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CHAPTER 1

INTRODUCTION

Growing applications in wireless communications present us with continuing de-
mands for new antenna designs. Various antenna features and performance metrics
are desired, including miniaturization, pattern control, new composites and artifi-
cial dielectrics, and multi-function capabilities. Antenna design is therefore a topic
of great importance to electromagnetics (EM). It involves the selection of antenna
physical parameters to achieve optimal gain, pattern performance, voltage standing
wave ratio (VSWR), bandwidth and so on, subject to some specified constraints.
Trial and error process is typically used for antenna design and consequently the
designer is required to have great experience and intuition.

Optimization is the act to either “minimize the effort required” or “maximize the
desired benefit” [93]. It can be defined as the process of finding the conditions of
design variables that give the minimum or maximum value of an objective function.
Optimization methods have matured mathematically and have been applied exten-
sively in many engineering branches [1, 37, 83, 93] such as mechanical engineering,
operations research, and artificial intelligence.

In the past ten years, design optimization methods started to be applied in an-

tenna applications to either improve the current design or speed up the design pro-



cess. Various types of antennas have been designed and optimized, such as wire
type (dipoles, loops, helices, etc.), aperture type (horns, reflectors, lenses, etc.), and
microstrip antennas. These antennas can be used either as single elements or in
arrays [10]. In this thesis, a variety of optimization techniques will be combined with
numerical antenna analysis simulators to design microstrip antennas, periodic struc-
tures, and related EM devices. To our knowledge, this is the first ever integration of
optimization and rigorous electromagnetic analysis tools. This is made possible as a

result of the new fast algorithms recently introduced in EM.

1.1 Motivation

1.1.1 Microstrip Antennas

Microstrip antennas form one of the most active and innovative research areas
among current antenna work. They were introduced in the early 1950’s by De-
schamps [31], became very popular in the 1970’s, and have since been extensively in-
vestigated experimentally, analytically and numerically [8, 18, 49, 50, 87]. Microstrip
antennas consist of very thin metallic patches printed on a grounded dielectric sub-
strate. The patch can be fed with either a coaxial probe through the bottom of
the substrate, as shown in Figure 1.1, or a coplanar microstrip line. Microstrip an-
tennas have very low profile that is conformable to planar and non-planar surfaces.
They are also easy and inexpensive to fabricate using printed circuit technology,
and compatible with monolithic microwave integrated circuits (MMICs). Thus they
have found a wide range of applications in both the military and civilian sectors,
from communication systems in aircrafts and satellites to cellular phones and other
mobile communication devices.

Disadvantages of microstrip antennas include narrow bandwidth, low efficiency,
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Figure 1.1: A circular patch antenna with probe feed: top and side view.

limited power capacity, poor polarization purity, and spurious feed radiation. There-

fore, much research work has been put into efforts to overcome these problems.

1.1.2 Numerical Techniques for Antenna Analysis

The goal of antenna analysis is to compute the electric and magnetic fields ra-
diated by the system components subject to some sources / excitation. Once this
is accomplished, many parameters and figures-of-merit that characterize the perfor-
mance of an antenna system can be found. Some of the commonly used performance
metrics include radiation pattern, power density, radiation intensity, directivity, gain,
radiation efficiency, input impedance, beamwidth, bandwidth, and polarization.

Most antennas exhibit intricate structures, and consequently computational tech-
niques are necessary for their analysis. Over the past decade, computational methods

have been developed for fast and accurate antenna analysis. Integral equation (IE)



methods and partial differential equation (PDE) methods are computationally ef-
fective for antennas with small electrical sizes as compared to the wavelength and
are classified as the low-frequency methods. When the dimensions of antennas are
large as compared to the wavelength, then radiation, propagation, scattering and
diffraction phenomena exhibit a highly localized behavior. This is exploited in the
context of high-frequency methods such as geometrical theory of diffraction (GTD)
and physical theory of diffraction (PTD) for an approximate but fast computation of
the radiated fields. Figure 1.2 shows the major computational methods for antenna
analysis. In this thesis, we are mainly concentrated on low frequency methods, since
these are the techniques to be used in conjunction with our optimization process.
It should also be remarked that the term “low frequency methods” does not imply
that the techniques are only applicable to small structures. This term has been
used because the initial use of the methods was limited to small geometries due to
their large memory and CPU requirements. However, the recent introduction of fast

O(NlogN) and low memory algorithms has allowed use of these rigorous methods

IE: MoM
Low Frequency
Techniques
PDE: FDTD, FEM
Antenna

Analysis GTD

High Frequency
Techniques

for large scale computations.

PTD

Figure 1.2: Computational methods for antenna analysis.

IE methods cast the solution of an antenna problem in the form of an integral

where the unknown quantity, usually the induced current density, is under the in-



tegral. Numerical techniques, such as the method of moments (MoM) [9, 80] are
therefore required to solve for the unknown quantity. MoM is a rigorous approach
for solving IE and has been widely used in the analysis of conformal antennas since
the 1960’s. However, IE techniques are usually formulated under the assumption
of an infinite substrate, which deviates from the practical patch antenna configu-
ration employing finite substrates. Furthermore, IE methods are not able to rep-
resent antenna excitations exactly, and additional complexities arise with substrate
anisotropies or inhomogeneities in the antenna structure. In recent years, PDE such
as the finite-difference time-domain (FDTD) [61, 71] and finite element methods
(FEM) [51, 100, 106] methods have been substantially developed as well.

The increasing reliance on PDE methods stems from their inherent geometri-
cal adaptability, low O(N) memory demand, and capability to model heterogeneous
(isotropic or anisotropic) geometries. These attributes are essential in developing
general-purpose analysis codes for EM scattering, antennas and other applications.
Without placing restrictions on the geometry and material composition for the struc-
ture, PDE methods and their hybrid versions with IE and high-frequency techniques
show a great promise for larger scale simulations.

The key advantage of the FEM is its ability to handle geometrical details and
material variations within the computational domain. In addition, while the MoM
requires use of Green'’s function and storage of a fully populated matrix, the FEM
can be implemented via approximate boundary conditions and result in a 99% sparse
matrix with large storage savings.

When Green’s function is available, a hybridization of the MoM and the FEM is
an ideal approach to combine the rigor of the MoM and the geometrical fidelity of

the FEM. This method was pioneered at the University of Michigan [51, 106], and



several algorithms and programs exist for antenna analysis. Throughout this thesis,
the analysis of patch antennas and other electromagnetic structures encountered
is carried out by an edge-based hybrid finite element - boundary integral (FE-BI)
technique [52, 53, 107, 108]. The FEM is used for modeling the inhomogeneous cavity
without any compromise in geometry, feed structure or material loading. The mesh
truncation of FEM, however, is a challenging task and must be accurately performed
for input impedance calculations. The use of BI for mesh truncation vields robust
formulation at the expense of higher computational requirements. Details of the

FE-BI formulation is outlined in Chapter II.

1.1.3 Antenna Design Optimization

Over the past several years, a variety of sophisticated computer programs have
been developed for antenna analysis based on the popular IE and PDE methods
outlined in Section 1.1.2. However, the utility of these programs can be greatly
enhanced if they can be used for design, a situation that typically involves iterative
optimization algorithms.

The process of antenna design optimization typically consists of two modules
linked together with a loop, as shown in Figure 1.3. Starting with some initial
designs, the analysis module computes the antenna performance using numerical
techniques, such as the IE and PDE methods. On the other hand, the synthesis
module using some optimization algorithm allows for the estimation of the design.
This process is repeated iteratively until some a priori convergence criteria are met.

Most antenna analysis techniques to date have not been extended to include de-
sign capabilities primarily because of their complexity and non-linearity with respect

to the physical properties of the antenna (e.g. material constants, dimensions, feed
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Figure 1.3: Antenna design process.

location and type). In most applications where optimization methods have been em-
ployed for antenna design, the objective function has been either available in closed
form or has required little computational time. Since microstrip antenna simulations
rely on relatively more complex and computationally expensive IE and PDE meth-
ods, they are not practical for use in an optimization loop. The geometrical and
material adaptability of the methods is another matter.

The major requirements for antenna analysis and synthesis that make antenna
design a challenging task and which limit the applications in antenna optimization

are:

e Full geometrical adaptability. The simulation module must be capable of han-
dling complex antenna geometries, such as irregular patch shapes and various
feeding structures. Automatic re-meshing of the geometry is also necessary

during the optimization iterations.

e Full material adaptability. The algorithms should have the capability of han-
dling composite or artificial materials for antenna substrates and/or super-

strates, resistive loading, and conducting pins (wires).

e W:ide range of performance requirements. The relationship between design vari-

ables and system performance is very complicated. Examples of desired per-



formance include maximum bandwidth, minimum size, bandpass or bandstop
frequency response, pre-specified scan angles, etc. Many of these objectives
are in conflict with each other and trade-offs have to be made to find a design

satisfying all system requirements.

e Speed. Many antenna problems involve a discretization scheme with hundreds
of thousands of unknowns. This would be unrealistic for a design unless very

fast algorithms are available.

Some of the above difficulties can be alleviated by the combination of design
optimization algorithms with an FE-BI simulator. The availability of recent fast and
accurate numerical techniques for antenna simulation can bring antenna design to
realization. Automated antenna design optimization is no longer unrealistic.

In this thesis, a comprehensive study of optimization algorithms for designing
patch antennas, periodic arrays, and other EM devices is shown. Superior antenna
designs are generated by optimizing the antenna geometrical parameters, such as
patch size, substrate thickness, stacked patch spacing, and element shape.

The goals of this thesis are: (1) show the effectiveness of combining the numerical
computational methods such as FEM with design optimization methods for the syn-
thesis of microstrip antennas and periodic structures; (2) use optimization algorithms
for generating new antenna designs systematically; (3) compare different optimiza-
tion methods on certain antenna designs, and (4) provide insight on practical issues

when designing and analyzing these radiating structures.
1.2 Previous Work

In this section, optimization work on EM devices and antennas is reviewed, espe-

cially patch antenna and layered EM device designs using gradient-based methods,



genetic algorithm (GA), and simulated annealing (SA). The methods involved in this

thesis are discussed in more details in Chapter II.

1.2.1 Antenna Array Optimization

Early antenna optimization work concentrated on array synthesis. An array is an
assembly of antenna elements in an electrical and geometrical configuration. Arrays
can produce very high gains to meet the demands of long distance communication.
Because the computation on array patterns is analytically tractable, there have been
tremendous interest and development for array optimization. Two broadly investi-
gated topics of array synthesis are summarized below:

Array pattern synthesis with null constraints. The problem of finding
optimal complex weight vector norm subject to a “look direction” and null constraints
has been studied extensively. Commonly used objective functions are the antenna
directive gains [20, 69], the signal-to-noise ratio (SNR) [19, 35, 62], and the mean
square error between a desired pattern and the null constrained pattern [72, 81].
In most cases, the problem is formulated as a constrained optimization problem.
Various optimization techniques were employed to solve this problem. Gradient-
based methods used for the adaptive nulling problem include the gradient search
algorithm [39], conjugate gradient method [97], or quadratic programming [43, 81].
Gradient-free methods, such as GA [5, 41] and neural networks (NN) [19], have also
been widely applied to this problem.

Reduction of sidelobes. A large amount of research work has been devoted
to the reduction of sidelobes of an array using various optimization techniques. For
example, by thinning an array, some elements in a uniformly spaced or periodic

array are turned off to create a desired amplitude density across the aperture. The
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conjugate gradient method [84], GA [40] and SA [95] were used for this problem.
Another way to reduce the sidelobes is by amplitude or phase tapering using GA [4]

and SA [4, 103].

1.2.2 Single Antenna Optimization

GA, evolutionary programming (EP) and evolutionary strategies (ES) form the
family of evolutionary algorithms, which have been applied to single antenna op-
timization and proved very efficient. Wire antennas loaded with passive resonant
circuits have been designed with GA to broaden their frequency response [14]. Yagi
antennas and reflector antennas have also been optimized with GA [58, 68, 96] or
EP [45].

Patch antennas are computationally expensive with no closed-form solution avail-
able although their structures are simple and easy for fabrication. Therefore, numer-
ical techniques such as MoM and FEM are needed for objective function evaluations
during the optimization process. In [2], a steepest descent method with MoM sim-
ulation was employed to obtain impedance matching for an inset-fed patch. In [64],
we combined sequential quadratic programming (SQP) with FE-BI simulation to
optimize sizes of stacked patches with probe and slot feed to obtain broadband
performance. In [66], we applied the same method to ferrite antenna design for res-
onant frequency tuning and beam steering applications by adjusting the direction
and strength of biased external magnetic field. Creation of irregular patch shapes
has also been investigated for various purposes. They include @ factor improvement
using a combination of FDTD and GA [30], bandwidth improvement using a combi-
nation of MoM and GA [21, 56], dual band performance with MoM and GA [56], and

maximum axial ratio for a circularly polarized patch using MoM and GA [2]. Ex-
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perimental optimization with a response surface methodology [79] was conducted to
obtain broadband performance of two-layer patches by optimizing the patch lengths

and spacing between substrate layers [78].

1.2.3 Layered EM Device Optimization

Multi-layered filters have been designed with GA by minimizing the difference
between the observed and the desired filter characteristics. In [74], the design variable
was real-valued and real-encoded layer thicknesses. The layering materials for the
filter were preselected. Another layered structure requiring a similar design approach
is the case of microwave absorbers [76, 102]. In [76], GA was used to choose materials
from a finite database.

Frequency selective surfaces (FSSs) are layered planar periodic structures consist-
ing of perfectly electrically conducting (PEC) patches or apertures that are either
free standing or backed by a dielectric substrate. They exhibit total reflection (for
patches) or transmission (for apertures) in the neighborhood of the FSS element
resonance. Unlike filters and absorbers, analysis of FSSs requires numerical tech-
niques instead of closed-form formulae, making the computation of the objective
functions more expensive task. Recent efforts have nevertheless already been made
to design optimal FSSs. FSS characteristics depend on the element shape and di-
mensions. With a fixed element type, the element size was optimized using NN [28]
and gradient-based method [111] to obtain desired frequency responses. For greater
design flexibility to further determine the types of elements in a multi-layer FSS
design, element blocks were selected by GA from a database of pre-defined regular
element shapes and then dielectric layer thicknesses were adjusted to achieve the de-

sign goals [75]. Elements with irregular shapes have been investigated by dividing an
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FSS unit cell into binary sub-cells. Each sub-cell is denoted as 1 when it is inside the
conductor region, or as 0 when it is outside the conductor region. Both NN [48] and
GA [65, 67] have been employed to achieve the desired frequency response. In [67],
we employed the fast spectral domain algorithm (FSDA) to speed up the FSS anal-
ysis and thus obtain a design with greater geometrical flexibility. Also in [67], the
design emphasized a constant phase (rather than amplitude) design to improve the

the impedance bandwidth of a dipole array when the FSS is used as a substrate.
1.3 Contributions and Overview of Thesis

This thesis demonstrates a comprehensive study of optimization algorithms com-
bined with FE-BI simulations used or microstrip antennas and periodic structures.
Among the various optimization methods considered, the sequential quadratic pro-
gramming (a class of gradient-based algorithms) is applied to several size optimiza-
tion problems; and two gradient-free methods (genetic algorithms and simulated
annealing) are employed on shape and topology optimization problems. We begin
our work by verifying the optimization algorithms by solving problems that have been
analytically investigated yet without optimization study. Subsequently, new antenna
designs and periodic structures are developed by utilizing optimization methods. The
methodology of optimization with FE-BI simulations is shown to not only reduce the
effort of antenna design, but also enable the design of complicated novel structures
that are beyond the capability of conventional antenna design approaches.

This thesis is structured as follows:

In Chapter II, numerical techniques for antenna synthesis and analysis are re-
viewed. For the synthesis part, specific optimization algorithms are chosen based

on each antenna design problem’s requirements and characteristics. Gradient-based
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methods are fast in convergence yet depends on the initial po‘int, and can usually
find only local optima. Sequential quadratic programming, one of the most efficient
gradient-based methods, is summarized. Gradient-free methods, onr the other hand,
are able to find global optima and are independent of starting points, yet such meth-
ods need a lot of function evaluations. Two stochastic search techniques, genetic
algorithms (GA) and simulated annealing (SA), are introduced. The reviewed anal-
ysis methods for antenna design are based on the hybrid FE-BI method (106, 108].

In Chapter III, several patch antenna design problems are proposed and solved.
Most of these antenna designs have been previously studied and are well under-
stood. These designs serve to validate the optimization algorithms. Furthermore,
optimization can produce better designs in addition to saving time and effort.

In the first part of Chapter III, optimization of ferrite antennas is presented.
Ferrite materials are attractive for microwave circuit devices and patch antennas
because of their non-reciprocal properties. FE-BI analysis for anisotropic materials
is discussed and shown to be consistent with the moment method by examining a
ferrite-loaded cavity. Two ferrite antenna designs are presented: resonant frequency
tuning and beam steering. For the frequency tuning design, both normal biasing and
parallel biasing are investigated. The relationship between resonant frequency, bias
field Hy and saturation magnetization 47 M, is revealed. It is also shown that circular
polarization can be achieved with even a single feed point for ferrite antennas. An
optimization model is established to find the resonant frequency for fixed values of
Hy and 47 M. For the beam steering design, a ferrite cover is put on top of a patch
antenna, and its thickness hy,, along with Hy and 47 M, are optimized to obtain
several desired beam angles. The SQP optimizer is used for both designs.

Microstrip antennas have narrow bandwidth due to their high Q factor. Band-
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width enhancement with various configurations and feeding structures is one of the
most active research areas for microstrip antennas. In the second part of Chapter
III, several bandwidth enhancement configurations are reviewed, with the focus on
stacked patches. Two different stacked patch schemes are then investigated. First,
stacked rectangular patches with probe feed are studied. The thickness of the driven
patch substrate is chosen as the design variable to maximize the bandwidth. Again,
an SQP optimizer is employed to solve the optimization problem. Then a new scheme
based on a stacked rectangular patch with a folded-slot is proposed. Several widths
associated with the folded-slot are used as design variables, and a simplified dis-
crete optimization is carried out by GA. Measured data are also compared with the
simulated optimal design. Both stacked patch configurations produce more than
20% bandwidth. Although the stacked patches have a significantly larger bandwidth
(than the single patch), they occupy too much space and are not ideal if the design
space is limited.

To obtain a good bandwidth while still maintaining a compact profile, the third
part of Chapter III continues to investigate broadband antennas by generating a
single-layer irregular-shaped patch. The aperture is discretized into small cells with
each cell allowed to be either in an “on” state (i.e., metal filled inside) or “off” state
(i.e., without metal inside). Then, optimizers are developed to operate on a binary
sequence that corresponds to the shape of the broadband patch. In a similar design
with different objective functions, an irregular-shaped dual-frequency patch is also
obtained for resonating at two GPS frequencies. Both GA and SA are applied to
these two problems, and the obtained designs from the two methods are compared
and discussed.

In Chapter IV, frequency selective surfaces (FSSs) are investigated. FSSs are
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composed of several layers of infinite periodic patches or apertures that exhibit total
reflection or transmission near the element resonance. By controlling the transmis-
sion and reflection coefficients, we can construct high-pass, low-pass, bandpass or
bandstop filters. The first design presented in Chapter IV is free-standing high-pass
filter with a stopband below 3 GHz. The optimization model is established by taking
sample frequency points in a certain frequency range and by having the frequency
responses as near to the desired values as possible. Numerical results for both single-
layer and two-layer filters are shown to have good high-pass performance. A second
design carried out in Chapter IV is a flat-phase FSS element. Such a design can
be used as a “substrate” to printed antennas and may serve to emulate a magnetic
ground plane. With a flat-phase element below, a patch antenna can exhibit broad-
band performance. However, the magnitude of the reflection coefficients must be
compromised to obtain smooth phase performance. Resistive loading is needed in
place of metal elements. GA is used for both filter and flat-phase element designs.
Optimization models for the two element shape design problems are similar to the
irregular-shaped patch designs conducted in Chapter III. Furthermore, a dipole ar-
ray is put on top of a flat-phase FSS, and is shown to achieve a considerably larger
bandwidth than that without FSS.

In Chapter V, 3-D frequency selective volumes (FSVs) and photonic bandgap
(PBG) structures are studied. FSVs/PBGs consist of periodic implants within
another contrast medium. Such structures can produce a frequency region where
propagation of EM waves is forbidden, therefore having the capability of improv-
ing efficiency, gain and bandwidth of the patch antennas atop. Two approaches of
manipulating the antenna substrates are discussed. When the size of periodic holes

in the substrate is small compared to the wavelength, the substrate can be viewed
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as a uniform one with an effective €,¢s; which is lower than the one without holes.
When the implant size is comparable to the wavelength, effective medium theory
is no longer valid. The corresponding structure needs to be modeled exactly. Sub-
strates using both approaches are simulated with patch antennas on top and shown
to obtain larger bandwidth than those without PBG substrates.

In Chapter VI, we summarize the contributions and discuss future topics.



CHAPTER 11

FORMULATION OF DESIGN OPTIMIZATION
PROBLEMS

Optimization is the process of maximizing or minimizing a desired objective func-
tion while satisfying a set of constraints. As discussed in Chapter I, an optimization
cycle typically consists of a synthesis module and an analysis module. The syn-
thesis module contains a specific optimization algorithm and the analysis module
computes the objective function and its derivatives, if necessary. Most optimization
algorithms are iterative methods and have their own way of searching towards the
optimuin solution.

Specifically for antenna design optimization problems, the desired performance
characteristics are described and formulated in terms of an objective function, such as
bandwidth, beam angle, frequency response, or efficiency. The analysis part usually
resorts to numerical techniques, since the antenna structure is rather complicated for
deriving a closed-form solution.

Mathematically, an optimization problem can be defined as follows:

Minimize f(x,p)
X
subject to g(x,p) <0

h(x,p) =0 (2-1)

17
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wherex € x CR™, f: R 5> R h: R® - R™, and g : R" — R°. Here x are called
design variables with x as the design space; the P vector contains certain pararneters
with values fixed during optimization. f(x,p) is the objective function, the g(x,p)
vector is a set of inequality constraints and h(x, p) denotes the equality constraints.
The set of x values satisfying all constraints, i.e., Q = {x:g <0,h =0}, is called
the feasible region.

In the most general form, (2.1) is a constrained nonlinear programming (NLP)
problem. Optimization problems can be classified in several ways such as constrained
or unconstrained problems, integer- or real-valued programming problems [93], and
compenent or system design optimization problems, etc. [83]. In this thesis, all opti-
mization problems encountered are component problems. Traditionally, component-
level optimization problems can be classified into size, shape, and topology opti-
mization, where the design variables are proportions, boundaries, and topology of a
component, respectively. In this thesis, all three kinds of optimization problems are
investigated.

Optimization methods can also be classified in various ways. In this chapter, two
broad classes of optimization methods, gradient-based and gradient-free methods,
are discussed.

The organization of the chapter is as follows. In Section 2.1, gradient-based tech-
niques are summarized, followed by a detailed formulation of sequential quadratic
programming (SQP), which is one of the most successful gradient-based methods. In
Section 2.2, gradient-free methods are introduced, and two methods that belong to
this category are outlined, namely, genetic algorithms (GA) and simulated annealing
(SA). Finally, in Section 2.3, we present the general formulation of the finite ele-

ment - boundary integral (FE-BI) method, the numerical technique used for antenna
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analysis in this thesis.

2.1 Gradient-Based Techniques

The iterative gradient based methods use information of the first and possibly
second order derivatives of the given function to obtain search directions towards
the optimum. They guarantee descent in successive iterations and usually have
fast convergence. A disadvantage of gradient based methods is that they can be
sensitive to the initial estimates of the design variables, although proper scaling
usually addresses this problem effectively. If the objective function has more than
one local optima, the algorithm may converge to a local optimum instead of the

desired global one.

A typical gradient-based method works as follows. Starting with an arbitrary
initial point xp, a new estimate is generated at each iteration till convergence towards
a local optimum of the objective function is achieved. At the beginning of the k-th

iteration, the estimate x; is available. Two steps are performed during the k-th

iteration:

1. A direction finding step to compute a search direction s; towards the next

iteration point;
2. A line search step to compute the step size a4 along the search direction.
Using these steps, the next iteration point x.; is given by
Xk+1 = Xi + Qi Sg. (2-2)
Convergence criteria to terminate the algorithm is given by, for example,

|fe = frral < e (2.3)
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where fi is the value of the objective function at the k-th iteration. A common
termination criterion for constrained problems is the Karush-Kuhn-Tucker (KKT)

norm
IV fi + AL Vh + uI Ve < e (2.4)

Some methods, known as trust region methods [83], do not use a line search.
Instead they impose bounds on how large the step can be in each iteration.

Classical gradient-based methods for unconstrained NLP problems include: steep-
est descent (Cauchy) method, conjugate gradient (Fletcher-Reeves) method, and
quasi-Newton methods such as the Davidon-Fletcher-Powell (DFP) method and
the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method [93]. Since the late 1970°s,
SQP [83, 86, 98], a class of gradient-based methods, has become prominent due to
its capability to solve problems with nonlinear constraints. In the remainder of this

section, details of the SQP algorithm are presented.

2.1.1 Sequential Quadratic Programming (SQP)

The basic idea of SQP is to replace a given nonlinear problem by a sequence
of quadratic subproblems that are easier to solve. That 1S, at a given approximate
solution, say x;, we replace the problem by a quadratic programming subproblem,
then use the solution of the subproblem to construct a better approximation Xg. ;.
This process is repeated to create a sequence of approximations that converge to the
optimal solution x,.

SQP has several advantages besides its rapid convergence: the initial point and
subsequent iterates are allowed to be infeasible (a feasible point satisfies all con-
straints of (2.1)); gradients of only active constraints are needed; both equality and

inequality constraints can be handled; and the method is mathematically proved to
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converge under certain assumptions.

Like most optimization methods, SQP is not a single algorithm, but rather a
conceptual method from which specific algorithms have evolved. In this section, a
basic SQP method will be summarized briefly for a simplified NLP problem with
equality constraints only.

Consider the equality constrained problem:

min f(x)

subject to h(x) =0, (2.5)

where x is the design variable vector, f(x) is the objective function, and h(x) is the
vector of equality constraints. Using the Lagrange-Newton method to solve the first

order necessary condition of this problem, at the k-th iteration, we have [83]

W, A7 e | _ -V ’ (2.6)
A, 0 Ak+1 —h,
where W = V2f + A\TV2h, A = Vh, and )\ is the vector of Lagrange multipliers.
Solving the above equations iteratively, we obtain the new estimate Xig+1 = Xi + S
and Ag4y which should eventually approach x, and \,, the local optima.

Alternatively, we observe that equation (2.6) can be viewed as the first order

optimality (KKT) conditions for the quadratic model:

min q(sk) = fir + VyLlisy + %SZW;CS/C
Sk
subject to Aisi +h, =0, (2.7)
where Vi Ly = V fi + AT Vh,. Solving the quadratic programming subproblem (2.7)

gives the same s; and Ay, as solving equation (2.6) and thus the two formulations

are equivalent. In the second formulation, the optima x, and A, can be obtained
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by solving a sequence of quadratic programming (QP) subproblems, hence the name
SQP for relevant algorithms. The QP subproblem can be solved efficiently by well-
developed QP solvers, for example, based on projection or augmented Lagrangian
methods. Using an active set strategy [83], problems with both equality and inequal-
ity constraints can be solved.

Local convergence is the rate at which the iterates converge to a solution, given
that the initial point is sufficiently close to the solution and the problem converges.
The local convergence of the SQP can be shown to be quadratic. On the other hand,
an algorithm is globally convergent if, under suitable conditions, it converges to some
local solution from any remote starting point. To establish the global convergence
for the SQP algorithm, a way of measuring progress towards a solution is needed.
For SQP, this is done by constructing a merit function, a reduction in which implies
that an acceptable step has been taken. To do this, we view s, as a search direction
and define the iteration as xy4+1 = X; + xSy, where the step size oy is introduced and
computed by minimizing an appropriate merit function along the search direction.

An example merit function can be written as (the [, exact penalty function) [86]
m
$(x, M) = fF(x) + ) Ajlhyl- (2.8)
j=1
In summary, SQP algorithms have the following steps:

1. Initialize;

[\

Solve the QP subproblem (2.7) to determine a search direction si;

3. Minimize a merit function along s, by performing a line search to determine

the step length ay;

4. Set Xg41 = Xg + apSy;
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5. Check for termination, go to step 2 if not satisfied.

Two other aspects of SQP algorithms that need to be noted in the implementation

are listed as follows:

e Inexact Line Search. The line search determines a value of oy that ensures
an acceptable objective function decrease from x; to Xi+1- [t is usually un-
necessary and computationally expensive to perform a line search with perfect
accuracy. Therefore, an inexact line search is typically used, where a suitable
step size rather than the optimal one is found. With a suitable step size, a
sufficient decrease in f; is realized. The most common conditions for inexact
line search are the Armijo-Goldstein criteria [6, 38]. The importance of using
an inexact line search is that the number of function evaluations needed in step

3 is substantially reduced.

¢ Finite Differences. Finite differences can be used when the derivatives of a
function must be approximated using information only from function values.
Forward difference (f' = (fj+1 — f;)/Ah) or central difference (f' = (fi+1 —
fi-1)/2Ah) can be used for this purpose. However, in antenna problems where
the objective function evaluations are high, it is usually recommended to use

forward differences.

2.2 Gradient-Free Methods

Gradient-based methods typically find local optima instead of global optima. As
a result, they must be used with care to avoid getting trapped in local optima. A
method that always yields the global optimum would imply an exhaustive search

method, in which the optimum is selected by checking all feasible points. Obviously,
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this method is terribly slow and not practical when there are many design variable
values.

For the past several decades, gradient-free methods, a class of optimization meth-
ods which do not use derivative information but utilize only function values, have
been introduced to search for global optima.

Gradient-free methods [46], or direct-search methods, are generally robust and
particularly effective for problems with a small number of design variables, but typ-
ically require fast objective function evaluations for their practical implementation.
They are largely independent of the initial designs and solution domain. Therefore,
global optima are more likely to be found. As can be understood, the gradient-
free methods work very well when many local optima exist, whereas gradient-based
methods break down in these cases. On the other hand, gradient-free methods are
generally slow with no guidance from gradient information, and require a large num-
ber of objective function evaluations to achieve convergence. Hence, they have lim-
ited use in problems involving complicated electromagnetic structures where field
distributions cannot be solved in closed-form and traditional numerical simulations
must be used for the objective function computation. Recent fast integral algorithms
and their integration with finite element methods make the use of such gradient-free
optimizations more practical.

Below we discuss the ideas behind two gradient-free methods, GA and SA, Ge-
netic algorithms and simulated annealing are two types of (gradient-free) stochastic
search techniques. Both methods bear the characteristics of the global optimization
methods, are modeled on natural processes (evolution and thermodynamics), and
have been applied in a variety of engineering areas such as operations research, im-

age processing, chemical engineering, and VLSI design. GA and SA are likely to avoid
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trapping themselves in a local optimum. Although a rigorous proof is not known,
practical applications almost always produce the global optimum. Both methods can

be hybridized with conventional optimizations.
2.2.1 Genetic Algorithm

Proposed by Holland [44], GAs are robust, stochastic-based search methods mod-
eled on the concepts of natural selection and evolution.

There are several essential components in an GA process:

e A chromosomal encoding (usually binary strings) of solutions to the problem

(see Figure 2.1);
e A way to create an initial population of solutions;

e An evaluation function (i.e. objective function) that rates solutions in terms

of fitness;

e Genetic operators to generate successive generations of solutions (reproduc-

tion);

e Parameter settings: population size, probability of applying genetic operators,

etc.

There are two basic types of operators for GAs. The crossover operator, as
illustrated in Figure 2.2, swaps parts of two solutions to generate two new solutions.
The mutation operator, shown in Figure 2.3, randomly changes a small percentage
of bits in chromosomes, from 1 to 0 or vice versa.

The flowchart of a GA process is shown in Figure 2.4. In the beginning, a desired

performance is described and formulated as a fitness function f(x) to be minimized
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by the GA optimizer, where x is a vector of design variables. If the optimization
model contains constraints, they can be included as penalties in the fitness function
or encoded directly into the solution strings. Several initial designs coded into binary
strings are produced for the first generation either by the user or randomly. For each
design, the fitness values are computed using the FE-BI solver and rated. Good
solutions survive and have off-springs, while bad solutions are discontinued. Pairs of
good solutions are selected using certain strategies to perform crossover. Mutation
is usually allowed with a very small probability to flip some bits from 0 to 1 in
the binary string and vice versa, thus providing a way to introduce new designs.
This process is repeated until the termination criteria are met. Then the optimal
binary string is decoded back into the corresponding design. In GA, local optima are
avoided by hyperplane sampling in the Hamming space (i.e., crossovers) plus random

perturbations (i.e., mutations) [37].

Chromosome

(11,8,15) —» 1011 1000 1111

Gene

Figure 2.1: Illustration of binary encoding in GA.

crossover point
Parent 1 Offspring |
0O 01 1 I 1 1 0 01 0 0 0 O
i v .
Parent 2 Offspring 2
0 0 0 0 0 0 O o 0 0 1 1 1 1

Figure 2.2: Illustration of a single-point crossover in GA.
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Figure 2.3: Illustration of mutation in GA.
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2.2.2 Simulated Annealing

Simulated annealing [1, 29] was proposed by Kirkpatrick et al. in 1983 [59]. SA is
a stochastic hill-climbing algorithm based on an analogy with the physical process of
annealing. In physics of condensed matter, annealing is known as “a thermal process
for obtaining low energy states of a solid in a heat bath” [1]. The process contains

two steps:

e Increase the temperature to a value at which the solid starts to melt. In this

liquid state, all particles arrange themselves randomly.

e Decrease the temperature slowly until the particles arrange themselves in the
ground state of the solid. In this ground state, the particles are arranged in a

highly structured lattice and the system energy is minimal.

To achieve the ground state, the melting temperature must be sufficiently high
and the cooling is done sufficiently slowly. One must use an annealing process, where
the temperature of the system is elevated, and then gradually lowered, spending
enough time at each temperature to reach thermal equilibrium. If insufficient time is
spent at any temperature, especially near the freezing point, the solid will be frozen
into a meta-stable state called quenching.

To apply SA to optimization problems, proper analogues must be identified be-
tween the SA and physical annealing: the energy equation becomes the objective
function, the current state of the thermodynamic system becomes the iterate so-
lution, ground state becomes the global minimum, and temperature becomes the
control parameter for the process.

Briefly, SA works in the following manner to minimize an objective function f(x)

(see Figure 2.5 for the flow chart):
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1. Start with a feasible initial point x and temperature 7' = Ts.

N

Generate a new point x4, = X; + si, where s;. is the step size.

3. Apply the Metropolis criterion [73] to judge f (Xp1):

If f(xks1) < f(xx), accept Xpy;

Slxp )= flop )
- T

Otherwise, accept xjy; with probability P = e ., Or reject with

probability (1 — P).

4. Decrease temperature T" according to some heuristic cooling schedule (for ex-

ample, Ty, = 0.97%).
5. Goto Step 2.

SA is similar to a GA (of single-size population) when crossovers are disabled and
only mutations are used. Of course SA has its unique characteristics, as described
below, and cannot be seen simply as equivalent to GA.

The essence in SA is that the optimization process is not required to go always
downhill, but is aliowed to make uphill moves occasionally. The probabilities of
accepting an uphill move and step size are determined by the value of temperature
T, both of which are reduced as the temperature becomes lower. At the beginning
of the SA process, T is relatively large, making the step size large and the accepting
probability high. Thus, more designs can be explored within the domain. As SA
progresses, T' is lowered. Therefore the step size is decreased and uphill moves are
more likely to be rejected, constraining the search to a more ‘local’ area. Eventually,
the process settles by only accepting downhill moves. In this maneuver, SA prevents
itself from getting stuck in inferior local optima, and is more likely to settle in areas

of global quality, especially if the objective function has an cverall trend to it.
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The disadvantage of SA is that the parameter settings for the cooling schedules
are very complicated and not well understood. Such parameters are the initial tem-
perature, the relationship between step size and temperature, number of iterations
at each temperature, and the temperature decrease rate at each step as cooling pro-
ceeds. Determining appropriate values for all these parameters is often accomplished
through trial and error, which can become prohibitively expensive for all but the
simplest problems. Recently, an adaptive simulated annealing (ASA) algorithm [57]
was introduced to improve the basic SA algorithm, but its study is beyond the scope
of this thesis.

2.3 Finite Element - Boundary Integral Method Formula-
tion

Here we present the FE-BI formulation. Specialization towards the need of the
particular problems in later chapters will be qualitatively outlined accordingly.

Consider a patch antenna configuration shown in Figure 2.6, where the cavity
housing the radiating elements and feeding structures is recessed in a ground plane.

The goal is to seek the solution of the vector wave equation
Vx{u' - (VXE)} - ke - E = —jkoZoI™ — V x (u7' - M™)  (2.9)

where E is the total electric field, (e, #,) denote the relative permittivity and per-
meability of the domain, kg is the free space wave number and Z, the free space
intrinsic impedance. J™ and M'™ are internal electric and magnetic sources due to

the antenna feeds.

To obtain the unknown field using FEM, the variational equation

SF(E) =0 (2.10)
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Probe feed

Sf

Figure 2.6: Geometry of a cavity-backed microstrip antenna.

is solved, where [108]
F(E) = %///[,u:l(vxE)-(VxE)—kgerE-E]dV

v
‘*‘///[jkoZoJim -E — p7'M™ - (V x E)]dV

J.

ko Zo / (E x H) - 2dS (2.11)

So+S¢

Here V' denotes the cavity volume, S is the cavity aperture excluding the metallic
portions, Sy represents the junction opening to possible guided feeding structures,
and H is the magnetic field on Sy and Sy whose outer normal is given by 2. The last
term in (2.11) is the BI term.

For cavity-backed patch antennas, the cavity is first discretized into a number of
finite elements (typically prismatic or tetrahedral elements for regular shaped patches
and nonuniform elements for arbitrarily shaped patches) that naturally reduce to
triangular elements on the cavity’s aperture. Edge-based basis functions are used
to expand the field within each volume element. Compared with node-based ones,
edge-based functions are better suited for simulating 3-D EM fields at corners and

edges, and they overcome difficulties associated with spurious solutions. Although
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edge-based elements increase the unknown count, this is balanced by the increased
sparsity of the resulting stiffness matrix. Using Galerkin’s method, after the element

matrices are assembled altogether, the resulting matrix system can be written as [108]

e oo [ fes] 212

{E®} [0} g1 {{E®} {v°}
Here, EY denotes the field unknowns within the volume enclosed by So + Sy, EB
is the corresponding unknowns on the boundaries Sy and/or S;. The matrix [A]
is very sparse and the boundary matrix [G] is fully populated. Figure 2.7 gives an
example matrix system generated by the FE-BI method [106]. The full BI system,
although only a small part of the overall system, still has high computational de-

mands, which can be further alleviated by absorbing boundary conditions (ABCs)

or artificial absorbers (AAs) [106].
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Figure 2.7: Examples of matrix systems generated by the FE-BI methods.
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2.4 Conclusions

In this chapter, the formulation for optimization problems was presented. Design
optimization methods were classified and summarized in general. Gradient-based
techniques utilize derivative information for fast convergence. However, they usually
only find local optima. On the other hand, gradient-free techniques are largely inde-
pendent of initial points and work well for problems with discontinuities and many
local optima. However, a considerable amount of function evaluations are needed due
to a lack of gradient information use. The principles of several optimization methods,
i.e., the SQP gradient-based method, and GA and SA gradient-free methods, were
outlined. At the end of the chapter we presented the FE-BI formulation for antenna

analysis.



CHAPTER II1

VERIFICATION OF DESIGN PRACTICE

Antenna design is a topic of great importance in electromagnetics and involves
the selection of antenna physical parameters to achieve optimal gain, pattern per-
formance, bandwidth, VSWR, and so on, subject to specified constraints. Trial and
error design methods are inefficient and depend mainly on the engineer’s intuition and
experience. Even with the availability of numerical methods and sophisticated com-
puter programs, such as the method of moment (MoM) and the finite element method
(FEM), design of antennas and arrays with complicated geometry and feeding struc-
tures is still a demanding and time-consuming task, sometimes even intractable. To
speed up the design process of antenna systems and reduce cost, a more attractive
approach is to combine the numerical antenna analysis with various optimization
algorithms. Optimization methods are not only able to refine or redesign existing
designs faster, but also to obtain novel designs that are not easily found otherwise.

In this chapter, three different antenna design problems are proposed and solved
using various optimization techniques. Although these problems have not been solved
with optimization methods before, extensive research has been conducted on these
problems. Therefore, we treat them as a verification of design optimization practice.

In section 3.1, ferrite materials are introduced and their applications for patch

35
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antennas are demonstrated when they are used as substrates or superstrates to pro-
vide extra freedom in tuning resonant frequencies or steering beams. The sequential
quadratic programming (SQP) algorithm is used for both frequency tuning and pat-
tern control problems. In section 3.2, stacked patch antennas are investigated and
broadband performance is obtained, again with SQP used for continuous variable
optimization. Finally, in section 3.3, two irregular-shaped single patch antennas are
designed for broadband and dual frequency performance, respectively, using both

genetic algorithm and simulated annealing.

3.1 Ferrite Antennas: Proportional Design

Ferromagnetic materials are inherently anisotropic and exhibit non-reciprocal be-
havior. The non-reciprocal properties of ferrites are very attractive for microwave
circuit devices [3] as well as for microstrip antennas [15] because of the high per-
mittivity and tensor permeability of ferrite materials. The material properties of
ferrites are mainly controlled by the direction and strength of an externally applied
magnetic bias field, thus enabling control of various antenna radiation and scattering
characteristics. These unique properties of ferrite materials provide many desirable
features such as tunability, polarization diversity, beam steering and radar cross sec-
tion control. Furthermore, because of additional Yariables such as bias field strength,
bias direction and saturation magnetization, optimization methods are very suitable
for ferrite antennas.

Ferrite substrates and superstrates have been used in several applications of mi-
crostrip antennas. In their unbiased state, the high effective permittivity of ferrite
substrates allows smaller antenna sizes at low frequencies. This miniaturization is

shown to produce antennas with larger bandwidth and efficiency than antennas on



dielectrics [26, 27].
When a DC bias field is applied to the ferrite material, antenna performance
can be further enhanced. Specifically, several applications have been proposed and

studied for ferrite patch antennas:

¢ Resonant frequency tuning. By changing the bias field Hy, multiple resonant
frequencies can be achieved using a single patch antenna that increases func-

tionality compared with traditional narrow-bandwidth patch antennas [92].

® Radar cross section (RCS) reduction. It is shown in [89] that by changing
Hy, a patch antenna can be switched between ‘on’ and ‘off’ states. When the
antenna is in an ‘off” state, the RCS can be significantly reduced within certain

frequency range. Ferrite cover layer can also be used to reduce RCS [112].

¢ Beam steering. The main beam can be scanned using single element antennas
as phase shifters [101]. Biased ferrite superstrate has also been used to achieve
pattern control [42]. On the other hand, a microstrip line printed on a ferrite

changes its phase significantly when a normal directed bias is applied [11].

e Generation of circular polarization. This can be obtained over a large band-

width with a single probe feed under a rectangular or circular patch antenna [88].

e Gain improvement. At the cost of bandwidth, gain can be improved by placing

a dielectric and/or magnetic overlay on top of an infinite ground plane [113].

As can be seen above, ferrite materials are widely used in electromagnetic appli-
cations, especially in microstrip antennas. In the rest of this section, we consider the
effect of biased ferrite substrate and superstrate on resonant frequency tuning [88]

and beam steering [42]. Because of the additional variables from ferrite materials
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such as bias field strength, bias direction and saturation magnetization, optimization
methods are suitable for finding optimal designs that satisfy prescribed performance.
The tools used will be gradient-based optimization in conjunction with finite element
- boundary integral (FE-BI) models [64]. The FE-BI simulator allows the modeling
of finite and inhomogeneous layers. The Bi-Conjugate (BiCG) solver is used to solve
the resulting general matrix system, but the general minimal residual (GMRES)
may be necessary in case BiCG experiences convergence difficulties [16]. For the
optimizer, the SQP method is used.

In the rest of this section, basic concepts of ferromagnetic materials and the FEM
formulation are presented first. Some validation of the FEM codes is then presented
on a ferrite loaded cavity. Subsequently, two optimization problems relating to reso-
nant frequency tracking and pattern control are established. We conclude this section

with a discussion of numerical results.

3.1.1 Basic Properties of Ferromagnetic Materials

The magnetic anisotropy of a ferromagnetic material is caused by the interaction
between an applied DC bias field and a microwave signal. The DC field causes the
magnetic moments in the material to align themselves with the field producing )
net magnetization. Depending on the polarization of the field, a microwave signal
will propagate through a ferrite medium differently in different directions [91]. Thus,
a tensor is needed to characterize the ferrite medium. A biased ferrite slab can
support two different types of waves: ordinary and extraordinary [91, 112]. The
ordinary wave is polarized perpendicular to the direction of the bias field, possesses
the same characteristics as that inside a dielectric material, and is not affected by

the magnetization. On the other hand, the extraordinary wave is polarized along
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the direction of the bias field. Therefore, it is strongly affected by the biasing. The

propagation constant of this extraordinary wave is given by [63, 91]

Be = w\/€liess (3.1)
where
(2 — K2
feff = (3-2)
b= el ) (3:3)
kK = ﬂo;gﬂim?- (3-4)
Here wo = povy(Ho + 7 A—z”-) is the Larmor or precession frequency, at which the

electron precesses about the external bias field H. [91]; and wy,, = pey(4nM,). In
these expressions, Hy is the internal bias field; AH is the linewidth, a quantity related
to loss; 4w M; is saturation magnetization, a physical property of ferrite materials
which typically ranges between 300 to 5000 Gauss; and 7 is the gyromagnetic ratio,
which is the ratio of the spin magnetic moment to the spin angular momentum [91].
Throughout this section, the ferrite materials are assumed to be in saturated state.

The permeability is modeled in tensor form and depends on the direction of
the bias field. For example, if the ferrite is biased in the 3 direction, as shown in

Figure 3.1(a), the permeability tensor is given by

b gk 0
Wl=1| —jx u o0 (3.5)
0 0 w
L .

where ¢ and & are given in (3.3) and (3.4)
For bias along the tangential (Z or ) direction (see Figure 3.1(b)), the tensor
needs to be rotated 90 degrees. For an arbitrary bias, the expression for [p] becomes

more complex.
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Figure 3.1: Biasing directions for ferrite materials.

The external and internal magnetic fields are related by
Hy = H, — N(47wM,) (3.6)

where N = N, N, or N, is called the demagnetization factor. The demagnetization
factors satisfy N; + N, + N, = 1.

Traditionally, the CGS unit system (the system of units based on measuring
lengths in centimeters, mass in grams, and time in seconds) is used for magnetic
quantities. Hence for the rest of this section, CGS units will be used. That is, the
magnetization (measured in Gauss) and field strength (measured in Oersteds) can

be converted using the following relations
1[G] = 107 [W/m?] (3.7)
47w x 1072 [Oe] = 1 [A/m]. (3.8)

3.1.2 FEM Analysis for Ferrite Antennas

The FEM provides a computational tool that is needed to solve the vector un-

knowns (electric and magnetic fields). It is used to discretize the problem domain,
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which is characterized by a differential equation. For reference purposes let us con-
sider a perfect electric conductor (PEC) cavity with a patch residing on the cav-
ity aperture. The finite element formulation for anisotropic materials begins with

Maxwell’s equations

VXE = —-jkoZoﬁrH (3.9)

VxH = +jkZ,&E (3.10)

where E and H are the electric and magnetic fields, respectively. The permittivity &

and permeability /i, are in tensor form. The free-space wavenumber and impedance

are denoted by ky = w./lio€p and Z; = ‘/g, respectively. Using the above two

equations, the second-order partial differential equation (PDE) derived from (3.9)
and (3.10) is

VX" -VXE)— k& -E=—jkZoJ —V x (z, - M) (3.11)
This is the vector wave equation for solving E (i.e. a single unknown) with J and M

being the impressed electric and magnetic current densities within the computational

domain, respectively.
The functional for the FEM has been shown in equation (2.11) in Chapter IIL.

However, this equation must be modified to incorporate the anisotropy of the ferrite

material. Specifically, we have
F(E) = %///[,u:r—l-(VXE)-(V x E) — k2& - E - EldV
v
'*'///[jkoZoJim -E— 1, - M™ . (V x E)]dV
1%
+7koZy //(E x H) - 2dS. (3.12)
s

The detailed FE-BI formulation for anisotropic materials can be found in [15].
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3.1.3 Validation: Ferrite-Loaded Cavity

In this subsection, we compare results based on our FE-BI code with published
data in the literature. The RCS and resonant frequency of a ferrite-tuned cavity-
backed slot antenna are shown to be consistent with [60].

Consider a multi-layer ferrite loaded cavity-backed slot (CBS) antenna shown in
Figure 3.2. This geometry was analyzed in [60] with cavity dimensions of 5.08cm x
5.08cm. Layers 2 and 4 are magnetized in the § direction. There are 6776 unknowns
for this problem and 420 BI unknowns. The RCS of this layered ferrite cavity for
two different bias values of Hy = 500 Oe and 700 Oe is given in Figure 3.3. Our

results are shown to be in agreement to those in [60] for both cases.

z

d=5.158 cm

Layert d=0.726cm, er=2.2, ur=1.0
Layer2 d=1.790 cm, &r = 13.9, 4tMs=800G, AH=50e
Layer3 d=0.737cm, cr=2.2, ur=1.0
Layer4 d=0.762cm, er= 13.9, 4ntMs=800G, AH=5 Oe

Layer§ d=1.143cm, er=1.0, ur=1.0

Figure 3.2: Geometry of the multilayer ferrite-loaded CBS antenna.

This example validates the FE-BI method and also demonstrates the frequency

shifting capability of ferrite materials when biased.
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Figure 3.3: RCS of the ferrite biased cavity in Figure 3.2.
3.1.4 Resonant Frequency Tracking

Resonant frequency tracking and tuning are two of the most important features
for ferrite patch antennas. Biased ferrite substrates offer extra degrees of freedom for
resonant frequency tuning. Also, circular polarization can be achieved with a single
feed using a ferrite substrate (dielectric substrates cannot achieve this). We will first
verify that our results are in agreement with those in [88]. We will then formulate
the resonant frequency tracking as an optimization problem.

The antenna we study is similar to the one in [88], with a patch of size L = W =
0.61 cm. This patch is placed at the aperture of a 1.22 cm x 1.22 ¢cm x 0.127 cm
cavity filled with a dielectric of ¢, = 15, and a probe feed located in the middle of the
edge, as shown in Figure 3.4. For the isotropic case, the resonance occurs at about
5.5 GHz.

First, a normal biasing field is applied. The results are shown in Figure 3.5, and

compared to those of Pozar [88], who used the moment method (MoM). Our results
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Figure 3.4: A cavity-backed patch antenna.

are consistent with the MoM data except for a slight shift in frequency. It is observed
that the resonant frequency increases with increased normal biasing strength and
saturation magnetization. Left-hand circular polarization (LHCP) and right-hand
circular polarization (RHCP) have also been achieved using just a single feed point.
For this configuration, the LHCP frequency is higher than the RHCP one at any

specific value of biasing and magnetization.
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Figure 3.5: Resonant frequency for the patch in Figure 3.4 as a function of the bias
field and saturation magnetization (normal bias).
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Because of the multitude of parameters that control the resonance of a ferrite
patch, it is advantageous to use an optimizer to predict the resonant frequency of the
ferrite patch instead of locating the resonance by frequency sweep. The optimization

problem statement can be formulated as follows:

Find f. that minimizes [Imag(Z;,(f))| (3.13)

subject to o< fu

where Z;, is the frequency-dependent input impedance, and fr and fy are lower and
upper bounds of the frequency. Here we use the definition that the antenna reaches
resonance when the imaginary part of the input impedance is zero.

Next, we use the above optimization model to find the resonant frequencies of the
antenna when the substrate is biased parallel to one of the edges of the patch, which
was not explored in [88]. We solve the optimization problem (3.13) for various values
of the bias field strength Hy and saturation magnetization 47 M,. For each fixed H,
and 47w M;, a gradient-based optimization method SQP is employed and the optimal
S« (i-e., resonant frequency) is obtained within 3 iterations that require less than 30
FEM calls. The results are plotted in Figure 3.6 (a) and (b) for #-bias (bias field
perpendicular to the edge where the feed is located) and g-bias (bias field parallel
to the edge where the feed is located), respectively. Again, the resonant frequency
of the antenna shifts higher as Hy or 47 M, increases. However, # and y biasing
provides linear polarization and greater dynamic range for frequency tuning. Also,
the resonant frequencies for §-bias are higher than those for #-bias. This provides
more tuning flexibility. Other ferrite parameters may also play a role in resonant

frequency tuning.
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Figure 3.6: Resonant frequency for the cavity-backed patch antenna in Figure 3.4 as
a function of the bias field and saturation magnetization.
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3.1.5 Beam Scanning with a Ferrite Cover Layer

Traditional antenna array pattern control uses delay lines / phase shifters to
achieve a beam shift. However, achieving such control becomes more expensive as
the number of array elements increases. Severe conflicts of element spacing might
also happen for packaging. Recently, the introduction of low-profile, ferrite-loaded
microstrip antennas with beam scanning capability offers unique design flexibilities
because beam steering can be achieved by simply changing H,. The use of ferrites for
phase shifting has been investigated under various configurations, such as: placing
a uniform ferrite substrate under the patch antenna [47], placing a uniform ferrite
superstrate above the patch antenna [42], or placing ferrite only underneath the
microstrip feeds [11]. In this section, we will employ the second configuration to
establish an optimization model.

For this configuration, a single antenna patch is sandwiched between an upper
ferrite layer and a lower dielectric substrate layer, as shown in Figure 3.7. With zero
bias, the main beam of the H-plane pattern is normal to the antenna patch. When a
bias field is applied, the main beam can be shifted with appropriate choices of ferrite
material, layer thickness, and bias field. The thickness of the superstrate hsup, the
strength of externally applied magnetic field Hy, and the saturation magnetization
4w M can be adjusted to obtain different beam angles.

In the first example, all of the above three design variables (hsup: Ho, and 4w M)
are allowed to change to obtain the desired beam angles (such as 10°, 20°, or 30°, etc.).
Design optimization methods can be used in conjunction with FE-BI simulation [64]

to find the appropriate values for them. Therefore, this optimization problem can
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Figure 3.7: Patch between ferrite cover layer and dielectric substrate layer: side view.

be formulated as follows:
Find hsyp, Hy and 47 M, that minimize |6, — 6] (3.14)

where 0, = arg max {Relative Power}, and 6, is the desired beam direction.

Consider a rectangular patch with fixed size L = W = 0.4 cm. The antenna is
placed in a 3.2 ¢cm x 3.2 cm x 0.1 cm cavity with a dielectric substrate of €,,;, = 10,
and a ferrite cover layer with €rsup = 13.8 is placed above the patch. A probe feed
is located at the mid point of an edge for excitation. This configuration is shown
in Figure 3.8. The antenna is biased parallel to one of the edges of the patch. We
solve the optimization problem three times for 6, = 10°, 20°, and 30°, respectively.
These scanning angles are achieved when the values of hsup, Ho, and 4w M, given
in Table 3.1 are applied at f = 6.18 GHz. A 5 x 2 array with the same ferrite
cover layer and dielectric substrate layer is used to narrow the beam, as shown in
Figure 3.9. This pattern is obtained by multiplying the pattern of the single patch
with the appropriate array factor.

The above design is not as practical since the thickness of the superstrate is
allowed to vary, which shifts resonant frequencies. A more practical design, where
only the externally applied magnetic field Hy is allowed to vary, is investigated next.

For this optimization problem, the geometry is the same as in F igure 3.8 except that
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Figure 3.8: Geometry of a single patch under a ferrite cover layer: top view and side
view.

Scan angle (°) | hsp (cm) | Hy (Oe) | 47M, (G)
0 0.3 0 0
10 0.25 800 1040
20 0.332 1000 800
30 0.1 800 2050

Table 3.1: Optimal h,,, Hy and 47 M, to achieve specified beam angles.
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Figure 3.9: Scanning of the 5 x 2 sandwiched array to achieve beam angles of 10°,
20° and 30°, respectively, at 6.180 GHz: Y-bias, ¢ = 0 cut. Optimal
values of hg.p, Hy and 4w M for each specified scan angle are shown in
Table 3.1.
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hsup = 0.2 cm and 47 M, = 1300 G are fixed here. Figure 3.10 shows the results of H,
to get specific beam angles. As seen, the resulting pattern has the prescribed beam
direction of §; = 10,20 and 30 degrees corresponding to Hy = 800, 2000 and 2050
Oe. These values of Hj were predicted by the optimizer after Just a few iterations.
On average, 30-60 FEM calls are needed for the computation of objective function
and gradients during the optimization process. The patterns are broad because only
a single antenna element is used. Narrow beams can again be achieved by using an

array configuration.

300

- | = = HO=800Ce (10deg) |--. -
7=+ H0=20000e (20 deg) L
s HO=20500e (30 deg) S

120 240

180

Figure 3.10: Scanning of single patch at 6.9 GHz: Y-bias, ¢ = 0 cut. Only H, is
varied, hg,p, = 0.2 cm, and 47 M, = 1300G.

The above two examples sufficiently demonstrate the frequency tuning and beam

steering capability of ferrite antennas. Tuning and steering are achieved by adjusting

the external magnetic field without modifying the antenna configuration.
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3.2 Broadband Antennas: Proportional Design

3.2.1 Introduction

In this section, two broadband antenna configurations will be proposed and opti-
mized. The design variables involved are sizes, hence we are dealing with proportional
patch design optimization problems.

One of the principal limitations of patch antennas is their narrow bandwidth
(usually on the order of a few percent). A number of techniques have been suggested
and implemented to improve the bandwidth of microstrip patch antennas. In this
section, we first review the basic relationship between bandwidth and microstrip
patch parameters, then summarize traditional techniques for bandwidth enhance-
ment. Subsequently, stacked patch configurations are considered and optimized with
regards to bandwidth.

There are basically two kinds of bandwidth for microstrip antennas: impedance
bandwidth and pattern bandwidth [10]. Impedance bandwidth is usually associated
with input impedance and radiation efficiency, and is specified in terms of return
loss or maximum VSWR (typically less than 2.0 or 1.5) over a frequency range.
Pattern bandwidth is related to gain, side lobe level, beamwidth, and polarization.
For a single antenna element, the impedance bandwidth is usually the limiting factor,
while the pattern bandwidth does not vary much with frequency. In the rest of this
section, bandwidth refers to the impedance bandwidth.

The quality factor @, bandwidth, and efficiency are figures-of-merit of an antenna.
However, they are not independent and there are always tradeoffs among them. The

relationship between bandwidth BW and Q is [18]

_ VSWR -1
 QVVSWR

BW (3.15)
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The above formulae implies that higher Q leads to narrower bandwidth. On
the other hand, bandwidth increases with increasing substrate thickness, and de-
creases with increasing substrate dielectric constant. However, thicker substrate
makes impedance matching difficult, because surface waves are excited, which lowers
efficiency rapidly [90].

Most bandwidth enhancement approaches can be put into one of three cate-
gories [90]: 1) improved impedance matching, 2) reduced efficiency, 3) introduction
of multiple resonances. Among them, (3) is the most popular approach. The idea of
using multiple resonances is to stack two or more patches resonating at nearby fre-
quencies. Usually only one patch (referred to as the driven patch) is fed directly with
a probe feed or slot feed, and the other patches (as parasitic patches) are coupled by
proximity effects. In practice, dual stacked patches are typically used for broadband
or dual-resonance performance. The two patches are usually similar in size, with the
top one slightly larger than the bottom one. Buy using a dual patch configuration,
bandwidth can be increased to about 10% - 20%.

There are many possible design variables associated with dual patches. Among
them are: (1) patch sizes; (2) thicknesses; (3) dielectric constants of the substrates;
and (4) feed position, etc. In the rest of this section, we will discuss two stacked
patch configuration designs: one of these involves a pair of rectangular patches with
a probe feed, and the other is a rectangular patch coupled to folded-slot (slot-patch
configuration). Bandwidths of up to 21% and 22% are observed from the simulated

results. Measured results are also shown for the folded-slot design.
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3.2.2 Probe-Fed Dual Patches

The geometry of the probe-fed dual patches is shown in Figure 3.11. The two
patches use a high-low dielectric constant material combination, and this is done
to facilitate the integration of the antenna with applicable photonic and microwave
devices [110]. The driven patch has a size of 0.96 cm x 0.88 cm with a probe feed
located below the middle point of its width edge, and a substrate of ¢,; = 10.4 and
tand; = 0.001. The parasitic patch is 2.16 cm x 1.98 cm in size, with a substrate of
€2 = 1.07, tandy = 0.001, and thickness d> = 0.45 cm. The two patches along with
substrates are enclosed within a 4.32 cm x 3.96 cm cavity. The driven and parasitic
patches are separately designed to resonate at 4.2 GHz and 4.3 GHz, respectively.

To achieve optimal bandwidth for this dual patch antenna, we proceed to find
the optimal thickness of the bottom substrate layer d,. That is, d; is the design
variable. We also need an objective function for the optimization problem. To
construct our objective function, we note that bandwidth is related to the ratio of
the maximum and minimum input resistances Rpax and Ry,. Also we note that the
input impedance needs to vary smoothly around resonance. Therefore, the objective
function can be defined as minimizing the ratio of Ry to Rpin- For this problem,
we define Rpa. to be the maximum of the input resistance at 4.0, 4.1, ..., 4.8 GHz,

and Fpyi, the minimum. The optimization model can now be set to read:

minimize Rma.x/Rmin

subject to: 0.1 cm < d < 0.18 cm (3.16)

This is a one-variable optimization problem with simple inequality constraints.
As in the previous chapter, an SQP optimizer combined with the FE-BI simulator is

utilized to generate the optimal design. After 10 iterations involving 20 FEM calls
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Figure 3.11: Geometry of the dual patch antenna.

and 160 frequency response computations, a value of ds = 0.1295 cm is obtained to
deliver a 10 dB return loss bandwidth of 21%. The FEM discretization produces 6662
non-zero edge unknowns and the whole optimization run takes about 200 minutes
on an HP 9000/785 workstation. Figure 3.12 gives the iteration history for this
optimization problem, and Figure 3.13 shows the input impedance and return loss

of the optimal patch configuration.
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Figure 3.12: Iteration history for the optimization of the dual patch antenna.
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Figure 3.13: Performance of the optimal dual patch antenna.
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3.2.3 Stacked Rectangular Patch and Folded-Slot

It was shown in the previous example that a pair of stacked rectangular patches
can be used to increase bandwidth. Other resonators in different configurations and
combinations, especially slots, have also been used for this purpose. For example,
a U-shaped slot antenna stacked with a rectangular patch has shown substantial
bandwidth improvement [22, 82]; and a crossed slot in the ground plane with stacked
patches has also been proposed [94]. In this section, a novel configuration of a folded-
slot below a rectangular patch is designed and a 22% bandwidth is achieved. A fast
hybrid FE-BI code having O(NlogN) CPU requirements [33] is used to compute the
input impedance and integrate with an GA optimizer. Finally, measured data are
presented to validate the design.

One reason for considering folded-slot feeds is because they provide greater band-
width [104] than traditional coupled slot feeds. In addition, when compared with a
simple slot, folded-slot has lower input impedance while retaining the same physical
size. Here we propose the use of a rectangular patch stacked with a folded-slot to
further increase the antenna bandwidth.

The proposed configuration is displayed in Figure 3.14 and the goal is to find
the optimal values for the various slot and strip widths of the folded-slot feed to
achieve a 10 dB return loss over the 134-175 MHz (VHF frequencies) bandwidth
with reference to a 50 €2 input impedance. The actual antenna resides in a cavity
of size 116 cm x 56 cm, and the folded-slot is separated from a patch by a foam
substrate with €, = 1.07 and thickness A = 9 cm. The rectangular patch on the top
is fixed at length L, = 60.0 cm and width W, = 24.0 cm. There is an extra metal

bar of length 64 cm and width 8 cm inside the folded-slot which serves to reduce the

input impedance value [105].
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Figure 3.14: Geometry of the stacked rectangular patch and folded-slot: top, bottom,
and side view.
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The geometrical complexity of the folded-slot allows us to choose among the slot
widths W, W, W, and W3, and/or the metal bar widths W;,, W;,, W3 and W,
(see Figure 3.14). For this optimization problem, we choose the following design
variables: W, Wy, W3, Wy and Wiy,. During the analysis process, the whole
antenna volume is discretized using the finite elements (using prism elements for the
volume and triangles for the surface integral) involving 44000 edge unknowns with
7000 surface unknowns at the top boundary integral aperture. For this system size
the per frequency CPU time is about 45 - 60 minutes on a SUN Ultra-10 workstation.
However, since the computation time per frequency is rather large, a continuous 5-
variable gradient-based optimization is not realistic. To simplify the design process,
the sizes of the design variables are not allowed to change continuously, but only
discretely within the fixed discretization grid of Az = 4.0 cm and Ay=20cm. A
GA optimizer is used for this discrete variable optimization and the resulting FEM
discretization of the optimal folded slot is plotted in Figure 3.15. The values of the
design variables for the initial and optimal designs are shown in Table 3.2, and their
performance is illustrated in Figure 3.16. The optimal design has an improved 10
dB bandwidth of 22.2% (from 136 MHz to 170 MHz), as compared to the 15.9%
bandwidth of the initial design. Both the initial and optimal designs were fabricated
and measured. Figure 3.17 shows the measured data of the optimal design. As seen,
they are in excellent agreement with our simulations, thus verifying the analysis and
design methods.

In the next section, the shape and topology of a single layer patch antenna are
optimized to obtain broadband performance again, followed by a patch with dual-

frequency performance.
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Figure 3.15: FEM discretization of the optimal folded-slot.

W; (cm)

[’VSQ (cm)

WfsS (C[Il)

Wy (cm)

Wi (cm)

Initial design

8.0

4.0

4.0

8.0

6.0

Optimal design

12.0

2.0

2.0

6.0

8.0

Table 3.2: Values of the four design variables of the initial and optimal folded-slot

antennas.
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Figure 3.17: Measured and simulated return loss of the optimal folded-slot antenna.
3.3 Broadband and Dual-Frequency Antennas: Shape and
Topology Design

3.3.1 Introduction

In Sections 3.1 and 3.2, we presented applications of the optimization techniques
using a proportional design approach. The magnetic field strength, thickness of a
substrate, and size of a slot were optimized to enhance various performance charac-
teristics. When the design variables are not continuous, or there are a large number
of design variables, gradient-based techniques may not be a good choice for solving
an optimization problem. In this section, gradient-free optimization methods will be
applied to obtain optimal patch configurations within a pre-specified design domain.

Problems with large number of design variables and fast objective function evalu-
ations are suitable for global optimization methods. Global optimization techniques
are largely independent of initial points and solution domain. Hence, global optima

are more likely to be found, and they work extremely well for problems with discon-
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tinuities and/or many local optima. However, these algorithms are generally slow
with no guidance from local characteristics such as gradients, and a large amount of
objective function evaluations is typically needed to achieve convergence.

Two popular global optimization methods are those based on genetic algorithm
(GA) and simulated annealing (SA). The theory of GA and SA has been outlined
in Chapter II. In this section, two irregular-shaped patch designs are created using
both GA and SA, first a broadband patch, then a dual-resonance patch is designed
for operation at GPS (global positioning system) frequencies. For each design an
optimization model is established, results are then obtained based on the GA and

SA optimizers.

3.3.2 Irregular-Shaped Broadband Patch

Generally, a single patch antenna has a bandwidth of only 2-4%. Our task is
to find an irregular-shaped patch that could considerably improve the bandwidth
(above 10%). The design space is shown in Figure 3.18, which is a 4.8 cm x 4.8 cm
domain discretized into an 8 x 6 finite element grid. If the elements z;, s, ..., T35
in Figure 3.18 are all filled with metal, a traditional square patch would be formed.
The resulting antenna has a resonant frequency at around 1.86 GHz and a 10 dB
bandwidth of only about 3%. To enhance the bandwidth by designing an irregular-
shaped patch, the design variables z;’s are allowed to be either empty (z; = 0) or
filled (z; = 1), where i = 1,2, ---,32. The two rows in the middle of the grid are set
to be always filled with metal so that the feed point can be fixed and does not have

to move around. The objective function for this optimization problem is given by

in ( m: ). 3.17
min ( max [S|x) (3-17)
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Here |S}1]; refers to the return loss at three sample frequency points (1.85, 1.95 and

2.05 GHz in this case). |Sy;| is defined as

lZin - ZOI

[Sul = [Zn + Zo|

(dB) (3.18)

where Z;, is the input impedance at the feed and Z; = 50 Q. By minimizing the
highest [S1;| among the three, we could reduce the difference between the highest

and lowest |Si;|’s, therefore achieving a larger bandwidth [56].

e i
antenna patch *+= P Y T
k ep ) h=0.48cm
ground plane cavity probe feed

Figure 3.18: Top and side view of the broadband antenna design domain.

This problem has 32 design variables, each of which has a value of either 0 or
1. Gradient-based methods are not suitable for such discrete optimization problems.
Hence global optimization algorithms, such as GA and SA, are more appropriate for
this problem.

The GA code used for this task [17] is written in Fortran. The selection strategy
in this GA algorithm involves a tournament selection (a widely used class of selection
mechanisms that pick m members of the population at random and then select from

them in a manner that depends on a fitness criterion), with a shuffling technique for
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choosing random pairs for crossover. Uniform crossover with a crossover probability
of 0.5 is chosen in conjunction with a mutation probability of 0.02.

For this problem, 200 generations are generated with a population size of 5 for
each generation. Five initial designs are generated randomly. The impedance and
|S11] of the antenna are computed using FE-BI method with brick elements. The
number of edge unknowns is around 400, therefore each frequency response takes
only less than 3 seconds to compute. The aperture configuration with the best
fitness appears from the 190th generation and is plotted in Figure 3.19. The input
impedance and return loss are illustrated in F igure 3.20. The 10 dB bandwidth is
10.3%, much better than the 3% bandwidth of the original square patch antenna. The

best fitness and the average fitness for each iteration are both plotted in Figure 3.21.

[e—wo gy —»|

Figure 3.19: Optimal broadband patch configuration obtained by GA.

The same problem is run again with SA. In the SA algorithm, the cooling schedule
starts with an initial temperature of 10 and the temperature is reduced with a factor
of 0.9. 50 iterations are carried out at each temperature, hoping there is enough time
spent to reach the ‘equilibrium’. To compare SA with GA, it is desired to start the
iteration process from the same initial design. Since our GA approach used 5 initial

designs in the first generation while SA needs only one, we simply pick the one with
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Figure 3.21: Iteration history of GA for the broadband design.

the best fitness from the 5 initial GA designs to start the SA. In each SA iteration, a
new design is generated by randomly changing several bits from the previous design.
When the temperature is high, more bits are flipped. As the temperature cools down,
fewer and fewer bits are flipped to restrict the designs down to a more ‘local’ area.

The probability of accepting new designs at the k-th SA iteration is

_fe=frs1

P.=e T (3.19)

where fr and fr,, are the values of objective function at the k-th and (k + 1)-th
iterations, respectively, and 7} is the temperature at the kth iteration.

The resulting optimal antenna configuration is shown in Figure 3.22. The input
impedance and impedance bandwidth of both the original square patch and the
optimal patch are plotted in Figure 3.23. The 10 dB bandwidth with this design is
10.8%, which is slightly better than the one obtained by GA.

The results based on GA and SA for this problem are summarized in Table 3.3.

It is shown that for this specific problem, SA gives slightly better bandwidth but GA



Figure 3.22: Optimal broadband patch configuration obtained by SA.

requires fewer iterations (i.e. it is faster).

# of FEM Calls | Best Found Value of Obj. Function | Bandwidth

GA 950 -9.14 10.3%

SA 1500 -10.01 10.8%

Table 3.3: Summary of GA and SA runs for the broadband design.

We would also remark that the two broadband patches obtained by GA and
SA are asymmetric. However, there is symmetry in the radiation patterns of these
patches (e.g., see Figure 3.25 for the pattern of the SA-derived patch at resonant
frequency f = 1.82 GHz and ¢ = 90°). Nevertheless, symmetry could have been

enforced.

3.3.3 Irregular-Shaped Dual-Frequency Patch

An alternative way to overcome the bandwidth limitations of patch antennas is to
operate the antenna at two separate sub-bands. One of several ways to achieve such
kind of dual frequency behavior is to use two stacked patches resonating at two close

frequencies while operated separately [70, 109]. However, stacked patches make the
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antenna thicker and occupy more space. It is of course desirable to design a single
layer patch operating over multiple frequencies. As an example, here we will design
a patch operating at the two GPS frequencies: 1227 MHz and 1572 MHz. Symmetric
patch configuration will be adapted. As shown in Figure 3.26, the design domain is
a rectangular 6 x 6 grid of 5.36 cm x 7.02 cm, residing on top of a cavity 10.72 cm
X 14.04 cm above a substrate of thickness 0.48 cm and a dielectric constant & = 4.4.
Similar to the previous example, these elements are treated as design variables, which
are allowed to be either filled (z; = 1) or empty (z; = 0). Here the 4 elements at the
middle-right part of the domain are always filled with metal in order to fix the feed
point. Also due to the symmetry requirement, only the upper half of the domain
needs to be considered. Therefore, we have 16 design variables z;, 1, ..., 7;6. The

objective function of this problem is chosen to be:
rI%‘in (IS11]r + 0.1 % |S11]2 + |S11l3) (3.20)

where [S11|g, for £ = 1, 2, 3, refers to the return loss at three sample frequency points
(1227, 1400 and 1573 MHz in this case). With such an objective function, more
weight is placed on [Sy1], and |Sy,|3, and less weight is placed on [S11l2, therefore
pushing the design to be dual-resonance. We remark that this objective function
can be combined with other criteria based on polarization and pattern requirements.
However, at this point our focus is restricted to the optimization of the return loss.

The GA and SA optimizers used for this task are the same as in the previous
broadband design. For this design problem, both methods generate the same optimal
configuration shown in Figure 3.27, whereas the corresponding impedance and return
loss are shown in Figure 3.28. The radiation pattern, as depicted in Figure 3.29,

is similar to a regular-shaped single patch antenna. As per design, the resonant
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Figure 3.26: Top and side view of the dual frequency design domain.

frequencies of the optimized patch occur at both 1225 MHz and 1571 MHz. However,
the iteration histories for the GA and SA runs are quite different. Although GA
and SA obtained the same optimal design, Figure 3.30 shows that the GA algorithm
finished at the 460th iteration (i.e., at the 92nd generation), whereas the SA took 850
iterations to reach the same design. That is, the GA algorithm converged in nearly
half the number of iterations (and CPU time) as compared to the SA algorithm.
Again, SA is slower for this problem. This might be due to the selection of the
SA parameters such as step size, temperature decreasing rate, and the number of
iterations at each temperature. If a different set of SA parameters are chosen to run
this problem, the convergence speed could very well change. This is the disadvantage
of SA, i.e. heavy reliance on parameters for the cooling schedule.

We close this section by noting that the proposed design was based on an objective
function which only dealt with frequency tuning, but a feed must also be designed
for CP radiation. The latter was not discussed since it was not included as part of

the design objectives, but can be included either as a concurrent or a second step

optimization.
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Figure 3.27: Optimal design of the patch for dual frequency operation.

3.4 Conclusions

In this chapter, we examined several methods and applications for antenna design.

Among them we considered:

e Two ferrite antenna optimization problems, one on resonant frequency tuning,
the other on beam steering. The SQP method was used for these designs. Both

problems used the magnetic field strength as the design variable.

e Two size optimization problems involving stacked patches were proposed and
solved for improved broadband performance. The substrate thickness of the
probe-fed stacked rectangular patches was optimized using SQP to obtained
a 21% bandwidth. For the rectangular patch stacked with folded-slot, several

slot widths were optimized using GA to achieve a 22% bandwidth.

e Two irregular-shaped designs on broadband and dual-frequency patch anten-
nas were defined and optimized using both GA and SA algorithms. For the
broadband design, GA and SA yielded different designs yet both of which have
a bandwidth near 10% (i.e. both satisfied the design objective). For the dual-
frequency design, the GA and SA generated the same optimal design, but in

general we found that GA needs fewer function evaluations.
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CHAPTER IV

FREQUENCY SELECTIVE SURFACE (FSS)
ELEMENT DESIGN AND ANTENNA
APPLICATIONS

4.1 Introduction

Frequency selective surfaces (FSSs) have widespread applications over much of
the electromagnetic spectrum. FSSs comprise of infinite periodic arrays of patches or
apertures in a conducting screen and could be either free-standing or supported by di-
electric substrates, as shown in Figure 4.1. They exhibit total reflection (for patches)
or transmission (for apertures) in the neighborhood of the element resonance. Typ-
ically, FSS structures are comprised of several layers of periodic elements, and are
usually stacked to provide a desired frequency response. Some typical FSS element
shapes are shown in Figure 4.2. FSS analysis [7, 34, 77, 85] requires rigorous tech-
niques and to reduce CPU requirements, Floquet theory assumptions are invoked to
confine the infinite computational domain within a single unit cell, also illustrated in
Figure 4.1. Within the FE-model of a unit cell, the periodic boundary condition is
enforced on the vertical walls of the mesh. On the boundary edges of the Bl-surface,
an appropriate periodic Green'’s function must also be used. For non-commensurate

structures, special cascading methods [77] or periodic boundary conditions must be

~1
~I
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applied, further complicating the analysis.

Unit Cell

Figure 4.1: Geometry of a frequency selective surface.

(a) ®) ©

() (e) ®

Figure 4.2: Typical FSS elements: (a) dipole; (b) square patch: (c) circular patch;
(d) slot (e) cross dipole (f) erusalem cross.

Not surprisingly, the design of multilayer FSS structures is still a trial and error
process due to the associated excessive CPU requirements. Automated re-gridding
of the computational domain is an additional difficulty. Almost all previous design
techniques on FSS structures have been heuristic or empirical. Most of the designs
involve single layer or cascading pre-selected periodic elements that are known to
resonate at roughly the desired frequencies, then sizes of the elements and thicknesses

of the substrate layers are adjusted to tune the frequency response [28, 75, 111]. Such
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techniques cannot be used as an effective synthesis method for simultaneous shape
and topology design of the periodic elements.

Recently, a fast spectral domain algorithm (FSDA) was incorporated within the
framework of the FE-BI approach to model FSS and printed arrays on multilayer
(possibly inhomogeneous) substrates [32, 33]. This simulator also allows for auto-
mated re-gridding and modeling non-commensurate FSS layers. Use of FSDA within
FE-BI results in considerable speed-ups of about two orders of magnitude and of
O(N) complexity.

In this chapter, we integrate this simulator with genetic algorithms (GA) to
propose F'SS designs subject to pre-specified performance objectives and constraints.
Novel FSS elements and multilayered structures are introduced subject to given
design criteria. Section 4.2 briefly introduces FSDA simulator and how it works
with GA. Section 4.3 presents two free standing high-pass filters designs, one for
single-layer and the other with two layers, both with a stop band below 3 GHz.
Section 4.4 designs an irregular-shaped F'SS element that possesses pre-specified flat
phase response over a certain bandwidth. Such an FSS with nearly constant phase
response is useful as a “substrate” of antenna arrays as a broadband magnetic ground
plane (GP) much like the photonic bandgap (PBG) materials [99]. A printed dipole

array is then placed on top of a flat-phase FSS to enhance the dipole radiation [25].

4.2 FSS Design Using GA and FSDA Combination

To synthesize an FSS element subject to a desired frequency response, one typ-
ically searches in the knowledge base through a trial-and-error process. Apart from
being a tedious approach, this process does not easily lead to new and optimal de-

signs. Therefore, optimization techniques are required to design practical FSSs that
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deliver the desired filter-type response using minimal thickness. There are mainly
two ways in optimizing the FSS. One is to simply optimize the dimensions and dielec-
tric layers of a given element shape, and gradient-based techniques are best suited
for this approach, although neural networks (28] have previously been employed to
tune the sizes. A second approach is to cascade elementary building blocks of pre-
defined element shapes and dielectric layers. For this approach, GA appears more
attractive [75, 111].

GAs have been quite popular in many electromagnetic applications such as ar-
ray synthesis, reflector antennas, microwave absorbers, etc. [55]. Recently, it has also
been used with a method of moment (MoM) simulator for shape design of free stand-
ing metallic antennas [56]. However, designs conducted so far have yet to consider
the integration of GAs with rigorous simulators that permit 3D designs where both
shape and material is allowed to vary throughout the volume. The very few avail-
able F'SS optimization processes have dealt with only size optimization [28] or fixed
elements [75] without consideration of element shape, topology or material. Here
we consider shape and topology optimization using GA combined with a rigorous
simulator in the design loop.

F'SDA was proposed for the rapid solution of planar surface integral equations in
conjunction with iterative solvers. The algorithm is implemented in the BI portion
of a hybrid FE-BI method, which has been described in Chapter II. Although FSDA
may be applied to arbitrary integral equations with the convolutional property, it is
especially advantageous for the analysis of infinite periodic arrays such as FSSs [33].
In this context, the FSDA starts with the conventional Floquet mode representation
of the BI termination. However, instead of calculating the BI matrix element explic-

itly, at each iteration, the Fourier transforms of the basis functions, multiplied with
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their actual expansion coefficients, are summed up. The spectral integral (Floquet
mode series) is then computed only once for every testing function to evaluate the
matrix-vector products in the iterative solver. Thus, for a fixed number of F loquet
modes, the memory demand and CPU complexity are both O(N). The detailed
formulation of FSDA and its validation can be found in [33]. With this algorithm,
multi-layer F'SSs (with possibly non-commensurate periodicities) and any arbitrary
printed configuration at the interface of each layer can be analyzed, including inho-
mogeneities within the substrate to possibly form PBG structures and defects as well
as vertical posts and vias (see Figure 4.3). This capability is afforded as a result of

the finite element method used for modeling the volume of the periodic cell [34].

Antenna Element

Layer 1

Layer 2

PBG Elements FSS Elements
Figure 4.3: Antenna with multiple-layer PBG substrate and FSS elements.

Our goal in the next sections is to demonstrate examples where an integration of
optimization algorithms with a rigorous full wave 3D electromagnetic solver can lead
to practical designs in minutes of computation time using a desktop computer. We
remark that the solver has been extensively validated and therefore the purpose of
the work here is to demonstrate the convergence and practicality of the optimization

process.
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In the rest of this chapter, two different FSS designs are considered. In the first
case, the FSS is designed to perform as a bandpass filter. In the second case, we
design an FSS subject to a pre-specified phase of the reflection coefficient over a
certain band, which is then placed under a dipole array to achieve larger bandwidth.

The specific GA algorithm used here is the same as in Chapter III.

4.3 High-Pass Filter Design

4.3.1 Problem Definition

The goal in this example is to design an FSS having a stopband of < 3 GHz
and no transmission above between 3 - 5 GHz. The desired frequency response is
explicitly specified in a step function form instead of sharp changes at any frequency:

f
0.5 for 0.5 -1 GHz

1.0 forl—3 GHz
magnitude(T') = 4 (4.1)
0.3 for 3.5—4 GHz

0.1 for 4.5—-5 GHz

.

where I' denotes the field reflection coefficient at normal incidence.
In practice, the above response can be coded by satisfying I" over a set of samples

covering the band. The fitness function for this design can then be stated as follows:

minimize f(x)=
(Xi1 Imag(Ty,) — 0.5 + 357, |mag(T'y,) — 1[2 +

3 i=r Imag(T ) — 0.3] + 32 [mag(Ty,) — 0.1]2) (4.2)

where the values at f;,7 =1, ..., 10 are set to 0.5, 1.0, 1.5, ..., 5.0 GHz, respectively,
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with a step size of 0.5 GHz. Also x = {z, %, ..., Ty} represents the elements of the
design domain.

To realize this design we may initially choose to work with a single layer F'SS
(free standing) whose design domain is shown in Figure 4.4. The domain is an 8.75
cm x 8.75 cm periodic cell whose lower left corner is discretized using 7 x 7 square
elements. It will be further assumed that the other three quarters of the unit cell will
be formed by using central or rotating symmetry. For the GA design, each of the 49
finite elements x|, z,, ..., Zy9 is treated as a design variable with a value of either
0 (empty) or 1 (filled metallic). A binary string of ‘z;T,...z4° encoded using 0/1
values therefore corresponds to a certain F'SS element shape/design. For example, the
binary string ‘00000600 0600000 0000001 00000001 0000001 0000001 0011111’ produces
a wedge shape in the lower left quarter of the unit cell, and with central symmetry

it corresponds to a cross shape FSS over the whole unit cell (see Figure 4.5).
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Figure 4.4: Design domain for the FSS layer: top view.
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Figure 4.5: A crossed strip FSS.

4.3.2 GA Design

To begin the design, five initial element shapes were loaded to start the GA. The
selection strategy in this GA algorithm involved again a tournament selection with a
shuffling technique for choosing random pairs for crossover. Uniform crossover with
a crossover probability of 0.5 was used in conjunction with a mutation probability
of 0.02.

The cross section of the single layer FSS is depicted in F igure 4.6, and the op-
timized FSS layer shape is shown in Figure 4.7. The corresponding filter response
is given in Figure 4.8 overlaid with the pre-specified response defined in Equation
(4.1). This design was obtained in less than 50 iterations, and each iteration took
about 10 minutes on a desktop SUN Ultra-30 workstation. We also remark that
the solution domain involved 2644 unknowns in the finite element volume domain

and 800 unknowns for the boundary integral domain which comprised the top and
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bottom surfaces cf the unit cell. Clearly, more design variables could be considered
within the volume by allowing material variations in addition to the variations on

the F'SS layer.

Z,
i .
T
air FSS
-~ IS — — — — NS — — — G- — - A
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Figure 4.6: Geometry of 1-layer FSS structure: side view.
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Figure 4.7: Optimized FSS element shape for the 1-layer filter design.

Although the design obtained is close to the specified response, further improve-
ments can be achieved by adding more layers to the design. As an example, Figure 4.9

depicts a 2-layer FSS structure. In the context of the 2-layer FSS structure, our de-
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Figure 4.8: Actual and desired frequency response of the 1-layer filter.

sign approach is to select each layer to cover a different band of frequencies. The
optimized shapes for the 2-layer F'SS elements are depicted in Figure 4.10. The cor-
responding response is given in Figure 4.11 and is seen that this filter matches the
pre-specified response. For this design, the solution domain involved 4806 unknowns
in the finite element volume domain, and 800 unknowns for the boundary integral

domain. Again less than 50 iterations were needed to arrive at the design.
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Figure 4.9: Side view of a 2-layer FSS structure.
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4.4 FSS Design with Pre-specified Phase Response

For this example, the goal is to design an FSS that achieves a phase response
that is within 4+/ — 50° over a given band. Such designs can be used as “substrates”
to printed antennas and may serve to emulate a magnetic ground plane. Paralleling
circuit theory, to achieve phase control, we choose to compromise the magnitude of
the FSS reflection coefficient, i.e. to prescribe an FSS having IT'| < 1. Specifically,

the design problem could be specified as follows:

maximize Bandwidth
subject to 0.4 < magnitude(I') <1
—50° < phase(T") < 50° (4.3)

for 0.8 GHz < freq < 3.5 GHz.

To realize the design, we again define an objective function based on discrete
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values of the pre-specified response. Specifically, for the above model we define the
objective function as:

minimize f(x) = Z Imagnitude(Ty,) — 1|2 + Z lphalsseéff*) 2 (4.4)

where 'y, is again the reflection coefficient at frequency f;, and x contains the design
variables, i.e., the element metallization and possibly material constituents within
each element. However, as in the previous design, only the metallization of the layer
will be considered in the design. Note also that this objective function combines the
magnitude and phase requirements by equally weighting them in a single function.
We further chose to sample the passband reflection coefficient at 10 frequency points
0.5, 1.0, 1.5, ..., 5.0 GHz.

A GA optimization scheme similar to that described in the previous section was
employed using a 8.75 cm X 8.75 cm computational domain sampled at the same
rate as in the previous example with the same number of FEM volume and surface
edges. The optimized FSS element shape is shown in Figure 4.12, and the achieved
magnitude and phase of the reflection coefficient are depicted in Figures 4.13. It is
observed that the desired amplitude response has indeed been satisfied. The phase
response is also satisfied from 1.6-3.2 GHz. However, some deviation is observed
between 0.8-1.6 GHz. The reflection coefficient plot also shows the necessity of
using resistive elements instead of metallic ones. If metallic elements (i.e., lossless)
were used, the phase would have zig-zagged throughout the band, even though the
magnitude criteria could have been satisfied. This is also depicted in Figure 4.13
where the same shape metallic FSS exhibits a phase response that oscillates several
times over —180° to +180° range within the band. For this problem, the optimal

design was obtained in less than 40 iterations, and each iteration took about 20
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minutes to compute 50 frequency responses. We also remark that the solution domain
involved 4704 edge unknowns in the finite element volume domain and 800 unknowns

for the boundary integral domain.
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Figure 4.12: Optimized F'SS element shape for the flat-phase GP design.

4.4.1 Antenna Bandwidth Improvement with Flat-Phase FSS

As noted earlier, a flat-phase FSS element is useful as a “substrate” of antenna
arrays as a broadband magnetic ground plane. When placed under an antenna array,
the flat-phase F'SS is expected to enhance considerably the array bandwidth.

To demonstrate this, we designed a fan-shaped flat-phase FSS in order to make
the element more compact than the one shown in Figure 4.12. The geometry and
reflection response for thic FSS are shown in Figure 4.14. The FSS is then placed
under a dipole array whose size is half wavelength at 1.2 GHz. The mesh schemes
of the dipole array and FSS are shown in Figure 4.15. A side view of the dipole

over the fan-shaped FSS is illustrated in Figure 4.16, with a thickness of 2.34 c¢m for
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the substrate (foam with €, = 1.07) between the dipole array and the FSS. From
Figure 4.17 it is clearly seen that the dipole array has a much better bandwidth with

the F'SS below it than that without the FSS.
4.5 Conclusions

In this chapter, the concept and design of frequency selective surfaces were dis-
cussed, followed by the introduction of a fast O(N) FSDA implemented within an
FE-BI approach. Genetic algorithm was integrated with this simulator to allow full
flexibility in geometry and layer structure decisions when designing FSSs. Example
designs were demonstrated subject to pre-specified magnitude and phase criteria.
Single-layer and multi-layer highpass filters were designed to meet desired frequency
response. Then a flat-phase F'SS element was designed subject to a phase response
that is fairly constant over a given band. Such designs allow for special purpose FSS
structures that can serve as “substrates” to printed antennas and have been shown

to substantially enhance the bandwidth of these antennas.
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CHAPTER V

FREQUENCY SELECTIVE VOLUMES AND
PHOTONIC BANDGAP STRUCTURES FOR
ANTENNA APPLICATIONS

5.1 Introduction

Frequency selective volumes (FSVs) and photonic bandgap (PBG) structures have
emerged as a new multidisciplinary field of study [54]. A PBG structure consists of
composite materials where certain dielectric or metal sections are implanted (possibly
periodically) within a background medium. In analogy to semiconductor crystals
which may exhibit an electronic bandgap, in electromagnetics PBG structures are
associated with a frequency band where propagation of EM waves is forbidden and
may also be used to modify the reflective properties of multilayered structures. These
features may be exploited in the design of EM devices. In the case of antennas,
PBG substrate consists of printed elements on periodic, or more generally, on some
perforated substrates which can be designed to enhance antenna properties such as
bandwidth and pattern. Parameters which affect the behavior of PBGs include their
periodicity, shape and spacing of the implants, and the dielectric contrast between
the composite materials.

Two approaches for designing antenna substrates are proposed herein to enhance

96
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patch antenna performance. One of the approaches involves lowering the effective
dielectric constant of the substrate by introducing closely spaced small holes in the
substrate within the immediate vicinity of the antenna [24, 36]. A disadvantage of
this approach is that antenna dimensions may have to be enlarged for operating at
a given frequency, even though efficiency may be increased. A second approach is
to design a complete bandgap surrounding the patch antenna to suppress surface
waves [23]. The disadvantage of this approach is that it requires considerable area
around the patch antenna (on the order of at least three wavelengths [24]). Never-
theless, both approaches lead to increased antenna efficiency, gain and bandwidth
as compared to antennas on uniform substrates. It is fair to state that shape (and
even some topology) optimization has been extensively exploited for printed antenna
design. However, designs utilizing full 3D topology and material optimization have
vet to be considered.

In this chapter, both of the aforementioned approaches are considered. In Sec-
tion 5.2, a patch antenna on a perforated substrate is designed using the effective
dielectric constant approach. As part of our design, we develop optimal value for the
size of circular air holes. In Section 5.3, we show for the first time how designs based

on periodic material substrates can lead to significant increase in patch bandwidth.
5.2 Printed Antenna on Perforated Substrate

Microstrip antennas on high dielectric-constant substrates have smaller antenna
size than those on low dielectric-constant substrates, but there is a sacrifice of lower
efficiency and narrower bandwidth. Several methods have been proposed to solve this
problem, one of which (see Figure 5.1) is to use closely spaced holes underneath and

around the microstrip antenna, thus lowering the effective dielectric constant. In [36],
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several patch antennas have been fabricated based on micromachining techniques and

bandwidth improvement for these antennas has been observed.

Many holes in the substrate
\

Antenna patch

- ERIITTI .

Figure 5.1: Geometry of the patch with perforated substrate: top and side view.

In a perforated substrate, the hole size is usually very small as compared to wave-
length. Therefore, the hole region can be modeled as a homogeneous one using an
equivalent or synthetic dielectric constant €rsynen- Lhis synthetic dielectric constant

can be expressed as
€rsynth = (1 —z) +x (5.1)
where
z = {volume removed}%. (5.2)

Here €, is the dielectric constant of the high-index material surrounding the hole

region. Also, the holes are assumed to be air filled. When a certain percent of the
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substrate volume is removed, the synthesized permittivity €,syn:n can be computed
using the above formula. Therefore, the substrate can be viewed as a composite of
two materials with €5y, as the dielectric constant for the inside (hole) region and
¢- being the dielectric constant for the surrounding region.

The objective of this design is to find the optimal size of the periodic holes to
maximize the bandwidth but still maintaining the resonant frequency in the vicinity
0f 12.0 - 13.0 GHz. The length and width of the patch need to be adjusted, however,
so that the resonant frequency is maintained. There is also a need to constraint
the dielectric volume size, i.e., the maximum percent of volume allowed within the
dielectric region. The geometries ¢f the antennas with homogeneous substrate are
similar to those in [36]. For our design we will retain the following parameters
unchanged: thickness of the substrate h = 0.0635 cm, dimensions of the hole region
1.3 cm X 1.7 cm, dielectric constant of the substrate outside the hole region region
will be set €, = 10.8, and the hole spacing is chosen as d = 0.07 cm. Other geometrical
variables such as the patch size and hole radius are subject to change.

If the volume constraint is set to be 80%, i.e., at most 80% of the dielectric
volume is allowed to be removed, the obtained design has L = 0.7 cm and W = 0.9
cm residing in a cavity of 2.7 cm x 3.3 cm. Each hole of the designed substrate
has a diameter of 2r = 0.06cm and spacing of d = 0.07cm. The resulting €rsynth 1S
about 2.3 [36]. This antenna has a resonant frequency of 12.42 GHz from the FE-BI
simulation.

If we increase the volume constraint to 100%, the SQP optimizer results in a
suspended patch residing over an air region of 1.6 cm x 1.8 cm (see Figure 5.2). The
patch has a size of L = 1.0 cm and W = 1.2 cm residing in a cavity of 3.0 cm x 3.6

cm. In both of the above designs, the optimized patch has the maximally allowed
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volume removed, implying that our optimization resulted in boundary optima. This
is reasonable since it can be argued that as more of the volume is removed, the

greater is the bandwidth.

i

0.0635cm

Figure 5.2: Geometry of the suspended patch.

To compare the performance of the optimized patches we modeled two other
cavity-backed patch configurations with uniform substrate. The dimensions of the
four antennas are shown in Table 5.1. All of them are designed to have a resonant
frequency close to 12.0 GHz. The patches are fed with a single probe feed that is
adjusted for impedance matching up to approximately 100 €.

The calculated return losses for the above four antennas are shown in Figure 5.3.
It is seen that the two ‘regular’ patches with homogeneous €, = 2.2 and e = 10.8
have a typical 10 dB bandwidth of 2.95% and 1.19%, respectively. The bandwidth
of the patch with the €rsynth = 2.3 substrate increases to 3.53%, a 200% increase over
the 10 dB bandwidth of the standard patch over a uniform substrate of ¢, = 10.8.

The bandwidth of the suspended patch has a slightly wider bandwidth of 3.69%.
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Homogeneous | Homogeneous | 80% removed | 100% removed
€& =22 e = 10.8 €rsynth = 2.3 | suspended patch
Patch (cm?) 0.74 x 0.91 0.33 x 0.47 0.7 x 0.9 1.0 x 1.2
Cavity (cm?) 2.22 x 2.73 | 0.99 x 1.41 2.7 x 3.3 3.0 x 3.6
resonant freq. (GHz) 12.18 11.75 12.42 13.04

Table 5.1: Dimensions and resonant frequencies of the four patch antennas.

1.5 12
Frequency (GHz)

125

13 13.5

Figure 5.3: Computed return loss for the four antennas in Table 5.1.
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5.3 Printed Antenna on Bandgap Substrate

When the size of periodic implants is a significant fraction of a wavelength, the
whole substrate cannot be modeled with a homogeneous ¢,. Instead, it has to be
modeled exactly with different €, ’s for different materials of the substrate.

We first consider a PBG layer such as that shown in Figure 5.4. This slab has
a background €, = 4 and a unit cell size of 2 cm x 2 cm. The embedded periodic
material blocks have ¢, = 10 and a size of 1 cm x 1 cm. We use an FE-BI simulator
for the analysis of 3-D doubly periodic structures [33] to compute the reflection
coefficient of plane waves incident on the PBG structure. Figure 5.5 shows the
reflection coefficient curve at normal incidence (¢y = 0 and 6, = 0). As seen, the
effective medium theory (with a homogenized €, = 5.5) fails to predict the resonance
at the bandgap frequency around 10-11 GHz [25]. From the field plots at three
different frequencies (in band, near band and stop band) in Figure 5.6, it can be seen

that the reflection coefficient exhibits resonances associated with the PBG structure.

£.=4 lcm x 1cm

Figure 5.4: Geometry of the infinite PBG structure.

Next, we use this PBG structure as the substrate of a patch antenna (see Fig-
ure 5.7). The PBG substrate is now finite consisting of 3 x 3 unit cells. Without an
air layer between the patch and PBG structure (whose thickness is A), this patch

still exhibits a typical 10 dB bandwidth of 3%. With an air layer of 0.1 cm thickness,
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using exact modeling and effective constant modeling.
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Figure 5.6: Field plots at 8 GHz, 10 GHz, and 11 GHz for the PBG structure shown
in Figure 5.4.



104

the bandwidth increases to 14.9%. The dashed line and dashdot line in F igure 5.8
illustrate the input impedance and return loss of this initial patch with and without
an air layer, respectively.

The bandwidth can be further improved by optimizing the dielectric blocks within
the substrate. The top view of initial square blocks is shown in F igure 5.9. By taking
1/9 of the substrate as the design domain and repeating the block shape in the rest

of the substrate, the objective function can be written as
min ( max |S)|x 5.3
x (k=L,2,?-c-,5 [Stli) (5-3)

where |S);|x refers to the return loss at five sample frequency points (10.2, 10.4,
10.6, 10.8 and 11.0 GHz in this case). This objective function is similar to the
objective function for the irregular-shaped broadband antenna problem, i.e., Equa-
tion (3.17). Each GA generation consists of 5 designs, with 5 frequencies computed
for each design. On an HP 900-785 workstation, each generation takes about 30
minutes to finish. The optimal block configuration for the PBG substrate is shown
in Figure 5.10, separated by an air layer A = 0.1 ¢cm from the patch. The achieved
impedance and return loss of the optimal design show a 10 dB bandwidth increase
of 17.7% (see the solid line in Figure 5.8). From this, it is clear that the various
material combinations such as FSVs and FSSs when used as substrates may have a

significant effect on antenna bandwidth performance.

5.4 Conclusions

In this chapter, two cases of material distribution designs within PBG substrates
of patch antennas were considered. When the holes inside a substrate are small
as compared to the wavelength, the substrate can be modeled as a homogeneous

substrate based on the equivalent effective medium theory. However, when the holes
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g.=4 Iemx lcm

Figure 5.7: Geometry of the cavity-backed patch over finite PBG structure.

become a significant function of the wavelength, the effective medium theory fails and
the structure must be modeled exactly. Antennas with both kinds of substrates were
shown to obtain enhanced bandwidth. In the latter case, dielectric blocks within
the substrate were optimized using GA to obtain more than 17% bandwidth for a
single patch antenna. This design was the first in optimizing 3-D PBG structures in
terms of their geometry and material distribution and demonstrated the full three-

dimensional capability of the design approach.
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Figure 5.8: Input impedance and return loss of the cavity-backed patch over PBG
structure with and without air layer.
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CHAPTER VI

CONTRIBUTIONS AND FUTURE WORK

6.1 Contributions

In this thesis, FE-BI based optimization methodologies were investigated for the
design of novel patch antennas and periodic arrays.

Optimization methods are generally classified as gradient-based techniques and
gradient-free techniques, where the convergence rate and global optimality are traded.
Among these the sequential quadratic programming method was considered, as a rep-
resentative of gradient-based methods. Genetic algorithms and simulated annealing
were those considered examples of gradient-free methods. In all cases, the analysis
was carried out using the FE-BI formulation.

To validate the effectiveness of the optimization process, several antenna designs
were considered in Chapter III. Most of the problems considered in Chapter III
have been studied in the literature without optimization. Therefore the optimal
designs obtained in Chapter IIT can be treated as validation of the design optimiza-
tion approach. These problems include ferrite patch antennas, stacked patches, and
irregular-shaped broadband and dual-band antennas.

In the design of patch antennas on ferrite substrates and superstrates, magnetic

field strength was proposed as a design variable for tuning the resonant frequencies
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and steering the beam to specific angles. Use of the SQP method was demonstrated
for speeding up both processes to locate the resonant frequencies and obtain the
necessary field strength for the beams.

Two designs involving stacked patch configurations were studied and optimized
for improved broadband performance. First, the substrate thickness for probe-fed
stacked rectangular patches was optimized using SQP to obtain a 21% bandwidth. A
novel design of a rectangular patch stacked with a folded-slot was also proposed. For
this design, several slot widths were optimized using GA to achieve a 22% bandwidth.

We further continued the study of broadband antenna designs by considering
irregular shapes of single layer patch antennas. This was done by discretizing the
design domain into small cells with each cell assigned an “on” or “off” state by the
optimizer. A similar optimization process was conducted for finding an irregular-
shaped patch having dual-band performance. Both the GA and SA algorithms were
employed for the two designs. For the broadband antenna, GA and SA vielded
different designs yet both of them had a bandwidth of about 10% (i.e., both satisfied
the design objective). For the dual-frequency antenna, the GA and SA generated
the same optimal design, but in general we found that GA needs fewer function
evaluations.

In Chapters IV and V, we studied the designs of infinite and finite periodic
EM structures. In Chapter IV, the concept of frequency selective surfaces (FSSs)
was introduced. A fast O(N) FSDA simulator was implemented within an FE-BI
approach to speed up the analysis module. GA was integrated with this simulator
to allow full flexibility in geometry and layer structure decisions when designing
FSSs. Example designs were demonstrated subject to pre-specified magnitude and

phase criteria. Single-layer and multi-layer highpass filters were designed to meet
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the desired frequency response. As a new application, a flat-phase FSS element was
designed subject to a phase response that is fairly constant over a given band. Such
designs allow for special purpose FSS structures that can serve as “substrates” to
printed antennas and was shown to substantially enhance the bandwidth of a dipole
array.

In Chapter V, 3-D frequency selective volumes (FSVs) or photonic bandgap
(PBG) structures were studied. FSVs/PBGs have periodic perforated substrates
which can suppress surface waves within a certain frequency range, therefore im-
proving bandwidth and gain of the patch antennas atop. Two approaches of ma-
nipulating the PBG substrates of patch antennas were discussed: when hole size in
the substrate is small compared to the wavelength, the substrate can be modeled as
homogeneous using the effective medium theory. When the hole size is on the order
of a wavelength, the effective medium theory is no longer valid, and the structure
needs to be modeled exactly. Antennas with both kinds of substrates were shown to
obtain enhanced bandwidth. GA was then performed to optimize the material distri-
butions of the dielectric implants inside the bandgap substrate and further increased
the antenna bandwidth.

To summarize, the research contributions of this thesis are the following:

e The first thesis on comprehensive study of optimization combined with full

wave analysis for antennas and periodic structures;

e Proposed innovative and non-intuitive antennas and FSSs for broadband ap-

plications (e.g., folded-slot antenna, irregular-shaped flat-phase FSS elements);

e First in optimizing 3-D PBG structures in terms of their geometry and material

distribution.
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6.2 Future Work

In this thesis, the optimal shape and topology of patches, FSS elements and FSV
blocks were achieved via domain discretization and “on” / “off” state assignments
for each small cell within the domain. However, such methods treat the design do-
main in a discrete way, and provide only an approximation to the actual continuum
structures desired for most realistic applications. Therefore, it would be advanta-
geous to use topology optimization methods to obtain the shape of the external and
internal boundaries and the number of inner holes simultaneously. There are mainly
two topology optimization methods available: the homogenization method [13] and
the density method [12]. Both of these methods discretize the design domain into
finite elements. Each finite element is viewed as one or more microstructures. A
microstructure can be expressed as void, porous, or solid depending on the hole size
of the microstructure. On the basis of the homogenization method, the homoge-
nized value of the material constant for each finite element is first computed on the
basis of its microstructures. For the density method, the material constants of the
microstructures need not be homogenized. These methods can be used to find the
shape, topology and/or the material distribution of the 2-D patches/FSSs and the
3-D FSVs/PBGs for optimal performance.

In this thesis, most of the designs treated the optimization module and the anal-
ysis module separately. That is, the analysis module (i.e., the FE-BI part) is viewed
as a “black box”, where design variables are the inputs and the antenna performance
is the output of the module from the FE-BI simulation. Such task assignments are
easy to understand and implement although possibly time-consuming. There are

several ways to improve the efficiency of the design process.
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A way to simplify the objective function is by modeling it using an approximate
closed-form formula. As seen throughout the thesis, numerical techniques are nec-
essary to compute the performance characteristics of patch antennas and periodic
structures. Such computation consumes most of the CPU time required for the whole
design optimization process. If the objective function can be simplified, considerable
speedup of the process will be observed. For example, when available data are col-
lected either from previous simulations, experiments or other empirical sources, they
can be used to create an approximate (surrogate) mathematical model. This idea
may be pursued via curve fitting, neural networks, or kriging (83].

Another way is to construct a simplified model, if available, for certain applica-
tions. For example, when designing a multilayer dipole FSS structure, equivalent
circuit models for each layer can be established and transmission lines can be in-
serted between these circuits to represent layers. The geometrical variables of the
F'SS structure (such as lengths and widths of the dipoles and the separation between
layers) can be related with the corresponding RLC (resistance, inductance, and ca-
pacitance) circuit variables. The RLC circuit model is available in an analytical
form. A simple optimization method can then be employed to determine the equiva-
lent circuit variables to achieve the desired behavior of the FSS structure. Full wave
FE-BI simulation can then be carried out as a final validation step on the basis of
the optimal circuit variables when their values are converted back to FSS geometry.

A third means of making the design process more efficient is to integrate the
optimization algorithm into the antenna analysis directly. Consider a patch design
with the GA/FE-BI method where re-meshing is not needed. An original “full”
patch geometry is chosen at the beginning of optimization process for which the

BI matrix is formed. During the optimization process, the GA can search for an
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optimal substructure contained within the original structure, and the matrix will be
modified accordingly. By doing this, the BI matrix is filled only once at the beginning
of the optimization process, with no need to re-mesh and re-fill the matrices at every
optimization iteration. Therefore, significant computational cost reduction can be

achieved in evaluating the objective function during the iteration process.
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