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Chapter I

INTRODUCTION

1.1 Motivation

Synthetic aperture radar (SAR) systems are capable of producing very high res-

olution images of the earth, since microwaves have the ability of deeper penetration

than optical waves and are weather independent, they are powerful tools to inves-

tigate and monitor the earth’s environment. Spaceborne and airborne SARs are

frequently employed for civilian and military applications such as land cover mon-

itoring and target detection. These sensors produce an enormous amount of data

that must be interpreted and utilized. With the development of multi-frequency,

polarimetric and interferometric techniques in SAR imaging systems, SAR images

with higher spatial resolution and multi-scales are acquired. The effective use of

information within SAR images is essential to investigate and monitor the earth’s

geophysical parameters globally and locally.

Forests are a major part of the earth vegetation coverage. They store a higher

proportion of carbon in the form of biomass and contribute greatly to exchange of

gases and energy between the atmosphere and the surface. The growth and distri-

bution of forests plays an important role in the global carbon cycle. Characterizing

forest canopy properties such as biomass, tree height, and density over large areas

1
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is therefore important in understanding and modeling forest state, condition and

functioning [68]. Studies estimate that tropical land-use change accounted for ap-

proximately one third of the increase of the atmospheric carbon dioxide content [32].

The repetitive global coverage and ground inaccessibility make remote sensing a prac-

tical tool to study forest ecosystem dynamics because of the provision of consistent

datasets at local to global scales and at appropriate spectral, spatial and tempo-

ral resolutions. There are various types of remote sensing instruments that can be

used to study forests, each for a different purpose. Landsat data have been used

to estimate secondary growth rates and biomass accumulation rates [2]. Although

optical/hyperspectral datasets are useful for forest mapping and species/community

discrimination, observations are restricted by cloud cover and time of day and the

data relates largely to the surface of materials. By contrast, microwave remote sens-

ing has the advantage of penetrating cloud and dense vegetation canopies and mi-

crowave frequencies are sensitive to many forest parameters. SAR allows all-weather

and night-time observations at high resolution and a range of frequencies and po-

larizations. Furthermore, active microwaves can provide information on the vertical

depth of forests, including the dielectric properties of tree components and their

geometric structure.

Over the past two decades, research has increasingly focused on the use of SAR

for retrieving biomass and other vegetation properties [18,33,40,48,49,55,56,67,70].

Studies have demonstrated the usage of SAR data in different configurations to map

vegetation biomass over large regions. However, retrieval using SAR backscattering

coefficients is limited by saturation levels of biomass, which vary from 30 Mg/ha

to 200 Mg/ha with frequency and polarization as well as community composition

and structure [18, 33, 49, 67]. More recently, however, efforts have been made to
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understand and quantify the relationship between SAR data and the properties of

forest components with a view to raising the levels at which biomass and other

structural attributes can be retrieved [48, 56, 70].

Many microwave scattering models have been developed to study how microwave

signal interacts with forest components and retrieve the forest parameters from SAR

measurement. However, the existing models have been developed for monostatic

(backscattering) radar systems and therefore are insufficient for studying the bistatic

RCS of forest canopies. Moreover, these models are not applicable to forest stands

of mixed species composition and structure where multiple layers occur such as the

overstory, understory and shrubs.

It is also important to study SAR’s response to the inhomogeneity of forests in

the horizontal direction. The pixel-level based image models and processing tools are

insufficient to represent the target’s inhomogeneity in the images. Texture analysis

has drawn more interest lately and is becoming increasingly important. Texture of

SAR images is caused by the spatial variation of the imaged objects. It is an impor-

tant property of natural and man-made targets such as rain forests and urban areas,

especially in high resolution images; the property of the region is often more impor-

tant than their individual positions, for example, regions of cultivated vegetation,

trees planted in rows and houses along streets. The spatial average over a region

does not capture the relevant information optimally. Thus, texture information can

generate more accurate understanding of the characteristics of the interested region,

as a result, higher accuracy of land cover classification can be achieved.

To explore the advantages of bistatic radars, a bistatic forest scattering model is

first developed to simulate bistatic scattering coefficients from forest canopies, the

model is based on Michigan Microwave Canopy Scattering (MIMICS) model and
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uses radiative transfer theory. Furthermore, the bistatic configuration is included in

a multi-layer canopy scattering model for mixed species forests, which is developed

to account for the complexity of forests in the vertical direction. A Part of this

dissertation analyzes and simulates a relatively simple and effective texture model

— correlation length and develops a blind deconvolution approach to estimate cor-

relation length of SAR texture, which can be applied to study forest structures’

non-uniformity in the horizontal direction. A coherent SAR texture simulator is also

utilized to analyze the formation of SAR texture and study SAR image and texture

models.

1.2 Background

To better understand how microwave signals interact with forest and other veg-

etated and non-vegetated components and to thereby assist forest parameter re-

trieval from SAR measurement, many microwave scattering models have been de-

veloped [9, 19, 34, 38, 44, 62, 66, 81, 86]. These models treat forest canopies as infinite

horizontal layers over a ground surface. Two usual approaches — field approach

and discrete approach are mostly used to model random scattering media. The field

approach models the permittivity of the random medium as a continuous function

of positions which has a mean value (background) and a a fluctuating part (small

particles), this approach is appropriate for weakly scattering media where the fluc-

tuation is small compared to the mean value such as ice or sea water [58]. For forest

canopies, a discrete approach is appropriate with respect to the canopy component

size, density and microwave frequency. The canopy is characterized as a discrete

random medium consisting of tree components (i.e., trunks, branches and foliage)

that act as single microwave scatterers. A typical two layer canopy model is often
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used in these scattering models. Branches and foliage make up the crown layer,

underneath that is the trunk layer made of vertical trunks. A rough surface model

is used for the ground. These models have been modified and enhanced for various

applications and vegetation types. In some crop canopy models, only one layer is

considered; at low frequencies (i.e., L- or P-band), foliage is ignored in some mod-

els [65, 71]. Modified solutions also introduce gap or cell structures for forests with

discontinuous [50, 80, 81].

The majority of models fall into two categories by their developing techniques:

(1) Distorted Born Approximation(DBA) [44,72,73] and (2) Radiative Transfer (RT)

theory [62, 66, 86]. The DBA approach is an approximate solution of Maxwell’s

equations of the scattering medium and includes the coherent effect of fields. The

RT theory solves energy transport RT equations in the random medium and ignores

coherent effects. Most models based on RT theory solve the equation by an iterative

approach; some use the Discrete Ordinate and Eigenvalue Method (DOEM) and

utilize multiple discretized canopy layers [62].

MIMICS [86] have been developed to model microwave backscatter from vegeta-

tion canopies. It represents a first order solution of the RT equations. and uses a

crown-trunk canopy model over a ground surface. Discrete approach is applied to

model canopy components. MIMICS was developed in three stages. The first ver-

sion, MIMICS I, is the first order solution and works with a continuous crown layer.

MIMICS II is designed to incorporate discontinuous crown layers as well as trunk

surface roughness. MIMICS III is proposed to extend the previous versions to second

or higher order solutions. Among them, MIMICS I has been mostly implemented

and validated. In this dissertation, MIMICS I is referred to MIMICS.

Many methods and models to describe and estimate SAR image texture have been
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developed. Among them are histogram estimation [37,85] , image correlation length

estimation [37,85], second-order gray-level co-occurrence matrix(GLCM) method [28,

85], lacunarity index [17,54,63], wavelet decomposition [59] and Markov random field

(MRF) models [12, 15, 24, 42, 75].

One simple and effective texture model is to fit the pixel values into different

histograms [60,61]. For a homogeneous area, the intensity values of single look SAR

images fit in a negative exponential distribution, and their amplitude values fit in a

Raleigh distribution, both are characterized by one parameter corresponding to the

average radar cross section(RCS). However, when target texture exits, in order to

represent the spatial variations of natural scenes, some probability distribution func-

tions(PDF) with two or more parameters have been proposed such as K-distribution,

log-normal and Weibull distribution. The additional degree of freedom allows them

to represent different contrast in data and the contrast has already been identified as

a potential texture discriminant. Many researchers have applied the PDF estimation

method on SAR image classification and segmentation processes. A PDF estimation

of the normalized texture measure was proposed [60] to classify SAREX-92 data from

the Amazon rain forest.

Image correlation length is another effective parameter proposed to represent the

texture characteristics of images, it is commonly used in rough surface modeling.

It has been shown that the correlation length differs in real SAR images. Ulaby et

al in [85] shows that images of water surfaces have the shortest correlation length,

and images of forest have the largest correlation length while those of urban areas

have the medium correlation length. Kurosu et al in [37] shows that the texture

autocorrelation functions distinguish rice and grass, which are not separable by the

first order statistics.
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GLCM and lacunarity index are also popular methods to characterize SAR tex-

ture. GLCM measures the co-occurrence probabilities of two specific gray-levels at

specific positions in terms of the relative direction and distance. Usually applied on

binary images, lacunarity measures the deviation of a geometric object from trans-

lational invariance at multi-scales. Homogeneous images have lower lacunarity.

With the development of much more capable computers, Markov random field

(MRF) texture models have received increasing attention. In these models, the

image is described by Markov chains defined in terms of conditional probabilities

associated with spatial neighborhoods. There are many MRF models that have been

proposed such as Gibbs model, Gaussian model, binomial model, and Gamma model.

Many groups have demonstrated MRF models in simulating the remote sensing image

texture successfully. The parameters estimated from MRF models are used in image

classification, segmentation and registration. The major problem with the MRF

models is the high computational complexity.

The methods and models introduced above have been major parts of SAR image

processing techniques. There are numerous studies to extract and understand SAR

texture. For example, The land-cover classification accuracy based on first order

statistical radar cross section (RCS) can be as high as 72% while the second order

texture statistics provided a classification accuracy of 88% for Seasat SAR imagery

of Oklahoma as shown in [85]. It has been reported that texture is used to classify

different tree stands. [37] shows the classification accuracy of JERS-1 single look

images was improved by 29% by adding texture features based on the second order

statistics.

Like the indeterminate nature of image texture itself, the choice of SAR texture

models depends on many factors such as scene properties, sensor, noise level, pixel
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resolution and scale and computational cost. In this work, we analyze the formation

of SAR texture and build a coherent SAR texture simulator to investigate the optimal

texture models that are relatively simple yet effective for SAR imagery.

1.3 Overview

The goal of this study is to develop microwave scattering models for nonuniform

forest canopies and apply them to actual forest stands, and the models’ simulation

results are validate by real SAR measurement data. Major contributions include:

¬ Extend MIMICS to a bistatic microwave canopy scattering model.

­ Using a multi-layer canopy model to represent the mixed species forest canopies,

which also contains overlapping layers and a tapered trunk model.

® Build and solve multi-layer radiative transfer equation and implement a bistatic

multilayer canopy scattering model.

¯ Compare applications of correlation length model and MRF model to SAR im-

ages and use a blind deconvolution method to estimate the texture correlation

length from SAR images.

° Build a SAR texture simulator to analyze formation of SAR texture, compare

the statistical SAR image model and direct coherent summation simulation

model.

This dissertation is arranged as follows:

In Chapter II, after a brief overview of the RT theory and the backscattering

version of MIMICS on which the bistatic model is based in Section 2.1, the devel-

opment of Bi-MIMICS is described in Section 2.2. The application of the model is
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presented next: Section 2.3 describes canopy parameters and bistatic geometry setup

while the application of Bi-MIMICS to selected canopies and the simulation results

are discussed in Section 2.4. Finally, the chapter is conclude in Section 2.5.

In Chapter III, the first section provides the background and motivation of devel-

oping Multi-MIMICS. Section 3.2 presents the multi-layer canopy model and solves

RT equations while Section 3.3 analyzes the the first order Multi-MIMICS scatter-

ing mechanisms and model’s applicability. The implementation of Multi-MIMICS is

then presented in Section 3.4 and Section 3.5 summarizes the chapter.

Chapter IV consists of the application of Multi-MIMICS to real mixed forests and

analysis of the simulation results. Acquisition of forest data and processing of SAR

measurement from the test site are described in Section 4.1. Section 4.2 compares

the backscattering coefficients simulated by Multi-MIMICS and MIMICS models and

actual SAR data, the multi-layer scattering model is validated by radar measurement.

Multi-MIMICS’s capabilities and limitations of the models are discussed in Section

4.3. Section 4.4 is the summarization.

In Chapter V, the background of SAR texture is first introduced in in Section

5.1, then Section 5.2 provides the overview about the conventional multiplicative

SAR image model and its first and second order statistics. Image correlation length

is the texture model of our interest while other well known texture models are also

tested as a supplement measurement. Section 5.3 compares two texture model’s

performance on actual SAR images from tropical forests and suggests correlation

length is a simple and effective model for analyzing texture of remote sensing images.

A blind deconvolution algorithm developed to estimate the SAR texture correlation

is presented in Section 5.4 and Section 5.5 concludes the chapter.
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In Chapter VI, Section 6.1 introduces two types of SAR image simulator through

statistic approach and direct coherent summation approach. Physical formation of

SAR texture is analyzed in Section 6.2, which provides the theoretical background

for the coherent texture simulator. Section 6.3 describes the coherent SAR simulator

and presents simulation results for different target textures. The result is discussed

and summarized in Section 6.4.

Finally, Chapter VII concludes the thesis and proposes the future work.



Chapter II

BISTATIC MICROWAVE CANOPY

SCATTERING MODEL

A bistatic forest scattering model is developed to simulate scattering coefficients

from forest canopies. It is based on MIMICS (hence called Bi-MIMICS) and uses ra-

diative transfer theory, where the first order fully polarimetric transformation matrix

is used. Bistatic radar systems offer advantages over monostatic radar systems be-

cause of the additional information provided by the diversity of the geometry. Seven

bistatic scattering mechanisms and one specular scattering mechanism are included

in the first order Bi-MIMICS solution, and they represent the extinction, scattering

and reflection processes of the propagating wave through the canopy. By simulat-

ing the forest canopy scattering from multiple viewpoints, we can better understand

how the forest scatterers’ shape, orientation and density and permittivity affect the

canopy scattering.

Bi-MIMICS is parametrized using selected forest stands with different canopy

compositions and structure. The simulation results show that bistatic scattering is

more sensitive to forest biomass changes than backscattering. Analyzing scattering

contributions from different parts of the canopy gives us a better understanding of

the microwave’s interaction with the tree components. The ground effects can also

11
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be studied. Knowledge of the canopy’s bistatic scattering behavior combined with

additional SAR measurements can be used to improve forest parameter retrievals.

The simulation results of the model provide the required information for the design

of future bistatic radar systems for forest sensing applications.

In this chapter, Section 2.1 provides a brief background of radiative transfer the-

ory and overview of the backscattering version of MIMICS on which the bistatic

model is based. The development of Bi-MIMICS is then presented in Section 2.2.

Section 2.3 describes canopy parameters and bistatic geometry setup. The applica-

tion of Bi-MIMICS to selected canopies and the simulation results are discussed in

Section 2.4 and Section 2.5 concludes the chapter.

2.1 Introduction and Background

2.1.1 Forest Canopy Parameters

The Marrakesh Accords define forest by three criteria in [1], they are area of

region, tree cover over the area (percent) and tree height [68].

Definition 2.1.1 A minimum area of land of 0.05 ∼ 1.0 ha with tree crown cover,

or equivalent stocking level, of more than 10% ∼ 30% and containing trees with the

potential to reach a minimum height of 2 ∼ 5 m at maturity is defined as forest. A

forest may consist either of closed forest formations where trees of various storeys

and undergrowth cover a high proportion of the ground or open forest.

The Marrakesh Accords allow countries under the Kyoto Protocol to choose their

own parameters within the ranges described above.

Tree crown is the upper part of a tree, which includes branches and foliage. Tree

trunk is the main woody stem of a tree above the ground. Crown and trunk are

two major structures of forests. To develop microwave scattering models for forest
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canopies, both the geometric parameters and physical parameters representing the

canopy need to be defined.

Canopy geometric parameters are defined in two levels. At canopy level, most

important parameters are canopy density (i.e. number of trees per unit area); Crown

shape, crown radius and crown depth; Trunk height; So is the ground roughness.

At tree level, there are four types of canopy composition need to be specified.

For branches and needles, volume density (i.e. number of branches or needles per

unit volume) as well as distribution of the size (stem length and stem radius) and

orientation (elevation and azimuth angle) should be provided; For leaves, the size

information refers to the distribution of thickness and radius of the leaves. Den-

sity and orientation distribution are also needed for leaves; Distribution of trunk’s

orientation and radius are important too.

Physical parameters are the dielectric constant of every parts of the canopies.

Dielectric constants of the four canopy components are related to their moisture

content, environment temperature and bulk density. The permittivity of the ground

surface is decided by surface type (soil, snow, water), moisture content, soil compo-

sition (soil, sand, tilt) and environment temperature.

2.1.2 Canopy Scattering Model and Motivation

Although early stage radars were bistatic systems, they were quickly replaced by

monostatic system for practical usage in means of instrument building. Nowadays,

most SARS for earth resources applications are backscattering radar systems such as

JERS, EOS, RADARSAT, AirSAR, ENVISAT/ASAR, PALSAR. However, over the

last decade, increasing attenuation has been paid to bistatic radar systems partly

due to the advances in communication and processing technologies, they began to
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reclaim the arena. Studies and experiments have been reported for bistatic system

development and algorithms [53, 76]. Bistatic radar measurements have been taken

in the laboratory either using radars on two separate platforms or using a monostatic

radar with a reflective plane setup [5,20,30,74,83]. Some systems have also explored

the usage of existing satellite or communication channels as the transmission signals

[26, 89].

Because bistatic geometry provides additional information which can’t be ac-

quired through backscattering measurement, bistatic/multistatic radar systems offer

advantages over monostatic radar systems in the areas of target detection and iden-

tification. Targets designed to minimize backscattering Radar Cross Section (RCS)

or scattering coefficient (σ0) may demonstrate a large bistatic RCS, which improves

the counter-stealth ability of radar systems. Using passive receivers is important for

military applications since the passive receivers are undetectable.

The existing canopy scattering models, however, have been developed for mono-

static (backscattering) radar systems and therefore are insufficient for studying the

bistatic RCS of forest canopies. To explore the advantages of bistatic radars, our

research has focused on the development of a bistatic model, herein referred to as the

Bistatic Michigan Microwave Canopy Scattering model (Bi-MIMICS). As the name

suggests, the model is based on the original backscattering MIMICS [86]. As with its

predecessor and other models, the RT-theory-based canopy scattering model utilizes

the discrete scatterer approach and an iterative algorithm to solve the RT equations.

The development of Bi-MIMICS is motivated by the need to design new bistatic

systems. The bistatic response of forests can be used in vegetation classification and

parameter estimation. By applying the bistatic model to forest canopies at vari-

ous observation angles, the simulation results enhance the understanding of how a
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forest’s structure, scatterer orientation, density and diversity affect the scattering

measurements. As a result, better understanding of the microwave scattering mech-

anisms of tree components are obtained, which aid studies such as communication

channel sensitivity in forested areas as well as detection of targets under the trees.

Bi-MIMIC can also be used to study the effects of the underlying ground on total

canopy scattering. The simulation results of the model offer the needed information

for the design of future bistatic radar systems for forest sensing applications. In this

chapter, we apply Bi-MIMICS to a number of canopies at different angles, frequen-

cies, and polarizations. The simulated bistatic RCS is examined for the canopy’s

scattering signature and the dependency on angle, frequency, and polarization.

2.1.3 Radiative Transfer Theory

In a medium containing random particles, radiating wave energy interacts with

the medium by absorption, scattering and emission. The quantity intensity is used to

characterizing the radiation field. The definition of intensity has several similar but

different forms. In this dissertation, the term intensity is denoted by I and defined

as follow.

Definition 2.1.2 Intensity is the flux of energy in a given direction per second

per unit solid angle per unit area perpendicular to the given direction. Its unit is

J t−1 sr−1 m−2.

In Figure 2.1, dΩ is the given direction, which has an angle θ with respect the

normal direction n of the unit area dA, the energy falls on the unit area dA from

the direction dΩ in the unit time interval dt is

ε = I cos θ dt dΩ dA (2.1)
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Figure 2.1: Definition of intensity. dΩ is the given direction, which has an angle θ
with respect the normal direction n of the unit area dA.

The intensity per frequency interval is called specific intensity. Radiative transfer

(RT) theory solves energy transport equations in the random medium by utilizing two

processes — extinction and emission to describe the change of propagating microwave

intensity in a given direction caused by the medium [8, 50, 85].

Definition 2.1.3 Extinction refers to the decrease in magnitude of wave intensity

along the propagation path either by absorption or scattering into other directions.

Definition 2.1.4 Emission refers to the increase in magnitude of wave intensity

along the propagation path due to both emission and scattering into the propagating

directions from other directions.

The self thermal emission from the canopy is negligible compared to other sources

at the frequencies used in active radar remote sensing.

The electric filed vector ~E of a plane wave propagating in a medium can be

presented by

~E = (Evv̂ + Ehĥ)ej
~k·~r (2.2)
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where ~k is the wave vector of the field and ~r is the observation position vector. The

terms v̂ and ĥ are the unit vertical and horizontal polarization vectors while Ev

and Eh are the vertical and horizontal polarized parts of the electrical field vector,

respectively. According to Equation (2.2), the polarization state of the intensity is

represented by the modified Stokes vector as follow
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where the quantity η is the intrinsic impedance.

The incident electrical field ~Ei is scattered by a particle trough a 4× 4 scattering

matrix S to generate the scattered electrical field ~Es as
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Therefore through mathematic operations (Equation (2.3)), the intensity scat-

tered Is(θs, φs) by a single particle can be related to the incident intensity Ii(θi, φi)

by the modified Mueller matrix Lm

Is(θs, φs) =
1

r
Lm(θs, φs; θi, φi; θk, φk)Ii(θi, φi) (2.5)

where (θi, φi) is the incident angle and (θs, φs) defines the scattering angle. (θk, φk) is

the orientation of the particle and r is the distance of the scattered intensity from the

particle. The modified Mueller matrix Lm is defined by the electrical field scattering
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matrix S of the particle as in Equation (2.6).
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For a medium containing random particles, the waves scattered from these par-

ticles are random in phase under the RT theory assumption and therefore, the total

scattered wave energy can be calculated by incoherent summation over all the par-

ticles.

The case Shv = Svh = 0 indicates that the medium doesn’t depolarize the in-

cident electric field. Some scattering model [43, 44] sets these two quantities to be

zero as they assume the summation over a large number of independent scatterers

would result in zero, which serves as a means to reduce the computational coat.

However, We don’t make this assumption in our models, the operation of matrices

are conducted through eigen value/vector approach. Therefore, depolarization of the

medium is included in the models.

In a semi infinite medium located in the half space z > 0, the integral form of

the vector RT equation at position (θ, φ, z) is [50]

I(µ, φ, z) = e−κz/µI(µ, φ, 0) +

∫ z

0

e−κ(z−z′)/µF(µ, φ, z′)dz′ (2.7)

where κ is the extinction matrix of the medium, and F is the source function.

µ = cos θ and is not to be mistaken as the permeability of the medium. The first

item is the intensity at the boundary I(µ, φ, 0), reduced in magnitude by the factor

e−κz/µ as it propagates through the distance z/µ in the direction (µ, φ) due to the

extinction by the medium. The second term accounts for the scattering by the
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medium along the propagation path. The source function has the form

F(µ, φ, z′) =

∫

P(θ, φ; θi, φi)I(µi, φ)dΩi (2.8)

In the above equation, P(θ, φ; θi, φi) is the phase matrix transferring the incident

intensity in the direction (θi, φi) to the scattered intensity in the direction (θ, φ).

For a medium containing one type of scatterers whose size sk and orientation

(θk, φk) can be described by certain distribution f(sk; θk, φk), its phase matrix is

given by

P(θs, φs; θi, φi) = Nk

∫ ∫ ∫

f(sk; θk, φk)Lm(θs, φs; θi, φi; θk, φk)dskdθkdφk (2.9)

where Nk is the scatterer number density. If the medium contains more type of

scatterers, the total phase matrix of the medium is the summation of phase matrices

over all types [50].

The extinction matrix of a medium containing random scatterers [50] is given by

Equation (2.10) and (2.11). Where K is the total type of scatterers in the medium,

Nk is the number density of type k and 〈Spqk(θs, φs; θi, φi; θk, φk)〉k is the average

scattering amplitude coefficient of type k scatterers at pq polarization, and k0 is the

free space wave number.
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where

Mpq =

K
∑

k=1

j2πNk

k0
〈Spqk(θs, φs; θi, φi; θk, φk)〉k; p, q = v, h (2.11)
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Under the incoherent assumption of RT theory, the extinction and emission pro-

cesses within the medium can be represented mathematically by both the average

extinction and source matrices of the medium. A 4 × 4 transformation matrix T is

introduced to transform the incident intensity Ii to the scattered intensity Is by the

medium.

Is(θs, φs) = T (θs, φs; θi, φi)Ii(θi, φi) (2.12)

The linearly polarized scattering coefficient can be obtained from T through

σ0vv = 4π cos θsT11 σ0hv = 4π cos θsT12

σ0hv = 4π cos θsT21 σ0hh = 4π cos θsT22 (2.13)

and scattering coefficient of other polarization combinations can be computed from

T using wave synthesis technique.

2.1.4 Introduction to MIMICS

Michigan Microwave Canopy Scattering (MIMICS) model [86] has been devel-

oped to model microwave backscattering from vegetation canopies. The model is

based on the RT theory. The vertical canopy structure is modeled as two cascad-

ing independent horizontal vegetation layers over a dielectric ground surface. The

top crown layer is composed of an ensemble of leaves, needles and branches while

tree trunks make up the lower trunk layer. All the tree components are treated like

single microwave scatterers: leaves are modeled as flat circular disks, branches and

needles are modeled as dielectric cylinders or prolate spheroids, and trunks are again

modeled as large cylinders. The underlying ground is modeled as a rough dielectric

surface that is specified by an RMS height and a correlation length. Trees are as-

sumed uniformly distributed over the ground and the scattering components within
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each layer are characterized by the statistics of their sizes, positions, orientations and

densities.

Incident wave intensity undergoes the extinction and emission processes by the

crown layer and trunk layer along its propagating path, which can be described by the

RT equations for the layers. The incident intensity is also reflected and backscattered

by the ground surface, which are denoted by reflectivity and scattering matrices. The

diffuse boundary condition assumes that the wave intensities across the interfaces

are continuous. MIMICS solves the RT equations to find the transformation matrix

relating the incident intensity and the scattering intensity. Seven terms [86], which

represent the seven scattering mechanisms (Figure 2.2) for wave energy propagating

through the canopy down to the ground surface, reflected and backscattered from

the ground surface, and propagating back through the canopy, are included in the

first order MIMICS solution.

Figure 2.2: Seven backscattering terms in the first order MIMICS solution based
on radiative transfer theory, including DG: direct ground; DC: direct
crown backscattering; C-G: crown scattering and ground reflection; G-
C: ground reflection and crown scattering; G-C-G: ground reflection and
crown scattering and ground reflection; T-G: trunk scattering and ground
reflection; G-T: ground reflection and trunk scattering.

There are four backscatter sources in the crown layer:
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• DC: Direct backscattering from the crown layer. This mechanism indicates the

incident intensity is attenuated and scattered back by the components in the

crown layer without reaching the trunk layer.

• C-G: Crown specular scattering followed by ground reflection. The downward

incident intensity is first scattered by the crown layer to the specular direction,

then it penetrates the trunk layer and reaches the ground, finally, it is reflected

by the ground and travels up through the two canopy layers to the air.

• G-C: Ground reflection followed by crown specular scattering. It is the com-

plement of the C-G mechanisms. The incident intensity propagates through

the canopy layers and attenuated by them before it hits and ground and gets

reflected to the specular direction, the upward reflected intensity penetrates

the trunk layer and scattered by the crown layer.

• G-C-G: Double bounce by ground reflection and crown backscattering and

ground reflection. The incident intensity is first reflected by the ground surface,

the upward wave reaches the crown layer and is backscattered by the crown

layer and propagates in the downward direction, which is again is reflected by

the round and travels through the canopy.

In the trunk layer, for the near-vertical oriented large cylindrical trunks, backscat-

tering vanishes. Direct backscattering from the trunk layer and double bounce terms

become insignificant, hence, only two mechanisms are included. They are

• T-G: Trunk specular scattering followed by ground reflection. This mechanisms

is similar to the C-G mechanism, however, the scattering process occurs in the

trunk layer instead of the crown layer, and the crown layer acts as a attenuating

layer.
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• G-T: Ground reflection followed by trunk specular scattering. As a complement

of the T-G mechanisms, this mechanisms is similar to the G-C mechanism.

The down incident intensity is first reflected into upward direction, then it

is scattered by the trunk layer and continues traveling up to the top canopy

surface.

One additional item included in the total scattering mechanisms is the backscat-

tering from the ground surface DG. The incident intensity that propagates trough

the canopy layers is attenuated but not scattered, and the ground surface scatters

the downward intensity to the backscattering direction and the upward undergoes

the similar attenuation process before it reaches the air.

The input parameters of MIMICS is a file that contains the microwave sensor

information, the environment condition and grounds surface parameters, more im-

portantly, it has a complete list of the structural characteristics of the canopies,

which includes two levels: (1) Canopy level parameters such as tree height, crown

depth, trunk height, canopy densities etc. (2) Tree level parameters such as geomet-

ric distributions of the the canopy components’ type, size. density and orientation as

well as their permittivities. MIMICS’s outputs consists of the full polarimetric total

transform matrix as well as the contributing components of the seven mechanisms,

and it also computes the transmission loss of the each layer.

MIMICS is valid in the range of 0.5 ∼ 10 GHz at incidence angles greater than

10◦. The model has been validated and widely applied to estimate the microwave

backscattering coefficients of various canopies in many studies. In a scatterometer

experiment presented in [51,52], MIMICS simulated the L-band backscattering coef-

ficient from a walnut orchard and was validated by measurements, although the sim-

ulation results showed some discrepancies with X-band. The problem was attributed



24

to higher order scattering contributions and the discontinuity of the canopy. MIM-

ICS has also been applied to the Alaskan Boreal Forest [16] to study the effects of

thawing and freezing soil on the radar backscatter. Although it is developed for for-

est canopies, MIMICS has also been successfully applied to other types of vegetation

such as corn fields [84].

2.2 Bistatic MIMICS Model Development

2.2.1 Bistatic Radiative Transfer Equation Solution

MIMICS built the general RT equation using bistatic geometry in order to derive

the transformation matrix, which was explained in [86]. However, only the backscat-

tering solution was implemented. More factors need to be considered for the bistatic

scattering model. Consider the geometry of Figure 2.3, the downward incident in-

tensity Ii impinges on the top surface of the canopy at an angle (θi, φi). The upward

scattering intensity Is is in the direction (θs, φs).

The incidence azimuth angle φi is set to be zero to reduce the number of variables

of Bi-MIMICS model. Three angle parameters defining the incidence and scattering

angle are shown in Figure 2.3. ~ki is the wave vector of the downward incident wave

and defined by (θi, 0) while ~ks is the wave vector of the upward scattering wave and

defined by (θs, φs). Under this definition, the set {θs = θi, φs = 180◦} indicates

backscattering, {θs = θi, φs = 0} stands for specular scattering and {θs = π − θi,

φs = 0} denotes forward scattering.

The canopy is modeled as two parallel layers over a ground surface as in MIMICS.

On top of the ground surface, is a trunk layer, above which is the the crown layer

containing branches and foliage. The bistatic radiative transfer equations are written

for each layer. Under the assumption of diffuse interfaces among layers, the equations
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Figure 2.3: Bistatic Simulation Angles. Incident direction (downward) is in the x-z
plane and defined by incidence angle θi and φi = 0; Scattering direction
(upward) is defined by θs and φs.

are solved using iterative approach.

In Bi-MIMICS, the first order bistatic transformation matrix T transforms the

incident intensity into the scattering intensity by

Is(µs, φs) = T (µs, φs;µi, φi)Ii(µi, φi) (2.14)

where (µi = cos θi, φi) defines the incidence direction and (µ = cos θ, φ) is the scat-

tered direction. The seven scattering mechanisms described in backscattering MIM-

ICS still exist but they are measured in bistatic directions as shown in Figure 2.4.

In addition, the ground reflection in the specular direction needs to be included in

the case of specular scattering. Figure 2.4 also shows the canopy structure above the

ground. The depths of the crown and trunk layer are denoted by d and H, respec-

tively. The transformation matrix T (shown in Equation 2.15) is given by solving the

bistatic RT equations using similar approach as in MIMICS [50], so detailed steps
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Figure 2.4: Scattering mechanisms in the first order Bi-MIMICS solution based on
RT theory, including G-C-G: ground reflection and crown scattering and
ground reflection; C-G: crown scattering and ground reflection; DC: di-
rect crown backscattering; G-C: ground reflection and crown scattering;
G-T: ground reflection and trunk scattering. DG: direct ground; T-G:
trunk scattering and ground reflection; The specular ground reflection
is not shown in the figure. Crown layer depth = d, Trunk layer height
= H.

are not given here.
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where the upward extinction matrix and the downward extinction matrix are denoted
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by κ
+ and κ

−, respectively. The subscripts c and l indicate the crown and trunk

layer, respectively. The quantity R is the reflectivity matrix of the specular ground

surface and G represents the ground scattering matrix. The A notations represent

the scattering occurring in the crown and trunk layer, which could be obtained by

proper phase matrices and extinction matrices [50].

The first term in T denotes the specular ground reflection, which exists only

in the specular direction (i.e. θs = θi, φs = φi). Proper attenuation is applied

to the intensity as it penetrates twice through the canopy. The next four terms are

contributions from the crown layer corresponding to the mechanisms of G-C-G, C-G,

G-C and DC, although we use the same notions as in MIMICS to describe the crown

layer’s contribution, they represent the general case of bistatic scattering system.

Two types of ground-trunk interaction T-G and G-T are represented by the sixth

and seventh term and the last term is the direct bistatic scattering from the rough

ground surface DG.

The term Agcg indicates the scattering contribution to the Ground — Scatterer

— Ground mechanism. The term Acg accounts for the Scatterer — Ground effect by

the crown layer; The term Agc is the complement of Acg and shows that the incident

intensity is first reflected by the ground and then scattered into the direction (µs, φs)

by the crown layer. The term Adc shows the direct bistatic scattering by the crown

layer. The terms Atg and Agt represent the scattering by the trunk layer and ground

interactions, similar to Acg and Agc.

The term Agcg integrates the wave intensity that is scattered from the upward

direction (µi, 0) to the downward direction (−µs, φs) through the crown layer, which

is also attenuated along the propagation path. Similar approaches are applied to

get the other A integrals as shown in Equation (2.16), where Pc and Pt are the
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average phase matrices for the crown and trunk layer, respectively, in which the

angle argument of (µs, φs, µi, φi) indicates that the wave intensity is scattered from

the (µi, φi) direction to the (µs, φs) direction.

Acgc(−µs, φs;µi, φi) =

∫ 0

−d

e−κ
−

c (d+z′)/µPc(−µs, φs;µi, φi)e−κ
+
c (z′+d)/µidz′
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−
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Atg(−µs, φs;−µi, φi) =
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The reflectivity matrix of the specular ground surface at angle µ = cos θ is given

by

R(µ) =
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(2.17)

where rv and rh

rv =
εr cos θ −

√
εr − sin θ2

εr cos θ +
√
εr − sin θ2

rh =
cos θ −

√
εr − sin θ2

cos θ +
√
εr − sin θ2

(2.18)
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are the specular reflection coefficients at vertical and horizontal polarizations, re-

spectively. εr is the relative dielectric constant of the ground. The ground scattering

matrix G is calculated from rough surface scattering models.

In this section, the mathematic solution of Bi-MIMICS RT equations are derived,

and the terms in the solution are analyzed for the physical bistatic scattering mech-

anisms. The implementation of the solution is then described in the next section.

2.2.2 Bi-MIMICS Model Implementation

2.2.2.1 Scattering Models For Canopy Compositions

For every type of canopy component, several analytical and empirical models are

provided for different regions of validity with respect to their shapes and sizes [50]

and they are adopted in Bi-MIMICS.

• Trunks are modeled as homogeneous dielectric cylinders with mean length l and

mean diameter d. An appropriate approximation is derived from the infinitely

long large cylinder scattering model.

• Branch are also modeled as dielectric cylinders with mean length l and mean

diameter d. Prolate Rayleigh spheroids are used to model small cylinders (l <<

λ) such as small branches. For many types of intermediate size branches, a long

(l >> λ) and thin (d << λ) cylinder model is used. As for large branches, an

approximation of a infinitely cylinder scattering model is used.

• Leaves are modeled as dielectric circular disks with a thickness and diameter.

Two scattering models are used for leaves — an oblate Rayleigh spheroid or a

physical optics model, depending on the disk diameter d. If the disk diameter

is small compared to the wavelength (d << λ), the Rayleigh spheroid model is

appropriate. otherwise, the physical optics model is suitable.
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• Needle are modeled as small cylinders, for which a prolate Rayleigh spheroid

model is used.

All the scattering models are parametrized by the canopy components’ shape, size

and orientation as well as the incidence and scattering angles and dielectric constants.

They provide the electrical field scattering matrices which are the bases for computing

individual extinction and phase metrics for all types of canopy scatterers.

2.2.2.2 Scattering Models For Ground Surface

The ground underneath the canopy layer is modeled as a rough dielectric surface

that is characterized by the RMS height and correlation length. Three rough surface

models, Geometrical Optics (GO), Physical Optics (PO), and Small Perturbation

(SP) model are provided to simulate different roughness scales of the ground. Surface

roughness and the observation angle and microwave frequency together affect the

scattering behavior of the ground. The GO model is usually appropriate for very

rough surface and the SP model is preferred when the surface’s correlating length is

small, while the PO model falls in the middle and is ideal for the intermediate scale

of roughness. The polarized electric field scattering matrix of the ground surface can

be computed by these models and as a result, the modified Mueller matrix of the

ground is obtained through Equation (2.6).

The bistatic scattering simulation of three rough surface scattering models has

been validated at X-band. The bistatic radar RCS measurements taken for surfaces

with artificial roughness using a 10 GHz bistatic system [14] are consistent with

rough surface models’ simulations.
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2.2.2.3 Permittivity Model

The dielectric constants of various canopy constituents are determined from their

moisture contents through analytical and empirical models. For canopy components

with known gravimetric moisture content and the dry material density, given the

environment temperature and the microwave frequency, their permittivities can be

calculated from the established relationships. So for the ground surface, since soil

usually contains major constitutes such as clay, sand and silt, the composition of

day soil and the volumetric moisture constant as well as the environment parameters

build the empirical model for the soil dielectric constant. The permittivities for

various canopy parts and soil can also be acquired during field measurements.

2.2.2.4 Model Parameters and Processes

Two angle parameters θs and φs are added as compared with backscattering

MIMICS. In the calculation of the upward and downward extinction matrices for

the crown and trunk layers, both directions are needed instead of one direction as

in backscattering MIMICS. Therefore, four types of angle combinations are chosen

to calculate the attenuating extinction matrices: two upward directions (θi, 0) and

(θs, φs), and two downward directions (π−θi, 0) and (π−θs, φs). Similarly, this is also

done for the phase matrices. Four angle transformations are necessary to calculate

the phase matrices: from (θi, 0) to (θs, φs), from (θi, i) to (π− θs, φs), from (π− θi, 0)

to (θs, φs) and from (π − θi, 0) to (π − θs, φs). When we calculate the A integrals,

unlike the backscattering case, the extinction matrices κ before scattering are not

in the parallel direction to those after scattering, therefore the azimuthal symmetry

of canopy (i.e., κ(µ0, 0) = κ(µ0, π)) is only valid for the special backscattering case,

and for the general cases both the angles of θi and θ need to be calculated.
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The downward microwave intensities are reflected by the ground surface at two

angles related to the location from which the scattering happens: If the wave is first

scattered by the crown or trunk layer from (−µi, 0) direction to (−µs, φs) direction

before it penetrates the canopy, the ground reflection angle is then θs and the ground

reflectivity matrix is R(µs). However, if the penetrating wave is first reflected by

the ground and then scattered by the vegetation layers, the ground reflection angle

is then θi and the ground reflectivity matrix is R(µi). For the crown double bounce

scattering mechanism, θi is the first ground reflection angle and θs is for the second

ground reflection. Therefore, two ground reflectivity matrices R(µi) and R(µs) are

needed as compared to MIMICS, which only calculates R(µi).

In conclusion, Bi-MIMICS calculates the average bistatic extinction matrices and

phase matrices of the combination of scatterers in the crown and trunk layer, reflec-

tivity matrices and scattering matrices of the ground at certain angles, and then

places them together through proper attenuation and scattering to get the total

canopy transformation matrix.

2.3 Model Simulation Parameter Configuration

2.3.1 Sensor Parameters

We simulate the fully-polarized microwave scattering (HH, HV, VH, VV) for the

canopies at L-, C- and X-bands using Bi-MIMICS. The frequencies are 1.62GHz,

4.75GHz and 10GHz, respectively. These frequencies are chosen for studying the

scattering from different part of the canopy, since L-band has the strongest penetra-

tion while X band is most scattered by the top part of the canopy, and C-band has

the moderate penetration and attenuation compared to other two frequencies.

Various bistatic observation angle combinations are simulated. Backscattering
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plane, specular scattering plane, and specular direction cone surface are paid special

attention because the trunk scattering is the strongest on these surfaces. When the

observation direction is outside of these surfaces, the trunk layer functions only as

an attenuating layer since the trunk scattering is very weak. The specular direction

cone surface is shown in Figure 2.5. The elevation angles θi and θs change from 10◦

to 70◦ while the azimuth angle φs rotates from 0◦ to 180◦ to cover the backscattering

and specular scattering direction.

Figure 2.5: Specular Direction Cone Surface. Incidence angle θi = scattering angle
θs, 0 ≥ φs ≥ 360◦ forms a cone surface.

2.3.2 Canopy Parameters

Two types of canopies are chosen for the bistatic scattering simulation. One is a

deciduous tree stand of defoliated aspen. The other is a conifer tree stand of white

spruce. The relevant canopy parameters are listed in Table 2.1. The canopy data are

collected from [86]. A Physical Optics (PO) model is used for the ground surface.

The orientations of the canopy branches are assumed to be uniformly distributed

in the horizontal direction. For the aspen stand, the branch angle probability density



34

Table 2.1: Canopy Parameters for Simulations

Parameters Aspen White Spruce

Canopy Density 0.11m−2 0.2m−2

Trunk Height 8m 16m

Trunk Diameter 24cm 20.8cm

Trunk Moisture 0.5 0.6

Crown Depth 2m 11m

Leaf Density (gravimetric) 0 85000m−3

Leaf Moisture - 0.8

LAI (single sided) 0 11.9

Branch Density (gravimetric) 4.1m−3 3.4m−3

Branch Length 0.75m 2.0m

Branch Diameter 0.7cm 2.0 cm

Branch Moisture 0.4 0.6

Soil RMS Height 0.45cm 0.45cm

Correlation Length 18.75cm 18.75cm

Soil Moisture (volumetric) 0.15 0.15

Soil % Sand 10 20

Soil % Silt 30 70

Soil % Clay 60 10
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Figure 2.6: Branch orientation pdf in the vertical direction of the aspen stand and
white spruce stand.

function (pdf) in the vertical direction is chosen as

p(θc) =
sin4(2θc)

∫ π
2

0
sin4(2θc)dθc

=
16

3π
sin4(2θc), 0 ≤ θc ≤

π

2
(2.19)

which results in a center at θc = π
4
.

For the white spruce stand, the branch orientation pdf in the vertical direction

is chosen as

p(θc) =
sin2(θc)

∫ π

0
sin2(θc)dθc

=
2

π
sin2(θc), 0 ≤ θc ≤ π (2.20)

which is centered at θc = π
2
. Figure 2.6 shows the pdfs of the branch orientation of

the two stands.

Trunk of both stands are vertical and orientation of needles of the white spruce

stand is assumed uniform in both the elevation and azimuth directions.

At an environment temperature of 20◦C, the permittivities for the ground and

components are calculated and listed in Table 2.2.
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Table 2.2: Permittivities of Canopies

Stand Soil Trunk Branch Foliage

Aspen 5.99 -j 0.99 14.49 -j 4.76 10.19 -j 3.36 -

White Spruce 6.27 -j 1.55 16.45 -j 7.31 16.45 -j 7.31 27.00 -j12.43

2.4 Simulation Results and Analysis

2.4.1 Comparison with Backscattering MIMICS

For each canopy and incidence angle, we compare the backscattering σ0 sim-

ulated by Bi-MIMICS and standard MIMICS. Two models provide the same re-

sults. Although we don’t have measured bistatic data and hence can’t validate the

Bi-MIMICS simulated bistatic σ0 with existing radar measurement, backscattering

MIMICS has been verified on actual forest inventory data and SAR data by over the

years [16, 51, 52]. The consistence between two models indicates that Bi-MIMICS is

an effective canopy scattering model for the special backscattering case.

2.4.2 Bistatic Scattering Simulation for A Aspen Stand

Based on the model input parameters, simulation of the SAR scattering at all fre-

quencies and polarizations is undertaken using Bi-MIMICS for multiple observation

angles.

The VV-polarized total scattering from the aspen stand is shown in Figure 2.7.

Subfigures 2.7(a) and 2.7(c) are for the backscattering and specular cases respectively,

when the elevation angle θs is in the range of 10◦ to 70◦. In Figure 2.7(b), the angles

θi = 30◦, φs = 120◦ are fixed while θs changes from 10◦ to 70◦. Figure 2.7(d) plots

the observation made in the plane perpendicular to (θs = θi, φs = 90◦) the incident

direction. The figures show that the overall scattering in the specular direction
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is the strongest, as expected. Figure 2.7(b) indicates that this aspen stand is a

trunk-dominated canopy since we observe a scattering peak at θs = θi = 30◦, which

includes the trunk’s contribution. At other angles of θs, the much lower level of

the scattering coefficient is from the crown layer and ground. Figure 2.7(a), 2.7(c)

and 2.7(d) also indicate the more canopy VV-polarized scattering occurs at higher

frequencies because of much stronger scattering from the trunk-ground interaction

and crown-ground interaction. However, the strongest direct crown scattering and

double bounce scattering between the crown and ground occur at C-band due to

lower volume scattering at L-band and more crown attenuation at X-band, which

is shown by Figure 2.7(b), the figure shows that C-band has the highest bistatic

scattering coefficient σ0 when the trunk scattering is not present.

As for the cross polarization, VH-polarized σ0 demonstrates a different canopy

response at the observation angles as shown in Figure 2.8. The component con-

tributions to the total scattering at L-band are shown in Figure 2.9. The C-band

VH-polarized backscattering RCS exceeds the X-band result (Figure 2.8(a)) in con-

trast to the other three configurations, in which the X-band gives the strongest

scattering coefficient. Figure 2.8 and 2.9 also demonstrate that crown-ground inter-

actions are the major part of VH-backscattering RCS, and C-band has the largest

value for moderate scattering and moderate attenuation compared to the other two

bands. The trunk-ground interactions provide little VH polarization scattering con-

tribution in the backscattering and specular direction as in Figure 2.9(a) and 2.9(c),

the trunk and ground scattering are two low to be shown in the figures. In contrast,

the trunk-ground interactions dominate the total scattering as in Figure 2.9(d).

Figures 2.10 and 2.11 present the HH-polarized component scattering contribu-

tions from the trunk, crown, and ground layer at L- and X-bands, respectively. Both
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Figure 2.7: VV-polarized canopy scattering cross section vs. scattering angle from
aspen for L-, C- and X-bands at (a) Backscattering plane. (b) θi = 30◦

and φs = 120◦. (c) Specular plane. (d) Perpendicular plane (θs = θi,
φs = 90◦).
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Figure 2.8: VH-polarized canopy scattering cross section vs. scattering angle from
aspen for L-, C- and X-bands at (a) Backscattering plane. (b) θi = 30◦

and φs = 120◦. (c) Specular plane. (d) Perpendicular plane (θs = θi,
φs = 90◦).
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Figure 2.9: L-band VH-polarized canopy scattering component contributions vs.
scattering angle from aspen at (a) Backscattering plane. (b) θi = 30◦

and φs = 120◦. (c) Specular plane. (d) Perpendicular plane (θs = θi,
φs = 90◦).
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Figure 2.10: L-band HH-polarized canopy scattering component contributions vs.
scattering angle from aspen at (a) Backscattering plane. (b) θi = 30◦

and φs = 120◦. (c) Specular plane. (d) Perpendicular plane (θs = θi,
φs = 90◦).
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10 20 30 40 50 60 70
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

X Band Incidence Angle θ
i
 and Scattered Angle θ

s
(degrees), φ

s
=90o

σ0
 H

H
 (d

B
)

Total
Ground−Trunk
Total Crown
Direct Ground

(d) Perpendicular Plane

Figure 2.11: X-band HH-polarized canopy scattering component contribution vs.
scattering angle from aspen at (a) Backscattering plane. (b) θi = 30◦

and φs = 120◦. (c) Specular plane. (d) Perpendicular plane (θs = θi,
φs = 90◦).
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Table 2.3: Trunk and Branch Diameter for Four Aspen Stands

Stand 1 Stand 2 Stand 3 Stand 4

Trunk Diameter 24cm 30cm 24cm 30cm

Branch Diameter 0.7cm 0.7cm 0.9cm 0.9cm

figures show that the aspen stand is trunk dominated since the ground-trunk scat-

tering mechanism contributes most to the total scattering. Direct ground scattering

decreases when the scattering angle θs increases. As for multiple frequencies, in the

backscattering cases, the ground scattering decreases when the frequencies increase,

but in the specular scattering cases, the figures show the opposite trend. Moreover,

at L-band, scattering at small angles θs < 20◦, the ground scattering contribution is

greater than the crown layer scattering in Figure 2.10(a) and 2.10(b) while ground

scattering is much lower than the crown scattering at X-band in Figures 2.11(a) and

2.11(b). The crown layer scattering is much stronger at X-band than at L-band.

2.4.3 Scattering Angle Sensitivity to Canopy Parameters

The bistatic scattering’s sensitivity to the canopy parameter changes is of great

interest in optimizing radar system designs. In this section, we change various canopy

parameters and analyze the results for L-band.

2.4.3.1 Aspen stands

In this experiment, we simulate the microwave scattering in a specular direction

cone surface (θs = θi = 45◦, 0 ≤ φs ≤ 180◦) for four aspen stands with different trunk

and branch diameters, which means the biomass of these four stands are different.

While the other parameters are the same as in Table 2.1, Table 2.3 lists the aspen’s

trunk and branch diameters.
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Figure 2.12: L-band HH-polarized canopy scattering cross section vs. scattering an-
gle for four aspen stands. θs = θi = 45◦, and the azimuth angle φs is
form 0 to 180◦.
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Figure 2.13: L-band VV-polarized canopy scattering cross section vs. scattering an-
gle for four aspen stands. θs = θi = 45◦, and the azimuth angle φs is
form 0 to 180◦.
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L-band HH-polarized bistatic simulation results for the four aspen stands are

shown in Figure 2.12. The direction φs = 0 is the specular direction and φs = 180◦

stands for backscattering. In the backscattering and specular scattering directions,

the changes of biomass can not be captured by the simulated scattering coefficient

σ0. However, large differences among the four curves are observed at the φs range

of 30◦ ∼ 100◦. Most of the differences of σ0 are contributed by trunk and ground

interaction scattering. Figure 2.12 also indicates that they are trunk-dominated

canopies since the different branch sizes have little effect on the total scattering

level, which is the reason that we can not distinguish the two curves with same

trunk diameters but different branch diameters. Larger biomass density doesn’t

always generate high scattering coefficient as shown in Figure 2.12, where the stands

with small trunk diameters have larger σ0 at angles of 30◦ ≤ φs < 70◦ and 100◦ ≤

φs ≤ 120◦. However, there is not significant improvement to distinguish four stands

using VV-polarized bistatic measurement as demonstrated by Figure 2.13, where the

difference between the four curves has a small dynamic range with respect to the

angle.

2.4.3.2 White Spruce Stands

A similar approach is applied to four white spruce stands as in the last section,

however, instead of changing the tree size parameters, we reduce the tree density

from 2000 trees/ha to 1000 trees/ha, 6667 trees/ha and 500 trees/ha. Therefore, we

have four stands of white spruce with the parameters listed in Table 2.1 except for

the tree number density. This experiment is to simulate the Forest density’s effect

on bistatic RCS. By decreasing the tree number density, we decrease the biomass

density of the stands. The L-band HH-polarized simulation results in the specu-
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Figure 2.14: L-band HH-polarized canopy scattering cross section vs. scattering an-
gle for four white spruce stands. θs = θi = 45◦, and the azimuth angle
φ is form 0 to 180◦.

lar direction cone surface are shown in Figure 2.14. The largest dynamic range

21.3dB occurs around φs = 30◦, which indicates that for these four stands of white

spruce, the biomass differences can best be captured at φs = 30◦. The dynamic range

for backscattering coefficients are 6.6 dB and 10.4dB for specular scattering. The

smallest dynamic range is found to be 2.1dB at φs = 90◦, therefore, it would be inap-

propriate to place a receiver in the plane perpendicular to the incident direction for

HH-polarized scattering coefficients if trying to measure biomass. The VH-polarized

bistatic scattering coefficient is also shown to be sensitive to the variation of tree

density as shown in Figure 2.15.

It is note worthy that the increased biomass density does not always cause higher

microwave scattering. In Figure 2.14, the stand with the highest tree density has

the lowest scattering coefficient while the stand with the lowest tree density has the
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Figure 2.15: L-band VH-polarized canopy scattering cross section vs. scattering an-
gle for four white spruce stands. θs = θi = 45◦, and the azimuth angle
φs is form 0 to 180◦.

strongest scattering coefficient. To explain this phenomenon, we need to probe into

the complete scattering process of the forest canopy.

Less dense crown layers cause less attenuation from the upper level canopy, more

energy can penetrate the crown layer and so the trunk layer’s contribution becomes

more important. As a result, we expect more scattering from less dense canopy

stands if large tree trunks are present. Moreover, with fewer trunks, the ground

reflection of the crown scattering experiences less attenuation, as does the double

bounce crown scattering component. In addition, there is more ground scattering

through the sparse canopies. All these factors together cancel the effect of the low

tree density, hence increasing the total canopy scattering.

Figure 2.16 shows the L-band HH-polarized canopy scattering component contri-

butions to the total scattering for all stands in the specular direction cone surface.
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(a) 2000 tree/ha
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(c) 666.7 trees/ha
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Figure 2.16: L-band HH-polarized canopy scattering component contributions vs.
scattering angle for four white spruce stands. θs = θi = 45◦, and the
azimuth angle φs is form 0 to 180◦.
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In Figure 2.16(a), the large tree number density (2000 tree/ha) makes the stand a

crown-dominated canopy, and the scattering from the trunk layer and ground are

almost negligible. However, at half of this tree density (1000 tree/ha), the crown

layer scattering contribution decreases, while the trunk layer scattering contribution

increases, especially at small angles as shown in Figure 2.16(b). When we further

decrease the tree density (667 trees/ha), the trunk’s contribution becomes more sig-

nificant as shown in Figure 2.16(c). Finally in Figure 2.16(d), with only a quarter

of the original tree density (500 trees/ha), the canopy becomes a trunk dominated

canopy and the crown scattering becomes almost negligible. The ground surface

scattering also rises as we decrease the canopy density, however, it is still very low

compared to the trunk and crown layer scattering.

Not only do the canopies change from crown dominant to trunk dominant, the

four components of crown scattering contributions also change. We plot the compo-

nent contribution within the crown layer in Figure 2.17. As can be seen from Figure

2.17(a), direct scattering from the crown layer is the major contributor for the dense

stand, the double bounce effect is too insignificant to be shown in the plot. In

Figure 2.17(b), the direct crown scattering is still dominant, but the crown-ground

interaction scattering increases. In Figure 2.17(c), the direct scattering and the

crown-ground interaction are comparable for small φs angles. As in Figure 2.17(d),

the crown ground scattering exceeds the direct crown scattering for small φs angles

and the double bounce scattering is much higher. The ground-crown-ground double

bounce scattering is the weakest for all four cases.
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(a) 2000 tree/ha
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0 20 40 60 80 100 120 140 160 180
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Scattering Angle φ
s
 (degrees),  θ

i
=45o, θ

s
=45o, φ

i
=0

L−
ba

nd
 B

is
ta

tic
 S

ca
tte

rin
g 

σ 0 H
H

 (d
B

)

Total Crown
Direct Crown
Crown Ground
Gnd−Crwn−Gnd

(d) 500 trees/ha

Figure 2.17: L-band HH-polarized crown component scattering contributions vs.
scattering angle for four white spruce stands. θs = θi = 45◦, and the
azimuth angle φs is form 0 to 180◦.



51

2.4.4 Discussion

We use the same canopy stands as in the technical report on backscattering

MIMICS [86] to validate our bistatic scattering model for the the special case of

backscattering. Simulation results by the two models are shown to be consistent.

Bistatic RCS provides significantly much more information about the mechanisms

of canopy scattering and composition compared to backscattering RCS. When θs = θi

is fixed and the azimuth angle φs is rotated around the target, the largest bistatic RCS

is generally found at the specular receiving angles. For the trunk layer, HH-polarized

trunk-ground interaction scattering is the strongest in the specular direction and

weakest around the plane perpendicular to the incident direction. In contrast, VV-

polarized trunk-ground scattering shows a slow decreasing trend as the scattering

angle φs changes from the specular direction to the backscattering direction.

Specular scattering from the rough ground surface is the greatest, whereas the

direct backscattering from the ground is the lowest. The rough surface also causes

more scattering at the small elevation angles (θs < 20◦) and less scattering at the

large elevation angles (θs > 50◦). The ground effect on the total scattering cross

section is larger at low frequencies where there is less attenuation by the crown and

trunk layer.

Bi-MIMICS shows distinct sensitivities to the dimensions, density, angular dis-

tribution, and permittivity of the forest components and also to ground surface

attributes. Changes of the parameters cause the canopy dominant components to

vary and the scattering compositions to change. Bistatic RCS offers more informa-

tion than backscattering RCS due to the additional dimensions. Model simulations

show that there are optimal angles for extracting canopy parameters that are supe-

rior to the backscattering angles, which are determined by the canopy composition
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and parameter distribution.

The simulation results presented in this chapter represent a first order RT-based

model. The current first order solution doesn’t include multiple scattering mecha-

nisms among scatterers; the coherent effects, such as enhanced backscatter, are not

therefore considered. However, multiple scattering among canopy elements is ex-

pected, particularly at high frequencies, where branch and foliage volume scattering

dominates, and may cause an underestimation of RCS at high frequencies.

At this moment, no actual bistatic SAR measurement data from vegetation are

available to us for comparison with the model’s simulation. Our future work includes

conducting bistatic radar measurements on scaled forest models using our existing

bistatic measurement facilities.

2.5 Conclusion

Forest scattering modeling provides a tool to study the relationship between

radar measurement and forest structures by simulating the scattering processing

of microwave interaction with different components of the forest. In this chapter,

we present a bistatic microwave scattering model, which complements the existing

backscattering MIMICS. It is based on RT theory and is designed to accommodate

the bistatic scattering simulation capability in anticipation of perspective bistatic

radar systems.

Bi-MIMICS simulates SAR bistatic scattering for forest canopies characterized by

input dimensional, geometrical, and dielectric parameters. As such, the model can

be used to analyze the relationship between canopy parameters and the scattering

coefficient, especially with the advantage of multiple observation angles. From the

model, differences in tree height, moisture content, and biomass can be simulated
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by simply changing the model inputs and by analyzing the contribution of each

individual layer to the bistatic RCS.

Bi-MIMICS is parameterized to selected tree canopies with different canopy struc-

tures and density. A number of bistatic RCS values are simulated at various bistatic

angles. The simulation results demonstrate the bistatic scattering mechanisms and

the potential application of bistatic measurement. Scattering behavior of canopy

components are varied with respect to the bistatic geometry to show their respective

sensitivities.

Radar response at multiple measurement angles, in addition to multiple frequen-

cies and polarizations, can be used to study the potential retrieval of forest biomass

and other vegetation parameters, which is the goal of our ongoing work. Our future

work also includes performing laboratory bistatic measurement for model validation,

and extending the current solution to higher orders.

Bi-MIMICS prepares us for the next chapter, in which a multi-layer canopy scat-

tering model is developed and it accommodates the bistatic scattering simulation

ability.



Chapter III

MULTI-MIMICS FOR MIXED SPECIES

FORESTS

In this chapter, a multi-layer canopy scattering model is developed for mixed

species forests. The multi-layer canopy model represents nonuniform forests in

the vertical direction and provides a significantly enhanced representation of actual

complex forest structures compared to the conventional canopy-trunk layer models.

Multi-layer Michigan Microwave Canopy Scattering model (Multi-MIMICS) allows

overlapping layer configuration and a tapered trunk model applicable to forests of

mixed species and/or mixed growth stages. The multi-layer model is the first order

solution to a set of radiative transfer equations and includes layer interactions be-

tween overlapping layers. Bistatic scattering mechanisms are included in the model

as a successor to Bi-MIMICS. It simulates SAR bistatic scattering coefficients based

on input dimensional, geometrical and dielectric variables of forest canopies. Multi-

ple canopy layers are divided by vertically grouping the forest scattering components

with relatively uniform distributions and densities. The number of layers are decided

by the best representation of the actual canopy composition.

The first section in the chapter provides a brief background and motivation of

developing Multi-MIMICS. Section 3.2 presents the multi-layer canopy model and

54
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solves radiative transfer equations while Section 3.3 analyzes the first order Multi-

MIMICS solution and model’s applicability of complex canopy structures — over-

lapping layers and tapered trunks. The implementation of Multi-MIMICS is then

presented Section 3.4. Finally, Section 3.5 summarizes the chapter.

3.1 Introduction

Most existing canopy scattering models are developed for single stand canopies

and have therefore been validated on and applied to single forest stand or stands with

similar structures where a distinctive line can be drawn between the crown layer and

the trunk layer. The models are not applicable to forest stands of mixed species

composition and structure where multiple layers occur such as the overstory, under-

story and shrubs. For this reason, our research has focused on the development of a

multi-layer model, herein referred to as the Multi-Layer Michigan Microwave Canopy

Scattering (Multi-MIMICS) model. As it’s name suggests, the model is based on the

original two-layer MIMICS model. As with its predecessor and other models, the

canopy modeling still utilizes the discrete scatterer approach. However, the layers

are instead divided by vertically grouping the forest scattering components with rela-

tively uniform distributions and densities. The RT-based model can handle multiple

layers, with the number dependent on what best represents the actual canopy com-

position. Unlike other models, overlapping between layers is allowed and a tapered

trunk model has been introduced.

Multiple layer RT equations are generally used to study thermodynamics of the

atmosphere, which emphases the frequency dependence. The only other multilayer

canopy modeling we are aware of is of [62], which differs from Multi-MIMICS in the

following aspects:
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• Multi-MIMICS addresses the vertical heterogeneity of mixed-stand forests while

[62] emphasizes the multiple scattering for cross-polarized backscattering coef-

ficients σ0;

• Multi-MIMICS is the first order full polarimetric solution to the integral form

of the RT equation and is solved by an iterative approach. The solution also

contains several scattering terms that have definite physical interpretations.

Higher order solutions are necessary for more multiple scattering mechanisms

and have more terms in the formulation; the DOEM method uses the differen-

tial form of the RT equation and solves it directly. Multiple layer structure is

a necessity to build the differential RT equation. Although DOEM is free of

the limitation of order, its formulation cannot be decomposed into scattering

mechanisms nor readily interpreted. Furthermore, it only gives cross polarized

HV σ0 from the even mode solution; HH and VV σ0 are not provided;

• Canopy layers in Multi-MIMICS are allowed to overlap and therefore provide a

better representation of the vertical complexity of the canopy. DOEM, by con-

trast, divides the canopy for mathematical computation and does not include

overlapping layers;

• Tapered trunks are especially treated in Multi-MIMICS for correlated positions

among layers whereas DOEM doesn’t consider the correlation factor.

Multi-MIMICS simulates SAR bistatic scattering for forest canopies characterized

by input dimensional, geometrical, and dielectric parameters. As such, the model can

be used to analyze the relationship between canopy parameters and bistatic scatter-

ing coefficient, especially applied to natural forest where stands commonly contain a

mix of structures as a consequence of their species composition, growth stage, com-
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petition between individuals and environmental conditions (e.g., soil, topography).

The multi-layered nature of the scattering model means that Multi-MIMICS is a

more efficient realization of the actual forest structure and can be shaped for any

specific arrangement of forest parameters. From the model, differences in tree height,

moisture content and biomass can be simulated by simply changing the model inputs

and by analyzing the contribution of each individual layer, a better understanding

of forest composition effects on scattering coefficients can be gained.

3.2 Multi-layer Canopy Model and Radiative Transfer Equa-

tions

3.2.1 Mixed Forest Structures and Multi-layer Canopy Model

The motivation for developing multi-MIMICS is that the crown-trunk-ground

canopy model is too restrictive for actual forests, particularly those that are in a

relatively natural state. In these forests, a mixture of different tree species occur

and groups of these differ in their structural form. As a result, trees are of varying

density, size and height; trunks of taller trees overlap with the crowns of short trees;

extended trunks grow into crown layers. The understory level is typically composed

of saplings, immature trees and/or tall shrubs that are often completely submerged

under the canopy. In many cases, these can be divided further into two distinct layers

(crowns and trunks). Above the understory, several layers of trees may occur, with

each supporting a crown and trunk layer. Trunks and crowns may extend between

layers. In such cases, it is extremely difficult to describe the forest in terms of just

a crown and a trunk layer as the forest is simply too complex. The complex nature

of these mixed forests is highlighted in Figure 3.1 [7], which shows a picture of a

primary tropical rain forest. The forest would be vertically modeled as five layers,

which are the overstory, the canopy, the understory, the shrub layer, and the forest
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Figure 3.1: Layer properties of a tropical rain forest.
Source: http://www.mongabay.com/0401.htm.
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floor.

The conventional models are therefore inappropriate for application to natural

forests. For this reason, we develop the Multi-MIMICS model to remove the two-

layer canopy restriction. Furthermore, there was also a need to handle an arbitrary

number of layers depending upon the complexity of the forest. Rather than assigning

definite names to the layers, we chose to divide the forest volume into multiple

vertical layers and treat all layers as part of the vertical profile. Within each layer,

any combination of branches, foliage or trunks can occur. While the composition of

each layer is distinct from the others, the type and distribution of scatterers inside

each are considered to be homogeneous.

Multi-MIMICS allows overlapped layers to account for the situations such as the

mixtures of tall tree trunks and short tree crowns and trunk growing into crown.

Furthermore, instead of using a uniform stem truncated at the crown layer bottom

as in the Bi-MIMICS, a tapered trunk model is introduced by cascading layers with

increasing trunk radius.

3.2.2 Multi-layer Radiative Transfer Equations and First Order Solution

To solve the RT equations of Multi-MIMICS, we use an L-layer canopy over a

reflective ground surface model as shown in Figure 3.2. The depth of the l− th layer

is denoted by dl. Overlapping layers are not included in the derivation of first order

solution. The incident intensity Ii impinges on the top surface of the canopy at an

angle (θi, φi). To obtain the scattering intensity Is(θs, φs), we need to solve the RT

equations of all layers.

To describe the RT mechanism mathematically, we denote the upward radiation

intensity in each layer by I+
l and the downward radiation intensity by I−l with l as
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Figure 3.2: Multi-layer canopy model. The canopy is divided into L layers with
labels 1, 2, ...l, ..., L. The depth of the l − th layer is denoted by dl.
Top canopy surface is located at z = 0 and the ground surface is at
−(d1 + d2 + ... + dL). The microwave incidence angle is (θi, φi) and the
scattering angle is (θs, φs).
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the layer index. Similarly, F+
l and κ

+
l and P+

l represent the upward radiation source

function, extinction matrix and phase matrix respectively; and F−
l and κ

−
l and P−

l

are for downward expressions.

The radiation intensities in all layers of the L-layer canopy model make up a set

of RT equations. The interfaces among canopy layers and air-canopy interface are

assumed diffuse, thus we have the boundary conditions that the intensities across

the interfaces are continuous. These boundary conditions are

I−1 (−µs, φs, 0) = I−i (−µi, φi, 0)δ(µs − µi)δ(φs − φi) (3.1)

I−l (−µs, φs,−zl) = I−l+1(−µs, φs,−zl) 1 < l < L (3.2)

I+
L(µs, φs,−zL) = R(µs)I

−
L(−µs, φs,−zL) (3.3)

I+
l (µs, φs,−zl) = I+

l+1(µs, φs,−zl) 1 < l < L (3.4)

Is(µs, φ, 0) = I+
1 (µs, φs, 0) (3.5)

Equation (3.1) indicates that the downward intensity at top surface of the canopy is

the incident intensity that impinges on the canopy. Equation (3.2) shows that the

downward intensities at the bottom of the up layer is equal to that at the top of the

lower layer. Ground reflection of the downward intensity is represented by Equation

(3.3). Equation (3.4) explains that the upward intensities are continuous across the

canopy interfaces and Equation (3.5) shows the upward intensity at the top surface

is the total scattered intensity.

By applying the boundary conditions, the downward intensity in Layer 1 is writ-

ten as

I−1 (−µs, φs, z) = eκ
−

1 z/µsIi(−µi, φi, 0)δ(µs − µi)δ(φs − φi)

+

∫ 0

z

eκ
−

1 (z−z′)/µsF−
1 (−µs, φs, z′)dz′ (3.6)
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The first part in Equation (3.6) represents the extinction process in Layer 1 while the

second part shows the emission process. The incident intensity is attenuated along

the propagation path by extinction, and the emitted intensity by Layer 1 in the

desired direction is integrated over the depth of the layer. The emission is cause by

canopy scattering that transforms the wave intensity in all directions to the desired

direction.

The wave then propagates into Layer 2

I−2 (−µs, φs, z) = eκ
−

2 (z+z1)/µsI−1 (−µs, φs,−z1) +

∫ −z1

z

eκ
−

2 (z−z′)/µsF−
2 (−µs, φs, z′)dz′

= eκ
−

2 (z+z1)/µse−κ
−

1 d1/µsIi(−µi, φi, 0)δ(µs − µi)δ(φs − φi)

+ eκ
−

2 (z+z1)/µs

∫ 0

−z1

e−κ
−

1 (z1+z′)/µsF−
1 (−µs, φs, z′)dz′

+

∫ −z1

z

eκ
−

2 (z−z′)/µsF−
2 (−µs, φs, z′)dz′ (3.7)

Similar extinction and emission processes as in Layer 1 are applied to Layer 2, the

continuous boundary condition I−2 (−µs, φs,−z1) = I−1 (−µs, φs,−z1) is used as the

initial condition.

As downward intensity travels down into lower layers , the terms in the represen-

tation increases, in the 3rd layer

I−3 (−µs, φs, z) = eκ
−

3 (z+z2)/µI−2 (−µi, φi,−z2) +

∫ −z2

z

eκ
−

3 (z−z′)/µsF−
3 (−µs, φs, z′)dz′

= eκ
−

3 (z+z2)/µse−κ
−

2 d2/µse−κ
−

1 d1/µsIi(−µi, φi, 0)δ(µs − µi)δ(φs − φi)

+ eκ
−

3 (z+z2)/µse−κ
−

2 d2/µs

∫ 0

−z1

e−κ
−

1 (z1+z′)/µsF−
1 (−µs, φs, z′)dz′

+ eκ
−

3 (z+z2)/µs

∫ −z1

−z2

e−κ
−

2 (z2+z′)/µsF−
2 (−µs, φs, z′)dz′

+

∫ −z2

z

eκ
−

3 (z−z′)/µsF−
3 (−µs, φs, z′)dz′ (3.8)

Finally, the total downward intensity in the bottom layer has L + 1 terms to ac-

count for the extinction attenuation and scattering of the incident intensity along
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the propagation path

I−L(−µs, φs, z) = eκ
−

L
(z+zL−1)/µsI−L−1(−µi, φi,−zL−1)

+

∫ −zL−1

z

eκ
−

L
(z−z′)/µsF−

L (−µs, φs, z′)dz′

= eκ
−

L
(z+zL−1)/µs

(

L−1
∏

m=1

e−κ
−

l
dl/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi)

+ eκ
−

L
(z+zL−1)/µs

(

L−1
∏

l=2

e−κ
−

l
dl/µs

)

∫ 0

−z1

e−κ
−

1 (z1+z′)/µsF−
1 (−µs, φs, z′)dz′

+ eκ
−

L
(z+zL−1)/µs

(

L−1
∏

l=3

e−κ
−

l
dl/µs

)

∫ −z1

−z2

e−κ
−

2 (z2+z′)/µsF−
2 (−µs, φs, z′)dz′

+ · · ·

+ eκ
−

L
(z+zL−1)/µse−κ

−

L−1dL−1/µs

∫ −zL−3

−zL−2

e−κ
−

L−2(zL−2+z′)/µsF−
L−2(−µs, φs, z′)dz′

+ eκ
−

L
(z+zL−1)/µs

∫ −zL−2

−zL−1

e−κ
−

L−1(zL−1+z′)/µsF−
L−1(−µs, φs, z′)dz′

+

∫ −zL−1

z

eκ
−

L
(z−z′)/µsF−

L (−µs, φs, z′)dz′

= eκ
−

L
(z+zL−1)/µs

(

L−1
∏

m=1

e−κ
−

l
dl/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi) + eκ
−

L
(z+zL−1)/µs

L−1
∑

m=1

[

(

L−1
∏

l=m+1

e−κ
−

l
dl/µs

)

∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsF−
m(−µs, φs, z′)dz′

]

+

∫ −zL−1

z

eκ
−

L
(z−z′)/µsF−

L (−µs, φs, z′)dz′ (3.9)

So at the ground surface z = −zL, the downward intensity becomes

I−L(−µs, φs,−zL) =
(

L
∏

m=1

e−κ
−

l
dl/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi)

+
L

∑

m=1

[

(

L
∏

l=m+1

e−κ
−

l
dl/µs

)

∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsF−
m(−µs, φs, z′)dz′

]

(3.10)

Ground specular reflection occurs at the ground surface z = −zL by the reflec-
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tivity matrix R(µs), and the upward intensity in the bottom layer is

I+
L(µs, φs, z) = e−κ

+
L

(z+zL)/µsI+
L(−µs, φs,−zL)

+

∫ z

−zL

e−κ
+
L

(z−z′)/µsF+
L (µs, φs, z

′)dz′ (3.11)

where the initial condition I+
L(−µs, φs,−zL) is solve by

I+
L(−µs, φs,−zL) = R∫ (µs)I

−
L(−µs, φs,−zL) (3.12)

and the reflectivity matrix R∫ (µs) at incidence angle θs of the specular ground surface

is given by

R(µs) =





















|rv|2 0 0 0

0 |rh|2 0 0

0 0 Re(rvr
∗
h) −Im(rvr

∗
h)

0 0 Im(rvr
∗
h) Re(rvr

∗
h)





















(3.13)

where rv and rh are the specular reflectivity coefficients at vertical and horizontal

polarizations, respectively.

Like the downward intensity, the upward intensity undergoes the similar extinc-

tion and scattering process. The upward intensity in Layer L− 1 is

I+
L−1(µs, φs, z) = e−κ

+
L−1(z+zL−1)/µsI+

L(µs, φs,−zL−1)

+

∫ z

−zL−1

e−κ
+
L−1(z−z′)/µsF+

L−1(µs, φs, z
′)dz′

= e−κ
+
L−1(z+zL−1)/µse−κ

+
L

(z+zL)R∫ (µs)I
−
L(−µs, φs,−zL)

+e−κ
+
L−1(z+zL−1)/µs

∫ zL−1

−zL

e−κ
+
L

(z−z′)/µsF+
L (µs, φs, z

′)dz′

+

∫ z

−zL−1

e−κ
+
L−1(z−z′)/µsF+

L−1(µs, φs, z
′)dz′ (3.14)
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Then in the next upper layer, four terms are in this layer’s RT equation

I+
L−2(µs, φs, z) = e−κ

+
L−2(z+zL−2)/µsI+

L−1(µs, φs,−zL−2)

+

∫ z

−zL−2

e−κ
+
L−2(z−z′)/µsF+

L−2(µs, φs, z
′)dz′

= e−κ
+
L−2(z+zL−2)/µse−κ

+
L−1dL−1/µse−κ

+
L
dL/µsR(µs)I

−
L(−µs, φs,−zL)

+ e−κ
+
L−2(z+zL−2)/µse−κ

+
L−1dL−1/µs

∫ −zL−1

−zL

eκ
+
L

(zL−1+z′)/µsF+
L (µs, φs, z

′)dz′

+ e−κ
+
L−2(z+zL−2)/µs

∫ −zL−2

−zL−1

eκ
+
L−1(zL−2+z′)/µsF+

L−1(µs, φs, z
′)dz′

+

∫ z

−zL−2

e−κ
+
L−2(z−z′)/µsF+

L−2(µs, φs, z
′)dz′ (3.15)

Finally, the total upward intensity in the top layer is composed of L + 1 terms

representing the extinction and scattering of the reflected intensity along the propa-

gation path:

I+
1 (µs, φs, z) = e−κ

+
1 (z+z1)/µs

(

L
∏

l=2

e−κ
+
l
dl/µs

)

R(µs)I
−
L(−µs, φs,−zL)

+ e−κ
+
1 (z+z1)/µs

L
∑

m=2

[

(

m−1
∏

l=2

e−κ
+
l
dl/µs

)

∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsF+

m(µs, φs, z
′)dz′

]

+

∫ z

−z1

e−κ
+
1 (z−z′)/µsF+

1 (µs, φs, z
′)dz′ (3.16)

Then, the canopy scattered intensity is the upward intensity at the top surface

z = 0. In (3.17), it is written in terms of the incident intensity, extinction matrices,
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reflectivity matrices and source matrices.

I+
1 (µs, φs, 0) = e−κ

+
1 d1/µ

(

L
∏

l=2

e−κ
+
l
dl/µs

)

R(µs)I
−
L(−µs, φs,−zL)

+ e−κ
+
1 d1/µ

L
∑

m=2

[

(

m−1
∏

l=2

e−κ
+
l
dl/µs

)

∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsF+

m(µs, φs, z
′)dz′

]

+

∫ 0

−z1

eκ
+
1 z

′/µsF+
1 (µs, φs, z

′)dz′

=
(

L
∏

m=1

e−κ
+
l
dl/µ

)

R(µs)I
−
L(−µ, φs,−zL)

+
L

∑

m=1

[

(

m−1
∏

m=1

e−κ
+
l
dl/µ

)

∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µF+

m(µ, φs, z
′)dz′

]

=
(

L
∏

m=1

e−κ
+
l
dl/µs

)

R(µs)
(

L
∏

m=1

e−κ
−

l
dl/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi)

+
(

L
∏

m=1

e−κ
+
l
dl/µs

)

R(µs)
L

∑

m=1

[

(

L
∏

l=m+1

e−κ
−

l
dl/µs

)

∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsF−
m(−µs, φs, z′)dz′

]

+

L
∑

m=1

[

(

m−1
∏

m=1

e−κ
+
l
dl/µs

)

∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsF+

m(µs, φs, z
′)dz′

]

(3.17)

The first term in (3.17) accounts for the round trip extinction and ground reflection

effects on the incident intensity; the second term is the sum of the reflected downward

intensity that is scattered by all the layers, it also has been attenuated because of the

extinction along the radiation path. The last term is the sum of all the attenuated

upward scattered intensity by all the layers.

To solve these 2×L RT equations, we use an iterative approach. The The iterative

approach is chosen for two reasons: (1) It is easy to understand and be implemented

for the lower order solutions; (2) The solution can be decomposed to several parts

which have physical interpretations, therefore, the physical scattering mechanisms

can be separated and readily analyzed. The drawback of the iterative approach is
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its high computation cost for higher order solutions.

zeroth-order solutions is obtained by setting all the source matrices to be zero.

Then the zeroth-order source matrices can be obtained by taking the zeroth-order

solution into the RT equation set, which in turn gives the first order solution. Higher

order solutions can be obtained by the same approach.

First, source matrices in all canopy layers are set to be zero

F−
l = F+

l = 0 1 ≤ l ≤ L (3.18)

and get the zeroth-order solutions

I
(0)−
1 (−µs, φs, z) = eκ

−

1 z/µsIi(−µi, φi, 0)δ(µs − µi)δ(φs − φi) (3.19)

I
(0)−
l (−µs, φs, z) = eκ

−

l
(z+zl−1)/µs

(

l−1
∏

m=1

e−κ
−

mdm/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi) 2 ≤ l ≤ L− 1 (3.20)

I
(0)−
L (−µ, φ, z) = eκ

−

L
(z+zL−1)/µ

(

L−1
∏

m=1

e−κ
−

mdm/µ
)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi) (3.21)

I
(0)+
L (µs, φs, z) = e−κ

+
L

(z+zL)/µsR(µs)
(

L
∏

m=1

e−κ
−

mdm/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi) (3.22)

I
(0)+
l (µs, φs, z) = e−κ

+
l

(z+zl)/µs

(

L
∏

m=l+1

e−κ
+
mdm/µs

)

R(µs)
(

L
∏

m=1

e−κ
−

mdm/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi) 2 ≤ l ≤ L− 1 (3.23)

I
(0)+
1 (µs, φs, z) = e−κ

+
1 (z+z1)/µs

(

L
∏

m=2

e−κ
+
mdm/µs

)

R(µs)
(

L
∏

m=1

e−κ
−

mdm/µs

)

Ii(−µi, φi, 0)δ(µs − µi)δ(φs − φi) (3.24)
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Then the zeroth-order source matrices can be obtained by taking the zeroth-order

solutions into Equation (2.8), which integrates the scattered intensities from all the

incidence directions (µ′, φ′). In the top layer, we get the upward and downward

zeroth-order source matrices

F (0)+
1 (µs, φs, z) =

1

µs

[
∫ 2π

0

∫ 1

0

P1(µs, φs;µ
′, φ′)I

(0)+
1 (µ′, φ′, z)dΩ′

+

∫ 2π

0

∫ 1

0

P1(µs, φs;−µ′, φ′)I
(0)−
1 (−µ′, φ′, z)dΩ′

]

=
1

µs

[

P1(µs, φs;µi, φi)e
−κ

+
1 (z+z1)/µi

(

L
∏

m=2

e−κ
+
mdm/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+P1(µs, φs;−µi, φi)eκ
−

1 z/µi

]

Ii(−µi, φi, 0) (3.25)

F (0)−
1 (−µs, φs, z) =

1

µs

[
∫ 2π

0

∫ 1

0

P1(−µs, φs;µ′, φ′)I
(0)+
1 (µ′, φ′, z)dΩ′

+

∫ 2π

0

∫ 1

0

P1(−µs, φs;−µ′, φ′)I
(0)−
1 (−µ′, φ′, z)dΩ′

]

=
1

µs

[

P1(−µs, φs;µi, φi)e−κ
+
1 (z+z1)/µi

(

L
∏

m=2

e−κ
+
mdm/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+P1(−µs, φs;−µi, φi)eκ
−

1 z/µi

]

Ii(−µi, φi, 0) (3.26)

The scattering contributions from both the upward and downward intensities are

included in the above source matrices. Similarly, the zeroth-order source matrices in

Layer l (2 ≤ l ≤ L− 1) are

F (0)+
l (µs, φs, z) =

1

µs

[
∫ 2π

0

∫ 1

0

Pl(µs, φs;µ′, φ′)I
(0)+
l (µ′, φ′, z)dΩ′

+

∫ 2π

0

∫ 1

0

Pl(µs, φs;−µ′, φ′)I
(0)−
l (−µ′, φ′, z)dΩ′

]

=
1

µs

[

Pl(µs, φs;µi, φi)e−κ
+
l

(z+zl)/µi

(

L
∏

m=l+1

e−κ
+
mdm/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+Pl(µs, φs;−µi, φi)eκ
−

l
(z+zl−1)/µi

(

l−1
∏

m=1

e−κ
−

mdm/µi

)

]

Ii(−µi, φi, 0) (3.27)
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F (0)−
l (−µs, φs, z) =

1

µs

[
∫ 2π

0

∫ 1

0

Pl(−µs, φs;µ′, φ′)I
(0)+
l (µ′, φ′, z)dΩ′

+

∫ 2π

0

∫ 1

0

Pl(−µs, φs;−µ′, φ′)I
(0)−
l (−µ′, φ′, z)dΩ′

]

=
1

µs

[

Pl(−µs, φs;µi, φi)e−κ
+
l

(z+zl)/µi

(

L
∏

m=l+1

e−κ
+
mdm/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+Pl(−µs, φs;−µi, φi)eκ
−

l
(z+zl−1)/µi

(

l−1
∏

m=1

e−κ
−

mdm/µi

)

]

Ii(−µi, φi, 0) (3.28)

Similarly, in the bottom canopy layer

F (0)+
L (µs, φs, z) =

1

µs

[
∫ 2π

0

∫ 1

0

PL(µs, φs;µ
′, φ′)I

(0)+
L (µ′, φ′, z)dΩ′

+

∫ 2π

0

∫ 1

0

PL(µs, φs;−µ′, φ′)I
(0)−
L (−µ′, φ′, z)dΩ′

]

=
1

µs

[

PL(µs, φs;µi, φi)e
−κ

+
L

(z+zL)/µiR(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+PL(µs, φs;−µi, φi)eκ
−

L
(z+zL−1)/µi

(

L−1
∏

m=1

e−κ
−

mdm/µi

)

]

Ii(−µi, φi, 0) (3.29)

F (0)−
L (−µs, φs, z) =

1

µs

[
∫ 2π

0

∫ 1

0

PL(−µs, φs;µ′, φ′)I
(0)+
L (µ′, φ′, z)dΩ′

+

∫ 2π

0

∫ 1

0

PL(−µs, φs;−µ′, φ′)I
(0)−
L (−µ′, φ′, z)dΩ′

]

=
1

µs

[

PL(−µs, φs;µi, φi)e−κ
+
L

(z+zL)/µiR(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+PL(−µs, φs;−µi, φi)eκ
−

L
(z+zL−1)/µi

(

L−1
∏

m=1

e−κ
−

mdm/µi

)

]

Ii(−µi, φi, 0) (3.30)

By submitting the source matrices in the 2L equations (3.6) to (3.17) with the

above zeroth-order results, the first order Mi-MIMICS solution for downward inten-
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sity in the top layer is given by

I−1 (−µs, φs, z) =

{

eκ
−

1 z/µsδ(µs − µi)δ(φs − φi)

+
1

µs

[
∫ 0

z

eκ
−

1 (z−z′)/µsP1(−µs, φs;µi, φi)e−κ
+
1 (z′+z1)/µidz′

]

·
(

L
∏

m=2

e−κ
+
mdm/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+
1

µs

[
∫ 0

z

eκ
−

1 (z−z′)/µsP1(−µs, φs;−µi, φi)eκ
−

1 z
′/µidz′

]

}

Ii(−µi, φi, 0)

(3.31)

and for the bottom layer, the downward intensity is

I−L(−µs, φs, z) =

{

eκ
−

L
(z+zL−1)/µs

(

L−1
∏

m=1

e−κ
−

mdm/µs

)

δ(µs − µi)δ(φs − φi)

+ eκ
−

L
(z+zL−1)/µs

L−1
∑

m=1

{

(

L−1
∏

l=m+1

e−κ
−

l
dl/µs

)

[

1

µs

[
∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;µi, φi)e−κ
+
l

(z′+zm−1)/µidz′
]

(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

+
1

µs

[
∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;−µi, φi)eκ
−

m(z′+zm−1)/µidz′
]

(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

]}

+
1

µs

[
∫ −zL−1

z

eκ
−

L
(z−z′)/µsPL(−µs, φs;µi, φi)e−κ

+
L

(z′+zL)/µidz′
]

·R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+
1

µs

[
∫ −zL−1

z

eκ
−

L
(z−z′)/µsPL(−µs, φs;−µi, φi)eκ

−

L
(z′+zL−1)/µidz′

]

·
(

L−1
∏

m=1

e−κ
−

mdm/µi

)

}

Ii(−µi, φi, 0) (3.32)
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Therefore, the downward intensity at the ground surface z = −zL is

I−L(−µs, φs,−zL) =

{

(

L
∏

m=1

e−κ
−

mdm/µs

)

δ(µs − µi)δ(φs − φi)

+

L
∑

m=1

{

(

L
∏

l=m−1

e−κ
−

l
dl/µs

)

[

1

µs

[
∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;µi, φi)e−κ
+
m(z′+zm)/µidz′

]

(

L
∏

l=m−1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

+
1

µs

[
∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;−µi, φi)eκ
−

m(z′+zm−1)/µidz′
]

(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

]}}

Ii(−µi, φi, 0) (3.33)

The L− th layer’s upward intensity after the ground reflection is then

I+
L(µs, φs, z) = e−κ

+
L

(z+zL)/µsR(µs)I
−
L(−µs, φs,−zL)

+

{

1

µs

[
∫ z

−zL

e−κ
+
L

(z−z′)/µsPL(µs, φs;µi, φi)e
−κ

+
L

(z′+zL)/µidz′
]

·R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+
1

µs

[
∫ z

−zL

e−κ
+
L

(z−z′)/µsPL(µs, φs;−µi, φi)eκ
−

L
(z′+zL−1)/µidz′

]

·
(

L−1
∏

m=1

e−κ
−

mdm/µi

)

}

Ii(−µi, φi, 0) (3.34)
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Then in the top layer, the upward intensity is given by

I+
1 (µs, φs, z) = e−κ

+
1 (z+z1)/µs

(

L
∏

m=2

e−κ
+
mdm/µs

)

R(µs)I
−
L(−µs, φs,−zL)

+

{

e−κ
+
1 (z+z1)/µs

L
∑

m=2

{

(

m−1
∏

l=2

e−κ
+
l
dl/µs

)

[

1

µs

[
∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;µi, φi)e

−κ
+
m(z′+zm)/µidz′

]

(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

+
1

µs

[
∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;−µi, φi)eκ

−

m(z′+zm−1)/µidz′
]

(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

]}

+
1

µs

[
∫ z

−z1

e−κ
+
1 (z−z′)/µsP1(µs, φs;µi, φi)e

−κ
+
1 (z′+z1)/µidz′

]

(

L
∏

m=2

e−κ
+
mdm/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

+
1

µs

[
∫ z

−z1

e−κ
+
1 (z−z′)/µsP1(µs, φs;−µi, φi)eκ

−

1 z
′/µidz′

]

}

· Ii(−µi, φi, 0) (3.35)

Set z = 0, the upward intensity at the top canopy surface is solved

I+
1 (µs, φs, 0) =

(

L
∏

m=1

e−κ
+
mdm/µs

)

R(µs)I
−
L(−µs, φs,−zL)

+

{

L
∑

m=1

{

(

m−1
∏

l=1

e−κ
+
l
dl/µs

)

[

1

µs

[
∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;µi, φi)e

−κ
+
m(z′+zm)/µidz′

]

(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

+
1

µs

[
∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;−µi, φi)eκ

−

m(z′+zm−1)/µidz′
]

(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

]}}

· Ii(−µi, φi, 0) (3.36)
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A transform matrix Tcanopy(µs, φs;−µi, φi) is defined as

Tcanopy(µs, φs;−µi, φi) =
Is(µs, φs, 0)

Ii(−µi, φi, 0)
=

I+
1 (µs, φs, 0)

Ii(−µi, φi, 0)
(3.37)

From Equations (3.33), (3.36) and (3.37), the total canopy bistatic scattering

transformation matrix Tcanopy(µs, φs;−µi, φi) can be organized as

Tcanopy(µs, φs;−µi, φi) =

(

L
∏

m=1

e−κ
+
l
dl/µs

)

R(µs)
(

L
∏

m=1

e−κ
−

l
dl/µs

)

δ(µs − µi)δ(φs − φi)

+
L

∑

m=1

{

(

L
∏

l=1

e−κ
+
l
dl/µs

)

R(µs)
(

L
∏

l=m+1

e−κ
−

l
dl/µs

)

[

1

µs

[
∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;µi, φi)e−κ
+
m(z′+zm)/µidz′

]

(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

+
1

µs

[
∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;−µi, φi)eκ
−

m(z′+zm−1)/µidz′
]

(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

]}

+
L

∑

m=1

{

(

m−1
∏

l=1

e−κ
+
l
dl/µs

)

[

1

µs

[
∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;µi, φi)e

−κ
+
m(z′+zm)/µidz′

]

(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

m=1

e−κ
−

l
dl/µi

)

+
1

µs

[
∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;−µi, φi)eκ

−

m(z′+zm−1)/µidz′
]

(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

]}

(3.38)

The above solution is rearranged in the form of Equation (3.39). It shows that in

addition to the specular refection part by the ground surface, every layer contributes
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to the total canopy scattered intensity in four ways:

Tcanopy(µs, φs;−µi, φi) =

(

L
∏

m=1

e−κ
+
mdm/µs

)

R(µs)
(

L
∏

m=1

e−κ
−

mdm/µs

)

δ(µs − µi)δ(φs − φi)

+

L
∑

m=1

[

Tgmg(µs, φs;−µi, φi) + Tmg(µs, φs;−µi, φi)

+ Tgm(µs, φs;−µi, φi) + Tmdir(µs, φs;−µi, φi)
]

(3.39)

where Tgmg is the contribution of Ground reflection — Canopy scattering — Ground

reflection mechanism by the m− th layer.

Tgmg(µs, φs;−µi, φi) =
1

µs

(

L
∏

l=1

e−κ
+
l
dl/µs

)

R(µs)
(

L
∏

l=m+1

e−κ
−

l
dl/µs

)

Agmg(µs, φs;µi, φi)
(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

(3.40)

The factors in the above product explain the scattering mechanism in the order of

from right to left

¬
L
∏

l=1

e−κ
−

l
dl/µi : Product of transmissivity values from the top to the bottom lay-

ers. The downward intensity is attenuated by this amount in the incident di-

rection (−µi, φi) as it passes through all the L canopy layers. For vector expres-

sions, the indexes of transmissivity matrices follow the order L, L− 1, · · · , 2, 1.

­ R(µi): Reflectivity matrix at the angle of θi since the wave intensity remains

in the original incident direction when it reaches the gourd surface.

®
L
∏

l=m+1

e−κ
+
l
dl/µi : Product of transmissivity values from all the layers underneath

Layer m. The reflected intensity is attenuated by this amount in (µi, φi) direc-

tion as it passes through all those layers. For vector expressions, the indexes

of transmissivity matrices follow the order m+ 1, m+ 2, · · · , L.
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¯ Agmg(µs, φs;µi, φi): The upward intensity reflected by the ground reaches and

is scattered by the m−th layer into (−µs, φs) direction and becomes downward

again.

°
L
∏

l=m+1

e−κ
−

l
dl/µs : Product of transmissivity values from all the layers underneath

Layer m. The reflected intensity is attenuated by this amount in (−µs, φs)

direction as it passes through all those layers. For vector expressions, the

indexes of transmissivity matrices follow the order L, L− 1, · · · , m+ 2, m+ 1.

± R(µs): Reflectivity matrix at the angle of θs since the wave intensity is in the

direction of (−µs, φs) when it reaches the gourd surface.

²
L
∏

l=1

e−κ
+
l
dl/µs : Product of transmissivity values from the top to the bottom

layers. The upward intensity is attenuated by this amount in the scattering

direction (µs, φs) as it passes through all the L canopy layers. For vector

expressions, the indexes of transmissivity matrices follow the order 1, 2, · · · , L−

1, L.

Tmg accounts for Canopy scattering — Ground reflection contribution by the

m− th layer

Tmg(µs, φs;−µi, φi) =
1

µs

(

L
∏

l=1

e−κ
+
l
dl/µs

)

R(µs)
(

L
∏

l=m+1

e−κ
−

l
dl/µs

)

Amg(µs, φs;µi, φi)
(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

(3.41)

The factors in the above product explain the scattering mechanism in the order of

from right to left as follow

¬
m−1
∏

l=1

e−κ
−

l
dl/µi : Product of transmissivity values from the top to the (m − 1) −

thlayer. The downward intensity is attenuated by this amount in the incident
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direction (−µi, φi) as it passes through all the L canopy layers. For vector

expressions, the indexes of transmissivity matrices follow the order m− 1, m−

2, · · · , 2, 1.

­ Amg(µs, φs;µi, φi): The incident intensity reflected by the ground reaches and

is scattered by the m − th layer into (−µs, φs) direction and still propagates

downward.

®
L
∏

l=m+1

e−κ
−

l
dl/µs : Product of transmissivity values from all the layers underneath

Layer m. The scattered downward intensity is attenuated by this amount in

(−µs, φs) direction as it passes through all those layers. For vector expressions,

the indexes of transmissivity matrices follow the order L, L−1, · · · , m+2, m+1.

¯ R(µs): Reflectivity matrix at the angle of θs since the wave intensity is in the

direction of (−µs, φs) when it reaches the gourd surface.

°
L
∏

l=1

e−κ
+
l
dl/µs : Product of transmissivity values from the top to the bottom

layers. The upward intensity is attenuated by this amount in the scattering

direction (µs, φs) as it passes through all the L canopy layers. For vector

expressions, the indexes of transmissivity matrices follow the order 1, 2, · · ·L−

1, L.

Tgm is the complement of Tmg, it shows how the incident intensity is first reflected

by the ground and then scattered into the direction (µs, φ) by the m− th layer

Tgm(µs, φs;−µi, φi) =
1

µs

(

m−1
∏

l=1

e−κ
+
l
dl/µs

)

Agm(µs, φs;µi, φi)

(

L
∏

l=m+1

e−κ
+
l
dl/µi

)

R(µi)
(

L
∏

l=1

e−κ
−

l
dl/µi

)

(3.42)

Similarly, this scattering mechanism can be explained by terms of the factors in th

product
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¬
L
∏

l=1

e−κ
−

l
dl/µi : Product of transmissivity values from the top to the bottom lay-

ers. The downward intensity is attenuated by this amount in the incident di-

rection (−µi, φi) as it passes through all the L canopy layers. For vector expres-

sions, the indexes of transmissivity matrices follow the order L, L− 1, · · · , 2, 1.

­ R(µi): Reflectivity matrix at the angle of θi since the wave intensity remains

in the original incident direction when it reaches the gourd surface.

®
L
∏

l=m+1

e−κ
+
l
dl/µi : Product of transmissivity values from all the layers underneath

Layer m. The reflected intensity is attenuated by this amount in (µi, φi) direc-

tion as it passes through all those layers. For vector expressions, the indexes

of transmissivity matrices follow the order m+ 1, m+ 2, · · · , L.

¯ Agm(µs, φs;µi, φi): The upward intensity reflected by the ground reaches and

is scattered by the m − th layer into (µs, φs) direction and still propagates

upward.

°
m−1
∏

l=1

e−κ
+
l
dl/µs): Product of transmissivity values from layers above the m − th

layer. The upward intensity is attenuated by this amount in the scattering

direction (µs, φs) as it passes through all the L canopy layers. For vector ex-

pressions, the indexes of transmissivity matrices follow the order 1, 2, · · · , m−

2, m− 1.

Tmdir stands for the direct scattering by the m− th layer

Tmdir(µs, φs;−µi, φi) =
1

µs

(

m−1
∏

l=1

e−κ
+
l
dl/µs

)

Amdir(µs, φs;µi, φi)
(

m−1
∏

l=1

e−κ
−

l
dl/µi

)

(3.43)

where the product can be decomposed into
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¬
m−1
∏

l=1

e−κ
−

l
dl/µi : Product of transmissivity values from the top to the (m − 1) −

thlayer. The downward intensity is attenuated by this amount in the incident

direction (−µi, φi) as it passes through all the L canopy layers. For vector

expressions, the indexes of transmissivity matrices follow the order m− 1, m−

2, · · · , 2, 1.

­ Amdir(µs, φs;µi, φi): The downward incident intensity reaches and is scattered

by the m− th layer into (µs, φs) direction and becomes upward.

®
m−1
∏

l=1

e−κ
+
l
dl/µs): Product of transmissivity values from layers above the m − th

layer. The upward intensity is attenuated by this amount in the scattering

direction (µs, φs) as it passes through all the L canopy layers. For vector ex-

pressions, the indexes of transmissivity matrices follow the order 1, 2, · · · , m−

2, m− 1.

In Equations (3.40) — (3.43),

Agmg(µs, φs;µi, φi) =

∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;µi, φi)e−κ
+
m(z′+zm)/µidz′

(3.44)

Amg(µs, φs;µi, φi) =

∫ −zm−1

−zm

e−κ
−

m(zm+z′)/µsPm(−µs, φs;−µi, φi)eκ
−

m(z′+zm−1)/µidz′

(3.45)

Agm(µs, φs;µi, φi) =

∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;µi, φi)e

−κ
+
m(z′+zm)/µidz′

(3.46)

Amdir(µs, φs;µi, φi) =

∫ −zm−1

−zm

eκ
+
m(zm−1+z′)/µsPm(µs, φs;−µi, φi)eκ

−

m(z′+zm−1)/µidz′

(3.47)

Agmg, Amg, Agm and Amdir represent the scattering processes in Layer m caused

by all the components respectively, where the terms of Pm(µs, φs;µi, φi) are source
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function computed from the modified Mueller matrices, the argument inside indicates

the wave intensity is scattered from (µi, φi) direction to (µs, φs) direction.

The total contribution by the m− th layer is denoted by Tm(µs, φs;−µi;φi).

Tm(µs, φs;−µi, φi) = Tgmg(µs, φs;−µi, φi) + Tmg(µs, φs;−µi, φi)

+ Tgm(µs, φs;−µi, φi) + Tmdir(µs, φs;−µi, φi) (3.48)

The incident intensity is also scattered by the underlying ground surface when

it propagates downward to the ground, which then propagates upward back to the

air. The ground direct scattering can be written in a similar way as the specular

reflection part by using a bistatic scattering matrix G(µs, φ;−µi, φi)

Tg(µs, φ;−µi, φi) =
(

L
∏

m=1

e−κ
+
mdm/µs

)

G(µs, φ;−µi, φi)
(

L
∏

m=1

e−κ
−

mdm/µi

)

(3.49)

where G(µs, φ;−µi, φi) is given by the roughs surface model of the ground.

The total bistatic scattering from the multi-layer canopy over a ground surface

is obtained by adding Tg to Tcanopy

Ttotal(µs, φ;−µi, φi) = Tcanopy(µs, φ;−µi, φi) + Tg(µs, φ;−µi, φi) (3.50)

which is the direct first order RT equation solution.

3.3 Multi-MIMICS Model Development

3.3.1 First Order Multi-MIMICS Scattering Mechanisms

The first order solution demonstrates there are four scattering sources in each

layer (Figure 3.3), which similar to those in the crown layer of Bi-MIMICS but with

different propagation path and transmissivity matrices.

Since single trunk layer no longer exists in Multi-MIMICS and trunks are treated

as other scatterers, there are four scattering mechanisms provided for trunk struc-

tures. However, because we model the trunks as vertical large cylinders, the model
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Figure 3.3: Four scattering contribution from each Layer according to the first order
Multi-MIMICS solution. 1: scattering by this layer and double reflections
by the ground; 2 and 3: scattering and reflection interactions between
the canopy layer and the ground; 4: directing scattering by this layer of
canopy. All four terms are attenuated along the propagation path by the
upper and lower layers.

results show that strong scattering only exists in the forward ans specular directions,

and scattered intensity in other direction are negligible, therefore, two in four of the

mechanisms — direct trunk scattering and double ground reflection scattering are

zeros. The other two remaining mechanisms are consistent with those in Bi-MIMICS.

Multi-MIMICS accommodates bistatic scattering configuration, so an additional

term representing the coherent specular ground reflection exists in the specular direc-

tion. The ground scattering is also stronger in the specular direction than backscat-

tering. A combination of the rough surface models is used for the ground surface

scattering.

The total canopy scattering is the sum of all layer contributions and direct scat-

tering from the rough ground. In Multi-MIMICS, as in Bi-MIMICS, the extinction,

source and phase matrices are calculated as the statistical average over the type,

quantity, size and orientation of the scatterers in each layer.
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3.3.2 Modification for Overlapping Canopy Layers

For nonuniform canopies, overlapping between trunks of tall trees and crowns of

short trees are common in mixed forest species as shown in Figure 3.1, another ex-

ample for overlapping is trunks extending into crowns such as pine trees and spruces.

Therefore, the scattering from each layer is no longer independent of the other layers

and the solution derived in the previous section is insufficient.

When canopy layers are overlapped, the direct first order solution needs to be

modified. An example of two overlapping canopy layer is shown in Figure 3.4. Each

layer contains certain type of the scatterers, the extinction and phase matrices can

be solved within each layer as if they were not overlapped. When two layer are

place together, the upward and downward intensities of two layer are added together

in the overlapped part, moreover, the wave propagates through or being scattered

in three different regions, scattering can occur in the upper layer, overlapped layer

or the lower layer. Because of RT theory, the extinction and scattering effects in

the overlapped part are assumed to be enhanced and they can be added together

incoherently. The overlapped part of the two layers can be treated as an additional

layer, which contains more types of or more scatterers. Without taking into account

multiple scattering, it can be concluded that the upper and lower layers maintain

the original attenuation and scattering properties and the extinction and phase ma-

trices in the middle layer are the sums of the top and bottom layers. The two-layer

structure therefore becomes a three-layer system and hence the first order solution

can be applied. As shown in Figure 3.4, the original top layer l has extinction

matrices κl(±µi, φi), κl(±µs, φs) and phase matrices Pl(±µs, φs;±µi, φi), while the

scattering properties of the bottom layer l + 1 are κl+1(±µi, φi), κl+1(±µs, φs) and

Pl+1(±µs, φs;±µi, φi). In the new three-layer system, the additional middle layer’s
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extinction matrices are then κl(±µi, φi) + κl+1(±µi, φi), κl(±µs, φs) + κl+1(±µs, φs

and its phase matrices are Pl(±µs, φs;±µi, φi) +Pl+1(±µs, φs;±µi, φi). The scatter-

ing properties in the upper and lower layer keep unchanged. We can easily extend

the solution to the case of three or more overlapping layers.

In this approach, scatterer are assumed independent among layers and interac-

tions between scatterers (higher order scattering mechanism) are ignored. However,

more consideration are needed for future higher order Multi-MIMICS development.

3.3.3 Tapered Trunk Model

Instead of using an approximate uniform trunk truncated at the crown layer bot-

tom as in Bi-MIMICS, we use a tapered trunk by cascading layers with increasing

trunk radius. As the trunk position is correlated among layers, the multi-layer solu-

tion cannot be applied to cascading trunk layers and a correction factor is therefore

introduced. The particular advantages of using a tapered trunk model are that the

actual forms of tree trunks are better represented and the trunks are able to grow

into the crown layer rather than be truncated at the interface of the two layers.

Using RT theory, the extinction matrix and phase matrix are given in terms of the

electric field scattering matrix S2×2. For a long cylinder, the approximate expression

modified from an infinitely long cylinder is used such that [69]:

S2×2(ψi, φ
′) = Q(ψi, ψs) · S∞(ψi, φ

′) (3.51)

where ψi is the between the plane perpendicular to the cylinder axis and the direction

of the propagation of the incident electric field and ψs is the angle between this plane

and the direction of the propagation of the scattered electric field, φ′ is the azimuth

angle of the scattered field in this plane. S∞(ψi, φ
′) is the scattering matrix obtained

from an infinity long homogeneous dielectric cylinder. Q(ψi, ψs) is the factor to
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(a)

(b)

Figure 3.4: Propagating intensities in two overlapping Canopy Layers, the over-
lapped part of the two layers can be treated as an additional layer, which
contains more types of or more scatterers. The extinction and phase ma-
trices in the middle layer are the sums of the top and bottom layers.
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transform the scattering matrix of infinite long cylinder to the finite length cylinder

and is given by

Q(ψi, ψs) =
iH cosψs
π cosψi

{

sin[k0(sinψi + sinψs)
H
2
]

k0(sinψi + sinψs)
H
2

}

(3.52)

where H is the trunk height.

In both the cases of forward scattering (ψs = −ψi, φ′ = π) and specular scattering

(ψs = −ψi, φ′ = 0), the argument of the sinc function is zero and
sin[k0(sinψi+sinψs)

H
2

]

k0(sinψi+sinψs) H
2

=

1, then Equation (3.52) reduces to

S2×2(ψi, φ
′) = iH · S∞(ψi, φ

′) (3.53)

Since effect of trunk’s height on the scattering model is of our interest, other

parameters can be treated as constants, we conclude that the scattering matrix S2×2

of a finite trunk is in proportion to its height H from Equation (3.53)

S2×2 ∝ H (3.54)

The phase matrix is in proportion to S2×2
2 (Equation (2.6)) and the extinction

matrix is in proportion to S2×2 (Equation (2.10)). As a result, when other parameters

are fixed, the phase matrix for a trunk layer of height H and density N trunks per

square meter is

P ∝ N

H
H2 OR P ∝ H (N is a constant) (3.55)

and

κ ∝ N

H
H OR κ = constant (3.56)

For layered trunk structures, we can’t simply cascade the layers together as

though they are independent canopy layers. Figure 3.5 is an example of when we
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divide a trunk layer into two half layers without considering the correlation of their

positions. The scattering quantities are calculated within each sub-layer which is

assigned with the same trunk density but half the trunk height.

The result in Figure 3.5(b) is clearly wrong, as we would expect the phase matrices

in two half height layers to be the same as in one layer. The error arises as, when

determining S2×2
2, the trunk positions in two layers are related and the wave should

be added coherently. Therefore, a coherent correction factor total−trunk−height
sub−layer−height

needs

to be applied to correct the phase matrices. The new phase matrix is then calculated

as

Pnew =
Htotal−trunk

Hlayer
Pold (3.57)

where Pold is the phase matrix calculated by the first order solution and Pnew denotes

the new phase matrix corrected for coherent trunk positions. When the correction

factor is applies as in Figure 3.5(c), we get the expected correct result. The method

can be extended to tapered trunk layers with increasing trunk radius in the direction

from the ground to the canopy top.

As illustration, Figure 3.6 compares the L-band (1.25 GHz) HH backscattering

coefficients from 50m trunks with density of 9 trunks/ha based on two trunk models.

In the first, the trunk radius is uniform at 24.5 cm while for the second, the trunk

radius at the ground and top is 29.8 cm and 5 cm respectively (3.6(a)). The volume

of the two trunks is identical. The simulation shows that when the uniform trunk

is considered, the backscattering coefficient is underestimated from the upper part

and overestimated from the lower part (Figure 6b). By contrast, the accumulated

σ0 from the ground to the higher layers leads to a better correspondence (Figure

6c). Therefore, the total backscattering coefficients from the two trunk models are

similar but the contributions with changing height were different. When trunks
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(a) One trunk layer

(b) Two equal halves without correction

(c) Two equal halves with correction

Figure 3.5: Apply the first order solution directly to trunk layers without the cor-
rection factor. (a), (b) and (c) model the same the trunk structure. The
trunks in (b) and (c) are modeled as two layers with half the height
of the one layer trunk model in (a). Extinction and phase matrices of
the layered trunk model are compared with and without the correlation
factor.
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(a) (b) (c)

Figure 3.6: Trunk Backscattering by the uniform trunk model and tapered trunk
model. (a) Two trunk models with the same volume. (b) Simulated LHH
backscattering coefficient from two models. Individual layer’s contribu-
tion is shown in (b). The uniform model underestimates the backscat-
tering from the trunks’ upper part and overestimates the backscattering
from the trunks’ lower part. (c) The accumulated backscattering from
the ground to higher layers is shown as a function of layer locations. At
the trunk top, the total backscattering coefficient of two models agree.
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superimposed with branches and foliage, the tapered trunks can influence the total

canopy backscattering coefficient.

3.4 Multi-MIMICS Model Implementation

3.4.1 Scattering Models of Canopy Components

Multi-MIMICS inherits the scattering models for all canopy constitutes such as

trunk, branch, foliage and ground surface. However, there are a few changes when

dealing with tapered trunk layers, it is necessary to indicate the ratio between the

layer depth and the total trunk height as required in section 3.3.3.

Furthermore, scatterers are no longer named as branch and leaf, etc. since any

combination of types of scatterers can be in any position inside the canopy. Instead,

we use a general data structure which includes several variables representing scatterer

type, scatterer parameters, scatterer position. Scatterer type indicates which scat-

tering model should be used to compute the electric filed scattering matrix. Scatterer

parameters include the geometric parameters of the scatterer such as size, shape and

orientation as well as its dielectric constant. Scatterer position describes the layer

that the scatterer is in.

3.4.2 Multiple Layers Structure

Bi-MIMICS’s crown and trunk layer structure is replaced by multiple layers that

don’t have identifications, since layers can contains both trunks and crown compo-

sitions. Canopies layers instead are numbered and tracked by program. The input

parameter of Multi-MIMICS is a list of single layers that either cascade or overlap.

Each layer is considered homogeneous with distributions of a combination of types

of scatterers. Location and depth of every layer must be specified. Multi-MIMICS

reads in the input file, calculate all the extinction and phase matrices of each layer
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as the first step. The model then rearranges all the layers from top of the canopy

to the ground according to their locations and depths. If overlapping among lay-

ers is detected at any range of height, Multi-MIMICS modifies the original layer

structure and computer new layer’s scattering matrices as described in section 3.3.2.

The resulting canopy model may have more layers than the input file but are free of

overlapping, thus the first order RT model solution can be applied to.

3.4.3 Scattering Processes and Solution Implementation

Since we are faced the multiplication operation of multiple 4 × 4 transmissivity

matrices, it is essential to use the eigen value/vector decomposition to simplify the

computation. The integration over the distribution of scatterers’ shape, size and

orientation are achieved by summation over finite range steps. So is the integration

of phase matrices computed.

The total transform matrix is obtained by put all the scattering mechanism to-

gether through proper sequences.

3.5 Summary

For complex forests, particularly those that are in their natural state or subject

to different levels of degradation, the existing two-layer microwave canopy scattering

models are inappropriate. For this reason, a multi-layered approach that accounted

for the vertical discontinuity of mixed forests and was based on RT theory was

considered which resulted in the development of Multi-MIMICS.

Main contributions of this chapter are (1) Use a multi-layer canopy configuration

to better represent forest structures with vertical discontinuity. (2) Solve multi-layer

RT equations which is the direct first order Multi-MIMICS model. (3) Introduce

overlapping canopy layers and modification to the first order Multi-MIMICS. (4)



90

Introduce a tapered trunk model and the solution of the correlation correction factor.



Chapter IV

MULTI-MIMICS MODEL VALIDATION AND

APPLICATION

Multi-MIMICS is applied to real forest situations and validated by actual radar

measurement. In this chapter, we use an extended dataset to parameterize Multi-

MIMICS and also the original MIMICS model and evaluate the performance of each

through comparison of actual and simulated σ0 at different frequencies and polariza-

tions. We also examine the additional understanding of microwave interaction with

the forests through consideration of the different scattering mechanisms.

Section 4.1 describes the acquisition and processing of field and SAR data. The

application of Multi-MIMICS to the test sites is then presented in Section 4.2 where

simulated results are compared with those generated using MIMICS and recorded

also by the AIRSAR, and the capabilities and limitations of the models are discussed

in 4.3. Section 4.4 is the conclusion.

4.1 Field Measurement and SAR Data Acquisition

The development of Multi-MIMICS was motivated partly by a previous study [48]

that focused on the simulation of SAR backscattering coefficient from mixed species

forests near Injune in Queensland, Australia. In this research, which was part of

91
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a larger program aimed at investigating the use of SAR data for mapping forest

biomass and structural diversity, the study benefited from the availability of NASA

JPL AIRSAR data acquired over the area in September 2000 as part of the PACRIM

II Mission.

4.1.1 Test Site

Several studies in Australia [3, 46] have investigated the relationship between

above ground woody vegetation biomass and SAR data. However, during the 2000

NASA JPL PACRIM II AIRSAR Mission and under a joint program between several

research agencies, a dedicated field and airborne campaign aimed at resolving issues

relating to the use of SAR for quantifying forest biomass and structural diversity was

conducted in Queensland [48]. The study focused on a 37 × 60 km area of forests

and agricultural land west of Injune (Latitude −25◦32′, Longitude 147◦32′), which is

located in the Southern Brigalow Belt (SBB), a biogeographic region of southeast and

central Queensland. The forests within the area contain a wide range of regeneration

and degradation stages, due to differing land use, management histories and clearance

regimes, and a diverse mix of species although several genera dominate [82]. In

particular, Callitris glaucophylla (White Cypress Pine; herein referred to as CP-) is

widespread, particularly in the undulating hills to the south of the study area where

sandy soils predominate while Eucalyptus species favor the more alluvial plains.

Angophora species, particularly A. leiocarpa (Smooth Barked Apple; SBA) occur

throughout the study area. Few communities, however, can be considered to be

homogeneous in terms of their structure, biomass and composition.
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Figure 4.1: 150 primary sampling units (PSUs) (10 columns and 15 rows numbered
progressively from top left to bottom right) over are of Injune, Australia.
The size of each PSU is 500 × 150 m.

4.1.2 Field Data Collection

In July and August, 2000, large scale (1:4000) stereo aerial photography and

LiDAR data were acquired over a systematic grid of 150 (10 columns and 15 rows

numbered progressively from top left to bottom right) 500×150 m Primary Sampling

Units (PSUs), with each PSU center located 4 km apart in the north-south and east-

west directions [48]. Each PSU was further divided into thirty 50× 50 m Secondary

Sampling Units (SSUs; numbered from top left). The location and sampling schemes

are shown in Figure 4.1 and 4.2. The composition of the forest was collected by

summarizing the dominant species over the units.
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Figure 4.2: Each PSU is divided into thirty 50 × 50 m Secondary Sampling Units
(SSUs; numbered from top left).
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During a field campaign conducted over the same time-period, an extensive set of

field measurements were collected from 36 SSUs located within 12 PSUs considered

representative of the main forest types and regeneration stages occurring in the area.

These measurements included trunk diameters at 30 (D30) and 130 cm (D130 or

DBH; for all trees > 5 cm at D130), tree height, crown diameter and crown depth and

each tree measured was identified to species [48]. Smaller (< 5 cm D130) individuals

were measured in five 10 × 10 regrowth and understory plots. Digital pictures were

taken of at least every 10th tree measured and soil dielectric constants and moisture

contents were recorded for each SSU using a Time Domain Reflectometer (TDR) and

through gravimetric methods.

The complex nature of these mixed forests is highlighted in Figure 4.3 [47] which

shows the crown and trunk layers of two tall species (a pine and eucalypt) overlap-

ping and an understory of various species of similar structural form. It is a true

measurement of trees from a SSU.

Following field data collection, destructive harvesting of CP- (22 individuals) was

undertaken to generate new allometric equations relating tree size to leaf, branch (<

1 cm, 1-4 cm, 4-10 cm, 10-20 cm etc.), and trunk biomass. Harvesting of Eucalpytus

populnea (Poplar Box; PBX; n = 7), Eucalyptus melanaphloia (Silver-leaved iron-

bark; SLI; n=5) and Acacia harpophylla (Brigalow; BGL; n=1) was also undertaken

to assess the validity of applying existing allometric equations [6, 29], generated by

harvesting trees several hundred km distant, for estimating the total above ground

and component biomass of trees at Injune. After harvesting, trees were divided

into major components such as trunks, branches and leaves. Branches were divided

into subcomponents as large and small branches. The number, size and orienta-

tion of these components were measured and categorized. Leaf size for main species



96

(a) 3D Illustration

(b) 2D Profile

Figure 4.3: Layer constitutes of a mixed species forest. Field data collected from
a 50 × 50 m area of Injune, Australia. The plot consists of mature
callitris glaucophyllas(∼ 14 m), eucalyptus fibrosas(∼ 12 m) and callitris
glaucophylla saplings(∼ 5 m).
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(a) SLI (b) CP- (c) SBA

Figure 4.4: Major tree species from test sites. SLI: Eucalyptus melanaphloia (Silver-
leaved Ironbark); CP-: Callitris glaucophylla (White Cypress Pine);
SBA: Angophora leiocarpa (Smooth Barked Apple).

was also measured and photographed. The harvesting also allowed the number and

size of canopy elements to be estimated and provided measures of moisture content

throughout each tree harvested. Figure 4.4 shows photos of a few major species.

4.1.3 SAR Data Acquisition and Processing

AIRSAR data (four strips of 12 × 80 km) were acquired across the entire PSU

grid on 3rd September 2000. C-band (∼ 6 cm wavelength, 5.288 GHz), L-band (∼

25 cm wavelength; 1.238 GHz) and P-band (∼ 68 cm, 0.428 GHz) at three distinct

polarizations (HH, VV and HV) were recorded (9 channels) and processed by JPL in

the standard format of compressed Stokes matrix, giving a stated calibration accu-

racy of 1 dB. The incidence angle at which the selected SSUs were observed ranged

from 29◦ to 59◦. The standard AIRSAR data, which had a pixel size of 3.3 × 4.6 m

in slant range, were ground projected and resampled to a pixel size of 10 × 10 m.

Figure 4.5 is a composite of three channels of C-band AIRSAR raw image which cov-
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ers the area of Injune. A cross track correction was applied to the images to reduce

the backscattering coefficient variation caused by incidence angle variation. Geo-

metric rectification was then achieved using a 3rd order polynomial nearest neighbor

transformation based on ground control points common within the AIRSAR and

pre-registered Landsat ETM+ data (September, 2000) of the study area. Each SSU

therefore occupied a 5 × 5 block of pixels in the image and, under the assumption

of homogeneity within the SSU, the average backscattering coefficients over these 25

pixels were calculated to reduce noise. Figure 4.6 is an example that trees inside of

SSU P111-12 scatter over the AIRSAR image, a block of CHH channel is shown in

the figure. These averaged data were then compared against that simulated using

both the MIMICS and multi-MIMICS model.

4.2 Model Application

4.2.1 Model Parameters

The available field measurements were used to parameterize the two models

(multi-MIMICS and MIMICS) for each SSU (Table 4.1). In addition, the digital pho-

tographs were used to determine the branch orientations and pdf exponents while

the data on trees harvested were used to estimate the dielectric constants of the

branches and foliage (Table 4.2). The radar incidence angle for each SSU was also

estimated from AIRSAR images (Table 4.3). These forest inventory data were also

seen in [48]). In all cases, the sum of the biomass of the simulated components (based

on dimensions and wood density) for all contained species equated to the biomass

observed for the SSU.

For Multi-MIMICS, each tree species was modeled separately by a crown layer

and a trunk layer which could overlap if the trunk was known to grow into the crown
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Figure 4.5: Composite of three channels of C-band AIRSAR raw image which covers
the area of Injune. Red — CHH, Green — CHH, Blue — CHV. Slant
range pixel size: 3.3 × 4.6 m.
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Figure 4.6: CHH band processed ground range AIRSAR image. Ground range pixel
size: 10 × 10 m. 781 trees in SSU P111-12 are scattered over the area
and their center locations are plotted as dots.
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(e.g., in the case of CP-). If five tree stands were considered, for example, ten layers

were first generated. Each layer of specified height was then populated with estimates

of the densities, dimensions, orientations and dielectric constants of scatterers. The

input layers were then rearranged from top to bottom and overlapping parts were

treated accordingly, and the multi-MIMICS RT solution to the canopy may include

more than ten layers. An approximately uniform trunk that extended into the crown

layer was used as trunk tapering factors were not employed due to the lack of field

measurement, although future simulations will integrate published taper functions

available for the species. Sensor and environmental parameters were then defined,

including microwave frequency, incidence and scattering directions and ground sur-

face characteristics (e.g., soil dielectrics, RMS height and correlation length). The

incidence angle for each SSU was determined from the AIRSAR data, which was

warranted due to the relative flatness of the ground terrain.

4.2.2 Backscattering Simulation by Multi-MIMICS and Standard MIM-

ICS Model

Based on the model input parameters, simulation of the SAR backscattering at

all frequencies and polarizations was undertaken using multi-MIMICS and MIMICS

and a comparison between actual and simulated σ0 was undertaken. To illustrate

the results for a relatively simple but typical stand, P111-12 with two species (CP-

and SLI) but three groups (SLI and CP - with D130 ≥ 10 cm and CP- < 10 cm

respectively) was considered. The above ground biomass of this stand was estimated

at 130 Mg/ha and the SSU contained 781 trees of which 18 and 89 were SLI and

CP- (D130 ≥ 10) respectively while the remaining 674 were CP- (D130 < 10). How-

ever, the CP- (D130 ≥ 10) contributed more than 50% of the biomass with the SLI

contributing approximately 25%. Approximately 75% of the biomass was contained
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Table 4.1: Forest Structural Characterizes of 15 SSUs.
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P23-15 PBX 0.032 13.8 6.9 6.9 13.79 0.4 1.5 6.96 0.5 3782 33154 1112470

CP- 0.012 9.2 7.7 8.2 9.97 3.17 1 1 0.5 1021 17723 945643

CP- 0.4036 5 2.5 4 1.98 - 1 - 0.5 - 34944 1587629

SBA 0.004 12.4 7.6 4.8 19.73 6.1 1.5 9.96 0.5 4 687 61033

SLI 0.1204 5 2.5 2.5 3.3 1.5 1 1.66 0.5 362 17096 2056

P23-16 SLI 0.0028 11.5 6 5.5 19.5 4.5 1.5 6.5 0.5 21 2339 121753

CP- 0.0016 12.5 10 12.5 25.3 4.74 1 1 0.5 387 4641 256244

BRH 0.0072 6.5 4.5 6.5 15 - 1 - 0.5 - 8425 233003

SBA 0.012 12 9.5 9.5 26.1 8 1.5 8.7 0.5 134 20610 1831004

SBA 0.1012 0.5 0.25 0.25 2.5 0.25 1 0.84 0.5 623 4355 170009

P58-24 PBX 0.0172 19 14 7.5 17.99 12.5 1.5 9.56 0.5 105 24323 971206

CP- 0.0672 2.4 1.2 1.2 2.1 - 1 - 0.5 - 13793 254635

P58-29 SLI 0.0076 10.3 8.6 4.7 22 3.6 1.5 9.16 0.5 117 11956 679909

PBX 0.018 9.4 3.3 7.6 16.49 2.8 1.5 6.46 0.5 690 15144 894172

SLI 0.3088 6 3 3 2.82 2 1 1.56 0.5 654 37352 1382205

P81-8 ECH 0.016 12.7 5.4 7.3 10.32 3.9 2 5.06 0.5 272 6196 269823

CP- 0.016 17.8 11.5 6.3 17.49 2.61 1 1 0.5 9621 53179 2855806

SBA 0.0036 20 15.9 4.1 18.48 14.4 1.5 9.34 0.5 24 6912 624238

BRH 0.0232 3 1.4 1.6 3.96 0.4 1 2 0.5 3021 3408 264932

P81-11 CP- 0.012 14.6 9 5.6 22.2 2.28 1 1 0.5 10454 44083 2462246

CP- 0.0408 1.6 0.8 0.8 5 - 1 - 0.5 - 3975 336201

SBA 0.0028 25.6 20.3 5.3 45.57 10.8 1 21.7 0.5 34 19871 2217461

ANE 0.0252 6.5 5.2 1.3 3.99 4.2 1 1.9 0.5 691 7384 352782
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Table 4.1: Forest Structural Characterizes of 15 SSUs (Continued).
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P111-12 SLI 0.0072 13.7 11.6 6.68 25.8 5.1 1.5 8.6 0.5 126 13630 796563

CP- 0.0356 15 9.9 5.1 28.5 3.82 1 1 0.5 9580 98415 5420834

CP- 0.2696 5 2.5 2.5 5 - 1 - 0.5 - 100920 5002367

P114-4 CP- 0.042 17 10 7 12.14 1.7 1 1 0.5 11742 81519 4410974

CP- 0.0092 7 3.5 3.5 4.16 - 1 - 0.5 - 2605 127196

SBA 0.0004 16 11 13 76.32 9.5 1.5 28.26 0.5 9 3883 458114

SBA 0.352 1.5 0.75 0.75 1.8 0.75 1 0.66 0.5 45 10577 360177

P114-12 CP- 0.0132 10.9 8 10.4 13.2 2.32 1 1 0.5 2617 25234 1364353

CP- 0.0168 6 3 5 3.4 - 1 - 0.5 - 2682 126583

SBA 0.0044 13.3 5.7 7.6 14.98 4.2 1.5 7.56 0.5 69 5509 467559

ANE 0.0529 3.7 1.85 1.85 0.99 1 1 1.85 0.5 244 22031 1056220

P142-2 PBX 0.0252 9.5 5.9 5.1 14.3 5.4 1 1.5 0.5 236 21390 760760

P142-18 PBX 0.0204 13.3 10.1 4.6 20.16 7.6 1.5 8.4 0.5 153 22875 1595931

P142-20 PBX 0.0212 11.5 4.2 7.3 13.79 2.7 1.5 6.96 0.5 506 14673 1442699

SBA 0.038 6 3 3 5.94 2 1 3 0.5 199 13607 550138

P144-13 ECH 0.0056 11.3 9.6 8.7 26.32 8.1 1.5 5.4 0.5 348 9402 299541

CFM 0.0336 11 5.4 5.6 11.82 4.47 1 1 0.5 3082 67714 1926119

P144-19 SLI 0.0036 11 7.7 3.3 23.18 6.2 1.5 11.2 0.5 46 8488 512789

CP- 0.0196 11.5 9.5 11 14.94 3.04 1 1 0.5 3372 39794 2158231

CP- 0.1204 5.5 2.75 2.75 3.43 - 1 - 0.5 - 25110 1203118

P148-16 SLI 0.0116 18.5 11.5 7 25.74 10 1.5 13 0.5 68 27351 1652321

CP- 0.0036 10 8.2 10 13.13 3.39 1 1 0.5 511 7041 381155

CP- 0.288 2.9 1.45 2.9 1.13 - 1 - 0.5 - 8214 349865

1018 0.1432 2.2 1.1 2.2 1.98 0.1 1 1 0.5 39113 4084 542616
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Table 4.2: Tree and Soil Permittivities at C-, L- and P-band of 15 SSUs.
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P23-15 PBX 20,2 22,2 25,2 2,1 2,1 3,1

CP- 15,2 15,2 25,2 2,1 2,1 3,1

CP- 15,2 15,2 25,2 2,1 2,1 3,1

SBA 20,2 22,2 25,2 2,1 2,1 3,1

SLI 20,2 22,2 25,2 2,1 2,1 3,1

P23-16 SLI 20,2 22,2 25,2 2,1 2,1 3,1

CP- 12,2 15,2 25,2 2,1 2,1 3,1

BRH 18,2 18,2 22,2 2,1 2,1 3,1

SBA 18,2 18,2 22,2 2,1 2,1 3,1

SBA 18,2 18,2 22,2 2,1 2,1 3,1

P58-24 PBX 20,2 20,2 25,2 2,1 2,1 3,1

CP- 12,2 20,2 25,2 2,1 2,1 3,1

P58-29 SLI 12,2 20,2 28,2 2,1 2,1 5,1.5

PBX 20,2 20,2 25,2 2,1 2,1 5,1.5

SLI 12,2 20,2 28,2 2,1 2,1 5,1.5

P81-8 ECH 18,2 18,2 25,2 2,1 2,0.5 3,1

CP- 12,2 15,2 25,2 2,1 2,0.5 3,1

SBA 18,2 18,2 25,2 2,1 2,0.5 3,1

BRH 12,2 15,2 25,2 2,1 2,0.5 3,1

P81-11 CP- 12,2 18,2 25,2 2,1 2,0.5 3,1

CP- 12,2 15,2 25,2 2,1 2,0.5 3,1

SBA 20,2 18,2 25,2 2,1 2,0.5 3,1

ANE 12,2 15,2 25,2 2,1 2,0.5 3,1
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Table 4.2: Tree and Soil Permittivities at C-, L- and P-band of 15 SSUs (Continued).
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P111-12 SLI 18,2 20,2 25,2 2,1 2,0.5 3,1

CP- 12,2 15,2 25,2 2,1 2,0.5 3,1

CP- 12,2 15,2 25,2 2,1 2,0.5 3,1

P114-4 CP- 20,2 22,2 28,3 4,1 5,1 12,1

CP- 20,2 22,2 28,3 4,1 5,1 12,1

SBA 18,2 18,2 20,2 4,1 5,1 12,1

SBA 18,2 18,2 20,2 4,1 5,1 12,1

P114-12 CP- 20,2 20,2 22,2 2,1 2,1 3,1

CP- 20,2 20,2 22,2 2,1 2,1 3,1

SBA 20,2 18,2 22,2 2,1 2,1 3,1

ANE 20,3 22,3 25,3 2,1 2,1 3,1

P142-2 PBX 20,2 20,2 25,2 2,1 2,1 3,1

P142-18 PBX 22,2 25,2 30,3 2,1 2,1 4,2

P142-20 PBX 22,2 22,2 25,2 2,1 2,0.5 3,1

SBA 12,2 15,2 25,2 2,1 2,0.5 3,1

P144-13 ECH 12,2 15,2 25,2 2,1 2,1 3,1

CFM 12,2 15,2 25,2 2,1 2,1 3,1

P144-19 SLI 12,2 15,2 25,2 2,1 2,1 3,1

CP- 12,2 15,2 25,2 2,1 2,1 3,1

CP- 12,2 15,2 25,2 2,1 2,1 3,1

P148-16 SLI 12,2 15,2 25,2 2,1 2,1 3,1

CP- 12,2 15,2 25,2 2,1 2,1 3,1

CP- 12,2 15,2 25,2 2,1 2,1 3,1

1018 12,2 15,2 25,2 2,1 2,1 3,1
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Table 4.3: Backscattering Radar Incidence Angles Estimated Fromm AIRSAR Im-
ages of 15 SSUs.

SSU P23-15 P23-16 P58-24 P58-29 P81-8

Incidence Angle (◦) 33.06 33.06 30.10 30.10 58.95

SSU P81-11 P111-12 P114-4 P114-12 P142-2

Incidence Angle (◦) 58.95 58.77 46.98 46.98 48.38

SSU P142-18 P142-20 P144-13 P144-19 P148-16

Incidence Angle (◦) 48.38 48.38 46.98 46.98 30.10

within the tree trunks. Figure 4.7 illustrates the relative size of three types.

The multi-MIMICS parameter input file was generated from 4.1. For the two-

layer MIMICS, the crown depth was set to 12.9 m and the trunk height to 2.1

m. The densities of canopy scattering components (branches, leaves) were calculated

individually for each species. The comparison of actual (mean) and simulated (multi-

MIMICS and MIMICS) backscattering coefficient, σ0, (dB) is shown in Figure 4.8,

with the error bars representing the dynamic range (σ0min and σ0max) of the AIRSAR

data.

The σ0 simulated by both models was within the AIRSAR dynamic range. At

C-band, both simulations were similar with discrepancies of around 1 dB for C-band

HH, VV and HV. As the upper layer of the canopy contributed the greatest backscat-

ter, differences at C-band were not expected. However, both models underestimated

σ0 at C-band which could be attributed largely to minor errors in the calibration

of the AIRSAR data. At L-band and P-band, double bounce scattering primarily

from the tree trunks became noticeable and the multi-MIMICS showed a significant

improvement over the MIMICS simulation, with the difference between simulated

and actual decreasing from -3.41 dB to 0.06 dB (for L-band HH) and from -3.90 to
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Figure 4.7: Relative size of three groups of two species in SSU P111-12. They are
large CP- (Height= 15 m, Crown radius= 2.93 m, Trunk Height= 5.1
m), small CP- (Height= 5 m, Crown radius= 0.4 m, Trunk Height= 2.5
m) and SLI (Height= 13.7 m, Crown radius= 2.35 m, Trunk Height=
6.7 m) from the left.
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Figure 4.8: AIRSAR measured and model simulated backscattering coefficients for
P111-12. Results are shown for C-, L- and P-bands at HH, VV and
HV polarizations. The AIRSAR data are provided with dynamic ranges
(bars) and mean values (block dots). The square marks present Multi-
MIMICS’s simulation and the triangular marks show old MIMICS’s sim-
ulation.
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Figure 4.9: Relative size of five groups of four species in SSU P23-15. They are PBX
(Height= 13.8 m, Crown radius= 1.63 m, Trunk Height= 6.9 m), small
CP- (Height= 5 m, Crown radius= 0.5 m, Trunk Height= 4 m), large
CP- (Height= 9.2 m, Crown radius= 2.42 m, Trunk Height= 8.2 m),
SBA (Height= 13.7 m, Crown radius= 2.35 m, Trunk Height= 6.7 m)
and SLI (Height= 5 m, Crown radius= 2.35 m, Trunk Height= 2.5 m)
from the left.

1.79 dB (for P-band HH).

As both SLI and CP- (D130 ≥ 10) that provided the majority of biomass had

similar heights and crown depths, the two layer crown-trunk configuration was a

close approximation to the multi-layer canopy structure and hence both models offer

reasonable predictions of σ0. However, where forests with more complex vertical

structures were considered, MIMICS failed to produce a reliable prediction whereas

multi-MIMICS was more successful. The complex situation was illustrated by consid-

ering the forests represented by SSU P23-15 which consisted of five species, namely

PBX (n = 80), CP- with D130 ≥ 10 cm (n = 30), SBA (n = 1), CP- with D130

< 10 cm (n = 1009) and SLI (n = 301) and of heights ranging from short (5 m) to

medium tall (9.2 m) and tall (13.8 m). The estimated biomass for P23-15 was 74

Mg/ha. The relative size of five types are shown in Figure 4.9.

For MIMICS, the crown-trunk canopy model was used with a crown and trunk

layer depth of 11.3 m and 2.5 m respectively. Multi-MIMICS was parameterized us-
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ing the inputs listed in Table 4.1 and the comparison of actual (mean) and simulated

σ0 is shown in Figure 4.10. In this case, σ0 simulated by MIMICS was outside of the

dynamic range of the AIRSAR-data at C-band and L-band (with the exception of

L-band VV) and generally underestimated (including for P-band HH and VV). Part

of the reason for this underestimate was that MIMICS truncated the trunk length,

which resulted in a reduction in σ0 at HH polarizations in particular. As MIMICS

also overestimated the canopy volume, the scatterer density within the crown de-

creased, which partly explained the underestimation at C-band. For all channels,

the mean error between σ0 simulated by MIMICS and recorded (mean) by the AIR-

SAR (all nine channels) was -3.98 dB and the Root Mean Square Error (RMSE) was

5.26 dB. By contrast, the mean errors was -1.18 dB and RMSE was 2.40 dB where

simulations were performed with multi-MIMICS. These comparisons indicated that

multi-MIMICS provided a significantly improved or equivalent simulation of σ0 at

most frequencies and polarizations compared to MIMICS.

4.2.3 Comparison between Multi-MIMICS Simulations and Actual SAR

Data

Simulations were conducted on a further thirteen forests. In the majority of cases

(Figure 4.11), σ0 simulated by multi-MIMICS was within the dynamic range of the

AIRSAR data. At C-band, however, simulations were generally lower that observed

by the AIRSAR. At L-band, in particular, but also P-band (with the exception of

P-band HV polarization), a good correspondence between actual and simulated σ0

was observed. Combining all fifteen plots (Figure 4.14), we observed that the 1:1

line intersected with most of the dynamic range bars of the AIRSAR data which

indicates that the simulation is performing well. Even so, the under-estimation of σ0

at C-band by Multi-MIMICS was apparent which was partly attributable to AIRSAR
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Figure 4.10: AIRSAR measured and model simulated backscattering coefficients for
P23-15. Results are shown for C-, L- and P-bands at HH, VV and HV
polarizations. The AIRSAR data are provided with dynamic ranges
(bars) and mean values (block dots). The square marks present Multi-
MIMICS’s simulation and the triangular marks show old MIMICS’s
simulation.
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calibration errors. The model best fit the measurements at L-band HH and VV and

P-band HH, although a few outliers were evident in the latter case, which may be

attributable to the open nature of the forest canopies. For each channel, the mean

error and RMSE are given in Table 4.4 and, in this calculation, we excluded the worst

point for each channel on the assumption that these represented outliers. In this

table, small absolute values of mean error indicated less bias between measurement

and simulation while a small RMSE indicated good correspondence between two

datasets.
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Figure 4.11: Backscattering simulation for thirteen test sites. AIRSAR measured
and model simulated backscattering are compared for each SSU. The
backscattering coefficients are plotted at multiple frequencies and po-
larizations. The AIRSAR measurement are shown by their dynamic
range from minimum to maximum and their mean values. Simulated
backscattering coefficients are plotted against the AIRSAR data.
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Figure 4.12: Model simulated backscattering coefficients versus AIRSAR data at C-
band at HH, VV and HV polarizations.
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Figure 4.13: Model simulated backscattering coefficients versus AIRSAR data at L-
band at HH, VV and HV polarizations.
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Figure 4.14: Model simulated backscattering coefficients versus AIRSAR data at P-
band at HH, VV and HV polarizations.
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Table 4.4: Mean Error and RMS Error Between Model Simulation and AIRSAR
Measurement.

HH VV HV

Band Mean Mean Mean

Error RMSE Error RMSE Error RMSE

C(dB) -2.21 2.30 -2.33 2.48 -1.72 1.90

L(dB) 0.59 1.07 -0.05 1.43 -3.66 4.63

P(dB) -0.26 1.50 -0.25 2.25 1.14 3.61

4.2.4 Scattering Mechanisms

By analyzing scattering from each layer in the canopy, the backscattering from

each polarization was observed to originate from different canopy components. At

C-band, the σ0 was primarily through direct scattering from the branches and foliage

and varied with small branch and foliage biomass. At C-band HH and VV, scattering

from the small branches dominated while scattering from both small and also larger

branches was seen to contribute to C-band HV. Trunk and ground scattering were

attenuated largely by the top of the canopy.

At L-band HH, contributions from trunk and ground interactions dominated while

L-band VV and HV contributions were mainly from the large branches. Ground

scattering was also present but generally insignificant.

At P-band, major scattering occurred through interaction between the trunks

and large branches and the ground surface. P-band VV and HV backscattering was

attributed largely to interaction between the ground and the large branches and also

direct large branch scattering. This was particularly noticeable within stands con-

taining larger individuals of SBA which supported an expansive crown and allocated

a significant proportion of the biomass to a network of large branches. Compared to
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C-band and L-band, σ0 from the ground surface was significantly greater because of

reduced attenuation by the canopy.

4.3 Discussion

4.3.1 Performance of Multi-MIMICS

Overall, multi-MIMICS provides a more effective scattering model for simulating

SAR σ0 from forests of mixed species and structural form compared to its predecessor

[86] which was effectively a two layered forest model.

The observed discrepancies between measured and simulated σ0 can be attributed

to three main factors: the error associated with field measurement and parameter

derivation, the limitation of the first order RT-based model and the error associated

with AIRSAR data acquisition and calibration.

First, the forests are extremely complex and hence there is necessarily some ho-

mogenization in order to achieve parameterization. Multi-MIMICS is sensitive to the

dimensions, density, angular distribution and dielectric constant of the forest compo-

nents and also surface attributes and any inaccuracies in these data and the derived

parameters will therefore result in estimation error by the model. In this study,

errors are associated with parameter estimation from a) field measurements (e.g.,

diameters), b) interpretation of digital photographs (e.g., branch lengths) and c)

measurements from destructively harvested trees (e.g., moisture contents and canopy

component densities) and also their derivation from summarized data. In all cases,

the canopy was assumed to be continuous with horizontal homogeneity and that each

species was distributed uniformly over each SSU. However, even within a single SSU,

considerable heterogeneity in cover and species distributions occurs and gaps in the

canopy are commonplace. The close correspondence between actual and simulated
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σ0 is therefore particularly encouraging.

Second, the simulations are limited by using only a first order RT-based model.

Our present first order solution does not include the multiple scattering mechanism

among scatterers; the coherent effects, such as enhanced backscatter, are not there-

fore considered. Multiple scattering among canopy elements is expected, particularly

at C-band, where branch and foliage volume scattering dominates and this may be

the reason for the underestimation of σ0 at C-band. The model predictions for L-

band and P-band at HV polarization are also believed to be low as the simulation

does not contain multiple and higher order scattering associated with the HV polar-

ization. Furthermore, an ideal vertical trunk model is used and HV scattering from

these is not considered. However, the structure of the forests is such, particularly in

those dominated by decurrent (e.g., Eucalyptus) forms, that many trunks are lean-

ing and the crown centers are often displaced from the location of the trunk base.

Overall, multi-MIMICS provides better simulations at L-band.

Finally, errors are associated with the acquisition of AIRSAR data, particularly

as high winds prevailed, and also subsequent calibration. The AIRSAR data form

the PACRIM II Mission are known to have a calibration accuracy of 1 dB. However,

the data at C-band have larger errors. The sensitivity of P-band HV is also suspect

given its insensitivity to biomass variation among the SSUs considered.

4.3.2 Scattering Behavior

The simulations using multi-MIMICS are an improvement on those undertaken

using a modified version of the model of Durden et al. [19, 48] . The scattering

mechanisms observed are also similar. As with [48], this study supports the notion

that C-band HV, L-band HH and L-band HV can be integrated to estimate the
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leaf/small branch, trunk and branch biomass of the forests at Injune.

4.4 Conclusion

Multi-MIMICS was parameterized using plot data representing fifteen configu-

rations of mixed species forest in Queensland, Australia, with each containing a

diversity of species, structural forms and growth stages. The resulting simulations

represented a considerable improvement over those generated using MIMICS with

the same source data and a successful simulation of the backscattering coefficient,

as indicated by the close correspondence with AIRSAR data. The model simula-

tions were best at L-band HH and VV and also P-band HH and VV, although σ0 at

C-band and also L-band and P-band HV was underestimated. These discrepancies

were attributable largely to the model inputs (as these were still homogenized rep-

resentations of the complex forest), the limitations of the model and inaccuracies in

the AIRSAR calibration.

The potential retrieval of forest biomass and other vegetation parameters can be

studied by integrating the radar response at multiple frequencies and polarizations,

and the effect of forest parameters on backscattering coefficients can be predicated by

changing model’s inputs. The research has nevertheless resulted in the development

of a model that is applicable to a significant proportion of forests in Australia and

has applications in other regions. Furthermore, the model paves the way for forest

parameter estimation for forest inversion which is an aim of our ongoing work. Our

future plans also include extending the current solution to higher orders.



Chapter V

CORRELATION LENGTH ESTIMATION OF

SAR IMAGERY

Multi-MIMICS is a scattering model to account for the vertical inhomogeneity

of nonuniform mixed forests. The output of Multi-MIMICS is the mean scatter-

ing coefficient from canopies with infinite horizontal homogeneous surface for each

polarization. However, to study the horizontal inhomogeneity of the scene, single

pixel value is insufficient and image texture provides the required information. In

this chapter, the multiplicative SAR image model is used and a texture measure-

ment model — correlation length is applied to SAR images, which is compared with

Markov random field (MRF) method. A blind deconvolution method is also devel-

oped to estimate the target texture correlation length that is buried by the presence

of speckles for SAR imagery.

5.1 Introduction to SAR Texture

The definition of texture is wide and varies among research areas. Webster’s dic-

tionary defines texture as “visual or tactile surface characteristics and appearance

of something”. It can be interpreted as smooth or rough, fine or coarse, irregular or

lineated. Some researchers [31] define texture to be “detailed structure in an image

121
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that is too fine to be resolved, yet too coarse enough to produce a noticeable fluctu-

ation in the gray levels of neighboring cells”. Haralick in [28] characterized texture

by tonal primitive properties as well as spatial relations between them. Texture is

also defined as the repetition of a pattern in [45].

Texture is mainly studied by statistical and structural approaches. Statistical

approaches analyze the texture as a random field modeled with some parameters.

Statistical models are appropriate for disordered textures [64]. Structural approaches

study the texture geometrically, some primitive elements and the relationships and

placement rules of those elements are used to symbolize textures. The structural

approaches are more suitable for strongly ordered textures [64].

In this dissertation, the definition of texture is the spatial distribution of gray

level variation in a 2-D image. SAR data measure the complex scattering of the scene.

The information of each SAR image pixel is carried by the radar cross section (RCS)

or scattering coefficient. For distributed targets, the estimate of the local scattering

can be presented by the coherent summation over a number of discrete scatterers il-

luminated by the radar beam. For a single look SAR image of a homogeneous scene,

the observed in phase and quadrature components are independently identically dis-

tributed Gaussian random variables with mean zero and variance σ0

2
determined by

the scattering amplitude. The observed phase is uniformly distributed over [−π, π].

The resulting intensity has a negative exponential distribution with mean and stan-

dard deviation both equal to σ0. The noise looking image is the result of the fading

process — an intrinsic effect of all coherent imaging systems such as radar, lidar,

sonar or ultrasound. How the RCS distributes as a function of position determines

the overall structure in the images. However, the spatial average properties over a

region is not the only source of information within a SAR image. In visualization of
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SAR images, image pixel values fluctuate apparently in addition to speckle. Physi-

cally, the fluctuations correspond to scene structural variations. This type of process

caused by natural clutters can be treated as a noise-like texture variable. Therefore,

we define SAR texture to be the spatial fluctuation properties of the RCS in a re-

gion. Texture measures the depth of fluctuation of the RCS within the local region.

A clutter sample comprised only of speckle is not considered textured. With texture

information, we can better understand the characteristics of the region of interest.

Because SAR texture is not strongly ordered, the statistical approaches are ap-

plied. The usual method to extract SAR data information is to establish viable

statistical models, in which information can be related to measurable parameters of

targets.

5.2 Correlation Length Model of SAR Images

5.2.1 Multiplicative SAR Model

A multiplicative model of a fading random variable and a texture random variable

can be used for SAR images. The fading random variable represents speckle statistics

due to the coherent nature of the SAR. The texture random variable represents the

intrinsic scene texture caused by the spatial variability in the scattering properties

of the targets. The model for an intensity SAR image of Nx ×Ny is given by [85]

I(i, j) = σ0T (i, j)FN(i, j) (5.1)

where I and σ0 denote the image intensity (power) and mean scattering coefficient

of the field of interest. T and FN represent the random texture variable with mean

E{T} = 1 and the random fading variable with mean E{FN} = 1, respectively.

N is the number of looks. An N -look intensity radar image is generated by the

incoherent averaging of N uncorrelated intensity images of the same scene. The
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parameters 0 ≤ i < Nx and 0 ≤ j < Ny are the azimuth and range coordinates of a

pixel.

Speckle conveys little information about a scene other than that it contains many

randomly positioned scattering elements. It results from interference between many

random scatterers within a resolution cell under the assumption that the cell contains

a larger number of identical and independent scatterers without any single dominant

scatterer. Theoretically, the sum of the backscattering electric field is equivalent to

a 2-D random walk process with independently and identically Gaussian distributed

real and imaginary components [25, 84]. When N = 1, the pdf of the single-look

fading random variable follows a negative exponential distribution. It is necessary to

emphasize that speckle is noise-like, but it is not noise. It is a real electromagnetic

measurement produced by all coherent imaging systems. The pdf of the N -look

fading random variable is represented by the average of N independent single-look

fading random variables, which is a Gamma distributions of shape parameter N and

scale parameter N

P (FN) =
NNFN−1

N e(−NFN )

Γ(N)
(5.2)

with mean E[FN = 1] and variance V ar(FN) = 1
N

. The properties of fading show

that incoherent averaging over several images of the same area improves the inter-

pretation of the SAR imagery.

Natural scenes are not normally homogeneous, rather, they have an intrinsic spa-

tial variability. Discriminants based on texture measure the variation of RCS within

the target region. For a homogeneous area, the texture component is considered

constant T (i, j) = 1. The standard deviation or contrast (

√
V ar(I)

Ī
) of the image is a

parameter to test different land use categories. Research has shown that vegetation

categories would belong to medium texture classes with medium contrast whereas
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urban would represent a high texture class for its high contrast. The more profound

approach to describe texture requires second or high order statistical characteristics

of images. Image correlation length is another parameter proposed [85] to repre-

sent the texture characteristics of images, and the term is commonly used for rough

surface modeling.

5.2.2 Correlation Function Estimation

The image autocorrelation function is defined on the multiplicative image model.

Under the assumption of stationarity and independence for T (i, j) and FN(i, j), the

image autocorrelation function is

RI(p, q;N) = σ02
RT (p, q)RF (p, q;N) (5.3)

where RT (p, q) and RF (p, q;M) are the autocorrelation functions of T (i, j) and

FM(i, j), respectively, and (p, q) is the pixel distance. The correlation coefficient

is then given by

ρ(p, q) =
RI(p, q) − σ02

RI(0, 0) − σ02 (5.4)

Thus, the correlation length L of the image is defined as

L =
√

L2
x + L2

y (5.5)

while Lx and Ly satisfy the condition

ρ(Lx, Ly) = e−1 (5.6)

For an image of a particular land-cover category, two parameters σ0 and L can

be extracted to represent the characteristics of that category. There are two ways

to calculate the correlation functions of SAR images. We can either compute it

directly in the spatial domain or employ 2-D discrete Fourier transform (DFT) in
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the frequency domain. Under the assumption of stationarity and periodicity of the

image, the autocorrelation function is calculated by

RI(p, q) =
1

Np

Nx−1
∑

i=0

Ny−1
∑

j=0

I(i, j)I(i+ p, j + q) (5.7)

with Np = Nx × Ny is the number of the pixels within the image. The parameters

0 ≤ p < Nx and 0 ≤ q < Ny are the azimuth and range displacement distance.

The autocorrelation function can also be obtained by the inverse discrete Fourier

transform (IDFT) of the power spectral density function of the image

RI(p, q) = IDFT[P (i, j)] = IDFT[|DFT[I(i, j)]|2] (5.8)

where P (i, j) is the squared magnitude of the DFT of the image.

The pixels with larger distance are less correlated. As a result, the autocorre-

lation function attenuates as the displacement distance increases. Most times, we

are only interested in a small part of the autocorrelation matrix, which is when the

spatial domain direct computing approach is often chosen to save the computation

of DFT/IDFT of whole image. The frequency domain approach is often used to

simulate image textures.

5.2.3 Correlation Length of SAR Texture With Speckles

The presence of speckle makes the retrieval of accurate texture statistics difficult.

As a result, the correlation lengths of the degraded images tend to be very small,

corresponding to the correlation length of speckle. To show the speckle effect on the

texture, we compare the correlation length of simulated textures and speckled tex-

tures. A simulation algorithm [13] based on the scattering modified Mueller matrix

is used to generate several homogeneous polarimetric SAR images with same mean

intensities and different correlation lengths representing different textures. The re-



127

sulting images have Gaussian correlation functions. Next, single and two-look speckle

are applied to the simulated texture images.

The term Gaussian surface denotes a surface height random process having a

Gaussian correlation function [14]. Similarly, the Gaussian texture represents a tex-

ture random process having a correlation function described by

R(p, q) = σ2exp(−p
2 + q2

L2
) (5.9)

where σ2 is the texture variance and L is the correlation length. A 2-D DFT gives

the power spectral density for a Nx×Ny Gaussian texture image.

P (m,n) = σ2π2L2exp{−π2L2(
m2

Nx
2 +

n2

Ny
2 )} (5.10)

where 0 ≤ m ≤ Nx − 1 and 0 ≤ n ≤ Ny − 1.

The texture simulation procedure can be realized by a filter H(m,n) =
√

P (m,n)

with an input of a complex Gaussian random process N(0, 1) with zero mean and

unit variance in the frequency domain. The output of the filter is the squared root

of the image power spectral density and texture can be obtained by the method of

inverse discrete Fourier transform (IDFT). The process is illustrated in Figure 5.1.

N(0, 1) - H(m,n) =
√

P (m,n) - IDFT - I(i, j)

Figure 5.1: Texture simulator with defined power spectral density through a complex
Gaussian random process.

Five textures with correlation length ranging from 4 to 20 pixels are simulated by

the above process. Each image’s size is 512×512. Figure 5.2 shows the five simulated

Gaussian texture images with the same mean but different correlation lengths of 4.71,

7.60, 8.94, 12.55 and 13.61, respectively. The correlation lengths used to simulate

these fives images are L=5, 8, 9, 13 and 15. As can be seen from Figure 5.3, the
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(a) L = 4.71 (b) L = 7.60 (c) L = 8.94 (d) L = 12.55 (e) L = 13.61

Figure 5.2: Original simulated textures with different correlation length. (Images
are enhanced by histogram equalization).

(a) L = 0.56 (b) L = 0.56 (c) L = 0.58 (d) L = 0.57 (e) L = 0.55

Figure 5.3: Simulated textures are corrupted by the single-look speckles, the result-
ing correlation lengths are similar. (Images are enhanced by histogram
equalization).

texture information is buried in the noise after we corrupt the images with speckle.

The correlation lengths of those single-look speckled images are found to be 0.56,

0.56, 0.58, 0.57 and 0.55, the estimation error is over 88%. The correlation lengths

of two-look speckle degareded images are 0.80, 0.82, 0.86, 0.84 and 0.81. The results

show that the correlation length of raw SAR images becomes meaningless. Since

the corrupted images have the same mean and very similar correlation length, it is

difficult to get accurate land-cover classification by these two parameters.

For the ideal situation, SAR image speckle is assumed uncorrelated among pixels,

which enables us to obtain the real texture correlation functions from corrupted ones,

we will show the algorithms in the next chapter. However, the limited bandwidth and

sampling of SAR process system causes the real-life case to be far more complicated,

the assumption dose not always hold. Some efforts have been done to derive the
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speckle autocorrelation function RF , Dainty derived the single-look intensity image

autocorrelation function of speckle in [11] for a square uniform aperture as

RF (p, q;N = 1) = [1 + sinc2(
p

rx
) + sinc2(

q

ry
)] (5.11)

with rx and ry the spatial resolution of the sensor. Most times, due to the lack of

system information and the comprehensive procedures that generated the images,

users are provided with little knowledge of the correlation properties of speckle.

5.2.4 Other Image Texture Models

Many image texture models have been developed for various applications such as

image segmentation, computer vision and medical imaging. Some among them used

for SAR data are histogram estimation [37, 85] , image correlation length estima-

tion [37, 85], second-order gray-level co-occurrence matrix (GLCM) method [28, 85],

lacunarity index [17, 54, 63], wavelet decomposition [59] and Markov random field

(MRF) models [12, 15, 24, 42, 75]. These methods are widely used SAR image pro-

cessing techniques currently.

Image correlation length is of our interest because of its relatively easy imple-

mentation and physical understanding for remote sensing applications. MRF texture

models become more popular partly due to development of larger and faster com-

puters, which compensates the disadvantage of high computational cost. We apply

MRF model and correlation length model on some SAR data from natural forests to

compare the texture information extracted by both models. The results offer a tool

to evaluate the effectiveness of the correlation length model.

Markov random field (MRF) models have been widely used to characterize image

textures. In these models, the image pixels are described by Markov chains defined

in terms of conditional probabilities associated with spatial neighborhoods. There
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are many MRF models that have been proposed such as Gibbs, Gaussian, binomial

and Gamma [10, 15, 24, 42] models. Gaussian Markov random field model is chosen

for our data characteristics since we apply the models on logarithmic intensity radar

images. Detailed descriptions about these models can be fund from the references

and are not the topics of this dissertation. A simple explanation of Gaussian Markov

random field (GMRF) is given as follow.

Let {y(s)|s ∈ Ω,Ω = {s = (i, j)}, 0 ≤ i, j ≤ M − 1} be the observation from an

image of size M×M . The 2-D noncausual GMRF follow the difference equation [10]

y(s) =
∑

r∈Ns

θr(y(s+ r) + y(s− r)) + e(s) (5.12)

where e(s) is a white stationary Gaussian noise sequence, Ns is the asymmetric

neighborhood and θr are the interaction coefficients. The neighborhood Ns is char-

acterized by the model order. Figure 5.4 shows some examples for Ns at order 1,3

and 6, where the center pixel is denoted by indexes (0, 0) and its neighborhood pixels

are presented by the displacement of the indexes r, which can have the value such

as (0,−1), (2, 0) and (0, 1), etc. The order of the model is defined by the distance

between the surrounding and center pixels. Higher order means larger neighborhood

and more interaction coefficients are needed for the model. The first order has two

neighborhood pixels and the sixth order model has fourteen The. The asymmetric

neighborhood covers only half of the surrounding pixels because the model assumes

the symmetry respect to the center.

The above set of equations can be rewritten in the form of a 2-D convolution

h(θr) ⊗ y = e, so we can simulate a GMRF image by the techniques of DFT and

IDFT [10]. The function h(θr) is the neighborhood interaction matrix formed by the

interaction coefficients. Its size depends on the order of model (neighborhood) and
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(a) Order
= 1

(b) Order = 3 (c) Order = 6

Figure 5.4: Asymmetric neighborhood of Gaussian Markov random field.

can be estimated from th image. The order of neighborhood describes the extended

range of the correlated pixels and the interaction coefficients decide the relationship

among them.

5.3 Texture Estimation For SAR Data Of Natural Forests

5.3.1 Remote Sensing Data

Both the correlation length model and GMRF model are applied to actual SAR

data to extract texture information from the image. Our test image is one JERS

image from Manaus in the Amazon basin in June, 1996. The image is orthorectified to

be precisely geocoded and remove the terrain effect. The calibrated backscattering

coefficients are in logarithmic format ranging −40 ∼ 0 dB. They are rescaled to

0 ∼ 255 to form a 8 bit unsigned integer channel with pixel size of 25m. Then, a

7×7 EPOS speckle filter [27] is applied to remove the speckle. After the filtering, the

image is considered to represent the real RCS of the target. Therefore, the texture
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Figure 5.5: Orthorectified and filtered L-band JERS image of Manaus in the Amazon
basin. Four test samples are chosen from the image: two forest area
samples, tow water surface samples. Acquisition date: June, 1996. Pixel
Size: 25 × 25 m.

information estimated below by the two models represents the true texture of the

target and is free of the effects of fading.

The image is classified into the four classes: flat area (water, bare soil), short

vegetation, secondary forest regrowth and primary forest. Two 128 × 128 water

samples and 128×128 primary forest samples are randomly selected to apply texture

measurement. Figure 5.5 is the orthorectified and filtered JERS image and four

selected samples are indicated. The full resolution SAR image of four samples are

shown in Figure 5.6. The mean pixel values for these 4 samples are 132.34 and 123.37

for two water samples, 183.50 and 182.70 for two forest samples, respectively. The

images are linearly enhanced to show the spatial variations.
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(a) Water 1 (b) Water 2 (c) Forest 1 (d) Forest 2

Figure 5.6: Full resolution SAR image of four samples. Size of each sample: 128×128
pixels.

5.3.2 Texture Estimation Result

All the calculations are applied to the logarithmic intensity image. First we cal-

culate the correlation length of the four samples. Then we apply the least square(LS)

estimation method [10] to estimate the GMRF neighborhood matrices for each sam-

ple. The orders of model’s neighborhood are estimated by Bayesian selection [79].

The correlation length of the four samples are calculated as 6.91 pixels and 13.4

pixels for two water samples, 4.98 pixels and 4.79 pixels for two forest samples. The

results are consistent with the target properties. We expect slow variation from the

water surface, which results in longer correlation length. The forest canopy has faster

spatial variation, therefore, short correlation length. The correlation coefficient for

the four samples are shown in Figure 5.7.

For the GMRF model, the neighborhood orders for four samples are 6 (Water

1), 7 (Water 2), 3 (Forest 1), 3 (Forest 2) respectively. The calculated interaction

coefficients within the neighborhood are listed in Table 5.1. As seen from the ta-

ble, the interaction coefficients of all sample images have large values for two closet

neighboring pixels — the bottom neighbor (1, 0) and right neighbor (0, 1), the in-

teraction coefficients at other locations have much less weights on the center pixel.
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(a) Water 1,
L = 6.91

(b) Water 2,
L = 13.4

(c) Forest 1,
L = 4.98

(d) Forest 2,
L = 4.79

Figure 5.7: Correlation coefficient of four JERS image samples.

These results indicate pixels have more influences on the pixels nearby than pixes

far away.

The estimated correlation length and GMRF model order of two models are

closely related since images with higher GMRF model order have longer correlation

lengths, as shown in Table 5.2. Relationships among different texture models are

useful for model selection and verification. Parameters estimated by two models

deliver similar information about the image’s spatial variation. However, the im-

plementation of correlation length model is proved to be easier and faster and yet

effective compared to much more complicated GMRF model. This is the reason we

choose the correlation length model as the texture measurement for SAR images.

In this example, the different correlation lengths can distinguish the classes of

water and forests. Texture measurements of different land coverage categories such

as short vegetation, regrowth forests, and mature forests help us better understand

the forest distribution on the ground and improve the retrieval of the forest structure

parameters such as biomass and tree height. In this section, both texture models are

applied to filtered SAR images, which is the usual approach in SAR image processing.

However, we are also interested in estimating image texture before despeckle to

investigate the effect of speckle on the target texture, since many speckle filters
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Table 5.1: GMRF neighborhood interaction coefficients for four JERS image sam-
ples.

Water 1 Water 2 Forest 1 Forest 2

θ(1, 0) 0.3337 0.2632 0.3765 0.4069

θ(0, 1) 0.3394 0.3054 0.3706 0.3811

θ(−1, 1) -0.0489 -0.0059 -0.0813 -0.1018

θ(1, 1) -0.0692 -0.0294 -0.1196 -0.1337

θ(2, 0) 0.0558 0.0454 -0.0199 -0.0232

θ(0, 2) 0.0479 0.0458 -0.0175 -0.0224

θ(−2, 1) -0.0489 -0.0289

θ(2, 1) -0.0339 -0.0300

θ(−1, 2) -0.0436 -0.0257

θ(1, 2) -0.0415 -0.0288

θ(−2, 2) 0.0133 0.0080

θ(2, 2) 0.0071 0.0059

θ(3, 0) -0.0063 0.0413

θ(0, 3) -0.0026 0.0627

θ(−1, 3) -0.0422

θ(1, 3) -0.0377

θ(−3, 1) -0.0285

θ(3, 1) -0.0201

inevitably change or add artifacts to SAR images and distort the real target texture.

5.4 Correlation Length of SAR Imagery Through Blind De-

convolution

5.4.1 Algorithm Overview

Over the years, many speckle filters have been developed with the attempt to

remove the effects of speckle and still preserve the intrinsic texture information of

SAR imagery. Lee [41], Kuan [35], EPOS [27] and Frost [23] filters are among the best
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Table 5.2: Comparison between correlation length and GMRF order of four JERS
image samples.

Water 1 Water 2 Forest 1 Forest 2

Correlation length 6.91 13.4 4.98 4.79

GMRF order 6 7 3 3

knowns. Speckle reduction has been a prerequisite procedure for most subsequent

SAR image processing. In this section, We present a blind deconvolution approach to

retrieval of accurate texture correlation function from speckled SAR images without

the prerequisite filtering process. The motivation of using blind deconvolution in our

study is the fact that it is impossible to obtain the accurate information about the

fading random process due to the complicated SAR signal processing system, which

is a key factor to achieve good performance of most speckle filters.

The inspiration for us to utilize blind deconvolution method is the form of the

image correlation function. A convolution model in the frequency domain can be

obtained from the multiplicative model in the space domain by taking the DFT of

both sides of Equation (5.3)

PI(m,n) = σ02
PT (m,n) ∗ PF (m,n) (5.13)

where PI(m,n), PT (m,n) and PF (m,n) are the discrete Fourier transform of the

autocorrelation functions RI(p, q), RT (p, q) and RF (p, q), respectively. If we had

access to the actual PT (m,n) and PF (m,n) in the frequency domain, the autocorre-

lation functions RT (p, q) and RF (p, q) can be obtained by the inverse discrete Fourier

transform (IDFT). Therefore, the correlation length of the image can be estimated

by Equation 5.6.

Since little is known about RF (p, q) and RT (p, q), a blind deconvolution approach
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is appropriate. The method of blind deconvolution has been used in image restoration

when the blur function is not known. The general blind deconvolution problem refers

to the task of separating two convolved signals (PT and PF in our case) when both

the signals are either unknown or partially known. Image deconvolution is based on

the assumption that an original image is degraded by a point spread function (PSF).

The various approaches that have appeared in the literature depend upon the par-

ticular degradation and image models. Existing algorithms include projection-based

blind deconvolution, maximum likelihood estimation, zero sheet separation, ARMA

parameter estimation method, invariant parameter approach, gradient algorithms

and increment Wiener filter [21, 36, 39, 57]. Yagle et al presented a blind deconvolu-

tion algorithm for even PSFs from compact support images in [88], which smartly

utilizes the symmetry of the Toeplitz matrix of the convolution by a even PSF func-

tion to achieve high accuracy, however, we assume both RF (p, q) and RT (p, q) are

even functions, which causes the matrices in the algorithm become singular and no

meaningful solutions to our problem.

So among all the algorithms mentioned above, a method of gradient-based non-

linear optimization [57] is chosen in our study. This is one kind of least squares and

iterative (LSI) algorithm. Its aperiodic model is generally nonsingular. The main

calculation in the algorithm can be accomplished efficiently by means of DFT tech-

nique. The algorithm is described in [57]. We make some adjustments to adapt it

for use with SAR images.

5.4.2 Blind Deconvolution Algorithm

According to [57], the model of the convolution process is

x ∗ h = y (5.14)
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where x is the original image with dimension M1 × N1, h is the PSF(point spread

function) of M2×N2, y is the degraded image with dimension (M1 +M2−1)× (N1 +

N2 − 1). The deconvolution of the aperiodic model has the form

Fhx = y (5.15)

where x is of M1N1 × 1, h is of M2N2 × 1, and y is of L× 1 with L = (M1 +M2 −

1)(N1 +N2 − 1). Fh is the kernel matrix formed from h, the least-square solution to

the above equation is given by

(FT
h
Fh)x = FT

h
y (5.16)

where FT
h
Fh is a block Toeplitz matrix.

In terms of aperiodic model s = y − Fhx, the nonlinear optimization method is

to estimate a pair of x and h that minimize the difference s(m,n) = y(m,n) −

x(m,n) ∗ y(m,n).

Let θT = [xThT ], the error metric is defined by

E =
1

2
[λ‖s‖2 + (1 − λ)‖θ‖2] (5.17)

with 0 < λ < 1. We hope to find θ1 = θ + δθ so that the error metric can be

reduced. [57] gives the shortest least-squares solution

∆E ≈ ∆θTg1 +
1

2
H∆θ (5.18)

where the gradient vector and the Hessian matrix are

g1 = −λFT s + (1 − λ)θ (5.19)

H1 = λFTF + (1 − λ)I (5.20)

with F = [FhFx].
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The minimization of E turns out to solve the Gauss-Newton equation

H∆θ = −g1 (5.21)

The problem can be solved efficiently by means of the DFT technique.

In our problem, the power spectral density function of texture PT is x and the

power spectral density function of speckle PF is h, and the power spectral density

function of speckled SAR image PI is y. The algorithm begins with an initial guess

PF0 and then iteratively uses estimates in the frequency domain and constraints

in the object domain to search for PT and PF alternately to minimize the object

domain error metric |PI − µ2PT ∗ PF |. We need to estimate the autocorrelation

function from the speckled SAR image and the window size is chosen at least twice

the texture correlation length. Because of the DFT technique, we have to assume

that the image and the correlation functions are periodic.

5.4.3 Simulation Result

The blind deconvolution algorithm is then applied to the corrupted images shown

in Section 5.2.3 to estimate the real correlation lengths of the textures. The results

are compared with those of the original images and the corrupted images.

Speckle filters can also remove the speckle and preserve the texture [87]. Usually,

speckle filtering is a window operation on each pixel of the image. The filters are

based on the multiplicative speckle model, their goal is to smooth the speckle and

at the same time, preserve edges and texture information. The output value of

each pixel is a weighted sum of the observed pixel value and mean value within the

operating window. Many speckle filters have been developed for speckle reduction,

the most often used are Frost [23], EPOS [27], Lee [41] and Kuan [35] filters. It

works well if the prior information of the speckle such as the number of looks and/or
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the standard deviation of the noise are known. Moreover, the performance of speckle

filters is sensitive to the size of the window. We apply the Lee filter and Average Filter

to the same images and compare the results with those of the blind deconvolution

method. For single-look images, Table 5.3 shows that better results are obtained

with the blind deconvolution method. The maximum estimation error is 19.8% by

blind deconvolution, 26.58% by Lee filtering and 28.42% by average filtering. The

results of two-look images in Table 2.2 show the similar performance.

Table 5.3: Comparison of the correlation length estimated by blind deconvolution
and Lee, AV Filter, nlook=1.

Correlation Length (pixel) and Estimation Error

Original Corrupted Deconvolution Lee Filtering AV Filtering

nlook=1 L Error L Error L Error

Image1 4.71 0.56 4.59 2.55% 5.13 8.92% 5.22 10.83%

Image2 7.60 0.56 6.25 17.76% 9.62 26.58% 9.76 28.42%

Image3 8.94 0.58 7.17 19.80% 10.74 20.13% 10.94 22.37%

Image4 12.55 0.57 11.35 9.56% 15.57 24.06% 15.56 23.98%

Image5 13.61 0.55 12.05 11.46% 16.01 16.68% 16.00 17.56%

Table 5.4: Comparison of the correlation length estimated by blind deconvolution
and Lee, AV Filter, nlook=2.

Correlation Length (pixel) and Estimation Error

Original Corrupted Deconvolution Lee Filtering AV Filtering

nlook=2 L Error L Error L Error

Image1 4.71 0.80 4.83 2.55% 5.43 15.29% 5.63 19.53%

Image2 7.60 0.82 6.82 10.26% 9.61 26.45% 9.98 31.32%

Image3 8.94 0.86 8.25 7.72% 11.00 23.04% 11.44 27.96%

Image4 12.55 0.84 12.05 3.98% 15.57 24.06% 15.56 23.98%

Image5 13.61 0.81 12.88 5.36% 16.01 16.68% 16.00 17.56%
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Since mean value of all the images are round 128, correlation length is the pa-

rameters that can distinguish all the categories. It is noteworthy that the blind

deconvolution have better results for two-look images than single-look images since

the level of noise is considered lower. However, the Lee filter and average filter’s

estimates don’t show much improvement for the two-look images.

For all cases, the blind deconvolution method provides more accurate correla-

tion length estimation than Lee and average filters, but window size of the blind

deconvolution is usually larger than average speckle filters, which decrease the speed

for the algorithm when we incorporate it into an automatic classification program,

especially when the image is large.

5.5 Conclusion

The multiplicative SAR image model is reviewed and image correlation length is

the measurement we choose to study SAR texture of forest areas. A correlation length

model and Gaussian Markov random field model are both applied to JERS images

of natural scenes. The texture parameters of the two models are close related, which

shows the similarity between different texture models. The correlation length models

is preferred for easy and fast implementation. A blind deconvolution algorithm is

also developed to extract the autocorrelation function of scene texture from speckle

degraded images, which is alternative approach as many SAR processing techniques

since speckle filtering is not performed at first and the results is satisfying. Applying

this algorithm to real SAR images to estimate texture information as additional

criteria to the single pixel image model to improve the classification accuracy is our

goal.



Chapter VI

COHERENT SAR TEXTURE SIMULATOR

6.1 Introduction

In this chapter, a coherent SAR texture simulator is developed to simulate the

backscattering of natural scenes with intrinsic texture. The coherent SAR texture

simulator uses the fundamental scattering theory, it coherently adds up the backscat-

tering from individual scatterers and the phase of the returned signal is preserved.

Speckle is produced as the deterministic result of the interference. The major short-

coming of coherent simulator is the heavy task in computing the backscattering signal

of many scatterers.

There have been several SAR simulators in the literature since the last decade.

Most of them generate SAR images by means of statistical models. Speckle is intro-

duced by an independent statistical noise model. MSIS [4] is a high fidelity backscat-

tering SAR image simulator using coherent approach , the author presents a speed-up

method for low resolution image simulations. Although the model is still in its initial

stage, it has been used in the application to test a tree height estimation algorithm.

Instead of using some statistical model where speckle is an intrinsic product of

the coherent processing algorithm. We choose the coherent simulator because the

coherent approach can reliably capture the scattering signal variation caused by the

142
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space distribution of individual scatterers. It is also our intention to investigate

the speckle effects on scene image texture. The simulated image is sensitive to the

heterogeneous land coverage. It can fully take advantage of the 3-D forest model, in

contrast to the single result for the average scattering from the canopy generated by

Multi-MIMICS, a 2-D radar image texture will carry the canopy’s heterogeneity.

In this chapter, the coherent simulator is practically used to study SAR texture

model through its formation and the correlation length model for ideal SAR images

is derived. The speckle generate by the coherent SAR texture simulator is also

compared with the statistical speckle model.

6.2 SAR Texture Analysis

6.2.1 Formation of SAR Texture

In this section, we analyze the formation of SAR texture.

For simplicity, an ideal SAR system is used. The backscattering field is specified

by the scattering properties of single scatterers and their relative positions. The

scattered far field Es of a pixel cell is the summation of the returned signals from all

the scatterers contributing to the cell.

Es =

N
∑

n=1

Sn exp(jφn)Wn =

N
∑

n=1

Sn exp(j2k0Rn)Wn (6.1)

where N is the number of scatterers, Sn is the backscattering coefficients of the

scatterer n, and φn = 2k0Rn is the phase delay caused by the round trip between

the antenna and the scatterer. k0 is the free space wave number and Wn accounts

for all the other factors such as antenna pattern, far range, near range, etc. For

distributed targets, the above summation over single scatterers can be replaced by

the integration over the area.
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(a) Scatterers in the
resolution cells

(b) Normalized scat-
tering coefficient

(c) Normalized im-
age

Figure 6.1: Image of textured target generated by direct summation without phase
modulation

To investigate the image texture properties, we assume the Wn is corrected to be

the same for all N scatterers. Therefore, only two parts Sn and φn cause the variation

of the returned signal.

6.2.1.1 Target Texture

Real target texture is the variation caused by the scatterers’ backscattering co-

efficients, of course we cannot get any variation that is smaller than a resolution

cell. The backscattering scalar electrical field can be rewritten if we ignore the phase

modulation.

Es
normalized =

N
∑

n=1

Sn
normalized (6.2)

As illustrated in Figure 6.1(a), the target has six resolution cells enclosing three

types of scatterers. The scatterers normalized backscattering coefficients are given

in Figure 6.1(b) and the simulated image is shown in 6.1(c). In this example, it is

impossible to tell the type and number of scatterers in each cell. However, we can

tell the backscattering of cell 1 is stronger that of cell 4. This variation is the real
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texture information we are interested in, which is referred as the target texture.

6.2.1.2 Noise-like Speckle

Phase delay difference is caused by the range difference between the scatterers and

the antenna, this consequently, generates fading or speckle. Usually, the real scene

texture is buried in the noise-like speckle. It makes it difficult to identify the real

texture. The speckle filter works well only if we understand the speckle. In order to

characterize speckle, we assume only one type of scatterer (Sn=constant=S0) present

in our target, Equation (6.1) for the backscattering field is reduced to

Es =

N
∑

n=1

Sn exp(j2k0Rn) = NS0

N
∑

n=1

cos(2k0Rn) + j sin(2k0Rn)

N

= N × S0 × (Re(N) + jIm(N)) = N × F (N) (6.3)

where F (N) = Re(N) + jIm(N) represents the single-look fading caused by N random

distributed scatterers in a resolution cell.

A natural area-extensive target is usually treated as many randomly distributed

scatterers. The reasonable assumption is that the phase delay is uniformly dis-

tributed in 0 ∼ 2π , this is also verified by dozens of simulations. We have the

distribution of the phase as

p(φ) =
1

2π
; 0 ≤ φ < 2π (6.4)

Given S0=1 and N = 1, according to Equations (6.3) and (6.4), the real part

(Re) and the imaginary part (Im) part of single-look fading F (1) from a scatterer

should follow the pdfs as bellow and the amplitude is 1 with the probability of 1.

p(Re(1)) =
1

π
√

1 − Re(1)2
−1 ≤ Re(1) ≤ 1

p(Im(1)) =
1

π
√

1 − Im(1)2
−1 ≤ Im(1) ≤ 1

P (Amp(1) = 1) = 1 (6.5)
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Figure 6.2: Probability density function of SAR backscattering electric field signal
from one scatterer.

Figure 6.2 shows the distribution of the backscatter signal with only one scatterer

randomly positioned in a resolution cell. We also know E[Re(1)] = E[Im(1)] = 0

and V ar[Re(1)] = V ar[Im(1)] = 1
2

from Equation (6.5). When N=2, under the

assumption of the interdependency of the two scatterers, the pdf of the sum of

two independent variables is the convolution of the pdfs of each random variable,

therefore, the pdfs of real and imaginary parts and the amplitude of the response

F (2) are given by Equation (6.6) and plotted in Figure 6.3. In addition, E[Re(2)] =

E[Im(2)] = 0 and V ar[Re(2)] = V ar[Im(2)] = 1
2×2

.

p(Re(2)) =

∫ Re(2)+0.5

−0.5

4dτ

π2
√

1 − 4τ 2
√

1 − 4(Re(2) − τ)2
−1 ≤ Re(2) ≤ 1

p(Im(2)) =

∫ Im(2)+0.5

−0.5

4dτ

π2
√

1 − 4τ 2
√

1 − 4(Im(2) − τ)2
−1 ≤ Im(2) ≤ 1

p(Amp(2)) =
2

π

√

1 − Amp(2)2
0 ≤ Amp(2) ≤ 1 (6.6)

As the number of the scatterers N increases, N − 1 convolution operations of the

pdf of real and imaginary backscattering fields by a single scatterer are needed. The

properties E[Re(N)] = E[Im(N)] = 0 and V ar[Re(N)] = V ar[Im(N)] = 1
2N

still hold.
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Figure 6.3: Probability density function of SAR backscattering electric field signal
from two independent identical scatterers.

For big N , the real (Re(N)) and imaginary (Im(N)) parts become independent and

approximately follow Gaussian distributions norm(0, 1
2N

). We can see the trend in

Figure 6.4. The pdf of the real and imaginary parts of the fading F (N) for large N

can be written as

p(Re(N)) =

√

N

π
exp(−N Re(N)2) −∞ ≤ Re(N) ≤ ∞

p(Im(N)) =

√

N

π
exp(−N Im(N)2) −∞ ≤ Im(N) ≤ ∞ (6.7)

As a result, the fading (F (N)) amplitude (Amp(N)) follows the Rayleigh distribution

and the intensity (Int(N)) follows an exponential distribution.

p(Amp(N)) = 2N Amp(N) exp(−N Amp(N)2) 0 ≤ Amp(N) ≤ ∞

p(Int(N)) = N exp(−N Int(N)) 0 ≤ Int(N) ≤ ∞ (6.8)

As seen from Figure 6.4, if more than six randomly distributed single scatterers

contribute to one pixel, the received signal behaves as speckle.
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Figure 6.4: Distributions of the real and imaginary SAR backscattering electric field
from N randomly distributed scatterers



149

6.2.2 Texture of Speckled Image

From the analysis above, the received SAR image of a homogeneous scene com-

prising randomly distributed scatterers is pure speckle. When the target texture

exists, the resulting image is a speckle corrupted version of the true texture. As-

sume we have only one type of scatterer and their positions on the ground follow

some pattern (texture). The target texture is represented by a stationary random

process N(i, j) with known texture characteristics such as the autocorrelation func-

tion RT (τi, τj). The fading is another random process Spkl(i, j). The backscattering

image can be described as

BRe(i, j) = N(i, j) × SpklRe(i, j) BIm(i, j) = N(i, j) × SpklIm(i, j)

BAmp(i, j) = N(I, J) × SpklAmp(i, j) BInts(i, j) = N2(i, j) × SpklInts(i, j) (6.9)

where i and j are the pixel indexes and B denotes the backscattering image. N(i, j)

can be described by the number of scatterers enclosed in the resolution cell (i, j).

Spkl(i, j) is the disturbing factor cause by the coherent summation of random phases

of scatterers. Next, we focus the analysis on the amplitude image, however, the

approaches are similar for other components. From now on, the subscript amp is

dropped.

As derived in the previous section, at a position (i, j), the value of Spkl(i, j)

is a random variable x with a pdf of 2N(i, j)x exp(−N(i, j)x2) , therefore, strictly

speaking, the texture and speckle are not uncorrelated. Another assumption is made

that the speckle behaves like white noise or the correlation length for speckle is zero.

This assumption is valid for the ideal SAR system because one scatterer can only

contribute to on resolution cell.

Consider a periodic stationary image of size M1×M2, the autocorrelation function
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of the scene is

RB(τi, τj) =

∫

B1B2dP (B1, B2, (τi, τj))

=

∫

N1Spkl1 ·N2Spkl2 · dP (N1Spkl1, N2Spkl2, (τi, τj)) (6.10)

=
1

M1M2

M1−1
∑

i=0

M2−1
∑

j=0

N(i, j)Spkl(i, j)N(i + τi, j + τj)Spkl(i + τi, j + τj)

where B is the returned amplitude image and N(i, j) is the number of scatterers

belonging to pixel (i, j). (τi, τj) is the displacement distance between the pixels. In

Equation (6.10), the ensemble average over probabilities is equalized with the average

over space. Under the assumption that the speckle behaves like white noise for the

ideal SAR system, we have

RSpkl(i1, j1, i2, j2) = E[Spkl2] × δ(i2 − i1, j2 − j1) (6.11)

Equation (6.9) shows that at a position (i, j), the value of the backscattered

amplitude is a random variable whose pdf can be written as

p(B) = p(N) × p(Spkl|N) (6.12)

where the pdf of target’s scatterer distribution p(N) is unknown but p(Spkl|N) is

already derived. The statistics are given again by

p(Spkl|N) = 2NSpkl exp(−NSpkl2) Spkl ≥ 0

E[Spkl|N ] =
1

2

√

π

N
V ar[Spkl|N ] =

4 − π

4N

E[(Spkl|N)2] =
1

N
E[(Spkl|N)4] =

2

N2
(6.13)

Take the above quantities into Equation (6.10), the mean backscattering ampli-

tude of the image is a function of the scatterer’s distribution over the scene

E[B] =

∫

Bp(B)dB =

∫

N · (
∫

Spkl · p(Spkl|N) · dSpkl) · p(N)dN

=

∫

N · 1

2

√

π

N
· p(N)dN =

√
π

2
E[

√
N ] (6.14)
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Similarly, the mean backscattering intensity of the image is

E[B2] =

∫

B2p(B)dB =

∫

N2 · (
∫

Spkl2 · p(Spkl|N) · dSpkl) · p(N)dN

=

∫

N2 · 1

N
p(N)dN = E[N ] (6.15)

Equation (6.15) shows that the average over the intensity image (intensity = amplitude2)

is the average scatterer density (# per resolution cell) of the scene (normalized by

the scattering coefficient). Moreover

E[B4] =

∫

B4p(B)dB =

∫

N4 · (
∫

Spkl4 · p(Spkl|N) · dSpkl) · p(N)dN

=

∫

N4 · 2

N2
p(N)dN = 2E[N 2] (6.16)

Now, the autocorrelation function of the target scatterer density (# per resolution

cell) is introduced as the texture measurement of the target

E[N1, N2, τ ] =

∫ ∫

N1N2p(N1, N2, τ)dN1dN2 = R(N)(τ) =











E[N2] τ = 0

R(N)(τ) τ 6= 0

(6.17)

where τ = (i2 − i1, j2 − j1) is the space lag of two densities N1 at (i1, j1) and N2

at (i2, j2). Next when τ 6= 0, the autocorrelation function of the intensity image is

given by

E[B2
1 , B

2
2 , τ ] =

∫ ∫

B2
1B

2
2p(N1Spkl1, N2Spkl2, τ)dB1dB2

=

∫ ∫

N2
1N

2
2 · (

∫ ∫

Spkl21Spkl
2
2 · p(Spkl1|N1, Spkl2|N2, τ)

·dSpkl1dSpkl2) · p(N1, N2, τ)dN1dN2 (6.18)

=

∫ ∫

N2
1N

2
2 · 1

N1

1

N2
· p(N1, N2, τ)dN1dN2

=

∫ ∫

N1N2p(N1, N2, τ)dN1dN2 = R(N)(τ)

In the derivation of Equation (6.18), we made two assumptions. First, the probability

function p(N1Spkl1, N2Spkl2, τ) is separable into p(N1, N2, τ)p(Spkl1|N1, Spkl2|N2, τ).
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Secondly, the speckle values of different pixels are uncorrelated, therefore,

p(Spkl1|N1, Spkl2|N2, τ) = p(Spkl1|N1) · p(Spkl2|N2) (6.19)

From all above, we come to the conclusions:

¬ The average scatterer density of target can be obtained by the average of

intensity image E[B2].

­ When τ 6= 0, the autocorrelation function of the target density R(N)(τ) is that

of the intensity image E[B2
1 , B

2
2 , τ ].

® When τ = 0, the autocorrelation function of the target density is half the value

of the mean square of the intensity image E[B4].

Now, all the statistics to solve the correlation length can be estimated from the

backscattering images. We are pleased to see that the images preserve the autocor-

relation properties of the target in the idealistic cases. The conclusion can be verified

by the multiplicative SAR image model in Chapter V for the case of uncorrelated

speckles among pixels.

6.2.3 Real SAR Image Texture Model

In the previous section, we investigate the image correlation function for the

ideal SAR image model. However, the practical signal processing of SAR systems

complicates the properties of SAR speckle and texture.

The aperture of the SAR antenna over a target is not infinite and it transmits and

receives signals with limited bandwidth. Therefore, the SAR image of a point tar-

get is blurred by a point spread function (psf). Using the two-dimensional Fourier

transform SAR processing algorithms, we could approximate a rectangular band-

width support for the fast-time and slow-time domain. Fast-time domain represents
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Figure 6.5: Shape of the point spread function by a rectangular bandwidth support
region

the range identification and slow-time domain represents the azimuth discrimina-

tion [78] of a SAR processor. An analytical model for the point spread function can

be approximated by use of the inverse 2-D Fourier transform.

Given the rectangular bandwidth support region of the SAR as Br for the fast-

time and By for the slow-time. The inverse Fourier transform takes the form of

separable 2-D sinc functions in the range and azimuth (r, y) domain. Figure 6.5

shows the shape of the psf.

psf(r, y) = sinc

(

Brr

2π

)

sinc

(

Byy

2π

)

(6.20)

We usually define the SAR image resolution as the main lobes of the two sinc

functions in the range and azimuth (r, y) domain respectively. They can be written

as

Dr =
2π

Br

Dy =
2π

By

(6.21)

Let S(r, y) represent a target composed of N isotropic point scatterers. For each

scatterer, its backscattering coefficient is sn and its range and azimuth position with

respect to the antenna is (rn, yn)

S(r, y) =
N

∑

n=1

snδ(rn, yn) (6.22)
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The backscattered SAR image B(r, y) can be written as the convolution of the

target and a function PSF. PSF includes the amplitude of the psf in Equation 6.20

and the phase delay φn(r, y) caused by the round trip between the scatterer and the

antenna.

B(r, y) = S(r, y) ∗ PSF(r, y) =

N
∑

n=1

sne
jφn(r,y)psf(r − rn, y − yn) (6.23)

After the discrete sampling, we get a 2-D discrete image presentation

B(i, j) =

N
∑

n=1

sne
jφn(i∆r,j∆y)psf(i∆r − rn, j∆y − yn) (6.24)

The ideal case is when the amplitude point spread function is a delta function

psf(i∆r − rn, j∆y − yn) =



























1 :
0 ≤ i∆r − rn < ∆r &

0 ≤ i∆y − yn < ∆y

0 : otherwise

(6.25)

The condition for the psf > 0 in Equation (6.25) can be written as

i ≤ rn
∆r

< i + 1 , j ≤ yn
∆y

< j + 1 (6.26)

We define

in = b( rn
∆r

)c , jn = b( yn
∆y

)c (6.27)

where b c gives the largest integer less than or equal to the the value of the argu-

ment. Then the ideal psf has the concise form of

psf(i∆r − rn, j∆y − yn) = δ(i− in, j − jn) (6.28)

So the image by the ideal SAR system is given by

B(i, j) =
N

∑

n=1

sne
jφn(i,j)δ(i− in, j − jn) (6.29)
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At a fixed pixel (i1, j1), only the scatterers belonging to the resolution cell contribute

to the backscattering signal for the pixel

B(i1, j1) =

N
∑

n=1

sne
jφn(i1,j1)δ(i1 − in, j1 − jn)

=
M

∑

m=1

sme
jφm(i1 ,j1) (6.30)

Where M is number of scatterers contributing to pixel (i1, j1). The phase delay φm

is uniformly distributed in the range of [−π, π). Equation (6.30) gives us the same

result for the ideal case of SAR image model as in the previous section.

For the real SAR image, the shifted psf of scatterer sn is obtained by taking the

form

psf(r − rn, y − yn) = sinc(
r − rn
Dr

)sinc(
y − yn
Dy

) (6.31)

The discretely sampled version is written by Equation (6.32) and Figure 6.6 illustrates

the sampling of a shifted psf in one direction.

psf(i−in, j−jn) =

∞
∑

ii=−∞

∞
∑

jj=−∞

sinc(
ii∆r − rn

Dr
)sinc(

jj∆y − yn
Dy

)δ(i−ii, j−jj) (6.32)

In theory, one scatterer has the effects on the whole image because of the point

spread function. The backscattered image is

B(i, j) =

N
∑

n=1

sne
jφn(i,j) (6.33)

·
[

∞
∑

ii=−∞

∞
∑

jj=−∞

sinc(
(ii + in)∆r − rn

Dr
)sinc(

(jj + jn)∆y − yn
Dy

)δ(i− ii− in, j − jj − jn)

]

As seen from Figure 6.5, most energy of the psf is concentrated in the main lobe,

practically, we disregard the tail of the surface and choose a small neighborhood of

samples around the center. The sampling scheme of most SAR systems uses the
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Figure 6.6: Sampling of a shifted point spread function in one direction

conventional estimation of the bandwidths and the main lobe will approximately

cover a 3 × 3 pixel neighborhood.

Figure 6.7(a) is a simulated chirp pulse SAR logarithmic image of an isotropic

point scatterer using the wave front reconstruction algorithm. The image is free of

speckle. Figure 6.7(b) shows its correlation function. The SAR resolution of the

image is 7.5m× 6m and the pixel size is 2.43m× 2.56m. The figure shows that even

the backscattered image of a single scatterer has a non-zero correlation function.

Therefore, to acquire the full knowledge of real SAR image texture and speckle, a

SAR texture simulator employing the similar but more realistic coherent summation

algorithm is used to simulate SAR images of various target textures, as in the next

section.

6.3 SAR Texture Simulator And Results

6.3.1 Coherent SAR Simulator

Soumekh in [78] presented the principles and algorithms to model SAR system,

simulate SAR backscattering data, reconstruct image by means of 2-D Fourier array
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(a) (b)

Figure 6.7: SAR image of a point scatterer

imaging [77], the matlab algorithms and numerical examples were also provided. Our

texture simulator adapted the matlab code of stripmap SAR system and 2-D Fourier

matched filtering and interpolation reconstruction method in [78] to a FORTRAN

program. The simulator also integrates many types of scatterer distributions to form

different texture of the ground. A large number of point scatterers with different

scattering properties can be either randomly distributed in a 3-D space above the

ground or obeying some rules such as regular lattice, rough surface or manually

inputted. The 3-D target space is divided into bricks and Foldy’s approximation [22]

on the multiple scattering waves by randomly distributed scatterers is used in the

model to calculated the electric field transmission matrix for each brick. The program

records the path of incident and scattered wave by every scatterer and applies the

corresponding transmission matrices. The coherent summation of the scattered fields

by all the scatterers within a resolution cell is the simulator’s output for one pixels.

The SAR image scattered by a forest area can therefore be simulated by model

the 3-D space of building bricks enclosing discrete scatterers. The geometry of a
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Figure 6.8: Geometry of the stripmode SAR simulator. A 3-D space target is defined
by boundaries and the coordinate system is originated at target’s center
projected to the ground.

side-looking SAR system is illustrated in Figure 6.8. SAR moves at speed v in +y-

direction at h above the ground and illuminates the target by right-hand side looking.

The origin of the far field coordinate system is at the center of the ground projected

target surface. The incidence angle of the wave from the antenna to the origin is θi.

z = h

x = −z tan θi (6.34)

The major shortcoming of coherent simulator is the heavy task in computing the

backscattering signal of many scatterers. To get high fidelity simulation results,

ground targets usually consists of tens of thousands singles scatterers. It can easily

take a day or more to simulate one image of the scene using a PC.

In this section, for the interest of surface texture, we use only one type isotropic

point scatterers that are located on the ground surface rather than a 3-D space, the

density of scatterers is a function of their positions, which corresponds the scattering

strength variations received by the antenna, as the indication of target texture. A

chirp radar signal is transmitted by the antenna and the SAR system is configured
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by the following parameters.

Carrier frequency fc = 5.298 GHz Chirp bandwidth f0 = 20 MHz

Chirp duration= 33.8 us Antenna aperture = 12 m

Radar position = (-124.7, 0, 216) km Target area = 300 × 100 m2

Slant range resolution Dx = 7.50 m Azimuth resolution Dy = 6.0 m

Slant Range Samples = 1672 Azimuth samples = 984

Slant range pixel size dx = 2.43 m Azimuth pixel size dy = 2.56 m

Image range pixels nx = 62 Image azimuth pixels ny = 48

6.3.2 Texture Simulation Result

6.3.2.1 Homogeneous surface

One application of the SAR texture simulator is to test the statistical speckle

model that has been long used for SAR image analysis, which can be accomplished

by simulating the SAR image of a homogeneous surface composed by randomly

distributed point scatterers. A scatterer map is generated by projecting the homo-

geneous surface to the slant range surface and is shown in Figure 6.9. The total

number of the scatterers is 25520 and the mean density is 10 scatterers per pixel or

1.60 per m2. As shown in Figure 6.4, the signal returned by 10 random scatterers

have speckle characteristics. If we define the point backscattering coefficient σ0 of

every point scatterer is 1, the average backscattering coefficient of this area extended

target is 1.60 per m2.

Figure 6.10 is the simulated image Ah(i, j) for this scene, it is in amplitude for-

mat and visually enhanced by histogram equalization. The 0dB calibration image

Acal(i, j) (Figure 6.7(a)) is generated by simulating the SAR signal of single scatterer

whose backscattering coefficient σ0 is 1 and located in the center of the scene. The

resulting image is also in amplitude format and the calibration factor is the summa-
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Figure 6.9: A homogeneous surface with randomly distributed point scatterers. Hor-
izontal direction: Slant Range, Vertical Direction: Azimuth.

tion over all the pixel values of the intensity image Ical(i, j), which is the squared

amplitude image.

fcal =

nx
∑

i=0

ny
∑

j=0

Ical(i, j) =

nx
∑

i=0

ny
∑

j=0

A2
cal(i, j) (6.35)

Where i and j are the pixel indexes in the slant range and azimuth direction, re-

spectivrluy. nx = 62 and ny = 48 are the range and azimuth samples given by the

previous section.

The calibrated intensity image Ih(i, j) of the homogeneous surface is obtained by

dividing the squared amplitude image by the calibration factor Ih(i, j) =
A2

h
(i,j)

fcal
. The

calibrated intensity image shows that the mean scattering coefficient of the image

is 1.58 per m2, very close to the real scene’s σ0 of 1.60 per m2. The maximum

σ0 is 14.56 and the minimum σ0 is almost 0. The variance of σ0 over the entire

image is 3.05, which indicates the contrast of the image

√
V ar[Ih(i,j)]

E[Ih(i,j)]
= 1.10. In this

example, normalized intensity image Ih(i,j)
E[Ih(i,j)]

can be called speckle, whose histogram
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Figure 6.10: Simulated image for the homogeneous surface with randomly dis-
tributed point scatterers. Image size: 62 × 48. Horizontal direction:
Slant Range, Vertical Direction: Azimuth.

is shown in Figure 6.11(a). Statistical SAR image model assumes that single-look

SAR image speckle has a negative exponential pdf with mean and variance are both

1, which is also shown in Figure 6.11(a) for comparison. The consistency between

two histograms demonstrates that the first order SAR speckle model is correct and

can be safely used for SAR image analysis.

However, for the second order statistics, the simulated speckle are correlated

among pixels, its correlation coefficients are shown in Figure 6.11(b). The correlation

length of the image is estimated to be 4 m or 1.6 pixels. Which is contradictory to

the statistical model, which assumes speckles are uncorrelated, thus no correlation

length. The reason for this discrepancy is contributed to ideal conditions used in

the statistical model. Although direct coherent approach used by our simulator can

provide accurate and detailed information of the target, its computation is very time

consuming, sometimes, statistic speckle model is preferred to study the large scaled

overall scattering properties of the target for the simplicity and speed. However

for texture analysis of real SAR data, which are second or higher order statistics,
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(a) Histogram (b) Correlation coefficients

Figure 6.11: Histogram and correlation coefficients of the normalized intensity image
for the homogeneous surface.

correlation of speckles is inevitable and can’t be neglected.

6.3.2.2 Gaussian rough surface

In this section, image of a Gaussian rough surface is simulated to study how tar-

get’s texture is captured by SAR data. The term “rough surface” doesn’t represent

the height fluctuation of the surface, instead, it indicates the scatterer density fluc-

tuation. The density of scatterers placed on the ground is a function of positions,

which has a Gaussian correlation function and the correlation length is 3 m in the

ground range - azimuth coordinates. Figure 6.12 shows the scatterer distribution

in the projected slant range surface. The total number of the scatterers is 29800

and the mean density is 11 scatterers per pixel or 1.61 per m2. Thus, the average

backscattering coefficient of this area extended target is 1.61 per m2. Since the num-

ber of scatterers is directly related to the scattering strength, we consider the spatial

variation of the scatterer density as the intrinsic scene texture.

The simulated amplitude image AG(i, j) for the rough surface is given in Figure

6.13. The noise-like image doesn’t correspond directly to the scatterer map shown
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Figure 6.12: A rough surface with randomly distributed point scatterers. Horizontal
direction: Slant Range, Vertical Direction: Azimuth.

in Figure 6.12 since the scene texture is buried under the speckle.

Further analysis on the calibrate intensity images IG(i, j) =
A2

G(i,j)

fcal
indicates

that the mean scattering coefficient of the image is 1.67 per m2 while the average

scene’s σ0 is 1.61 per m2. The maximum and minimum σ0 are 21 and 0 respec-

tively. The variance of σ0 over the entire image is 3.05, and the image’s contrast is
√
V ar[IG(i,j)]

E[IG(i,j)]
= 1.49. Histogram of the normalized intensity image is shown in Fig-

ure 6.14(a), compared with the statistical single-looking speckle model’s pdf. There

are obvious differences between the two curves, which suggest the presence of target

texture.

Figure 6.14(b) presents the correlation coefficient of IG(i, j) for the rough surface,

whose correlation length of the image is estimated to be 5 m or two pixels. The blind

deconvolution presented in Chapter V can be applied to this image to estimate the

scene’s correlation length from the simulated image, however, more pixels are needed
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Figure 6.13: Simulated image for the Gaussian rough surface. Image size: 62 × 48.
Horizontal direction: Slant Range, Vertical Direction: Azimuth.

(a) Histogram (b) Correlation coefficients

Figure 6.14: Histogram and correlation coefficients of the normalized intensity image
for the Gaussian rough surface.
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for high fidelity estimation. This is the future work for the combined application of

the SAR texture simulator and blind deconvolution method, particularly, the SAR

texture simulator need to increase the speed for any practical usage, which is usual

achieved by using approximation and interpolation to reduce the samples to simulate

the Fourier domain signal.

6.4 Discussion and Summary

We investigate the formation of texture and the ideal SAR model of texture and

speckle are derived. SAR images preserve the autocorrelation properties of the target

in the idealistic cases even with the presence of the speckle. However, a coherent SAR

texture simulator is developed to simulate real SAR systems. The texture simulator

uses the fundamental scattering theory, where the backscattering from individual

scatterers are added up coherently in phase, as stated by the principles of basic

radar systems. Multiple scattering among random scatterers are not considered at

this moment. A SAR system of chirp radar signal and the wave front reconstruction

reconstruction algorithm are is to simulate real life SAR images. Two images of tar-

gets representing general textures are simulated, one is a homogeneous surface and

the other one is a Gaussian rough surface. The simulated images correctly reflect the

overall properties of the scenes. The correlation function calculated for the homoge-

neous scene’s image shows that the statistical model of SAR speckle is insufficient for

texture analysis. The image with both the scene texture and speckle is difficult to

interpret by visualization, texture preserving techniques such as blind deconvolution

method and specking filters are needed. The texture simulator provides a power

tool to study how the information about spatial distribution of the target can be

extracted from SAR image. The input target of the model can be specified by any
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distributions of single scatterers. The model is capable of 3-D simulation with the

Foldy’s approximation for scattering by random media, but not applied in our work

since it involves many additional tasks and is left for future work.



Chapter VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation presented the microwave scattering models for nonuniform for-

est canopies, which addresses two aspects of nonuniform forest structures — vertical

inhomogeneity of mixed species forests and texture information carried by SAR im-

ages of nonuniform canopies.

Bi-MIMICS has been developed to simulate bistatic scattering coefficients from

forest canopies using radiative transfer theory. It is based on the backscattering

canopy model MIMICS and is a first order full polarimetric model. We contribute to

the development of Bi-MIMICS by introducing additional radar view angles and new

scattering mechanisms, wave propagating quantities, and implementing the model.

Bistatic scattering coefficients provides more information about the mechanisms of

canopy scattering and composition compared to the backscattering coefficient, the

advantage of the bistatic geometry is analyzed and demonstrated by model simula-

tions, where σ0 simulated different combination of incidence and scattering angles

shows more sensitivity to some forest parameters such as stem orientation, biomass

density. Bi-MIMICS is also a intermediate model that extends MIMICS and the

same bistatic configuration is included in Multi-MIMICS.

167
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The major contribution of the thesis is the development of Multi-MIMICS for

mixed species forests. A multi-layer canopy structures is defined above the ground

and two important forms of natural forests — overlapping layers and tapered trunks

are specially treated. The model solves first order multi-layer radiative transfer

equations using an iterative approach and diffuse boundary conditions. It also ac-

commodates the ability of bistatic scattering simulation. Multi-MIMICS has been

parameterized using ground collected forest inventory data of mixed species forest,

simulation results correspond well with actual AIRSAR measurement, which also

show improvement for complex forests over conventional two-layer scattering mod-

els. Overall, Multi-MIMICS provides a more effective scattering model for simulating

SAR σ0 from forests of mixed species and structural, the model still has built-in re-

strictions on multiple scattering mechanism among scatterers, the coherent effects,

error for cross-polarization because it is only a first order RT-based model.

For nonuniform canopies, texture information carried by the SAR image reveals

the spatial variation of the scene. Image correlation length is suggested as an opti-

mal texture model for SAR images. A blind deconvolution method is presented to

estimate the correlation length of target texture from the speckle degraded images.

Utilizing texture information can help improve the land-cover category classification

accuracy since some categories’ SAR images may show the same mean value but

different texture parameter.

A coherent SAR texture simulator is developed to simulate SAR images of surface

targets’ horizontal spatial variation. The model is a reliable source to study the

texture from nonuniform forests, especially when the ground truth is unavoidable,

where high fidelity simulation results is desired. The disadvantage of the coherent

SAR simulator is its heavy commutating tasks.
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7.2 Recommendations For Future Work

Several aspects of the future work of this thesis are considered as the extension and

improvement of the current study. For the validation of Bi-MIMICS model, the lack

of actual bistatic SAR measurement data from vegetation for us to comparison with

the model’s simulation arises as a major problem. For this reason, we have proposed

some future work including conducting laboratory bistatic radar measurements on

scaled forest models using our existing bistatic measurement facilities.

In studying Multi-MIMICS’s simulated backscattering for mixed species forests,

some discrepancies between the simulation and radar measurement, have been ob-

served due to the model’s limitation. Extending the current first order RT solution

of Multi-MIMICS to higher order solutions can include the multiple scattering mech-

anisms among canopy elements, particularly at high frequencies, where branch and

foliage volume scattering dominates and account for the underestimation of σ0 by

the current model. The scattering models for individual canopy compositions and

the rough ground surface can also be refined since they are most accurate at L-band.

Other scattering models are needed for much lower and higher frequencies.

Currently, using the blind deconvolution method to estimate real target texture’s

correlation length from speckle degraded SAR images is only applied to simulated

images because no detailed ground truth have been available. Which in turn requires

the coherent SAR texture simulator to provide high resolution simulations for real

nonuniform forest scenes. Improving the speed of the simulator by incorporating

some statistical models for approximation is part of future work.

Model inversion is a important aspects of the future work. The ultimate goal for

developing scattering models is to improve the potential retrieval of forest biomass
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and other vegetation parameters. Multi-MIMICS inversion model is expected to

provide estimates of soil moisture, canopy biomass, and the possibility to detect the

multi-layer structure of canopies with mixed species.



BIBLIOGRAPHY

171



172

BIBLIOGRAPHY

[1] “The marrakesh accords and the marrakesh declaration,” Proceedings of the
Seventh Conference of the Parties (COP 7), Marrakesh, Morocco., vol. Annex,
Section A, Oct. 2001.

[2] D. S. Alves, J. L. G. Pereira, C. L. D. Sousa, J. Soares, and F. Yamaguchi,
“Characterizing landscape changes in central rondonia using landsat tm im-
agery,” Int. J. Remote Sensing, vol. 20, no. 14, pp. 2877–2882, Sept. 1999.

[3] J. M. Austin, B. G. Mackey, and K. P. V. Niel, “Estimating forest biomass
using satellite radar: an exploratory study in a temperate Australian,” For.
Ecol. Manage., vol. 175, no. 1-3, pp. 575–585, Mar. 2003.

[4] C. G. Brown, “Tree height estimation using shuttle radar topography mission
and ancillary data,” Ph.D. dissertation, The University of Michigan, Ann Arbor,
Michigan, 2003.

[5] R. J. Burkholder, L. J. Gupta, and J. T. Johnson, “Comparison of monostatic
and bistatic radar images,” IEEE Antennas Propagat. Mag., vol. 45, no. 3, pp.
41–50, June 2003.

[6] W. H. Burrows, M. B. Hoffmann, J. F. Compton, and P. V. Back, “Allomet-
ric relationships and community biomass stocks in white cypress pine (callitris
glaucophylla) and associated eucalypts of the carnarvon area - south central
Queensland,” Australian Greenhouse Office, Canberra, Tech. Rep. 33, Feb. 2001.

[7] R. A. Butler, A Place Out of Time: Tropical Rainforests and the Perils They
Face, San Francisco, CA, Unpublished, http://www.mongabay.com.

[8] S. Chandrasekhar, Radiative Transfer. New York: Dover Publications, 1960.

[9] N. S. Chauhan, R. H. Lang, and K. J. Ranson, “Radar modeling of a boreal
forest,” IEEE Trans. Geosci. Remote Sensing, vol. 29, no. 4, pp. 627–638, July
1991.

[10] R. Chellappa, “Two-dimensional discrete Gaussian Markov random field models
for image processing,” J. Inst. Electron. Telecommun. Eng., vol. 2, no. 2, pp.
113–119, Mar-Apr 1989.



173

[11] J. C. Dainty, Laser Speckle and Related Phenomena. New York: Springer-
Verlag, 2001.

[12] M. Datcu, K. Seidel, and M. Walessa, “Spatial information retrieval from
remote-sensing images - Part I: Information theoretical perspective,” IEEE
Trans. Geosci. Remote Sensing, vol. 36, no. 5, pp. 1431–1445, Sept. 1998.

[13] R. De Roo, “A polarimetric radar image simulator for microwave and millimeter-
wave sensors,” The University of Michigan, Ann Arbor, Michigan, Tech. Rep.,
1996.

[14] ——, “Theory and measurement of bistatic scattering of X-band microwaves
from rough dielectric surfaces,” Ph.D. dissertation, The University of Michigan,
Ann Arbor, Michigan, 1996.

[15] H. Derin and H. Elliott, “Modeling and segmentation of noisy and textured
images uing gibbs random fields,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 9, no. 1, pp. 39–55, Jan. 1997.

[16] M. C. Dobson, K. McDonald, and F. T. Ulaby, “Modeling of forest canopies and
analyses of polarimetric SAR data,” The University of Michigan, Ann Arbor,
Michigan, Tech. Rep. 026143-1-F, 1989.

[17] M. C. Dobson, L. Pierce, J. Kellndorfer, and F. Ulaby, “Use of SAR image
texture in terrain classification,” in Int. Geosci. Remote Sens. Symp., vol. 3,
Sept. 1997, pp. 1180–1183.

[18] M. C. Dobson, F. T. Ulaby, T. Le Toan, A. Beaudoin, E. S. Kasischke, and
N. Christensen, “Dependence of radar backscatter on coniferous forest biomass,”
IEEE Trans. Geosci. Remote Sensing, vol. 30, no. 2, pp. 412–415, Mar. 1992.

[19] S. L. Durden, J. J. V. Zyl, and H. A. Zebker, “Modeling and observation of the
radar polarization signature of forested areas,” IEEE Trans. Geosci. Remote
Sensing, vol. 27, no. 3, pp. 290–301, May 1989.

[20] R. L. Eigel Jr., P. J. Collins, J. Andrew J. Terzuoli, G. Nesti, and J. Fortuny,
“Bistatic scattering characterization of complex objects,” IEEE Trans. Geosci.
Remote Sensing, vol. 38, no. 5, pp. 2078–2092, Sept. 2000.

[21] J. Flusser and T. Suk, “Degraded image analysis: An invariant approach,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 20, no. 6, pp. 590–603, June 1998.

[22] L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic
scattering by randomly distributed scatterers,” Phys. Rev., vol. 67, no. 3-4, pp.
107–119, Feb. 1945.

[23] V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, “A model for
radar images and its application to adaptive digital filtering of multiplicative



174

noise,” IEEE Trans. Pattern Anal. Machine Intell., vol. 4, no. 2, pp. 157–166,
Mar. 1982.

[24] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and the
Bayesian Restoration of images,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 6, no. 6, pp. 721–745, Nov. 1984.

[25] J. W. Goodman, Statistical Properties of Laser Speckle Patterns. Heidelberg,
Germany: Springer-Verlag, 1980.

[26] H. D. Griffiths, C. J. Baker, J. Baubert, N. Kitchen, and M. Treagust, “Bistatic
radar using satellite-borne illuminators,” Radar, pp. 1–5, Oct. 2002.

[27] W. Hagg and M. Sties, “Efficient speckle filtering of SAR images,” in Int. Geosci.
Remote Sens. Symp., vol. 3, Pasadena, CA, USA, Aug. 1994, pp. 2140–2142.

[28] R. M. Haralic, “Statistic and structural approaches to texture,” Proceedings of
the IEEE, vol. 67, pp. 786–804, May 1979.

[29] G. Harrington, “Estimation of above ground biomass of trees and shrubs in eu-
calyptus populnea (F. Muell.) woodland by regression of mass on trunk diameter
and plant height,” Aust. J. Bot., vol. 2, pp. 135–143, 1979.

[30] B. Hauck, F. Ulaby, and R. DeRoo, “Polarimetric bistatic-measurement facility
for point and distributed targets,” IEEE Antennas Propagat. Mag., vol. 40,
no. 1, pp. 31–41, Feb. 1998.

[31] B. K. P. Horn, Robot Vision. New York: McGraw-Hill, 1986.

[32] R. A. Houghton, “Global effects of tropical deforestation,” Environmental Sci-
ence and Technology, vol. 24, no. 4, Apr. 1998.

[33] M. L. Imhoff, “Theoretical analysis of the effect of forest structure on synthetic
aperture radar backscatter and the remote sensing of biomass,” IEEE Trans.
Geosci. Remote Sensing, vol. 33, no. 2, pp. 341–352, Mar. 1992.

[34] M. A. Karam and A. K. Fung, “Electromagnetic scattering from a layer of finite
length, randomly oriented, dielectric, circular cylinders over a rough interface
with application to vegetation,” Int. J. Remote Sensing, vol. 9, no. 6, pp. 1109–
1134, June 1988.

[35] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive restoration
of images with speckle,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-35, no. 3, pp. 373–382, Mar. 1987.

[36] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Pro-
cessing Magazine, pp. 43–62, May 1996.



175

[37] T. Kurosu, S. Uratsuka, H. Maeno, and T. Kozu, “Texture statistics for classifi-
cation of land use with multitemporal JERS-1 SAR single-look imagery,” IEEE
Trans. Geosci. Remote Sensing, vol. 1, no. 37, pp. 227–236, Jan. 1999.

[38] R. H. Lang and J. S. Sidhu, “Electromagnetic backscattering from a layer of
vegetation: A discrete approach,” IEEE Trans. Geosci. Remote Sensing, vol. 21,
no. 1, pp. 177–186, Jan. 1993.

[39] N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimiza-
tion,” Optical Communications, vol. 128, pp. 341–352, July 1996.

[40] T. Le Toan, A. Beaudoin, J. J. Riom, and D. Guyon, “Relating forest biomass
to SAR data,” IEEE Trans. Geosci. Remote Sensing, vol. 30, no. 2, pp. 403–411,
Mar. 1992.

[41] J. S. Lee, “Speckle suppression and analysis for synthetic aperture radar im-
ages,” Optical Engineering, vol. 25, no. 5, pp. 636–643, May 1986.

[42] S. Z. Li, Markov random field modeling in image analysis. New York: Springer,
2001.

[43] Y.-C. Lin, “A fractal-based coherent scattering and propagation model for forest
canopies.” Ph.D. dissertation, The University of Michigan, Ann Arbor, Michi-
gan, 1997.

[44] Y.-C. Lin and K. Sarabandi, “Electromagnetic scattering model for a tree trunk
above a tilted ground plane,” IEEE Trans. Geosci. Remote Sensing, vol. 33,
no. 4, pp. 1063–1070, July 1995.

[45] S. Y. Lu and K. S. Fu, “A syntactic approach to texture analysis,” Computer
Graphics and Image Processing, vol. 7, pp. 303–330, 1978.

[46] R. M. Lucas, A. Milne, N. Cronin, C. Witte, and R. Denhan, “The potential
of synthetic aperture radar (SAR) for quantifying the biomass of Australia’s
woodlands,” The Rangeland Journal, vol. 22, no. 1, pp. 124–140, 2000.

[47] R. M. Lucas, P. Tickle, A. Lee, J. Austin, C. Witte, K. Jones, N. Cronin,
M. Moghaddam, and A. K. Milne, “Use of AIRSAR (POLSAR) data for quan-
tifying the biomass of woodlands, Queensland, Australia,” AIRSAR Workshop,
Mar. 2002.

[48] R. Lucas and M. Moghaddam, “Microwave scattering from mixed species forest,
Queensland, Australia,” IEEE Trans. Geosci. Remote Sensing, In press.

[49] A. J. Luckman, J. R. Baker, M. Honzak, and R. Lucas, “Tropical forest biomass
density estimation using JERS-1 SAR: Seasonal variation, confidence limits,
and application to image mosaics,” Remote Sens. Environ., vol. 63, no. 2, pp.
126–139, Feb. 1998.



176

[50] K. C. McDonald, “Modeling microwave backscatter from tree canopies,” Ph.D.
dissertation, The University of Michigan, Ann Arbor, Michigan, 1991.

[51] K. C. McDonald, M. C. Dobson, and F. T. Ulaby, “Using MIMICS to model
l-band multiangle and multitemporal backscatter from a walnut orchard,” IEEE
Trans. Geosci. Remote Sensing, vol. 28, no. 4, pp. 477–491, July 1990.

[52] ——, “Modeling multi-frequency diurnal backscatter from a walnut orchard,”
IEEE Trans. Geosci. Remote Sensing, vol. 29, no. 6, pp. 852–863, Nov. 1991.

[53] D. J. McLaughlin, Y. Wu, W. G. Stevens, X. Zhang, M. J. Sowa, and B. Weijers,
“Fully polarimetric bistatic radar scattering behavior of forested hills,” IEEE
Trans. Antennas Propagat., vol. 50, no. 2, pp. 101–100, Feb. 2002.

[54] G. M.Henebry and H. J. H. Kux, “Lacunarity as a texture measure for SAR
imagery,” Int. J. Remote Sensing, vol. 16, no. 3, pp. 565–571, Feb. 1995.

[55] M. Moghaddam, S. Durden, and H. Zebker, “Radar measurements of forested
area during OTTER,” Remote Sens. Environ., vol. 47, no. 2, pp. 154–166, Feb.
1994.

[56] M. Moghaddam and S. S. Saatchi, “Monitoring tree moisture using an estimation
algorithm applied to sar data from BOREAS,” IEEE Trans. Geosci. Remote
Sensing, vol. 37, no. 2, pp. 901–916, Mar. 1999.

[57] Z. Mou-Yan and R. Unbehauen, “New algorithms of two-dimensional blind de-
convolution,” Optical Engineering, vol. 34, no. 10, pp. 2945–2954, Oct. 1995.

[58] S. V. Nghicm, R. Kwok, S. I. Yueh, J. A. Kong, C. C. Hsu, M. A. Tassoudji, and
R. T. Shin, “Polarimetric scattering from layered media with multiple species
of scatterers,” Radio Science, vol. 30, no. 4, pp. 835–852, Jul-Aug 1995.

[59] H. Noda, M. N. Shirazi, and E. Kawaguchi, “MRF-based texture segmentation
using wavelet decomposed images,” Pattern Recognition, vol. 35, pp. 771–782,
2002.

[60] C. J. Oliver, “Rain forest classification based on sar texture,” IEEE Trans.
Geosci. Remote Sensing, vol. 2, no. 38, pp. 1095–1104, Mar. 2000.

[61] C. J. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images.
Norwood, Massachusetts: Artech House, 1998.

[62] G. Picard, T. L. Toan, S. Quegan, Y. Caraglio, and T. Castel, “Radiative trans-
fer modeling of cross-polarized backscatter from a pine forest using the discrete
ordinate and eigenvalue method,” IEEE Trans. Geosci. Remote Sensing, vol. 42,
no. 8, pp. 1720–1730, Aug. 2004.

[63] R. E. Plotnick, R. H. Gardner, and R. V. O’Neill, “Lacunarity indices as measure
of landscape texture,” Landscape Ecology, vol. 8, pp. 202–211, 1993.



177

[64] A. R. Rao, “A taxonomy for texture description and identification,” Ph.D. dis-
sertation, The University of Michigan, Ann Arbor, Michigan, 1989.

[65] J. A. Richards, “Radar backscatter modeling of forests: A review of current
trends,” Int. J. Remote Sensing, vol. 11, no. 7, pp. 1299–1312, July 1990.

[66] J. A. Richards, G. Q. Sun, and D. S. Simonett, “L-band radar backscattering
modeling of forest stands,” IEEE Trans. Geosci. Remote Sensing, vol. 25, no. 4,
pp. 487–498, July 1987.

[67] E. Rignot, W. A. Salas, and D. L. Skole, “Mapping deforestation and secondary
growth in Rondonia, Brazil, using imaging radar and thematic mapper data,”
Remote Sens. Environ., vol. 59, no. 2, pp. 167–179, Feb. 1997.

[68] A. Rosenqvist, A. Milne, R. Lucas, M. Imhoff, and C. Dobson, “A review of re-
mote sensing technology in support of the kyoto protocol,” Environ. Sci. Policy,
vol. 6, no. 5, pp. 441–455, Oct. 2003.

[69] G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross
Section Handbook. New York, NY: Plenum Press, 1970, vol. 1.

[70] S. S. Saatchi and M. Moghaddam, “Estimation of crown and stem water content
and biomass of boreal forest using polarimetric SAR imagery,” IEEE Trans.
Geosci. Remote Sensing, vol. 38, no. 2, pp. 697–709, Mar. 2000.

[71] S. S. Saatchi, D. M. L. Vine, and R. H. Lang, “Microwave backscattering
and emission model for grass canopies,” IEEE Trans. Geosci. Remote Sensing,
vol. 32, no. 1, pp. 177–186, Jan. 1994.

[72] S. S. Saatchi and K. C. McDonald, “Coherent effects in microwave backscatter-
ing models for forest canopies,” IEEE Trans. Geosci. Remote Sensing, vol. 35,
no. 4, pp. 1032–1044, July 1997.

[73] K. Sarabandi and Y.-C. Lin, “Simulation of interferometric sar response for
characterizing the scattering phase center statistics of fores canopies,” IEEE
Trans. Geosci. Remote Sensing, vol. 38, no. 1, pp. 115–125, Jan. 2000.

[74] K. Sarabandi and A. Nashashibi, “A novel bistatic scattering matrix measure-
ment technique using a monostatic radar,” IEEE Trans. Antennas Propagat.,
vol. 44, no. 1, pp. 41–50, Jan. 1996.

[75] M. Schroder, H. Rehrauer, K. Seidel, and M. Datcu, “Spatial information re-
trieval from remote-sensing images - Part II: Gibbs-Markov random fields,”
IEEE Trans. Geosci. Remote Sensing, vol. 36, no. 5, pp. 1446–1455, Sept. 1998.

[76] M. Soumekh, “Bistatic synthetic aperture radar inversion with application in
dynamic object imaging,” IEEE Trans. Signal Processing, vol. 39, no. 9, pp.
2044–2055, Sept. 1991.



178

[77] ——, Fourier Array Imaging. Englewood Cliffs, N.J: Prentice Hall, 1994.

[78] ——, Synthetic Aperture Radar Signal Processing. New York: Wiley-
Intersience, 1999.

[79] S. Stan, G. Palubinskas, and M. Datcu, “Bayesian selection of the neighborhood
order of gauss markov texture models,” Pattern Recong. Lett., vol. 23, pp. 1229–
1238, 2002.

[80] G. Sun and K. J. Ranson, “A three-dimensional radar backscatter model of
forest canopies,” IEEE Trans. Geosci. Remote Sensing, vol. 33, no. 2, pp. 373–
382, Mar. 1995.

[81] G. Sun, D. S. Simonett, and A. H. Strahler, “A radar backscattering model for
discontinuous coniferous forests,” IEEE Trans. Geosci. Remote Sensing, vol. 29,
no. 4, pp. 639–650, July 1991.

[82] P. K. Tickle, A. Lee, R. M. Lucas, J. Austin, and C. Witte, “Quantifying Aus-
tralian forest and woodland structure and biomass using large scale photography
and small footprint LIDAR,” Remote Sens. Environ., submitted.

[83] F. T. Ulaby, T. E. V. Deventer, J. R. East, T. F. Haddock, and M. E. Coluzzi,
“Bistatic scattering characterization of complex objects,” IEEE Trans. Geosci.
Remote Sensing, vol. 26, no. 3, pp. 229–243, May 1988.

[84] F. T. Ulaby, C. Elachi, and editors, Radar Polarimetry for Geoscience Applica-
tion. Norwood, Massachusetts: Artech House, 1989.

[85] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active
and passive, Vol. III: Volume Scattering and Emission Theory, Advanced System
and Applications. Dedham, Massachusetts: Artech House, 1986.

[86] F. T. Ulaby, K. Sarabandi, K. McDonald, M. Whitt, and M. C. Dobson, “Michi-
gan microwave canopy scattering model (MIMICS),” The University of Michi-
gan, Ann Arbor, Michigan, Tech. Rep. 022486-T-1, July 1988.

[87] H. Xie, “Multiresolution statistical techniques for synthetic aperture radar
speckle reduction and image registration,” Ph.D. dissertation, The University
of Michigan, Ann Arbor, Michigan, 2002.

[88] A. E. Yagle and S. Shah, “2-d blind deconvolution of even point spread-functions
from compact support images,” in Proc. IEEE Trans. Image Processing, Sub-
mitted.

[89] D. Zahn and K. Sarabandi, “Simulation of bistatic scattering for assessing the
application of existing communication satellites to remote sensing of rough sur-
faces,” in Int. Geosci. Remote Sens. Symp., vol. 4, Honolulu, HI, USA, July
2000, pp. 1528–1530.


