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ABSTRACT 

 
New Q-Enhanced Planar Resonators for Low Phase-Noise Radio Frequency Oscillators 

by 

Morteza Nick 

 

Chair: Amir Mortazawi 

 

Low phase-noise oscillators are key components of high-performance wireless 

transceivers. Traditional oscillator designs employ single resonators whose quality-

factors are limited and depend on the resonator fabrication technology. In particular, 

planar resonators suffer from excessive conductor and substrate losses, limiting their 

achievable quality-factor. This work investigates complex resonant structures, capable of 

overcoming the limited quality-factors of planar circuits. The proposed methods can be 

applied to design miniaturized, very low phase-noise, voltage-controlled-oscillators at 

microwave and millimeter-wave frequencies. 

The application of elliptic filters as frequency stabilization elements in the design 

of low phase-noise oscillators is introduced. By taking advantage of the large quality-

factor peaks formed at the pass-band edges of elliptic filters, significant phase-noise 

reductions are achieved.  Active resonators are incorporated in the design of elliptic 

filters to compensate for the losses and boost their quality-factors. The problem of added 



xiii 
 

noise in active resonators is addressed and a design procedure is presented that allows for 

active resonators’ full loss compensation with minimum noise-figure degradation. An X-

band oscillator is designed employing a four-pole active elliptic filter as a frequency 

stabilization element within its feedback network. The high-Q and low-noise properties 

of the active elliptic filter enable the oscillator to achieve a record low phase-noise level 

of -150 dBc/Hz at 1 MHz frequency offset in planar microstrip circuit technology.  

 The thesis concludes with a novel voltage-controlled-oscillator that achieves a 

state-of-the-art phase-noise performance while having a compact and planar structure.  

The oscillator’s core is an active elliptic filter which provides high frequency-selectivity 

and, at the same time, initiates and sustains the oscillation. The elliptic filter is 

implemented using a dual-mode square-loop resonator. This technique not only helps 

reduce the VCO’s size, but also eases the frequency-tuning mechanism.  The proposed 

VCO structure occupies a small area making it suitable for integrated circuit fabrication 

at millimeter-wave frequencies. 
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Chapter 1 

Introduction 

1.1 Motivation 

The wireless communication market has been experiencing tremendous growth 

and will continue to do so in the next decade. Innovations in this area have not only 

provided easy access to information through cell phones and other wireless networks but 

are also opening new possibilities in other areas such as remote health monitoring for 

patience, remote sensing of the environment, etc. Future wireless communication units 

will require higher speed for faster data transmit rate, higher operation frequency to 

accommodate more channels and users, more functionality, light weight, lower power 

consumption, and low cost. To meet these requirements, the development of high-

performance wireless transmitter and receiver systems at microwave and millimeter-wave 

frequencies has been accelerated. 

Oscillators are vital components of any radio frequency (RF) communications 

system. They are necessary for the operation of phase-locked loops commonly used in 

frequency synthesizers and clock recovery circuits, and are also present in digital 

electronic systems which require a reference clock signal in order to synchronize 

operations. Noise is of major concern in oscillators because introducing even a small 

amount of noise into an oscillator leads to dramatic changes in its frequency spectrum 

and timing properties. This phenomenon is known as phase-noise or timing jitter. 

Oscillator phase-noise in wireless transceivers limits the overall performance of 

communication systems in a variety of ways. Phase-noise directly affects adjacent-

channel interference and bit-error-rate. Phase-Noise of the local oscillator in a radio 



2 
 

receiver down-converts the adjacent channels into intermediate frequency thereby 

limiting receiver's immunity to nearby interference and jamming. With complex 

modulation schemes such as OFDM, the requirement of spectral purity is even more 

stringent [1], [2]. Phase-noise in wireless transmitters can also overwhelm the adjacent 

weak channels. In general, an oscillator’s phase-noise determines the overall 

communication system’s capability and places stringent requirements on the performance 

of other transceiver blocks such as the noise-figure of low-noise amplifiers, rejection 

factor of filters and the output power of power amplifiers. Since the number of wireless 

subscribers and thus, the amount of RF interference continue to increase, modern 

communication standards demand excellent phase-noise performance from local 

oscillators in transceivers. 

The design of low phase-noise oscillators faces many challenges at microwave 

and millimeter-wave frequencies. The main limiting factor in designing low phase-noise 

oscillators at these frequencies is the low quality-factor of resonators due to high 

conductor and dielectric losses. Therefore in current microwave and millimeter-wave 

systems, dielectric resonator oscillators (DROs) are widely employed [3]. Dielectric 

resonators (DRs) provide high unloaded quality factors. However, DROs suffer from 

several major drawbacks. The main drawback of DRs is their large sizes as compared to 

the rest of the oscillator circuit.  Furthermore DRs are not amenable to integration and not 

suitable for mass production because of their 3-D structures and the need for fine post-

fabrication tuning.  

Presently, microstip/stripline resonators are the most common choice for planar 

oscillator designs. Due to their small size and low fabrication cost, many microwave and 

millimeter-wave oscillators utilize microstrip/stripline resonators as their frequency 

stabilization elements. Moreover, the most attractive feature of these resonators is that 

they can be easily integrated with active circuits such as MMICs and RFICs because they 

can be manufactured by photolithography of metalized film on a dielectric substrate. 

Unfortunately, a major drawback of using planar resonators is their low quality-factors, 

which makes it difficult to design low phase-noise oscillators. This problem is more 

prominent in integrated circuits (ICs) where high degrees of thin conductor losses reduce 
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TABLE 1.1
Performance summary of several microwave and millimeter-wave oscillators made using 

different fabrication technologies 

Device Resonator Technology Size* F0 

GHz
P0 

dBm
Efficiency L(f)† 

dBc/Hz
FOM

dBc/Hz
GaAs HBT 
[4] 

DRO Nonplanar 
Hybrid 

2.4×2.4×1.1
mm3 

23.8 3.3 3.4% -146 -215.6

InGaP/GaAs 
HBT [5] 

DRO Nonplanar 
Hybrid 

- 6.7 14 3.1% -155 -202.5

---- [6] DRO Nonplanar 
Hybrid 

6×6×3 
mm3 

8 14.5 2% -162 -208.6

HEMT [7] Microstrip 
ring 

Planar 
 Hybrid 

λ/4 × λ/4 12 5.3 48.7% -116.2 -189.3

Si BJT [8] Microstrip 
hair-pin 

Planar  
Hybrid 

λ/6 × λ/6 9 9 4.5% -129 -185.6

SiGe 
BiCMOS [9] 

Above-IC 
FBAR 

Quasi- 
Integrated 

0.35×0.30
mm2 

2.4 -2.5 1.9% -144 -195.7

CMOS [10] Ring CMOS 
Integrated 

λ/8 × λ/8 10 -15 1% -110 -185.2

SiGe HBT 
[This Work, 
Chapter 6] 

High-Q 
negative-
resistance 

Planar  
Hybrid 

λ/8 × λ/8 8.2 7 12.5% -149.5 -211.7

  * Size of resonator, λ is the wavelength     † Phase-Noise at 1MHz frequency offset.  

                

 the quality factor by orders of magnitude compared to hybrid circuit technologies.  

Table 1.1 summarizes the performance of several microwave and millimeter-wave 

oscillators made using different fabrication technologies. Since oscillators operate at 

different frequencies and output power levels, in order to make a fair comparison, an 

oscillator figure-of-merit, FOM, is usually defined as following [11] 

ܯܱܨ ൌ ሺ∆݂ሻܮ െ ݋20݈ ଵ݃଴ ൬
଴݂

∆݂
൰ ൅ ݋10݈ ଵ݃଴ ൬

஽ܲ஼

1ܹ݉
൰                      ሺ1.1ሻ 

Here f0 is the oscillation frequency,  L(Δf) is the phase-noise at the offset frequency Δf, 

and PDC is  the total consumed DC power in milli-watts. The FOM normalizes the phase-

noise to the oscillation frequency and power consumption, providing a measure to 

compare the performance of various oscillators. As shown in Table 1.1, planar 
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oscillators’ FOMs are worse by approximately 20 dB or more, compared to DROs, due to 

low quality-factor of their resonators.  

1.2 Thesis Overview 

The work carried out during the course of this thesis has been directed toward the 

design of high-Q planar resonators intended for low phase-noise applications. The 

proposed methods can be applied to design miniaturized very low phase-noise voltage-

controlled-oscillators at microwave and mm-wave frequencies using hybrid or integrated 

circuit fabrication technologies. It is a common-practice to design oscillators using single 

resonators. However, in this case, the achievable oscillator Q is determined and limited 

by the resonator technology used. In particular, planar resonators suffer from excessive 

conductor and substrate losses limiting their achievable quality-factor. Therefore, 

conventional low phase-noise oscillator design techniques rely on reducing the losses in 

single resonators by manipulating their circuit designs and layouts. This work 

investigates complex resonant structures, including active and high-order resonant 

circuits, capable of overcoming the limited quality-factor of current planar hybrid and IC 

fabrication technologies. The high-Q properties of the proposed resonant structures 

allows for the design of oscillators with state-of-the-art phase-noise performance, close to 

the phase-noise of the DROs (shown in Table 1.1), while providing compact and planar 

structures compatible with hybrid and integrated circuit fabrication technologies. 

The organization of this thesis is as follows. 

Following the introduction, Chapter 2 provides an overview of phase-noise in 

oscillators, starting with the definition of phase-noise and moving on to describing the 

existing phase-noise models. The famous Leeson’s phase-noise model is revisited and 

generalized to oscillators with complex resonant tanks as they are the subject of this 

thesis. Lesson’s phase-noise formula employs the term “loaded quality factor”, the 

definition of which is critical to understanding resonator design for low phase-noise 

oscillators. This issue is addressed in Chapter 3 where different definitions of resonator 

quality-factor are discussed and compared to each other. A figure-of-merit for resonators 

is introduced in order to evaluate their overall effect on the phase-noise of oscillators. 
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This figure-of-merit also serves as a basis for optimizing the design of various resonators 

for low phase-noise applications. 

In chapter 4, a quality-factor enhancement technique based on employing high-

order elliptic-response band-pass filters is introduced. The resonant properties of elliptic 

filters are described showing that they can achieve significantly higher quality-factors 

compared to single resonators. The filter optimization for low phase-noise applications is 

discussed. For experimental verification, an 8 GHz microstrip oscillator employing a 

four-pole elliptic filter as its frequency stabilization element is demonstrated.  

Chapter 5 discusses active resonators and their application for low phase-noise 

oscillators. Active resonators are analyzed and a design procedure is presented to 

optimize their performance for low-noise applications. Analytical expressions are derived 

for the noise-figure and power consumption of active resonators providing a good 

understanding of the trade-offs involved in low phase-noise oscillator design using active 

resonators. In particular, it is shown that oscillators using single active resonators 

demonstrate low DC-to-RF power efficiencies. To mitigate this problem, it is suggested 

to use active elliptic filters in the feedback-loop of the oscillators, since they can achieve 

high quality-factors at lower noise-figures and power consumptions. An 8 GHz oscillator 

is designed and tested using a four-pole active elliptic filter. The oscillator demonstrates a 

state-of-the-art phase-noise performance compared to other reported planar oscillators.  

Chapter 6 describes the resonant properties of dual-mode resonators and it shows 

that a compact high-Q active elliptic filter can be realized using a dual-mode square-loop 

microstrip resonator. The dual-mode elliptic filter is then used to design a miniaturized 

low phase-noise voltage-controlled-oscillator (VCO) at X-band. The oscillator consists of 

a reactively-terminated dual-mode active elliptic filter and a load matching network. In 

this configuration, the active filter not only provides high frequency-selectivity but also it 

initiates and sustains the oscillation. The new oscillator structure shows significant 

advantages in terms of size, power consumption and frequency tunability, while 

achieving similar state-of-the-art phase-noise performance compared to the oscillator 

described in Chapter 5. This makes the proposed VCO design technique attractive for 

integrated circuit designers at millimeter-wave frequencies. 
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Chapter 7 concludes the thesis with a summary of the work presented herein and 

suggests some future works regarding the IC fabrication of the proposed techniques at 

millimeter-wave frequencies. 
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Chapter 2 

Fundamentals of Phase-Noise in Electrical Oscillators 

 

2.1 Introduction 

The output of an ideal sinusoidal oscillator can be expressed as Vout(t)=A 

cos(ω0t+φ) where, A is the amplitude, ω0 is the frequency, and φ is an arbitrary and fixed 

phase reference.  Therefore, the spectrum of an ideal oscillator with no random 

fluctuations is a pair of impulses at േω0. However, the existing noise sources in electronic 

systems cause random amplitude and phase fluctuations. The output of a noisy oscillator 

can be represented by  

௢ܸ௨௧ሺݐሻ ൌ ൫ܣ ൅ ܽሺݐሻ൯ cos൫߱଴ݐ ൅ ߮ሺݐሻ൯                                 ሺ2.1ሻ  

 

where a(t) and ϕ(t) are random amplitude and phase-noise. As a consequence of the 

fluctuations, the spectrum of a practical oscillator is broadened in the vicinity of the 

carrier frequency. In practice, amplitude noise is much smaller than phase-noise due to 

the amplitude-restoring mechanism in oscillators [12]-[15]. This is illustrated in Fig. 2.1 

where it shows the limit cycle of an ideal LC oscillator. The current noise perturbs the 

signal and causes its phasor to deviate from the stable trajectory, producing both 

amplitude and phase-noise. The amplitude deviation is resisted by the stable limit cycle, 

whereas the phase is free to drift. Therefore, oscillators almost exclusively generate 

phase-noise near the carrier. 

In analog circuits, phase-noise is usually characterized in the frequency domain. It 

is expressed in units of dBc/Hz, representing the noise power relative to the carrier 

contained in a 1 Hz bandwidth centered at a certain frequency offset from the carrier  
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Fig. 2.1 Limit cycle of an ideal LC oscillator [14]. The current noise perturbs the oscillator’s 
voltage by ΔV. The perturbed signal restores its stable amplitude whereas its phase is free to 
drift, causing strong random phase variations.    

 

 

 

Fig. 2.2 Definition of the single-side-band phase-noise, L(f). 
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ሺ݂ሻܮ ൌ
single-side-band power density per Hz at offset ݂ 

carrier power
     
ܿܤ݀

ݖܪ
.               ሺ2.2ሻ 

The definition of L(f) is graphically shown in Fig. 2.2. It is noteworthy that L(f) uses the 

power spectral density of the output signal, which should be distinguished from the 

power spectral density of signal’s phase-noise Sϕ(f). From phase modulation theory and 

for small phase deviations it follows that [12] 

ሺ݂ሻܮ ൌ
ܵఝሺ݂ሻ

2
.                                                          ሺ2.3ሻ 

This equation holds for most of the practical oscillators. However, one should be aware 

of its inaccuracy in case of high phase-noise levels where the phase deviations are not 

small. Fig. 2.3 shows the region of validity of (2.3). In particular, it fails for very close-

to-carrier frequencies, where the phase-noise is strong and small angle assumption is 

invalid [15]. 

 

Fig. 2.3 The region of validity of (2.3) [15]. 

2
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2
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2.2 Phase-Noise Models 

Oscillators are nonlinear time-varying systems due to the presence of large and 

periodic signals within their circuits. This makes the phase-noise analysis in oscillators a 

challenging task which has been the area of investigation for several decades. There are 

three major approaches to the problem. The simplest approach to the phase-noise analysis 

uses a linear time-invariant model for oscillators. The well-known Leeson’s model for 

phase-noise is based on this method [16]. Assuming the phase-noise as a small 

perturbation, Leeson linearizes the oscillator circuit around the steady-state point in order 

to obtain a closed-form formula for phase-noise. While often of great practical 

importance, the Leeson’s formula has two major defects. One is that it cannot correctly 

describe the upconversion of the low-frequency flicker noise components to around-

carrier phase-noise, and the other is that it predicts an infinite phase-noise power. Using a 

linear time-variant model for the oscillator, Hajimiri and Lee [14] have proposed a phase-

noise analysis method which explains this upconversion phenomenon, but it fails to 

correctly predict the phase-noise at frequency offsets very close to carrier. To overcome 

this problem, a nonlinear analysis is required such as harmonic-balance and Monte Carlo 

methods which are widely used in CAD simulations [17], [18]. Recently, Demir [19] 

presented a general method that can correctly predict the spectrum of the phase-noise; 

however, it is more suitable for numerical calculations. 

Despite its simplicity, Leeson’s phase-noise model is of great practical 

importance, giving useful design insights for low phase-noise oscillators. In this section, 

the Leeson’s phase-noise model is discussed and generalized to oscillators using complex 

resonant circuits as they are the subject of this thesis.  

2.2.1 Leeson’s Phase-Noise Model Generalized to Oscillators with Complex 
Resonant Tanks 

 

Consider the block diagram of a parallel-feedback oscillator, Fig. 2.4(a), which 

shows clearly the two basic elements: the amplifier with the gain of G, and the selective 

filter with the band-pass transfer function of H(jω). The Barkhausen’s condition for 

oscillator startup implies that, at frequency of oscillation ω0 [20] 
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ሺ݆߱଴ሻܪ ܩ ൌ 1∠0 .                                                      ሺ2.4ሻ 

Namely, the total phase shift around the loop must be an integer multiple of 360o, with a 

steady-state gain of unity. It is worth noting that the general block diagram used for this 

analysis does not deal with the details of the oscillator, and thus the results are general. 

Let us assume all the noise sources can be referred at the input of the amplifier 

with the power spectral density of  

ܵ௡ሺ∆߱ሻ ൌ |݁௡ሺݐሻ|
ଶ ൌ ܶܭܨ ቀ1 ൅

߱௖
∆߱

ቁ                                     ሺ2.5ሻ 

consisting of a white-noise component (independent of frequency) and a flicker-noise 

component (inversely proportional to frequency). In the above equation F is the noise 

figure of the amplifier, K is Boltzmann constant, T is ambient temperature, Δω is the 

frequency offset from the carrier, and ωc is the frequency at which flicker and white noise 

components are equal, as known as flicker-noise corner frequency.  

  The additive noise source en(t) modulates the oscillator’s signal, as shown in Fig. 

2.4(b), thereby generating phase uncertainty represented by 

ሻݐሺߠ∆ ൌ atanቆ
݁௡ሺݐሻ

௜ܸ௡ሺݐሻ
ቇ ൎ

݁௡ሺݐሻ

௜ܸ௡ሺݐሻ
                                        ሺ2.6ሻ 

ܵ∆ఏሺ∆߱ሻ ൌ
|݁௡ሺݐሻ|

ଶതതതതതതതതതത

| పܸ௡ሺݐሻ|
ଶതതതതതതതതതതത
ൌ
ܶܭܨܩ

଴ܲ
ቀ1 ൅

߱௖
∆߱

ቁ                                      ሺ2.7ሻ 

where P0 is the output power of the amplifier. According to the signal transmission 

theory, band-pass filtering of a phase-modulated carrier is identical to filtering of the 

modulating signal in the equivalent low-pass filter, Ĥ(jΔω) [21]. Therefore, one can use 

the low-pass equivalent of the oscillator’s model (Fig. 2.4(c)) to find its phase-noise 

spectral density. This approach was first introduced in [22]. By writing the loop equation 

in Fig. 2.4(c) one obtains 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 2.4 (a) Linear model of a parallel-feedback oscillator. (b) Vector representation of the 
relationship between signal, added-noise and phase-noise. (c) Low-pass equivalent of the 
oscillator’s model used for phase-noise analysis 
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∆߮ሺ∆߱ሻ ൌ
ሺ߱ሻߠ∆

1 െ ෡ሺ߱ሻܪ
                                                     ሺ2.8ሻ 

ܵఝሺ∆߱ሻ ൌ |∆߮ሺ∆߱ሻ|ଶ ൌ
ܵ∆ఏሺ߱ሻ

ห1 െ ෡ሺ∆߱ሻหܪ
ଶ .                                ሺ2.9ሻ 

The above expression is a more general form of the Lesson’s phase-noise model which 

can be used for oscillators with complex resonant tanks.  

Microwave oscillators are usually designed by using single resonators as the 

frequency-selective elements, as shown in Fig. 2.5. The original Leeson’s formula was 

derived for oscillators using single resonators in their feedback loops. The equivalent 

low-pass transfer function for a single resonator is given as 

෡ሺ∆߱ሻܪ ൌ
1

1 ൅ ݆2ܳ௅
∆߱
߱଴

                                                  ሺ2.10ሻ 

where QL is the loaded quality-factor of the resonator. By combining (2.9.) and (2.10), 

one obtains the phase-noise spectral density as  

ܵఝሺ∆߱ሻ ൌ ቈ1 ൅ ൬
߱଴

2ܳ௅∆߱
൰
ଶ

቉ ܵ∆ఏሺ߱ሻ.                                   ሺ2.11ሻ 

Finally, phase-noise is represented by  

Lሺfሻ ൌ
S஦ሺ∆ωሻ

2
ൌ
GFKTB

2P଴
ቈ1 ൅ ൬

ω଴

2Q୐∆ω
൰
ଶ

቉ ቀ1 ൅
ωୡ

∆ω
ቁ                 ሺ2.12ሻ 

which is known as the Leeson’s formula for single-resonator oscillators. in the above 

equation G is the gain of the amplifier which according to (2.4) can be replaced with the 

insertion loss of the resonator (I.L.). The predicted phase-noise spectral density is 

graphically depicted in Fig. 2.6 where three different regions can be identified. Close to 

carrier, 1/f3 phase-noise behavior is a result of random frequency modulation of the 

oscillator due to the 1/f flicker noise. In the region of 1/f2 phase-noise behavior, white  
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Fig. 2.5 Block diagram of an oscillator designed using a single resonator. H(jω) is the band-
pass transfer function of the resonator and Ĥ(jΔω) is its low-pass equivalent. 

 

 

 

Fig. 2.6 Phase-noise behavior of a typical oscillator. 
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noise causes random frequency modulation. Finally, at far offset frequencies phase-noise 

becomes flat which is due to the additive noise effect.  

In general, oscillators’ feedback networks can contain multiple-resonator 

structures such as band-pass filters. Leeson’s phase-noise formula was derived for an 

oscillator using a single resonator with the transfer function given in (2.10); thus one 

might question its validity for oscillators using more complex resonant structures with 

different Ĥ(jΔω). In fact, by replacing Ĥ(jΔω) in (2.9) with its Taylor series expansion 

around the resonant frequency, one can easily show that the Lesson’s phase-noise 

formula remains valid and can be applied to oscillators with complex resonant tanks, 

provided that the loaded quality-factor is defined as 

ܳ௅ ൌ
߱଴

2
ඨ൬

ሺ߱ሻܣ݀

݀߱
൰
ଶ

൅ ൬
݀∅ሺ߱ሻ

݀߱
൰
ଶ

ቮ

ఠబ

                            ሺ2.13ሻ 

where A(ω) and φ(ω) are the amplitude and phase of the filter’s transfer function H(jΔω). 

Therefore, the application of (2.12) is justified when we design oscillators with complex 

resonant tanks in the rest of this thesis. The above definition for loaded quality-factor was 

first proposed by Razavi [23].  We will discuss more about the quality factor of 

resonators in Chapter 3.  

2.2.2 Design Implications and Limitations of Leeson’s Phase-Noise Model 

Despite its simplicity, the Leeson’s formula gives a sense of the phase-noise 

performance for oscillators. In addition, it indicates the basic factors and provides the 

necessary design rules to minimize the oscillators phase-noise [20]: 
 

 Choose an active device with low-noise properties. SiGe heterojunction bipolar 

transistors (HBTs) with low noise-figures and low flicker-noise corner 

frequencies are the most popular devices for a low phase-noise oscillator design. 

 Increase the oscillator’s output power (P0) through a proper feedback loop design 

 Reduce the resonator’s insertion loss, or equivalently, reduce the amplifier’s gain 

(G). 
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 Choose a resonator with a high loaded quality-factor. This is the most effective 

step in the design of low phase-noise oscillators. 

Although Leeson’s phase-noise model provides a valuable insight into the oscillator 

design from engineering perspectives, it cannot explain some of the important phase-

noise phenomena. This is due to simplifying assumptions made about the linearity and 

time-invariant behavior of the system. Some of the important shortcomings of the 

Leeson’s model are listed below: 

 The model includes a noise factor, F, which is an empirical fitting parameter and 

therefore must be determined from measurements; diminishing the predictive 

power of the phase-noise equation. 

 Leeson’s model observes the asymptotic behavior of phase-noise at close-to-

carrier offsets, asserting that phase-noise goes to infinity with 1/f3 rate. This is 

obviously wrong as it implies an infinite output power for oscillator.  For noisy 

oscillators it could also suggest that L(f) >0 dBc/Hz! This singularity arises from 

linearity assumption for oscillator operation around steady-state point. In fact, the 

linear model breaks down at close-to-carrier frequencies where the phase-noise 

power is strong.  

Several authors have resolved this issue by using a nonlinear model for the 

oscillator. In the absence of the flicker noise, it has been shown that phase-noise 

takes the form of a Lorentzian [19] 

ሺ∆߱ሻܮ ∝
ܿଶ

ܿଶ ൅ ሺ∆߱ሻଶ
                                       ሺ2.14ሻ 

where c is a fitting parameter. The above model nicely avoids any singularity at 

Δω=0 while maintains the same asymptotic behavior (Fig. 2.7). It also has the 

property that the total power of phase-noise from minus infinity to plus infinity is 

1. This means that phase-noise doesn’t change the total power of the oscillator; it 

merely broadens its spectral peak. There is no closed-form expression for the 

phase-noise spectrum in the presence of 1/f noise. In the past few years some  
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Fig. 2.7 Close-In phase-noise behavior due to white noise sources. Leeson’s model predicts 
phase-noise monotonically increases by approaching the carrier whereas in reality it takes 
the form of a Lorentzian. 

 

 

Fig. 2.8 Conversion process from noise (Sn(ω)) to phase-noise (L(ω)). Noise components 
from harmonically-related frequencies are up/down-converted to around carrier phase-
noise. Leeson’s model fails to address this phenomenon [14]. 
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analytical models for phase-noise with flicker noise has been proposed. Herzel 

[24] decomposes the model into a Lorentzian for white-noise and a Gaussian for 

flicker-noise sources. The final spectrum is a convolution of a Lorentzian with a 

Gaussian spectrum, for which there is no closed-form expression and it has to be 

numerically calculated.  

 The Leeson’s model fails to properly describe the up-conversion and down-

conversion of noise components from harmonically related frequencies to around-

carrier frequency (Fig. 2.8). Particularly, the effect of the low-frequency flicker-

noise components on close-in phase-noise is not well characterized in Leeson’s 

model.  The model asserts that the phase-noise 1/f3 corner frequency is exactly 

equal to the amplifier’s flicker-noise corner frequency, ωc. However, 

measurements frequently show no such equality. This is because Leeson models 

the oscillator as a time-invariant system, whereas oscillators are in general cyclo-

stationary time-varying systems due to the presence of the periodic large-signal 

oscillation. This issue has been addressed by several authors. Hajimiri has shown 

that the oscillator’s phase-noise 1/f3 corner frequency can be significantly lower 

than the device’s flicker corner frequency, provided that the oscillation signal is 

odd-symmetric [14]. 

 

2.3 The Effect of Phase-Noise in Wireless Communication and 
RADAR Systems 

Oscillator phase-noise in wireless transceivers limits the overall performance of 

communication systems in a variety of ways. Phase-noise directly affects short-term 

frequency stability, bit-error-rate, and adjacent-channel interference. To understand the 

importance of phase-noise in wireless communications, consider a generic receiver as 

depicted in Fig. 2.9, where it consists of a low-noise amplifier, a band-pass filter, and a 

down-conversion mixer. The local oscillator (LO) providing the carrier signal for both 

mixers is embedded in a frequency synthesizer. If the LO output contains phase-noise, 

the down-converted is corrupted. Referring to Fig. 2.9, we note that in the ideal case, the  
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Fig. 2.9 The effect of phase-noise on wireless receivers [20]. The local oscillator’s phase-
noise down-converts the strong adjacent channel to IF band, causing destructive interference. 

 

 

 

Fig. 2.10 The effect of phase-noise on transmit path [23]. The nearby transmitter’s phase-
noise might overwhelm the weak wanted signal. 
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signal band of interest is convolved with an impulse and thus translated to a lower 

frequency with no change in its shape. In reality, however, the wanted signal may be 

accompanied by a large interferer in an adjacent channel, and the local oscillator exhibits 

finite phase-noise. When the two signals are mixed with the LO output, the down-

converted band consists of two overlapping spectra, with the wanted signal suffering 

from significant noise due to tail of the interferer. 

Shown in Fig. 2.10, is the effect of phase-noise on the transmit path. Suppose a 

noiseless receiver is to detect a weak signal at ω2 while a powerful, nearby transmitter 

generates a signal at ω1 with substantial phase-noise. Then, the wanted signal is corrupted 

by the phase-noise tail of the interfering transmitter. The important point here is that the 

difference between ω1 and ω2 can be as small as a few tens of kilohertz while each of 

 

Fig. 2.11 The effect of the phase-noise in Doppler radar systems [20]. (Top) for a fast-moving 
object, the reflected signal is above the transmitted signal’s phase-noise. (Bottom) For a slow-
moving object the reflected signal is buried under the LO’s phase-noise 

Fast-Moving Object

Slow-Moving Object

Transmit

Receive

Transmit

Receive



21 
 

these frequencies is around several GHz. Therefore, the output spectrum of the LO must 

be extremely sharp having a very low phase-noise. 

Phase-noise of local oscillators also degrades the performance of the RADAR 

systems. It limits the RADAR’s range as well as its minimum detectable Doppler shift.  

As shown in Fig. 2.11, for a fast moving target, the Doppler shift is around several kHz. 

Therefore, the reflected signal is well above the phase-noise level of the local oscillator in 

the receiver. However, for a slow moving target where the Doppler shift is around several 

tens of hertz, the reflected signal cannot be detected as it is buried in the phase-noise of 

the local oscillator. 
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Chapter 3 

The Definition of Quality-Factor for Microwave Resonators 

 

Resonators are one of the key components in RF communication systems. They 

provide high frequency-selectivity in filters and oscillators. The quality-factor is the most 

important parameter of a resonant circuit. Lesson’s formula for phase-noise employs the 

term “loaded quality-factor”, QL, the definition of which is critical to understanding 

resonator design for low phase-noise oscillators. Two common definition of quality-

factor are discussed in this chapter. The first definition is based on the field theory which 

relates the quality-factor to energy storage and dissipation, whereas the second one is 

circuit-based relating the quality-factor to the resonator’s frequency response. It is shown 

that the two definitions are equivalent and yield identical results for both single 

resonators and band-pass filters. A figure-of-merit for resonators, R-FOM, is defined to 

assess their overall effects on the phase-noise of oscillators. The R-FOM is useful for 

evaluating and comparing the performance of various resonators, and it is used 

throughout this thesis to optimize resonator designs for low phase-noise applications.  

 

3.1 Quality Factor Definition 

Energy view 

Fields inside a resonator store energy at the resonant frequency where equal 

storage of electric and magnetic energies occurs. In practice, some of the stored energy is 

dissipated due to losses and input/output loads, thereby reducing resonator’s frequency 

selectivity. Therefore one can define the loaded quality-factor as [20]: 
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ܳ௅ ൌ ߨ2
average energy stored 

energy dissipated during one cycle
ൌ  ߱଴

்ܹ

்ܲ
                     ሺ3.1ሻ 

where ω0 is the resonant frequency, WT is average stored energy, and PT is total power 

loss in watts. The above definition includes both internal and external energy losses. One 

can separate the effect of internal and external energy losses and define the “unloaded” 

and “external” quality-factors, Qu and Qe, respectively, as followings 

ܳ௨ ൌ ߱଴
்ܹ

௜ܲ
                                                            ሺ3.2ሻ 

ܳ௘ ൌ ߱଴
்ܹ

௘ܲ
                                                             ሺ3.3ሻ 

where Pi and Pe are the dissipated energies due to the resonator’s internal losses and the 

external loadings, respectively. Since PT=Pe+Pi, one can show that  

1

ܳ௅
ൌ

1

ܳ௨
൅
1

ܳ௘
.                                                        ሺ3.4ሻ 

It should be emphasized that it’s the loaded quality-factor, QL, which appears in the 

phase-noise calculations. The loaded quality-factor is limited by the resonator losses and 

external loadings. In a “loosely-coupled” resonator, the internal losses are dominant and 

thus QL≈Qu. Conversely, in a “tightly-coupled” resonator, the external loadings are 

dominant and in this case QL≈Qe 

Transfer function view 

An alternative definition of the quality-factor uses the resonator’s transfer 

function in the frequency domain. The transfer function is a complex function which 

governs the relationship between the input and output 

ሺ݆߱ሻܪ ൌ  ሺ߱ሻ݁௝∅ሺఠሻ                                               ሺ3.5ሻܣ
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where A(ω) and φ(ω) are the amplitude and phase response of the system. The quality-

factor in terms of the resonator’s transfer function is defined as [23] 

ܳ௅ ൌ
߱଴
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ඨ൬

ሺ߱ሻܣ݀

݀߱
൰
ଶ

൅ ൬
݀∅ሺ߱ሻ

݀߱
൰
ଶ

ቮ

ఠబ

ൎ
߱଴
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݀∅ሺ߱ሻ

݀߱
ቤ
ఠబ

 .                        ሺ3.6ሻ 

The approximation is due to the fact that, in most resonant circuits, phase variations are 

more significant than the amplitude variations. This definition has an interesting 

interpretation in the context of low phase-noise oscillator design. Recall that for steady 

oscillations, the total phase shift around the loop must be precisely 360o. Now, suppose 

the oscillation frequency slightly deviates from ω0. Then, if the phase slope is large, a 

significant change in the phase shift arises, violating the condition of oscillation and 

forcing the frequency to return to ω0. In other words, the quality factor is a measure of 

how much the closed-loop system opposes variations in the frequency of oscillation. This 

concept proves useful in our subsequent analyses and methods for low phase-noise 

designs. 

The energy-based definition of the quality-factor in (3.1) is ambiguous when a 

system has no energy storing element, as in the case of ring or distributed oscillators. 

Furthermore, it is difficult to use when the system contains multiple resonators, such as 

high-order band-pass filters. Also, the original form of the Leeson’s phase-noise formula 

contains the right-hand side of (3.6), which is then replaced with QL by definition. Due to 

these reasons, we use the definition of the quality factor introduced in (3.6) throughout 

this thesis.    

 

3.2 Comparison between Different Definitions of Quality-Factor 

In this section we investigate the relation between different definitions of quality-

factor. It is shown that, for single resonators and high-order band-pass filters, the energy-

based definition of quality-factor given in (3.1) yields identical results as the general 

definition introduced in (3.6).  
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Single resonator 

Consider the resonator shown in Fig. 3.1 where the resistor Rr models the internal 

losses and the terminations Z0 represent input/output loadings. Assume the resonator’s 

(tank’s) node voltage is at some certain value, V0. The stored and dissipated energies are 

calculated as 

்ܹ ൌ ௠ܹ ൅ ௘ܹ ൌ 2 ௘ܹ ൌ
1

2
ܥ ଴ܸ

ଶ                                      ሺ3.7ሻ 

  ்ܲ ൌ
1

2
଴ܸ
ଶ

ሺܴ௥‖ܼ଴‖ܼ଴ሻ
                                                   ሺ3.8ሻ 

The loaded quality-factor is determined by inserting (3.7) and (3.8) into (3.1)  

ܳ௅ ൌ ߱଴ܥ ሺܴ௥‖ܼ଴‖ܼ଴ሻ.                                                ሺ3.9ሻ 

The second definition of quality factor is based on the resonator’s transfer 

function between input and output ports.  In the circuit of Fig. 3.1 it can be shown that 

ܵଶଵሺ݆߱ሻ ൌ
2

ܼ଴
ܴ௥‖ܼ଴‖ܼ଴

൅ ݆ܼ଴ ቀ߱ܥ െ
1
ܮ߱

ቁ
.                             ሺ3.10ሻ 

 

Fig. 3.1 A doubly-loaded shunt resonator. 
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Calculating the phase derivative of the transfer function at resonance, one can obtain the 

loaded quality-factor  

ܳ௅ ൌ
߱଴

2

݀ሺ∠ܵଶଵሻ

݀߱
ቤ
ఠబ

ൌ ߱଴ܥ ሺܴ௥‖ܼ଴‖ܼ଴ሻ.                        ሺ3.11ሻ 

Comparing the results in (3.9) and (3.11), it is clear that the two definitions of quality 

factor are compatible and yield the same results for a single resonator. 

Multiple-Resonator band-pass filters 

To determine the quality-factor of a high-order filter using the energy-based 

definition given in (3.1), the total stored and dissipated energies must be calculated. The 

energy calculations require finding the voltages across the capacitors and resistors, and 

the currents through the inductors in a multiple-order filter’s equivalent circuit. This is a 

tedious task which makes it impossible to find a closed-form expression for the loaded-

quality factor in general case. Instead, circuit simulations are performed to find the 

loaded quality-factor. 

Fig. 3.2(a) shows the circuit schematic of a four-pole Chebyshev band-pass filter 

consisting of four resonators coupled to each other through quarter-wave impedance 

inverters. The circuit is excited with a power source and simulated in Agilent’s ADS to 

determine the voltages at the nodes and the currents through the inductors. The total 

stored energy can then be calculated by the following equations 

்ܹ ൌ ௠ܹ ൅ ௘ܹ                                                       ሺ3.12ሻ 

௘ܹ ൌ
1

4
଴෍ܥ ௜ܸ

ଶ

ହ

௜ୀଶ

                                                      ሺ3.13ሻ  

௠ܹ ൌ
1

4
௜ܫ଴෍ܮ

ଶ

ହ

௜ୀଶ

                                                       ሺ3.14ሻ 
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where Vi is the voltage, and Ii is the current through the inductor, at node i. The total 

dissipated energy is obtained from  

  ்ܲ ൌ
1

2
෍

௜ܸ
ଶ

ܴ଴
൅

ହ

௜ୀଶ

1

2
ቈ
ଵܸ
ଶ

ܼ଴
൅

଺ܸ
ଶ

ܼ଴
቉                                              ሺ3.15ሻ 

in which the first term is due to the internal energy loss, and the second term is the energy 

dissipated by the input and output loads. The quality factor can now be calculated by 

inserting (3.12) and (3.15) into (3.1) and the results are plotted in fig. 3.2.c. 

 The filer’s quality-factor can also be determined based on its simulated transfer 

function according to (3.6). The results are superimposed in Fig. 3.2.c where they very 

closely match the quality factor values obtained from the energy-view definition. The 

above procedure was performed for several other filters with different frequency 

responses and different number of resonators. In all cases the same conclusion was 

drawn, indicating that the two definitions of quality factor introduced in this section yield 

almost identical results for multiple-order band-pass filters.  
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(a) 

 

(b) 

 

(c) 

Fig. 3.2 Comparison between different definitions of loaded quality-factor for a four-pole 
band-pass Chebyshev filter. (a) The filter’s circuit diagram (b) simulated frequency-
response, and (c) loaded quality-factor. 
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3.3 Resonator Design for Low Phase-Noise Applications 

According to Leeson’s formula, phase-noise in oscillators is inversely 

proportional to the inverse-square of the resonators’ loaded quality-factor. Furthermore, 

the insertion loss of the resonators also appears in the Leeson’s formula (2.12) indicating 

that phase-noise proportionally degrades by increasing the resonator’s insertion loss, I.L. 

Therefore, to evaluate the overall effect of resonators on oscillators’ phase-noise, a 

resonator figure-of merit, R-FOM, can be defined as 

ܴ െ ܯܱܨ ൌ 10 log ቆ
I. L

Q୐
ଶቇ.                                           ሺ3.16ሻ 

To reduce the phase-noise of an oscillator, one needs to decrease (more negative) the R-

FOM of its resonator. In other words, resonators should be designed for their minimum 

R-FOM when considering low phase-noise applications. In this section we discuss single 

resonators and find their optimum coupling for lowest phase-noise. The definition of R-

FOM can also be applied to band-pass filters to optimize their design for low phase-noise 

applications. This will be further discussed in the incoming chapters.    

In single resonators, the loaded quality-factor and insertion loss are two inter-

related parameters both depending on the resonator’s unloaded (Qu) and external (Qe) 

quality-factors. To determine the relation between the insertion loss and the quality-

factors, consider the resonator shown in Fig. 3.1. It is a straightforward task to show that 

at resonance 

I. L. ൌ
1

|Sଶଵ|
ଶ
ൌ ൬1 ൅

Z଴
2R୰

൰
ଶ

ൌ ൬1 ൅
Qୣ
Q୳
൰
ଶ

                            ሺ3.17ሻ 

Therefore, one can express the resonator figure-of-merit in terms of the quality-factors by 

inserting (3.4) and (3.17) into (3.16)  

R െ FOM ൌ 10 log ቈ൬1 ൅
Qୣ
Q୳
൰
ଶ

൬
1

Qୣ
൅

1

Q୳
൰
ଶ

቉.                           ሺ3.18ሻ 
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In the above equation, the unloaded quality-factor, Qu, is a predetermined parameter 

depending on the resonator structure and fabrication technology. Therefore, phase-noise 

is minimized by finding the optimal value of Qe resulting in the minimum of R-FOM 

d

dሺQୣሻ
ሺR െ FOMሻ ൌ 0    ⟶    Qୣ ൌ Q୳    or equivalently  Q୐ ൌ

Q୳
2
       ሺ3.19ሻ   

The above equation shows how to couple the resonator to the amplifier in the feedback 

loop for phase-noise minimization. Everard [25] was the first person to determine such an 

optimum value for a resonator’s loading. According to (3.19) the insertion loss of a 

resonator tuned for optimum loading is 6 dB. This indicates that the amplifier should 

have a power gain of more than 6 dB to guarantee oscillation start-up.  
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Chapter 4 

The Application of High-Order Band-Pass Filters as 
Frequency Stabilization Elements 

 

Microwave oscillators commonly use a single resonator in their series or parallel 

feedback networks. The quality-factor of a resonator is limited due to the conductor, 

dielectric and radiation losses. In particular, planar resonators exhibit low quality-factors 

due to high degrees of losses in planar circuits. Therefore, despite numerous efforts [7], 

[8], [26-29], the design of a low phase-noise planar oscillator has remained a serious 

challenge.   

The frequency selectivity in an oscillator can be improved by employing multiple 

resonators in its feedback network. This approach has been rarely addressed in the 

literature despite its promising benefits. The first demonstration of a low phase-noise 

oscillator design using multiple resonators was presented in [30] where four cells of 

resonator-amplifiers are cascaded to increase the frequency-selectivity in the oscillator 

loop, Fig. 4.1. In this configuration, both the quality-factor and the noise level are 

increased by a factor of 4, resulting in 6 dB of phase-noise reduction. However, the 

phase-noise reduction comes at the cost of 4 times increase in the power consumption due 

to the use of multiple amplifiers. In this chapter, we employ high-order elliptic-response 

band-pass filters to design low phase-noise oscillators. It is shown that elliptic-response 

filters can provide higher quality-factors compared to single resonators and other types of 

band-pass filters. This is due to their use of multiple resonators and their close-to-

passband transmission zeros which help increase frequency-selectivity. A design 

procedure is presented that allows for optimum filter design for low phase-noise 

applications. As a proof of concept, an 8 GHz low phase-noise oscillator is 
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Fig. 4.1 circuit diagram of a cascaded multiple-resonator oscillator [29]. 

designed using a four-pole elliptic band-pass filter in its feedback loop. The oscillator 

achieves a phase-noise of -143 dBc/Hz at 1-MHz offset which is the lowest phase-noise 

value among planar oscillators reported in the literature. 

 

4.1 High Quality-Factor Band-Pass Filter Design 

4.1.1 Theory   

Band-Pass filters consisting of multiple resonators can provide significantly 

higher quality-factors as compared to single resonators because frequency-selectivity can 

be improved by adding more resonators. The frequency response of a filter can be 

determined by finding the number and the location of the poles and zeros of its transfer 

function. Transfer functions of Butterworth and Chebyshev filters have only poles while 

those of elliptic filters have the same number of poles and zeros. Due to the existence of 

zeros, elliptic filters are capable of providing sharper roll-offs and higher selectivity than 

Butterworth and Chebyshev filters and, thus, they can provide larger quality-factors. Fig. 

4.2 compares the frequency response and the quality-factor of a Butterworth, a 

Chebyshev and an elliptic four-pole band-pass filter. These filters have the same center 

frequency of 8 GHz, a bandwidth of 100 MHz, and are designed using similar resonators 

with unloaded quality-factors of 300. Large quality-factor peaks at the edges of the pass- 
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(a) 

 

(b) 

Fig. 4.2 Comparison between (a) insertion loss and (b) quality-factor of four-pole band-pass 
filters with different frequency responses. The filters are designed using resonators with 
unloaded quality-factors of 300. The frequency response of a doubly-loaded resonator is also 
included for comparison. 
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band are observed in the elliptic filter response; due to its close-to-passband transmission 

zeros.  

The quality-factor of the described elliptic filter is also compared with that of a 

single resonator. It should be noted that (Section 3.3) when a single resonator is used for 

an oscillator design, its loaded quality-factor drops by half due to the external loading 

effects. In this example, the loaded quality-factor of the single resonator drops to 150 

which is about 2.5 times lower than the loaded quality-factor of the four-pole elliptic 

filter. Therefore, it can be concluded that by using an elliptic filter in the feedback loop of 

an oscillator a significant phase-noise reduction can be expected. In general the sharp 

quality-factor peaks of elliptic filters are problematic due to the distortion they cause in 

communication systems. However, in this work we show that one can take advantage of 

this characteristic of elliptic filters to design low phase-noise oscillators. 

4.1.2 Filter Design and Optimization 

In microwave circuits, the elliptic-response filter is mainly realized with a 

selective quasi-elliptic function having only one pair of transmission zeros, providing an 

intermediate response between elliptic and Chebyshev filters. Fig. 4.3 shows the coupling 

structure of a four-pole quasi-elliptic filter. Resonators 1 & 2, 2 & 3, and 3 & 4 are 

directly coupled while resonators 1 & 4 are cross-coupled. Directly coupled resonators 

have a positive coupling coefficient while the cross coupling coefficient between 

resonators 1 and 4 is negative. The cross coupling introduces a single pair of transmission 

zeros, leading to filter's elliptic response. Elliptic filters in conventional applications are 

designed to meet some pre-determined specifications such as bandwidth, return loss, out-

of-band rejection etc., whereas in low phase-noise oscillators, the resonator figure-of-

merit, R-FOM, is the performance criterion. The R-FOM was introduced in Section 3.3 to 

evaluate the overall effect of resonators on oscillators’ phase-noise.  Equation (3.16) can 

be modified to express the R-FOM in terms of the S21 of the filters 

ܴ െ ܯܱܨ ൌ 20 logሺ|ܵଶଵ|ሻ െ 20 ∗ log ቆ
߱଴

2

݀ሺ∠ܵଶଵሻ

݀߱
ቇ.                   ሺ4.1ሻ 
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Since S21 of the quasi-elliptic filter is a function of number of poles (N), pass-band 

bandwidth (BW), location of zero (Ωt) and return loss (RL), the R-FOM is consequently a 

function of these parameters. Therefore, the design optimization goal would be to find 

proper values for number of poles, bandwidth, return loss and location of transmission 

zero, to minimize the R-FOM. 

 The optimization procedure is detailed here. First, the coupling matrices (M) and 

the input and output coupling coefficients (Qe) are calculated for various filter orders, 

bandwidths, return losses, and locations of zeros. Utilizing these design parameters, an 

Agilent ADS schematic circuit as shown in Fig. 4.4 is simulated to obtain the S21 of 

various filters. Here, the lumped RLC elements represent the four synchronously tuned 

resonators and are determined in terms of the filter design parameters [31] 

଴ܥ ൌ
ܳ௘
߱଴ܼ଴

ൈ 10ଵଶ ሺܨ݌ሻ         ܮ଴ ൌ
ܼ଴

ܳ௘߱଴
ൈ 10ଽ ሺ݊ܪሻ         ܴ଴ ൌ

ܳ௨
ܳ௘

ܼ଴ ሺݏ݄݉݋ሻ   ሺ4.2ሻ 

where ω0 is the angular frequency at the midband frequency of the filter and Qe is the 

external quality factor of resonators at the input and output. Qu is the resonators' unloaded 

quality-factor signifying the resonators' losses. The unloaded quality-factor for the 

 

Fig. 4.3 Coupling scheme of a four-pole elliptic-response band-pass filter. The circles 
represent the resonators and M is the coupling matrix. 
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Fig. 4.4 Agilent ADS circuit schematic for filter simulation. 
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resonators used in this work was determined by simulating an 8 GHz microstrip open 

square-loop resonator on a Rogers RT/Duroid 5880 substrate (εr = 2.2, Height = 31 mils) 

using IE3DTM software package. The simulated Qu for the resonators is 200. The quarter-

wavelength transmission lines are used to represent the couplings and their characteristic 

impedances are determined by [31] 

ܼ଴ଵ ൌ ܼ଴         ܼଵଶ ൌ
ܼ଴

ܳ௘ܯଵଶ
         ܼଶଷ ൌ

ܼ଴
ܳ௘ܯଶଷ

         ܼଵସ ൌ
ܼ଴

ܳ௘|ܯଵସ|
             ሺ4.3ሻ 

where Z0 =50Ω is the I/O terminal impedance. 

Fig. 4.5 depicts the R-FOM versus frequency for several values of BW, Ωt and RL 

for a four-pole elliptic filter. It is observed that for each case there is a minimum R-FOM 

occurring at a particular frequency. The oscillator utilizing the filter in its feedback loop 

should be designed at this frequency to achieve the lowest phase-noise. Furthermore, Fig. 

4.5 shows that the minimum R-FOM of the filter depends on the filter parameters. To 

determine the best values for these parameters, the minimum R-FOMs were plotted 

versus parameter variations for each case as shown in Fig. 4.6. Referring to Fig. 4.6(a), a 

filter with a narrower bandwidth has a lower R-FOM and, thus, is better suited for low 

phase-noise oscillator designs. This behavior can be attributed to the sharper selectivity 

of narrowband filters. Shown in Fig. 4.6(b), is the effect of the return loss on filter's R-

FOM. A lower return loss results in a higher selectivity at the cost of higher insertion 
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loss. Due to this trade-off, there is an optimum value for the return loss which is 

RL=10dB for the filter studied in this work. 

Fig. 4.6(c) shows the effect of the location of transmission zero, Ωt, on R-FOM. 

Ideally, as Ωt approaches the edge of the pass-band, the filter exhibits a sharper skirt and 

thus the group delay's peak value increases. In reality, resonators' losses degrade the 

performance of the filters with very close to pass-band zeros, causing the group delay 

peak value to drop. Therefore, after a certain point, the R-FOM does not decrease 

anymore as Ωt is pushed closer to the filter’s pass-band. This can be seen in Fig. 4.6(c) 

where R-FOM increases for transmission zeros less than Ωt =1.6. Therefore the optimum 

value of the transmission zero location for the filter under study is Ωt =1.6. In general, the 

location of transmission zero can be closer to the passband edge as the Qu of the 

resonators increases, allowing lower R-FOM values to be achieved. This is demonstrated 

in Fig. 4.7 where the R-FOM of a filter with resonators' Qu of 1000 is compared with the 

R-FOM of our filter with Qu of 200. The optimum Ωt value for the filter with higher Qu 

resonators' is Ωt =1.2 which is less than the optimum Ωt value of the filter under study. 

In summary, the optimum four-pole filter parameters for minimum R-FOM where 

determined to be BW = 2.2%, Ωt = 1.6 and RL = 10dB. Bandwidth values of less than 

2.2% were not considered because they require very small coupling coefficients which 

are not feasible due to the losses. 
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(a)                                                     (b)                                             (c) 

 

Fig. 4.5 Resonator figure-of-merit (R-FOM) versus frequency for different (a) bandwidths, 
(b) return losses, and (c) normalized location of transmission zeros of a four-pole elliptic 
filter. 
 

 

(a)                                                   (b)                                                  (c) 
 
Fig. 4.6 Minimum R-FOM versus (a) bandwidths, (b) return losses, and (c) normalized 
location of transmission zeros of a four-pole elliptic filter. 
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 Another important parameter of a filter that affects the R-FOM is its order (N). 

Ideally, an increase in the filter's order results in a higher quality-factor and thus reduces 

the R-FOM. However, in practice, increasing the band-pass filter's order causes a higher 

insertion loss and thereby can adversely affect the R-FOM. Therefore one needs to find 

the optimum order for a filter for achieving the lowest R-FOM. A similar analysis was 

performed on several six-pole filters with different values of bandwidth, location of 

transmission zero and return losse. As expected, the previously discussed results for four-

pole filters similarly apply to the six-pole filters'. In fact, it was found that an optimized 

six-pole filter reduces the R-FOM by 2 dB, indicating that a six-pole filter would be a 

better candidate for low phase-noise oscillator applications as compared to a four-pole 

filter. Nevertheless, in this work, the optimized four-pole filter was utilized in the 

oscillator design since its R-FOM is low enough to achieve a low phase-noise operation 

of the oscillator. It also provides a lower insertion loss and a smaller size, making the 

oscillator design easier.  

 

Fig. 4.7 Resonator figure-of-merit (R-FOM) of the four-pole elliptic filter versus the 
normalized location of transmission zero implemented on a low-loss (Qu=1000) and a 
high-loss  (Qu=200) substrate. 
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The optimized four-pole filter is implemented on a Rogers RT/Duroid 5880 

substrate (εr =2.2, Height = 31 mils). The coupling matrix and the I/O coupling 

coefficients are 

ܯ ൌ ቎

0.00000  ൅0.0137 0.0000 െ0.0031
൅0.0137 0.00000 ൅0.0137 0.00000
0.00000 ൅0.0137 0.00000 ൅0.0137
െ0.0031 0.00000 ൅0.0137 0.0000

቏                                                     

ܳ௘ ൌ 73.5.                                                           ሺ4.4ሻ 

Based on the above coupling matrix and I/O coupling coefficients, full wave EM 

simulations using IE3D® are performed to determine the exact physical layout for the 

filter as shown in Fig. 4.8. The overall physical size of the filter is 12.6 mm by 12.4 mm. 

Fig. 4.9 shows the measured frequency response of the filter where it shows similar 

performance compared to simulation results. The simulated and measured quality-factor 

and R-FOM of the elliptic filter are shown in Fig. 4.10. The R-FOM minimum value 

occurs at the frequency of 8.07 GHz. At this frequency the loaded quality-factor of the 

filter was measured to be QL=185. The feedback oscillator utilizing the R-FOM-

optimized filter is designed to operate at this frequency to achieve a low phase-noise 

performance. 
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Fig. 4.8 Layout of the optimized four-pole elliptic filter. All the dimensions are in 
millimeters 

 

 

Fig. 4.9 Insertion loss of the optimized four-pole elliptic filter.
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(a) 

 
(b) 

Fig. 4.10 Simulated and measured (a) quality-factor and (b) R-FOM of the four-pole elliptic 
filter optimized for low phase-noise oscillator applications. 
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4.2 An X-band Low Phase-Noise Oscillator Employing a Four-Pole 
Elliptic Band-Pass Filter 

4.2.1 Oscillator Design 

An X-band microwave oscillator is designed based on the four-pole elliptic band-

pass filter described in the previous section. The oscillator consists of an amplifier to 

provide enough loop-gain for oscillation start-up, the elliptic filter acting as the frequency 

stabilization element, and a parallel feedback network. The circuit schematic of the 

oscillator is shown in Fig. 4.11. 

 The oscillator is designed based on the substitution theory [32]. The design 

procedure is summarized here. First, the amplifier is designed by conjugate-matching the 

input and output of the transistor to 50 Ω. The elliptic filter is then connected to the 

amplifier's input, and the resulting filter-amplifier circuit is excited with a signal source at 

the input and simulated using the harmonic balance method in Agilent ADS (Fig. 4.12). 

The voltages and currents at the input and output terminals of the filter-amplifier (V1, V2, 

I1, I2) are determined at a specific RF input power level. Then the feedback network 

element values are determined based on the following equations [33] 

௢ܻ௨௧ ൌ ௢௨௧ܩ ൅  ௢௨௧ܤ݆

௢௨௧ܩ ൌ ሺ ଵܻ ൅ ଷܻܣ௥ ൅ ସܻܣ௜ሻ/|ܣ|
ଶ 

௢௨௧ܤ ൌ ቈ
ଵܻሺܣ௥ െ ଶሻ|ܣ|

௜ܣ
െ ௜ܣ ଷܻ ൅ ௥ܣ ସܻ቉ |ܣ|/

ଶ 

ଵܤ ൌ
ଵܻ

௜ܣ
 

ଶܤ ൌ
ଵܻሺܣ௥ െ 1ሻ

௜ܣ
൅ ଶܻ                                                ሺ4.5ሻ 

where 

ܣ ൌ ௥ܣ ൅ ௜ܣ݆ ൌ ଶܸ/ ଵܸ 
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Fig. 4.11 Circuit schematic of the oscillator employing an elliptic filter as its frequency 
stabilization element. 
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ଵܻ ൌ െܴ݁ሺܫଵ/ ଵܸሻ 

ଶܻ ൌ െ݉ܫሺܫଵ/ ଵܸሻ 

ଷܻ ൌ ܴ݁ሺܫଶ/ ଵܸሻ 

ସܻ ൌ ݉ܫ ൬
ଶܫ

ଵܸ
൰                                                           ሺ4.6ሻ 

Note that in the above equations only the fundamental frequency components of currents 

and voltages are used. 
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Fig. 4.12 Circuit schematic of the filter-amplifier unit. The circuit is simulated using 
harmonic balance nonlinear tool so as to find input/output currents and voltages for the 
oscillator’s feedback network design.  
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4.2.2 Measurement Results 

The oscillator was fabricated on a Rogers RT/duroid 5880 substrate. A circuit 

prototyping machine was used in the oscillator fabrication. Although the filter part of the 

oscillator is most sensitive to fabrication tolerances, it can tolerate fabrication errors of 25 

μm or less without considerable loss of performance. The active device is a packaged 

SiGe HBT (NECNESG2030M04) biased at a collector-emitter voltage of 2 V with a 

collector current of 11 mA. The top view of the fabricated oscillator is shown in Fig. 

4.13.  

The measured oscillation frequency is 8.05 GHz with the output power of 3.5 

dBm after de-embedding cable and bias tee. The amount of the consumed dc power is 22 

mW, corresponding to a DC-RF efficiency of 10%. The oscillator’s phase-noise is 

measured based on the FM discriminator technique with the phase-noise measurement 

system Agilent E5504A. As shown in Fig. 4.14, the measured phase-noise is -122.5 

dBc/Hz and -143.5 dBc/Hz at 100 kHz and 1 MHz offset frequencies, respectively. The 

oscillator's phase-noise was simulated in Agilent ADS by taking into account the thermal 

noise sources. Since the transistor's noise model does not include flicker noise sources, 

the simulation results are invalid in the flicker frequency noise region. This can be 

observed in Fig. 4.14 where the simulation and measurement results are in good 

agreement except for the 1/f3 region caused by flicker noise sources. According to the 

measurement, 1/f3 corner frequency is around 100 kHz. Table 4.1 compares the 

performance of the SiGe HBT elliptic-filter oscillator with other reported microwave 

planar free-running oscillators. The oscillator presented in this paper demonstrates the 

lowest phase-noise due to the high loaded quality-factor provided by the elliptic filter. 
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Fig. 4.13 A picture of the fabricated oscillator. The oscillator circuit diagram is shown in 
Fig. 3.11. The elliptic filter’s dimensions are given in Fig. 4.8. The feedback network’s 
element values are B1=-0.037, B2=-.025, Bout=0.0124 and Gout=0.0068 (Fig. 4.8). 

 

Fig. 4.14 Measured (solid) and simulated (dashed) phase-noise of the SiGe HBT X-band 
oscillator. 
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The figure-of-merit of an oscillator is defined as following [11] 

ܯܱܨ ൌ ሺ∆݂ሻܮ െ ݋20݈ ଵ݃଴ ൬
଴݂

∆݂
൰ ൅ ݋10݈ ଵ݃଴ ൬

஽ܲ஼

1ܹ݉
൰                     ሺ4.7ሻ 

where Δf is the offset frequency, L(Δf) is the phase-noise, and PDC is the total consumed 

DC power in milli-watts. Oscillators with low phase-noise, low power consumption and, 

thus, low FOMs are desired. Table 4.1 compares the FOM of various oscillators. The 

oscillator presented in this work shows the lowest FOM among planar oscillators reported 

to date. This indicates that its phase-noise has been improved due to higher quality factor 

of the elliptic filter, rather than sacrificing the DC power consumption. 

 

 

 

 

 

 

 

Table 4.1 
Comparison with other reported microwave planar oscillators 

Device Resonator F0 
(GHz) 

P0 
(dBm) 

Efficiency 
(%) 

L(f) ‡ 
dBc/Hz 

FOM 
dBc/Hz 

 

HEMT [7] ring 12 5 48.7 -116 -189.3 
Si BJT [8] hair-pin 9 9 4.5 -132 -185.6 
HEMT [26] active resonator 10 10 2.0 -134 -187.4 
Si BJT [27] Microstrip line 9.9 7 - -133 - 
SI BJT [28] open-loop resonator 5.8 -0.5 - -133 - 
SiGe HBT 
[34] 

extended-resonance 9.1 9.7 14 -139 -199.9 

SiGe HBT 
[This work] 

Elliptic filter 8 3.5 10 143.5 -207 

‡ Phase-noise at 1 MHz offset frequency  
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4.3 Conclusion 

Elliptic-response band-pass filters can provide higher quality-factors compared to 

single resonators or other types of band-pass filters. This is due to their use of multiple 

resonators and the presence of close-to-passband transmission zeros in their frequency 

responses, which help improve frequency-selectivity. A low phase-noise oscillator was 

designed based on employing a four-pole elliptic filter in its feedback loop. In order to 

get the lowest phase-noise performance from the oscillator, the filter in the feedback loop 

is optimized for its minimum resonator figure-of-merit. The optimization method 

determines the optimum values for the order, bandwidth, location of zero, and return loss 

of the filter. As a result the presented oscillator shows the lowest phase-noise 

performance among planar oscillators reported in the literature. At 8 GHz, its measured 

phase-noise is -143 dBc/Hz at 1 MHz frequency offset. The output power level is 3.5 

dBm with a 10% DC-RF efficiency and a FOM of -207 dBc/Hz. The oscillator’s low 

FOM value indicates that the phase-noise has been improved without increasing the DC 

power consumption, thanks to the high quality-factor of the elliptic filter used in its 

feedback network.  
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Chapter 5 

Theory and Design of Low-Noise Active Resonators and Their 
Application for Low Phase-Noise Oscillators 

 

High-Q resonators are essential in designing low phase-noise oscillators. 

Transmission-line-based resonators such as ring [7], hair-pin [8] and spiral [29] 

resonators are widely used to design planar oscillators. Unfortunately, these resonators do 

not possess high unloaded-quality-factors and hence do not allow for low phase-noise 

oscillator design. One approach to decrease the phase-noise is to use high-order band-

pass elliptic filters in the feedback loop of the oscillators, because such filters can provide 

higher quality-factors compared to single resonators. This approach was successfully 

implemented in the design of an X-band low phase-noise planar oscillator discussed in 

the previous chapter. Nevertheless, the filter’s quality-factors are still limited by the 

unloaded quality-factor of their constituent resonators. Significant phase-noise 

improvements could be achieved by designing active resonators to enhance their 

unloaded quality-factors. 

The unloaded-quality-factors of printed planar resonators are limited due to the 

dielectric, conductor and radiation losses. An active resonator can be designed to 

compensate for the energy losses in the passive resonator [35]-[40]. Active resonators 

have been widely used in the design of highly frequency-selective filters. Also, a few 

authors have used them as frequency stabilization elements in the feedback network of 

low phase-noise oscillators [26], [41], [42]. Although this approach has proved to be 

successful in reducing the phase-noise of oscillators, it has not been fully explored and 

some subtle design issues remain to be addressed. One important issue to investigate is 

the effect of the added-noise introduced by the active resonators. In fact, careful noise 
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design of active resonators is necessary in order to obtain the lowest phase-noise from the 

oscillators. Furthermore, previous works have mainly focused on designing single active 

resonators. The frequency-selectivity of the feedback network can be significantly 

improved by utilizing multiple active resonators in the form of a band-pass elliptic filter. 

 In Section 5.1 active resonators are analyzed and, for the first time, a design 

procedure is presented which simultaneously allows for resonators’ full loss-

compensation with minimum noise degradation. The procedure is general and can be 

applied to various resonators used for different applications. Analytical expressions are 

derived for the noise-figure and power consumption of active resonators. These equations 

provide a good understanding of the application of active resonators for low phase-noise 

oscillators, which is the subject of Section 5.2. Through analysis and simulations, it has 

been shown that active resonators can significantly reduce the phase-noise of oscillators, 

however, at the cost of increased power consumption.  In fact, low phase-noise oscillator 

design using single active resonators results in poor DC-to-RF power efficiency. In 

Section 5.3 an active elliptic filter is used as the frequency stabilization element to design 

a low phase-noise oscillator. Active elliptic filters can provide high loaded quality-factors 

at lower noise-figures and power consumptions as compared to single active resonators. 

A four-pole active elliptic filter is designed and used in the feedback network of an 8 

GHz oscillator. The oscillator demonstrates a measured phase-noise of -150 dBc/Hz at 1 

MHz frequency offset with a DC-to-RF efficiency of 5%. To the best of our knowledge, 

the oscillator presented in this chapter achieves the lowest phase-noise among other 

planar oscillators reported to date.  

 

5.1 Low-Noise Active Resonator Design 

At microwave frequencies, active resonators are usually implemented by 

providing active feedback-loops or coupling negative-resistance devices to passive 

resonators [35]-[40]. Due to the presence of excess noise added by active devices 

(transistors), special attention should be paid to the noise design of the active resonator. 

In this section, the equations for the design of a low-noise lossless active resonator are 



52 
 

presented. Both the active feedback-loop and the negative-resistance methods are 

discussed. For the sake of clarity, we consider square loop microstrip resonators; 

however, the results are general and can be applied to various types of resonators 

intended for different applications.  

5.1.1 Resonator Loss Compensation Using Active Feedback Loops 

A square open-loop resonator along with its active feedback-loop is shown in Fig. 

5.1. The external-quality-factor, Qe, represents the resonator’s input and output loadings. 

On the other hand, the external-quality-factors, Q1 and Q2, denote the loading effects due 

to the gain stage’s input and output coupling, respectively. G is the voltage gain of the 

amplifier. The phase of the active feedback-loop should be an integer multiple of 360o for 

loss compensation. The equivalent circuit of the active resonator is shown in Fig. 5.2, 

where the shunt RLC network models the passive resonator coupled to the amplifier 

through the transformers with turn ratios n1 and n2. The active resonator’s input and 

output external couplings are represented by the transformers Ti and To. The amplifier is 

bilaterally conjugate matched at its input and output1.  

It can be shown that the active feedback-loop in the circuit of Fig. 5.2 is 

equivalent to a negative resistance with the following value: 

ܴ௔௖௧௜௩௘ ൌ ቌ
െ50 ݊ଶ

ଶ

ܩ2
݊ଶ
݊ଵ
െ 1

ቍ‖50݊ଵ
ଶ .                                             ሺ5.1ሻ 

The resonator is fully loss-compensated when this negative resistance is equal in 

magnitude to the positive resistance of the passive resonator, Rr. This requirement is 

fulfilled when the gain of the amplifier is chosen such that 

ܩ ൌ
√݊ଵ݊ଶ
2

൬
1

ܳଵ
൅
1

ܳଶ
൅

1

ܳ௨
൰                                                ሺ5.2ሻ 

where the Q definitions are shown in Fig. 5.2. 
                                                            

1 In general, the amplifier can be matched to different impedances at its input and output. Through a 
similar analysis, it can be shown that the design equations (5.2), (5.3) and (5.4) remain valid in this case. 
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Fig. 5.1 A square open-loop resonator with an active feedback-loop for loss 
compensation. The active resonator is doubly-loaded through the input and output 
coupled-lines with external quality-factor of Qe. 
 
 
 
 

 
 

Fig. 5.2 A doubly-loaded resonator employing an active feedback-loop for loss 
compensation. Qu is the unloaded-quality-factor of the passive resonator. The amplifier is 
matched to 50 Ω at the input and output. C1 and C2 are the amplifier’s input and output 
noise waves, respectively. 

Q2

Q1

Qe

Qe

Input

Output

2GVin

Feedback amplifier

Vin

C1 C2

Ti To

Z0 Z0

50

50

Cr Lr Rr

n1 : 1 1 : n2
Ractive

External loadingExternal loading

r

r
u

rr L

R
Q

L

n
Q

L

n
Q

00

2
2

2
0

2
1

1

5050






54 
 

The noise sources of the amplifier in the feedback loop generate two noise-waves, 

C1 and C2 (Fig. 5.2), which degrade the doubly-loaded resonator’s noise-figure. It is very 

important to minimize the effect of the added-noise introduced by the amplifier, 

especially when the active resonator is intended for low phase-noise oscillator 

applications. Noise analysis of active resonators has been performed in [43],[44], where it 

is shown that the contribution of the noise-wave C1 to the noise-figure of the resonator is 

nullified when the active feedback-loop is designed such that: 

ܳଶ ൌ  ଶܳଵ                                                          ሺ5.3ሻܩ

By satisfying the above condition, the active resonator achieves its minimum noise-figure 

as given by 

௠௜௡ܨ ൌ ௣௔௦௦௜௩௘ܨ ൅ ൬
2ܳ௘
ܳ௨

൰ܯ                                                          

where          ܯ ൌ
஺ܨ െ 1

1 െ
1
ଶܩ

          and          ܨ௣௔௦௦௜௩௘ ൌ 1 ൅
2ܳ௘
ܳ௨

                        ሺ5.4ሻ 

In the above equation, Fpassive is the noise-figure of the passive resonator; M and FA are 

the noise-measure and noise-figure of the amplifier, respectively. Equation (5.4) clearly 

shows the effect of the noise of the amplifier on the active resonator’s noise-figure and, 

more importantly, it indicates that low noise-measure transistors should be used in the 

design of active resonators. Since transistors with noise-measures as low as 0.1, at 

microwave frequencies, are readily available, active resonators could be designed with 

small noise-figure degradations compared to their passive counterparts. 

To verify the above theory, several open-square active resonators with different 

feedback-loop parameters (Q1, Q2 and M) are designed and simulated. All these 

resonators satisfy the condition in (5.2) and, thus, are fully loss compensated. Fig. 5.3 

shows the simulated frequency responses of the resonators, where they all achieve a 

similar lossless transfer function. The resonator’s noise-figures are simulated at the 

resonance frequency and plotted in Fig 5.4 where they show different noise- 
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Fig. 5.3 Simulated frequency response of several active resonators with different feedback-
loop parameters. The active resonators achieve the same transfer response since they all 
satisfy the loss compensation condition given in (5.2). The unloaded and external quality-
factors of the resonators are Qu=200 and Qe=200, respectively. 

 

Fig. 5.4. Simulated noise-figures of several active resonators. The noise-figure is measured 
at the resonant frequency. Each marker represents an active resonator designed with 
different feedback-loop parameters. The unloaded and external quality-factors of the 
resonators are Qu=200 and Qe=200, respectively. M is the noise-measure of the amplifier 
used in the active feedback-loop. 
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figures. The minimum noise-figure is achieved when Q2/(G
2Q1) equals unity, as also 

predicted by (5.3). In this case, the active resonator incurs less than 0.5 dB noise-figure 

degradation, compared to the passive resonator. Fig. 5.4 shows that if the active 

resonators are not designed properly significant noise-figure degradations could occur. 

Equations (5.2) and (5.3) can be combined to find the optimum feedback loop’s 

design parameters as  

ܳଵ ൌ ቆ
ଶܩ െ 1

ଶܩ
ቇܳ௨                                                               

ܳଶ ൌ ሺܩଶ െ 1ሻܳ௨                                                      ሺ5.5ሻ 

The above equations result in a lossless high-Q resonator with minimum noise-

degradation. 

5.1.2 Resonator Loss Compensation Using Negative-Resistance Devices 

A square loop resonator along with a negative-resistance circuitry for its loss 

compensation is shown in Fig. 5.5(a). The external quality factor, Qe, represents the input 

and output loadings, and Q-r is the resonator’s quality factor due to coupling to the 

negative–resistance device. The active resonator’s equivalent circuit is shown in Fig. 

5.5(b) where the shunt RLC network represents the passive resonator coupled to the input 

and output ports through the transformers with turn ratio ne. The current source In models 

the extra noise introduced by the active device. The coupling to the negative-resistance 

device is modeled by the transformer with turn ratio nr.  

Resonator’s losses are fully compensated when the negative resistance presented 

to the RLC network is equal in magnitude to the positive resistance Rr, namely 

ܴ௥ ൌ െ50݊ଶ
ଶ    or equivalently    ܳ௨ ൌ ܳି௥ .                                 ሺ5.6ሻ 

Therefore, the negative-resistance coupling gap in Fig. 5.5(a) should be found through 
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EM simulations such that Q-r=Qu, in order to fully compensate for the resonator’s losses. 

In microwave circuits, a negative-resistance is usually realized by providing series 

feedback to the gate and source terminals of a transistor [20]. In the circuit shown in Fig. 

5.5(a), the gate and source reactances, Xg and Xs, act as series feedbacks. The negative-

 

Fig. 5.5 (a) A microstrip square loop resonator along with its negative-resistance circuitry 
for loss compensation. (b) Equivalent circuit of the active resonator. 
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resistance circuit is noisy due to the transistor’s noise sources, where its noise level is 

determined through the equation for noise-measure defined as [45] 

ܯ ൌ
௘ܲ

ܭ ଴ܶܤ
                                                               ሺ5.7ሻ 

where K is the Boltzmann’s constant, T0 is the reference temperature and B is the 

bandwidth used to measure the exchangeable noise power of the active device, Pe. It is 

very important to design the negative-resistance device for the lowest minimum noise-

measure, Mmin, in order to minimize its noise effect on the resonator. Since the noise-

measure of an one-port network is independent of the lossless network used at its input 

[46], in the negative-resistance circuit of Fig. 5.5(a), the noise-measure is independent of 

the drain matching network and it only depends on the source and gate reactive 

terminations. The optimum Xg and Xs values can be determined according to the 

procedure introduced in [47], in order to achieve the minimum noise measure at the drain 

port. The minimum noise-measure is given by 

M୫୧୬ ൌ
F୫୧୬ െ 1

1 െ
1
Gୟ

                                                    ሺ5.8ሻ 

where Fmin and Ga are the transistor’s minimum noise-figure and associated gain, 

respectively. The drain matching network is then designed to transform the impedance at 

the drain to the required value, -50 Ω in this example.  

The minimum noise-figure of the active resonator can be derived in terms of the 

circuit and device parameters by analyzing the equivalent circuit of Fig. 5.5(b). The 

output noise contributions are from the input noise (In,50), passive resonator losses (In,Rr), 

and the negative-resistance device (In,-50), with the power spectral densities of 

I୬,ହ଴
ଶതതതതതതത ൌ

4KT଴B

50
            I୬,ୖ౨

ଶതതതതതതത ൌ
4KT଴B

R୰
           I୬,ିହ଴

ଶതതതതതതതത ൌ
4KT଴B

50
M୫୧୬ .          ሺ5.9ሻ 

The last term in (5.9) is obtained by equating the exchangeable noise power of the 



59 
 

negative-resistance device given in (5.7) to that of the current source In,-50 in parallel with 

the -50 Ω resistor. By calculating the ratio of the total output noise power to the 

contribution from the input noise, one can show that the active resonator’s noise-figure is  

௠௜௡ܨ ൌ ௣௔௦௦௜௩௘ܨ ൅ ൬
2ܳ௘
ܳ௨

൰ܯ௠௜௡                                                          

where          ܨ௣௔௦௦௜௩௘ ൌ 1 ൅
2ܳ௘
ܳ௨

  .                                          ሺ5.10ሻ 

In the above equations Factive and Fpassive are the noise-figure of the active and passive 

resonators, respectively. Equation (5.10) encapsulates the noise effect of the active device 

on the resonator’s noise-figure, indicating that a low noise-measure transistor should be 

selected for the active resonator design. Since transistors with noise-measures as low as 

0.1 at microwave frequencies are readily available, small noise-figure degradations could 

be achieved compared to the passive resonator. It is interesting that the above equation is 

similar to (5.4) which is the noise-figure of an active resonator designed using an active 

feedback-loop.  

 The negative-resistance device amplifies RF power in order to compensate for the 

energy loss within the passive resonator. The amount of the power added by the negative-

resistance can be determined by analyzing the equivalent circuit shown in Fig. 5.5(b). 

Assuming the input power at port one is Pin, the voltage across the LC tank becomes 

௧ܸ௔௡௞ ൌ ඥ2߱଴ܮ௥ܳ௘ ௜ܲ௡                                        ሺ5.11ሻ 

The amount of the power added by the negative-resistance device (Padded) is equal to the 

power dissipated by the tank’s positive resistance:  

௔ܲௗௗ௘ௗ ൌ
௧ܸ௔௡௞
ଶ

2ܴ௥
ൌ ൬

2ܳ௘
ܳ௨

൰ ௜ܲ௡.                                  ሺ5.12ሻ 

The above equation shows the relation between the power added by the negative-

resistance device and the resonator’s input power and quality-factors. Finally, it should be 
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mentioned that the above equation is general and can be applied to various types of active 

resonators. Following a similar procedure, one can show that it also holds for the active 

resonators designed using active feedback-loops. 

5.1.3 Low-Noise Active Resonator Design, Final Remarks 

Active resonators are designed by using active feedback-loops or negative-

resistance devices to compensate for the losses within the passive resonators. Both loss 

compensation methods were discussed and their respective design procedures were 

presented that allow for resonators’ full loss compensation with minimum noise-figure 

degradations. It was shown that the two methods yield a similar performance in terms of 

noise-figure and power consumption and their choice depends on the implementation 

constraints. A summary of the formulas for noise-figure and power consumption of active 

resonators are provided here for future reference.   

Note that, in active resonators, the loaded and external quality-factors are equal 

since the unloaded quality-factor is infinity due to full loss compensation. Therefore one 

can rewrite (5.4), (5.10) and (5.12) as 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
ܳ௅ ,௔௖௧௜௩௘ ൌ  ܳ௘                                       

௣௔௦௦௜௩௘ܨ ൌ 1 ൅
2ܳ௘
ܳ௨

                               

௔௖௧௜௩௘ܨ  ൌ ௣௔௦௦௜௩௘ܨ ൅ ൬
2ܳ௅,௔௖௧௜௩௘

ܳ௨
൰ܯ 

௔ܲௗௗ௘ௗ

௜ܲ௡
ൌ
2ܳ௅,௔௖௧௜௩௘

ܳ௨
                              

                                        ሺ5.13ሻ 

where Fpassive and Factive are the noise-figures of the passive and active resonators, 

respectively. QL, active, Qe and Qu are, respectively, the loaded quality-factor of the active 

resonator, the external quality-factor, and the unloaded quality-factor of the passive 

resonator. Pin is the power input to the resonator and Padded is the power added by the loss 

compensation network.  
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5.2 The Application of Active Resonators for Low Phase-Noise 

Oscillators 

In this section it will be shown that one can take advantage of high loaded quality-

factors of active resonators to design very low phase-noise oscillators. Both theoretical 

analysis and simulation results are presented, indicating that phase-noise monotonically 

decreases by increasing the active resonator’s loaded quality-factor. Too large a value of 

quality-factor, however, significantly increases the power consumption and poses serious 

challenges to the design of the amplifier in the resonator’s loss compensation network. In 

other words, the power efficiency is compromised for lower phase-noise in oscillators 

employing active resonators, as discussed in the following. 

5.2.1 Theory 

 Active resonators can be designed for very high loaded quality-factors due to their 

lossless characteristics. This makes them attractive for the design of low phase-noise 

oscillators. On the other hand, the active resonator’s excess noise sources increase the 

noise level in the oscillator’s loops which adversely affects its phase-noise. A resonator 

figure-of-merit, R-FOM, was introduced in Section 3.3 in order to evaluate the overall 

effect of a resonator on an oscillator’s phase-noise. The R-FOM definition is modified as 

following so that it can be applied to active resonators 

ܴ െ ܯܱܨ ൌ ݃݋10݈ ቆ
ܨ

ܳ௅
ଶቇ.                                            ሺ5.14ሻ 

Here, F is the resonator’s noise figure. The above definition is based on the observation 

that F and QL
2 appear, respectively, in the denominator and numerator of the Leeson’s 

formula for phase-noise. Note that (5.14) is a general form of (3.16) which can be applied 

to both active and passive resonators. 

An active resonator’s R-FOM can be expressed in terms of design parameters by 

inserting (5.13) into (5.14)  
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ܴ െ ܯܱܨ ൌ ൮݃݋10݈
1 ൅ ሺܯ ൅ 1ሻ

2ܳ௅
ܳ௨

ܳ௅
ଶ ൲.                                   ሺ5.15ሻ 

Recalling from Section 3.3, low R-FOM values are desired for low phase-noise 

applications. According to the above equation, by increasing the loaded quality-factor of 

an active resonator (QL), its R-FOM and, equivalently, the oscillator’s phase-noise 

monotonically decreases with an asymptotic rate of 10 dB/dec, as shown in Fig. 5.6(a). It 

should be mentioned that in active resonators, due to their lossless characteristics, very 

high loaded quality-factors can be achieved by decreasing the resonator’s external 

coupling to the input and output loads. Therefore, despite their excess noise, high-Q 

active resonators can be used to design very low phase-noise oscillators.  

Phase-noise reduction using active resonators comes at the cost of increased 

power consumption. The active device in a resonator’s loss compensation network 

consumes DC power in order to generate RF energy to compensate for the energy 

dissipation within the resonator. The power added by the active device is given in (5.13) 

where it is proportional to the active resonator’s loaded quality-factor. Therefore, 

increasing the active resonator’s loaded quality-factor for lower phase-noise directly 

translates into higher power consumption with a rate of 10 dB/dec, as depicted in Fig. 

 

Fig. 5.6 (a) Phase-noise and (b) power consumption in oscillators versus the loaded 
quality-factor of the active resonators used as their frequency stabilization elements. 
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5.6(b). This manifests itself as very low DC-to-RF power efficiency in low phase-noise 

oscillators employing active resonators.  

Another important issue is the effect of the active resonators’ flicker-noise 

sources on the oscillators’ phase-noise. Ideally, the flicker noise sources of active 

resonators do not contribute to the oscillators’ phase-noise. This is because the low-

frequency flicker-noise components cannot reach to the oscillators’ loops due to the 

band-pass characteristics of the resonators. However, the active resonators’ nonlinearities 

can upconvert the flicker noise components to around-carrier frequencies, where they can 

then reach the oscillators’ loops, degrading their close-in phase-noise. Therefore, one 

must ensure that the amplifiers in the active resonators are operating in their linear 

regime. 

5.2.2 Simulation Results for an 8-GHz Oscillator Using an Active Resonator 

An 8 GHz oscillator is designed using a microstrip square-loop active resonator, 

in order to verify the previous discussions. Fig. 5.7 shows the circuit schematic of the 

oscillator consisting of an amplifier, the resonator, and a π-feedback-network. The 

amplifier in the oscillator’s loop is designed using a bilaterally conjugate-matched to 50 

ohms SiGe HBT transistor, providing a small signal gain of 8 dB. The π feedback-

network element values are determined based on the substitution theory, discussed in 

Section 4.2.1, to close the oscillator’s loop.   

The simulated unloaded quality-factor of the passive microstrip square-loop 

resonator implemented on a 32 mils thick RO4003C substrate is 72. The resonator is loss 

compensated with an active feedback loop using an ideal amplifier with 7 dB insertion 

gain and 2 dB noise-figure. The active feedback-loop is designed based on the procedure 

introduced in Section 5.1.1. The loaded quality-factor of the active resonator is controlled 

by adjusting the input/output coupling gaps (g). Several active resonators with different 

loaded quality-factors were designed, and their simulated noise-figures are depicted in 

Fig. 5.8(a). As it can be seen, the simulation results are in good agreement with the 

theoretical values calculated from (5.13). This validates the active resonators’ noise 
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analysis presented in Section 5.1. It is also notable that noise-figure proportionally 

increases by increasing the loaded quality-factor. 

The oscillator is simulated in Agilent’s ADS. The oscillation frequency is 8 GHz 

with 7 dBm output power level. Fig. 5.8(b) shows the simulated oscillator’s phase-noise 

versus the active resonator’s loaded quality-factor. As it can be seen, the phase-noise 

monotonically decreases by increasing the resonator’s loaded quality-factor (increasing 

g). The rate of the phase-noise improvement is close to 10 dB/dec as predicted by (5.15) 

obtained from theoretical analysis. Notably, the active resonator with the loaded quality- 

factor of 2000 reduces the phase-noise level to -150 dBc/Hz at 1 MHz frequency offset; 

 

Fig. 5.7 Circuit schematic of an 8 GHz oscillator designed using a microstrip square-loop 
active resonator. 

Gain: 7 dB
NF: 2 dB

Vb

Vc

g g

Matching

Matching

Amplifier

F
ee

db
a

ck
 N

e
tw

or
k

NESG2030
SiGe HBT



65 
 

 

 

Fig. 5.8 (a) Simulated noise-figure of the square-loop active resonator for different loaded 
quality-factors. Noise-figure is calculated at the resonant frequency. (b) Simulated 
oscillator’s phase-noise at 1 MHz frequency offset versus the loaded quality-factor of its 
active resonator. This graph also shows the amount of the power added by the amplifier 
(Padded) in the active resonator’s loss compensation network. 
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namely, 25 dB lower than the phase-noise of a similar oscillator using a passive square-

loop resonator. The compromise is the increased power consumption. As observed in Fig. 

5.8(b), in order to achieve a loaded quality-factor of 2000, the amplifier in the resonator’s 

loss compensation network should generate 28 dBm of RF power. This value is about 

125 times higher than the oscillator’s output power level! As a result, the DC-to-RF 

power efficiency is severely degraded and drops to less than 0.5%. 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

5.3 Low Phase-Noise Oscillator Design Employing Active Elliptic Filters 

In the preceding section we showed that low phase-noise oscillator designed using 

a single active resonator suffers from a very low DC-to-RF power efficiency. This is due 

to the high power consumption of active resonators designed for high loaded quality-

factors. One can mitigate this problem by employing active elliptic filters as the 

frequency stabilization elements in oscillators. In chapter 4, it was shown that elliptic 

filters can provide higher loaded quality-factors compared to single resonators, due to 

their higher frequency-selectivity caused by the presence of close-to-passband 

transmission zeros. This feature helps active elliptic filters to achieve high loaded quality-

factors at lower noise figures and power consumptions compared to single active 

resonators. To demonstrate this approach, an 8 GHz oscillator using a four-pole active 

elliptic filter is designed and tested. The oscillator shows a measured phase-noise of -150 

dBc/Hz at 1 MHz frequency offset from the carrier with a DC-to-RF efficiency of 5%. To 

the best of our knowledge, the presented oscillator achieves the lowest phase-noise 

among planar oscillators reported to date. 

5.3.1 Active Elliptic Filter Design 

This section presents the procedure used to design an active four-pole elliptic-

response filter for implementation in a low phase-noise oscillator. Elliptic filters are best 

suited for this application since they demonstrate higher quality-factors compared to the 

Butterworth and Chebyshev filters (as mentioned in Chapter 4). First, an open-square 

active resonator as shown in Fig. 5.9(a) is designed at 8 GHz based on the procedure 

outlined in Section 5.1.1. The resonator is implemented on a Rogers’ RO3035TM 

substrate with a dielectric constant of 3.55 and a thickness of 0.8 millimeters (32 mils). 

The passive resonator’s unloaded quality-factor is 180. An ATF-33143 pHEMT transistor 

from Avago Technologies is selected to implement the amplifier in the feedback loop. 

The amplifier provides a gain of 7 dB with 1.2 dB noise figure. The optimum active 

resonator’s feedback-loop design parameters are found from (5.5) and the corresponding 

input/output coupling gaps (g1 and g2) are determined by using Agilent’s MomentumTM 

EM solver. The simulated and measured frequency responses of 
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(a) 

 

 

(b) 

Fig. 5.9 (a) An open-square resonator with an active feedback-loop for loss compensation. 
(b) Measured and simulated frequency response of the loosely-coupled active resonator 
compared to a similar passive resonator. All dimensions are in millimeters. 
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the active resonator are shown in Fig. 5.9(b). The simulation results of a passive 

resonator are also included for comparison. The active resonator demonstrates a 

measured unloaded-quality-factor of 4000. The resonant frequency of the fabricated 

resonator is slightly shifted due to fabrication tolerances. 

Fig. 5.10 shows the circuit schematic of the elliptic filter in which the input and 

output resonators have been cross-coupled to realize the transmission zeros. It is not 

necessary to compensate for the losses of the input and output resonators since their 

loaded quality-factors are limited by the external loadings rather than the internal 

resonators’ losses. In fact, in coupled-resonator filters, the unloaded quality-factors of the 

middle stage resonators have the highest impact on the filters’ selectivity [48]. Therefore, 

in the filter of Fig. 5.10, only the losses of the two middle resonators have been 

compensated to enhance their unloaded quality-factors. This helps reduce the number of 

 

Fig. 5.10 An active four-pole elliptic-response band-pass filter designed for low phase-
noise oscillator applications. The two middle resonators are loss compensated using 
amplifiers. Q1 and Q2 are resonator quality-factor due to feedback-loop’s input and output 
loadings. All dimensions are in millimeters. 
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the active devices and their associated noise in the design of the active filter. The filter 

design parameters, such as the bandwidth, return loss and location of the transmission-

zero, are determined by optimizing the filter’s R-FOM through the procedure introduced 

in chapter 4. Fig. 5.11(a) shows the simulated insertion loss and loaded quality-factor of 

the active filter. The simulation results of a similarly designed passive filter are also 

included for comparison. The active filter exhibits a peak loaded-quality-factor of 720 at 

the pass-band edge, which is about six times higher than that of the passive filter. The 2.2 

dB insertion loss of the active filter is due to the uncompensated input and output 

resonators’ losses. The very high loaded quality-factor of the active elliptic filter makes it 

suitable for the design of low phase-noise oscillators. 

Noise-figure simulation results are shown in Fig. 5.11(b), where the optimized 

active filter (solid line) shows a slight noise-figure degradation within its pass-band 

compared to the passive filter (dashed line). This figure also compares the noise-figure of 

various other active filters designed with different feedback-loop parameters (Q1 and Q2).  

These filters satisfy the full loss compensation condition given in (5.2) and, thus, have a 

similar transfer characteristic as shown in Fig. 5.11(a). However, they exhibit different 

noise-figure performance. Simulations show that the noise-figure of the active filters will 

be severely degraded if the active resonators employed are not properly designed. The 

optimized active filter designed based on the equations given in (5.5) achieves the lowest 

noise-figure values over the entire pass-band. 

The filter shown in Fig. 5.10 was fabricated on a RO3035TM substrate.  The 

measured insertion loss of the active filter is shown in Fig. 5.12(a). A slight shift in its 

center frequency is believed to be due to the fabrication tolerances. The R-FOM of the 

active filter is calculated based on (5.14) using the measured quality-factor and simulated 

noise-figure of the active filter. As shown in Fig. 5.12(b), the active filter demonstrates 

up to 8 dB improvement in R-FOM, compared to a passive filter with similar design 

parameters. This active filter is used to design a low phase-noise oscillator as described in 

the following section. 
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(a) 

 

(b) 

Fig. 5. 11 (a) Simulated insertion loss and loaded-quality-factor of the passive and active 
filter. The center frequency is 8 GHz with 130 MHz bandwidth, 10 dB return loss and 
normalized transmission-zero-location of 1.2. (b) Simulated noise-figure of the active and 
passive filters. Noise-figure simulation results of various other active filters with different 
feedback-loop parameters are also shown for comparison.  
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Fig. 5.12 (a) Measured and simulated insertion loss of the active filter. (b) R-FOM of 
the active filter. The measurement results of a similar passive filter are also shown for 
comparison. Lower R-FOM values are desired for low phase-noise oscillator 
applications. 
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5.3.2 Oscillator Design and Measurement 

An X-band oscillator is designed using the active four-pole elliptic filter described 

in the previous section. The design frequency is selected at the point where the R-FOM of 

the filter is minimum, so as to achieve the lowest phase-noise operation of the oscillator. 

Fig. 5.13 shows a picture of the fabricated oscillator. The amplifier in the oscillator loop 

employs an NESG2030M04 HBT transistor from NEC with a gain of 8 dB. The transistor 

is biased at the collector voltage of 2 volts and collector quiescent current of 10 mA. A π-

circuit configuration is selected to design the parallel feedback network based on the 

substitution theory discussed in Section 4.2.1.  

The oscillator is fabricated and its measured output spectrum is shown in Fig. 

5.14(a). The oscillation frequency is 7.990 GHz with an output power of 10 dBm. The 

total consumed DC power for the oscillator is 200 mW, corresponding to DC-to-RF 

efficiency of 5%. The core oscillator efficiency, not including the active resonators, is 

31%. 

The phase-noise of the oscillator is measured by an Agilent’s E5500 phase-noise 

measurement system. The measurement results are shown in Fig. 5.14(b) where it shows 

a phase-noise of -150 dBc/Hz at 1 MHz offset from the carrier. This corresponds to an 

approximately 7 dB phase-noise improvement over the phase-noise of the oscillator in 

Chapter, 4 which uses a passive filter with similar design parameters. A similar 

improvement is observed in 1/f3 region where the flicker-noise is dominant. It is 

noteworthy that the phase-noise in this region is generated through a multiplicative 

process and does not directly depend on the carrier power level [49]. This indicates that 

the phase-noise improvement is due to the enhanced quality-factor of the active filter 

over the passive filter. Table 5.1 compares the performance of the oscillator with other 

reported planar oscillators. To the best of our knowledge, the oscillator described here 

has the lowest phase-noise among microwave planar oscillators reported to date. The 

FOM of the oscillator is -205 dBc/Hz, which is about 2 dB worse than the FOM of the 

oscillator employing a four-pole passive elliptic filter described in Chapter 4. This 

indicates that the active filter improves the phase-noise of the oscillator at the cost of 

increased power consumption compared to the oscillator employing a similar passive  
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Fig. 5.13.  Top view of the fabricated 8 GHz oscillator employing an active four-pole 
elliptic-response bandpass filter. The active device in the oscillator loop is an 
NESG2030M04 HBT SiGe transistor. The transistors of the active filter are ATF-33143 
pHEMT devices. The π-network consists of a series capacitor and two shunt microstrip 
open stubs. The filter’s dimensions are given the Fig. 5.10. 
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4.3.2 Oscillator Design and Measurement 

 

(a) 

 

(b) 

Fig. 5.14 (a) Measured output spectrum of the oscillator. (b) Measured phase-noise of the 
fabricated oscillator at 8 GHz.  Phase-noise at 1 MHz offset from the carrier is about -150 
dBc/Hz. Compared to an oscillator utilizing a similar passive filter, the oscillator with the 
active filter provides about 7 dB lower phase-noise at 1 MHz offset from the carrier. 
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filter. 

 

5.4 Conclusion 

High loaded quality-factors of active resonators make them attractive for the 

design of low phase-noise oscillators. However, active resonators introduce extra noise 

sources whose impact on the phase-noise of the oscillators need to be minimized. In this 

chapter, active resonators were analyzed and a design procedure was introduced that 

allows for their full loss-compensation with minimum noise-degradation. Consequently, 

the active resonators can achieve high loaded quality-factors while their excess-noise 

contribution to the phase-noise of the oscillators is minimized. It is shown, through 

analysis and simulation, that active resonators can significantly reduce the phase-noise in 

oscillators, at the cost of increased power consumption. In other words, in oscillators 

using single active resonators as their frequency stabilization elements, DC-to-RF power 

efficiency is traded for lower phase-noise. 

 

Table 5.1  
Comparison with other reported microwave planar hybrid oscillators 

 

Device Resonator Fo 

GHz 
Po 

dBm 
Eff. 
% 

L(f) † 
dBc/Hz  

FOM 
dBc/Hz 

 
HEMT [7] Ring resonator 12 5.3 48.7 -116.2 -189.3 

Si BJT [8] Hairpin 
Resonator 

9 9 4.5 -129 -185.6 

HEMT [26] Active resonator 10 10 2 -134.4 -187.4 

SiGe HBT [34] Extended 
resonance 

9.1 9.7 14 -139 -199.9 

HEMT [41] Active filter 10 1.5 - -119 - 

SiGe HBT [50] 
[Chapter 4] 

Passive elliptic 
filter 

8.1 3.5 10 -143 -207 

This work 
(SiGe HBT) 

Active elliptic 
filter 

8 10 5  -150 -205 

† Phase-noise at 1 MHz frequency offset. 
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Active elliptic filters are advantageous to single active resonators as they can 

generate high loaded quality-factors at lower noise figures and power consumptions. An 

X-band oscillator was designed using a four-pole active elliptic filter. The active elliptic 

filter was optimized to achieve the lowest oscillator’s phase-noise. The fabricated 

oscillator provides 10 dBm output power with 5% DC-to-RF efficiency at 8 GHz. Its 

measured phase-noise achieves a record value of -150 dBc/Hz at 1 MHz frequency offset. 

This corresponds to an approximately 7 dB improvement over the oscillator reported in 

Chapter 4, which uses a passive filter with similar design parameters. To the best of 

author’s knowledge, the oscillator presented in this paper achieves the lowest phase-noise 

among any published planar oscillator to date.  
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Chapter 6 

Miniaturized Low Phase-Noise Voltage-Controlled-Oscillator 
Design Using Dual-Mode Active resonators 

 

In Chapter 5, an X-band oscillator was designed employing a four-pole active 

elliptic filter in its feedback loop. The oscillator achieved a record low phase-noise 

performance due to the high-Q and low-noise properties of the filter. However, the 

oscillator is not amenable to integrated circuit fabrication due to its relatively large area 

and high DC power consumption. In this chapter, a new oscillator design technique is 

introduced that offers significant advantages in terms of size, frequency tunability and 

DC power consumption, while achieving a similar state-of-the-art phase-noise 

performance.  

The oscillator’s core is a reactively-terminated active elliptic filter, acting as a 

high-Q negative-resistance resonator, as shown in Fig. 6.1(a). In this configuration, the 

active filter provides high frequency-selectivity and, at the same time, initiates and 

sustains oscillation. Therefore, as opposed to the conventional parallel feedback 

technique (Fig. 6.1(b)), there is neither a need for an amplifier in the oscillator loop, nor 

for a coupler to deliver power to the external load, leading to a considerable DC power 

saving and a compact oscillator structure. To further reduce the oscillator’s size, the 

active filter is designed using a dual-mode active resonator. As discussed in this chapter, 

dual-mode resonators can be configured to realize compact elliptic filters. This technique 

not only helps to achieve high quality-factors while occupying a small area, but also 

facilitates an oscillator’s frequency tuning. 

In Section 6.1, dual-mode resonators and their resonant properties are discussed.  
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A compact pseudo-elliptic band-pass filter is designed by coupling the two resonant  

modes of a dual-mode active resonator. Simulation and measurement results show that 

the dual-mode filter can achieve very high loaded quality-factors, making it attractive for 

the design of compact low phase-noise oscillators. In section 6.2, the proposed very low 

phase-noise voltage-controlled-oscillator (VCO) design approach using a dual-mode 

active resonator is described. The VCO achieves a measured tuning range of 8.15-8.255 

GHz with phase-noise values of less than -148 dBc/Hz, at 1 MHz frequency offset, over 

the entire tuning range. The VCO’s figure-of-merit is -211.7 dBc/Hz. To the best of our 

knowledge, this is the lowest phase-noise and FOM for a planar oscillator. The output 

power level is 7 dBm with 12.5% DC-to-RF efficiency. The proposed VCO structure 

occupies a relatively small area making it attractive for integrated circuit fabrication at 

mm-wave frequencies. 

 

 

 

 

 
 
Fig. 6.1 Block diagram of (a) the proposed voltage-controlled-oscillator, and (b) a
conventional parallel-feedback oscillator. 
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6.1 Miniaturized Band-Pass Elliptic Filter Design Using a Dual-Mode 

Active Resonator 

Classical microstrip band-pass filters are designed using single-mode resonators. 

In recent years, dual-mode resonators have been increasingly used in wireless 

communication systems and other RF applications for their low-loss and compact 

properties [51]-[55]. Because of their double resonant behavior, a dual mode band-pass 

filter of a certain order requires half as many resonators when compared to a single-

mode-resonator band-pass filter topology. Fig. 6.2 shows some typical resonator 

topologies used for dual-mode operation. These topologies possess a pair of degenerate 

resonant modes whose resonant frequencies are split when a perturbation element is 

strategically introduced. This section shows that a pseudo-elliptic band-pass filter can be 

designed by controlling the resonant frequencies and transmission zeros produced by the 

resonator in dual-mode operation. 

 

(a)                                    (b)                                                   (c) 
 

Fig. 6.2 Microstrip loop and patch resonator topologies for dual-mode operation (a) square 
shape (b) triangular shape (c) circular shape [52]. 
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6.1.1 Resonant Properties of Dual-Mode Resonators 

A dual-mode square-loop resonator is shown in Fig. 6.3. The total periphery of the 

resonator is a wavelength. This allows the resonator to simultaneously sustain two 

orthogonal resonant modes along its vertical and horizontal axes. The electric and 

magnetic field patterns, shown in Fig. 6.3(b), indicate that the excited resonant mode is 

corresponding to TM100
z mode when port 1 is excited, where z is the axis perpendicular 

to the ground plane [55]. If the excitation port is changed to port 2, the field patterns are 

rotated by 90o for the vertical degenerate mode, which corresponds to TM010
z mode. The 

two modes have the same resonant frequencies. With the presence of a small perturbation 

(d≠0), the modes are coupled to each other and resonant frequency splitting occurs, as 

shown in Fig. 6.4(a). The coupling coefficient depends on the perturbation size, d, and it 

can be calculated from the following [31] 

݇ ൌ േ
ଶ݂
ଶ െ ଵ݂

ଶ

ଶ݂
ଶ ൅ ଵ݂

ଶ                                                                 ሺ6.1ሻ 

where f2 and f1 are the upper and lower resonant frequencies. Fig. 6.4(b) shows the 

calculated coupling coefficient versus perturbation size for a square loop resonator 

implemented on a 32 mils thick RO4003C substrate at 8 GHz. The sign of k depends on 

the nature of coupling which is determined by the type of perturbation. A patch 

perturbation, d > 0, results in electric coupling with positive k, whereas a magnetic 

coupling with negative k is created through a corner cut, d < 0, [56], [57]. 

The input/output ports can be coupled to both modes through offset-to-center 

feeding lines, as shown in Fig. 6.5(a). The external loading effects on the horizontal and 

vertical modes are represented by the external quality-factors, Qe
h and Qe

v, respectively. 

The external quality-factors are calculated using [31] 

ܳ௘ ൌ
଴݂

ା݂ଽ଴೚ െ ݂ି ଽ଴೚
                                                     ሺ6.2ሻ 

where f+90 and f-90 are the frequencies at which the phase of S11 (for horizontal mode) or 
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(a) 

 

       

(b) 

                                          

(c) 

Fig.6.3 (a) A microstrip square-loop dual-mode resonator. λ is the wavelength. (b) Field 
pattern of horizontal mode. (c) Field pattern of vertical mode. Simulation results are 
obtained from Ansoft HFSS. 
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S22 (for vertical mode) shows +90o  and -90o difference with respect to the phase at center 

frequency, f0. Fig. 6.5(b) shows the calculated external quality-factor curves versus the 

feeding line’s dimensions. 
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(a) 

 

(b) 

Fig.6.4 (a) Resonant frequency splitting due to mode coupling in a square-loop dual-mode 
resonator shown in Fig. 6.3(a). (b) Calculated coupling coefficient versus perturbation 
size d. The dual-mode resonator’s square-loop periphery is 950 mils and W=33 mils. 
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   (a) 

 

Fig. 6.5 I/O Coupling structure for the dual-mode square-loop resonator shown in Fig. 
6.3(a). The I/O port is coupled to both modes through offset to center feeding line. The 
calculated (b) Qe

h and (c) Qe
v for various feeding line dimensions. Qe

v and Qe
h are, 

respectively, the vertical and horizontal modes’ external quality-factors due to the loading 
from I/O line. The dual-mode resonator’s square-loop periphery is 950 mils and W=33 
mils. 
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6.1.2 Realization of a Compact Pseudo-Elliptic Band-Pass Filter Using a Dual-Mode 

Active Resonator 

A dual-mode active resonator configured to realize a pseudo-elliptic band-pass 

filter is shown in Fig. 6.6. A compact version of the resonator employing meandered lines 

is given in Fig. 6.6(b), occupying a relatively small area of λ/8 × λ/8, where λ is the 

wavelength. Each resonant mode is coupled to a negative-resistance device for loss 

compensation. The negative resistances are realized using NESG2030 SiGe HBT 

transistors based on the procedure outlined in Section 5.1.2. The two lossless resonant 

modes are coupled to each other by the small patch perturbation at the two inner corners. 

The input and output ports are coupled to both modes through offset-to-center feeding 

lines. According to the filter’s coupling scheme shown in Fig. 6.6(c), the multi-path 

connection between the input and output ports facilitates the realization of a transmission 

zero in order to achieve a pseudo-elliptic band-pass response.  

Fig. 6.7 shows the equivalent circuit of the filter, where the shunt LC networks 

model the lossless resonant modes, and the quarter-wave transmission lines represent the 

couplings. The filter’s design procedure is detailed here. First, the coupling matrices (M) 

for various filters with different bandwidths, return losses, and locations of zeros, are 

synthesized. In the next step, the element values of the equivalent circuit are determined 

in terms of the filter’s parameters and coupling coefficients [31] 

C଴ ൌ
1

ሺܯௌଵ
ଶ ω଴Z଴ሻ ሺܨ. ሻܹ.ܤ

ൈ 10ଵଶ ሺpFሻ   L଴ ൌ
ሺܯௌଵ

ଶ Z଴ሻ ሺܨ. ሻܹ.ܤ

ω଴
ൈ 10ଽ ሺnHሻ  ሺ6.3ሻ 

where ω0 is the angular frequency at the mid-band frequency of the filter, and F.B.W is 

the filter’s fractional 3-dB bandwidth. The quarter-wavelength transmission lines’ 

characteristic impedances are determined by [31] 

Zୗଵ ൌ Z୐ଶ ൌ Z଴   Zୗଶ ൌ Z୐ଵ ൌ ඨ
Z଴

ሺC଴ω଴Mୗଶ
ଶ ሻሺF. B.Wሻ

   Zଵଶ ൌ
ሺMୗଵ

ଶ Z଴ሻሺF. B.Wሻ

Mଵଶ
  ሺ6.4ሻ 

where Z0 = 50 Ω is the I/O port impedance.  
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Fig. 6.6 (a) A dual-mode active resonator configured to realize a pseudo-elliptic band-pass 
filter. Horizontal and vertical resonant modes are coupled to negative resistances for loss 
compensation. (b) Compact version of the filter using a meandered-loop resonator. (c) 
Coupling scheme and coupling matrix of the filter. The two resonant modes (1&2) are 
coupled to each other through M12, and to the input and output ports through (Ms1, M1L) 
and (Ms2, M2L). 
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The equivalent circuits of the filters are simulated in Agilent’s ADS circuit 

simulator to obtain their frequency responses. Then, the resonator figure-of-merits of the 

filters are calculated using (5.14) and compared with each other (Section 4.1.2). 

Simulation results indicate that the filter with a fractional bandwidth of 1.5%, return loss 

of 10 dB, and a normalized transmission zero location of 1.2 yields the minimum 

resonator figure-of-merit for lowest phase-noise.  The corresponding filter’s coupling 

matrix is 

M ൌ ൦

0 0.675 െ0.258 0
0.675 0 0.336 െ0.258
െ0.258 0.336 0 0.675

0 െ0.258 0.675 0

൪.                            ሺ6.5ሻ 

The physical dimensions of the dual-mode filter with the above coupling matrix 

are calculated here for implementation on a 32 mils thick RO4003® substrate at 8 GHz. 

The dual-mode resonator’s square-loop periphery is a wavelength; corresponding to 950 

mils at 8GHz and the microstrip line width is 33 mils. The perturbation size, d, is 

determined by the coupling strength between the two resonators  

 k ൌ ሺF. B.Wሻ ൈ Mଵଶ ൌ 0.015 ൈ 0.336 ൌ 0.005                            ሺ6.6ሻ 

which, according to Fig. 6.4(b), corresponds to d = 8 mils. The input port is coupled to 

both modes with the following external quality-factors 

 

Fig. 6.7 Equivalent circuit of the dual-mode active elliptic filter. 
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ܳ௘
௛ ൌ

1

ሺܨ. ሻܹ.ܤ ൈ ௦ଵܯ
ଶ ൌ

1

ሺ0.015ሻ ൈ 0.675ଶ
ൌ 146                                            

ܳ௘
௩ ൌ

1

ሺܨ. ሻܹ.ܤ ൈܯ௦ଶ
ଶ ൌ

1

ሺ0.015ሻ ൈ 0.258ଶ
ൌ 1001                              ሺ6.7ሻ 

Therefore, according to Fig. 6.5(b), the feeding lines’ gap and offset values are 

determined as g = 20 mils and t = 46.5 mils, respectively.  

The dual-mode active filter is designed on a Roger’s RO4003C® substrate and 

simulated using Agilent’s MomentumTM EM solver. The simulated unloaded quality-

factor of each resonant mode is 90. The resonant modes are loss compensated by 

coupling to negative-resistance devices realized by using two NESG2030 SiGe HBT 

transistors, with 8 dB gain and 2 dB noise figure. The simulated frequency-response of 

the active filter is shown in Fig. 6.8. The simulation results of a passive filter with similar 

design parameters are also included for comparison. It can be seen that the active filter 

provides a lossless transfer characteristic with high loaded quality-factors at its pass-band 

edge. At the 3-dB band edge, a loaded-quality factor of 550 is achieved. Fig. 6.8(b) 

shows the noise-figure simulation results where the active filter shows less than 1 dB 

noise-figure degradation within its pass-band, compared to the passive filter. The active 

filter’s low-noise performance is due to minimum-noise design of the loss compensation 

networks. The high-Q and low-noise properties of the dual-mode active filter make it 

attractive for low phase-noise oscillator designs, as discussed in the subsequent section.  
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Fig. 6.8 Simulated (a) frequency response and (b) noise-figure of the dual-mode active 
filter. The simulation results of a similar passive filter are also included for comparison. 
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6.2 Oscillator Design Methodology 

 The oscillator’s block diagram is shown in Fig. 6.9, consisting of an active 

elliptic filter and a (a) series or (b) parallel feedback network. In this configuration, the 

active filter provides a high frequency-selectivity for low phase-noise and, at the same 

time, initiates and sustains oscillation. This is achieved by designing the active filter’s 

loss compensation networks such that they over-compensate the losses of the resonators; 

namely, the amount of energy produced by the active devices exceeds the energy 

dissipation. Therefore, the active filter becomes potentially unstable and provides a 

positive loop-gain required for oscillation startup. The active filter is then embedded 

within a feedback network to boost the instability and design an oscillator. In this section 

we explain the oscillator’s design procedure in two steps: starting with the active filter, 

followed by the design of the feedback network. 

6.2.1 Positive-Gain Active Filter Design 

The active filter is implemented using the dual-mode active resonator discussed in 

the preceding section. Fig. 6.10(a) shows the filter’s structure, where each resonant mode 

is coupled to a negative-resistance device for loss compensation. The negative-resistance 

 

Fig. 6.9 Oscillator design using an active filter in a (a) series or (b) parallel feedback 
configuration 
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networks are designed by providing reactive terminations to the base and collector 

terminals of NESG2030M04 SiGe HBT transistors. The optimum reactance values are 

determined as Xs = -180 ohms and Xg = -50 ohms; based on the low-noise design 

procedure introduced in Section 5.1.2. The loading effects of the negative-resistance 

devices on the resonant modes are represented by the quality-factor Q-r. 

In order to a make the active filter potentially unstable for startup of oscillation, 

the couplings to negative-resistances are increased (Q-r decreased) so that the losses of 

the resonators are overcompensated. In Section 5.1.2 of Chapter 5, it was shown that a 

lossless resonator is achieved when Q-r is set equal to the unloaded quality-factor of the 

passive resonator, Qu. Similarly, one can conclude that 

ە
ۖۖ

۔

ۖۖ

ۓ
ܳି௥
ܳ௨

൐ 1   lossy resonator                                            

ܳି௥
ܳ௨

ൌ 1   lossless resonator                                       

ܳି௥
ܳ௨

൏ 1   positive‐gain active resonator.              

              ሺ6.8ሻ   

Therefore, once Q-r < Qu, the losses of the resonant modes are overcompensated and the 

active filter becomes unstable exhibiting positive insertion and reflection gains. This is 

illustrated in Fig. 6.10(b) where it shows the frequency response of the active filter for 

various ratios of Q-r to Qu. As it can be seen, the active filter’s pass-band edge is the most 

unstable area suitable for the design of an oscillator. Interestingly, at these frequencies, 

the active filter also achieves its highest frequency-selectivity, resulting in oscillator’s 

low phase-noise operation. 

The ratio of Q-r to Qu, indicating the degree of loss compensation in resonators, is 

a design parameter that should be carefully selected. A small ratio indicates a tight 

coupling to the negative-resistance device, resulting in a highly overcompensated 

resonator. This enables a strong oscillation startup with high output power levels. 

However, the frequency selectivity of the filter is degraded since its resonators are highly 

loaded with the negative-resistance devices. This phenomenon can be seen in Fig. 6.10(b) 

where elliptic filters with less coupling to negative-resistance devices (higher Q-r/Qu  
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(a) 

 
(b) 

Fig. 6.10 (a) The proposed dual-mode active elliptic filter suitable for the design of 
miniaturized low phase-noise oscillators. Each resonant mode is coupled to a -50 Ω 
resistor for loss compensation. (b) Simulated frequency response of the filter. In the case of 
loss overcompensation (Q-r < Qu) the active filter shows positive gain at the upper band 
edge.  
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ratios) demonstrate sharper filtering response.  Therefore, there is a trade-off between 

frequency-selectivity and power handling capability of active filters. The optimum ratio 

of Q-r to Qu depends on the specifics of the transistors and the filter design parameters, 

and it should be selected based on the simulations to minimize the phase-noise. For the 

filter under study, implemented on RO4003C® substrate and using NESG2030 

transistors, the optimum ratio was determined as Q-r/Qu=0.6. 

6.2.2 Oscillator’s Feedback Network Design 

 The active filter with the positive gain is embedded within a parallel or series 

feedback network to design a low phase-noise oscillator as shown in Fig. 6.9. The design 

of the oscillator using a parallel feedback network is straightforward following the 

procedure based on the substitution theory outlined in Section 4.2.1. In this work the 

oscillator is designed based on the series feedback network, Fig. 6.11(a), due to its 

simplicity and ease of implementation.  

The series feedback is realized by connecting the second port of the filter to a 

reactive termination, jXT in Fig. 6.11(a), to boost the filter’s instability. The simulated 

input reflection coefficient of the active filter is shown in Fig. 6.11(b) for two cases of 

matched and reactive terminations. As it can be seen the reactive termination causes a 

strong peak in the input reflection coefficient. The peak frequency depends on the 

termination value, jXT, and is set at the filter’s pass-band edge for highest frequency 

selectivity and lowest phase-noise. At the vicinity of the peak reflection coefficient, the 

reactively-terminated active filter behaves like a high-Q LC resonator having a negative 

resistance in shunt, as shown in the inset of Fig. 6.11(b). The resonator is then connected 

to the load through the matching network. The matching network is designed based on 

the well-known device-line theory in order to maximize the oscillation power [20].  
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(a) 

 

(b) 

Fig. 6.11 (a) Circuit schematic of the oscillator consisting of the dual-mode active elliptic 
filter, reactive termination (XT), and load matching network. (b) Input reflection 
coefficient of the active filter. The reactive termination causes a strong peak in the input 
reflection coefficient. At the vicinity of the peak the reactively terminated active filter 
behaves like a shunt LC resonator having a negative-resistance in shunt. 
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6.3 Measurement Results 

Dual-Mode Active Filter 

The dual-mode active filter shown in Fig. 6.6 was fabricated on a 32 mils thick 

RO4003C substrate with a dielectric constant of 3.55. Two NESG2030 SiGe HBT 

transistors with the gains of 8 dB and noise-figures of 2 dB were utilized in the design of 

the negative-resistance devices for loss compensation. The measurement results shown in 

Fig. 6.12 are in good agreement with the simulation results except for a slight shift in the 

center frequency which is due to fabrication tolerances. As it can be seen a lossless 

transfer characteristic with a measured loaded-quality factor of 650 at 3- dB pass-band 

edge has been achieved. This high loaded quality-factor makes the active filter suitable 

for the design of low phase-noise oscillators. The simulated noise-figure of the active 

elliptic filter is shown in Fig. 6.8(b) and discussed in Section 6.1.2.  

 

Fig. 6.12 Measured frequency response of the dual-mode active filter. Measurement results 
are in good agreement with the simulation results (dashed line). 
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Voltage-Controlled-Oscillator 

 The fabricated VCO is shown in Fig. 6.13, consisting of the high-Q dual-mode 

active filter described in the previous section, the reactive termination, and the external 

load matching network. Two NESG2030M04 SiGe HBT transistors with 2 dB noise-

figure and 8 dB associated gain were used to design the negative-resistance devices for  

 

Fig. 6.13 Top view of the fabricated VCO based on a tunable dual-mode active elliptic filter. 
The circuit schematic of the VCO is shown in Fig. 6.11(a). The design of the dual-mode 
filter is discussed in Section 6.1.2. 
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loss compensation. The physical size of the resonator is 7 × 7 mm2. A circuit prototyping 

machine was used in the oscillator fabrication. The most sensitive part of the VCO to 

fabrication tolerances is the dual-mode filter; specially the inner corner patch 

perturbations. However, simulation results show that it can tolerate fabrication errors of 

25 μm or less without considerable loss of performance. 

Frequency tunability is achieved by coupling the dual-mode resonator to variable 

capacitors (varactors). Four MA46H120 hyperabrupt varactor diodes with capacitance 

ranges of 0.2-1 pF and quality factors of 15 were attached to the resonant modes for 

frequency tuning, as shown in Fig. 6.14. The varactors’ control voltage of 1-10 volts 

changes the location of the peak reflection coefficient, thereby tuning the oscillation 

frequency. The tuning range depends on the degree of the coupling to varactors. A strong 

 

Fig. 6.14 Four diod varactors are coupled to the dual-mode resonator to provide frequency 
tuning. The varactors change the location of the peak reflection coefficient, hence the 
oscillation frequency.  

 

TABLE 6.1 
VCO’s phase-noise degradation versus frequency tuning range compared to a similar free-
running oscillator. Phase-noise is degraded due to diod varactors’ losses. 

Tuning Range 2% 5% 10% 
Phase-Noise Degradation 1 dB 2.5 dB 4.8 dB 
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coupling results in a wide tuning range, however, at the cost of phase-noise degradation. 

This is due to the effect of the varactors’ losses which increase the noise-figure of the 

active elliptic filter. Since, according to the Leeson’s formula, the phase-noise of the 

VCO is directly proportional to the noise-figure of the active filter, varactors’ losses 

degrade the phase-noise of the VCO compared to the free-running oscillator case. Table 

6.1 shows the simulated phase-noise degradation versus the tuning range of the VCO.  

The measured VCO’s oscillation frequency range is 8.150-8.255 GHz. The output 

power level varies from 6 to 8 dBm across the tuning range, while DC-RF efficiency 

varies from 9 to12.5 %. The output power level and DC-RF efficiency drop at lower 

frequencies due to the varactors’ quality-factor degradation at small tuning voltages. The 

VCO’s phase-noise is measured by the FM discriminator technique using an Agilent’s 

E5500A phase-noise measurement system. As shown in Fig. 6.15, the VCO shows a 

measured phase-noise of -149.5 dBc/Hz at 1 MHz frequency offset at 8.2 GHz. The 

flicker phase-noise corner frequency is approximately 90 KHz. The phase-noise 

variations versus the tuning voltage are plotted in Fig. 6.16. Phase-noise degrades for 

tuning voltages below one volt due to the decreased quality-factors of the varactors. To 

the best of author’s knowledge, the VCO presented here demonstrates the lowest phase-

noise among microwave planar oscillators reported to date. The figure-of-merit (FOM) of 

the oscillator is calculated using [11] 

ܯܱܨ ൌ ሺ∆݂ሻܮ െ ݋20݈ ଵ݃଴ ൬
଴݂

∆݂
൰ ൅ ݋10݈ ଵ݃଴ ൬

஽ܲ஼

1ܹ݉
൰                        ሺ6.9ሻ 

where L(Δf) is the phase-noise, Δf is the frequency offset, f0 is the oscillation frequency 

and PDC is the total consumed DC power. The FOM of the VCO is -211.7 dBc/Hz. Table 

6.2 compares the performance of several reported VCOs. The VCO presented in this 

paper achieves the lowest phase-noise and FOM compared to other planar oscillators 

reported to date. 
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Fig. 6.15 Measured phase-noise of the fabricated VCO at 8.2 GHz.  Phase noise at 1 MHz 
offset from the carrier is about -149.5 dBc/Hz. 
 
 
 

 
 

Fig. 6.16 Measured characteristics of the VCO versus varactors’ tuning voltage. Phase-
noise is measured at 1 MHz frequency offset. 
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6.4 Conclusion 

In this chapter, a low phase-noise voltage-controlled-oscillator was designed 

employing a compact and tunable high-Q negative-resistance resonator. The resonator is 

a reactively-terminated active elliptic filter which provides high frequency-selectivity 

and, at the same time, initiates and sustains oscillation. In this configuration, as opposed 

to the conventional parallel-feedback oscillators, there is neither a need for an amplifier 

in the oscillator loop nor for a coupler to deliver the power to the external load, resulting 

in a simple and compact VCO structure. The active elliptic filter was implemented using 

a dual-mode square-loop active resonator.  The resonant properties of dual-mode 

resonators were discussed and it was shown that they can be configured to realize 

compact elliptic filters to achieve high quality-factors while occupying small areas.   

 

TABLE 6.2
Comparison with other reported planar oscillators 

Device Resonator F0 

GHz
P0 

dBm
Tuning Range

MHz 
Efficiency L(f)† 

dBc/Hz
FOM

dBc/Hz
HEMT [7]  Ring 12 5.3 510* 48.7% -116.2 -189.3

Si BJT [8]  Hair-Pin 9 9 270 4.5% -129 -185.6

HEMT [26]  Active resonator 10 10 120 2% -134.4 -187.4

Si BJT [27]  Microstrip line 9.95 7 54 2.5% -134 -191

SiGe HBT [50] 
[Chapter 4] 

 Passive elliptic filter 8.1 3.5 - 10% -143 -207

SiGe HBT [58] 
[Chapter 5] 

 Active elliptic filter 8 10 - 5% -150 -205

GaInP/GaAs HBT 
[59] 

 LC (on chip) 4.87 -4 70 8.3% -131 -198

SiGe HBT [This 
Work] 

High-Q negative-
resistance 

8.2 7 105 12.5% -149.5 -211.7

               † Phase-Noise at 1MHz frequency offset           * Mechanical tuning 
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The fabricated VCO operates at 8.2 GHz with 105 MHz tuning range. It shows a 

measured phase-noise of -149.5 dBc/Hz at 1 MHz frequency offset at 8.2 GHz. Its output 

power level is 7 dBm with 12.5% DC-RF efficiency. The VCO’s FOM is -211.7 dBc/Hz. 

To the best of author’s knowledge, both the phase-noise and FOM are the lowest values 

among published planar oscillators reported to date.  

In addition to achieving very low phase-noise levels, the presented VCO 

possesses a planar structure, occupies a small area, and provides easy frequency tuning. 

The frequency tunability is particularly important in order to avoid performance 

degradation and frequency shifting caused by the fabrication tolerances. All these 

advantages make the presented VCO design technique suitable for integrated low phase-

noise VCO design at microwave and millimeter-wave frequencies 
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Chapter 7 

Conclusion 

 

7.1 Summary of Work 

This thesis presents novel techniques to design high-Q planar resonators intended 

for low phase-noise applications. The proposed methods can be applied to design 

miniaturized very low phase-noise voltage-controlled-oscillators at microwave and mm-

wave frequencies.  

In Chapter 2, the fundamentals of phase-noise in oscillators are discussed. 

Leeson’s formula for phase-noise is revisited and it is generalized to oscillators with 

complex resonant structures. Lesson’s phase-noise formula employs the term “loaded 

quality factor”, the definition of which is critical to understanding resonator design for 

low phase-noise oscillators. This issue is addressed in Chapter 3 where different 

definitions of resonator quality-factor were discussed and compared to each other. A 

figure-of-merit for resonators is introduced in order to evaluate their overall effect on the 

phase-noise of oscillators. This figure-of-merit serves as a basis for optimizing the design 

of various resonators for low phase-noise applications. 

  A quality-factor enhancement technique based on employing multiple-resonator 

band-pass filters is introduced in Chapter 4. It is shown that band-pass filters, and in 

particular elliptic-response filters, can provide significantly higher quality factors 

compared to single resonators. This is due to the existence of multiple resonators and the 

presence of close to pass-band zeros in their transfer functions, which help increase 

frequency selectivity. The effect of various filter parameters, such as order, bandwidth, 

return loss, and location of transmission zeros, are discussed. A procedure
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is introduced to optimize the design of elliptic filters for low phase-noise oscillators. The 

proposed method is experimentally verified by designing an 8 GHz oscillator employing 

a four-pole elliptic filter as its frequency stabilization element.  

In Chapter 5, the application of active resonators for low phase-noise oscillators is 

discussed. Active resonators are analyzed and a design procedure is introduced to 

optimize their performance for low-noise applications. Analytical expressions for the 

noise figure and power consumption in active resonators are derived. These equations 

provide an insight into the design of active resonators for low phase-noise oscillators. It is 

shown that, despite their excess noise, active resonators can be used to design very low 

phase-noise oscillators, however, at the cost of increased power consumption. In other 

words, they compromise the DC-to-RF power efficiency for lower phase-noise.  This 

problem can be mitigated by designing active elliptic filters. These filters can provide 

high quality-factors at lower power consumptions compared to single active resonators. 

An 8 GHz oscillator is designed by employing a four-pole active elliptic filter. The 

oscillator achieved a record phase-noise performance due to the high loaded quality-

factor of the filter.  

The oscillator described in Chapter 5 achieves a state-of-the-art phase-noise 

performance and possesses a planar structure which makes it suitable for implementation 

in hybrid circuit fabrication technology. However, it is not amenable to integrated circuit 

design due to its relatively large area and high power consumption. In Chapter 6, a new 

design technique is introduced that offers significant advantages in terms of size, power 

consumption and frequency tunability. The proposed oscillator’s core is a reactively 

terminated active elliptic filter that acts like a high-Q negative-resistance resonator. In 

this configuration, the active filter provides high frequency-selectivity and, at the same 

time, initiates and sustains the oscillation. Therefore, as opposed to the conventional 

parallel feedback technique, there is neither a need for an amplifier in the oscillator loop, 

nor for a coupler to deliver power to the external load, leading to considerable DC power 

savings and a compact oscillator structure. The active filter is designed using a dual-mode 

active resonator. This technique not only helps reduce the oscillator’s size, but also eases 

the frequency tunability. An X-band voltage-controlled-oscillator is 
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 designed based on the proposed technique. The oscillator achieves a state-of-the-art 

phase-noise and figure-of merit (FOM) among planar oscillators reported to date. The 

proposed VCO structure occupies a relatively small area making it suitable for integrated 

circuit fabrication at mm-wave frequencies. 

 

7.2 Future Work 

Although the design techniques presented here are demonstrated at X-band in 

hybrid circuits, they are applicable to mm-wave integrated circuit fabrication. The 

explosive growth of wireless data such as Wi-Fi has triggered significant research into 

development of new architectures for radio transceivers that could deliver very high data 

rates, particularly for video and personal area networks. For these reasons, today we 

witness a very high interest in communication systems at millimeter-waves. Other 

important applications include automotive radar for safety and improved driving. The 

Federal Communication Commission (FCC) has allocated several frequency bands at 

millimeter-waves for high data rate wireless communication. Fig. 7.1 shows selected 

parts of the FCC-allocated frequency spectrum [60]. For example the 60-GHz band is 

used for unlicensed short-range data links with data rates up to 2.5 Gb/s. also shown are 

the frequency allocations for automotive radar at 24 GHz and 77 GHz. 

 

Fig. 7.1 The millimeter-wave band allocation in United States [60]. 
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Integrated low phase-noise oscillators are commonly designed using LC-tank 

resonators due to size considerations. Unfortunately, integrated inductors and capacitors 

demonstrate very low quality-factors ranging from 5 to 15. Furthermore, at mm-wave 

frequencies, solid-sate devices possess several fundamental limitations including low 

intrinsic gain, high noise-figure and low power handling, all of which make the design of 

low phase-noise integrated oscillators quite challenging at high frequencies. Recently, 

transmission-line-based resonators have received increasing attention for integrated 

oscillator design [61]-[63]. These resonators can provide high quality-factors while 

occupying a small area due to small wavelengths at mm-wave frequencies. 

The VCO design technique introduced in Chapter 6 is suitable for integrated 

circuit designers since, in addition to achieving very low phase-noise levels, it occupies a 

small area and provides easy frequency tuning. The frequency tunability is particularly 

important in order to avoid performance degradation and frequency shifting caused by the 

process variations. Fig. 7.2 shows the modified version of the VCO suitable for 

implementation in standard CMOS circuit fabrication technologies. The loss 

compensation networks have been redesigned using differential negative resistances. In 

analog integrated circuits, differential negative resistances are preferred due to their ease 

of implementation, stability, and more immunity to substrate and environment noises, as 

compared to single-ended negative resistances used in Chapter 6. Each differential 

negative resistance is realized using two cross-coupled MOSFET transistors. The cross-

coupled differential pair is a well-known architecture and its design for low-noise 

applications has been widely addressed in the literature [64]. The four differential 

varactors attached to the resonator provide for frequency tuning 

To demonstrate the capabilities of the resonator shown in Fig. 7.2(b) for low 

phase-noise integrated circuit applications, it was designed and simulated at 24 GHz for 

IBM 0.13-µm CMOS fabrication process. The resonator is laid out on the 4 µm thick 

aluminum last metal layer which is 14 µm above the first metal layer used as the ground 

plane. The overall size of the resonator is λ/8 ×λ/8 corresponding to 900 µm2 at 24 GHz. 

Further size reductions can be readily achieved based on the techniques introduced in 

[65]-[67]. The passive part of the resonator was simulated in Momentum® 2.5-D EM 



107 
 

solver.  The resulting S-parameters were imported into Cadence SpctreRF® circuit 

simulator where the whole active resonator was simulated including the transistors and 

bias circuits. Fig. 7.3 shows the simulated frequency response and noise-figure of the 

active filter. At 24.1 GHz, the active filter achieves a loaded quality-factor of 325 with 17 

dB noise-figure. The very high-Q characteristic of this resonator is very promising for 

integrated low phase-noise oscillator designs.  
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(a) 

 

Device M1 M2 M3 M4 IDC VDD 
Size 15/0.13 µm 15/0.13 µm 25/0.13 µm 25/0.13 µm 1.5mA 1.2 V 

 

Fig. 7.2 (a) The proposed VCO block diagram, and (b) implementation of the dual-mode 
active filter suitable for CMOS integrated fabrication processes. The table shows the 
design parameters for the implementation using IBM 0.13-µm CMOS process at 24 
GHz. 
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(a) 

 

(b) 

Fig. 7.3 Simulated (a) frequency response and (b) noise figure of the dual-mode active 
resonator designed for IBM 0.13-µm CMOS fabrication process at 24 GHz.  
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