(a)/ cos- a — cos- 6,
where vg(a, u) = d/daInw,(a, u). This implies
d
vola, u) = —,)a—”a; Ing.(a,u)
__a K _ sine ( ka)|__siné, (7.64)
T2 u(a) ) cos® a - cos2 6, u(a)) cos*a - cos? 6, |

The function vg(a, u) is odd, vanishes as [Im a| — oo and has poles at the zeros of (cos’a -
cos® 6) on the +u(a) Riemann sheet and at the zeros of (cos® @ ~ cos® 65) on the —u(a)
Riemann sheet. The solution to (7.52) is now

w,(a, u) = exp f {Vo(€, u) + vi(€, u) + van(€, w)}dE (7.65)
ay
with the 27 periodic vi(a, u) eliminating the polar periods and va,(a, ) the cyclic periods

of the integrand. As shown below, v1.(a, u) will also have to include a higher order term, a
hardly surprising development based on the experience of Chapter 6.
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7.4.3 Elimination of polar periods

Introduce

(7.66)

v.(a,u)=(|+"(“)) f(@,6) +(l_k(a)) f(@,6)

u(a) ) cos® a - cos*6, u(a) ) cost a - cos*,

where f(a, ) = ¢, sina + ¢, sin 2a so that v,(e, u) is 2z periodic, odd and has the required
degrees of freedom to eliminate the poles of vy(e, u). Accordingly, v,(a, «) shares with
vo(a, u) the same poles which, in S, are at @ = +6,, and @ = +(7 - 6,,). We expect the
constant g, to be parameter independent in order for the behavior of v|(a, ) to be parameter
independent as |Im a| — oo. It is indeed the case; enforcing vanishing residues leads to

1 @ 1
@ = —(Z - Z)cos a, @1 = 3 (7.67)
so that
fla,0) = - l—i c050+—l-sin2a (7.68)
T \4 2rm 8 '

Bearing (7.68) in mind, a comparison of the sum of vy(a, u) (7.64) and v,(a, u) (7.66) with
the integral form of ‘¥4(e, 0) in (7.58) shows that

vola, u) + vi(a, u) = l(l + f-(-gl) ¥Y(a,6,) + l(l - ﬂ-a—)) ¥Y,(a, 8,) (7.69)
2 u(a) 2 u(a)
so that, as desired,
—ar/2 \P » 9 =
vola, u) + v(a, 1) u—» e 1) u= t+u(a) (7.70)
Y(a, 6») u = —u(a).

Consistent with (7.57), v|(a, u) is non-vanishing as |Im a| — co. More precisely, since

Sin2a im a1

: +i2, .
cos-a
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then vi(a, u) ~ £j/2 as Im @ — +oo. This in turn implies, letting Im @ — oo and assuming
the cyclic periods have been eliminated with vanishing 2z periodic functions, that

+x+joo
wla + 7, u) Xp f {vo(g, u) + vi(€, u) + vau(£, u)}df

wia - m,u) oo

= exp fo tjid.f (1.72)

a-n

= -1
The left-hand side of (7.55) in the same limit produces

(sina +sind))(sina +sinb,) Ima—oo

- Fl. (7.73)
*u —ysina

ga, tu) =

The first order equation (7.55) is thus satisfied only on the “positive” branch +u(a) and
fails to hold on the “negative” branch —u(e) due to a discrepancy in sign. This situation
was previously encountered back in Section 6.2.1 in our initial discussion of the method of
period reduction. As noted then, its rectification requires the introduction of a higher order
term.

7.4.4 The higher order term

As done in Section 6.2.2, we seek to introduce a non-vanishing term as [Im a| — oo so
that (7.52) holds for both branches of u(a). We are led to contemplate the higher order even

expression
vl ) = ify_ sind; sind, — sm'ar) (1.78)
4 u(a)
and since
- |0 u = +u(a)
Vo(a, ut) "m—a'-» j (7.75)
-2- u = —u(a),

it is seen that the correct sign correction factor is introduced. To cast a bit more light on
this issue, define

Weola, u) = exp f {vm(f, u) + vag (€, u)]d.f (7.76)
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where va,(a, u) is assumed to eliminate the cyclic periods of v.(a,«) and vanishes as
[Imaf — oo. This effectively reproduces the behavior of v..(a, u) within the framework
of the solution without the trappings of vo;(a, u). Indeed, closing the integration path at,
say, joo (see Figure 3.1),

Wela + T, u) _ +1+joo
Weol@ — T, u) exp f:ﬁﬂ.m lv‘”(f' u) + var(€, u)’df

1 u = +u(a) (7.77)

exp fa :%dg = -] u = -u(a),

n

thereby producing the appropriate correction in sign and recovering the same behavior as
its counterpart (6.26). The similarities do not end there. As the branch points vanish,

P 0 u(a) = +u(a)
Vola, tuU) —— { . (7.78)
JE u(@) = —u(a),

so that the exponential of the anti-derivative in that limit is

f- feonf2 1 u(e) = +u(a)
exp | Voolé, u)d§ — (7.79)

ela/? u(e) = -u(a),

reproducing (6.29). We now seek a solution to (7.52) of form

w,(a, u) = exp jq[vo(f, u) + vi(€, u) + vool€, u) + va (€, u)}dar (7.80)

a

where the as of yet unspecified 2 periodic function va.(a, u) are chosen to eliminate the
cyclic periods. There is a lack of symmetry when u(a) - —u(a) and

el*2W (e, 8,)¥1(a, 62)
wea, u)

w(a, —u) = , (7.81)
where W+(a, 8) is defined in (7.57). The undesired contribution to the behavior of w,(a, u)
due 10 vo(a, 1) as [Ima] — oo can be mitigated by using a unit periodic such as (6.36).
Note also that —v.(a, «) can be used throughout without compromising the aforementioned
properties.
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7.4.5 Elimination of cyclic periods

It was seen in Chapter 6 that we could take (at least) two different approaches to the
problem of cyclic period elimination. These two options were referred as the method of
global elimination and the method of split elimination. It was also hinted on page 161 that
the method of split elimination was the only one that applied to the reduced equation for
the problem of the anisotropic impedance half-plane. Indeed, observe that in

w,(a, u) = exp f {vo(.f, 1) + vi(€, ) + vo(&, u) + van(€, u)}d.f (7.82)

where vo, v| and v, are respectively given in (7.64), (7.66) and (7.74), expressions vg and
vy have an odd parity whereas v, has an even parity. One of the keystones in our ability
to eliminate cyclic periods in all of the cases examined up to now is the ability to use unit
periodics having the same parity as vo(a, u) + v|(a, u), thereby literally halving the number
of degrees of freedom required. In this instance, attempting to use unit periodics of either
even or odd parity in order to complete the global elimination of the cyclic periods would
require seven degrees of freedom. This is the same as the amount required in the direct
approach and the extra complication of the reduction then buys nothing. A much better
way to proceed is to consider instead the method of split elimination which would allow
for the elimination of the cyclic periods of vy + v, using odd unit periodics and those of
Ve Using even unit periodics. The solution is then the product of one function with odd
integrands and one with even integrands,

wila, u) = w,(a, upw.la, u), (7.83)
where
Wola, u) = exp f (Vo(&, u) + vi(€, u) + v 2u(£, W), (7.84)
we(a, u) = exp f (Voo 1) + ver(&. ). (7.85)
X (7.86)

The terms v, 2.(a, 1) and v, 2.(a, «) respectively denote odd and even 27 periodics used to
annul the cyclic periods. The strip of analyticity and the required cycles are illustrated in
Figure 7.6.
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Figure 7.6: The four cycles of interest in the 27 wide strip of analyticity associated with
w(a, t).

7.4.5.1 Analysis for odd parity

The elimination of the cyclic periods applies only to the branched portions of vg(a, u)
and v,(a, u). Extending the notation introduced in Sections 6.3 and 6.4, we identify the
branched portion of vy and v, as

a k() { sinf cosa siné, cosa
au) = —— - 7.87
Vol 4) 2 u(a) (cos2 a - cos?d, cos?a - cosb, ) (7.87)
] _ k(Cl) f(09 01) f(av 02)
Vi) = u(a) (cos2 @ —cos*6, costa - cos*6s (7.88)

with f(a,8) given in (7.68).

Despite appearances, only the periods associated with cycles b and ¢ must be elim-
inated, a rather surprising assertion given the somewhat complex strip of analyticity. A
comparison of the above equations with vy(e, «) and v(a, u) in Section 4.4.1 shows that
they are the same apart from a factor of 1/2. The conclusions reached therein therefore
apply here. As discussed in Section 4.4.1, this simplification is a consequence of the bene-
ficial symmetries in the expressions involved. The elimination can thus be carried out using
the 2 periodics (4.128), which, suitably modified, are

u(l,) k(a) 2cos{,sina
u(a) k(Z,) sin’ @ - sin* g,

sina
: (a,u) = —, v

v
02 . ‘( (Z) 13 4

(a,u) =

(7.89)

The part of the solution with the odd integrand, w,(a, u), will be

wo(a, u) = exp f {vO(§. U) + Vi(€, U) + KoV 20 (€, ) + TV 5 (L, u)l d¢ (7.90)
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and the enforcement of vanishing cyclic periods leads to the equation system

AQyy + KAl o + 0,4, =0, (7.91a)

be1 + KoBh oy + 0B, = 0. (7.91b)

o

Its solution requires an approach along the same lines as the one provided in Chapter 4.
The inversion for ¢, is also straightforward since v, .(a, «) is easily mapped to an elliptic
integral in standard form using the transformation

r= 25¢ (1.92)
coso

where é is either 8, or §>. The biggest problem with this approach is apparently the large
number of £, symmetric poles introduced by vf‘,.zx(a. u). This is the price paid in order for
v}, (@, u) to have the proper symmetry which requires cos® @ — cos’ £, in the denominator.

0,7

7.4.5.2 Analysis for even parity

Again, we confine our attention to the branched portion of v(a, u),

i sind, sind, — sin* @
V(@ u) = _i o o , (1.93)

and unlike its counterpart in Section 6.3.1, it is not related to a circular function and does
not have a simple anti-derivative. As opposed to the odd branched portion of the integrand,
the even part requires the elimination of the cyclic periods associated with the four cycles
illustrated in Figure 7.6. Pairs of even 2x periodic expressions leading to elliptic integrals
of the first and third kind are sought. The simplest ones that apply are

D)= = (= M Ma)  sinZ (7.94)

u(a) 2 u(a) k() cos’a - cos*{,’
and
' - fosa _ lu(da) k@)  sindcosa
Vean(@ ) = ==, v, (@, u) = 2 @) o) e cov i (7.95)

The first pair is & periodic and the second 2x periodic. Adhering to our convention, the
subscript identifies the periodicity (the added e, indicating they are even, distinguishes
them from the odd expressions above) while the superscript identifies the type of elliptic
integral to which it gives rise. The poles of both v} (@, u) and vz‘k(a, u) have residues +1
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and their polar periods therefore do not disrupt the single-valuedness of the path integral.
The squares in the denominators are required to achieve the correct symmetry. The specific
form of w,(a, u) is then

we(a,u) = exp f{vo(g’, u) +vi(é, u) + K,,v:_”(f, u) + cr,,v?m(.f, u)

@y

 KogV o, ) + TV 0 (€ u)}dg. (7.96)

Enforcing vanishing cyclic periods results in, if we make use of the various symmetry
properties,

A+ 1AL, + AL, + KAl + A2, =0, (7.97a)
B, + kB, + B, + kB, + B, =0, (7.97b)
Coy+:Cl +C2, =0, (1.97c)
-B,, - kB, - B, + kB, + B, =0. (7.97d)

This can be decoupled by inspection into

B, +x.B!, + B, =0, (7.98a)
CL+x:Co, +C, =0, (7.98b)
and
AL + KAl + AL +KapAL,, + A2, =0, (7.99a)
KBy, + B2, = 0. (7.99b)

Equation system (7.98) provides a full decoupling of the periods of the x periodic quanti-
ties. Since the period is x, the analysis to derive the bilinear relation of Riemann is confined
to a strip of width n. Judging from Figure 7.6, it should be similar to the one carried out
in Chapter 4 since in both cases two cuts are captured. The biggest challenge lies with
the inversion of V,,(a, u), the integral of v} (a, u), since the expression involved is hyper-
elliptic. This is probably possible using expressions similar to the current ones but with
the extra complication of a square root appearing in the parameter k. Once «, and {, are
known, we can turn our attention to (7.99). In this instance the analysis is similar to the

one carried out for the odd integrands above and the inversion is made possible by using
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the transformation

r= e (7.100)
siné

with & set to either 6, or 6-.

7.4.6 Branch-free solutions

The construction of branch-free solutions using w.(e, u) = w.(a, u)w,(a, u) is a daunt-
ing task. The need for symmetry above has led to the introduction of no less than 16 poles,
8 per Riemann sheet, in the strip of width 2x alone. If we consider the original strip of
width 4, it is populated by a total of 32 ¢ poles per sheet to which are added another
8 6 poles from vy(a, u) and v|(a, u). Experience suggests that the best way to proceed is
probably to use linear combinations of the branch-free representations (3.3) such as

(@) = Q(a) {(l + L(a'—)) w(a, u) + (I - _r_(gl) w(a, -u)} (7.101)

u(a) u(a)

where, if we proceed analytically, the only true flexibility is due to the trigonometric poly-
nomial r(e) which has a total of five degrees of freedom. This shortfall in degrees of
freedom prevents an analytical solution and it seems that the only way to proceed would be
numerically. However, the sheer number of poles (and zeros) to eliminate now make this
an impractical option. As with the direct approach, the analysis has once again reached an
impasse.

7.5 Summary

The problem of the anisotropic impedance half-plane under oblique plane wave illu-
mination was examined within the framework of the Sommerfeld-Maliuzhinets method.
From the second order difference equation, a pair of first order difference equations were
obtained whose solutions must be constructed in a strip of width 4x. Unfortunately, this is
populated by no less than sixteen branch points as well as, initially, sixteen poles on each
Riemann sheet. While the elimination of the poles is relatively straightforward, the large
number of branch points engenders a large number of cyclic periods which significantly
complicates their elimination. A way to avoid these complications is to approximate the
square root; this was carried out and the resulting approximate solution recovers known
solutions in the appropriate limits and also indicates how to complete the analysis once an
exact solution is available. Two different methods by which exact solutions can be obtained
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were studied. The first is an attempt to carry out the analysis in a direct fashion as done in
Chapters 4 and 5. The analysis remains manageable until we come to the elimination of
the cyclic periods where a shortfall in degrees of freedom preempts any further progress.
However, indications strongly suggest that some beneficial symmetry is being overlooked.
The second attempt at obtaining an exact solution relies on the method of reduction of the
period with split elimination discussed in Chapter 6. Though not explicitly provided, the
required analysis to eliminate the cyclic periods is now significantly simpler and can actu-
ally be carried out. However, yet again, an exact analytical solution appears to be out of
reach: the elimination of the cyclic periods leads to the introduction of a large number ¢
poles in the 4 wide strip alone. Accounting for those as well as the remaining 6 poles,
the construction process of the branch-free solutions in the 47 wide strip using analytical
means becomes infeasible given the number of degrees of freedom available. The number
of poles can probably be reduced if one proceeds as suggested in Section 6.5 but the best
hope may lie with unlocking a symmetry in the direct approach.
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CHAPTERS$

CoNcLUSION

METHOD was presented for solving a class of functional second order difference

equations that arise when analyzing scattering from certain impedance and resistive
wedges using the Sommerfeld-Maliuzhinets technique. The method, conceived from the
ground up, is based on expressing solutions of the second order difference equation as
meromorphic linear combinations of branched solutions to subordinaie first order differ-
ence equations. Standard techniques do not apply to such equations; they are solved by
taking their logarithmic derivatives, and well-defined solutions are then obtained by succes-
sively eliminating offending singularities. Completion of the solution requires the deriva-
tion of specialized versions of the bilinear relations of Riemann by means of complex
analysis on simply connected Riemann surfaces.

The procedure was successfully applied to a functional second order difference equa-
tion that arises in the study of a class of penetrable right-angled wedges. A pair of solutions
that satisfy all prescribed analyticity requirements were neatly obtained and these recover
the known limiting solutions. This is, to the best of the author’s knowledge, the first time a
second order difference equation of this class was solved directly in the context of a diffrac-
tion problem. Progressively proceeding towards the formidable problem of the anisotropic
half-plane, two mathematical extensions (or generalizations) of the equation for the pene-
trable wedge were then examined. The first was obtained by fixing the width of the strip of
analyticity and doubling the number of singularities; it can be solved relatively easily due
to a symmetry that can be exploited. For the second extension, the strip of analyticity of
the original equation was doubled. A pair of solutions was obtained in spite of the fact that
the elimination of the cyclic periods and the construction of meromorphic solutions were
more complicated tasks. In this particular instance, the one flaw the analytical solutions
have is that they vanish in a certain limit, and attempts to circumvent this by resorting to
the numerical identification of zeros were only partially successful.
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Looking ahead to the problem of the anisotropic impedance half-plane, the complica-
tions encountered motivated the study of a variation of the procedure where branched first
order equations with reduced period are derived. This entails a reduced strip of analyticity
and, therefore, a simpler cyclic period elimination due to a reduced number of singularities.
The procedure was applied to the previously solved second extension; the elimination of
cyclic periods was simplified but at the cost of requiring the elimination of a large number
of poles and zeros during construction of the meromorphic solutions. Despite consider-
able efforts, fully analytical solutions were not obtained and the best that could achieved
were solutions requiring the numerical identification of zeros, substantially reducing the el-
egance of the approach. In essence, the method of period reduction dramatically simplifies
the elimination of cyclic periods with the penalty of introducing an unwieldy number of
poles in the strip of analyticity, merely relocating a bottleneck from one step of the analysis
to another. The best hope to alleviate these problems is the alternative procedure suggested
at the end of Chapter 6 which reduces the number of poles introduced during the analysis;
this will be the subject of future research.

With this knowledge in hand, the problem of the anisotropic half-plane was examined
within the framework of the proposed approach; it remains difficult despite the array of
tools developed. An approximate solution where the branch point problem is side-stepped
by approximating the square root was first given along with plots of the resulting backscat-
tering echowidth. Two possible approaches to solve the problem exactly were then dis-
cussed and in both instances, given past observations, foreseeable complications arose.
The first was a direct approach along the lines of the method applied to solve the equa-
tion of the penetrable wedge (Chapter 4) and its variant with doubled period (Chapter S.)
The initial steps of the analysis were easily carried out but the number of branch points
coupled with an apparent lack of degrees of freedom made the elimination of cyclic peri-
ods intractable. The expressions however harbor an abundance of symmetry; it is strongly
suspected that a subtle simplifying property has been overlooked. The second approach,
based on the method of reduction of the period, also ran into problems of its own. While
the cyclic periods could now be eliminated analytically, the construction of meromorphic
solutions having the desired analyticity properties was practically impossible due to the
prohibitive number of poles introduced in the strip of analyticity during the elimination
of singularities. Of the two approaches, the direct one has the most potential and will be
revisited with hopes of discerning a subtle simplifying feature.

There is obviously much work to be done in order to fully appreciate the potential
of the method propounded. This is particularly true with respect to its generalization to
more complex problems where two sources of concern distinguish themselves. The first
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lies with the elimination of cyclic periods: a larger number of branch points in the strip of
analyticity entails a Riemann surface of higher genus when deriving the bilinear relations
of Riemann. As witnessed in Chapter S — compare with Chapter 4 — this complicates
the computation of the sum of residues and the expression of canonical periods in terms
of the basic cyclic periods. Unless a simpler approach can be found for carrying out these
analyses, the procedure, though it applies in principle, will be prohibitively complicated
for large numbers of branch points. The second source of concern is the construction
of meromorphic solutions. Unexpectedly, this turned out be as challenging, if not more
so, than the elimination of cyclic periods. It is a simple matter to obtain meromorphic
solutions of the second order equation but obtaining specific meromorphic solutions free
of poles and zeros in the strip gets increasingly difficult as the number of singularities
increases. Compare, for example, the neat analysis for the equation of the penetrable wedge
solved in Chapter 4 with the corresponding analysis in Chapter 5 where the recovery of the
desired limiting behavior was compromised by the necessary use of constants and linear
combinations to annul poles and zeros. A more systematic procedure would provide a
better appreciation of the possibilities offered by a given number of degrees of freedom and
perhaps indicate how to exploit them without jeopardizing the behavior of the solution.

In addition to the above, there are many fundamental notions that need to be addressed.
A prime example is the inversion process where the unknown ¢ poles are determined in
the course of eliminating the cyclic periods. We recall that this requires the evaluation of
a Jacobian elliptic sine function with argument A, (here n denotes any of the subscripts
used), a problem specific quantity which is a function of the parameters of the second order
equation — 6 and ¢ in Chapter 4, for example. In order for the inversion to be possible,
it was shown that A, must lie within certain period parallelograms and if this is not so,
the inversion process irrevocably fails. This underlines the need to quantify the range of
A, in terms of the equation parameters to determine when the technique applies. This is
intriguing when considered from the perspective of the existence of solutions to the second
order equation: it implies that solutions cannot always be obtained using this procedure.
It is unclear at this point whether this corresponds to limitations in the methodology or if
it is a fundamental characteristic of the equation. Within a physical context, a failure of
the inversion procedure could correspond to non-physical parameter values such as surface
impedances exhibiting gain instead of loss. This line of thought also suggests that equa-
tions which are not directly obtained from physical problems, such as the generalizations
considered, could be more difficult to solve.

The dependence of the branched solutions on the choice of cuts used for the root u(a)
must also be examined more closely. While the cuts may be thought of as a mathematical
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manifestation of the coupling between the originally obtained coupled first order difference
equations — the parent equations of the second order equation — their choice should not
strongly influence the character of the final meromorphic expressions which satisfy, after
all, the meromorphic second order equation. However, their choice does have strong reper-
cussions on the construction of the branched solutions. For instance, the selection of an
odd symmetric branch configuration for u(a) = Veos?a — cos?é in Chapter 4 produces
cuts that cross at the origin and @ = +nx at the edges of the strip of analyticity. The cuts on
the edges then do not fully lie within the strip of analyticity. Besides the puzzling impli-
cations on the elimination of cyclic periods, the integrand is now odd instead of even and
all the expressions used to eliminate the polar and cyclic periods must now change parity.
It may be that this will lead to the “complement” of the currently obtained solution where
two distinct limits are obtained when § — 0 and a common one when § — #/2. If this is
true, we can speculate that combination of solutions based on the different complementary
branch cut configuration might provide a pair of solutions that recover distinct solutions in
both limits when branch points vanish.

Another area of interest is the selection of the unit periodics for the elimination of pe-
riods. Those required for the elimination of polar periods are easily identified and it was
shown in the simpler case that, even though they are not unique, the different combinations
are equivalent within the scope of the approach. Things are not so clear when it comes to
selecting expressions — the elliptic integrands — required to eliminate the cyclic periods.
An attempt was made to select the simplest ones but, without a systematic method for se-
lecting them, there is no simple way to ascertain this. In the case of the equation of the
penetrable wedge, for example, the analysis could have been carried with an expression
leading to the integral of the third kind having double the number of poles, which then
makes a fully analytical solution more complicated if at all possible. One cannot help but
wonder if for the analysis in Chapter 5 a better set of expressions are available for the elim-
ination of the cyclic periods. Admittedly, this is an obscure proposition but the possibility
should be contemplated given the difficulty in constructing meromorphic solutions. Part of
the answer might lie in a closer examination of the mappings used to express the integrals
of the first kind in terms of Legendre’s standard form; they could be similarly applied to the
integrals of the third kind to help identify the simplest fundamental forms. It has already
been verified that canonical integrals of the third kind can be recovered in this fashion.

While we were concerned mainly with solution which are O(1) as |Im a| — o in this
work, the process should also be examined in the context of problem where the branched
solutions sought have different orders. This will require the introduction of higher order
terms which, predictably, must have constant coefficients (non-parameter dependent) to re-
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cover a constant asymptotic behavior as [Im a| — co. Apart from the subtleties encountered
in the method of period reduction, this was not pursued here.

The most important point to address right now is the applicability of the new technique
to cases of higher complexity. While the problem of the penetrable right-angled wedge
was neatly solved and now provides a good benchmark, the problem of the anisotropic
impedance half-plane, which remains unsolved, may well decide whether or not the method
is by its nature restricted to cases where the square root induces simple topologies. Even
if it turns out to be so, the method is a valuable addition to the Sommerfeld-Maliuzhinets
formalism and represents a first step towards establishing a more generalized solution tech-
nique.
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