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CHAPTER I

Introduction

An understanding of the interaction of the radiowave with its environment is im-

portant for supporting the engineering of robust wireless communication systems.

The electromagnetic propagation characteristics of an environment—itself is a phys-

ical domain which can consist of urban, suburban, and natural scenes, or various

hybridizations thereof—directly influence the design of system components such as

RF transceivers, antennas, transmission waveforms, modulation schemes, and chan-

nel coding techniques. Propagation simulation tools, when properly formulated and

applied, therefore can become essential instruments in facilitating network planning,

performance evaluation, and signal coverage optimization. Over the years, as it will

be discussed in the section hereafter, a variety of specialized simulation tools have

been developed, and the progress in propagation modeling is mostly driven by the

evolution in wireless applications. A burgeoning application of interest is the near-

earth wireless system, which is becoming an integral part of many environmental

and military surveillance infrastructures. The two defining characteristics of this

type of system are that they are low-power and low-profile; as the transceivers in the

communication network operate in the near-ground region, there are a number of

challenging propagation issues that need to be modeled, simulated, and understood.

1
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Assessing from the electromagnetic standpoint, the near-earth environment is a

very harsh environment for radiowave propagation. For instance, the signal spreads

out asymptotically from the transmitter as 1/distance4—even in the presence of a

line-of-sight path; this power divergence feature can in turn become the primary

factor in determining the energy constraint for low-power transmission; the unique

properties, or complications, of near-earth propagation such as surface wave prop-

agation, non-plane wave propagation, and higher order reflection and diffraction

phenomena pose additional constraints that often beset the validity of classical an-

alytical ray-tracing and physical optics techniques—and their heuristic extensions;

furthermore, ground proximity effects can drastically change and degrade the per-

formance of conventional antennas that have been designed without considering the

ramifications of these effects. All these issues pertaining to the near-ground radio

channel have not been thoroughly investigated; as such, this is the impetus for this

study, the objective of which is to develop a set of modeling tools that can be used by

the radio engineer to simulate the behaviors of the electromagnetic wave propagating

in the near-ground environment. The scope of the problem cannot be overstated, and

this study, ultimately, could only serve as a partial fulfillment to the vast amount of

analysis that is needed for a complete understanding of the problem itself; neverthe-

less, it is intended that this work would become a useful complement and extension

to existing propagation routines and would bring forth additional insights that have

not been reported previously.

In the following sections, a more detailed explanation of the task undertaken in

this work is presented—first, relevant background information is introduced; then

the motivation for this work is established; finally, the research methodology and

outline, or overview, are discussed.
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1.1 Background

Marconi experimentally demonstrated the feasibility of wireless telecommunica-

tion in 1897. Since then, the technology of wireless telecommunication, or the

transmission of information via radiowaves, has flourished in progressively more

sophisticated forms—appearing first as novelties and gradually becoming everyday

conveniences—from the wireless telegraph, to radio, to television, to cellular phones,

and—most recently—to WLAN and WiMax. The interaction of radiowaves with

the environment became a subject of intense interest shortly after Marconi’s ex-

periment. Early pioneers such as Van der Pol, Sommerfeld, Bremmer, and Norton

undertook observation-based investigations into the propagation and diffraction of

low-frequency radiowaves around the earth’s surface, while Millington and Eckersley

examined the refraction effects of the atmosphere [6]. The studies carried out by

these investigators led to the first tabulation of propagation loss curves for sky waves

and ground waves at the LF and HF bands for large antenna heights. The widespread

use of VHF television and mobile radio during the 1950s necessitated the need to

account for the effects of moderate-scale terrain features and buildings and initiated

the development of contemporary “ray-tracing” routines. Subsequently, extensions

to ray propagation schemes were formulated in the form of geometrical theory of

diffraction (GTD) and uniform theory of diffraction (UTD). The proliferation of

commercial handheld cellular service in the 1980s prompted the use of empirically-

derived statistical models such as the Okumura-Hata model and the Walfisch-Ikegami

model for signal prediction in urban areas; while continued to be widely used today

for cellular, WLAN, and WiMAX coverage planning, these models, however, cannot

be applied to small and micro radio cells. As demand for accuracy increases, full-
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wave numerical propagation models—viz., integral equation solvers, finite difference

solvers, and parabolic equation methods—began to emerge near the latter part of

the 20th century.

As briefly outlined above—and chronologically illustrated in Figure 1.1, the progress

in radiowave propagation modeling is predominately dictated by the evolution in

telecommunications technology. The rise in the number of deployment of unattended

ground sensor networks for environmental and military surveillance applications has

prompted the need for a more complete understanding of near-earth wireless com-

munication channels. An unattended ground sensor (UGS) is a low-power and low-

profile wireless transceiver that gathers a variety of data (acoustic, magnetic, seismic,

meteorological, etc.) from its surrounding and then transmits this information to an-

other node within the network or to a central processing station. The UGS has been

identified and accepted as an important component of the Army’s Future Combat

System (FCS) with applications ranging from perimeter enforcement to battlefield

condition monitoring. Since the heights of the transmitters and receivers in the net-

work are low, ground conditions (i.e., soil composition, moisture content, roughness)

and dielectric coverings (i.e., vegetation, snow) can have substantial effects on signal

coverage and would have to be included for an accurate and realistic understanding

of the propagation characteristics and for the prediction of node connectivity.

The key operational requirements of an UGS transceiver node are the following [7]:

Low visual signature: a small form factor is required to evade detection. A low-

profile, miniaturized antenna design is consequently desired.

Low power consumption: as the UGS unit is battery powered, the RF circuitry, the

transmission waveform and protocol, and the radio link must be properly chosen and

designed to support missions as long as 60 days. The inherent low-power constraint of
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Hardware Component Production Cost
Antennas and radio $1000–$3000

GPS $100
Electronic compass $400–$700

Main processor, DSP, microphone array $500
Case $150

Connectors $50
Batteries $200
Geophone $75

Windscreen <$50

Table 1.1: Costs of UGS components [5].

the network places stringent requirements on the fabrication of the UGS module. As

the transceiver is the most expensive part of the module (Table 1.1), the importance

of a proper understanding of propagation issues for the establishment of an accurate

link budget is evident. Simulation tools established for network technologies such

as IEEE 802.11, Bluetooth, and cellular 3G/4G are focused on broadband systems

with high power and high data rates and therefore are not appropriate for low-power

applications.

Long range connectivity with ground level antennas : it is well-known that system

power efficiency decreases dramatically with decreasing antenna height; for large

nodal separation distances (up to several kilometers), optimizing network perfor-

mance for the near-ground channel is especially challenging since the radiowave has

to interact with the ground and terrain obstacles at grazing angles.

Secure RF link : for military-related applications, a secure link is needed to provide

low probability of detection and intercept. A 20–30 dB jamming resistant link is often

required. A judicious balance must be established between the tradeoffs of low-power

emission and reliable connectivity. Issues such as operational frequency, bandwidth,

data rate, transmission waveform, modulation, and routing and channel protocols

are inter-related and all have to be assessed with respect to the propagation link

budget.
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1.2 Motivation

Wireless connectivity among sensors in an UGS system is critical, and due to the

requirement of a low-power sensor grid, the ability to accurately predict the effects

of the propagation channel on system performance is essential in designing for max-

imum efficiency. The initial phase of UGS network deployment is wireless planning,

the goal of which is to develop a coverage map (a solution, or—in this case—a node

constellation) constrained on a system quality factor such as average signal level, bit

error rate, or interference occurrency. Wireless planning is divided into two stages:

(1) evaluation and optimization of performance using propagation coverage and anal-

ysis tools; (2) confirmation of performance through field measurements. Accurate

and efficient propagation models are crucial to the RF engineer in the development of

a solution of the planning optimization algorithm, as the optimization process could

be the most computationally demanding part of the planning phase. For low-power

systems such as UGS networks, propagation losses become the dominant energy and

efficiency constraint; an understanding of the causes of these losses is required in the

construction and evaluation of mitigation schemes and signal coding techniques.

In assessing the various environmental effects, those of the ground are substantial

and site specific. Vegetation, ground roughness and undulations, soil-moisture, and

many other factors affect the radio signal. There are also issues with regard to the

proper choice of antennas for UGS applications. The performance characteristics

such as input impedance and radiation pattern of antennas designed for operation

in free space can drastically change once these antennas are placed near the ground.

As each terrain feature has its own inherent electromagnetic problem to solve, var-

ious numerical and analytical methods are required to evaluate the effects on the
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propagation channel from each one.

As alluded to earlier, adequate propagation models do not exist for very low an-

tenna heights—to support either coarse or detailed analysis and prediction of sensor

network performance, for the validity of the models aforementioned in Section 1.1

is biased toward applications defined by placement of transmitters and receivers

relatively far above the ground surface. As a result, the proper design and plan-

ning of near-ground networks require not only the re-examination and refinement of

solutions established for “off-ground” systems but also the development of new prop-

agation simulation paradigms. In supporting the deployment of this new generation

of networks, there are only a limited number of detailed studies—either theoretical

or empirical—available in literature discussing the effects of ground properties on

communication channels located directly on the ground. Partial efforts have been

made—for example, in [8] and [9]—to characterize near-ground channels through

measurement campaigns. In [8], line-of-sight and forest-obstructed signal paths are

studied at 300 MHz and 1900 MHz with the derivation of path-loss models as a func-

tion of transceiver height, range, and frequency by simply fitting the measurement

data to generic path-loss equations. A similar heuristic curve-fitting approach is used

in [9] to study the path-loss and shadowing variance behaviors of ground-lying an-

tenna configurations in various indoor and outdoor environments at 800–1000 MHz.

The shortcoming of these studies is that their empirical results are specific to the

application parameters presented therein; in other words, when attempting to extend

these results to more general propagation scenarios, their usefulness is likely to be

compromised as they do not take into account many other parameters of interest

such as ground or soil properties, vegetation density, antenna type, etc. Therefore,

in order to fully and satisfyingly characterize the various types of propagation phe-
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nomenology relevant to the near-ground channel, the physics behind the propagation

must be understood, and hence “physics-based” modeling should be undertaken.

1.3 Research Approach and Overview

The physics-based propagation paradigm has been applied for general radiowave

channel analysis by previous workers, including Casciato [10] and Koh [11]; akin

to the presentation in those works, for the sake of improving practicality and ac-

curacy, here, the derivation of the models is directly based on a contemplation and

appreciation of the underpinning physical processes and electromagnetic mechanisms

(Maxwellian modeling)—as opposed to based on heuristic techniques (e.g., measure-

ment data curve-fitting). Although a near-ground wireless system such as the UGS

network can be deployed in many types of environments, the focus of this study is on

propagation domains defined by natural terrain features and obstacles; specifically,

the solutions to an important chosen subset of fundamental canonical problems are

formulated; by understanding the governing propagation peculiarities therein, these

problems can become building blocks for the simulation of more complicated prop-

agation scenes, including ones that may require the incorporation of the effects of

man-made structures (e.g., buildings, roads) and atmospheric and meteorological

phenomena.

As depicted in Figure 1.2, within this dissertation, physics-based near-ground RF

propagation modeling is presented for the topics shown below.

1.3.1 Effects of Vegetation or Snow Layer on Near-Earth Wave Propagation

A classic problem that was first solved by Sommerfeld [12–14], radiowave propaga-

tion over a bare, finite-conducting, flat ground has deservedly garnered much atten-

tion over the decades due to its importance and the form of the integrals (so-called
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Sommerfeld integrals) found in its solution. Following Sommerfeld, additional works

for the same problem have been carried out by Norton [15,16] and Bãnos [17], result-

ing in efficient formulations for characterizing ground wave propagation. Although

these formulations are sufficient for simple near-ground propagation scenarios, much

work remains in evaluating the effects of dielectric coverings such as vegetation or

snow layers.

The problem of near-earth wave propagation in the presence of a continuous

dielectric layer such as a vegetation or snow covering is considered in Chapter II

by modeling the propagation environment as a homogeneous two-layer medium

(air/dielectric/ground). A number of studies have demonstrated the relevancy of

the lateral wave for the case when both the transmitter and receiver are located

within a simple half-space dielectric medium [18–24]. Unfortunately, for the general-

ized two-layer model, for configurations in which the transmitter or receiver (or both)

is located above the dielectric layer, far field analytical expressions that include all

propagation features do not exist. In this work, in order to arrive at a computational

efficient solution for the two-layer model, a second order asymptotic evaluation for

the electric fields of an arbitrarily-oriented, infinitesimal electric dipole—for source

and observation points located in the vicinity of the air/dielectric interface—is car-

ried out through the method of steepest descents. The formulations are valid in the

far field, with the limitation that the exponentially-decaying pole and branch cut

contributions have been ignored. It is observed that the Norton wave, though it is

highly localized near the air/dielectric interface, is a significant contribution either

when the dipole and observation points are both located above the dielectric layer

or when one is above and the other is within the layer.

In investigating the effects of foliage in Chapter II, it is assumed that the vegeta-
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tion layer is infinite in extent in the two dimensions parallel to the ground; another

problem of interest can be reached by truncating the layer in one of the horizontal

directions; the resultant influences of such an abrupt truncation on the radio signal

need to be analyzed. In Chapter III, the far field radiation from an infinitesimal elec-

tric dipole embedded inside a truncated vegetation layer above a dielectric ground

plane is calculated. Through an application of the equivalence or Huygens’ princi-

ple, a semi-exact solution for the received field at locations exterior to the vegetation

layer is obtained by a surface-field integration technique in which the spatial domain

of integration is over a plane containing the truncated face of the vegetation canopy.

The numerical results are computed using stationary phase approximations and show

improvement over those determined through an existing ray-tracing approach. Sim-

ulation results are also compared against measured data from controlled experiments

carried out within a laboratory environment using a well-characterized scaled-replica

of the propagation medium at a proportionally higher frequency. It is shown that

ray-tracing provides accurate results at distant points from the vegetation trunca-

tion plane when the receiver height is large in terms of the wavelength but slightly

underestimates the path-loss when the receiver is close to the ground.

1.3.2 Effects of Undulating Terrain on Near-Earth Wave Propagation

Just as the effects of dielectric coverings need to be considered, those of the terrain

irregularity encountered by an electromagnetic wave along its path of propagation

should be taken into account as well in characterizing the near-ground radio channel.

Commonly used analytical prediction models for dealing with irregular terrain pro-

files include knife-edge diffraction models—which are derived from Fresnel-Kirchhoff

scalar theory for optics [25–27]; the Longley-Rice model [28]—which relies partly

upon knife-edge diffraction as well as empirically-determined attenuation functions;
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and wedge diffraction models [29, 30]—which use wedge diffraction coefficients in

tracking the wavefront. By replacing the terrain features with simple geometries

(i.e., knife-edges and wedges) and considering only first order interactions, these and

other ray-tracing techniques, however, cannot provide sufficient accuracy in signal

coverage prediction for near-ground networks, which often are placed in the deep

terrain shadows, where the signal is characterized by higher order reflection and

diffraction effects. Over a gently-varying terrain profile, for example, creeping surface

wave modes play a significant role in propagating the electromagnetic wave along the

surface; unfortunately, standard formulations for evaluating the diffraction around

canonical shapes such as cylinders and parabolic curvatures do not fully capture all

the propagation features; in addition, when heuristically extended to deal with gen-

eralized curvatures in long-distance propagation analysis, these formulations often

lead to erroneous results for the regions located far beyond the shadow boundaries.

The popularity of the aforementioned GO/GTD/UTD-based ray-tracing tech-

niques notwithstanding, research focus in recent years has shifted toward the prac-

tical implementation of finite difference and boundary integral equation (IE) simu-

lators to fulfill the growing demand for signal coverage prediction models of realistic

terrain scenes. The application of a computationally efficient, high-order accurate

integral equation solver for predicting long-distance radiowave propagation over ir-

regular terrain is described in Chapter IV. Although extensively chronicled in lit-

erature, classical IE solvers prove to be rather ill-suited for studying long-distance,

over-terrain propagation because of the large computational cost and the inherent

low-order accuracy. Two recent developments, however, have made IE solvers far

more attractive for modeling terrain propagation phenomena. The first is the devel-

opment of fast-multipole methods (FMM), which significantly improve the efficiency
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of the solvers. The second is the emergence of high-order and error-controllable dis-

cretization schemes [31]. In view of these developments, an FMM-accelerated and

high-order accurate Nyström solver is explored for analyzing wave propagation.

Specifically, a 2D surface integral equation-based Nyström solver in which a phase

extraction technique is utilized to reduce the number of surface unknowns is imple-

mented. As forward scattering is the dominant mechanism for the near-ground wave

propagation scenario, the associated rapidly-varying phase components of the inte-

gral equation kernel and solution unknowns are deduced and isolated in advance

and subsequently built into the solver. It is shown that by applying this method,

when combining with an adaptive surface segmentation routine, as few as one to two

average unknowns per wavelength is adequate in obtaining accurate solutions. This

significantly reduces the memory storage and computational expense for the simu-

lation of long-distance propagation effects. The efficiency of this method is further

improved by incorporating it into the framework of the fast multipole scheme. The

full details of the algorithm are discussed, along with performance comparisons of

the new solver to a regular Nyström solver for terrain surfaces in terms of solution

convergence.

The current numerical implementation can also be a valuable tool for validating

existing asymptotic-based algorithms; in particular, it can be a convenient alterna-

tive for obtaining diffraction coefficient parameters, as shown in Chapter IV for a

class of smooth dielectric surfaces. In addition, the developed full-wave simulator can

facilitate the development of an efficient approximate model for analyzing propaga-

tion over small to moderate random terrain roughness—as described in Chapter V.

For near-ground propagation configurations, as the rough terrain section located in

between but in the far field of the transmitter and receiver points appears to be
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electrically flat to the forward propagating wave, an approximate simplified model is

derived with the replacement of this section with a physically flat section of an effec-

tive height, resulting in a problem with three physical sub-domains. This model

implies that the mean received power and its fluctuation are primarily dictated

by the statistics of the rough terrain local to the transmitter and receiver. Wave

propagation over the three sub-domains is solved using a recursive, 2D Nyström-

discretized-integral-equation-based forward marching scheme. Since the majority of

the final terrain profile is flat and over which field interactions can be cast in terms

of a block-Toeplitz matrix, large memory savings and computational speedup are

achieved. The accuracy of the three-sub-domain model is demonstrated, and simula-

tion results for the path-loss of LOS and NLOS (non-line-of-sight) links are presented

for rough terrain with various random statistics.

For the treatment of random terrain surfaces, although the numerical models as

outlined above and found in Chapters IV and V are shown to be highly efficient,

it is also desirable to arrive at closed-form analytical expressions in encapsulating

the stochastic scattering effects generated. These effects have been considered in

previous works by simply introducing a correction factor into the flat-surface coherent

reflection coefficient. Expressions for the correction factor derived from geometrical-

optics and Kirchhoff models include the Ament approximation [32] and the Miller-

Brown approximation [33,34], which—respectively—are given by

ξA = e−
1
2
(2koσ cos θ)2 , (1.1)

ξMB = ξAIo

(
1

2
(2koσ cos θ)2

)
, (1.2)

where Io is the modified Bessel function of the first kind of order zero, σ is the

terrain rms height, and θ is the grazing angle with respect to the normal as deter-
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mined by the heights of the transmitter and receiver and surface mean. For near-

ground or near-grazing propagation problems, however, simulation results indicate

that applications of these roughness factors cannot generate accurate approxima-

tions for the mean field; the discrepancies observed can be explained by the fact

that the geometrical-optics and Kirchhoff models ignore terrain shadowing. Fur-

thermore, these factors are independent of the surface correlation function, which

can be an important determinant of signal statistics. To formulate a modified—and

more accurate—analytical expression for the rough surface reflection coefficient, an

existing perturbation approach [35] is explored in Chapter VI for deriving the near-

grazing scattering characteristics of the surface; consequently, the effective coherent

reflection coefficient to the third order in the perturbation series is presented and

validated for near-grazing propagation of 2D and 3D radiators.

1.3.3 Performance Analysis of Low-Profile, Electrically-Small, Near-Earth Antennas

Since environmental factors can directly influence the efficiency with which elec-

tromagnetic energy can be injected into an antenna as well as the manner in which

the radiowave spreads out from the excited antenna, the issues of wave propagation

and antenna design are inter-connected and must be evaluated simultaneously for a

precise assessment of the wireless system performance; this observation is especially

true for UGS networks as they function in extreme proximity to the ground environ-

ment, a circumstance which can give rise to effects critical for considerations related

to antenna efficiency, input matching, radiation pattern, and the overall path-loss be-

tween the transmitter and receiver nodes. For simplicity, in accordance to standard

antenna theory and practice, antennas are designed assuming a free space surround-

ing and subsequently—if needed—are tuned based on post-fabrication measurements

in order to meet operational requirements; the behaviors of the antenna in a real-
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istic environment can also be estimated by using pre-established correction factors.

For instance, to account for ground effects, the antenna pattern is often calculated

through the use of a two-ray model; this procedure, however, breaks down for near-

ground applications due to the non-TEM aspect of the propagating signal and the

manifestation of various modes of surface waves.

The enigmatic nature of an antenna’s near-earth characteristics demands the de-

velopment of a more rigorous modeling technique in analyzing its performance. In

Chapter VII, an investigation into the simulation of low-profile, electrically-small

antennas (located on a flat dielectric ground) for UGS networks is featured through

the introduction of a terminal-to-terminal power tracking approach. While vertical

wire antennas are shown to be less susceptible to propagation loss, a low-profile al-

ternative is desired for UGS applications and is often required in the fabrication of

low-cost, monolithic on-chip, miniaturized systems. In this study, the performances

of different transceiver systems utilizing different types of near-ground antenna struc-

tures including the dipole, loop, ordinary circular slot, and cavity-backed circular slot

are analyzed using a full-wave hybrid approach consisting of the moment method in

conjunction with a near-ground asymptotic field propagation model. The figure of

merit for comparison among the various configurations is identified as the efficiency

factor calculated from the ratio of the input power at the transmitting antenna ter-

minal to the received power at the receiving antenna terminal. The unique features

of ground proximity effects as pertaining to near-ground operation are discussed and

an optimal radiator is identified from the set of structures analyzed.
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1897: Official trial of Marconi’s radio system 

1901: Transmission of first transatlantic wireless 
message (Marconi) 

1905: Demonstration of wireless telephony by 
transmission of speech and music (Fessenden) 

1920s: Mainstream introduction of AM radio 
broadcasts

1933: Invention of FM radio (Armstrong) 

1934: First public demonstration of a complete 
all-electronic television system (Farnsworth) 

1940s: Transmission of analog television begins 
in North America and Europe 

1953: Introduction of NTSC color TV in the US; 
Unveiling of first transistor, portable radio 

1957: Beginning of the Space Age – Sputnik I 
launched

1972: Motorola’s demonstration of cellular 
telephone to FCC 

1981: Introduction of 1G cellular service 

1987: Deployment of GPS satellite constellation 

1989: Motorola’s introduction of the pocket 
cellular telephone 

1990: Creation of World Wide Web 

1990s: Widespread availability of 2G cellular 
service 

2000s: Development of HDTV, Bluetooth, WLAN, 
WiMAX, wireless sensor networks (WSN), 
Software-Defined Radio (SDR), 3G/4G cellular 
service 

1909: Formulation of Sommerfeld problem 

1929: Ionosphere prediction method (Eckersley 
and Tremellen) 

1937: Tabulation of ground/sky wave propagation 
curves at LF/HF 

1957: GTD (Keller) 

1967: Forest prediction model at VHF (Tamir) 

1968: Longley-Rice model 

1974: UTD (Kouyoumjian and Pathak) 

1980: Okumura-Hata model for land mobile radio

1984: Walfisch-Ikegami model 

1980s: Numerical propagation solutions with 
parabolic equations 

1990s: Propagation simulations with integral 
equations and finite difference solvers 

Figure 1.1: Developments in telecommunication technology and radiowave propagation modeling—
a non-comprehensive overview, partially derived from the chronology outlined in [1].
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CHAPTER II

Near-Earth Wave Propagation Characteristics of Electric
Dipole in Presence of Vegetation or Snow Layer

2.1 Introduction

The asymptotic solution to the problem of dipole radiation in the presence of

a vegetated-terrain at VHF was studied first by Tamir [20, 21] and subsequently

by others including Li et al. [22], Cavalcante and Giarola [23], and Sarabandi and

Koh [24]. However, in all these studies, both the source and observation points are

assumed to be embedded in the vegetation; for such a configuration, the far field

radiation is dominated by the lateral wave and the Norton wave is of little impor-

tance; for the generalized configuration, in which the source and observation point

locations can be arbitrary (with respect to the air/dielectric interface), a compact

and comprehensive set of formulations for computing the total field cannot be found

in existing literature. The more general problem of dipole radiation in the presence

of a layered media has been thoroughly treated, but the associated equations are in

integrals of the Sommerfeld form and are too complicated for computation when the

source and observation points are far apart; the transformation of these integrals into

asymptotic forms has been discussed, for instance, by Chew and Kong [36]—for a

general two-layer medium but only for source and observation points directly on the

air/dielectric interface—and by Marin and Pathak [37]—for applications pertaining

18
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to grounded, lossless double-layer printed circuitry. While it is possible that the re-

sults generated by Marin and Pathak can be extended and specialized to the class of

near-earth propagation problems treated in this work, no attempts have been made

toward such an endeavor; in addition, although their closed-form expressions have

been shown to be valid even in the near-field region of the source, the equations

are rather involved and cannot be implemented easily as a consequence of the exis-

tence of poles and branch cuts as well as the proximity of these singularities to the

saddle point. The objective of this chapter is to present field expressions assembled

by retaining only a dominant asymptotic contribution; for application to propaga-

tion problems in the far field (or, as it is in the current case, when the transmitter

and receiver are separated by hundreds or thousands of meters or even more), this

simplification is justified and an accurate approximation to the far field radiation

characteristics can be readily obtained in an efficient manner.

The present work is an extension of a previous study [24], which investigated the

propagation characteristics for the case when both the source and observation points

are embedded inside a vegetation layer. In this work, the analysis is broaden to the

general case in which the locations of the source and observation points can be at any

location above ground. Specifically, the following three configurations are analyzed

in order: (1) source and observation points in air; (2) source in dielectric layer,

observation point in air; (3) source and observation points in dielectric layer. The

fields of other configurations can be easily deduced through the reciprocity principle.

Since the third case has been thoroughly investigated by [24], only the results are

presented here; for the complete derivation, the reader is referred to the original

work.

The propagation of electromagnetic waves in the presence of vegetation or snow-
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ẑ

ŷ

Medium 0: Air  

εo, µo, ko

Medium 1: Vegetation or Snow 

εr1εo, µo, k1

d

Medium 2: Ground 

εr2εo, µo, k2

Observation Point 

(ρ, φ,  z)

Source
(0, 0, z’)

x̂

Figure 2.1: Two-layer medium model for calculating the fields of an arbitrarily-oriented electric
dipole.

covered terrain can be understood by considering vegetation or snow as a homo-

geneous layer with an effective dielectric constant and analyzing the fields in the

resulting two-layer medium (Figure 2.1). In order for this model to be accurate,

especially in the case of a vegetation layer, the wavelength of propagation should

be large compare to the dimensions of the features inside the layer (e.g., branches,

leaves, spacing between individual plants). As suggested by [20–22], for a forest en-

vironment, the highest frequency at which the vegetation layer can be considered to

be homogeneous is around 200 MHz; however, for short vegetation such as grass or

crops, the effective medium theory is valid up to the frequency region of about 1 GHz

before scattering from vegetation particles becomes significant. For a snow layer, the

limit can be even extended to the millimeter-wave range due to low volume-scattering

and the high degree of uniformity within the medium. The effective dielectric con-

stants of the vegetation or snow layer and of the ground can be computed with the

use of standard mixing models as described by [2–4,38,39].

From the spectral representation of the dyadic Green’s function (as given by [40]),

exact expressions for the fields of an infinitesimal electric dipole radiating in the

presence of a two-layer medium can be derived. These expressions are listed in
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Appendix A. In Section 2.2, asymptotic evaluations of these expressions in the

most general form are carried out by applying the method of steepest descents. In

Section 2.3, simulation results are presented, and the variation of each component

of the electric field is analyzed in terms of the effective permittivity, thickness of

the vegetation or snow layer, locations of the dipole and observation points, and

frequency of operation.

2.2 Analytical Formulations

In this section, analytical formulations for the calculation of the electric fields

radiating from a short dipole of arbitrary orientation situated above a dielectric

ground plane in the presence of a layer of vegetation or snow are derived. The

geometry of the problem is illustrated in Figure 2.1. As it has been noted, there are

three primary configurations of interest, as a result of different combinations of the

locations of the electric dipole and observation point. The dipole is assumed to be

located on the z-axis with current moment vector Io
~l = Io(lxx̂ + lyŷ + lz ẑ), and the

observation point—identified with the usual cylindrical coordinates—is at (ρ, φ, z).

In the type of propagation problems considered here, for analysis restricted to the

far field, it can be assumed that the magnitudes of z′, z, and d are much smaller

than that of ρ—the radial distance between the dipole and the observation point.

Also note that primed quantities are associated with the source, and the exp(−iωt)

convention is assumed and suppressed in all the formulations.

2.2.1 Case 1 (z′ > 0 and z > 0)

Consider the simple case when the source and observation points are both located

in the upper layer (air) of a one-layer medium (Figure 2.1, disregarding the last layer
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for the moment), the total electric field for a vertical dipole can be written as

Etotal
x,y,z = Edirect

x,y,z + Escattered
x,y,z . (2.1)

Specifically, at grazing angle (z′ ¿ ρ and z ¿ ρ), each component of the field can

be expanded as follows:

Etotal
z =

iωuoIolze
ikoρ

4π

{
1

ρ
+

RTM

ρ
+

Cz,1

ρ2
+

Cz,2

ρ3
· · · ·

}
, (2.2)

Etotal
x =

iωuoIolze
ikoρ

4π
cos φ

{
(z′ − z)

ρ2
− (z′ + z)RTM

ρ2
+

Cx,1

ρ2
+

Cx,2

ρ3
· · · ·

}
, (2.3)

Etotal
y =

iωuoIolze
ikoρ

4π
sin φ

{
(z′ − z)

ρ2
− (z′ + z)RTM

ρ2
+

Cy,1

ρ2
+

Cy,2

ρ3
· · · ·

}
. (2.4)

The first term in the brackets is the direct field; the second term is the geometrical-

optics reflection field; and the rest of the terms accounts for higher order scattered

fields—where the C s denote unknown factors. Since incidence is near grazing angle,

it is easy to show that RTM ≈ −1, (1−RTM) ≈ 2, whereas (1 + RTM) is a small

quantity proportional to 1/ρ. For the z-component of the field, it can be seen that

the cancellation of the direct and geometrical-optics reflection term generates a 1/ρ2

resultant—which is of the same order as the next term in the expansion. Likewise,

for the x and y components, the sum of the direct and geometrical-optics reflection

also produces a term that is of the same order as the next higher order term. Similar

analysis can be applied to a horizontal dipole. Thus, when the source and observation

points are close to the interface (incidence at grazing angle), it is apparent that an

accurate description of the field components necessitates the derivation of the higher

order term that comes after the geometrical-optics reflection term.

The complete evaluation of the field quantities begins with the two-fold inte-

gral form of the dyadic Green’s function. A change of variable is applied to obtain

the integration in terms of kρ and Bessel functions. In integral form, the resulting
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expressions—for which exact closed-form solutions do not exist—of the x, y, and z

components of the scattered field are given in Appendix A. Since numerical compu-

tation of these expressions is slow and formidable due to the presence of singularities

and the highly oscillatory behavior of the Bessel function at large distance ρ, approx-

imate asymptotic solutions are sought. In a standard procedure, Hankel’s functions

of the first and second kind are used in extending the limits of integration to nega-

tive and positive infinity (in kρ-plane). By transforming the integration over to the

complex w-plane by the change of variable kρ = ko sin w, and then substituting the

asymptotic form of the Hankel’s function for large arguments, the integrand can be

written in the following form—to which the standard method of steepest descents

can be applied:

Es
ij(ρ, φ, z) =

−k3
oηoIoli
16π

√
2

ikoρπ

π
2
−i∞∫

−π
2
+i∞

fij(w)eq(w)dw, (2.5)

where subscripts i, j = x, y, or z and q(w) = ikoRcos(w − ws). The saddle point at

w = ws is defined by q′(ws) = 0; therefore

sin ws =
ρ

R
, (2.6)

cos ws =
z + z′

R
, (2.7)

R2 = ρ2 + (z + z′)2. (2.8)

After some manipulations and following the procedure of saddle point integration

provided by [19], the j component of the saddle point contribution up to second

order for a dipole pointed in the i direction can be written as

Esp
ij =

−k3
oηoIoli
8π

eikoρ ·
{

fij(ws)

(
1

ikoρ

)
+

1

2

[
f
′′
ij(ws) +

fij(ws)

4

](
1

ikoρ

)2
}

(2.9)

where the two terms represent the first and second saddle point expansion terms. The

first saddle point expansion term is the geometrical-optics reflection term and the
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second expansion term can be thought as a correction term that becomes dominant

when the source and observation points are close to the interface. This correction

term is also commonly known as the Norton wave [41]. After some lengthy algebraic

manipulations, expressions for fij(w) of (2.9) can be shown to be the following:

fzx = − 2

ko

sin
3
2 w cos wR01

TM(w) cos φ, (2.10)

fzy = − 2

ko

sin
3
2 w cos wR01

TM(w) sin φ, (2.11)

fzz =
2

ko

sin
5
2 wR01

TM(w), (2.12)

fxx,yy = sin
1
2 w cos w [R−(w)∓R+(w) cos(2φ)] , (2.13)

fxy,yx = − sin
1
2 w cos wR+(w) sin(2φ), (2.14)

fxz =
2

ko

sin
3
2 w cos wR01

TM(w) cos φ, (2.15)

fyz =
2

ko

sin
3
2 w cos wR01

TM(w) sin φ. (2.16)

The mixed reflection coefficient, which is required for an x or y-directed dipole, is

defined as

R±(w) =
R01

TE(w)

ko cos w
± cos wR01

TM(w)

ko

. (2.17)

The TE and TM reflection coefficients are of the standard form:

Rmn
TE(w) =

√
εrm − sin2 w −

√
εrn − sin2 w√

εrm − sin2 w +
√

εrn − sin2 w
, (2.18)

Rmn
TM(w) =

εrn

√
εrm − sin2 w − εrm

√
εrn − sin2 w

εrn

√
εrm − sin2 w + εrm

√
εrn − sin2 w

. (2.19)

The appearance of branch points at wb = ± sin−1√εr1 entails the use of a two-

sheeted Riemann surface in representing the w-plane; in order to satisfy the radiation

condition, the path of integration of (2.5) is restricted to lie on the upper sheet

(Im
√

εr1 − sin2 w > 0). The branch cut defined by wb = sin−1√εr1 may be crossed



25

by the steepest descent path and its contribution to the integral can be included by

adding the following to the saddle point contribution [19]:

Eb
ij =

(−koηoIoli
8π

) (√−2ie−
3
2
i arg(−iko

√
1−εr1)

)
· (2.20)


 eik1ρ+iko

√
1−εr1(z+z′)

√
ρ

∣∣ρ√1− εr1 − (z + z′)
√

εr1

∣∣3
2


 lim

w→wb

√
w − wbf

′
ij(w)

It can be readily verified [18, 19] that the poles of the integrand in (2.5) are not

intercepted as the original integration path deforms to the steepest descent path.

Depending on the permittivity of the lower medium (εr1), these poles (the zeros of

the denominator of the reflection coefficients in (2.18) and (2.19)) may move into the

vicinity of the saddle point; thus, the poles may come into effect indirectly and must

be taken into account by carrying out a modified saddle point integration method.

Simulation results, however, show that the ordinary saddle point integration as used

here is sufficient for predicting the field contributions in the far field. The total field

is then the sum of the direct, saddle point, and branch cut contributions:

Eij = Ed
ij + Esp

ij + U(ws − θb)E
b
ij (2.21)

where θb = Re (wb) − cos−1 sech [Im (wb)], and U (·) is the Heaviside step function.

Calculation of (2.20) can be quite involved, but note that the branch cut contribution

decays exponentially with ρ since the wave number k1 is complex; therefore, at large

ρ, the branch cut contribution can be considered as negligible.

For a two-layer medium, to account for higher order reflections that are transmit-

ted into and then emerging from the dielectric layer, the total reflection coefficient

is modified as follows [40]:

RP (w) = R01
P +

∞∑
u=1

T 01
P

(
R12

P

)u (
R10

P

)u−1
T 10

P ei2udko

√
εr1−sin2 w. (2.22)
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Using the relations

Rmn
P = −Rnm

P ;

Tmn
P = 1 + Rmn

P , (2.23)

(2.22) can be re-written as

RP (w) =
R01

P + R12
P ei2dko

√
εr1−sin2 w

1 + R01
P R12

P ei2dko

√
εr1−sin2 w

. (2.24)

The subscript “P” is a place holder for the polarization—either TE or TM. The

saddle point contribution for each higher order reflection (u = 1, 2, ...,∞) in the

summation series of (2.22) can be evaluated by using (2.9) after replacing the reflec-

tion coefficient term in fij(w) with T 01
P (R12

P )u(R10
P )u−1T 10

P ei2udko

√
εr1−sin2 w. Note that

the higher order reflections lead to higher order poles for the terms in the summation

series of (2.22); although they are still located outside of the steepest descent path,

these poles are close enough that—at higher orders—they demand a more refined

saddle point integration method even when ρ is relatively large; in order to circum-

vent this difficulty, calculations are made by following the normal mode approach in

which the total aggregate reflection coefficient in (2.24) is inserted into (2.10)–(2.16)

as a whole rather than as individuals in a series; this approach leads to satisfactory

results in the far field even with the exclusion of the pole contributions—which are

now supplied by the zeros of the denominator in (2.24) and must be located through

numerical methods before their contributions can be included using a standard tech-

nique [19]. These pole contributions, depending on their locations on the complex

plane, represent either distinct surface-wave modes or leaky modes [42–44]—both of

which become less significant as the distance between source and observation points

increases [19,45]. Also note that in the two-layer case there are branch points only at

wb = ± sin−1√εr2 since the expression in (2.24) can be shown to be an even function
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of
√

εr1 − sin2 w. The branch point that can be intercepted is at wb = sin−1√εr2;

but since medium 2 (the ground layer) is highly lossy, the branch cut contribution

falls off asymptotically according to eik2ρ and, hence, rapidly becomes much smaller

than the algebraically decaying saddle point contribution.

2.2.2 Case 2 (−d < z′ < 0 and z > 0)

Exact formulations for this case have been derived and can be found in Ap-

pendix A. Proceeding through the same procedure as before, the method of steepest

descents is employed in obtaining the integral after transforming the integration to

the w-plane. Multiple reflections occurring within the dielectric layer can be accom-

modated by defining the total transmission coefficient as the following:

T up
P (w) = T 10

P

∞∑
u=0

(R10
P R12

P )uei2udko

√
εr1−sin2 w =

T 10
P

1 + R01
P R12

P ei2dko

√
εr1−sin2 w

(2.25)

and

T down
P (w) = T up

P R12
P . (2.26)

The definition of (2.26) differs from that of (2.25) in that the former expression

applies to waves containing an initial bounce off the dielectric layer/ground interface.

It can be shown that the transmitted field Eij for each order u can be written as

Eij,u(ρ, φ, z) =
−k3

oηoIoli
16π

√
2

ikoρπ

π
2
−i∞∫

−π
2
+i∞

fij,u(w)eq(w)dw (2.27)

where

q(w) = iko (ρ sin w + z cos w) ≈ ikoρ cos(w − ws) (2.28)

and the saddle point can be approximately defined by

cos ws ≈ z

ρ
. (2.29)
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The set of fij,u(w) for an arbitrarily-oriented dipole can be shown to take the following

forms:

fzx,u = − 2

ko

sin
3
2 w cos2 w√

εr1 − sin2 w
cos φ

{
T up

TM,ue
cup(w) + T down

TM,ue
cdown(w)

}
, (2.30)

fzy,u = − 2

ko

sin
3
2 w cos2 w√

εr1 − sin2 w
sin φ

{
T up

TM,ue
cup(w) + T down

TM,ue
cdown(w)

}
, (2.31)

fzz,u =
2

ko

sin
5
2 w cos w√

εr1 − sin2 w

{
T up

TM,ue
cup(w) + T down

TM,ue
cdown(w)

}
, (2.32)

fxx,u = sin
1
2 w cos w

{
[T up

+ − T up
− cos(2φ)] ecup(w) +

[
T down
− − T down

+ cos(2φ)
]
ecdown(w)

}
,

(2.33)

fyy,u = sin
1
2 w cos w

{
[T up

+ + T up
− cos(2φ)] ecup(w) +

[
T down
− + T down

+ cos(2φ)
]
ecdown(w)

}
,

(2.34)

fxy,u = fyx,u = − sin
1
2 w cos w sin(2φ)

{
T up
− ecup(w) + T down

+ ecdown(w)
}

, (2.35)

fxz,u = − 2

ko

sin
3
2 w cos w cos φ

{
T up

TM,ue
cup(w) − T down

TM,ue
cdown(w)

}
, (2.36)

fyz,u = − 2

ko

sin
3
2 w cos w sin φ

{
T up

TM,ue
cup(w) − T down

TM,ue
cdown(w)

}
, (2.37)

in which

cup(w) = iko

√
εr1 − sin2 w |z′| , (2.38)

cdown(w) = iko

√
εr1 − sin2 w(z′ + 2d). (2.39)

The designations “up” and “down” differentiate waves that are initially propagating

upward and downward from the source. The mixed transmission coefficients have

been written in the following form:

T up
± (w) =

T up
TE,u

ko

√
εr1 − sin2 w

± T up
TM,u cos w

ko

, (2.40)

T down
± (w) =

T down
TE,u

ko

√
εr1 − sin2 w

± T down
TM,u cos w

ko

. (2.41)
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In the formulations above, T up
P,u and T down

P,u are the individual terms in the infinite

series of (2.25) and (2.26), respectively. Instead of computing each order of trans-

mission separately, the saddle point evaluation of (2.27) can be carried out using

(2.9) as before by means of the normal mode approach—in which now the aggregate

transmission coefficients in (2.25) and (2.26) are substituted into fij(w) as one term.

The difficulty mainly lies in taking the double derivative of fij(w), but this can be

overcome with the help of a symbolic math software. When the source and observa-

tion points are located in the vicinity of the interface, it is seen that both the first

and second term in the saddle point expansion fall off as 1/ρ2; thus, as in Case 1,

both expansion terms are necessary for accurate representation of the total field.

It is seen that the sign of the term
√

εr1 − sin2 w has no effect on the final result

in computing the integral in (2.27); therefore, once again, the function fij(w) is an

even function of
√

εr1 − sin2 w and the only branch points on the complex w-plane

are attributed to the term
√

εr2 − sin2 w. (As a matter of fact, for general stratified

media problems, in the normal mode approach, the branch points on the kρ plane

are supplied only by the first and last layer [46]; the branch points of the first layer

can be eliminated—as it has been done here—by translating the calculation onto the

w-plane after the change of variable kρ = ko sin w. Thus, on the w-plane, the only

branch points remaining are due to the last layer in the stratification.) Similar to

Case 1, calculations are much simplified by ignoring contributions from the branch

cut and the poles (which are provided by the zeros of the denominator of (2.25) and

(2.26)); in the far field, this claim is justified since the saddle point contribution

becomes the only dominant field component.
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2.2.3 Case 3 (−d < z′ < 0 and −d < z < 0)

As it has been shown in [24], when both the source and observation points are lo-

cated inside medium 2, the direct and saddle point contributions decay exponentially

as a function of the radial distance ρ since their propagation takes place in a lossy

medium; the dominant contribution to the total field, as it turns out, comes from

a branch cut contribution. Although a modal analysis can be used, a ray tracing

approach provides a more insightful interpretation for this case. In the ray tracing

approach, the effective reflection coefficient is expanded as a series before asymptotic

evaluation is carried out separately for each term. In such an approach, both medium

1 and medium 2 would furnish branch cut contributions on the w-plane since now—

for each individual order of reflection—the integrand in the field integral is no longer

an even function of
√

εr1 − sin2 w. Discarding the branch cut contribution arising

from the branch point at wb = sin−1√εr2 for the reason mentioned earlier, the only

relevant and significant contribution, in the far field, comes from the branch cut con-

tribution due to the branch point at wb = sin−1√εr1. This branch cut contribution,

which now no longer undergoes exponential decay, can be interpreted as a wave from

the source that radiates upward to the dielectric/air interface at critical angle and

then propagates along the interface (in air) before reaching the observation point at

critical angle again. Since the majority of the propagation takes place in air, this

field component—which has been labeled as the “lateral” wave—does not suffer the

large path-loss experience by the direct and saddle point contributions. Through

standard branch cut integration techniques, the three lowest orders of lateral waves
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have been derived in [24] and are expressed in matrix form as the following (z′ > z):

~Eb =
−iη1

2π(1− 1/εr1)
1
4

eikoρ

√
ρ





eik1

√
1−1/εr1(|z′|+|z|)

[√
1/εr1(|z′|+ |z|)− ρ

√
1− 1/εr1

]3
2

A +

eik1

√
1−1/εr1(2d−|z′|+|z|)

[√
1/εr1(2d− |z′|+ |z|)− ρ

√
1− 1/εr1

]3
2

A ·R +

eik1

√
1−1/εr1(2d+|z′|−|z|)

[√
1/εr1(2d + |z′| − |z|)− ρ

√
1− 1/εr1

]3
2

A ·R




· Io

~l (2.42)

where A and R are symmetric dyads defined in [24]. The first term in (2.42) repre-

sents the direct lateral wave contribution; the second term is the contribution of the

lateral wave generated from the image of the source in the ground plane; and the

third term is the contribution of the direct lateral wave that has been reflected from

the ground plane before reaching the observation point. It is seen that the lateral

waves, and hence the total field, decrease as 1/ρ2—which is the same asymptotic

behavior observed for the first two cases. For further details on the derivation and

verification of (2.42), the reader is referred to [24].

2.3 Simulation Results

In this section, the field components for a vertical dipole and a horizontal dipole

are calculated using the formulations derived in Section 2.2. The variation in radia-

tion characteristics is also demonstrated as a function of the effective permittivities,

thickness of the vegetation or snow layer, locations of the source and observation

points, and frequency of operation. Before the analysis, it is necessary to verify

the validity of the asymptotic expressions presented. Figures 2.2 and 2.3 show the

total fields (scattered plus direct) of a vertical dipole of unity current moment op-

erating at 30 MHz located on the z-axis at z′ = 0.4λ with the observation point
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at (ρ, π/3, 0.3λ). The middle dielectric layer has been chosen to have a thickness

of 0.5λ; the effective permittivity of the ground, εr2, is set to be 8 + 6i, which ap-

proximately corresponds to a soil composed of gray San Antonio clay loam with a

density of 1.4 g/cm3 and 5% moisture content [4]. The dielectric layer is assumed

to be sparse vegetation (εr1 = 1.01 + 0.01i) in Figure 2.2 and dry snow with density

of 0.5 g/cm3 (εr1 = 2.01 + 0.01i) in Figure 2.3. Note the 1/ρ2 dependence of all the

field components in the far field. The exact solutions are obtained through numerical

integration of the expressions tabulated in Appendix A. Figures 2.4 and 2.5 show

the fields for a horizontal dipole calculated using the same set of parameters, except

now the dipole itself is located inside the dielectric layer at z′ = −0.4λ. It can be

seen that there is very good agreement (both in magnitude and phase) between the

exact and asymptotically-evaluated values when ρ is large in all the cases. As it has

been noted in Section 2.2, the validity of the formulations presented here depends on

the assumption that exponentially-decaying components of the field can be discarded

when ρ is large; for example, in Figure 2.5, the validity holds for ρ ≥ 30λ—below

which the branch cut and pole contributions must be included to accurately account

for the total field as well as the interference patterns.

Having validated the accuracy of the asymptotic expressions, it is beneficial to

investigate the region in which the Norton wave (or the second term in (2.9)) is

dominant. It is expected that when the source or observation point (or both) is

far from the dielectric/air interface, the geometrical-optics term would become the

principal field contribution. Depending on the configuration and physical parameters

of the problem, simulations confirm that geometrical-optics provides an accurate

approximation as long as the source or observation point (or both) is greater than

2λ–3λ above the dielectric layer. A comparison of the asymptotic and geometrical-
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optics approximations with the exact solutions is shown in Figure 2.6(a) and (b)

for a vertical dipole as a function of the observation point’s distance above the

dielectric. The dipole’s location is in air for the first figure but is in the dielectric for

the second. Note that the geometric-optics term converges to the exact solution for

large z but becomes a rather poor approximation as the observation point approaches

the interface. An example of the relative magnitude of the Norton wave as compared

to the geometrical-optics approximation is shown in Figure 2.7(a); the Norton wave

is seen to be highly localized to the air/dielectric interface—hence, it is obvious

why this wave contribution has been designated as a type of “surface” wave. From

Figure 2.6, one can also see that the field intensity at the receiver can be increased by

elevating the receiver higher above ground—this is often called the height-gain effect.

In fact, for small elevations, the field intensity increases linearly with elevation, as

shown in Figure 2.7(b) for a dipole embedded in the dielectric layer—a similar plot

can be constructed for a dipole located in air.

It is also instructive to analyze how the field changes as a function of the thickness

of the dielectric layer. As the thickness changes, interference patterns caused by the

superposition of multiple reflections are observed; this is shown in Figure 2.8(a) for a

vertical dipole located above a dielectric layer with εr1 = 1.01+0.01i and 2.01+0.01i.

The observation point is fixed in the far field at (100λ, π/3, 0.3λ) in both cases. It

can be deduced that the magnitude of the field oscillates about the limit value for

which d →∞ (one-layer medium) and the rate of oscillation is dependent upon the

magnitude of the permittivity whereas the rate of the approach towards the limit

value is determined by the loss tangent.

To fully consider the effects of the dielectric layer and the ground, the total field’s

dependence on the effective permittivities of the two media must also be examined.
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For a vegetation layer, the effective dielectric constant is slightly greater than that

of free space; on the other hand, for a snow layer, while the imaginary part of the

permittivity is still small, the real part can be as large as 2.0–3.0, depending on

the snow density and the moisture content. The field variations as a function of

εr1 for fixed dipole and observation point locations are shown in Figure 2.9. Note

that the field strength can change considerably as a function of the real part of the

permittivity; and, for the set of parameters used in this example, there can be a

15 to 20 dB difference between the field value of a vegetation layer and that of a

snow layer. The complex semi-oscillatory behavior evident in Figure 2.9 can also

be anticipated if the permittivity of the ground, εr2, is varied while holding that of

the dielectric layer constant. A primary determinant of the permittivity of soil is

the moisture content. In Figure 2.8(b), the effect of the moisture content on the

total field is illustrated for a ground composed of gray San Antonio clay loam with a

dry density of 1.4 g/cm3; the value of the corresponding dielectric constant for each

moisture level is obtained from the measurements done by Hipp [4]. It is obvious

that the field strength can change quite noticeably as a function of the permittivity

of the ground; in addition, it is interesting to note that the field strength, as the soil

moisture content is elevated, decreases for a vegetation layer but increases for a snow

layer.

To illustrate the frequency response of the present problem, a frequency dependent

model must be used for the permittivities of the dielectric layer and ground. For the

simulations that follow, the soil of the ground is again selected to be gray San Antonio

clay loam with a density of 1.4 g/cm3 (5% moisture content). The dielectric constant

as a function of frequency of such a composition can be found in figures given by [4].

For a vegetation layer, the effective dielectric constant is calculated by using the
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Polder-van Santen mixing formula, in which the host material is air and the inclusion

being the vegetation material. The dielectric properties of the vegetation material

are dependent upon the gravimetric moisture content, frequency, and temperature;

an empirical formula in terms of these parameters has been derived in [2]. For a

snow layer, if the snow is dry, then the real part of the effective dielectric constant

can be considered to be independent of frequency and to be a function of the snow

density only; the imaginary part is relatively small and on the order of 10−2 to 10−3.

The results of the simulations are shown in Figure 2.10(a) and (b); the former is

for a vegetation layer and the latter is for a dry snow layer; a ground with the soil

parameters given above is used in both cases. The source is a vertical dipole located

in air; two observation points are used: in air and in the vegetation or snow—hence,

there are two graphs in each figure. In the frequency range of 30 MHz to 200 MHz,

the relative dielectric constant of soil changes from 8.10 + 6.00i to 6.10 + 1.79i,

and that of the vegetation layer changes from 1.09 + 0.001i to 1.10 + 0.009i for

5% inclusion by volume and for a vegetation material at 27◦C with 50% gravimetric

moisture content. For the dry snow, with a density of 0.5 g/cm3, the relative dielectric

constant is 2.01 + 0.01i and is almost independent of frequency. Note that only the

z-component of the electrical field is shown in the graphs, and the quantity has

been normalized to frequency in order to set the power output of the transmitter

to constant. As it is evident in these figures, the amplitudes of variation can be

quite large; thus, in the design of low-power communication channels, the selected

frequency of operation is a critical factor in determining the efficiency of the system.
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2.4 Conclusion

In this study, the concept and relevance of Norton waves and lateral waves have

been analyzed for the canonical problem of propagation in the presence of a two-layer

medium representing a vegetation or snow-covered terrain. Through the method of

steepest descents, asymptotic formulations for the total field of an arbitrarily-oriented

electric dipole have been derived from exact expressions for dipole and observation

point situated near the air/dielectric interface. By discarding the pole and branch

cut contributions for configurations in which the dipole and observation point both

are not embedded within the dielectric layer, the formulations are much simplified

and reduce to an ordinary saddle point contribution. It should be emphasized that

such a simplification can only be made when there is loss in the media of propagation;

in the absence of loss, in order to be considered as an accurate and practical solution,

the saddle point contribution must be supplemented with the proper branch cut and

pole contributions—regardless of the magnitude of the radial distance between the

transmitter and receiver. When the aforementioned simplification is exploited, it has

been shown that the saddle point contribution becomes the dominant field component

and it is composed of a geometrical-optics term and a Norton wave correction term

that is highly localized to the air/dielectric interface. In addition, simulation results

indicated that the field intensity and frequency response at the receiver have a strong

dependence on the permittivities of the vegetation or snow layer and the ground.

Although the transmitter has been restricted to an electric dipole throughout this

study, extension to an arbitrary radiating source can be made by noting that the

asymptotic form of the Green’s function for each of the three cases discussed is related
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to the derived expressions for the field components by a simple constant:

G(~r′, ~r) =
1

iωµo




Exx Eyx Ezx

Exy Eyy Ezy

Exz Eyz Ezz




. (2.43)

Therefore, once the current distribution of an arbitrary source is known, an approx-

imation to the far field pattern can be easily computed. Also, upon application of

the reciprocity principle, it is straightforward to verify that

G(~r, ~r′) = G(~r′, ~r)T (2.44)

where the superscript “T” indicates the transpose operation. Simply by using the

relation stated in (2.44), the formulations can be extended for other standard con-

figurations not explicitly treated in Section 2.2—for example, the dipole is located

in air while the observation point is located inside the dielectric layer.
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Figure 2.2: (a) Magnitude and (b) phase of the electric fields of a vertical dipole as a function of
distance in the presence of a vegetation layer with d = 0.5λ. The dipole is located
on z-axis at z′ = 0.4λ and the observation point is at (ρ, π/3, 0.3λ); f = 30 MHz,
εr1 = 1.01 + 0.01i, and εr2 = 8 + 6i.
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Figure 2.3: (a) Magnitude and (b) phase of the electric fields of a vertical dipole as a function
of distance in the presence of a dry snow layer with d = 0.5λ. The dipole is located
on z-axis at z′ = 0.4λ and the observation point is at (ρ, π/3, 0.3λ); f = 30 MHz,
εr1 = 2.01 + 0.01i, and εr2 = 8 + 6i. Note the poor quality of the numerical calculation
for Ez at large distances, but the asymptotic solution is well-behaved.
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Figure 2.4: (a) Magnitude and (b) phase of the electric fields of a horizontal dipole as a function
of distance in the presence of a vegetation layer with d = 0.5λ. The dipole is located
on z-axis at z′ = −0.4λ and the observation point is at (ρ, π/3, 0.3λ); f = 30 MHz,
εr1 = 1.01 + 0.01i, and εr2 = 8 + 6i.
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Figure 2.5: (a) Magnitude and (b) phase of the electric fields of a horizontal dipole as a function
of distance in the presence of a dry snow layer with d = 0.5λ. The dipole is located
on z-axis at z′ = −0.4λ and the observation point is at (ρ, π/3, 0.3λ); f = 30 MHz,
εr1 = 2.01 + 0.01i, and εr2 = 8 + 6i.
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Figure 2.6: Comparison of asymptotic and geometrical-optics approximations with exact values
obtained from numerical integration for a vertical dipole located at (a) z′ = 0.4λ and
(b) z′ = −0.4λ. Observation point is at (200λ, π/3, z); f = 30 MHz, εr1 = 1.01+0.01i,
εr2 = 8 + 6i, and d = 0.5λ.
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Figure 2.7: (a) Ratio of Norton wave to G.O. contribution for a vertical dipole. Source and ob-
servation points located above dielectric layer; f = 30 MHz, ρ = 200λ, εr2 = 8 + 6i,
and d = 0.5λ. (b) Field intensity as a function of receiver height above dielectric/air
interface for a dipole located inside the dielectric at z′ = −0.4λ. Observation point is
at (100λ, π/3, z); f = 30 MHz, εr1 = 1.01 + 0.01i, εr2 = 8 + 6i, and d = 0.5λ.
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Figure 2.8: (a) Magnitude of Ez for a vertical dipole located above a dielectric layer with εr1 =
1.01 + 0.01i and 2.01 + 0.01i. Observation point is at (100λ, π/3, 0.3λ); f = 30 MHz
and εr2 = 8 + 6i. (b) Magnitude of Ez for a vertical dipole in the presence of a ground
with various percentages of soil moisture content. The dipole is located inside the
dielectric layer at z′ = −0.5λ and observation point is at (ρ, π/3, 0.5λ); f = 200 MHz,
εr1 = 1.01 + 0.01i for vegetation layer, εr1 = 2.01 + 0.01i for snow layer, and d = 2.0λ.
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Figure 2.9: Electric field as a function of the effective permittivity of the dielectric layer for a vertical
dipole. Dipole is located above the dielectric layer for (a) and within the dielectric layer
for (b). Observation point is at (100λ, π/3, 0.3λ), f = 30 MHz, εr2 = 8 + 6i, and
d = 0.5λ.
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Figure 2.10: Frequency response for a vertical dipole in (a) a vegetation layer and (b) a snow layer.
Dipole is located above the dielectric layer at z′ = 1 m, observation point is at (1000 m,
π/3, ±1 m), and d = 2 m.



CHAPTER III

Modeling and Simulation of Near-Earth Propagation in
Presence of a Truncated Vegetation Layer

3.1 Introduction

In the previous chapter, the problem of VHF wave propagation in the presence of

a vegetated terrain was treated by replacing the physical medium with an effective

homogeneous two-layer medium and then applying the asymptotic dyadic Green’s

function to compute the radiated field distribution of an electric-dipole with the as-

sumption that the vegetation layer is infinite in extent in the two dimensions parallel

to the ground. In practice, the effects of any discontinuity in the vegetation layer

would have to be included to accurately model the path-loss between the trans-

mitter and receiver. The geometry of a particular canonical problem of interest is

illustrated in Figure 3.1, in which the vegetation layer extends to infinity in both

directions along the x-axis and in the negative direction along the y-axis. An exact

solution to this problem can be found through a full-wave numerical technique such

as FDTD or—its variant—moving-window FDTD; however, for near-earth propa-

gation problems in which the computational domain is large and the wave energy

spreads out to the receiver at grazing-angles, a full-wave analysis is rather difficult

to implement in an efficient and straight-forward manner with a high level of accu-

racy [47–50]. One salient feature of the field behavior near the air/ground interface

47
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is the near cancellation of the direct and reflected waves at distant points from the

transmitter; in order to capture this feature for low transmitter and receiver heights,

an extremely stringent requirement must be placed on the precision of the calcu-

lation for the total field. To the best of the author’s knowledge, the propagation

effects of a truncated vegetation canopy have been analytically examined only by

Tamir through a ray-tracing approach [21]; while Tamir’s solution is simple to con-

struct, its accuracy has not been fully verified. In this work, a semi-exact, analytical

solution to the same problem is formulated by making use of the equivalence princi-

ple [51], [52]; specifically, the field at an observation point located in the far field of a

truncated vegetation canopy is solved by performing a surface-field integration over

the vertical 2D plane containing the truncation facet. Since the solution contains

limits of integration that are infinite, the stationary phase approximation is applied

as needed to achieve computationally-efficient solutions. In Section 3.2, the details

of the formulation are presented; in Section 3.3, a comparison is made between the

results obtained from the approach discussed herein and from the one outlined in

Tamir’s study, and the construction of an indoor experimental simulator for rapid

channel characterization is described.

3.2 Analytical Formulations

As shown in Figure 3.1, the transmitter is assumed to be an infinitesimal electric

dipole with effective current moment vector Io
~l = Io(lxx̂ + lyŷ + lz ẑ) located inside

the vegetation at ~ro(xo, yo, zo). The total field at the receiver, assuming the existence

of an equivalent electric and magnetic current sheet located on the x-z plane, can be
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x̂
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Dielectric Ground: εr2

AirVegetation Layer: εr1

RX

(xo, yo, zo) (x, y, z)

ẑ

ŷ

Figure 3.1: An electric dipole located inside a truncated vegetation layer of thickness H. The effec-
tive permittivities of the vegetation and the ground can be calculated using standard
dielectric mixing or empirical models based on their respected compositions [2–4].

calculated as

~E(~r) =

+∞∫

−H

+∞∫

−∞

{≈
G

J(~r, ~r′) · ŷ ×∇~r′ × ~Eo(~r
′, ~ro)−

≈
G

M(~r, ~r′) · ŷ × ~Eo(~r
′, ~ro)

}
dx′dz′,

(3.1)

where ~r(x, y, z) is the location of the receiver and ~r′(x′, y′, z′) is that of the incremental

sources on the plane of integration; also, in accordance with conventional notation,

≈
G J(~r, ~r′) and

≈
G M(~r, ~r′) are, respectively, the electric and magnetic dyadic Green’s

functions (in asymptotic form). Note that a typical ground is highly lossy, therefore

it has been determined that the contributions from the sources residing below the

ground plane (z′ < −H) can be ignored. The propagation matrix
≈
G J(~r, ~r′)—relevant

for the calculation of the radiated electric field from an electric current source located

above a dielectric half-space—can be written as the sum of a free space part that

accounts for the direct field and a reflected part that accounts for the presence of the

ground:

≈
G

J(~r, ~r′) =
≈
G

J
fs(~r, ~r

′) +
≈
G

J
r (r̄, ~r′). (3.2)

It can be readily verified that reciprocity dictates

≈
G

M(~r, ~r′) =
≈
G

M
fs(~r, ~r

′) +
≈
G

M
r (~r, ~r′) (3.3)

=
[
−∇~r′ ×

≈
G

J
fs(~r

′, ~r)
]T

+
[
−∇~r′ ×

≈
G

J
r (~r′, ~r)

]T

,
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where the superscript “T” denotes the transpose operation. Furthermore, since the

first bracketed term of (3.3) can be interpreted as a stand-alone component relevant

for a homogeneous medium (free space, in this case), symmetric properties generate

the following simplifications:

≈
G

M
fs(~r, ~r

′) =
[≈
G

M
fs(~r

′, ~r)
]T

=
[
−∇~r′ ×

≈
G

J
fs(~r

′, ~r)
]T

(3.4)

= −∇~r ×
≈
G

J
fs(~r, ~r

′).

The expression in (3.1) can now be re-written as the superposition of four terms:

~E(~r) =

+∞∫

−H

+∞∫

−∞

{
≈
G

J
fs(~r, ~r

′) · ŷ ×∇~r′ × ~Eo(~r
′, ~ro)

+
≈
G

J
r (~r, ~r′) · ŷ ×∇~r′ × ~Eo(~r

′, ~ro)

− ≈
G

M
fs(~r, ~r

′) · ŷ × ~Eo(~r
′, ~ro)

−≈
G

M
r (~r, ~r′) · ŷ × ~Eo(~r

′, ~ro)

}
dx′dz′. (3.5)

In (3.5), the exact form of
≈
G J

fs(~r, ~r
′) is known; an asymptotic form for

≈
G J

r (~r, ~r′)

has been derived in Chapter II to the second order to include the effects of the

Norton wave component [41]. For a tenuous vegetation layer (εr1 ≈ 1, which is

satisfied for most foliage), the electric field ~Eo(~r
′, ~ro) over the integration plane (x-z

plane) is approximated as the same as that of an infinite canopy configuration and

can be calculated with the expressions given in Chapter II for an arbitrarily-oriented

electric dipole: for z′ > 0, ~Eo(~r
′, ~ro) is the effective refracted field from the radiating

dipole in the presence of the slab; for −H < z′ < 0, the primary contributions to

~Eo(~r
′, ~ro) come from lateral waves [24]; in view of the distinction between these two

types of wave components, the integration domain in (3.1) is separated as follows:

~E(~r) =

0∫

−H

+∞∫

−∞

{ · } dx′dz′ +

+∞∫

0

+∞∫

−∞

{ · } dx′dz′. (3.6)
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The first term in (3.6) is evaluated by numerically integrating over the variable z′

while performing a 1D stationary phase approximation over x′; the second term

is evaluated by a full 2D stationary phase approximation. The exponential phase

characteristic of each of the terms in (3.1) and (3.2) has been shown to be the

following in Chapter II:

≈
G

J
fs(~r, ~r

′) ∝ eiko|~r−~r′|; (3.7)

≈
G

J
r (~r, ~r′) ∝ eiko|~r−~r′+2(H+z′)ẑ|; (3.8)

~Eo(~r
′, ~ro) ∝





eiko|~r′−~ro+zoẑ|, z′ > 0;

e
iko|~ρ′−~ρo|+ik1(|z′|+|zo|)

√
1− 1

εr1 , −H < z′ < 0, 1st order lateral wave;

e
iko|~ρ′−~ρo|+ik1(2H−|z′|+|zo|)

√
1− 1

εr1 ,−H < z′ < 0, 2nd order lateral wave;

e
iko|~ρ′−~ρo|+ik1(2H+|z′|−|zo|)

√
1− 1

εr1 ,−H < z′ < 0, 3rd order lateral wave;

(3.9)

where

~ρ = xx̂ + yŷ, (3.10)

and the definitions for the three orders of lateral waves are provided in Chapter II

and [24]. Each term in (3.5) can be evaluated independently of the others, and each

can be cast in a generic form:

~I = ~I1 + ~I2 =

0∫

−H

+∞∫

−∞

~F (x′, z′)eif(x′,z′)dx′dz′ +

+∞∫

0

+∞∫

−∞

~F (x′, z′)eif(x′,z′)dx′dz′. (3.11)

It is seen that integrals of the form in (3.11) is amendable to stationary phase evalua-

tion. Following the procedure for stationary phase approximation as given by Felsen

and Marcuvitz [19], the first integral in (3.11) becomes

~I1 ≈
0∫

−H

~F (x′s, z
′)eif(x′s,z′)

√√√√√
2π∣∣∣∣ ∂2f(x′,z′)

∂x′2

∣∣∣
x′=x′s

∣∣∣∣
e±i π

4 dz′, ∂2f(x′,z′)
∂x′2

∣∣∣
x′=x′s

≷ 0, (3.12)
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where the stationary point x′s is defined by

∂f(x′, z′)
∂x′

∣∣∣∣
x′=x′s

= 0. (3.13)

(In (3.12), and henceforth, the ambiguity in sign is resolved by associating + with

> and − with <.) The closed-form solution of the second integral in (3.11) can be

found by expanding the phase function around the stationary point as a Taylor series

and then evaluating the resulting canonical integral:

~I2 ≈ ~F (x′s, z
′
s)e

if(x′s,z′s)

+∞∫

0

+∞∫

−∞

e
i
2 [(x′−x′x) ∂

∂x′+(z′−z′s)
∂

∂z′ ]
2
f(x′,z′)dx′dz′ (3.14)

≈ ~F (x′s, z
′
s)e

if(x′s,z′s)

+∞∫

−z′s

+∞∫

−∞

e
i
2 [ax′′2+2bx′′z′′+cz′′2]dx′′dz′′,

where z′s > 0 is assumed at the moment and

a =
∂2f(x′, z′)

∂x′2

∣∣∣∣x′=x′s
z′=z′s

b =
∂2f(x′, z′)

∂x′dz′

∣∣∣∣x′=x′s
z′=z′s

(3.15)

c =
∂2f(x′, z′)

∂z′2

∣∣∣∣x′=x′s
z′=z′s

with

x′′ = x′ − x′s; (3.16)

z′′ = z′ − z′s.

The stationary point on the x′-z′ plane is defined by

∂f(x′, z′)
∂x′

∣∣∣∣x′=x′s
z′=z′s

= 0; (3.17)

∂f(x′, z′)
∂z′

∣∣∣∣x′=x′s
z′=z′s

= 0.
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The double integral in (3.14) can be shown to be the following:

+∞∫

−z′s

+∞∫

−∞

e
i
2 [ax′′2+2bx′′z′′+cz′′2]dx′′dz′′ = αβ; (3.18)

α =

√
πe±i π

4√
|ac− b2| , a ≷ 0; (3.19)

β =
√

πe±i π
4 + 2

|γ|
1
2 z′s∫

0

e±it2dt, γ ≷ 0, γ =
1

2a
(ac− b2). (3.20)

Therefore, the expression in (3.14) can be re-written as

~I2 ≈ ~F (x′s, z
′
s)e

if(x′s,z′s)αβ, z′s > 0. (3.21)

If z′s < 0, the second integral in (3.11) can be evaluated as

+∞∫

0

+∞∫

−∞

~F (x′, z′)eif(x′,z′)dx′dz′ =

+∞∫

−∞

+∞∫

−∞

~F (x′, z′)eif(x′,z′)dx′dz′ (3.22)

−
0∫

−∞

+∞∫

−∞

~F (x′, z′)eif(x′,z′)dx′dz′.

The first integral on the right side of (3.22) can be evaluated using (3.21) with the

replacement of z′s by infinity in the expression for β and then noting that [53]

+∞∫

0

e±it2dt =

√
π

2
e±i π

4 . (3.23)

It can be shown that the second integral on the right side of (3.22) can be evaluated

using (3.21) as well, but with the replacement of z′s by |z′s| in the expression for β.

To test the general validity of the proposed 2D stationary phase approximation

as presented above for various receiver heights, the formulation is applied to the

propagation problem over a simple half-space medium (Figure 3.1, in the absence of
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the vegetation slab) for which an exact solution is known. After repositioning the

x-y plane to coincide with the ground plane, the expression in (3.1) can be modified

to

~E(~r) =

+∞∫

0

+∞∫

−∞

{
≈
G

J(~r, ~r′) · ŷ ×∇~r′ ×
[
~Eo,fs(~r

′, ~ro) + ~Eo,r(~r
′, ~ro)

]
dx

− ≈
G

M(~r, ~r′) · ŷ ×
[
~Eo,fs(~r

′, ~ro) + ~Eo,r(~r
′, ~ro)

]}
dx′dz′, (3.24)

where the electric field on the plane of integration has been explicitly separated into

a free space (direct) field and a reflected field to emphasize the different phase char-

acteristics of the two components; asymptotic forms of the reflected field including

the Norton wave have been derived and are given in Chapter II. Once again, the

contributions from the sources located below the ground plane (z′ < 0) have been ig-

nored; also, note that the expression in (3.24) is exact, with the only approximations

originating from the asymptotic nature of the values for the reflected field and the

dyadic propagating matrices
≈
G J

r (~r, ~r′) and
≈
G M

r (~r, ~r′). The evaluation of (3.24) can

be carried out by first writing each term in the integrand in the standard form shown

in the second part of (3.11) and then systematically applying (3.14)–(3.23). For an

electric dipole located above a perfectly conducting plane (εr2 = 1 + i∞), very good

agreement between the exact solution and the 2D stationary phase approximation is

seen in Figures 3.2 and 3.3; however, for a dielectric ground, Figure 3.4 shows that

the approximation does not adhere to the exact solution for observation points close

to the air/ground interface. This inaccuracy can be attributed to the inability of

the stationary phase approximation to fully capture the Norton wave components

radiated by the equivalent electric and magnetic current sources residing on the part

of the plane of integration very close to the ground; for this region, all the field com-

ponents need be computed to a high order precision due to the substantial degree of
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cancellation between the direct and reflected fields detected at the low observation

point. To improve the level of accuracy of the approximate solution for low receiver

heights, the second integral in (3.11) is evaluated using a 1D stationary approxima-

tion in the x-direction while numerical integration is carried out in the z-direction;

this modified approach does indeed produce better results—as shown in Figures 3.5

and 3.6.

3.3 Simulation Results and Discussions

3.3.1 Numerical Simulations

After the effectiveness and limitations of the stationary phase approximation have

been assessed, the field integration technique is applied to the truncated vegetation

canopy configuration of Figure 3.1. The expression in (3.6) is evaluated by the

following two methods: in the first method (SPA2D), a full 2D stationary phase ap-

proximation is applied to the second double integral; in the second method (SPA1D),

a 1D stationary phase approximation is applied in the x-direction while numerical

integration is used in the z-direction for the second double integral; in both methods,

the first integral in (3.6) is calculated using a 1D stationary phase approximation

with numerical integration. The results of the simulation for horizontal and vertical

polarizations are displayed in Figures 3.7 and 3.8, respectively. Although the “height

gain” effect is properly reproduced, the figures indicate that the first method does not

generate the desired “leveling” effect—the flattening out of the field magnitude func-

tion (on a log-dB plot) as the height decreases toward the ground—that is evident,

as it will be shown, in the results obtained from ray-tracing and from measurements

for both polarizations. Since the receiver is located above a dielectric ground, the

field amplitude should approach a limiting value as the height decreases to zero;

however, this is not observed in the results from SPA2D. The levels of approxima-
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tion in SPA2D can be reduced by utilizing a 1D stationary phase approximation—an

application of which leads to the flattening of the curves readily seen in the results

from SPA1D; as verified in the previous section, this method can be used to avoid

or correct the erroneous results manifesting at low receiver heights.

As mentioned in Section 3.1, a simplistic solution also exists for the current prob-

lem and has been formulated by Tamir in the form of a ray-tracing scheme [21]. In

Tamir’s approach, for an observation point located in the far field and to the right of

the truncation edge, there are two regions of interest (Figure 3.9)—depending on the

height of the receiving point. If the receiver is high above the bare ground (region

A), the field is calculated as though the canopy is infinite while assuming that the

truncation has negligible effect on the wave refracted toward the receiver. If the

receiver is close to the ground (region B), the field is calculated according to the

following procedure: the problem is first inverted through reciprocity arguments by

interchanging the source and observation point locations (i.e., the dipole now is out-

side of the canopy and the observation point is inside); next, the field at the canopy

edge—which includes the geometrical-optics ray and Norton wave components—is

calculated; then, assuming all the impinging energy at the edge is coupled into lateral

wave modes, the field arriving at the receiver is found by matching the field at the

edge to that of lateral waves and subsequently extending those waves from the edge

to the receiver. Detailed explanations of this ray-tracing approach and its pertinent

formulations can be found in [21].

The variations of the electric field amplitude and phase as a function of receiver

height calculated using Tamir’s approach are superimposed upon those obtained

through stationary phase considerations in Figures 3.7 and 3.8. Note that as dis-

cussed by Tamir, the transition height between region A and region B is estimated by
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plotting the formulation valid in each respected region and then locating the inter-

section point of the two curves; this explains the apparent “discontinuity” in Tamir’s

solution demonstrated in Figures 3.7(b), 3.8(a), and 3.8(b) near the receiver height

of 10λ. From Figures 3.7(a) and 3.8(a), it is seen that when the observation point

is low, the received field for both polarizations in the current approach is generally

smaller than that in Tamir’s solution; this disagreement is anticipated since in the

ray-tracing approach, all the energy arriving at the canopy edge is assumed to couple

and assimilate entirely into a wave that propagates to the receiver, but in the field in-

tegration approach, such an assumption is not enforced. By comparing Figure 3.7(a)

to Figure 3.8(a), it is evident that a horizontally-polarized wave can couple more

effectively out of (or into) the vegetation medium than the vertically-polarized wave;

this is also not surprising since the transmission coefficient for the vegetation/air

transition for a horizontally-polarized wave is expected to be greater than that of

the vertically-polarized wave for the slab configured as shown. Note that Tamir’s

and the stationary phase approaches may predict significantly different phase behav-

iors for the received field at low observation points, as it is shown in Figures 3.7(b)

and 3.8(b). In view of the fact that the solution here (specifically, SPA1D) is more

akin to a full-wave solution, it is expected that the phase characteristics predicted

therefrom are more accurate. When the observation point is far above the surface,

both approaches lead to identical results in amplitude and phase—confirming that

a refracted ray determines the principal field contribution and any diffraction effect

from the vegetation slab discontinuity is negligible.

The lack of a formal closed-form solution to the problem at hand has forced

approximations to be made—as it has been done both in this work and in Tamir’s

study. It should be mentioned that the procedure of the ray-tracing approach in
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effect requires two successive assumptions to be made: for example, for a wave

propagating into the canopy from the air region—first, the field at the truncation

edge is calculated as though the canopy does not exist; second, the translation of the

energy arriving at the edge and the subsequent extension to the generated lateral

wave is carried out as though the canopy is infinite. In the solution of this work,

the only assumption required to hold is that the field distributed on the plane of

integration is nearly unperturbed by the canopy truncation.

3.3.2 Experimental Measurements

For a fixed set of intrinsic properties (ε, µ) and constant dipole current moment

Iol, it can be inferred from the Green’s function of this problem that the field quan-

tities (E, H) scale exactly as f 2 and the received power as f 4—assuming all the

physical dimensions (thickness of vegetation layer H, radial distance ρ, source and

observation point heights z′ and z) are scaled with respect to the wavelength as

well. Consequently, the relative radiation pattern of a transmitter is independent

of the frequency of operation, and an alternate simulation method for the proposed

problem (excluding a computationally-intensive full-wave analysis) can be developed

by measuring the response of a scaled-replica of the propagation medium. The ad-

vantages of channel characterization using scaled measurement systems have been

discussed in detail by Aryanfar and Sarabandi [54, 55]. A simple mock-up for the

current canonical problem has been build and is displayed in Figure 3.10 along with

the instrumentation setup. A typical dielectric ground is represented by a particle

board with a dielectric constant (εr1) of ∼ 2.0+0.1i, as determined by matching the

measured and simulated field responses of propagation above an uncovered board;

the vegetation canopy is modeled by a processed, low-density polyurethane foam

layer with an effective dielectric constant (εr2) of ∼ 1.10 + 0.007i, as determined by
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measuring the resonance frequency and Q-factor of a circular cavity resonator filled

with the foam. Note that in order to increase its dielectric loss to the level as stated

above and comparable to that found in realistic foliage, the polyurethane foam was

processed by immersing it in a 50/50 mixture of a common household paint and

water and then was air-dried. In modeling the propagation properties of the three

sides of the vegetation layer that extend to infinity, the foam block is designed to be

tapered at those sides in an effort to minimize reflections arising from the presence

of the truncations. To further reduce multi-path effects, the time-domain gating fea-

ture of the vector network analyzer (HP8720B) was used to isolate the primary wave

component arriving at the receiver. The transmitting and receiving antennas are

wire monopoles constructed with finite ground planes and are connected to the S11

and S21 ports of the network analyzer, respectively. The frequency response of the

system is characterized at X-band (centered at 10 GHz), which allows the features

in the propagation medium to be scaled by a factor of about ∼ 33 to 333 for a VHF

(30 MHz–300 MHz) wireless channel. Specifically, the network analyzer was set to

sweep from 8 GHz to 12 GHz, sampling in intervals of 5 MHz; the signal response

at the S21 port is interpreted as the power carried by the propagating wave.

In Figure 3.11 measurement results for both polarizations are compared with the

simulation results computed using stationary phase considerations; the signal-to-

noise-ratio of each measurement data point is ≥ 6 dB. Also, note there is a minimum

height (0.25λ for V-pol. and 0.5λ for H-pol. in this experiment) at which useful

measurements can be made since the receiving antenna cannot be placed arbitrarily

close to the dielectric ground plane. Good agreement between the measured data and

the calculated results is seen in Figure 3.11; note that the calculated results assume

a point source transmitter and a perfectly homogeneous vegetation layer; the main
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cause for the differences between the two sets of results can be attributed to possible

inhomogeneities occurring within the simulated foliage as a result of the uneven mix-

ing of foam and paint. Unfortunately, as indicated in Figure 3.11, the measurements

cannot unequivocally validate the existence of the discrepancy between the numeri-

cal results in this study and those in Tamir’s for low receiver heights. Nevertheless,

the practicality of the experimental simulator as described above is obvious since the

set up can be quickly built and assembled into various configurations much more

complicated than the canonical case treated here; for example, multiple blocks of

foam can be arranged to represent a vegetation layer containing multiple disconti-

nuities or truncations; it would be difficult to implement either a ray-tracing or field

integration technique to such a complicated scenario to model all the propagation

mechanisms accurately, but simulation data can be acquired rapidly (and cheaply)

from an experimental set up.

3.4 Conclusion

A coherent model for simulating radiation emanating from a transmitter em-

bedded within a truncated vegetation layer has been discussed. The field at an

observation point located in the far field outside of the vegetation is calculated by

integrating the surface fields over an imaginary 2D plane containing the truncated

face of the vegetation layer; the resulting double integral is evaluated using the

method of stationary phase. It is seen that for large receiver heights, a very effi-

cient full 2D stationary phase approximation can lead to accurate results; however,

for an observation point located in the vicinity of the ground, in order to correctly

capture the Norton waves radiating from the fictitious equivalent sources situated

on the plane of integration close to the ground, the modified approach in the form
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of a 1D stationary phase approximation augmented with numerical integration is

more appropriate. The approach as outlined here has been compared with a simple

ray-tracing approach put forth previously by Tamir. Simulation results show that

the current approach generally predicts fields that are slightly smaller in magnitude

than those calculated by means of ray-tracing for low receiver heights—indicating

diffraction at the truncation edge is important for those heights and, consequently,

dis-supporting the postulation that all the energy of a propagating wave couples com-

pletely across the canopy discontinuity. Also presented is an X-band experimental

simulator in which the wireless channel is characterized by measuring the response

of a scaled-replica of the propagation medium.
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Figure 3.2: Electric field patterns as a function of receiver height for (a) horizontal and (b) vertical
dipole located at (0, −200λ, 0.5λ) above a perfectly conducting ground plane; observa-
tion point is at (866.0λ, 500.0λ, z), and f = 30 MHz. Excellent agreement is evident
between the exact solution calculated using image theory and the 2D stationary phase
approximation (SPA2D) for all field components.
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Figure 3.3: Electric field phase patterns as a function of receiver height for (a) horizontal and (b)
vertical dipole for the same set of simulation parameters as those in Figure 3.2.
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Figure 3.4: Electric field patterns as a function of receiver height for (a) horizontal and (b) vertical
dipole located at (0, −200λ, 0.5λ) above a dielectric ground plane with εr2 = 4 + 2i;
observation point is at (29.85λ, 298.5λ, z), and f = 30 MHz. For the set of parameters
used in this simulation, SPA2D begins to lose accuracy if receiver height is below
approximately 10λ for V-pol. and 1λ for H-pol.
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Figure 3.5: Electric field patterns as a function of receiver height for (a) horizontal and (b) vertical
dipole located above a dielectric ground plane for the same set of parameters as that of
Figure 3.4. A 1D stationary phase approximation (SPA1D) with numerical integration
is used to improve accuracy for low receiver heights.
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Figure 3.6: Electric field phase patterns as a function of receiver height for (a) horizontal and (b)
vertical dipole located above a dielectric ground plane for the same set of parameters
as that of Figure 3.5.
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Figure 3.7: A comparison between Tamir’s solution and the surface-field integration solution: shown
is the variation of the (a) amplitude and (b) phase of the received field (Exx) as function
of receiver height for horizontal polarization. The horizontal dipole is located at (0,
−200λ, −0.3λ) inside a truncated vegetation layer of thickness H = 0.5λ with εr1 =
1.01 + 0.03i covering a dielectric ground plane with εr2 = 8 + 6i; observation point is
to the right of the truncation at (29.85λ, 298.5λ, z), and f = 30 MHz.
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Figure 3.8: A comparison between Tamir’s solution and the surface-field integration solution: shown
is the variation of the (a) amplitude and (b) phase of the received field (Ezz) as function
of receiver height for vertical polarization. The locations of the dipole and observation
point and other parameters are the same as those in Figure 3.7.
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Figure 3.9: Illustration of Tamir’s ray-tracing approach for calculating the field radiated by a dipole
embedded in a vegetation layer. The positions of the transmitter and receiver have been
switched by applying the reciprocity theorem.
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Figure 3.10: X-band scaled propagation measurement model for simulating radiation from a source
located inside a truncated vegetation slab.
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(S21 at 10 GHz) for both polarizations; the measured data points are normalized
with respect to the calculated values for a height of 20λ, where the predictions from
ray-tracing and field integration are expected to match. The transmitting monopole
is embedded within the foam block at a height of 0.3λ; the distance between the
transmitter and truncation plane is 95λ and the distance between the truncation plane
and receiver is 38.5λ. The dimensions of the foam block (as shown in Figure 3.10)
representing the vegetation slab are ∼ 100λ× 43.6λ× 3.2λ.



CHAPTER IV

Simulation of Near-Ground Long-Distance Radiowave
Propagation over Terrain Using Nyström Method with
Phase Extraction Technique and FMM-Acceleration

4.1 Introduction

As discussed in Chapter I, in supporting signal coverage prediction for specialized

systems such as near-ground wireless communication and sensor networks in which

the transmitter and receiver are in extreme proximity to the ground, available studies

have been limited to the reliance on site-specific, empirical-based models; however,

the practicality of these models is restricted as they cannot be applied to general

radio configurations and propagation environments. Specifically, for the problem of

propagation over an irregular terrain, the interaction between the radiowave and

the terrain is often a complicated function of surface profile statistics and ground

composition and, therefore, cannot be easily deduced from measurement databases;

furthermore, the unique properties of near-earth propagation limit the usefulness

of conventional analytical techniques such as ray-tracing and physical optics. As

such, when improved solution accuracy is required—especially for low-power systems

and networks, full-wave simulation routines—despite their computational inefficiency

and because of their generality—are often needed to assess near-earth propagation

parameters. A variety of numerical algorithms have been proposed by many workers

72
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over the years toward the treatment of wave propagation over a generalized terrain.

Commonly implemented full-wave simulators include the parabolic equation method,

finite difference method, and boundary integral equation solver—the last of these has

been the most chronicled in literature and is upon which the current chapter is based.

Some of the integral equation-based propagation fast solvers include the fast far

field approximation (FAFFA) [56], tabulated interactions method (TIM) [57], [58],

adaptive integral method (AIM) [59], and fast multipole method (FMM) [60], [61].

For terrain simulations with large number of unknowns, these method of moments

(MoM)-based routines derive their efficiency in essence by speeding up the matrix-

vector products in the solution process through the substitution of far field point-to-

point interactions with group-to-group interactions. For example, in a conventional

MoM iterative solver with no acceleration, the memory and computational cost scale

as O(N2)—where N is the total number of solution unknowns, as compared to

O(N1.5) in a single-level FMM and O(N log N) in a multi-level FMM. Thus, fast

algorithms can—to some extent—circumvent the computational barriers (excessive

storage and computer operations) inhibiting the efficiency of the solver and in turn

make long-distance propagation simulations more manageable for ordinary computer

platforms. Existing schemes as implemented, unfortunately, are low-order in terms

of solution convergence (e.g., a twofold improvement in solution accuracy requires a

twofold increase in density of solution unknowns), but the need for high-order im-

plementation is critical for propagation problems involving large-scale terrains due

to the substantial number of solution unknowns and the necessity to capture path-

loss variations precisely in shadow regions. The premiere advantage of high-order

schemes is that they can allow the attainment of the solution, for a given level of

desired accuracy, with fewer unknowns as compared to low-order schemes. For non-
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singular kernels, it is well known that the classical Nyström method [62], a quadrature

integration-based scheme, provides a simple and error-controllable method to achieve

high-order approximation to the solutions of boundary integral equations; the asymp-

totic error expansion of this solver for linear integral equations can be found in [63].

For singular kernels, this method has been extended using a local-correction tech-

nique by Canino, et al. [31] for applications involving the electromagnetic Helmholtz

equation; as demonstrated in [31], this modified Nyström method (locally-corrected

Nyström—LCN) has the capability of realizing controllable exponential solution er-

ror convergence in the form of O(
hNq

)
—where h is the surface discretization scale

and Nq the Nyström order. Given its inherent fast, controllable convergence be-

havior and other desirable properties [31], the Nyström method has been applied to

irregular terrain propagation simulations in the author’s previous study [64].

To further reduce the number of unknowns in the solution, the physical phase

propagation information can be deduced and included in the structure of the solver

in advance. In [65], an asymptotic phasefront extraction (APE) approach is applied

to an iterative physical optics method for modeling the scattering of perfectly con-

ducting objects; an introduction of the APE into the combined field integral equation

via a MoM approach is made in [66] to simulate perfectly conducting cylinders of

arbitrary cross-sections. In these studies, as well as in others including [67–70], the

general technique is based on properly choosing a basis function for the solution with

the rapidly-varying phase progression component included; hence, in effect, only a

slowly-varying residual function is being explicitly solved.

In this work, a 2D surface integral equation-based Nyström solver in which a

phase extraction technique is utilized to reduce the number of surface unknowns is

featured. As forward scattering is the dominant mechanism at the near-ground re-
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gion, the associated rapidly-varying phase components of the integral equation kernel

and solution unknowns are deduced and isolated in advance and subsequently built

into the solver. The structure of this solver, as compared to the regular LCN method,

is presented in Section 4.2; the inclusion of this solver into the FMM framework is

also discussed. Applications of the solver to near-ground propagation simulations

over irregular terrain profile are carried out in Section 4.3, within which convergence

properties are examined for different integral equation formulations, viz.: the mag-

netic field integral equation, the electric field integral equation, and the PMCHWT

formulation; in addition, the effects of terrain properties such as ground permittivity

and roughness on solver convergence are analyzed.

4.2 Formulations

With excitation provided by a radiating source, the induced electric and magnetic

currents on the terrain surface (Figure 4.1) can be found using a surface integration

method. For example, the Poggio, Miller, Chang, Harrington, Wu, and Tsai (PM-

CHWT) [71–73] integral formulation on the surface s(x) is of the form

n̂× ~Einc = −n̂×
[
(η1L1 + η2L2) ~J (t)− (T1 + T2) ~M (t)

]
;

n̂× ~Hinc = −n̂×
[
(T1 + T2) ~J (t) +

(
η−1

1 L1 + η−1
2 L2

)
~M (t)

]
; (4.1)

where ηv=1,2 is the medium impedance and Lv and Tv are the linear operators

Lv~u = i
(
kv + k−1

v ∇∇·) (gv ∗ ~u) ;

Tv~u = ∇× (gv ∗ ~u) ; (4.2)

with ∗ as the convolution notation, kv the medium wavenumber, and gv the scalar

Green’s function

gv =
i

4
H

(1)
0 (kvρ) , (4.3)
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Figure 4.1: Terrain surface and parameter definitions.

in which ρ denotes the radial distance between the source and observation points.

4.2.1 Regular LCN

Discretizing the surface into Ns segments and placing Nq testing points within

each segment lead to a matrix system for solving the currents ~J (t) and ~M (t), where

t is the surface parametric variable. In the framework of the Nyström method based

on Gaussian-Legendre quadrature, the operation of Lv or Tv on the currents can be

cast in the generic matrix form of

∫

s(x)

K (ti, t
′) ~u (t′) dt′ |i=1,2,..,N = KW~u = (Klc + Knlc) W~u (4.4)

in which ~u on the right side is now a vector of length N = NsNq sampling the

total unknown current (either ~J (t) or ~M (t)) at the global quadrature points—or

testing locations—ti; W is a diagonal matrix of quadrature weights corresponding

to the current points; Knlc (non-locally corrected)—an interaction matrix relating

the non-local current points to the total observed fields at the testing points—is a

direct evaluation of the kernel K(t, t′), i.e.,

Kij
nlc

∣∣
tj /∈ local seg. of ti = K (ti, tj)|i,j=1,2,...,N , (4.5)

and the entries of Klc (locally-corrected, or the block diagonal portion of K) for

each segment local to ti are filled by a local-correction scheme described as follows:

Klc

∣∣
tj∈ local seg. of ti = w−1

(
pT

)−1 ⇀

ψ; (4.6)
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where, with px(·) denoting a Legendre polynomial of order x spanning the local

segment,

ψm=0,1,...,Nq−1 =

∫

local seg. of ti

K (ti, t
′) pm (t′) dt′; (4.7)

pαβ

∣∣
α,β=0,1,...,Nq−1 = pβ (tα) |tα∈ local seg. of ti ; (4.8)

and w is the sub-block matrix of W corresponding to the local segment being in-

tegrated. In this work, the local-correction region is taken as the self-segment (con-

taining ti) and its two adjacent segments.

An application of the Nyström method as outlined above is tantamount to ap-

proximating the unknown current function on each surface segment with a linear

combination of Legendre polynomials in obtaining a fast converging solution through

the use of quadrature integration. Expression (4.4) can also be rewritten as

KW~u = KWP~a, (4.9)

where ~a is simply the multiplication coefficients of the polynomials and P is a block

diagonal matrix in which the elements of the kth (k = 1, 2, ..., Ns) diagonal block pk

are given by

pαβ

∣∣
α,β=0,1,...,Nq−1 = pβ (tα) |tα∈ seg. k . (4.10)

4.2.2 Phase-Extracted LCN

In traditional Galerkin MoM methods, 10 to 20 unknowns per linear wavelength

is needed to achieve an accurate solution. An application of the regular Nyström

method as outlined can lead to a reduction in the number of unknowns. Assuming

propagation is mostly in the paraxial direction, to reach a solution with even fewer

unknowns, the fast-varying components of both the current and kernel functions are

extracted and built into the solver in advance. The surface is discretized into Ns
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segments and Nq quadrature points are populated on each segment as in the regular

Nyström method; the current on each segment is assumed to be of the form

Nq−1∑
n=0

anpn (t) e±ik1t. (4.11)

By considering the phase dependencies of the current and kernel as indicated in

Figure 4.1, the matrix filling routine in the phase extraction method for the non-

local region is carried out as follows:

for ti > t′,

t′ ∈ [ta, tb] ⇒
∫

[ta,tb]

K>(ti, t
′)pn(t′)e−ik1t′dt′ =

∫

[ta,tb]

[
K>(ti, t

′)
e−ikvt′

]
pn(t′)e−i(kv+k1)t′dt′

=

M><
q −1∑
m=0

w><
m

K>(ti, tm)

e−ikvtm
; (4.12)

t′ ∈ [tc, td] ⇒
∫

[tc,td]

K>(ti, t
′)pn(t′)e+ik1t′dt′ =

∫

[tc,td]

[
K>(ti, t

′)
e−ikvt′

]
pn(t′)e−i(kv−k1)t′dt′

=

M>>
q −1∑
m=0

w>>
m

K>(ti, tm)

e−ikvtm
; (4.13)

for ti < t′,

t′ ∈ [ta, tb] ⇒
∫

[ta,tb]

K<(ti, t
′)pn(t′)e−ik1t′dt′ =

∫

[ta,tb]

[
K<(ti, t

′)
e+ikvt′

]
pn(t′)e+i(kv−k1)t′dt′

=

M<<
q −1∑
m=0

w<<
m

K<(ti, tm)

e+ikvtm
; (4.14)

t′ ∈ [tc, td] ⇒
∫

[tc,td]

K<(ti, t
′)pn(t′)e+ik1t′dt′ =

∫

[tc,td]

[
K<(ti, t

′)
e+ikvt′

]
pn(t′)e+i(kv+k1)t′dt′

=

M<>
q −1∑
m=0

w<>
m

K<(ti, tm)

e+ikvtm
. (4.15)

The superscript notations > and < are used to differentiate the two cases ti > t′ and

ti < t′; similarly, the superscript double notations ><, >>, <<, and <> are used
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to differentiate the four possible phase dependencies of the integrand as listed above.

The specialized weights wm for each case (4.12)–(4.15) over the kth source segment

are deduced by testing the integrand with Legendre polynomials:

~wk =
(
pT

)−1 ~ψ; (4.16)

ψm=0,1,...,Mq−1 =

∫

seg. k

pm (t′) pn (t′) e±i(kv±k1)t′dt′; (4.17)

pαβ

∣∣
α,β=0,1,...,Mq−1 = pβ (tα) |tα∈ seg. k . (4.18)

Evaluating (4.16)–(4.18) for n = 0, 1, ..., Nq − 1 over the source segment establishes

the matrix wk of dimensions Mq (where Mq is used to generically represent either

M><
q , M>>

q , M<<
q , or M<>

q ) by Nq, and the multiplication of this matrix with a

source coefficient vector can be interpreted as the transformation of Nq continuous

source functions (without the phase variation term) into Mq discrete source points

(positioned at the phase-extraction quadrature points tm). Note that in general

the number of phase-extraction points can be made adaptive, depending on the local

variations of the terrain surface containing the segment being integrated. Simulations

show that the choice of Mq = Nq is sufficient to consistently achieve good results; as

such, this process of deducing the specialized quadrature weights does not need to

be repeated for every surface segment; instead, it only needs to be calculated once

for each case of (4.12)–(4.15) as the procedure can be re-normalized with respect to

the segment interval.

As done similarly in the regular Nyström method, matrix filling for a source

segment in the local-correction region of ti is found by explicit integrations of the

source functions:

Klc

∣∣
tj ∈ local seg. of ti =

∫

local seg. of ti

K (ti, t
′) pn (t′) e±ik1t′dt′

∣∣
n=0,1,...,Nq−1 . (4.19)
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Carrying out the matrix filling process for all testing points ti over the surface gen-

erates the following generic matrix system for computing the operation of Lv or Tv

on the currents:

K~a =
(
Klc + K>

nlcP
>
phaseP

>
w + K<

nlcP
<
phaseP

<
w

)
~a; (4.20)

the first term within the parenthesis is the diagonal block of K, and second and third

terms are the lower and upper triangular portions, respectively. The above operation

tracks the interactions among M = NsMq source points and N = NsNq observation

points. The diagonal matrix Pphase corrects the phase of the source points on the

surface with a multiplication by e±ik1tm ; Pw is a block diagonal matrix with the kth

block given by wk; and Knlc is given by direct evaluations of the kernel:

K ij
nlc

∣∣
tj /∈ local seg. of ti = K (ti, tj) |i=1,2,...,N ;j=1,2,...,M . (4.21)

Therefore, in the phase extraction based routine, unlike in the regular Nyström

routine, separate sets of surface points are needed to position the radiating and

observation points. For the special case of Mq = Nq, these two sets of points are the

same; in general, however, depending on the values of M><
q , M>>

q , M<<
q , M<>

q , and

Nq, they do not have to coincide.

To speed up the matrix-vector product operation of (4.20), the kernel matrix Knlc

is further decomposed into a near field and a far field component. The near field

component is computed as shown in (4.21); the far field component is calculated

using the fast multipole method; specifically, the source segments and points are

divided into interaction groups, and the far field interactions among the discrete

points at ti and tj are calculated based on the factorization of the Green’s function

using the addition theorem [60], [61]:

H
(1)
0 (kvρij) = ~βd

il′τ l′l~β
a
lj, (4.22)
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where `′ and ` represent the indexes of the group centers and

βa
lj

∣∣∣q=1,2,...,Q = e+ikvρ`j cos(αq−φ`j) ; (4.23)

βd
i`′

∣∣
q=1,2,...,Q = e−ikvρi`′ cos(αq−φi`′ ) ; (4.24)

τ`′` is a diagonal matrix with the diagonal elements given by

C∑
c=−C

H
(1)
0 (kvρ`′`) e−ikvc(φ`′`−αq+π

2 ) |q=1,2,...,Q , (4.25)

with C being the truncation number in the addition theorem and Q = 2C + 1 can

be interpreted as the number of plane waves used to approximate the field of a

source point. In a single-level FMM implementation, the operation of the far field

component of the different types of kernel matrices on an arbitrary source vector is

then calculated as a sequential product involving sparse matrices:

Kff
nlc~x = βdTβa~x, (4.26)

where βa, T , and βd represent—in FMM terminology—the matrices of plane wave

aggregation, translation, and disaggregation, respectively. As the matrices Pphase

and Pw are diagonally-dominant and with Mq = Nq, the overall complexity of the

matrix-vector product operation (4.20) in the phase extraction routine can be readily

shown to be the same as that of the original FMM routine, i.e., O(N1.5). The detailed

definitions for the various parameters within the FMM framework are not presented

here explicitly but can be found in works [60], [61].

4.3 Numerical Results

The regular and phase-extracted locally-corrected Nyström methods as presented

in the previous section are applied to wave propagation prediction over irregular

terrain profiles in this section.
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Figure 4.2: S-shaped terrain surface.

4.3.1 Standard Example

As an initial step, the validity and convergence properties of the regular LCN

are examined for a canonical shape (circular cylinder); these results are displayed in

Appendix B; next, this algorithm is applied to the terrain profile of Figure 4.2. The

surface length L is selected to be 1000λ with s(x) = 30 erf(0.03x); the simulation

frequency is 300 MHz and ε2 = (2 + i)εo. Since no exact solution exists for this

problem, the reference used for convergence validation is the solution calculated with

a very fine discretization. TheO(
hNq

)
asymptotic convergence behaviors of the solver

as functions of the average number of surface unknowns are shown in Figures 4.3 and

4.4: each curve in Figure 4.3 is obtained by holding the discretization scale h = L/Ns

constant while changing the Nyström order Nq—similar to the terminology set forth

in [31], this can be called Nq-refinement; the vice versa is performed in Figure 4.4—

this is known as h- or Ns-refinement. The relative error of the solution vector is

defined as

Erel =
‖~u− ~uref‖2

‖~uref‖2

. (4.27)

In Figures 4.3 and 4.4, the y-axis can be re-interpreted as the average number

of digits of precision in the solution vectors. Note that although this is a double-

precision code, the exponential fall of the relative error flattens out at ∼ 8 digits

due to precision loss in floating point operations. It is seen that (for this set of

simulation results shown) 8 digits of precision can be reached with as few as 8 surface
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points per wavelength. The code is written in Matlab script and implemented on a

Linux machine with a 2.6 GHz AMD Opteron processor and 16 GB of RAM. For a

simulation with 32000 total unknowns, the total runtime (setup plus iterative solve)

is ∼ 3800 seconds and the required memory is ∼ 1.6 GB.

4.3.2 Diffraction Coefficient Extraction

The developed algorithm can be an efficient utility for extracting diffraction co-

efficients to complement standard ray-tracing routines. Consider the transmitting

and receiving points configured as displayed in Figure 4.2, the difficulty in extending

existing UTD methods to this problem largely stems from the absence of an accu-

rate method for characterizing the diffracted fields guided by the smooth dielectric

convex interface along surface segment Q′Q
_

. For the region dipping slightly into the

shadow region (i.e., when Q′Q
_

is small), an asymptotic model in terms of creeping

wave modes originally developed for circular dielectric cylinders can be applied to

compute the diffracted field as

Hdiff,asymp
z,1 (φ′, φ) ≈

∞∑
m=1

e+ik1s′

√
s′

Dm(Q′)Am(Q′) ·

e(+ik1Q′Q
_ −αm)Dm(Q)Am(Q)

e+ik1s

√
s

, (4.28)

in which the effective attenuation constant over Q′Q
_

is a function of the modal eigen-

value σm and surface curvature ρc [74]:

αm =

∫

Q′Q
_

σm

ρc

(
k1ρc

2

)1
3

e−i π
6 dt′. (4.29)

For large Q′Q
_

, only the first (m = 1) mode survives. The definitions for the modal

eigenvalue and other accompanying quantities in (4.28) are found in [74]. For sake of

simplicity, only the creeping wave-excited diffracted field located beyond the shadow

boundaries is analyzed in this work. Note that the heuristic expression in (4.28) is
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not rigorously valid for obtaining fields in the deep shadow regions (i.e., for large Q′Q
_

)

since the creeping wave modal parameters for a dielectric surface—unlike those for a

perfectly conducting one—are functions of the surface curvature and thus give rise to

modal scattering and inter-modal coupling as the modes travel along the curvature-

varying segment Q′Q
_

. Currently there is neither an analytical nor heuristic approach

for accurately handling these scattering and coupling mechanisms as pertaining to

creeping waves propagating along dielectric convex surfaces; by noting that the de-

caying factor in (4.29) needs to be modified for general curvature profiles, here it is

suggested that a correction can be derived numerically to account for these effects

for observation points in the deep shadow regions. For large Q′Q
_

, the decaying factor

is expected to be the same over the portion of the wave path (along the surface) that

is common to a given set of incident angles; consequently, a normalized correction

function Cnorm(φ) can be sampled through a single run of the numerical code with

the placing of an excitation source at the lowest desired φ′ref while computing the

fields over the entire range of observation angles beyond the shadow boundary up to

minimum angle φref deep in the shadow region. Once this has been accomplished, for

use with sources placed at other incident angles φ′ (> φ′ref ), the correction function

can be unnormalized by multiplying it with the ratio of the exact field to the asymp-

totic uncorrected field for the case when the source is at φref and the observation at

φ′; note that the set of exact field values can be tabulated in advance with a second

run of the numerical simulator. Symbolically, the procedure is summarized as

Hdiff,corr
z,1 (φ′, φ) = Hdiff,asymp

z,1 (φ′, φ, m = 1) ·

Cnorm(φ)
Hdiff,exact

z,1 (φref , φ
′)

Hdiff,asymp
z,1 (φref , φ′, m = 1)

. (4.30)

In effect, to obtain the diffraction coefficients for all incident and observation an-
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gles (in the shadow), only two runs of the numerical code are required: the first to

obtain Cnorm(φ) and the second to obtain Hdiff,exact
z,1 (φref , φ

′); however, these func-

tions must be re-simulated as the frequency, the terrain dielectric property, or the

terrain profile changes. Figure 4.5 shows the results of using (4.30) for computing the

creeping wave-excited diffracted field component for various source incident angles.

4.3.3 Arbitrary Terrain Profiles

Without the loss of generality, a zero-mean surface profile obeying Gaussian statis-

tics {σ, cl}—where σ is the rms height and cl the correlation length—is assumed and

generated from its randomized power spectral density by following the procedure

outlined in [75]. It is impractical to use s(x) (regardless of whether the function is

random or deterministic) directly because of the necessity for rapid generation and

inter-translation of surface height, length, and slope parameters. Therefore, an ap-

proximate form for s(x) which facilitates efficient computation of these routines must

be employed. The approximate s(x) in this solver is reconstructed from a sampled

set of s(x) using the approximate prolate spheroidal wave function (APSWF) as the

basis. It has been shown that the APSWF interpolant can be exploited to approxi-

mate a band-limited function with an exponential error bound [76] and is superior to

classical polynomial interpolants; as a consequence, the solver exhibits exponential

convergence in terms of surface discretization error. In the following results, to avoid

dealing with the singular behavior of the current solution at the surface edges, only

the portion of the solution located away from the open edges is being used for error

convergence analysis. (Alternately, a tapered excitation source can be employed to

avoid direct illumination of the edges; for example, a complex source beam which

approximates the Gaussian beam is used in [64] for this purpose.)

The asymptotic convergence behaviors of the solvers as functions of the average
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number of surface unknowns are shown in Figures 4.6 and 4.7. The surface parame-

ters are {σ, cl} = {1λ, 5λ}, with L = 500λ, ε2 = (1.5 + 0.2i)εo, and the frequency is

at 300 MHz. The relative error of the solution vector is again defined as (4.27), and

the reference solution used for comparison is obtained by solving the problem with

a very fine surface discretization and high density of unknowns.

The high-order convergent behavior of the regular locally-corrected Nyström method

is demonstrated. Specifically, the error decays approximately as O(
hNq

)
, as readily

seen in Figure 4.7. However, the actual slopes of the decay are slower than predicted;

for example, for both the electric and magnetic currents, the actual exponents are

approximately 5.6, 7.6, and 9, respectively, for Nq = 6, 8, and 10; this observation

is consistent with what has been reported in [31]. Because of the exponential error

convergence behavior, Figure 4.6 shows that faster convergence is achieved by using

a larger discretization scale. Note that, as in the results of Section 4.3.1, the expo-

nential fall of the relative error flattens out at ∼ 8 to 9 digits due to precision loss

in floating point operations.

The results obtained from the phase-extracted Nyström method are superim-

posed upon those from the regular method in Figures 4.6 and 4.7. It is seen that

the asymptotic convergence rate of the phase-extracted solver is comparable to that

of the regular solver for both h- and Nq-refinement; the benefit of extracting the

fast-varying solution component is also evident: the relative error for each case is

dramatically reduced, especially for small number of unknowns. The exponential

convergence behavior O(
hNq

)
is similarly observed in Figure 4.7. As illustrated in

Figure 4.6, the phase-extraction technique is more advantageous for larger surface

discretization scales; this is expected since a set of polynomials complete up to order

Nq can approximate the same fast-varying function less accurately over a larger sur-
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face interval than over a smaller interval. As the surface discretization becomes finer,

Figure 4.6 shows that the relative errors calculated from phase-extraction approach

closer to those from the regular routine (for large surface unknown density). The

actual amplitudes of the induced magnetic and electric surface currents are plotted

in Figure 4.8 for the aforementioned surface profile. Even with as few as an average

of one unknown per wavelength, the solution from the phase-extracted solver is seen

to follow the “true” (reference) solution accurately, including in the terrain shadow

regions. In this example, Ns = 125 and Mq = Nq = 4; since the phase variation of

the currents near the small region around the source location is strictly not of e±ik1t

dependence, a higher segmentation density is used in that region to speed up con-

vergence; this adaptive segmentation scheme, however, does not change the overall

complexity of the solver, as the average number of unknowns is nearly unaffected for

large surface profiles. Note that, alternatively, because the current variation is slow

around the source region, a mixed solver could be applied in which a regular LCN

method is used for the source region while a phase-extracted solver is used for the

rest of the profile.

The convergence of the phase-extracted solver for two ground dielectric constants,

ε2 = (1.5 + 0.2i)εo and ε2 = (3.0 + 0.5i)εo, is shown in Figure 4.9; the convergence

is seen to be comparable for the two cases. To analyze the validity of the paraxial

approximation, the convergence properties of the phase-extracted solver are shown

in Table 4.1 for various surface rms heights. As expected, the performance of the

new solver degrades as rms slope increases; the loss of accuracy is primarily due to

the fact that backscattering phenomena become more significant in the deep terrain

shadows; that is, the currents are no longer of purely e±ik1t dependence; nevertheless,

even with such as a simple approximation, the phase-extraction approach is seen to
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 / snwonknU fo rebmuN  λ

  0.5 1 1.5 2 2.5 3 

σ = 1λ

Regular LCN 21.9 8.91 8.07 8.95 6.17 3.31 

Phase-Extracted 

LCN
0.762 0.207 4.30e-2 6.77e-3 1.09e-3 4.56e-04 

σ = 2λ

Regular LCN 36.2 10.6 12.1 10.9 7.00 3.42 

Phase-Extracted 

LCN
3.15 1.86 0.790 0.369 0.142 4.56e-2 

σ = 3λ

Regular LCN 43.1 20.1 14.3 12.7 10.5 5.98 

Phase-Extracted 

LCN
5.85 5.29 3.51 2.00 1.84 0.956 

 
Table 4.1: Performance of regular and phase-extracted LCN solvers for varying surface roughness;

shown is the average error in dB as compared to the reference solution; L = 500λ;
Ns = 125; cl = 5λ; Mq = Nq.

be able to speed up solution convergence for relatively very rough terrain profiles.

The convergence behaviors of different integral formulations are compared next.

The propagation problem has been treated using the PMCHWT formulation thus

far; two other commonly used formulations include the EFIE and the MFIE as given

by

EFIE:

n̂× ~Einc = −1

2
~M (t)− n̂×

[
η1L1

~J (t)− T1
~M (t)

]
;

~0 = +
1

2
~M (t)− n̂×

[
η2L2

~J (t)− T2
~M (t)

]
; (4.31)

MFIE:

n̂× ~Hinc = +
1

2
~J (t)− n̂×

[
T1

~J (t) + η−1
1 L1

~M (t)
]
;

~0 = −1

2
~J (t)− n̂×

[
T2

~J (t) + η−1
2 L2

~M (t)
]
. (4.32)

The convergence of the surface currents for the three integral formulations is
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tracked in Figures 4.10 and 4.11. From the results of the phase-extracted solver, it

is seen that the electric current calculated with the MFIE has better accuracy than

the one calculated with the other two formulations, whereas the convergence of the

magnetic current is similar among the three formulations. The improved accuracy

in the electric current of the MFIE can be attributed to the fact that this solver

does not contain the hypersingular kernel (i.e., the kernel for calculating electric

field from electric current) which appears in the EFIE and PMCHWT. (For perfect

conductors, it has been observed in [77] that the MFIE is superior to EFIE in terms

of convergence.) The above observations, however, are less apparent in the results

of the regular LCN solver.

4.4 Conclusion

A high-order accurate solver has been investigated for wave propagation appli-

cations in this chapter. Mainly, a modified Nyström solver derived with a phase

extraction technique has been described for near-ground radiowave propagation pre-

diction in the presence of irregular terrain profiles. The convergence properties of

this new solver—which is called the phase-extracted LCN—have been examined and

compared to those of the regular LCN; it is seen that the solver not only retains the

high-order convergence that is characteristic of the regular LCN but also exhibits

significantly smaller start-up error. The incorporation of the new solver into the fast

multipole method also has been discussed. By applying this new method, in com-

bination with an adaptive surface segmentation routine for the surface region near

the source, as few as one to two average unknowns per wavelength is adequate in

obtaining accurate solutions to propagation over gently-undulating, random terrain

profiles; therefore, the solver can provide additional reduction in number of solution
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unknowns and speed-up in computational efficiency as compared to the regular LCN.

Although the phase extraction in the manner as presented stipulates the solution to

follow a simple phase-dependence, the solver is seen to outperform the regular LCN

for highly irregular terrain profiles as well.
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Figure 4.5: Comparison of diffracted field obtained using numerical, heuristic-asymptotic, and cor-
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Figure 4.10: Comparison of solutions—(a) electric current and (b) magnetic current—from phase-
extracted LCN method based on PMCHWT, EFIE, and MFIE; ε2 = (1.5 + 0.2i)εo;
L = 500λ; Ns = 125; Mq = Nq.
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CHAPTER V

An Approximate Numerical Model for Simulation of
Long-Distance Near-Ground Radiowave Propagation over

Random Terrain Profiles

5.1 Introduction

For analyzing the electromagnetic effects of a randomly-rough terrain, an assort-

ment of analytical models has been proposed in the remote sensing community for

the computation of radar scattering response. These methods include various pertur-

bation methods [78–81] and the Kirchhoff approximation [82]; each of these methods

has its own range of validity determined by the statistics of the terrain surface;

unfortunately, these methods have been found to be inaccurate for grazing-angle

scattering scenarios. Furthermore, as these approaches have been developed under

the assumption of plane wave interactions, there remains the unsolved issue of how

they should be properly utilized or modified for near-ground propagation problems

in which the dominant mode of interaction is surface waves.

As mentioned in Chapter IV, in view of the limitations of analytical determin-

istic methods, numerical algorithms have been developed for simulating radiowave

propagation over an irregular terrain. For random rough surfaces, the quasi-planar

structure of the surface can be further exploited to expedite the solution process and

has led to the introduction of the steepest descent FMM (SDFMM) [83]. In the cur-
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rent work, the near-grazing propagation condition is taken advantage of in obtaining

a fast and efficient numerical routine through the replacement of the intermediate

terrain section between the transmitter and observation point with a planar section.

A domain decomposition of the resultant profile enables the fast Fourier transform

(FFT) to be used to carry out the matrix-vector products for the planar section,

which has a block-Toeplitz MoM representation. In what follows, first the basic

steps of the algorithm are described, then the validity of the planar approximation

and domain decomposition procedure is examined through Monte Carlo simulations.

5.2 Algorithm Development

The initial set up of the algorithm is based on the regular LCN as expressed by

(4.1)–(4.10). For near-ground propagation, it is conjectured here that the coherent

and incoherent signal powers at the receiver are primarily determined by the statis-

tics of the random surface surrounding the transmitter and receiver; therefore, a

simplified—though approximate—model is obtained by replacing the terrain surface

far from the transmitter and receiver with a planar section while keeping the rough

regions in the vicinity of the transmitter and receiver unchanged (Figure 5.1). This

is a reasonable assumption since the terrain surface in the far field basically inter-

acts with the transmitter and receiver through grazing-incident fields; therefore, this

portion of the surface appears to be electrically flat to these fields. The development

of this simplified model is as follows. The original terrain surface is decomposed into

three separate sections as illustrated in Figure 5.1; the planar section has an effective

height as defined by

heff =

〈
s (x) + |s (x)|

2

〉
, (5.1)

where the angle brackets denote the averaging operation. Subsequently, the boundary
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Figure 5.1: (a) Original zero-mean random profile; (b) Three-sub-domain simplified profile.

integral equation solver aforementioned is applied over the entire simplified profile.

In accordance to the Nyström method framework, the resulting matrix equation

relating the convolution of the kernels with the current unknowns to the tangential

excitation field quantities is of the form




KE,J KE,M

KH,J KH,M







J̃

M̃


 =




Einc
tan

H inc
tan


 . (5.2)

In (5.2), the kernel evaluations at the quadrature points are represented by the sub-

matrices Ku,v (u = E, H; v = J,M), each of dimensions NsNq × NsNq; and the

quadrature weights have been embedded within the current unknowns as indicated

by the tilde notation. The interactions of the flat section (s2) with itself are captured

within the central portion of each Ku,v and can be shown to be a block-Toeplitz

matrix Tu,v of dimensions NfNq ×NfNq, where Nf is the number of segments used

to discretize the flat section. Note that each sub-block (Nq × Nq) of Tu,v does not

in general have a Toeplitz structure. As the majority of the original profile has been

replaced with a flat section, the amount of memory needed to store the matrices Ku,v

has been significantly reduced since only the first block column and row of Tu,v need

to be tabulated. The computational complexity in solving the matrix system (5.2)
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can also be simplified by using a recursive forward marching scheme described as

follows:

1. The current vectors J̃ = [J̃1, J̃2, J̃3] and M̃ = [M̃1, M̃2, M̃3] are

initialized to zero. (The subscript index identifies the surface

section on which the current is located.)

2. Each iteration then consists of the following steps:

For i = 1 to 3

(a) If i 6= 2, calculate the currents J̃i and M̃i simultaneously

over the rough section near either the transmitter or ob-

servation point using (5.2) by enforcing boundary condi-

tions (4.1) for ~r ∈ si; since the sub-matrices touched by

this operation are small, a direct solver is used.

(b) If i = 2, calculate the currents J̃2 and M̃2 over the flat

section using (5.2) by enforcing (4.1) for ~r ∈ s2. Note

that the two integral equations in (4.1) are decoupled (i.e.,

TE,M = TH,J = 0); therefore, J̃2 and M̃2 can be solved

separately. This step could involve the inversion of TE,J

and TH,M ; however, an iterative solver is used here with

the block-Toeplitz matrix-vector products provided by an

efficient FFT routine constructed in [84].

(c) Update J̃ and M̃ .

3. Re-iterate via step 2.

The recursive routine above continues until the relative norm of the error vector

between successive iterations falls below a pre-determined tolerance level (for exam-
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ple, 10−5 is the value usually employed for the simulation scenarios presented in the

next section).

5.3 Numerical Validation and Results

Monte Carlo simulations of propagation over random terrain surfaces are run to

validate the accuracy of the proposed three-sub-domain model. Figures 5.2 and

5.3 show the comparison—for both polarizations—between solutions of the original

rough surface profile (Figure 5.1(a)) and the simplified profile (Figure 5.1(b)) in terms

of the coherent and incoherent received powers (i.e., power mean and variance); note

that good agreement (within 1 dB) is observed between the two sets of results. In

these calculations, the source is either a magnetic line source (vertical polarization)

or an electric line source (horizontal polarization) fixed at a distance 560λ away

from the observation point; both the source and observation point are at a height

of 3.6λ above the terrain zero-mean plane. The middle 400λ section of the rough

terrain between the source and observation point is replaced with a flat section in

the simplified model. Only LOS paths are examined in the figure by generating

realizations of Gaussian random surfaces such that the direct wave is unobstructed;

albeit not shown here, similar good agreement is observed for the different field

components of NLOS paths as well. The locations of the junction between the

rough and flat sections are varied on the order of a wavelength to dampen artificial

coherent effects; the transitions also have been smoothed to reduce the occurrence of

sharp edge diffractions. In these simulations and those that follow, the operational

frequency is at 300 MHz and the dielectric constant of the terrain soil is set to be

ε2 = (8 + 6i)εo; the Nyström method parameters are Nq = 6 and h = 1λ.

To verify the convergence of the recursive forward marching scheme as applied to



105

TEz MT z

Iteration Ex Ey Hz Hx Hy Ez

1 14.57 3.852E-1 6.087E-1 1.698 6.623E-2 9.473E-2 

2 4.721 1.247E-1 1.968E-1 4.452E-1 1.696E-2 2.470E-2 

3 1.532 4.039E-2 6.390E-2 1.045E-1 3.954E-3 5.767E-3 

4 5.001E-1 1.316E-2 2.087E-2 2.352E-2 8.821E-4 1.284E-3 

5 1.642E-1 4.318E-3 6.855E-3 5.053E-3 1.852E-4 2.684E-4 

Table 5.1: Maximum percent error in the recursive forward marching solution as referenced to the
entire domain solution (simplified profile is used in the calculations).

the simplified model, a comparison is made between the solutions calculated using the

entire profile and the domain decomposed profile. The field values at an observation

line positioned 3.6λ above the zero-mean are computed, and the maximum percent

error for each field component at each iteration is tracked and is shown in Table 5.1.

Very fast convergence is seen due to the low level of backward scattering coupling

among the sub-domains; in this set of simulations, for example, a maximum error

of less than one percent is guaranteed with only four iterations. The algorithm is

implemented via Matlab script on a Linux machine with a 2.6 GHz AMD Opteron

processor and 6 GB of available RAM; for a rough surface with a surface length of

1100λ, the amount of memory needed is 1 GB (as opposed to 7.7 GB for conventional

MoM); the setup time (for matrix filling) is 15 minutes and each iteration takes about

1 minute.

After considering its accuracy and convergence characteristics, the solver is ap-

plied to study near-ground propagation for rough terrain environments with different

surface statistics. These simulation results are featured in Figures 5.4 and 5.5. As

plotted in Figure 5.4 (where a LOS path is assumed), the path-loss increases with

terrain rms height as expected. However, the signal strength also has considerable

dependence on the surface correlation length for fixed rms height as shown in Fig-

ure 5.5: the path-loss is seen to increase as the correlation length is reduced. This
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behavior can be understood by noticing that as the average surface peak-to-peak dis-

tance decreases, more of the ground reflected wave component is successfully guided

forward along the surface toward the observation location; therefore, a more drastic

coherent cancellation occurs between the direct and reflected waves. It is interesting

to note that the same type of correlation length dependence appears for NLOS prop-

agation as well—as evident in Figure 5.6 (where it is also seen that the ratio of the

incoherent to coherent components of the wave has risen significantly as compared to

the LOS case). The NLOS simulations assume that the transmitting and receiving

points are always located at the zero-mean plane and the surface realizations are

generated such that these points are always above the surface profile. For NLOS sit-

uations, the wave guided on top of the terrain peaks is similar to a lateral wave [24]

since the transmitting and receiving points can be interpreted as being submerged

within a ground with some mean effective height. Even if the actual terrain rms

height remains constant, as the terrain correlation length decreases, this effective

surface height is raised; therefore, the lateral wave experiences more attenuation as

it propagates through the vertical distance between the transmitting and receiving

points and the effective surface top.

5.4 Conclusion

Exploiting the near-grazing propagation condition, a new efficient numerical algo-

rithm for predicting near-ground radiowave propagation over random rough terrain

has been developed. Conjecturing that the signal statistics at the receiver are pri-

marily determined by the statistics of the terrain surface surrounding the transmitter

and receiver, a physically flat section is used to replace the intermediate rough sec-

tion located between the transmitter and receiver, therefore reducing the original
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problem into a simplified and more tractable one for which the solution is subse-

quently obtained using a recursive forward marching domain decomposition scheme.

The accuracy of the simplified model has been demonstrated through Monte Carlo

simulations and the convergence of the forward marching scheme also has been ex-

amined. Though the development is contingent upon the assumption of 2D surface

and field variations, the model as presented herein is valuable nevertheless for gain-

ing insights into some of the important physical propagation mechanisms relevant to

near-ground signal-strength prediction scenarios.
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Figure 5.2: Received power as computed using simplified and original models for vertical polariza-
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Figure 5.4: Excess path loss (over free space loss) for vertically-polarized LOS paths as function of
terrain rms height.
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Figure 5.5: Excess path loss (over free space loss) for vertically-polarized LOS paths as function of
terrain correlation length.



112

0 5 10 15 20 25 30

-36

-34

-32

-30

-28

-26

-24

-22

-20

-18

[d
B

]

c
l
 = 20λ

c
l
 = 10λ

c
l
 = 5λ

c
l
 = 2.5λ

Realization

(a)

0 5 10 15 20 25 30
−44

−42

−40

−38

−36

−34

−32

−30

−28

−26

−24

Realization

[d
B

]

c
l
 = 20 λ

c
l
 = 10 λ

c
l
 = 5λ

c
l
 = 2.5 λ

(b)

0 5 10 15 20
39

40

41

42

43

44

45

46

47

c
l
  [λ]

E
x

c
e

ss
 P

a
th

 L
o

ss
  
[d

B
]

(c)

Figure 5.6: Vertically-polarized NLOS propagation response: (a) mean of field; (b) variance of field;
(c) path-loss. Distance between source and observation point is 600λ and σ = 1λ.



CHAPTER VI

On the Effective Low-Grazing Reflection Coefficient of
Random Terrain Roughness

6.1 Introduction

For propagation over a rough terrain, the statistical properties of the surface

(height profile probability density function, surface autocorrelation function or rough-

ness spectrum) have a direct impact on the statistics of the propagating signal. In

the near field, the LOS space wave (when it is unobstructed) from the transmitting

antenna provides the primary contribution to the total received signal, as coherent

reflection is reduced by the random scattering effects. However, over a long dis-

tance, as the propagation path approaches the grazing condition, in accordance with

the Rayleigh criterion, the surface appears electrically smooth again and coherent

cancellation between the direct and ground scattered signal is re-established. These

qualitative observations are consistent with the simulation results of the preceding

chapters; specifically, as it has been shown in Chapter V, the far field propagation

loss increases with corrugation rms height as expected but also shows considerable

dependence on the surface correlation length (Figure 5.5); furthermore, at graz-

ing propagation, it is no longer proper to calculate coherent signal statistics by a

complete replacement of the rough surface with a smooth surface at the original

surface’s physical mean height, for now the effective height is a function of both sur-
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face rms height and correlation length. Although the numerical models presented in

Chapters IV and V have proven to be efficient simulators in dealing with the near-

ground channel, it is also convenient to quantitatively capture the aforementioned

observations—which have not been sufficiently addressed and explained in existing

literature—in analytical formulations.

Owing to the random multi-scattering processes inherent in an undulating terrain

environment, a radio signal has both coherent and incoherent components, each

contributing to the total channel transfer characteristics. In considering the effects

of random roughness, an equivalent coherent reflection coefficient can be produced—

according to physical optics—by supplementing the Fresnel reflection coefficient for

a flat surface with a phase correction factor ξ:

Reff = Riξ = Ri
〈
e−2iki

0zf(x)
〉

. (6.1)

The ensemble average can be calculated based on the probability distribution

function (PDF) of the surface profile z = f(x); for instance, assuming a normally

distributed surface profile, the correction factor reduces to the Ament approximation,

ξA = e−
1
2
(2koσ cos θ)2 , which has been incorporated into ray-tracing routines by other

workers for predicting reflection loss due to surface roughness. Note that Ament

derived his result from an integral equation approach formulated for a PEC surface

on which the value of the induced surface current is estimated to be independent of

surface elevation [32]; the same result for ξA can also be reached using the Kirchhoff,

or tangent-plane, approximation [85]. Another commonly used form of the correction

factor has been derived by Miller and Brown, who originally considered the reflection

effects of an ocean surface modeled as a collection of sinusoidal waves with Gaussian

distribution in amplitude and uniform distribution in phase [33, 34]; although the

Miller-Brown approximation, ξMB = ξAIo

(
1
2
(2koσ cos θ)2), has been shown to be in
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better agreement with experimental results [86] (as compared to the Ament approx-

imation), the theoretical validity of applying such a PDF specific to ocean surfaces

for terrain propagation problems has yet to be investigated.

While being simple to implement, both ξA and ξMB as given above are not valid for

grazing angle propagation as (6.1) (and the Kirchhoff approximation itself) does not

include terrain self-shadowing effects. The fraction of the surface that is illuminated

by the incident rays can be estimated and the surface PDF can be modified to include

a shadowing factor before insertion into (6.1) [87]; the subsequent expression for the

effective reflection coefficient, however, maybe in a complicated integral form that

is dependent upon the choice of an “optimal” shadowing PDF [88]. Alternatively,

instead of defining the effective reflection coefficient directly, an equivalent impedance

for the rough surface can be calculated based on the surface statistical properties [89].

The shadowing PDF and the equivalent impedance approaches have been shown to

provide improvement over the traditional Ament and Miller-Brown formulations;

however, these approaches still do not consider the implications of surface wave

effects and have not been tested for near-ground propagation scenarios.

In this chapter, in order to arrive at an analytical representation for the effects of

terrain roughness on the near-ground channel, a new closed-form expression for the

effective reflection coefficient is presented. The basis of the derivation is founded on

the perturbation approach applied to a volumetric integral equation as introduced

by Sarabandi and Chiu [35] for remote sensing applications involving modeling the

general scattering coefficients of rough surfaces with inhomogeneous dielectric pro-

files. Here, expressions for the coherent effective reflection coefficient are derived for

the 2D problem; the accuracy of these expressions is validated using the numerical

simulator outlined in Chapter IV for 2D excitation sources of vertical and horizon-
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ẑ

x̂

z = ∆f(x) + d
z = d

Figure 6.1: Propagation geometry; the rough terrain is characterized by relative dielectric constant
εr1 and normalized variation profile f(x), which has zero-mean and stationary statistics.

tal polarizations. Extensions to—and simulation results for—3D sources are also

provided.

6.2 Theoretical Background

The perturbation approach set forth in [35] is briefly reviewed here; for a detailed

discussion of the derivation of this method, the reader is referred to the original work.

In formulating the response of the dielectric surface, a volumetric integral equation is

first formed, relating the scattered field to the fictitious polarization current induced

in the rough layer region (0 < z < ∆f(x) + d); after taking the Fourier transform of

the expansion of the integral equation about the surface elevation z = d, with the

assumption that the polarization current can be written as a perturbation series in

terms of the perturbation parameter ∆, an iterative set of relations is generated from

which the current can be found to arbitrary order. Essentially, the zeroth-order cur-

rent gives the induced current of the flat interface geometry, and higher-order terms

represent the corrections necessary to account for the presence of surface fluctuations

about the mean at z = d. Though the validity of the original formulations in [35]

has been confirmed for ∆ ¿ λ, it is shown here that, in the context of near-grazing

propagation, the reflection coefficient derived herein is even applicable for surface

variations (rms height) on the order of λ or more; the main reason for such an ex-

tended region of validity has its roots in the fact that only the normal component of

the wave vector (i.e., kz = 2π
λz

) “sees” the surface roughness. Also, it should be noted
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that in contrast to other existing perturbation methods (e.g., small perturbation

method—SPM [78]), the perturbation series of interest here is expanded in terms of

the volumetric current instead of the surface current or tangential fields; therefore,

this method offers the advantage of being readily modifiable for the analysis of a

surface with an inhomogeneous vertical dielectric profile.

6.2.1 Horizontal Polarization—2D

With an excitation of the form ~Ei = e−iki
0zz+iki

xxŷ, following the procedure de-

lineated in [35], the Fourier transform of the polarization current within the rough

layer, in the 2D case, can be shown to reduce to the following forms:

~̃Jtotal (kx, z) =
∞∑

N=0

∆N ~̃JN (kx, z), (6.2)

where each order of the current is given by

~̃J0 (kx, z) = 2πδ
(
kx − ki

x

)
Jh,ye

−iki
1zzŷ; (6.3)

~̃JN (kx, z) =
ik2

o (εr1 − 1) e−ik1zz

(k0z + k1z) e−ik1zd

{
~̃VN (kx, z) · ŷ

}
ŷ; (6.4)

and

Jh,y = −iωεo (εr1 − 1)
2ki

0ze
−iki

0zd

(ki
0z + ki

1z) e−iki
1zd

; (6.5)

~̃VN (kx, z) =
N−1∑
n=0

N−n−1∑
m=0

(
N−n−1

m

)
(ikz)

m

(N − n)!

· ∂N−n−m−1

∂zN−n−m−1
~̃Jn (kx, d) ∗ N−n⊗ F (kx)

(
1

2π

)N−n

; (6.6)

and
N−n⊗ , as defined in [35], is taken as the convolution of the function with itself

N − n times.

The field response can then be calculated from the polarization current using the

Fourier transforms of the flat-interface, half-space dyadic Green’s function,
≈
G (kx, z, z′),
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and that of the surface profile, F (kx):

~Es (x, z) = Ri
h
~Ei +

iωµo

2π

+∞∫

−∞

{ ∞∑
N=0

∆N

d∫

0

≈
G (kx, z, z′) · ~̃JN (kx, z

′) dz′

+
∞∑

N=1

∆N

N−1∑
n=0

N−n−1∑
m=0

(
N−n−1

m

)

(N − n)!

∂m

∂z′m
≈
G (kx, z, d)

·
{

∂N−n−m−1

∂z′N−n−m−1
~̃JN (kx, d) ∗ N−n⊗ F (kx)

}(
1

2π

)N−n
}

eikxxdkx,

(6.7)

in which Ri
h is the horizontal polarization reflection coefficient for a flat interface

located at z = 0. Taking the ensemble average of (6.7), after much manipulation

and making use of the identities

〈F (kx) ∗ F (kx)〉 = 4π2δ (kx) ; (6.8)

〈
F (kx − k′x) F

(
k′x − ki

x

)〉
= 2πδ

(
kx − ki

x

)
W (kx − k′x) ; (6.9)

where W (·) is the power spectral density of the surface f(x), the total coherent

scattered field to the second order (N = 2) reduces to

~Es = Ri,eff
h eiki

0zz+iki
xxŷ, (6.10)

with

Ri,eff
h =

{
Ri

h +
∆2

2
k2

o (εr1 − 1) (1−Ri
h
2)

−∆2

2

[
k2

o (εr1 − 1)
]2

(1 + Ri
h)

Ωy

(
ki

ρ

)

π (ki
0z + ki

1z)

}
e−i2dki

0z . (6.11)

The function Ωy

(
ki

ρ

)
is given by

Ωy

(
ki

ρ

)
=

+∞∫

−∞

1

(k′0z + k′1z)
W (ki

ρ − k′x)dk′x. (6.12)
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Note that (6.11) is essentially accurate up to N = 3 since it can be shown that the

coherent averages of the odd-order terms in (6.7) is zero—assuming f(x) is zero-

mean Gaussian. The definitions for ki
0z, ki

1z, and ki
ρ above are consistent with those

for comparable forms found in Chapter II and Appendix A.

In general, functions of the form (6.12) are evaluated numerically in this study.

Assuming a Gaussian correlation function for the surface, i.e., W (k′x) = cl

√
πe−

c2l k′2x
4 ,

the integral in (6.12) is fast convergent, especially for large correlation lengths, as

most of the contribution to the integral comes from the path near k′x = ki
ρ. When

ki
ρ is not close to the branch point ko, an analytical approximation to (6.12) can be

found simply by first replacing the first term in the integrand with its Taylor series

expansion, and then integrating the resulting expression exactly using the identity

+∞∫

−∞

tne−αt2dt =





n!
√

π

(n
2 )!2nα

n+1
2

, n = even;

0, n = odd.

(6.13)

For near-grazing propagation, evaluation of (6.12) at ki
ρ → ko is needed; in deriving

a closed-form formulation for the integral, a more complete procedure [90, 91] must

be taken owing to the presence of the branch point at ko. (For realistic ground

conditions, here it is assumed that the branch point k1 does not lie near the real axis.)

After multiplying the numerator and denominator of the integrand by (k′0z − k′1z),

the integral is separated into two components: one containing k′1z—which is regular

over the entire path of integration; and the other containing k′0z—which, after some

manipulations (namely, after the changing of variable t = k′x − ki
ρ, expanding the

part of the integrand that does not include the branch point ta near t = 0, and then

another changing of variable u =
√

2α (t− ta)), is expressible in terms of parabolic

cylinder functions. Therefore, the lower order terms in the series expansion for
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Ωy

(
ki

ρ

)
are

Ωy

(
ki

ρ

) ≈
(

cl
√

π
k2

o−k2
1

) {
√

π
α

(
− [

k2
1 − ki

ρ
2
] 1

2 +
k2
1

4α[k2
1−ki

ρ
2]

3
2

)

+ ie−αt2a√
2α

(
[ta−tb]

1
2

(
√

2α)
1
2
Ψ 1

2
+ 1

2[ta−tb]
1
2 (
√

2α)
3
2
Ψ 3

2
− 1

8[ta−tb]
3
2 (
√

2α)
5
2
Ψ 5

2

)}
,

(6.14)

where

Ψm =
√

2πe−i mπ
2 e

αt2a
2 Dm

(
−i
√

2αta

)
; (6.15)

α =
c2
l

4
; (6.16)

ta and tb are the zeros of
(
k2

o −
(
t + ki

ρ

)2
)
, ta > tb; and Dm (·) denotes the parabolic

cylinder function. In deriving (6.14), a second order Taylor series expansion is used

for the integral component containing k′1z and for the aforementioned term not con-

taining the branch point ta. As ki
ρ → ko, the following simplification can be used:

Dm (0) =
2

m
2
√

π

Γ
(

1−m
2

) . (6.17)

Figure 6.2 shows the validity of expression (6.14).

6.2.2 Vertical Polarization—2D

Following a procedure similar to that given in Section 6.2.1, but now with exci-

tation as ~H i = e−iki
0zz+iki

xxŷ, the polarization current simplifies to

~̃J0 (kx, z) = 2πδ
(
kx − ki

x

)
(Jv,xx̂ + Jv,z ẑ) e−iki

1zz; (6.18)

~̃JN,x (kx, z) =
ikok1z (εr1 − 1) e−ik1zz

(εr1k0z + k1z) e−ik1zd

{
~̃VN (kx, z) · (kzx̂ + kxẑ)

ko

}
x̂; (6.19)

~̃JN,z (kx, z) =
ikokρ (εr1 − 1) e−ik1zz

(εr1k0z + k1z) e−ik1zd

{
~̃VN (kx, z) · (kzx̂ + kxẑ)

ko

}
ẑ; (6.20)

where

Jv,x = i (εr1 − 1)
2ki

0zk
i
1ze

−iki
0zd

(εr1ki
0z + ki

1z) e−iki
1zd

; (6.21)
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Figure 6.2: Comparison between (6.12) and (6.14): (a) kocl = 2π; (b) kocl = 40π; εr1 = 2 + i;
f = 300 MHz.
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Jv,z = i (εr1 − 1)
2ki

0zk
i
xe
−iki

0zd

(εr1ki
0z + ki

1z) e−iki
1zd

; (6.22)

and ~̃VN (kx, z) is the same as (6.6). From (6.7)–(6.9), the effective reflection coefficient

defined by ~Hs = Ri,eff
v eiki

0zz+iki
xxŷ can be shown to be

Ri,eff
v =

{
Ri

v −
∆2

2
k2

o (εr1 − 1)
(
1−Ri

v
2
)

−∆2 (εr1 − 1)
ki

ρ
2

(εr1ki
0z + ki

1z)

[(
Ri

v − 1
)
ki

0z −
(
Ri

v + 1
)
ki

1z

]

−∆2

2
(εr1 − 1)2 1

(εr1ki
0z + ki

1z)

·
[
(
Ri

v − 1
)
ki

0z

Ωx

(
ki

ρ

)

π
+

(
Ri

v + 1
)
ki

ρ

Ωz

(
ki

ρ

)

π

]}
e−i2dki

0z ; (6.23)

in which Ri
v is the Fresnel reflection coefficient for vertical polarization for a flat

surface located at z = 0 and

Ωx

(
ki

ρ

)
=

+∞∫

−∞

k′1z

εr1k′0z + k′1z

(
ki

1zk
′
0z + ki

ρk
′
x

)
W

(
ki

ρ − k′x
)
dk′x; (6.24)

Ωz

(
ki

ρ

)
=

+∞∫

−∞

k′ρ
εr1k′0z + k′1z

(
ki

1zk
′
0z + ki

ρk
′
x

)
W

(
ki

ρ − k′x
)
dk′x. (6.25)

Approximate analytical forms can also be found for the functions (6.24) and (6.25), as

it has been done for (6.12). Note that in contrast to the 3D case shown below, for non-

oblique (to y-axis) incidence, no cross-polarization component for the polarization

current is generated; thus, no depolarization effects are observed for the 2D problem.

Unlike the results from geometrical optics approximations (the Ament and Miller-

Brown formulations), (6.11) and (6.23) show that the amount of correction to the

reflection coefficient is dependent on the polarization. Also, the correction factor is

a complex number as opposed to a purely real number as specified by geometrical

optics; the complete statistics of the rough surface are taken into account through

the parameter ∆ and the function W (·).
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6.3 Simulation Results

In order to validate the accuracy and convergence of the perturbation-derived ef-

fective reflection coefficients as given in the previous section, the perturbation method

is applied to the constant perturbation function f(x) = −1, resulting in a flat inter-

face problem with a well-defined exact solution; thus, in this case, the deterministic

coherent field in (6.7) can be found to arbitrary order N . Figure 6.3 shows the

error in the computed scattered field as functions of perturbation order for a TM

line radiator located above a half-space with a varying interface as specified by the

parameter ∆. Since the wave vectors responsible for the interaction at grazing angle

are almost entirely parallel to the horizontal plane of the surface (i.e., kz ¿ λ), the

variation of the polarization current in z is small; therefore, even in the presence

of significant roughness (large ∆), the first few orders of the current are adequate

in capturing the scattering characteristics of the surface. (The application of the

perturbation method for analyzing grazing propagation behavior above a dielectric

sinusoidal surface is included in Appendix D.)

6.3.1 Validation with Monte Carlo Simulations

In this section, the effective reflection coefficients derived in Section 6.2 are em-

ployed for characterizing the near-grazing radiation properties of 2D sources located

above a rough surface. The radiators of interest here include the electric and mag-

netic line sources, free space fields of which are given by

{
~Ee. line (x, z) , ~Hm. line (x, z)

}
=

+∞∫

−∞

ŷ {Eo, Ho} eiki
xx−iki

0zzdki
x, (6.26)

with

Eo =
koZo

4πki
0z

eiki
0zz′−iki

xx′ ; (6.27)
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Figure 6.3: Convergence as functions of ∆ for perturbation solution applied to flat interface geom-
etry: (a) percent error in field amplitude and (b) error in phase as compared to exact
Sommerfeld solution; d = 2.1λ; z′ = 3.5λ; z = 2.5λ; the source is a TM line source;
distance between source and observation point = 100λ.
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Ho = − koYo

4πki
0z

eiki
0zz′−iki

xx′ ; (6.28)

ki
0z =

√
k2

o − ki
x
2; (6.29)

and (x′, z′) denotes the location of the source; the scattered field due to the ground

appears as

{
~Es

e. line (x, z) , ~Hs
m. line (x, z)

}
=

+∞∫

−∞

ŷ {Eo, Ho}
{

Ri,eff
h , Ri,eff

v

}
eiki

xx+iki
0zzdki

x.

(6.30)

For observation points in the far field, the second order asymptotic method as intro-

duced in Chapter II can be applied for the evaluation of (6.30). After the transfor-

mation ki
x = ko sin w, saddle point integration leads to

{
~Es

e. line (x, z) , ~Hs
m. line (x, z)

}
≈ ŷ

{
koZo

4π
,−koYo

4π

} √
2π

ikoρ

·
[{

R̃i,eff
h (ws) , R̃i,eff

v (ws)
}

+
1

ikoρ

(
1

2

{
R̃i,eff

h
′′ (ws) , R̃i,eff

v
′′ (ws)

}

+
1

8

{
R̃i,eff

h (ws) , R̃i,eff
v (ws)

})]
; (6.31)

where ρ=
√

(x− x′)2 + (z + z′ − 2d)2;
{

R̃i,eff
h , R̃i,eff

v

}
is the expression in (6.11) and

(6.23) without the e−i2dki
0z term; and the saddle point ws is

ws = tan−1

(
x− x′

z + z′ − 2d

)
. (6.32)

Figures 6.4–6.6 show the comparison of the total fields computed from the perturba-

tion solution and from Monte Carlo simulations; very good agreement is seen in both

the field amplitude and phase. The variation of the signal intensity as function of

surface correlation length is shown in Figure 6.7; for constant σ, the signal intensity

decreases with cl, consistent with the discussions of Chapter V; this result can be

attributed to the shadowing effect, the dependence upon cl of which is more apparent
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at grazing angles; this is seen in Figure 6.8, which plots Ωy

(
ki

ρ

)
as function of the

saddle point angle; similar curves for Ωx

(
ki

ρ

)
and Ωz

(
ki

ρ

)
in the vertical polarization

case can be generated.

6.3.2 Extension to 3D

Having validated the accuracy of the perturbation-derived, rough-surface effective

reflection coefficients in the 2D case, their complementary 3D forms are presented in

this section. Since the analytical procedure is analogous to that of the 2D case, only

the direct results are shown below.

For a horizontally-polarized incident wave ~Ei = ei~ki·~rĥ—where ĥ =
~ki×ẑ

|~ki×ẑ| , ~ki =

ki
xx̂ + ki

yŷ − ki
0z ẑ, the effective reflection coefficient is

Ri,eff
h =

{
Ri

h +
∆2

2
k2

o (εr1 − 1)
(
1−Ri

h
2
)

−∆2k2
o (εr1 − 1)2 (

1 + Ri
h

) Ωh

(
ki

x, k
i
y

)

(2π)2 (ki
0z + ki

1z)

}
e−i2dki

0z ; (6.33)

where

Ωh

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
k2

o

k′0z + k′1z

·
(

ki
xk
′
x + ki

yk
′
y

ki
ρk
′
ρ

)2

+
k′0zk

′
1z

εr1k′0z + k′1z

·
(

ki
yk
′
x − ki

xk
′
y

ki
ρk
′
ρ

)2
}

W
(
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y; (6.34)

and, for a surface with Gaussian height distribution and correction function,

W
(
k′x, k

′
y

)
= c2

l πe−
c2l (k′2x +k′2y )

4 . (6.35)

For a vertically-polarized incident wave ~Ei = ei~ki·~rv̂—where v̂ = ĥ×~ki

ko
, the coeffi-
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cient becomes

Ri,eff
v =

{
Ri

v −
∆2

2
k2

o (εr1 − 1)
(
1−Ri

v
2
)

−∆2 (εr1 − 1)
ki

ρ
2

(εr1ki
0z + ki

1z)

[(
Ri

v − 1
)
ki

0z −
(
Ri

v + 1
)
ki

1z

]

− ∆2

(2π)2k2
o (εr1 − 1)2 1

(εr1ki
0z + ki

1z)

· [(1−Ri
v

)
Ωv,1

(
ki

x, k
i
y

)
+

(
1−Ri

v

)
Ωv,2

(
ki

x, k
i
y

)

+
(
1 + Ri

v

)
Ωv,3

(
ki

x, k
i
y

)]
}

e−i2dki
0z ; (6.36)

with

Ωv,1

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
−ki

0zk
i
1z

k′0z + k′1z

·
(

ki
xk
′
x + ki

yk
′
y

ki
ρk
′
ρ

)2
}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y; (6.37)

Ωv,2

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
−ki

0zk
′
1z

εr1k′0z + k′1z

·

·

[
ki

1zk
′
0z

(
ki

xk
′
x + ki

yk
′
y

)
+

(
ki

ρk
′
ρ

)2
] (

ki
xk
′
x + ki

yk
′
y

)
(
koki

ρk
′
ρ

)2

}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y; (6.38)

Ωv,3

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
ki

1zk
′
0z

(
ki

xk
′
x + ki

yk
′
y

)
+

(
ki

ρk
′
ρ

)2

k2
o (εr1k′0z + k′1z)

}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y. (6.39)

In the 3D case, cross-polarization current and field components are also generated;
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for horizontally-polarized incidence, the coefficient of the vertically-polarized field is

Ri,eff
vh =

{
−∆2k2

o (εr1 − 1)2 1

(2π)2 (ki
0z + ki

1z)

·
[(

1−Ri
v

)
Ωvh,1

(
ki

x, k
i
y

)
+

(
1−Ri

v

)
Ωvh,2

(
ki

x, k
i
y

)

+
(
1 + Ri

v

)
Ωvh,3

(
ki

x, k
i
y

)]
}

e−i2dki
0z ; (6.40)

with

Ωvh,1

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
kok

i
0z

k′0z + k′1z

·
(
ki

xk
′
x + ki

yk
′
y

) (
ki

yk
′
x − ki

xk
′
y

)
(
ki

ρk
′
ρ

)2

}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y; (6.41)

Ωvh,2

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
−ki

0zk
′
0zk

′
1z

ko (εr1k′0z + k′1z)
·
(
ki

xk
′
x + ki

yk
′
y

) (
ki

yk
′
x − ki

xk
′
y

)
(
ki

ρk
′
ρ

)2

}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y; (6.42)

Ωvh,3

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
k′0z

(
ki

yk
′
x − ki

xk
′
y

)

ko (εr1k′0z + k′1z)

}
·W (

ki
x − k′x, k

i
y − k′y

)
dk′xdk′y. (6.43)

Similarly, for vertically-polarized incidence, the coefficient of the horizontally-polarized

field is

Ri,eff
hv =

{
−∆2k2

o (εr1 − 1)2 1

(2π)2 (εr1ki
0z + ki

1z)

·(1 + Ri
h

) [
Ωhv,1

(
ki

x, k
i
y

)
+ Ωhv,2

(
ki

x, k
i
y

)]
}

e−i2dki
0z ; (6.44)

with

Ωhv,1

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
kok

i
1z

k′0z + k′1z

·
(
ki

xk
′
x + ki

yk
′
y

) (
ki

xk
′
y − ki

yk
′
x

)
(
ki

ρk
′
ρ

)2

}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y; (6.45)
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Ωhv,2

(
ki

x, k
i
y

)
=

+∞∫

−∞

+∞∫

−∞

{
k′1z

ko (εr1k′0z + k′1z)

·

[
ki

1zk
′
0z

(
ki

xk
′
x + ki

yk
′
y

)
+

(
ki

ρk
′
ρ

)2
] (

ki
yk
′
x − ki

xk
′
y

)
(
ki

ρk
′
ρ

)2

}

·W (
ki

x − k′x, k
i
y − k′y

)
dk′xdk′y. (6.46)

The radiation pattern of a dipole source can be computed by inserting the effective

reflection coefficients listed above into the half-space asymptotic formulations (2.9)–

(2.17) from Chapter II; in order to justify this procedure, it is important to mention

that all the forms of Ω
(
ki

x, k
i
y

)
are functions of ki

ρ only; this can be seen with the

change of variable k′x = k′′ρ cos γ′′+ki
x, k′y = k′′ρ sin γ′′+ki

y, ki
x = ki

ρ cos γi, ki
y = ki

ρ sin γi,

and subsequently realizing that the equivalent forms for Ω are expressible in the

azimuthal parameters as f (cos (γi − γ′′) , sin (γi − γ′′)).

Figures 6.9 and 6.10 show the propagation loss for the dipole source (positioned

on the z-axis) as functions of distance and surface statistics.

6.4 Conclusion

In view of the limited practicality of existing closed-form expressions for analyzing

the scattering characteristics of random rough surfaces as relevant to the near-earth

radio channel, a new set of expressions for the coherent effective reflection coefficients

is presented in this work. The basis of the derivation is founded upon the volumetric

current-based perturbation approach originally prescribed in [35]. In applying the

results of this study to compute the radiation of 2D and 3D sources, it is noted

that even in the presence of significant roughness, a coherent cancellation still occurs

between the LOS signal and the ground scattered signal in the far field, establishing

a ground wave important in long-distance transmission. The signal strength also
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has a strong dependence on surface correlation statistics; however, for most realistic

terrain surfaces of interest, it is seen that the roughness may only weaken the ground

wave by up to ≈ 5–6 dB as compared to the smooth interface case.

As the initial step in the perturbation approach assumes that the plane wave pro-

viding the excitation is impinging upon the rough surface from free space, the formu-

lations introduced for the effective reflection coefficients are valid only for transmitter

locations located above the mean surface height (z = d). Nevertheless, because of

the generality of the outlined perturbation approach, it is conjectured here that a

similar procedure can be applied in deriving the polarization current and the scat-

tered signal for NLOS propagation paths and even for when the radio terminals are

embedded within the ground. In addition, few modifications are needed in adapting

the formulations to solve the problem in which a ground with an inhomogeneous

or stratified dielectric profile is situated below the rough layer region; the essential

adjustment is done by replacing the flat-interface reflection coefficients within the

expressions for the polarization currents with their equivalent counterparts for the

inhomogeneous profile.
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Figure 6.4: Total field (Ey) of TM line source located above a dielectric random surface with koσ =
π and kocl = 10π; d = 2λ; x′ = 200λ; z′ = 4.9λ; z = 4.3λ; εr1 = 2 + i; f = 300 MHz.
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Figure 6.5: Total field of TE line source located above a dielectric random surface with koσ = 2π
and kocl = 40π; d = 4λ; x′ = 200λ; z′ = 8.4λ; z = 8λ; εr1 = 2 + i; f = 300 MHz.
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Figure 6.6: Total field of TE line source located above a dielectric random surface with koσ = 2π
and kocl = 40π; d = 4λ; x′ = 200λ; z′ = 6λ; z = 6λ; εr1 = 8 + 6i; f = 300 MHz.
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Figure 6.7: Total field of TM line source above a rough surface as functions of surface correlation
length and distance; σ = 1λ; d = 4λ; x′ = 200λ; z′ = z = 8λ; εr1 = 2+ i; f = 300 MHz.
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Figure 6.9: Excess path-loss of (a) vertical dipole and (b) horizontal dipole (x̂-directed) located
above a dielectric random surface with koσ = 2π; d = 4λ; z′ = 8.4λ; z = 8λ; εr1 = 2+ i;
f = 300 MHz; observation point is above the y-axis.
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Figure 6.10: Excess path-loss of vertical dipole located above a dielectric random surface with
d = 4λ; z′ = 8.4λ; z = 8λ; εr1 = 2 + i; f = 300 MHz: (a) constant correlation length
at kocl = 10; (b) constant rms slope.



CHAPTER VII

Terminal-to-Terminal Hybrid Full-Wave Simulation of
Low-Profile, Electrically-Small, Near-Ground Antennas

7.1 Introduction

Whereas an immense volume of literature has been devoted to characterizing radi-

ation properties such as input impedance and current distribution of wire antennas

located above, partly submerged, or fully submerged in a realistic earth [92–104],

only few attempts have been made in explicitly comparing the system performances

among these or other types of grounded antennas, especially for electrically-small

radiators. Nevertheless, the vast quantity of existing studies in this subject under-

scores the importance of ground proximity effects in designing antennas pertaining

to a gamut of applications including ground penetrating radars, geophysical sensing,

landmine detection, telemetry, near-earth and subsurface communication systems,

and others. For UGS surveillance applications, since the overall transceiver mod-

ule must be as inconspicuous as possible to elude detection, the antennas should be

low-profile, or even implanted within the ground; furthermore, since the preferred

frequency of operation is at the VHF band to attain maximum range coverage, these

antennas must be electrically-small as well. To facilitate optimal performance for an

UGS network, an optimal antenna design must be selected.

To gain an initial insight into the scope of the problem treated in this chapter,

138
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consider the four basic transmitting/receiving systems—consisting of ideal vertical or

horizontal infinitesimal dipoles located adjacent to the air/ground interface—shown

in Figure 7.1. For coherent wave propagation over flat ground, it is well known that

vertically polarized waves experience less attenuation than horizontally polarized

waves. For a simple dipole antenna placed directly over a dielectric ground, it can be

shown that the electric field strength in the far field from a vertical dipole is superior

to that from a horizontal dipole; the superiority in performance of the vertical dipole

transmitter can be explained through symmetry, reciprocity, and boundary condition

arguments. After noting that the far field component of interest at the receiver in

the V V system is Ezz and in the HH system is Exx and realizing that when the

same two configurations are repositioned to immediately below the interface, lateral

wave propagation (Chapter II, [24]) would impose the constraint that E∗
zz = E∗

xx

(the asterisk notation is reserved for quantities of interest in the lower medium), it

can be shown

Ezz = ε2
rgExx = ε2

rgE
∗
xx = ε2

rgE
∗
zz. (7.1)

Although the derived result is only applicable for the prescribed idealized systems

located adjacent to the interface (while assuming identical current excitations at the

transmitting terminals), it nevertheless—in simplistic terms—leads once again to the

intuitive conclusion that V V outperforms HH, V V ∗, and HH∗—with the relevant

factor of proportionality among the systems determined by the permittivity of the

ground. Of course, in order to fully characterize and compare the performances of

the above systems, the impedance mismatch and the actual radiated and received

powers at the transmitting and receiving terminals must be taken into account;

in addition, careful consideration must be exercised in placing the receiver in the

direction of maximum radiation intensity of the transmitter, as the radiation pattern
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Figure 7.1: Idealized V -pol. and H-pol. transmitting and receiving dipole pairs located immedi-
ately above the air/ground interface: (a) V V and (b) HH. The notations V V ∗ and
HH∗ are used herein when the pairs are repositioned immediately below the interface.

of an antenna can dramatically change due to the presence of the ground.

Consequently, for a complete understanding of the performance of any transmit-

ter/receiver pair, it is necessary to undertake a full-wave analysis in this problem;

the following three-step procedure is proposed: (1) the current distribution on the

transmitting antenna near ground is calculated through method of moments (MoM)

considerations; (2) then the radiated field pattern of the transmitting antenna is

characterized in the far field by propagating the fields using very accurate second

order asymptotic formulations; (3) finally, the induced current distribution on the

receiving antenna near ground is calculated through MoM considerations again. In

carrying out step three above, it is noted that the incident field on the receiving

antenna may not be strictly of a TEM (Transverse ElectroMagnetic) wave. For ex-

ample, for a vertical impulse current source, when both the source and observation
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points are located at or very close to the interface above a dielectric ground and

are separated by a radial distance ρ, the total radiated field is the superposition

of the direct, geometrical optics reflected, and Norton wave fields and is given by

Chapter II:

Ez =
iωµo

4π

eikoρ

ρ

{
1 + Rv −

i

2koρ

[
R
′′
v −

9

4
Rv

]}
;

Ex =
ωµo

4π

eikoρ

ρ2
cos φ

{
R
′
v

ko

}
;

Ey =
ωµo

4π

eikoρ

ρ2
sin φ

{
Rv

′

ko

}
;

where Rv is the vertical polarization reflection coefficient and the single and double

primes indicate differentiation as defined in Chapter II; it is seen that in general

the total field does not form a pure plane (TEM) wave since Eρ is non-zero; similar

results are relevant for a horizontal current source. Although existing simulation

software packages can provide MoM modeling for an arbitrary antenna structure,

they can only calculate the induced current on the structure for an incident field in

the form of plane waves. For near-earth wave propagation problems, in which source

and observation points could be in extreme proximity to the ground surface and the

dominant wave contribution is non-geometrical-optics in nature, generic simulation

software packages are handicapped by their inability to generate accurate results at

the receiving end; as an additional drawback, the computational domain in standard

simulation tools is limited to a relatively small volume that cannot encompass both

the transmitting and a distant receiving antenna.

The proposed full-wave hybrid approach and the necessary formulations for the

MoM analysis of general antenna structures used in this study are outlined in Sec-

tion 7.2, along with a discussion on the efficient evaluation of the Green’s functions

for a half-space. In Section 7.3, numerical results for the performance of different
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antenna systems including the dipole, loop, ordinary circular slot, and cavity-back

circular slot are compared in terms of input impedance, radiation pattern, and in-

put/output power efficiency.

7.2 Formulations for Numerical Analysis

A detailed description of the full-wave hybrid approach for analyzing grounded

antenna performance is provided in this section.

7.2.1 MPIE-MOM

To calculate the radiating and induced currents at the transmitting and receiv-

ing antennas, a MoM procedure is solved through the use of a standard form of the

electric field integral equation. For an arbitrary field impinging upon a perfectly con-

ducting structure, the mixed potential integral equation (MPIE) in terms of vector

potential ~A and scalar potential Φ is given by the following:

n̂×
[
~Einc(~r) + ~Escat(~r)

]
= 0, ~r ∈ antenna surface s; (7.2)

~Escat(~r) = iω ~A(~r)−∇Φ(~r); (7.3)

where

~A(~r) =

∫

s

GA(~r, ~r′) · ~Js(~r
′)d~r′; (7.4)

Φ(~r) =
1

iω

∫

s

GΦ(~r, ~r′)∇′ · ~Js(~r
′)d~r′. (7.5)

The dyadic and scalar Green’s functions have been derived [105–107] for the case

when the region of interest is the upper medium of the half-space in Figure 7.1:

GA(~r, ~r′) =
µo

4π





gfsI +




0 0 gxz

0 0 gyz

−gxz −gyz −2Kgi




+




Ixx 0 Ixz

0 Ixx Iyz

−Ixz −Iyz Izz








; (7.6)
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GΦ(~r, ~r′) =
1

4πεo

{gfs + Kgi + IΦ} ; (7.7)

where I is the unity matrix and

gfs,i =
eikoRfs,i

Rfs,i

; (7.8)

gxz = −K cos φ

[
1

ρ
eiko(z+z′) − (z + z′)

ρ
gi

]
; (7.9)

gyz = −K sin φ

[
1

ρ
eiko(z+z′) − (z + z′)

ρ
gi

]
; (7.10)

Rfs =
√

ρ2 + (z − z′)2;

Ri =
√

ρ2 + (z + z′)2; (7.11)

K =
1− εrg

1 + εrg

.

In the above expressions, the quantities denoted by subscripts “fs” and “i” corre-

spond to free space and image components, respectively. The Sommerfeld integrals

(Is) needed to complete (7.6) and (7.7) are defined in Appendix E. A set of expres-

sions similar to (7.6)-(7.11) can be derived for the case when the region of interest

is the lower medium of the half-space.

After meshing the antenna structure with triangular facets (Figure 7.2), by ex-

panding the unknown surface current density ~Js as a summation of Rao-Wilton-

Glisson (RWG) basis functions [108, 109] and then testing (7.2) with the same type

of functions, a matrix equation is formed, enabling the calculation of the surface

current distribution throughout the antenna structure. A procedure similar to the

one shown in [108] can be used for setting up the matrix equation; and, with the

introduction of normalized area coordinates, the face-pair combination evaluation

can be implemented to speed up the impedance matrix filling process by eliminating

redundant computational routines inherent in the edge-pair combination evaluation.
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(a) (b) (c)

(d) (e)

Figure 7.2: (a) Vertical dipole; (b) horizontal dipole; (c) horizontal loop; (d) ordinary circular slot;
(e) cavity-backed circular slot; the dimensions of each geometry are given in Table 7.1.
Note that the cavity-backed circular slot structure protrudes above the air/ground in-
terface.

For a voltage-source excited antenna, a delta-gap model is assumed for the excita-

tion vector in the matrix equation; in this model, an incident field only exists over

the triangular patches spanning the gap location. For a more general incident field,

the value of the incident field is assumed to be constant over each patch and equal

to its value at the patch’s centroid. Also, impedance loading of the antenna at the

feed point can be treated by regarding the unknown voltage across the load as an

equivalent incident field at the delta-gap [110].

7.2.2 Approximation for Green’s Functions

Note that two primary difficulties are encountered when calculating the impedance

matrix elements using (7.6) and (7.7). One is due to the singularities that would
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emerge in the expressions gfs, gi, gxz, and gyz for certain impedance elements;

however, singularity extraction techniques have been used successfully in obtaining

closed-form solutions to the so-called self-terms [111–113]; also, a quadrature routine

can be employed in computing the elements containing gxz and gyz even in the pres-

ence of singularities. The second difficulty concerns the calculation of the impedance

matrix elements in the presence of the Sommerfeld integrals (E.1)–(E.5); implement-

ing an exact routine to calculate the impedance matrix elements would necessitate

the evaluation of a triple integral; to expedite the matrix filling process, different com-

mon schemes are available in efficiently calculating the Sommerfeld integrals—either

by speeding up the convergence rate of the integrals or approximating the integrals

with closed-form expressions. Since the Sommerfeld integrals are slowly convergent

(especially for small (z + z′)) along the original path on the real-axis, a deformed

path (e.g., steepest descent path) can be exploited to achieve faster convergence. To

avoid repeated calculation of the same integrals, another class of methods uses a pre-

compute/tabulate/interpolate routine in which the values of the integrals at a finite

number of sampled spatial locations are calculated in advance (using convergence

acceleration techniques) and then are stored in a database to serve as a base set for

interpolation by the MoM procedure. In this study, the method of discrete com-

plex images (DCIM) is employed to approximate all the Sommerfeld integrals with

closed-form analytical expressions; thus, by eliminating the innermost of the triple

integral, the remaining double integral can be carried out readily using a standard

quadrature algorithm. After mapping the integrands of (E.1)–(E.5) as a sum of N

exponentials of the form
N∑

v=1

αve
ikozβv on the complex koz-plane using the Generalized

Pencil of Function (GPOF) method [114–117], either of the following two identities is

applied in approximating the resulting simplified Sommerfeld integrals in canonical



146

forms:
∞∫

0

i

koz

eikoz(z+z′)Jo(kρρ)kρdkρ =
eikoRi

Ri

; (7.12)

∞∫

0

eikoz(z+z′)J1(kρρ)k2
ρdkρ =

ρ(z + z′)eikoRi

R5
i

[
3− 3ikoRi − k2

oR
2
i

]
. (7.13)

Following the recipe given above, the five Sommerfeld integrals of interest have

been approximated with an error of less than 1% in this study; Figures 7.3 and 7.4

show a comparison between the exact values of these Sommerfeld integrals and the

approximations provided by the method of discrete complex images with N = 9. In

a particular propagation medium, note that each set of complex images is only valid

in a particular spatial and spectral domain—in other words, each set affords accurate

estimation only over a limited range of ρ, (z + z′), and frequency. (Formally, unlike

that of (7.12), the right side of (7.13) is not in the proper form to be labeled as a

“complex image” contribution; nonetheless, the name “method of discrete images”

will continue to be adopted when referring to this technique.)

In examining (7.6) and (7.7), it can be seen that for a structure supporting purely

horizontal currents (e.g., ordinary circular slot), only two Sommerfeld integrals—

(E.1) and (E.2)—are needed in setting up the matrix equation. Furthermore, for a

general 3D structure, it has been observed that the non-diagonal components (i.e.,

the directionally-mixed response terms GA
xz, GA

zx, GA
yz, and GA

zy) of the dyadic Green’s

function have only minor contributions to the total impedance matrix.

7.2.3 Half-Space Asymptotic Field Propagator

Once the current distribution has been obtained from the MPIE-MoM, the ra-

diation properties of a transmitting antenna can be characterized by applying an

appropriate propagation model in accordance with the geometry and physical prop-

erties of the propagation medium. For a current source located over a flat ground
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surface, a second order asymptotic approximation can be derived from an exact solu-

tion in computing the radiated fields; the formulations necessary for this step can be

deduced from the expressions given in Chapter II specialized to a half-space medium.

At the receiving terminal, in order to maximize its response to the stimulating in-

cident field, the receiving antenna is connected a load conjugately matched to its

input impedance. Note that mutual coupling effects have been neglected by placing

the receiver in the far field region of the transmitter.

It should be mentioned that although the hybrid MoM and asymptotic propagator

approach as outlined above has been described only for antennas located above the

air/ground interface, an equally valid and conceptually similar set of formulations

and procedures exists for the subsurface case. The only major deviation results

from the fact that when the antennas are submerged in a lossy medium, the mode of

propagation taken by the fields is in the form of lateral waves instead of Norton waves

(Chapter II, [24]); hence, the asymptotic propagator should be modified accordingly.

7.3 Numerical Results and Discussions

There are two sources of complications in the attempt to characterize the perfor-

mance of an antenna in the presence of a lossy dielectric ground: (1) the effect of

dielectric loading on the antenna’s ability to radiate and receive power and (2) the

effect of the ground on the radiation pattern. In a lossless, homogeneous medium, it

is desirable to maximize an antenna’s ability to radiate real power for a given unit

of excitation (or for a given magnitude of current) at the feed point. This ability to

radiate is conveniently captured by the input resistance (Rin) of a lossless antenna

since a measure of the amount of power radiated is always consistent—either from

the point of view of the excitation source supplying the power or from that of an
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imaginary sphere surrounding the antenna and intercepting the outward-propagating

power. As a result, the value of Rin of the transmitter directly indicates the magni-

tude of stimulation available at the receiver—assuming the receiver itself is properly

positioned and oriented with respect to the transmitter. The proximity to a ground

not only modifies an excitation source’s ability to inject energy into an antenna but

also—since energy is absorbed by the lossy dielectric—diminishes the usefulness of

Rin as a performance indicator; alas, a larger Rin may only signify that more energy

is coupled into the ground but furnish little information on the actual far field power

deliverable to a receiver. Given the difficulty of defining practical parameters such as

effective radiation resistance, gain, and antenna efficiency in the presence of a lossy

environment, a quantity called the relative communication efficiency (RCE)—which

is calculated as the ratio of the input power at a reference antenna to that at a test

antenna when the same field strength is to be observed for both—has been introduced

to serve as a figure of merit for evaluating different antenna systems [118, 119]. In

this work, a similar but slightly different quantity for comparison purposes is defined

while taking into account the response of the receiver; since the simulations carried

out in this study assume that the same type of antenna is always used at both the

transmitting and receiving ports, a system efficiency factor (fe) can be established

by simply calculating the ratio of the maximum power received at the receiving ter-

minal to the total power delivered to the transmitting terminal. To maximize the

received power, the receiving antenna is placed in the direction of maximum radia-

tion intensity of the transmitter and—as already mentioned—is conjugately matched

as well.

Now the four basic dipole transmitting/receiving systems put forward in Sec-

tion 7.1 can be analyzed in a more precise and satisfying manner using the full-wave
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Configuration Antenna Dimensions 
Iin

(normalized) 
Zin [Ω]

Pin

(normalized) 

Prec,max 

(normalized) 

fe [dB] =  

Prec,max/Pin

(normalized)

Dipole – VV
Length = 0.1λ0

Wire Radius = 10-4λ0
1 13.8-1818.8j 1 1 0 

Dipole – HH

φ = 0º 

Length = 0.1λ0
Wire Radius = 10-4λ0

4.7 259.1-285.9j 4.14×102 1.05×10-2 -46.0 

Dipole – HH

φ = 90º 

Length = 0.1λ0
Wire Radius = 10-4λ0

4.7 259.1-285.9j 4.14×102 1.32×10-4 -65.0 

Dipole – VV*
Length = 0.1λ0

Wire Radius = 10-4λ0
11.6 126.0-93.5j 1.22×103 3.91×10-4 -64.9 

Dipole – HH*

φ = 0º 

Length = 0.1λ0
Wire Radius = 10-4λ0

7.2 188.6-168.9j 7.01×102 3.78×10-2 -42.7 

Dipole – HH*

φ = 90º 

Length = 0.1λ0
Wire Radius = 10-4λ0

7.2 188.6-168.9j 7.01×102 4.61×10-4 -61.8 

Loop
Circumference = 0.1λ0
Wire Radius = 10-4λ0

7.7 33.5+232.9j 1.44×102 8.27×10-5 -62.4 

Ordinary 

Circular Slot 

(OCS) 

Slot Circumference = 0.1λ0
Slot Width =3×10-3λ0

Overall Circumference = 0.5λ0

38.0 37.1-30.3j 3.90×103 9.11×10-4 -66.3 

Cavity-Backed

Circular Slot 

(CBCS)

Slot Circumference = 0.1λ0
Slot Width = 3×10-3λ0

Overall Circumference = 0.5λ0
Cavity Height = 0.005λ0

8.7 1.3-210.0j 6.89 2.13×10-2 -25.1 

―

Slot Circumference = 0.1λ0
Slot Width = 3×10-3λ0

Overall Circumference = 0.5λ0
Cavity Height = 0.01λ0

6.5 0.5-281.6j 1.55 1.70×10-1 -9.6 

―

Slot Circumference = 0.1λ0
Slot Width = 3×10-3λ0

Overall Circumference = 0.5λ0
Cavity Height = 0.02λ0

5.5 0.2-328.0j 4.94×10-1 1.30×10-1 -5.8 

Table 7.1: Performance parameters for various low-profile antenna configurations as normalized to
the vertical dipole; distance between geometrical centers of transmitter and receiver is
100λ0; f = 300 MHz.

hybrid approach developed in Section 7.2. The results of the simulations for a typical

ground with εrg = 8 + 6i are provided in Table 7.1. Whereas the radiation pattern

of the vertical dipole is omni-directional, that of a horizontal dipole can change sig-

nificantly depending on the properties of the ground; as displayed in Figure 7.5, for

a horizontal dipole aligned along the x-axis, the direction of maximum radiation can

be along either the x- or y-axis; using the formulations from Chapter II, it can be

shown that the following relation exists between the fields at azimuthal locations

φ = 0◦, 180◦ and φ = 90◦, 270◦:

Eφ=0◦,180◦
xx = (1− εrg)E

φ=90◦,270◦
xx . (7.14)

Thus, when the condition |1− εrg| ≤ 1 holds, the maximum (of Exx) remains at
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φ = 90◦, 270◦—as it is in free space; otherwise, the maximum is at φ = 0◦, 180◦—

which is true for most realistic ground. According to (7.1), comparing the power

performances, a −40 dB (|εrg|4) difference separating V V from the other three con-

figurations is expected; however, locating the results for V V , HH (φ = 90◦), V V ∗,

and HH∗ (φ = 90◦) in Table 7.1, the actual difference is seen to be around −62 dB

to −65 dB instead; the discrepancy is anticipated since the latter values include the

effects of dielectric loss at the transmitting and receiving terminals, as the antenna

near-field power that is normally reactive in a lossless medium is now being dissi-

pated as real power. By re-arranging the horizontal dipoles in an end-to-end (or

in-line) fashion (Figure 7.6) for optimal reception (with the proportional factor in

(7.1) replaced by ε2
rg/(1−εrg)), the performances of the HH and HH∗ configurations

improve to −46 dB and −42.7 dB, respectively. (In this example, HH∗ outperforms

HH since while the physical length of the dipole is kept constant at 0.1 free space

wavelength (0.1λ0), the effective electrical length of the dipole is larger when it is in

the ground.)

Given that the magnitudes of ε2
rg and ε2

rg/(1− εrg) are larger than unity for a re-

alistic ground, the performance of the V V configuration would always be superior to

those of other dipole configurations—even if near-field dielectric losses are ignored.

The performance parameters of another low-profile antenna, the horizontal circular

loop, are included in Table 7.1. Because an electrical loop is mostly a magnetic ele-

ment with positive stored reactive power in its near field region, it has the advantage

of being less vulnerable to the dielectric loss of the ground; however, cancellation

between the actual loop current and its image is responsible for the rather poor per-

formance observed; of course, similar image cancellation occurs for the horizontal

dipole as well. Note that when an antenna is placed adjacent to the ground surface,
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it appears electrically larger and therefore its input impedance is forced to adjust

accordingly; specifically, for electrically-small antennas, compared to the free space

values, the resistance is increased whereas the reactance becomes less negative for

a capacitive terminal (e.g., a two-terminal dipole) and more positive for an induc-

tive terminal (e.g., loop). (Proper matching techniques are needed to maximize the

practicality of the antennas connecting to an actual transceiver system but are not

discussed here.) As mentioned, the enhancement in the input resistance of the trans-

mitter, however, may not directly translate into higher received power at the receiver

since the proximity to a lossy ground may cause a shift in the antenna’s balance of

near-field stored reactive power and real dissipated power, which now must include

the effects of dielectric loss. It is worth mentioning that by insulating the anten-

nas, a purely reactive region in the immediate vicinity of the current source can be

re-established, thereby reducing the amount of dielectric loss; coated wire antennas

immersed in an homogeneous conducting medium have been examined, for exam-

ple, in [120] and [121]; modifications are needed, however, if the detailed analysis

presented in these studies is to be extended to the present half-space problem.

The superior performance of the V V system is attributed to the boundary condi-

tion effect, as mentioned in Section 7.1, and also the height gain effect—a consequence

of the fact that the current distributions of the system are elevated off the ground.

Accordingly, the key for optimization is to mimic the properties of the vertical dipole

with a low-profile design. The theoretical equivalent of a vertical dipole is a small

circular slot—assuming a constant magnetic loop current can be established in the

slot. Although the analysis of a circular slot on an infinite perfectly conducting

plane above a dielectric space has been carried out in a number of studies, includ-

ing [122] and [123], the results of conventional studies cannot be readily applied to



152

the present problem since the interest for the radiation pattern is no longer in the

main-beam (or bore-sight, θ = 0◦) direction but rather in the edge (θ = 90◦) radi-

ation direction, which demands the effects of a finite-sized conducting plane to be

taken into account in an extremely accurate manner that is achievable only through

the use of a full-wave numerical method. Also, the focus of most existing studies is

on resonant slots operating with a slot circumference of 1λ; the radiation properties

of an electrically-small slot located over a lossy ground have not been thoroughly

investigated for near-earth propagation scenarios.

The geometry of an ordinary circular slot (OCS) antenna used in this work is

shown in Figure 7.2; the antenna’s radiation patterns are shown in Figures 7.7 and

7.8, with the simulation results displayed in Table 7.1. The unexpected poor per-

formance of the OCS can be explained by realizing that the assumption of vertical

dipole equivalence only holds for the case when the perfectly conducting ground

plane is infinite in extend. In practice, when the conducting plane is finite, the radi-

ation from the equivalent magnetic loop currents flowing in opposite directions and

located on the top and bottom sides of the antenna ground plane would nullify each

other (at θ = 90◦). Note that while an increase in the size of the ground plane may

contribute an enhancement to the radiation pattern in the boresight direction, infe-

rior performance would remain in the edge radiation direction, which is the critical

region of interest for near-earth propagation problems. In order to circumvent the

finite-ground-plane deficiency inherent in simple slot loop antennas and to achieve

a better vertical dipole equivalent, the radiation from the bottom side of the open

slot must be shielded with a cavity, thereby allowing the top magnetic loop current

to radiate more effectively and omni-directionally. The resulting radiation patterns

for the cavity-backed circular slot (CBCS) antenna are shown in Figures 7.7 and 7.8;
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it is seen that the CBCS can provide a much better imitation of the vertical dipole

than the OCS while maintaining a planar, low-profile architecture. The enhanced

performance of the CBCS can also be attributed to its ability to support a vertical

current density on the sidewall of its cavity: by radiating and receiving using Jz and

Ez, the CBCS—as evident from Table 7.1—can achieve a much higher efficiency fac-

tor than the other low-profile alternatives. From the viewpoint of an electric current

interpretation, the cavity-backed circular slot is similar to the vertical dipole except

that the vertical current density is now distributed along a circular band instead

of along a vertical line. Radiation from the top and bottom covers of the cavity is

minimal since the currents flowing on each are in opposite directions. The use of the

cavity also brings about an additional functional advantage: through a suppression

of radiation in the backside, dielectric loss in the near-field region of the antenna

is reduced substantially; this is reflected in the CBCS’s small radiation resistance,

which is characteristic of electrically-small antennas in free space. An efficiency fac-

tor of −9.6 dB is achieved for a CBCS with a cavity height of, for instance, 0.01λ0;

this “gain” can be enhanced by increasing the cavity height; by doubling the cavity

height to 0.02λ0, simulation results indicate that the efficiency factor is increased to

−5.8 dB. It should be mentioned that although the results herein do not account

for the ohmic loss of the antennas, a model for including finite conductivity in the

computations can be established by using the Leontovich boundary condition in the

MPIE-MoM formulation [124–126]. As the significance of this loss is also dependent

upon the specific methodology utilized to transform these structures into resonant

radiators, it is preferable to incorporate ohmic loss considerations during the fabri-

cation process.
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7.4 Conclusion

A numerical investigation into the radiation properties of electrically-small, low-

profile, near-ground antennas has been presented in this study with the introduc-

tion and development of a full-wave hybrid approach based partly on a MPIE-MoM

method and partly on an higher-order asymptotic wave simulator; in far field near-

earth wave propagation problems, such a rigorous terminal-to-terminal, power track-

ing approach is necessary since the interaction between the transmitting and receiving

antennas principally occurs at near-grazing angles, a region where the predominate

wave contribution is non-geometrical-optics. The discrete complex image method

has been applied to achieve efficient MoM computational routines. By calculating

the ratio of the receiving power to the total radiated power, a system efficiency

factor is employed as a figure of merit in facilitating performance comparison in

the presence of ground proximity effects for various low-profile alternatives to the

standard vertical dipole. Among the low-profile structures analyzed, the electrically-

small cavity-backed circular slot antenna has been identified as the best low-profile

replacement for the vertical dipole.
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Figure 7.3: Comparison between exact and complex-image approximated values for Sommerfeld
integrals (a) IΦ and (b) Ixz as functions of radial distance ρ from source point. Observe
that Iyz and Ixz differ only in terms of the azimuth variable. For the set of simulations
shown, N = 9, f = 300 MHz, and εrg = 8 + 6i.
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Figure 7.3, N = 9, f = 300 MHz, and εrg = 8 + 6i.
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CHAPTER VIII

Conclusion

Accurate solutions to an important set of problems relevant to the prediction of

radiowave propagation in the near-ground environment have been presented. The

propagation domain of interest is defined by natural terrain features; the derivation of

the solutions includes analytical, numerical, statistical, and experimental approaches.

The topics of discussion are summarized below, followed by a list of suggestions for

future studies.

8.1 Research Summary

The first part of this work describes the effects of vegetation and snow layers on

the near-ground radio channel. In Chapter II, the presence of a continuous dielectric

covering is considered by modeling the propagation environment as a homogeneous

two-layer medium. Complete second order asymptotic far field expressions are pro-

vided for arbitrary transmitting and receiving terminal locations. The roles and

importance of different contour integral contributions (i.e., branch cut, pole, saddle

point) are explained. It is seen that, for near-grazing propagation, a Norton wave

term analogous to that observed in the half-space configuration is the dominant sig-

nal contribution either when the transmitter and receiver are both located above the

dielectric layer or when one is above and the other is within the layer; this surface

160
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wave, which is supplied by the higher order component of the saddle point contri-

bution, must be included to correct the geometrical optics reflected field when the

locations of interest are localized within one to two wavelengths of the air/dielectric

interface. Of course, as it has been clarified by previous works, the lateral surface

wave (supplied by the branch cut) is the principal signal contribution when both

radio terminals are embedded within the vegetation or snow layer. Instead of a ray

or image method, a normal mode approach is employed for cases when the lateral

wave is not the dominant contribution; in this approach, the residue contributions,

which can be physically interpreted as guided modes in the form of either pole-surface

waves or leaky waves, are seen to provide negligible contribution in the far field. Sim-

ulation results computed using the derived field expressions indicate that the signal

intensity and signal frequency response at the receiver have a strong dependence on

the permittivities of the vegetation or snow layer and of the ground.

Noting that a vegetation layer may not be infinite in extend in the horizontal di-

rection, the higher order asymptotic model developed in Chapter II is subsequently

applied in analyzing the effects of a discontinuity in the dielectric layer. The basis

of the method introduced in Chapter III is a field integration approach derived from

the Kirchhoff-Fresnel principle and essentially provides a first order approximation.

The specific treatment assumes the transmitter is inside the foliage layer and the

receiver is positioned on the opposite side of the truncation plane with respect to

the transmitter location. The far field radiation pattern is calculated by integrating

the surface fields over 2D plane containing the truncation facet of the foliage; after

separating the relevant wave components on the spatial integration plane according

to their distinct phase variations, the encountered double integral is evaluated using

the method of stationary phase. Validation of the solution of this canonical problem
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is provided through comparisons with the results of a half-space configuration, a

ray-tracing routine developed by Tamir, and an experimental approach carried out

using a scaled-replica of the propagation geometry. In analyzing the field patterns as

a function of receiver height, it is seen that while a full 2D stationary phase approx-

imation can lead to accurate results for a receiver located high above the ground, a

modified approach in the form of a 1D stationary phase approximation augmented

with numerical integration in the vertical direction is more appropriate for a receiver

located in the near-ground region. The established approach shows improvements

over the existing ray-tracing technique in that fewer explicit assumptions are built

into the solution process. It is also noted that signal intensity measurements taken

from the scaled-replica of the truncated layer show good agreement with the theo-

retical calculations.

In both Chapters II and III, the terrain surface is assumed to be smooth; the ef-

fects of terrain irregularities encountered along the propagation path, however, must

be included for a complete description of the radio channel. In the second portion of

this work, in view of the fact that the near-ground propagation characteristics of an

undulating terrain cannot be accurately captured using standard analytical models, a

2D surface integral equation-based solver is developed for path-loss prediction. The

high-order routine implemented in Chapter IV allows the attainment of solutions

with a smaller number of unknowns as compared to conventional low-order solvers.

Upon further enhancement—namely, with acceleration facilitated by the fast multi-

pole method and with faster convergence provided by a phase extraction technique,

the implementation becomes an attractive tool for signal coverage prediction over

large terrain profiles. It is shown that by applying this solver, when combining with

an adaptive surface segmentation routine, as few as one to two average unknowns per
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wavelength is adequate in obtaining accurate solutions for a gently-varying terrain;

this significantly reduces the memory storage and computational expense for the

simulation of long-distance propagation effects. The controllable exponential con-

vergence behavior of the solver has been demonstrated; the utilization of the solver

for creeping wave diffraction analysis also has been carried out.

In Chapter V, in order to assess the significance of small random terrain roughness

as pertaining to LOS and NLOS propagation, the numerical simulator developed in

Chapter IV is modified through an exploitation of the quasi-planar nature of the

terrain surface. The original terrain profile is replaced by an equivalent simplified

profile that is more amenable to fast routines; specifically, the profile is decomposed

into three sections, with the middle portion non-local to the transmitter and receiver

locations being replaced by a physically flat surface (with an effective height) over

which the interactions can be cast in block-Toeplitz matrix form, while the sections

local to the transmitter and receiver remain unchanged. This model implies that the

primary statistics of the received signal are predominately dictated by the statistics

of the rough terrain local to the transmitter and receiver. Subsequently, propaga-

tion over the equivalent profile is solved using a recursive forward marching scheme

based on the surface integral equation solver put forth in Chapter IV, with efficiency

speed-up achieved by applying FFT in carrying out the block-Toeplitz matrix-vector

multiplies. The convergence of the recursive routine has been demonstrated, and

results from Monte Carlo simulations for LOS and NLOS links have shown that the

equivalent model provides accurate estimations to signal statistics such as coherent

and incoherent received powers.

The investigation of the effects of terrain roughness on near-ground propagation

is continued in Chapter VI. In spite of the fact that a variety of analytical and
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numerical routines have been proposed by other workers for the general treatment

of the scattering properties of rough surfaces, much disagreement remains in the

solution of the problem for near-grazing scenarios [127]. In striving to analytically

describe the near-grazing propagation of signals from 2D and 3D radiators, an exist-

ing perturbation approach is exploited to formulate closed-form expressions for the

coherent rough surface reflection coefficients; although the perturbation approach is

originally intended for analyzing the scattering coefficients of a ground with scale of

roughness much smaller than the wavelength, it is shown through Monte Carlo simu-

lations that the effective reflection coefficients reported in Chapter VI are applicable

for near-ground path-loss prediction even when the surface variation (rms height) is

on the order of a wavelength or more.

While the focus of the first two portions of this work is on radiowave propagation

issues, the subject of interest in the last section is the analysis of the radio link sys-

tem efficiency with the inclusion of antenna performance metrics. In Chapter VII, an

investigation into the simulation of low-profile, electrically-small antennas for near-

ground operations is undertaken. Systems with above-surface and sub-surface link

terminals are simulated in the presence of a flat ground interface using a hybrid

full-wave approach consists of a MPIE-MoM routine for modeling the antenna struc-

ture and a higher order asymptotic propagator for tracking the wave energy across

the ground surface; the method of discrete images are applied to approximate the

half-space Sommerfeld integrals. The rigorous terminal-to-terminal, power tracing

approach as outlined is necessary since the interaction between the transmitting and

receiving antennas principally occurs at near-grazing angles, a condition at which

the predominate wave contribution is non-geometrical-optics. Transceiver systems

utilizing different types of near-ground antenna structures including the dipole, loop,
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ordinary circular slot, and cavity-backed circular slot have been characterized; the

impact of ground proximity effects on system parameters such as antenna input

impedance, radiation pattern, overall path-loss, and transceiver efficiency also has

been illustrated.

8.2 Recommendations for Future Studies

The propagation solutions as featured in this work can serve as fundamental blocks

for analyzing more complicated propagation scenes. As the demand for accurate

realistic propagation tools increases, extensions or modifications of these solutions

can be made to support future research in the areas listed below.

8.2.1 Analytical Treatment of Foliage-Covered Terrain with Undulating Interfaces

In Chapter II, the canonical two-layer problem is modeled with the assumption

that both the vegetation and ground interfaces are smooth. The effects of a Gaussian

random vegetation interface have been addressed by [24], wherein it is shown that—

for radio terminals situated within a forest canopy—the lateral wave is not drastically

affected by surface roughness even when the rms height is on the scale of the signal

wavelength. The distorted Born approximation for solving the volumetric integral

equation as described in [24] can be similarly applied to study configurations in which

both the transmitter and receiver are located above the rough canopy interface or

one of them is below. The near-grazing condition would once again necessitate a

second order asymptotic analysis. Within the formulation setup in spectral form,

the coherent reflection coefficients as conveyed by (6.33) and (6.36) can be used in

evaluating the significance of the rough ground interface.
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8.2.2 Numerical Treatment of Foliage-Covered Terrain with Undulating Interfaces

A numerical simulation of the propagation of ground waves in the presence of a

foliage-covered irregular terrain profile can be attained by extending the high-order

surface integral equation solver prescribed in Chapter IV to the two-layer geome-

try. The machineries within the solver such as phase extraction and the fast multi-

pole method can be employed here as well to achieve accurate and computationally-

efficient solutions. The principal wave mechanism of interest in this case is the lateral

wave; specifically, the effects of the highly undulating ground and foliage profiles on

this wave mode need to be clarified.

8.2.3 Kirchhoff-Huygens Method for Multiple Foliage Layer Discontinuities

The first order approximation as proposed in Chapter III for modeling a trun-

cated vegetation layer can be cascaded in succession to develop a forward marching

scheme for analyzing propagation across multiple vegetation slabs. The full 2D sta-

tionary phase approximation can be used as previously described in determining the

dominant wave paths for points of interaction located high above the ground. For

field points located close to the ground, as the propagation of the fields from one

integration plane to the next may be interpreted as a convolution, appropriate FFT

routines can be adopted to speed up the forward marching procedure. As in the

single truncation problem, the results of the overall model can be verified against

measurements taken from a scaled-replica of the propagation domain.

8.2.4 Effective Reflection Properties of Rough Surfaces in NLOS Radio Links

The perturbation approach as followed in Chapter VI is valid for the characteri-

zation of LOS radio channels through an expansion of the perturbation current in a

series about the solution for a flat slab; the excitation signal is assumed to be inci-
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dent from above the slab. For treating the NLOS case, a slight modification to the

formalism is required as the transmitter or receiver (or both) may be located below

the physical mean elevation of the roughness. When only the receiver is situated be-

low the mean, the perturbation current as found previously remains unchanged and

only the Green’s function in the expression for deriving the scattered fields needs to

be replaced; when the transmitter is embedded within the slab, the zeroth current

can be readily obtained by applying the flat-interface two-layer problem formulations

from Case 3 of Chapter II; subsequently, the higher order currents can be recursively

deduced as in Chapter VI. The incoherent power encountered in the NLOS configu-

ration should also be computed as it may be significant as compared to the coherent

component.

8.2.5 Near-Ground Antenna Performance Evaluation in Generalized Environments

The hybrid antenna modeling technique put forward in Chapter VII can be gen-

eralized to handle arbitrary terrain conditions. For example, for antennas located

inside a foliage layer with a flat interface, the asymptotic routine from Chapter II can

be used to propagate the far field signal from one antenna to another; at the trans-

mitting and receiving terminals, the proper Green’s functions for a layered-media

should be inserted into the MoM procedure for calculating the induced currents. For

irregular profiles, the formulations from Section 8.2.1 above—once they have been

developed—could facilitate the inclusion of rough-interface effects into the computa-

tion of the antenna far field radiation pattern; however, in this case, to ensure that

the MoM procedure remains tractable, it may be necessary to approximate the layer

interfaces local to the antennas as smooth surfaces.
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APPENDIX A

Supplement to Chapter II

A.1 Integral Solutions for Case 1 (z′ > 0 and z > 0)

Exact expressions for the electric field of a dipole radiating in the presence of a

two-layer medium are derived from the dyadic Green’s function. If the arbitrarily-

oriented dipole is located on the z-axis at (0, 0, z′) with the current moment vector

Io
~l = Io(lxx̂ + lyŷ + lz ẑ), it can be shown that—for Case 1—the general equation for

the scattered electric field at observation point (ρ,φ,z), with z′ > z, can be written

as

Es
ij = −ωµoIoli

8π

∞∫

0

fij(kρ)e
ikoz(z+z′)dkρ (A.1)

where the function in the integrand is dependent upon the dipole orientation and

the field component of interest (x, y, or z):

fzx(kρ) =
−2ik2

ρ

k2
o

RTM(kρ)J1(kρρ) cos φ, (A.2)

fzy(kρ) =
−2ik2

ρ

k2
o

RTM(kρ)J1(kρρ) sin φ, (A.3)

fzz(kρ) =
2k3

ρ

kozk2
o

RTM(kρ)J0(kρρ), (A.4)

fxx,yy(kρ) = kρ[R−(kρ)J0(kρρ)±R+(kρ)J2(kρρ) cos(2φ)], (A.5)

fxy,yx(kρ) = kρR+(kρ)J2(kρρ) sin(2φ), (A.6)
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fxz(kρ) =
2ik2

ρ

k2
o

RTM(kρ)J1(kρρ) cos φ, (A.7)

fyz(kρ) =
2ik2

ρ

k2
o

RTM(kρ)J1(kρρ) sin φ. (A.8)

The total reflection coefficient is given by

RP = R01
P + T 01

P T 10
P

∞∑
u=1

(R10
P )u−1(R12

P ei2k1zd)u (A.9)

= R01
P +

[1− (R01
P )2]R12

P ei2k1zd

1 + R01
P R12

P ei2k1zd

=
R01

P + R12
P ei2k1zd

1 + R01
P R12

P ei2k1zd
,

and the mixed reflection coefficient is

R±(kρ) =
RTE(kρ)

koz

± RTM(kρ)koz

k2
o

, (A.10)

where the simple reflection coefficients for a wave going from layer m to layer n are

the following:

Rmn
TE =

kmz − knz

kmz + knz

, (A.11)

Rmn
TM =

εrnkmz − εrmknz

εrnkmz + εrmknz

. (A.12)

The wavenumber is represented by ku (u = 0, 1, or 2) and

kuz =
√

k2
u − k2

ρ. (A.13)

The direct field must be added to the scattered field to obtain the total field. If

z′ < z, relation (2.44) should be applied.

A.2 Integral Solutions for Case 2 (−d < z′ < 0 and z > 0)

When the dipole is inside the dielectric layer and the observation point is in air,

the derivation for the total field is more complicated but is not much different from
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that for the first case. Simple manipulations of the dyadic Green’s function give the

transmitted field as

Eij = −ωµoIoli
8π

∞∫

0

fij(kρ)e
ikozzdkρ, (A.14)

where the set of fij(kρ) functions can be shown to be

fzx(kρ) =
−2ik2

ρkoz

k2
ok1z

[T up
TMeik1z |z′| + T down

TM eik1z(2d+z′)]J1(kρρ) cos φ, (A.15)

fzy(kρ) =
−2ik2

ρkoz

k2
ok1z

[T up
TMeik1z |z′| + T down

TM eik1z(2d+z′)]J1(kρρ) sin φ, (A.16)

fzz(kρ) =
2k3

ρ

k1zk2
o

[T up
TMeik1z |z′| + T down

TM eik1z(2d+z′)]J0(kρρ), (A.17)

fxx,yy(kρ) = kρ{[T up
+ eik1z |z′| + T down

− eik1z(2d+z′)]J0(kρρ)

±[T up
− eik1z |z′| + T down

+ eik1z(2d+z′)]J2(kρρ) cos(2φ)},
(A.18)

fxy,yx(kρ) = kρ{T up
− eik1z |z′| + T down

+ eik1z(2d+z′)}J2(kρρ) sin(2φ), (A.19)

fxz(kρ) =
2ik2

ρ

k2
o

[−T up
TMeik1z |z′| + T down

TM eik1z(2d+z′)]J1(kρρ) cos φ, (A.20)

fyz(kρ) =
2ik2

ρ

k2
o

[−T up
TMeik1z |z′| + T down

TM eik1z(2d+z′)]J1(kρρ) sin φ. (A.21)

The various transmission coefficients are defined below:

T up
± (kρ) =

T up
TE(kρ)

k1z

± T up
TM(kρ)koz

k2
o

, (A.22)

T down
± (kρ) =

T down
TE (kρ)

k1z

± T down
TM (kρ)koz

k2
o

, (A.23)

T up
P = T 10

P

∞∑
u=0

(R10
P R12

P ei2k1zd)u =
T 10

P

1 + R01
P R12

P ei2k1zd
, (A.24)

T down
P = R12

P T 10
P

∞∑
u=0

(R10
P R12

P ei2k1zd)u =
R12

P T 10
P

1 + R01
P R12

P ei2k1zd
. (A.25)
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APPENDIX B

Supplement to Chapter IV

The high-order convergence properties of the Nyström method are demonstrated

in this section by simulating the 2D plane wave response of a canonical problem—

i.e., a circular cylinder (radius = 1λ); the EFIE (4.31) and MFIE (4.32) are applied

for the PEC and PMC cases while the PMCHWT (4.1) formulation is applied for

the dielectric case. Figures B.1–B.8 are for TE; Figures B.9–B.12 are for TM. The

relative error Erel is defined by (4.27), with the reference solution represented by the

eigenfunction solution. Note that the required integral kernels have been regularized

before the application of the Nyström method; integration routines needed for the

local-correction scheme have been carried out with the aid of the Gaussian quadrature

rule constructed by Ma et al. [128] for integrands containing a logarithmic singularity.
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Figure B.1: TE, PEC, EFIE: (a) Nq-refinement; (b) h-refinement.
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Figure B.3: TE, PMC, EFIE: (a) Nq-refinement; (b) h-refinement.
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Figure B.5: TE, dielectric (εr = 2+i), PMCHWT, Nq-refinement: (a) electric current; (b) magnetic
current.
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Figure B.6: TE, dielectric (εr = 2+ i), PMCHWT, h-refinement: (a) electric current; (b) magnetic
current.
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Figure B.7: TE, dielectric, PMCHWT, Nq = 6: (a) electric current; (b) magnetic current.



180

5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Unknowns/λ

E
re

l

ε
r
 = 1

ε
r
 = 2 + 0.6i

ε
r
 = 4 + 1.2i

ε
r
 = 8 + 2.4i

ε
r
 = 16 + 4.8i

ε
r
 = 32 + 9.6i

5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Unknowns/λ

E
re

l

ε
r
 = 1

ε
r
 = 2 + 0.6i

ε
r
 = 4 + 1.2i

ε
r
 = 8 + 2.4i

ε
r
 = 16 + 4.8i

ε
r
 = 32 + 9.6i

(a)

(b)
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Figure B.9: TM, dielectric (εr = 2+i), PMCHWT, Nq-refinement: (a) electric current; (b) magnetic
current.
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Figure B.12: TM, dielectric, PMCHWT, Ns = 8: (a) electric current; (b) magnetic current.
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APPENDIX C

Second Order Asymptotic Green’s Function for
Half-Space—2D Case

The Sommerfeld integrals for calculating the electric fields radiating from an elec-

tric line source located above a dielectric half-space are given in [129]; analogous to

the 3D problem investigated in Chapter II, saddle point integration can be applied in

simplifying these integrals to their asymptotic forms; the resulting Green’s function

is given as follows:

~Es (~ρ) =
≈
G 2D (~ρ, ~ρ′) · ~J (~ρ′) , (C.1)

where

≈
G 2D (~ρ, ~ρ′) =

ωµoe
ikoρ

√
8πikoρ

[
R (ws) +

1

ikoρ

(
1

2
R′′(ws) +

1

8
R (ws)

)]
; (C.2)

R (w) =




RTE (w) cos2 (w) −RTE (w) sin (w) cos (w) 0

RTE (w) sin (w) cos (w) −RTE (w) sin2 (w) 0

0 0 −RTM (w)




; (C.3)

ρ =
√

(x− x′)2 + (y + y′)2; (C.4)

the saddle point is

ws = tan−1

(
x′ − x

y′ + y

)
; (C.5)
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and ′′ in (C.2) denotes the second derivative with RTE (w) and RTM (w) as the

reflection coefficients in conventional forms.
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APPENDIX D

Perturbation Solution for Scattering from Sinusoidal Surface

In the 2D case, assuming the excitation is ~Einc = ei(ki
xx−ki

0zz)ŷ, i.e., TM polarized,

the response of a sinusoidal dielectric surface of the form ∆f(x) = ∆ sin (ax + θ) can

be summarized up to second order in the perturbation series as

~Es =
{

Eie
i~ki·~r + Ei+ae

i~ki+a·~r + Ei−ae
i~ki−a·~r + Ei+2ae

i~ki+2a·~r + Ei−2ae
i~ki−2a·~r

}
ŷ, (D.1)

where the Floquet mode coefficients can be derived from (6.7):

Ei =

{
Ri

he
−iki

0zd +
∆2

4
ξ

[
ik2

0 (εr1 − 1)
g (ki

0z)

ki
0z + ki

1z

·
(

ki
1z

ki
0z

− 1− k2
0 (εr1 − 1)

1

ki
0z

(
1

ki+a
0z + ki+a

1z

+
1

ki−a
0z + ki−a

1z

))

+
ki

1z

ki
0z

n
(
ki

0z

)−m
(
ki

0z

)− k2
0 (εr1 − 1)

n (ki
0z)

ki
0z

·
(

1

ki+a
0z + ki+a

1z

+
1

ki−a
0z + ki−a

1z

)]}
e−iki

0zd; (D.2)

Ei+a =

{
∆

2
ξ

1

ki+a
0z

[
ik2

0 (εr1 − 1)
g

(
ki+a

0z

)

e−iki+a
1z d

(
ki+a

0z + ki+a
1z

) + n
(
ki+a

0z

)
]}

eiθe−iki
0zd;

(D.3)

Ei−a =

{
∆

2
ξ

1

ki−a
0z

[
ik2

0 (εr1 − 1)
−g

(
ki−a

0z

)

e−iki−a
1z d

(
ki−a

0z + ki−a
1z

) − n
(
ki−a

0z

)
]}

e−iθe−iki
0zd;

(D.4)
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Ei+2a =

{
∆2

4
ξ

[
ik2

0 (εr1 − 1)
g

(
ki+2a

0z

)

e−iki+2a
1z d

(
ki+2a

0z + ki+2a
1z

)

·
(
−ki

1z

2ki+2a
0z

+
1

2
+ k2

0 (εr1 − 1)
1

ki+2a
0z

(
ki+a

0z + ki+a
1z

)
)

− ki
1z

2ki+2a
0z

n
(
ki+2a

0z

)
+

m
(
ki+2a

0z

)

2
+ k2

0 (εr1 − 1)

· n
(
ki+2a

0z

)

ki+2a
0z

(
ki+a

0z + ki+a
1z

)
]}

ei2θe−iki
0zd; (D.5)

Ei−2a =

{
∆2

4
ξ

[
ik2

0 (εr1 − 1)
g

(
ki−2a

0z

)

e−iki−2a
1z d

(
ki−2a

0z + ki−2a
1z

)

·
(
−ki

1z

2ki−2a
0z

+
1

2
+ k2

0 (εr1 − 1)
1

ki−2a
0z

(
ki−a

0z + ki−a
1z

)
)

− ki
1z

2ki−2a
0z

n
(
ki−2a

0z

)
+

m
(
ki−2a

0z

)

2
+ k2

0 (εr1 − 1)

· n
(
ki−2a

0z

)

ki−2a
0z

(
ki−a

0z + ki−a
1z

)
]}

e−i2θe−iki
0zd; (D.6)

in which

ki+pa
mz =

√(
k2

m −
(
ki+pa

x

)2
)
; m = 0, 1; p = 0,±1,±2; (D.7)

ki+pa
x = ki

x + pa; (D.8)

~r = xx̂ + zẑ; (D.9)

~ki+pa = ki+pa
x x̂ + ki+pa

0z ẑ; (D.10)

g
(
ki+pa

0z

)
=

iRi+pa
h

ki+pa
1z − ki+pa

0z

(
e−i(ki+pa

1z −ki+pa
0z )d − 1

)

+
i

ki+pa
1z + ki+pa

0z

(
e−i(ki+pa

1z +ki+pa
0z )d − 1

)
; (D.11)

ξ = k2
0 (εr1 − 1)

ki
0z

ki
0z + ki

1z

; (D.12)
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Ri+pa
h =

ki+pa
0z − ki+pa

1z

ki+pa
0z + ki+pa

1z

; (D.13)

n
(
ki+pa

0z

)
= Ri+pa

h eiki+pa
0z d + e−iki+pa

0z d; (D.14)

m
(
ki+pa

0z

)
= Ri+pa

h eiki+pa
0z d − e−iki+pa

0z d. (D.15)

The radiation from a TM line source located above the surface can be calculated

using (6.30) and the formulations above; shown in Figures D.1 and D.2 are the

results as compared to those obtained from full-wave simulations carried out with

the numerical solver described in Chapter IV.
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Figure D.1: Observed field (a) intensity and (b) phase from a TM line source located above a
corrugated dielectric surface profile ∆f(x) = ∆ sin

(
2π
5 x

)
with d = 2λ, ∆ = 0.25λ;

εr1 = 2 + i; f = 300 MHz; zsource = 4.5λ; zobserv. = 3.5λ.
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Figure D.2: Observed field (a) intensity and (b) phase from a TM line source located above a
corrugated dielectric surface profile ∆f(x) = ∆ sin

(
π
10x

)
with d = 2λ, ∆ = 0.25λ;

εr1 = 2 + i; f = 300 MHz; zsource = 4.5λ; zobserv. = 3.5λ.
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APPENDIX E

Supplement to Chapter VII

To reduce the singularity of the standard electric field integral equation, separate

Green’s functions can be defined to operate on the currents and charges. For a

half-space problem, when the source and observation points are located in the upper

medium, the following set of Sommerfeld integrals is needed to complete these Green’s

functions (detailed derivation is found in [105,106]):

IΦ =

∞∫

0

−i

[
K − k2

o(koz − kgz)

k2
ρ(koz + kgz)

− k2
oz(εrgkoz − kgz)

k2
ρ(εrgkoz + kgz)

]
kρ

koz

eikoz(z+z′)Jo(kρρ)dkρ; (E.1)

Ixx =

∞∫

0

i

[
koz − kgz

koz + kgz

]
kρ

koz

eikoz(z+z′)Jo(kρρ)dkρ; (E.2)

Ixz = K cos φ

∞∫

0

[
2(1 + εrg)

(koz + kgz)(εrgkoz + kgz)
+

1

k2
ρ

]
eikoz(z+z′)J1(kρρ)k2

ρdkρ; (E.3)

Iyz = K sin φ

∞∫

0

[
2(1 + εrg)

(koz + kgz)(εrgkoz + kgz)
+

1

k2
ρ

]
eikoz(z+z′)J1(kρρ)k2

ρdkρ; (E.4)

Izz =

∞∫

0

i

[
koz − kgz

koz + kgz

− 2K
koz − kgz

εrgkoz + kgz

]
kρ

koz

eikoz(z+z′)Jo(kρρ)dkρ; (E.5)

koz,gz =
√

k2
o,g − k2

ρ; (E.6)

Im(koz,gz) > 0. (E.7)
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The MoM discretization here is based on the popular MPIE representation, al-

though an alternate derivation—also compatible with RWG current expansion—has

been proposed more recently by Chew et al. [130]; calculations of the interaction

matrix elements in the new representation require only two Sommerfeld-type scalar

Green’s functions.
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