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ABSTRACT

Controlling Electromagnetic Surface Waves with Scalar and Tensor Impedance
Surfaces

by

Amit M. Patel

Chair: Anthony Grbic

The propagation characteristics of electromagnetic waves on various isotropic

(scalar) impedance surfaces have been studied for some time, in order to control sur-

face waves and leaky-wave radiation. One and two dimensional periodic impedance

surfaces as well as tensor impedance surfaces, have been explored for enhanced control

of wave guidance. The desire to integrate antennas and electromagnetic devices onto

the surfaces of vehicles and other platforms has driven recent interest in both scalar

and tensor impedance surfaces. Great strides have been made in the design of devices

based on impedance surfaces. To date, these devices are designed by first determin-

ing the surface impedance variation necessary to yield the desired performance. The

surfaces are then implemented as printed-circuit board (PCB) structures consisting

of a patterned metallic cladding over a grounded dielectric substrate. In other words,

these two-layer structures are modeled with an idealized tensor impedance boundary

condition.

In this work, we aim to capture the propagation characteristics of PCB-based ten-

xviii



sor impedance surfaces more accurately by modeling them as an impedance sheet over

a grounded dielectric substrate. The impedance sheet represents the patterned metal-

lic cladding of the PCB tensor impedance surface. Dispersion equations for scalar and

tensor PCB versions are found. In addition, an extraction method is presented that

allows the impedance sheet to be found using only two full-wave simulations. Using

the dispersion equation and the extraction method together, the dispersion properties

of the printed-circuit impedance surface can be predicted. A method for designing

transformation electromagnetics devices using tensor impedance surfaces is also pre-

sented. Further, a printed leaky-wave antenna based on a sinusoidally modulated

scalar impedance surface is presented.
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CHAPTER I

Introduction

1.1 Background on Electromagnetic Metasurfaces

Metamaterials are materials that are structured at a subwavelength scale to ex-

hibit desired effective material parameters. Achievable material parameters can in-

clude those not found in nature [2, 3, 4]. Metamaterials are typically designed by

populating small inclusions in a three-dimensional lattice such that the resulting ef-

fective medium possesses desired bulk properties. Metasurfaces are two-dimensional

equivalents of these volumetric metamaterials. They consist of scatterers or apertures,

arranged along a surface, that exhibit unusual reflection, transmission, or dispersion

properties [5]. Much like volumetric metamaterials, they are textured at a subwave-

length scale. They occupy less space, may exhibit lower losses, and are often simpler

to fabricate than volumetric metamaterials. Metasurfaces are distinct from classical

periodic structures such as frequency selective surfaces (FSS), PBG (photonic band-

gap), and EBG (electromagnetic band-gap) structures primarily because the lattice

spacing is much smaller than a wavelength [6].

This thesis will focus primarily on impenetrable metasurfaces and their wave guid-

ance properties. The properties of these surfaces can be described in terms of a surface

impedance (analogous to material parameters for volumetric metamaterials), which

relates the tangential electric and magnetics fields at the surface. Long before the
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term “metasurface” was coined, the propagation characteristics of electromagnetic

waves on isotropic (scalar) impedance surfaces were studied to control surface waves

and leaky-wave radiation [7]. One dimensional [8] and two dimensional [9] periodic

impedance surfaces as well as tensor impedance surfaces (TISs) [10, 11] have also

been explored for manipulating bound and leaky waves.

1.2 Motivation

The desire to integrate electromagnetic devices onto the surfaces of vehicles and

other existing platforms has driven interest in scalar, tensor, and periodic surface

impedance in recent years. One of the more popular, and perhaps more obvious, appli-

cations of impedance surfaces is to create low profile, high gain, planar [12, 13, 14, 15]

and conformal [16, 17, 18] antennas. Typically, the surface impedance variation

along the device is designed to yield a desired far field pattern. For this pur-

pose, holographic reflector antennas have been designed by recording the interference

pattern between a source and a desired field distribution as a variation in surface

impedance [11, 19, 20, 21, 22]. Planar Luneberg lens antennas have been designed us-

ing impedance surfaces where the surface impedance variation is designed to support

surface waves with an index variation given by the Luneberg Law [23].

As an alternative to fixed surface impedance profiles, planar antennas with tunable

surface impedances for dynamic beam-steering and beam-forming applications have

also been designed [24, 25, 26, 27, 28]. Tunable surface impedance antennas show

great promise for consuming less power and occupying less space than power-hungry

phased arrays and bulky mechanical steering solutions. Fig. 1.1 shows a gimbal-

based solution currently employed on UAVs for satellite communications. Planar, or

conformal antenna solutions could reduce the antenna form factor while leveraging

available space on the body of a vehicle for increased aperture.

Impedance surfaces have also been used to enhance the performance of existing
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Figure 1.1: UAV with top panel removed showing bulky gimbal-based antenna steer-
ing mechanism [1].

devices. As an example, the Luneberg lens concept has been applied to horn antennas

in order to enhance their directivity. In [29], one plate of a horn antenna is replaced

with a variable surface impedance specially designed to create a uniform wave at the

aperture of the horn. Additionally, artificial impedance substrates have been explored

for antenna miniaturization and bandwidth enhancement [30, 31, 32] .

As with any technology, the current state-of-the-art has some limitations and

disadvantages. Great strides have been made in the design of devices based on

impedance surfaces [11, 16, 17, 18, 19, 20, 21, 22] but explanations of their design

remains limited in literature. To date, these devices are designed by first determining

the surface impedance (boundary condition) variation necessary to yield the desired

performance. The surfaces are then implemented using printed circuit board (PCB)

technology, consisting of a metallic cladding over a grounded dielectric substrate. In

other words, the metallic layer of the PCB is patterned in order to achieve the de-

sired surface impedance. In the past, the mapping between the patterned cladding

and the surface impedance has been found by performing a number of eigenmode
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simulations and then performing a data fit [11, 20, 22]. For the tensor-based devices,

full-wave eigenmode simulations are performed (at multiple propagation angles along

the surface) and a least squares fit is used to assign a single impedance tensor to

each geometry. In other words, what is truly a two-layer structure (cladding and

grounded dielectric) is modeled as single impedance boundary condition. A design

database is constructed by repeating this procedure for various patterned metallic

claddings. This procedure requires significant computational resources. This method

is inherently approximate since the data is fit to the dispersion equation for a single

impedance surface. Therefore, the dispersion characteristics of the PCB structure

may not be accurately captured. Furthermore, the realized structures are limited to

electrically thin structures so that the single surface approximation remains valid.

A solid, theoretical approach for implementing idealized surface impedance profiles,

particularly tensor impedance profiles, using printed-circuit structures is lacking.

In this thesis, we aim to capture the behavior of a PCB-based surface more ac-

curately by modeling it as either a scalar or tensor impedance sheet over a grounded

dielectric substrate. The impedance sheet models the subwavelength-patterned metal-

lic cladding. The dispersion equations are found for both the scalar and tensor cases.

Extraction methods are presented that allow the scalar or tensor sheet impedance to

be found using one or two full-wave simulations, respectively. Using the dispersion

equations and the extraction methods together, the electromagnetic properties of a

PCB-based surface can be analytically predicted with accuracy.

One cutting-edge application of impedance surfaces includes a class of wave-

guiding structures. Devices such as polarization splitters, beams-shifters, collimators,

beam-benders and cloaks based on transformation electromagnetics/optics concepts

[33, 34] have been realized with metamaterial transmission lines [35, 36, 37, 38] or

inside parallel plate wave guides [39] by using anisotropic material parameters. How-

ever, they have only recently been implemented with impedance surfaces [40]. In
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transformation electromagnetics, a field distribution can be transformed from an ini-

tial state to a desired state through a change in material parameters via a coordinate

transformation [33]. The fact that all space is transformed using this method poses

a hurdle for the design of antennas and surface-wave structures that require the free

space above the surface to remain untransformed. A method for designing transfor-

mation electromagnetics devices using TISs, which transforms the TIS alone, without

transforming the space above the TIS, will be presented in this thesis. The design and

implementation of these transformation electromagnetics-based surfaces as printed-

circuit structures is also explored.

1.3 Goals

The goal of this thesis is to advance the state-of-the-art in scalar and tensor

impedance surfaces by advancing the theoretical understanding of these surfaces, and

addressing the limitations of the current implementation methods. The objectives of

this thesis are organized into four main thrusts:

1. To provide improved understanding and intuition into the guidance character-

istics of idealized scalar and tensor impedance surfaces. In the case of tensor

impedance surfaces (TISs), this includes understanding the contributions of

TM and TE modes as well as determining the group and phase velocities. This

will enable the design of structures that support desired phase progression and

power flow.

2. To develop step-by-step methodologies to design subwavelength textured sur-

faces that allow the desired control of the fields along the surface. The work

will address questions such as: “How should the surface impedance profile vary

along the surface?”. Specifically, the sinusoidally modulated reactance sur-

face (SMRS ) method (Ch. II), and a transformation electromagnetics method
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(Ch. V) will be used to design surface impedance profiles. The transformation

electromagnetics-based method allows wave vector and Poynting vector distri-

butions to be specified on the surface. Additionally, it allows the surface to be

transformed without transforming the free space above it, making it suitable

for antenna applications.

3. To provide a tool-kit for not just the design, but also the implementation of

devices based on metasurfaces using PCB technology. With the proposed two-

layer model, the surface is represented as an impedance sheet over a grounded

dielectric substrate. The sheet represents a subwavelength-patterned metallic

cladding. We aim to answer the question, “What should the impedance sheet be

in order achieve prescribed guidance properties?” The answer to this question

brings us one step closer to answering the ultimate question, “How should the

metallic cladding be textured in order achieve prescribed guidance properties?”

The tool-kit minimizes the need for time-consuming full-wave simulations and

least-squares approximations used in the past to characterize metasurfaces and

construct a design database. The proposed modeling approach will yield more

accurate results (within the homogenous limit), and in a shorter amount of time

than earlier methods. Additionally, surfaces with arbitrary thicknesses can be

analyzed.

4. To design and fabricate prototype devices using both scalar and tensor impedance

surfaces to verify and demonstrate the utility of the proposed design procedures.

1.4 Thesis Outline

This thesis will address both scalar and tensor impedance surfaces. Each of these

will have a theory associated with the idealized surface. Additionally, design methods

will be introduced, which allow the designer to find the necessary surface impedance
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variation to design devices. Lastly, implementation of these surfaces with PCBs, and

the associated challenges, will be discussed. Prototype devices will be implemented

to verify the design procedures and PCB implementation methods. The chapters of

the thesis are structured such that each chapter includes the analysis of an idealized

surface and its practical realization. This allows the idealized and practical structures

to be easily compared.

1.4.1 Chapter II: Sinusoidally-Modulated Scalar Impedance Surfaces

Chapter II will present a step-by-step method for designing a scalar, SMRS, capa-

ble of radiating at an arbitrary off-broadside angle. The procedure allows for nearly

independent control of the leakage and phase constants along the surface. Print-

ing an array of metallic strips over a grounded dielectric substrate is discussed as

a way to practically implement the theoretical SMRS. A method for mapping gaps

between metallic strips to a desired surface impedance is presented as an efficient

alternative to mapping methods used in the past. A printed leaky-wave antenna with

a sinusoidally-modulated surface reactance is designed using the proposed method.

The TM-polarized antenna radiates at 30◦ from broadside at 10 GHz, and exhibits

an experimental gain of 18.4 dB. Theoretical, simulated, and experimental results are

reported. The SMRS method is closely related to a holographic method. It provides

added insight into the operation of holographic surfaces reported earlier [11, 19, 20].

1.4.2 Chapter III: Analytical Modeling and Dispersion Analysis of a

Printed-Circuit Tensor Impedance Surface (PCTIS)

Chapter III is dedicated to TISs. Specifically, the idealized tensor impedance

boundary condition (TIBC) and its practical realization as a printed-circuit tensor

impedance surface (PCTIS) are studied. The eventual goal of this study is to design

two-dimensional surfaces with prescribed wave vector and Poynting vector distribu-
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tions. A PCTIS consists of a periodic, subwavelength-patterned metallic cladding

over a grounded dielectric substrate. The metallic cladding is analytically modeled as

a tensor impedance sheet. An in-depth analysis of TIBCs and PCTISs is presented.

First, the dispersion equation for an idealized TIBC is derived by expressing the field

in terms of TE and TM waves. A similar approach is then used to find the dispersion

equation of the PCTIS consisting of a tensor sheet impedance over a grounded di-

electric substrate. In addition, a method for extracting the tensor sheet impedance of

an arbitrary periodic, metallic cladding printed over a grounded dielectric substrate,

is reported (tensor sheet impedance extraction method). It involves performing two

normal-incidence scattering simulations using a full-wave electromagnetic solver, and

does not require prior knowledge of the principal axes. By combining the tensor

sheet impedance extraction method with the dispersion equation, the full dispersion

characteristics of the PCTIS are analytically predicted in the homogenous limit. The

results are verified through full-wave eigenmode simulations. Both the accuracy of

the dispersion contours, and the computational cost of generating them are improved

compared to methods used in the past [16, 17, 18, 11, 19, 20, 21, 22]. spaceholder

1.4.3 Chapter IV: Effective Surface Impedance of a PCTIS

In Chapter III, the dispersion equations for a TIBC and a PCTIS are derived from

field analysis. In this chapter, a modified transverse resonance technique is employed

to provide a more elegant method for deriving the dispersion equations of a TIBC

and a PCTIS. The modified transverse resonance technique is an adaptation of the

traditional transverse resonance technique [41]. Additionally, an explicit expression

for the effective surface impedance of a PCTIS is derived using the modified transverse

resonance technique, allowing PCTISs and TIBCs to be directly related. The effective

surface impedance of the PCTIS is found to be dependent on the angle of propagation

along the surface. In other words, it exhibits spatial dispersion that is a function of
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the dielectric thickness. A discussion of the principal axes and the propagation of

TM and TE waves is provided. The special case of electrically thin PCTISs is also

analyzed and discussed. The results presented in this chapter provide a more elegant,

and in some ways, a simpler view of TISs.

1.4.4 Chapter V: Transformation Electromagnetics Using PCTISs

In transformation electromagnetics, fields can be transformed from an initial dis-

tribution to a desired one through a change in material parameters (ε and µ), which is

dictated by a coordinate transformation. The traditional transformation electromag-

netics method results in a transformation of all space. However, when transforming

surfaces, one wishes to transform the surface impedance (rather than the material

parameters) without transforming the free space above the surface. Therefore, there

is need to find an alternate method that can be applied to surfaces. In this chap-

ter, a method for designing transformation electromagnetics devices using TISs is

presented. The methods allows anisotropic TIBCs and PCTISs to be designed that

support tangential wave vector distributions and power flow directions specified by

a coordinate transformation. Beam-shifting devices are designed using anisotropic

TIBCs and PCTISs that allow a surface wave with a Gaussian profile to be shifted

laterally at 10 GHz. The designs are verified with a commercial full-wave solver.

Expressions for the group velocity, and direction of power flow along a TIBC and

PCTIS are derived to aid in the design. The design limitations of transformation

electromagnetics devices based on PCTISs are also discussed.
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CHAPTER II

Sinusoidally-Modulated Scalar Impedance Surfaces

2.1 Chapter Introduction

As mentioned in the previous chapter, one of the goals of this thesis is to explore

methods for determining the surface impedance profile needed to yield desired radia-

tion patterns or wave guiding properties. Transformation electromagnetics is one such

method, and will be discussed in Chapter V. In this section, sinusoidally modulating

the surface impedance about some average reactance value is explored. Sinusoidal

impedance variation along one direction is considered. With sinusoidal impedance

modulation, nearly independent control of the phase and leakage constants along the

surface can be achieved. The concept lends itself well to the design of leaky-wave

antennas.

In recent years, there has been strong interest in high gain, low profile antennas

that can be easily integrated into the surfaces of vehicles or other platforms [12, 14, 13,

15]. Planar leaky-wave antennas are excellent candidates for this purpose as they leak

power from traveling waves propagating along the antenna surface. They are typically

characterized by a phase and leakage constant along the antenna. Independent control

over these two leaky-wave parameters is highly desired since it allows beam shaping

[42].

Electromagnetic propagation along a sinusoidally-modulated reactance surface
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(SMRS) was theoretically investigated by A. A. Oliner in 1959, as a way to increase

the gain of surface-wave antennas [43]. More recently, SMRSs have been used to de-

velop holographic antennas [19, 22, 24]. These antennas use the interference pattern

between the field of a source and the desired radiated field to establish a sinusoidally

varying surface impedance. Holographic antennas have shown great promise, but lit-

erature explaining their design has been limited. Furthermore, since many of these

antennas are reflectors, they need to be illuminated by a separate radiator such as

a horn antenna or waveguide aperture [11, 16, 17]. A direct feeding solution would

be preferred in many applications. To date, slotted parallel-plate waveguides have

been used extensively as leaky-wave antennas, since they are simple to fabricate and

feed. However, they lack the independent control over phase and leakage constants

[44, 45, 46] that SMRSs provide.

In this chapter, a step-by-step procedure is outlined for designing an SMRS that

radiates at a desired angle. The concepts of an SMRS and a periodically slotted

parallel-plate waveguide antenna are then combined to design a printed leaky-wave

antenna that possesses a sinusoidally varying surface reactance [47, 48]. The antenna

is directly fed, simple to fabricate, and allows for nearly independent control of phase

and attenuation constants.

In Section 2.2, an overview of SMRSs and related theory is presented. The step-

by-step design procedure for designing a SMRS with desired radiation characteristics

is discussed in Section 2.3. A detailed example is also presented in this section.

Section 2.4 shows how the designed SMRS can be used to realize a PCB-based leaky-

wave antenna by printing metallic strips (separated by varying gaps) over a grounded

dielectric substrate. The extraction method used to determine the appropriate gap

sizes (between metallic strips) is outlined. Finally, Section 2.5 reports simulation and

experimental results for the antenna.
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2.2 SMRS Theory

A SMRS refers to a surface whose modal surface impedance is modulated sinu-

soidally. The modal surface impedance of a scalar impedance surface is defined as the

ratio of the tangential electric field to the tangential magnetic field of the surface wave

guided by the surface. By convention, the surface impedance is defined such that the

Poynting vector points into the surface. Since the modal surface impedance (ηsurf ) is

modulated sinusoidally, three parameters (X,M ,a) can be used to characterize it (see

Fig. 2.1). The average surface reactance is denoted by X, the modulation factor by

M , and the periodicity of the sinusoid by a. In the cases considered, ηsurf is inductive

such that it supports a TM surface wave [7]. The x-direction is assumed to be the

direction of propagation along the SMRS. As a result, the surface impedance is given

by the following expression,

ηsurf (z) = jη0X
′
[
1 + M cos

(
2πx

a

)]
(2.1)

where X ′ is the average surface reactance normalized by the free-space wave impedance

(X ′ = X/η0).

Due to the periodic nature of the surface impedance, the fields above the surface

can be expanded in terms of spatial harmonics, as shown in Fig. 2.2. The fundamental

wave number tangential to the surface (Bloch wave number) is written as kx0 = κ

and the tangential wave number of the nth spatial harmonic as kxn = κ+2πn/a. The

corresponding normal wave numbers (kzn) can be found using the separation relation

kzn =

√
k2

0 −
(

κ +
2πn

a

)2

. (2.2)

Employing the definition of the surface impedance and (2.1), a dispersion relation
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can be written in continued fraction form [43]:

1− j

X ′

√
1−

[
κ

k0

]2

= (2.3)

M2/4 |

1− j
X′

√
1−

[
κ
k0

+ 2π(−1)
k0a

]2

− M2/4 |

1− j
X′

√
1−

[
κ
k0

+ 2π(−2)
k0a

]2
...

+
M2/4 |

1− j
X′

√
1−

[
κ
k0

+ 2π(1)
k0a

]2

− M2/4 |

1− j
X′

√
1−

[
κ
k0

+ 2π(2)
k0a

]2
...,

where κ = β − jα.

Explicit expressions for the relative amplitudes of the magnetic-field spatial har-

monics have also been derived in [43]. Equation (2.3) is a function of κ, the primary

quantity of interest. Once κ is known, all of the spatial harmonic wave numbers are

known, and the relative amplitudes of the spatial harmonics can be calculated. Nu-

merically solving (2.3) for κ, for the case X ′ = 1.2 and M = 0.2, yields the dash-dot

curve shown in Fig 2.3. Notice the appearance of the stop band and the higher-order

spatial harmonics (dashed curves). It should be noted that if (2.3) was solved for

the case of zero modulation (M = 0), the equation would simplify to the dispersion

equation for a scalar inductive surface,

κ = k0

√
1 + X ′2, (2.4)

and the solution would be given by the solid line in Fig. 2.3. For small values

of modulation (M = 0.2 in this case), the full solution for κ obtained from (2.3)
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Figure 2.1: Sinusoidal form of the surface reactance.

x 

z 

Figure 2.2: Spatial harmonic representation of fields due to SMRS and their corre-
sponding wave numbers.

can be approximated by the solution of κ obtained from (2.4). Since (2.4) assumes

no modulation, it should be noted that this approximation is only valid away from

the stop bands. Furthermore, it is evident that (2.4) is not a periodic function so

it does not yield a periodic solution. Its solution only yields an approximation for

the fundamental wave number along the surface and not for the higher-order spatial

harmonics. However, since the higher-order spatial harmonics are simply shifted

versions of the fundamental harmonic, it is still possible to approximate the higher-

order spatial harmonics. These approximate solutions are exploited to construct a

simplified design procedure.
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Figure 2.3: Solution of dispersion equation (2.3)for varying periodicity (κa vs. k0a
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2.3 Surface Design

2.3.1 Simplified Design Procedure

This section outlines a step-by-step procedure for designing a SMRS that radiates

at an arbitrary off-broadside angle. Specifically, a procedure is outlined that describes

how the parameters X,M , and a can be selected to generate directive radiation at a

desired angle at a fixed frequency. The fundamental wave number along the surface

can be decomposed into its real and imaginary parts, κ = β− jα, where β represents

the propagation constant (or phase delay) and α represents the attenuation constant

(or leakage rate) along the surface. For the un-modulated case (M = 0), the dispersion

equation reduces to

κapprox = k0

√
1 + X ′2 = βapprox (2.5)

where βapprox is close to the actual value of β when the modulation of the surface

is small. Since (2.5) only yields real solutions, κapprox will only yield a real-valued

approximation for κ, implying that there is a phase delay along the surface (β is
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non-zero) but no attenuation due to radiation (α = 0). In reality, κ is complex, since

leaky waves are excited. This will be reconciled later in the design process. The

design process can be broken down into ten steps, which are outlined below.

1. Choose a design frequency (f0) and its corresponding free space wave number,

k0 = 2πf0

c
.

2. Choose the desired angle of radiation for the n = −1 spatial harmonic (θn=−1)

such that 90◦ > θn=−1 > −90◦.

3. Fix the value of either X (average surface reactance) or a (periodicity).

4. Solve for the remaining value using

sin(θn=−1) ≈
√

1 + X ′2 − 2π

k0a
. (2.6)

5. Solve for βapprox using

sin(θn=−1) =
βapprox − 2π

a

k0

. (2.7)

Equation (2.7) is derived from (2.5), which assumes that M = 0. In reality,

M6=0, but this assumption allows for an approximate β (denoted by βapprox) to

be computed, since low values of modulation only perturb β slightly from the

un-modulated case. The choice of X and a predominately determines β, and

therefore the beam direction [42].

6. Choose a value for M , where M ≤1. A non-zero modulation introduces an

attenuation constant α, which causes the wave number along the surface (κ) to

become complex.
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7. (Optional) Compute a more accurate value of κ, including the imaginary com-

ponent, by using the full dispersion equation (2.3) if M is large. The following

perturbation equation can be used for small values of M [43].

κ = β − jα = k0

√
1 + X ′2 (2.8)

−M2

4

k0X
′2

√
1 + X ′2




1

1− j
X′

√
1−

[√
1 + X ′2 − 2π

k0a

]

+
1

1− j
X′

√
1−

[√
1 + X ′2 + 2π

k0a

]


 .

The variables X and a control β (beam pointing direction), while M controls

the attenuation constant (antenna beam width). Larger values of M lead to

larger values of α and therefore broader beam widths. A distribution of α can

be used to control side lobe levels of the radiation pattern [42]. This can be

achieved by varying M along the antenna [49].

There are two advantages to dealing with low values of modulation. Firstly, the

design procedure can be simplified significantly since the M = 0 approxima-

tion can be used away from stop bands. This removes the need for iteratively

solving the dispersion equation (2.3). Secondly, the beam pointing direction

can be designed by determining X and a, and the beam width controlled by

adjusting M without significantly altering the beam pointing direction. This

allows for nearly independent control of α and β. The definition of “low” values

of modulation is discussed in the next subsection.

8. For the case where the accuracy of the beam direction is critical, compensate

for the slight beam-shift that occurs due to the introduction of M with a slight

adjustment of X.

17



-5 0 5
0

2

4

6

8

βa = Re {κa}  (radians)

k
0
a
  

 (
ra

d
ia

n
s) 6 8 10 12

7

8

9

10

11

12

R
ad

ia
ti
on

co
ne

bo
un

da
ry

R
adiation

cone
boundary

R
ad

ia
tio

n c
on

e
bou

ndar
y

X’ = 1.2

M = 0.2
A

B

C

n = 0

n = -2
n = -1

n = 0

n = -2

n = -1

No modulation

Broadside

Backward endfire

Forward endfiren = -1 30

n = -2 -34

Radiating beams at design 

point of  k0a = 5.917 rad

Figure 2.4: Brillouin diagram for a SMRS with design parameters: X = 1.2, M = 0.2.

9. Verify that the operating point k0a is not in the band-gap for the selected values

of X, M , and a.

10. Finally, check if there are other radiating spatial harmonics besides the n = −1

harmonic. The nth harmonic radiates at an angle

θn = arcsin

(
κa + 2πn

k0a

)
(2.9)

when

(κ +
2πn

a
)2 < k0. (2.10)

In the next subsection, this ten step procedure is applied to design a surface that

radiates at 30◦.
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2.3.2 Surface Design for 30◦ main beam at 10 GHz

A surface was designed that radiates at an angle of θn=−1 = 30◦ from broadside

at an operating frequency of 10 GHz. Using the design procedure described earlier,

this surface was designed with the parameters X ′ = 1.2, M = 0.2, a = 28.25 mm.

Fig. 2.4 shows the Brillouin diagram for the structure. The solid lines are light lines

and define the radiation cone. The fundamental harmonic does not penetrate the

radiation cone, and therefore is always bound to the surface. Point A represents

the point where the n = −1 spatial harmonic enters the radiation cone (backward

endfire). Point B is where it radiates in the broadside direction and point C (shown

as an inset in Fig. 2.4) is where the n = −1 spatial harmonic exits the radiation

cone, representing forward endfire. Therefore, points A and C mark the operating

boundaries of the antenna. It should be noted that a directive beam cannot be

designed exactly at broadside due to a dramatic increase in the attenuation constant

at this point [50]. At the operating point of k0a = 5.917 radians, the n = −1 spatial

harmonic radiates at θn=−1 = 30◦, verifying the design procedure. A parasitic beam

from the n = −2 spatial harmonic is also present at θn=−2 = −34.18◦. These angles

can easily be calculated using (2.9). Calculating the radiation angle for the other

spatial harmonics shows that θn=0,1,2.. ≈ 90◦ and θn=−3,−4,−5,... ≈ −90◦ corresponding

to forward-bound and backward-bound waves, respectively. This is consistent with

the Brillouin diagram of Fig. 2.4 with regard to which spatial harmonics appear in

the radiation cone.

Fig. 2.5 and Fig. 2.6, generated using (2.4), show the dependance of α and β on

the modulation factor when X ′ = 1.2 is fixed and k0a = 5.917 radians is fixed. For low

values of modulation, (M < 0.6 in this case), it is clear that α changes dramatically

whereas β is only slightly perturbed. This demonstrates nearly independent control

of the parameters over a fairly wide range of modulation factor, M . The range over

which β remains fairly constant determines the values of M that are considered to be
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Figure 2.5: Theoretical variation in normalized propagation constant (β/k0) along an
ideal SMRS as a function of modulation (M) for X ′ = 1.2 and k0a = 5.917
radians.

“low”. Fairly independent control of α and β can be achieved for values of modulation

up to M ≈ 0.6. The sudden change in β that occurs when M ≈ 0.6 can also be seen

in the band diagrams of Fig. 2.7 for four different modulation factors. For the

designed surface with M = 0.2, the surface impedance ranges between 361.92j Ω and

542.88j Ω. The impedance range corresponding to M = 0.6 is 180.96j Ω to 723.84j

Ω. Therefore, even “low” values of modulation correspond to fairly wide impedance

ranges.

Now that a theoretical surface possessing the desired radiation characteristics has

been designed, the question remains as to how this surface can be implemented and

a leaky-wave antenna made from it. The next section addresses these two questions.
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2.4 Leaky-Wave Antenna Implementation

2.4.1 From a Theoretical Surface to a Realizable Antenna

Thus far, the discussion has been restricted to SMRSs and the design procedure

for one that radiates the n = −1 spatial harmonic at a specified angle. In the previous

section, a surface was designed to generate a beam at θn=−1 = 30◦ at a frequency

of 10 GHz. This section describes the implementation of the SMRS using a printed

circuit board (PCB), in order to create a leaky-wave antenna that radiates at the

same angle and frequency as the theoretical surface.

The SMRS was implemented as an array of copper strips over a grounded dielectric

substrate, as shown in Fig. 2.8. One period (a) of the sinusoidal surface impedance

is referred to as a unit cell. Each unit cell was implemented by sampling the surface

impedance at ten discrete, equispaced points. The impedance at each point was

realized as a gap between two copper strips over a grounded dielectric substrate. The

strips were printed onto an ARLON AD-600 substrate (εr = 6.15, tanδ ≈ 0.0035) with

thickness d = 2.54 mm using a photolithographic etching procedure. The array of

strips was designed to have periodically varying gaps to achieve the sinusoidal, modal

surface impedance profile needed to realize the SMRS. The antenna, consisting of

approximately eight unit cells, was 22.88 cm in length. The width of the surface

was truncated (to 30 mm), such that a fairly uniform aperture illumination was still

present, to form the leaky-wave antenna. The method used to map gap-sizes to

desired surface impedances is described in detail in the next subsection.

2.4.2 Mapping Surface Impedance to Gap Size

The SMRS was implemented as a two-layer structure consisting of a periodically

varying capacitive sheet (metallic strips) over a grounded dielectric substrate. A unit

cell, corresponding to one period of the sinusoidal surface impedance, is shown in
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Figure 2.8: Unit cell representing one period of the SMRS.

x 

z 

Figure 2.9: Side view of one unit cell representing one period of the SMRS.

Fig. 2.9. The capacitive sheet was designed such that the modal surface impedance

looking into the two-layer structure has the same sinusoidal ηsurf as the theoretical

SMRS designed in Section III. Each period (a) of the capacitive sheet was discretized

into ten segments (a/10 in size). The capacitance over each segment was assumed

to be constant, and was implemented as two copper strips separated by a gap. The

capacitance of each segment is represented by a constant sheet impedance, ηsheet,

shown in Fig. 2.10. This sheet impedance is defined as the ratio of tangential

electric field to the surface current on the sheet. The sheet impedance in parallel

with a short-circuited transmission line (representing the grounded dielectric sub-

strate with thickness d) constitutes the transmission-line model of each segment. The
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Figure 2.10: Normal-incidence transmission-line model for one discrete segment of
the unit cell.

transmission-line model of each segment (Fig. 2.10) is first used to find ηsheet from

a normal-incidence scattering simulation. This sheet impedance is then used to find

the TM modal surface impedance (ηsurf ) for that specific gap size. The value of the

sheet impedance extracted at normal incidence (β = 0) is accurate even at oblique

incidence (away from β = 0) if the transverse unit cell size is much smaller than the

guided wavelength (see Appendix A). The overall goal here is to find the mapping

between gap size and ηsurf , so that a desired surface impedance profile can be realized

by printing an array of metallic strips with varying gaps over a grounded dielectric

substrate. Details of the procedure are outlined below.

1. The first step is to find the input impedance, ηin, of a single gap over the

grounded dielectric substrate at normal incidence. This is accomplished by

performing a simple normal-incidence scattering simulation, such as a driven-

mode simulation in Ansys HFSS (see Fig. 2.11). The smallest gap allowed by

one’s fabrication facility marks a good starting point. Since ηin is based on

normal incidence, there is no phase delay along the surface and therefore no

information can be gathered regarding the modal impedance of a surface wave
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that can be guided. However, it is still possible to extract ηsheet from ηin.

2. Using the circuit model shown in Fig. 2.10, ηsheet can be extracted using the

following expression:

1

ηsheet

=
1

ηin

− 1

jη1 tan(k1d)
(2.11)

=
1

ηin

− 1

j η0√
εr1

tan(k0
√

εr1d)
.

Notice that the characteristic wave numbers and impedances in the transmission-

line model are just those of free space in region 0 and the dielectric substrate

with permittivity εr1 in region 1, respectively.

3. Once ηsheet is determined, it is possible to find ηsurf using a modified transmission-

line model where the characteristic wave numbers and impedances are now rep-

resented by the TM wave numbers and impedances, as shown in Fig. 2.12. From

this transmission-line model, it is apparent that ηsurf is given by the impedance

looking down into the shunt combination of ηsheet and a transmission-line sec-

tion representing the grounded dielectric substrate with thickness d. The trans-

verse resonance technique [42] can be applied to derive a dispersion equation

for the TM surface waves guided by this multi-layer structure. Considering the

transmission-line model shown in Fig. 2.12,

1

ηup(x)
+

1

ηdown(x)
= 0 (2.12)

where ηup and ηdown represent the impedances looking in opposite directions

from any point on the transmission line. In this case, it is convenient to use the

impedances observed above and below the capacitive sheet, as shown in Fig.

2.12. The dispersion relation from (2.12) can be written as
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1

ηsurf

=
1

ηsheet

+
1

j η0kx1

k0εr1
tan(kx1d)

(2.13)

where

kx1 =

√
k2

0(εr1 − 1) +

(
ηsurfk0

η0

)2

. (2.14)

This equation can be solved numerically to find ηsurf , from ηsheet extracted for

a given gap size.

4. Since the gap size is a free parameter, a design curve can be generated by

parametrically sweeping the gap size in simulation and repeating the above

procedure for the various gap sizes. A curve can be fitted to the data points to

create a design curve which maps desired surface impedance values to the gap

sizes needed to achieve them.

Fig. 2.13 represents the design curve used to map a desired surface impedance

to its corresponding gap size for the antenna designed in this chapter. Methods used

in the past for relating gap size to ηsurf included using an eigenmode simulator to

parametrically sweep not only gap size, but also phase delay [19, 22]. For a given gap

size, the phase delay across the unit cell was swept in order to find the phase delay

that corresponds to the operating frequency. Once this phase delay was found (for a

given gap size) the surface impedance could be computed using [19]

ηsurf = jη0

√(
φ

k0l

)2

− 1 (2.15)

where φ represents the phase delay across the unit cell and l = a/10 represents the

width of one-tenth of a unit cell, as shown in Fig. 2.11. This procedure had to

be repeated for each gap size resulting in time consuming, two-dimensional sweeps

over phase delay and gap size. Other methods include using custom MoM or FEM
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Figure 2.11: The normal-incidence scattering simulation performed on a single gap
(segment) in order to find ηin and the extracted sheet impedance (ηsheet).

Figure 2.12: Modified transmission-line model for deriving the modal impedance.
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Figure 2.13: Gap spacing vs. surface reactance for the designed antenna. For the
driven method, the sheet impedance is extracted from normal-incidence
scattering simulations.

eigenmode solvers to numerically solve for phase delay across the periodic unit cell

for a stipulated frequency. Equation (2.15) assumes that the segment, consisting of

a multi-layer structure (capacitive sheet over a grounded dielectric substrate), can

be approximated as a surface impedance. As will be shown in the next section, this

approximation does not allow the attenuation constant to be predicted accurately

if the net thickness of the multi-layer structure is not very small compared to a

wavelength.

The main advantage of the method proposed here is that simulations can be done

easily using a commercial solver. Furthermore, the commercial solver can be operated

in scattering-solution mode, as opposed to eigen-solution mode. This eliminates the

ambiguity of multiple modes corresponding to a single phase delay across the cell. In

the method proposed here, only the gap size parameter needs to be swept, therefore

significantly reducing the number of time consuming simulations that need to be per-

formed. Fig. 2.13 compares the design curves generated using the eigenmode method

[19] and the driven method proposed in this chapter. Close agreement between the
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two methods is observed.

The driven method assumes that the only interaction between the ground plane

and the capacitive sheet is via propagating waves through the dielectric. Therefore,

the method is strictly valid when the dielectric thickness, d, is larger than the widest

gap-size. This ensures that the evanescent wave interaction between the ground plane

and the capacitive sheet is minimal [51].

2.5 Simulation and Experiment

A leaky-wave antenna, consisting of eight unit cells, was designed according to

the procedure outlined in the previous section. Both ends of the antenna were ta-

pered down to 50 Ω microstrip transmission lines and connected to edge-mount SMA

connectors (see Fig. 2.14). This allowed return loss and insertion loss measurements

to be performed. The tapers provided an impedance transition between the antenna

and the 50Ω feed lines. During the radiation pattern measurements, the antenna was

fed at one end while the other was terminated with a 50Ω SMA load to minimize

reflections from the end of the antenna.

Fig. 2.15 shows good correspondence between the simulated (using Ansys HFSS)

and measured radiation patterns along the E-plane, at the design frequency of 10

GHz. The angles of maximum radiation for the simulated and fabricated antennas

were 30◦ and 29.25◦ respectively. The simulated HPBW along the E-plane was 8.51◦

in simulation and 7.57◦ in experiment. The simulated and measured gains were 17.04

dB and 18.4 dB respectively, and the measured cross-polarization remained below -22

dB over all angles, as seen in Fig. 2.16. The return loss and insertion loss from 9 GHz

to 11 GHz is shown in Fig. 2.17. It should be noted that due to the complexity of the

full-wave simulation, which involved a multiple wavelength long structure with many

sub-wavelength features, the simulation did not reach a high level of convergence.

This accounts for the discrepancy in gains between simulation and experiment.

29



Figure 2.14: Photograph of fabricated antenna with a 50Ω termination at one end.

The radiation patterns were also measured at discrete frequencies between 9 GHz

and 11 GHz. Fig. 2.18 shows co-polarization and cross-polarization radiation pat-

terns at 0.5 GHz increments between 9 GHz and 11 GHz, while Fig. 2.19 shows the

simulated patterns versus the measured ones. The average beam squint was approx-

imately 17.5◦/GHz and the beam angle was ≈ 13◦ and ≈ 48◦ at 9 GHz and 11 GHz

respectively. The directions and beam widths of the measured main beams were in

close agreement with the simulated patterns.

At the design frequency, the beam angle was very close to the design angle of

30◦, showing that the implemented SMRS was able to realize β accurately. However,

based on the beam width of the main beam in Fig. 2.15, the value of α for the im-

plemented SMRS was significantly larger than that predicted by SMRS theory. Due

to fabrication constraints on minimum gap size, the copper strips were printed on a

2.54 mm thick substrate in order to achieve the impedance values necessary to imple-
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Figure 2.15: Simulated and measured co-polarization E-plane radiation patterns at
f0 = 10 GHz.
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Figure 2.16: Measured co-polarization and cross-polarization E-plane radiation pat-
terns at f0 = 10 GHz.
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Figure 2.17: Measured |S11| and |S21| from 9 GHz to 11 GHz.
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Figure 2.18: Measured co-polarization and cross-polarization E-plane radiation pat-
terns for various frequencies between 9 GHz and 11 GHz.
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Figure 2.19: Measured and simulated co-polarization E-plane radiation patterns for
frequencies between 9 GHz and 11 GHz.
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ment the SMRS. This substrate, of approximately λd/5 thickness, was thick enough

to introduce error into the sheet impedance approximation, used in Section 2.3, which

assumes an infinitely thin sheet. This error was due to elements interacting through

the dielectric, resulting from the considerable thickness of the dielectric substrate.

Even though excellent correspondence between the theoretical and simulated values

of β is observed, disagreement between the theoretical and simulated value of α can be

attributed to this source of error. A formulation that accounts for dielectric thickness,

and therefore allows κ = β− jα to be found more accurately is given in Appendix B.

Despite not being able to accurately predict α from SMRS theory, Table 2.1 presents

full-wave simulation results that show that α can be controlled nearly independently

of β by varying the modulation factor, M while keeping X and a fixed. Table 2.1

reports values of α and β extracted from full-wave simulation for an antenna that is

eight unit cells in length. Fig. 2.20 shows the simulated radiation patterns for the

cases corresponding to Table 2.1. The beam direction is approximately the same for

all the radiation patterns, but the beam width increases with increasing modulation.

This confirms that the leakage rate can be controlled nearly independently of the

phase constant.

Table 2.1: Extracted values of κ = β − jα for various values of modulation factor.
M β/k0 α/k0 κ (rad/m) θn=−1 (degrees)
0.1 1.568949 0.021147 328.6 - 4.42906j 29.3
0.2 1.568949 0.026375 328.6 - 5.52393j 30.0
0.27 1.574297 0.066588 329.7 - 13.9461j 30.1

2.6 Chapter Summary

In this chapter, a design procedure for a SMRS allowing directive radiation at an

arbitrary off-broadside angle was outlined. The implementation of the SMRS using

printed metallic strips over a grounded dielectric substrate was also presented. An

extraction method for finding the sheet impedance of the metallic strips, using a
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Figure 2.20: Simulated E-plane radiation patterns for eight unit-cell leaky-wave an-
tennas with different modulation factors.
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normal incidence scattering simulation, was presented. Using the extraction method,

a design curve that maps the surface impedance to the gap size between metallic

strips is generated. The design procedure for the surface allows for nearly independent

control of the leakage rate and the phase constant along the SMRS. A printed leaky-

wave antenna based on an SMRS was reported. The antenna is directly fed and

simple to fabricate. At the design frequency of 10 GHz, the antenna radiates at

approximately 30◦ from broadside, and exhibits an experimental gain of 18.4 dB.

Good agreement between simulation and experiment was observed. SMRS theory

accurately predicted the phase constant (β) along the antenna, but the simulated

attenuation constant (α) differed due to the antenna’s electrical thickness. Despite

the inaccuracy in the theoretical prediction of α, it was shown through simulation that

α can be controlled by varying the modulation factor without significantly perturbing

β. This verifies the claim of nearly independent control of leakage rate and phase

constant along the antenna.

Other forms of periodic surface impedance modulation (other than sinusoidal),

may also be advantageous for controlling side lobes due other radiating harmonics

(other than the n = −1 harmonic). Appendix B provides a formulation for finding

α and β for arbitrary periodic sheet impedances. Tapering the modulation factor

along the extent of the surface (tailoring α along the surface) may also be useful for

controlling side lobes.

In this chapter, the scalar surface impedance was varied in order to control the

electromagnetic fields along the surface. Chapter III launches the study of tensor

impedance surfaces (TISs), which continues for the remainder of this thesis. TISs

allow enhanced control of the fields along a surface. Many of the concepts presented

in this chapter, including the transverse resonance technique and the sheet impedance

extraction method, are modified and applied to TISs in the upcoming chapters. In

Chapter III, the dispersion equations for both idealized tensor impedance bound-
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ary conditions (TIBCs) and printed-circuit tensor impedance surfaces (PCTISs) are

derived, and their propagation characteristics predicted.
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CHAPTER III

Analytical Modeling and Dispersion Analysis of

Tensor Impedance Surfaces and Printed-Circuit

Tensor Impedance Surfaces

3.1 Introduction

In the previous chapter, a scalar, sinusoidally modulated impedance surface was

designed. A leaky-wave antenna based on this surface was then realized using printed-

circuit board (PCB) technology. That is, the metallic cladding above a grounded

dielectric substrate was patterned to achieve the desired surface impedance profile.

Since propagation only along one direction was considered, it was possible to im-

plement the scalar surface impedance using printed metallic strips above a grounded

dielectric substrate. When considering propagation in two dimensions, square patches

or other fully symmetric shapes could be used to implement scalar impedances (see

Fig. 3.1). The propagation characteristics of electromagnetic waves on isotropic

(scalar) impedance surfaces have been studied for some time, to control surface

waves and leaky-wave radiation [7]. Extensive analytical modeling has been reported

for open, printed structures such as the mushroom structure [52], which support

isotropic forward-wave and backward-wave in-plane propagation. Tensor impedance

surfaces (TISs) [10, 11] have also been explored for manipulating bound and leaky
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Figure 3.1: Examples of isotropic unit cells consisting of a printed metallic cladding
over a grounded dielectric substrate (top view). Dark areas indicate met-
allization.

Figure 3.2: Examples of anisotropic unit cells consisting of a printed metallic cladding
over a grounded dielectric substrate (top view). All four unit cells are
anisotropic but the first two unit cells are represented with diagonal
impedance tensor. The last two unit cells are represented with a full
tensor. Dark areas indicate metallization.

waves. Great strides have been made in realizing practical printed devices such as

holographic antennas and polarization controlling surfaces using the anisotropic prop-

erties of tensor surfaces [11, 16, 17, 18, 20, 22].

A single, idealized tensor impedance boundary condition (TIBC) [10, 11] has

been used to design and analyze TISs. However, their implementation has been with

printed-circuit structures, consisting of a patterned metallic cladding printed over a

grounded dielectric substrate (see Fig. 3.2). In other words, it has been assumed that

these structures can be approximated as single surfaces. Using this approximation

can simplify the design process but may inadequately model radiation and guidance

characteristics. A more accurate method for designing and analyzing these TISs is

described in detail here in this chapter [53, 54, 55]. The method involves modeling

printed-circuit structures as printed-circuit tensor impedance surfaces (PCTISs) con-
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sisting of a tensor impedance sheet over a grounded dielectric substrate. The tensor

impedance sheet models the patterned metallic cladding (see Fig. 3.2). It relates the

tangential electric field to the current density on the sheet.

In this chapter, a method for analytically predicting the guidance characteristics

of a PCTIS from two normal-incidence full-wave simulations is presented. The vari-

ous parts of the procedure are outlined in separate sections of the chapter. In Section

3.2, the dispersion equation for an idealized TIBC [10] is derived by expressing the

electromagnetic field in terms of the normal components of TM and TE waves. A

similar approach is used in Section 3.3 to find the dispersion equation for an arbi-

trary tensor impedance sheet over a grounded dielectric substrate. This structure

is used to model a PCTIS. In Section 3.4, the one-dimensional sheet impedance ex-

traction method presented in Chapter II [47] is expanded to include two-dimensional

tensor sheet impedances. Specifically, this section introduces a method for extract-

ing the tensor sheet impedance of an arbitrary patterned metallic cladding. The

method employs two simple normal-incidence simulations using a full-wave electro-

magnetic solver. Methods already exist for extracting the sheet impedance tensor if

it is diagonal [56, 57]. In contrast, the method introduced here does not require a

priori knowledge of the structure’s principal axes, and therefore can be used to ex-

tract the full non-diagonal tensor sheet impedance. The method assumes there is no

evanescent-wave interaction between the metallic cladding and ground plane. There-

fore, they should be sufficiently displaced from each other. It is also assumed that the

unit cell of the patterned metallic cladding is small compared to a guided wavelength,

allowing it to be homogenized and modeled as an impedance sheet. By combining

the dispersion equation for the PCTIS and the sheet impedance extraction method,

the guidance characteristics of three example geometries are predicted analytically

and verified using a full-wave eigenmode solver in Section 3.5.
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Figure 3.3: TIS supporting a TM polarized wave.

3.2 Dispersion Equation for an Idealized Tensor Impedance

Boundary Condition (TIBC)

TISs can be challenging to design since altering the printed geometry in even

one direction generally affects all the tensor entries. Furthermore, depending on the

reactance entries of the tensor surface impedance, the surface can support either TM ,

TE, or mixed modes. In this section, the dispersion equation for an idealized TIBC

is derived using a procedure distinct from [10]. This procedure casts the dispersion

equation in terms of the normal field components, ETM
z and HTE

z . For a TM wave,

HTM
z = 0 so it can be completely characterized by the ETM

z component (Fig. 3.3).

Similarly, for a TE wave, ETE
z = 0, so it can be characterized by HTE

z . The total

electric and magnetic fields at the surface of the boundary are given by [58]

Etotal =E
TM

+ E
TE

=ETM
z ẑ+

1

k2
t

[
∇s

∂ETM
z

∂z
− jωµ∇s ×HTE

z ẑ

]
(3.1)
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and

H total =H
TM

+ H
TE

=HTE
z ẑ+

1

k2
t

[
∇s

∂HTE
z

∂z
+ jωε∇s × ETM

z ẑ

]
,

(3.2)

where ∇s = −j(kxx̂ + kyŷ) and k2
t = k2

x + k2
y. Etotal and H total are the sum of the

TM and TE electric and magnetic fields at the surface (z = 0).

The surface impedance tensor, ηsurf , is defined as Et = ηsurf ẑ×H t where Et and

H t are the tangential components of Etotal and H total, respectively. This boundary

condition can equivalently be expressed as




Ex

Ey


 =




ηxx ηxy

ηyx ηyy






−Hy

Hx


 . (3.3)

The elements of ηsurf are the surface impedance entries of interest. Since the tangen-

tial electric and magnetic fields are composed of TM and TE waves,




(
ETM

x + ETE
x

)
(
ETM

y + ETE
y

)


 =




ηxx ηxy

ηyx ηyy






− (

HTM
y + HTE

y

)
(
HTM

x + HTE
x

)


 .

(3.4)

By expressing all field components in terms of ETM
z and HTE

z , and noting that η0 =
√

µ
ε
, it is possible to re-cast the matrix equation as




b11 b12

b21 b22







ETM
z

HTE
z


 = 0, (3.5)
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where

b11 = kxkz +
kxkηxx

η0

+
kykηxy

η0

b12 = kkyη0 + kykzηxx − kxkzηxy

b21 = kykz +
kxkηyx

η0

+
kykηyy

η0

b22 = −kkxη0 + kykzηyx − kxkzηyy.

(3.6)

By setting the determinant of matrix b in (3.5) to zero, the dispersion equation can

be found

0 =

(
1 +

ηxx

η0

ηyy

η0

− ηxy

η0

ηyx

η0

)
kkz

+

(
ηxy

η0

+
ηyx

η0

)
kxky +

(
ηxx

η0

+
ηyy

η0

)
k2

−
(

ηxx

η0

)
k2

y −
(

ηyy

η0

)
k2

x,

(3.7)

which agrees with (19) in [10].

Since b is a full matrix, the surface impedance can support mixed modes (both

TE and TM modes). The principal axes (crystal axes) of the TIS are given by the

eigenvectors that diagonalize the surface impedance tensor, ηsurf . In the event that

the direction of propagation, kt, aligns with one of the principal axes, b becomes

diagonal matrix, b′, and the modes decouple. Therefore, equation (3.5) becomes




b′11 0

0 b′22







ETM
z

HTE
z


 = 0. (3.8)

Propagation along the principal axes results in purely TM or TE modes supported by

the surface impedance. The determinant of b′ is zero when either b′11 = 0 or b′22 = 0,

where b′11 is associated only with ETM
z and b′22 is associated only with HTE

z . In the

next section, the general method of separating the field into TM and TE waves is
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Figure 3.4: PCTIS consisting of a patterned metallic cladding over a grounded di-
electric substrate. The cladding is modeled as a tensor impedance sheet.

applied to the analytical model for a PCTIS, in order to find its dispersion equation.

The model consists of a tensor sheet impedance over a grounded dielectric substrate,

where the sheet impedance models a periodically patterned metallic cladding.

3.3 Dispersion Equation for a Printed-Circuit Tensor Impedance

Surface (PCTIS)

Equation (3.7) is the dispersion equation for an idealized TIBC. However, a PCTIS

(see Fig. 3.4), consisting of a patterned metallic cladding over a grounded dielectric

substrate, more accurately represents TISs described in literature [11, 16, 17, 18, 20,

22]. The metallic cladding is modeled as a tensor impedance sheet. The derivation of

the dispersion equation for this two-layer surface is presented in this section. Using

a similar procedure of separating the field into TM and TE waves, the incident and

reflected electric and magnetic fields in the dielectric substrate (region 1) and free

space (region 2) can be expressed as
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E1i =ETM
z1i ẑ+

1

k2
t

[
(jkt)

∂ETM
z1i

∂z
− ωµ1(kt)×HTE

z1i ẑ

] (3.9)

Enr =ETM
znr ẑ+

1

k2
t

[
(−jkt)

∂ETM
znr

∂z
− ωµn(kt)×HTE

znr ẑ

] (3.10)

and

H1i =HTE
z1i ẑ+

1

k2
t

[
(jkt)

∂HTE
z1i

∂z
+ ωε1(kt)× ETM

z1i ẑ

]
,

(3.11)

Hnr =HTE
znr ẑ+

1

k2
t

[
(−jkt)

∂HTE
znr

∂z
+ ωεn(kt)× ETM

znr ẑ

]
,

(3.12)

where n = 1 for the reflected wave in region 1, and n = 2 for the reflected wave in

region 2. No incident wave is present in region 2. Enforcing a vanishing tangential

electric field at the ground plane (z = −d), yields two equations: one for each of the

x and y components of the electric field,

0 = (kx1kz1) ETM
z1i

e−jkz1d − (kxkz1) ETM
z1r

ejkz1d

−
(

k2
1ky

ωε1

)
HTE

z1i
e−jkz1d −

(
k2

1ky

ωε1

)
HTE

z1r
ejkz1d

(3.13)

and

0 = (kykz1) ETM
z1i

e−jkz1d − (kykz1) ETM
z1r

ejkz1d

+

(
k2

1kx

ωε1

)
HTE

z1i
e−jkz1d +

(
k2

1kx

ωε1

)
HTE

z1r
ejkz1d.

(3.14)
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Enforcing the continuity of the tangential electric field at z = 0, (E2 − E1) × ẑ = 0

yields another two equations:

(3.15)

(
kxkz2

k2
2 − k2

z2

)
ETM

z2r
+

k2
2

ωε2

(
kykz2

k2
2 − k2

z1

)
HTE

z2r

=

(
kxkz1

k2
1 − k2

z1

)
ETM

z1i
−

(
kxkz1

k2
1 − k2

z1

)
ETM

z1r

− k2
1

ωε1

(
ky

k2
1 − k2

z1

)
HTE

z1i
− k2

1

ωε1

(
ky

k2
1 − k2

z1

)
HTE

z1r

(3.16)

for the x-component of Et and

(
ky2kz2

k2
2 − k2

z2

)
ETM

z2r
+

k2
2

ωε2

(
kx2kz2

k2
2 − k2

z1

)
HTE

z2r

=

( −kykz1

k2
1 − k2

z1

)
ETM

z1i
+

(
kykz1

k2
1 − k2

z1

)
ETM

z1r

+
k2

1

ωε1

(
kxkz1

k2
1 − k2

z1

)
HTE

z1i
+

k2
1

ωε1

(
kxkz1

k2
1 − k2

z1

)
HTE

z1r

(3.17)

for the y-component. The tensor sheet impedance, defined by

ηsheet =




ηs
xx ηs

xy

ηs
yx ηs

yy


 , (3.18)

relates the tangential electric field at the sheet to the current density across the sheet

as 


Ex

Ey


 =




ηs
xx ηs

xy

ηs
yx ηs

yy







Jx

Jy


 (3.19)

at z = 0. This equation can be recast as




Jx

Jy


 =




Y s
xx Y s

xy

Y s
yx Y s

yy







Ex

Ey


 (3.20)
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where 


Y s
xx Y s

xy

Y s
yx Y s

yy


 = Y sheet = η

−1
sheet. (3.21)

Substituting the tangential electric field in region 2 at z = 0, into (3.20), it is clear

that

Jx = Y s
xx

(
ETM

x2r
+ ETE

x2r

)
+ Y s

xy

(
ETM

y2i
+ ETE

y2i

)
, (3.22)

and

Jy = Y s
yx

(
ETM

x2r
+ ETE

x2r

)
+ Y s

yy

(
ETM

y2i
+ ETE

y2i

)
. (3.23)

Enforcing Ampere’s Law, ẑ × (H2 − H1) = J , at the impedance sheet (z = 0) and

substituting in (3.22) and (3.23) results in the last two equations:

Y s
yx

[
k2

η2

(
ky

k2
t

)
HTE

z2r
+

kxkz2

k2
t

ETM
z2r

]

−Y s
yy

[
k2

η2

(
kx

k2
t

)
HTE

z2r
− kxkz2

k2
t

ETM
z2r

]

=
k1

η1

(
ky

k2
t

)
ETM

z1i
+

k1

η1

(
ky

k2
t

)
ETM

z1r

+

(
kxkz1

k2
t

)
HTE

z1i
−

(
kxkz1

k2
t

)
HTE

z1r

− k2

η2

(
ky

k2
t

)
ETM

z2r
+

(
kxkz2

k2
t

)
HTE

z2r

(3.24)

and

Y s
xx

[
k2

η2

(
ky

k2
t

)
HTE

z2r
+

kxkz2

k2
t

ETM
z2r

]

−Y s
xy

[
k2

η2

(
kx

k2
t

)
HTE

z2r
− kxkz2

k2
t

ETM
z2r

]

=
k1

η1

(−kx

k2
t

)
ETM

z1i
+

k1

η1

(−kx

k2
t

)
ETM

z1r

−
(

kykz1

k2
t

)
HTE

z1i
+

(
kykz1

k2
t

)
HTE

z1r

− k2

η2

(
kx

k2
t

)
ETM

z2r
−

(
kykz2

k2
t

)
HTE

z2r
.

(3.25)
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That is, one equation for each tangential component of H.

The six equations ((3.13)-(3.17),(3.24), and (3.25)) given by the boundary con-

ditions on the electric and magnetic fields can be cast as a matrix equation. This

equation can be further reduced to the following,

0 =




a11 a12

a21 a22







ETM
z1i

HTE
z1i


 . (3.26)

The elements of a can be used to find the ratio of TM to TE components in the mixed

modes. Setting the determinant of a equal to zero yields the dispersion equation for

the two-layer tensor impedance surface:

ε1k
2
2kz1ω cos (kz1d)

[
jkz1µ1 sin (kz1d)

(
k2

2(k
2
x + k2

y) + kz2µ2ω
(
k2

xY
s
xx + kxky(Y

s
xy + Y s

yx) + k2
yY

s
yy

))

+k2
1kz2µ2(k

2
x + k2

y) cos (kz1d)
]

+ jk2
1 sin (kz1d)ε2kz2ω

[
jkz1µ1 sin (kz1d)

(
k2

2(k
2
x + k2

y) + kz2µ2ω
(
k2

xY
s
xx + kxky(Y

s
xy + Y s

yx) + k2
yY

s
yy

))

+k2
1kz2µ2(k

2
x + k2

y) cos (kz1d)
]

+jk2
1 sin (kz1d)k2

2

[
kz2µ2

(
k2

1 cos (kz1d)
(
k2

xY
s
yy − kxky(Y

s
xy + Y s

yx) + k2
yY

s
xx

)

−jkz1µ1ω(k2
x + k2

y) sin (kz1d)(Y s
xyY

s
yx − Y s

xxY
s
yy)

)

+jk2
2kz1µ1 sin (kz1d)

(
k2

xY
s
yy − kxky

(
Y s

xy + Y s
yx

)
+ k2

yY
s
xx

)]
= 0,

(3.27)

The derived dispersion equation can predict the propagation characteristics of a ten-

sor impedance sheet over a grounded dielectric substrate, provided the tensor sheet

admittance entries (Y s
xx, Y s

xy, Y s
yx, and Y s

yy) are known. The sheet impedance bound-
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ary condition, given by (3.19), can be used to model the patterned metallic cladding

when the unit cell size is much smaller than a guided wavelength.

A method for finding the tensor sheet impedance/admittance for a patterned

metallic cladding is outlined in the next section. The procedure involves performing

two normal-incidence scattering simulations using a full-wave electromagnetic solver.

3.4 Tensor Sheet Extraction Method

In this section, a method for finding the tensor sheet impedance that models the

periodically patterned metallic cladding of a PCTIS is outlined. It is an extension of

the one-dimensional sheet impedance extraction method presented in Chapter II [47].

Since the structure is periodic, a single unit cell with periodic boundary conditions

is considered. Two normal incidence simulations are performed on the unit cell:

one with the incident electric field polarized in the x-direction (illumination I), and

another with a y-directed electric field (illumination II). For illumination I, the

incident and scattered electric and magnetic fields in regions 1 and 2, can be expressed

in terms of unknown field amplitudes (AI , BI , CI , DI , EI , FI , GI),

E
i

1I = (BI x̂ + CI ŷ) ejk1z (3.28)

H
i

1I =
1

η1

(CI x̂−BI ŷ) ejk1z (3.29)

E
r

1I = (DI x̂ + EI ŷ) e−jk1z (3.30)

H
r

1I =
1

η1

(−EI x̂ + DI ŷ) e−jk1z (3.31)

E
i

2I = AI x̂ejk2z (3.32)

H
i

2I = − 1

η2

(AI ŷ) ejk2z (3.33)

E
r

2I = (FI x̂ + GI ŷ) e−jk2z (3.34)

H
r

2I =
1

η2

(−GI x̂ + FI ŷ) e−jk2z, (3.35)
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where the subscript I indicates the fields associated with illumination I. It should

be noted that even though the incident field, E
i

2I , is only x-polarized, the reflected

field in region 2 as well as the fields in region 1 have mixed x- and y-polarizations

due to the tensor nature of the sheet.

Applying the boundary condition, Et = 0, at the ground plane (z = d) yields

BIe
−jk1d + DIe

jk1d = 0 (3.36)

for the x-component and

CIe
−jk1d + EIe

jk1d = 0 (3.37)

for the y-component of the total electric field. Enforcing continuity of the tangential

components of the electric field at the surface (z = 0), yields

BI + DI = AI + FI (3.38)

for the x-component and

CI + DI = GI (3.39)

for the y-component. Ampere’s Law at the impedance sheet (z = 0),

H2x −H1x = Jy (3.40)

H1y −H2y = Jx (3.41)

yields

k2

ωµ2

(AI − FI) +
k1

ωµ1

(DI −BI)

=Y s
xx (AI + FI) + Y s

xy (GI)

(3.42)
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and

k1

ωµ1

(EI − CI) +
k2

ωµ2

(−GI)

=Y s
yx (AI + FI) + Y s

yy (GI) .

(3.43)

Dividing equations (3.36-3.39), (3.42), and (3.43) by AI and expressing them as a

matrix system gives




0

0

1

0

Y s
xx − 1

η2

Y s
yx




= Q




BI/AI

CI/AI

DI/AI

EI/AI

FI/AI

GI/AI




, (3.44)

where

Q =



e−jk1d 0 ejk1d 0 0 0

0 e−jk1d 0 ejk1d 0 0

1 0 1 0 −1 0

0 1 0 1 0 −1

−1
η1

0 1
η1

0 −1
η2
− Y s

xx −Y s
xy

0 −1
η1

0 1
η1

−Y s
yx

−1
η2
− Y s

yy




.
(3.45)

Solving this system provides the relative field amplitudes in terms of wavenumbers

and physical parameters of the structure (see (C.2) in Appendix C).

Similarly, for illumination II, the incident electric and magnetic fields in region 2
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can be written as

E
i

2II = AII ŷejk2z (3.46)

H
i

2II =
1

η2

(AII x̂) ejk2z, (3.47)

and the expressions for the remaining field quantities are identical to (3.28)-(3.31),

(3.34) and (3.35) with the subscript II replacing the subscript I. The matrix system

can be expressed as




0

0

0

1

Y s
xy

Y s
yy − 1

η2




= Q




BII/AII

CII/AII

DII/AII

EII/AII

FII/AII

GII/AII




(3.48)

and the relative field amplitudes (AII , BII , CII , DII , EII , FII , GI) can be found by

solving this system (see (C.3) in Appendix C).

In order to find the sheet impedance, we first find ηin, the tensor input impedance

(at z = 0) for normal incidence. In this case, it is easier to work with Y in, the input

admittance tensor (Y in = η
−1
in ), since the ground plane and the tensor impedance

sheet are in parallel. At z = 0,



−Hy2

Hx2


 =




Y in
xx Y in

xy

Y in
yx Y in

yy







Ex2

Ey2


 . (3.49)
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Two equations can be written using this boundary condition,

−Hy2 = Y in
xxEx2 + Y in

xy Ey2

Hx2 = Y in
yx Ex2 + Y in

yy Ey2,

(3.50)

where the Ex2, Ey2, Hx2, and Hy2 are the total (incident plus scattered) electric and

magnetic fields in their respective directions in region 2, at z = 0. Using two instances

of (3.50), one for each illumination, we can recast the matrix equation as




−HI
y2

−HII
y2

HI
x2

HII
x2




=




EI
x2 EI

y2 0 0

EII
x2 EII

y2 0 0

0 0 EI
x2 EI

y2

0 0 EII
x2 EII

y2







Y in
xx

Y in
xy

Y in
yx

Y in
yy




(3.51)

where the superscript represents the illumination number.

Performing the matrix inverse of the electric field matrix and multiplying by the

H vector allows the elements of the Y in matrix to be found,

Y in
xx =

EI
y2H

II
y2 − EII

y2H
I
y2

EI
x2E

II
y2 − EII

x2E
I
y2

(3.52)

Y in
xy =

EII
x2H

I
y2 − EI

x2H
II
y2

EI
x2E

II
y2 − EII

x2E
I
y2

(3.53)

Y in
yx =

EII
y2H

I
x2 − EI

y2H
II
x2

EI
x2E

II
y2 − EII

x2E
I
y2

(3.54)

Y in
yy =

EI
x2H

II
x2 − EII

x2H
I
x2

EI
x2E

II
y2 − EII

x2E
I
y2

. (3.55)

As previously mentioned, Ex2, Ey2, Hx2, and Hy2 are the total (incident plus

scattered) electric and magnetic fields in their respective directions in region 2. The
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total fields at the sheet (z = 0) for illumination I are given by (3.32-3.35)

EI
x2 = Ei

x2I + Er
x2I = AI + FI (3.56)

EI
y2 = Ei

y2I + Er
y2I = GI (3.57)

HI
x2 = H i

x2I + Hr
x2I =

k2

ωµ2

GI (3.58)

HI
y2 = H i

y2I + Hr
y2I =

k2

ωµ2

(AI − FI). (3.59)

The analogous fields at the sheet for illumination II are given by

EII
x2 = Ei

x2II + Er
x2II = FII (3.60)

EII
y2 = Ei

y2II + Er
y2II = AII + GII (3.61)

HII
x2 = H i

x2I + Hr
x2I =

k2

ωµ2

(AII + GII) (3.62)

HII
y2 = H i

y2I + Hr
y2I =

−k2

ωµ2

FII . (3.63)

Substituting equations (3.32-3.35), (3.46-3.47), and the relative field amplitudes into

(3.52-3.55) and simplifying, a simple result is reached [53],




Y in
xx Y in

xy

Y in
yx Y in

yy


 =




Y s
xx + cot (k1d)

η1j
Y s

xy

Y s
yx Y s

yy + cot (k1d)
η1j


 (3.64)

= Y sheet +




1
jη1 tan (k1d)

0

0 1
jη1 tan (k1d)


 . (3.65)

Once Y in is known, Y sheet can be found from Y in by merely subtracting the con-

tribution of the ground plane and dielectric. It is apparent from (3.65) that the

contribution of the ground plane and dielectric is isotropic. Another method of arriv-

ing at expression (3.65) using a transmission-line model, once Y in is known, is shown

in Appendix A.
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The tensor sheet impedance extraction method can be summarized as follows:

1. Perform two normal incidence simulations on the PCTIS unit cell: one with the

incident electric field polarized in the x-direction (illumination I), and another

with the incident electric field polarized in the y-direction (illumination II).

2. Measure the x- and y-directed scattered fields (FI , GI), and (FII , GII) at the

sheet for the first and second simulations, respectively. The incident fields,

AI and AII , need not be measured since they are stipulated in the simulation

(amplitude of one and a phase of zero are convenient choices).

3. Calculate the total electric and magnetic fields at the sheet (z = 0) using (3.56)

- (3.63).

4. Calculate the input admittance tensor (Y in) using (3.52)-(3.55). An alternate,

more elegant, method of finding Y in based on measured or simulated reflection

coefficients is given in Appendix E.

5. Calculate the tensor sheet admittance (Y sheet) from (3.65).

In the method outlined above, the tensor sheet admittance has been found using

two normal-incidence scattering simulations without prior knowledge of the principal

axes. Assuming that the frequency dependence of the sheet is ηsheet = 1
(jω)csheet

for

capacitive sheets and ηsheet = (jω)lsheet for inductive sheets, the dispersion equation

of the two-layer structure can be used to predict the propagation characteristics of

the simulated structure for all frequencies where the transverse unit cell dimension is

much smaller than a guided wavelength. For more complicated geometries where the

extracted sheet impedance tensor has mixed entries (both inductive and capacitive),

the extraction procedure can be repeated for a number of frequencies to reveal its

frequency dependence, as long as the homogenization process remains valid over the
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frequency range of interest. In other words, curves can be generated for each element

(ηs
xx, ηs

xy, ηs
yx, ηs

yy) as a function of frequency.

The extraction method outlined above assumes that the only interaction between

the ground plane and the impedance sheet is via propagating waves through the

dielectric. Therefore, this method is strictly valid when the dielectric thickness, d, is

larger than the widest printed feature size on the patterned metallic cladding [51].

If the ground plane is too close to the metallic cladding, the extracted tensor sheet

impedance will not be accurate. In the next section, the tensor sheet impedance is

extracted for example geometries and the propagation characteristics of the PCTISs

is predicted using the dispersion equation (3.27). The results are then verified using

a commercial full-wave electromagnetic solver (Ansys HFSS).

3.5 Verification of the Dispersion Equation and Sheet Ex-

traction Method

In this section, the tensor sheet extraction method is applied to three example

geometries and the propagation characteristics of the structures are predicted analyt-

ically using (3.27). The results are then compared to full-wave eigenmode simulations

of the structures.

3.5.1 Anisotropic Capacitive Sheet over a Grounded Dielectric Substrate

An example geometry is shown in Fig. 3.5 [11]. The patterned metallic cladding

is printed on a grounded dielectric substrate (εr = 10.2) of thickness d = 1.27 mm.

Two normal-incidence scattering simulations were performed at 10 GHz to extract

the Y sheet of the patterned metallic cladding at this frequency. The first simulation

(Fig. 3.6), denoted by subscript I, had a x-polarized incident electric field and the

second simulation, denoted by subscript II, had a y-polarized incident electric field.
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Figure 3.5: Example of a patterned metallic cladding printed over a RO3010 grounded
dielectric substrate with thickness, d = 1.27 mm , εr1 = 10.2, and unit
cell length, a = 3 mm. The grey areas represent metallization.
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Figure 3.6: Scattering simulation setup for illumination I with an incident plane wave
polarized in the x-direction.

For simplicity, the incident field amplitudes (AI and AII) were set equal to one with

zero phase at the sheet (z = 0).

Using the fields calculator in Ansys HFSS, the scattered field amplitudes (FI , GI),

and (FII , GII) were measured in the first and second simulations, respectively. The

fields were measured at a plane λ/2 away from the sheet. This allowed sufficient space

for the highly oscillatory fields near the gaps to subside. The phase of the measured

field values were then de-embedded to find the fields at the sheet. The values were

also averaged over the area of the unit cell for accuracy.

The measured values of the real and imaginary parts of the electric field at the
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surface (z = 0) are given in Table 3.1. The incident fields, AI and AII , were not

Table 3.1: Measured field amplitudes from illuminations I and II using Ansys HFSS.
Description of Field Amplitudes Variable Re (V/m) Im (V/m)
Scattered E-field in x-dir for I FI -0.51835 -0.43308
Scattered E-field in y-dir for I GI 0.29015 0.66711
Scattered E-field in x-dir for II FII 0.28756 0.66685
Scattered E-field in y-dir for II GII -0.05039 0.67177

measured since they are stipulated in the simulation (with an amplitude of one and

a phase of zero in this example). The total electric and magnetic fields at z = 0

were calculated using (3.32-3.35) and (3.46-3.47). These fields were then substituted

into (3.52-3.55) to find the input admittance tensor. Finally, the tensor sheet admit-

tance was found from (3.65). Ignoring the negligible real parts of the impedance, the

capacitive sheet impedance corresponding to the simulated geometry is:

ηsheet =



−97.54j −47.73j

−47.81j −176.40j


 Ω (3.66)

at the simulation frequency of 10 GHz. The sheet impedance entries, ηs
xy and ηs

yx,

should be equal for a reciprocal system and are shown to be in very close agreement.

The sheet impedance corresponds to a sheet capacitance of

Csheet =




163.1681 333.4519

332.86472 90.2254


 fF. (3.67)

The principal axes are the directions in which the sheet impedance, and also the

surface impedance, is diagonal. By finding the eigenvectors that diagonalize the

sheet impedance (3.66), the angles of the principal axes are found to be −25.25◦ and

64.79◦, and the diagonalized sheet impedance is given by

η
d
sheet =



−75.03j 0

0 −198.91j


 Ω. (3.68)
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Figure 3.7: Full-wave eigenmode simulation vs. analytical prediction of the disper-
sion characteristics for the PCTIS shown in Fig. 3.5. The contour plot
represents analytically predicted isofrequency contours from 5 GHz to 10
GHz. White dotted lines are the simulated result.

In theory, the angle between the two principal axes should be 90◦ but is found to

be 90.04◦ due to the same numerical error that caused ηs
xy and ηs

yx to slightly differ.

An analytically generated dispersion diagram showing isofrequency contours for the

extracted sheet impedance over the grounded dielectric substrate are shown in Fig.

3.7 as colored contours. These are the dispersion contours for the first surface mode of

the structure. They show close agreement with full-wave simulation results (dotted

white lines) in the homogeneous limit: where the electrical size of the unit cell is

much smaller than a guided wavelength. The Brillouin diagram, shown in Fig. 3.8,

further verifies the agreement between the full-wave simulation results and analytical

predictions below 10 GHz. Above 10 GHz, the agreement degrades since the unit cell
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Figure 3.8: Brillouin diagram showing full-wave eigenmode simulation vs. analytical
prediction of the dispersion characteristics for the PCTIS. The first two
surface modes are shown. The first surface mode (lower in frequency)
corresponds to the one shown in Fig. 3.7.

becomes larger with respect to a guided wavelength and the homogenization condition

is less valid. Therefore, using the dispersion equation, it is possible to predict the

propagation characteristics of the PCTIS depicted in Fig. 3.5 by simply performing

two normal-incidence scattering simulations that characterize the metallic cladding

as a tensor impedance sheet.

In order to compare results from the two-layer model described in this chapter, to

methods used previously, the example geometry was also modeled as a single TIBC

[10, 11]. A least squares method was used to fit the full-wave simulated dispersion

curves to the dispersion equation for an idealized TIBC (3.7). Fig. 3.9(a) shows a

comparison of dispersion contours for the fitted tensor vs. the dispersion diagram gen-

erated using full-wave simulation for three separate frequencies. The TIBC roughly

approximates the dispersion curve at the fitting frequency of 8 GHz. It does not

accurately predict the dispersion curves at other frequencies when a linear frequency

dependence for the fitted surface impedance is assumed. Fig. 3.9(b) compares the
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same three contours from full-wave simulation to dispersion contours generated ana-

lytically using the two-layer model presented in this chapter. These results show that

the idealized TIBC does not accurately model the physics of the structure shown in

Fig. 3.5. In general, the two-layer structure cannot be lumped into a single surface

and analyzed using (3.7) if accurate propagation characteristics are desired.

3.5.2 Anisotropic Inductive Sheet over a Grounded Dielectric Substrate

Another example geometry (shown in Fig. 3.10) is analyzed to further verify

the extraction method and dispersion analysis. In this case, the sheet impedance is

inductive instead of capacitive and the dielectric substrate is significantly thicker than

that of the first example (εr = 10.2, d = 6.0 mm). The extracted sheet impedance

tensor for the structure at 7 GHz is

ηsheet =




121.32j 11.16j

10.98j 41.25j


 Ω. (3.69)

A comparison between the analytically predicted and full-wave simulated dispersion

contours is shown in Fig. 3.11, and close agreement is observed. One may predict

that the principal axes are close to 0◦ and 90◦ based on the cell’s topology. The

calculated values are 7.50◦ and 97.88◦. The slight tilt is due to the extreme curves

in the meandered line. This agreement verifies that the method described in this

chapter can model even electrically thick structures.

3.5.3 Rotated Anisotropic Inductive Sheet over a Grounded Dielectric

Substrate

As a final example, the geometry of Fig. 3.10 was rotated by −45◦ and then

analyzed. This results in the geometry depicted in Fig. 3.12. Mathematically rotating
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work).

Figure 3.9: Dispersion contours at 7.5 GHz, 8.0 GHz, and 8.5 GHz.
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Figure 3.10: Example of a patterned metallic cladding printed over a grounded di-
electric substrate with thickness, d = 6.0 mm , εr1 = 10.2, and unit cell
length, a = 3 mm. Grey areas represent metallization.
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Figure 3.11: Full-wave eigenmode simulation vs. analytical prediction of the disper-
sion characteristics for the PCTIS shown in Fig. 3.10. The contour plot
represents analytically predicted isofrequency contours from 5 GHz to
7.5 GHz. White dotted lines are the simulated results.
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the extracted sheet impedance tensor from the previous example by −45◦ results in

ηsheet =




92.35j −40.12j

−39.95j 70.21j


 Ω. (3.70)

The extraction at 7 GHz of the structure shown in Fig. 3.12 gives a sheet impedance

tensor of

ηsheet =




91.46j −39.27j

−39.26j 69.29j


 Ω, (3.71)

which agrees closely with (3.70). Fig. 3.13 shows the dispersion contours comparing

full-wave results and analytically predicted results for the rotated structure shown in

Fig. 3.12, and there is close agreement. The principal axes are found to be −37.12◦

and 52.88◦. Fig. 3.14(a) and Fig. 3.14(b) show that these principal axes are indeed

offset by about −45◦ from those of the un-rotated version shown in Fig. 3.10.

3.6 Limitations

There are some limitations to the work presented in this chapter. The fre-

quency dependence of the tensor impedance sheet, that models the patterned metallic

cladding, cannot be directly inferred when the tensor sheet impedance is not purely

capacitive or inductive. This can be overcome with interpolation, as described in

Section 3.4.

In addition, the analytically predicted dispersion properties of a given structure are

only valid within the homogeneous limit, since the metallic cladding is approximated

as an impedance sheet extracted at normal incidence. Therefore, the unit cell size

must be much smaller than the guided wavelength. The pole-zero method presented

in [56] is valid for unit cell sizes on the order of a wavelength, but requires several

full-wave simulations to characterize the sheet impedance. It also requires knowledge
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Figure 3.12: Example of a patterned metallic cladding printed over a grounded di-
electric substrate with thickness, d = 6.0 mm , εr1 = 10.2, and unit cell
length, a = 3

√
2 mm. Grey areas represent metallization. This PCTIS

is the same as that in Fig. 3.10 rotated by −45◦.
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Figure 3.13: Full-wave eigenmode simulation vs. analytical prediction of the disper-
sion characteristics for the PCTIS shown in Fig. 3.12. The contour plot
represents analytically predicted isofrequency contours from 5 GHz to
7.5 GHz. White dotted lines are the simulated results.
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of the principal axes of the structure a priori. The method we present requires only

two scattering simulations at normal incidence and does not require prior knowledge

of the principal axes of the patterned metallic cladding.

Fabrication constraints impose certain limitations on minimum unit cell size. For

example, maintaining a desired sheet inductance per unit length while reducing the

unit cell size requires a lower inductance per unit cell. Lower inductance values can be

achieved with wider traces. In order to maintain a desired sheet capacitance per unit

length while reducing the unit cell size, a higher capacitance must be achieved in each

unit cell. Higher capacitance values are typically achieved by patterning the metallic

cladding of the PCTIS with smaller gaps. Therefore, fabrication processes (which

dictate the smallest fabricable feature sizes) impose a limitation. For printed-circuit

boards, commercial etching processes are limited to approximately 50 µm features.

At optical frequencies, feature sizes as small as 40 nm have been reported [59].

When using unit cells to realize a surface impedance profile, the discretization must

be smaller than the wavelength corresponding to the local wave number. Exactly

how much smaller is determined by how much variation in the wave’s phase and

group velocity (spatial dispersion) one can tolerate for a particular design. This

tradeoff between discretization and spatial dispersion is analogous to that in numerical

methods for differential equations (such as TLM and FDTD) [60]. For printed circuit

board structures based on transmission line networks, a typical guideline is that the

unit cell size should be no larger than λ/10 for tolerable spatial dispersion [61, 62].

Additionally, while the methodology presented in this chapter is useful for ana-

lyzing PCTISs with arbitrarily large electrical thickness, the ground plane should be

far enough from the metallic cladding to avoid evanescent coupling between it and

the ground plane.

The method reported here is also limited to printed-circuit type structures, with-

out vias. However, as in [52], vias could be modeled using an anisotropic substrate.
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Further, the derived dispersion equation is valid for leaky-waves, but we have not

solved for the complex leaky-wave roots since our focus has been on surface waves.

Finally, spatial dispersion is also not taken into account in this initial work, but is a

logical extension moving forward.

3.7 Chapter Summary

In this chapter, impedance surfaces that are tensorial (anisotropic) in nature are

explored. A PCTIS consisting of an arbitrary patterned metallic cladding printed

above a grounded dielectric substrate is studied analytically to find its dispersion

equation. A novel method for extracting the tensor sheet impedance of the patterned

metallic cladding using two normal incidence scattering simulations is also reported.

Combining the dispersion equation with the extracted sheet impedance, the propa-

gation characteristics of the PCTIS can be predicted analytically from two scattering

simulations alone. The findings are verified using full-wave eigenmode simulations.

In summary, (3.65) can be used to extract the tensor sheet impedance/admittance of

an arbitrary periodic, metallic cladding printed over a grounded dielectric substrate

from two normal incidence scattering simulations, without knowing the principal axes

a priori. The extracted sheet admittance entries (Y s
xx, Y s

xy, Y s
yx, and Y s

yy) can then be

used in (3.27) to analytically predict the structure’s dispersion properties in the ho-

mogeneous limit. The approach described in this chapter more accurately predicts the

dispersion properties of PCTISs than earlier analytical models [11, 16, 17, 18, 20, 22].

Two scattering simulations and post-processing are needed to describe the dispersion

characteristics as opposed to performing time consuming eigenmode simulations over

multiple propagation angles in order to characterize the structure. This speedup is

especially useful when designing practical surfaces, which are typically electrically

large, inhomogeneous surfaces consisting of electrically small unit cells [11, 22]. Hun-

dreds of metallic cladding patterns need to be analyzed in order to build a sufficient
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design database.

In the next chapter, the analysis of PCTISs is extended. A modified transverse

resonance technique is presented, which provides an elegant method for finding the

dispersion equations for TIBCs and PCTISs. The effective surface impedance of a

PCTIS (analogous to the surface impedance of a TIBC) is found as a result of insight

provided by the modified transverse resonance equations. Expressions for the group

velocity and direction of power flow are also found for TIBCs and PCTISs.
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(a) Dispersion contours for the PCTIS shown in Fig. 3.10.

(b) Dispersion contours for the PCTIS shown in Fig. 3.10 rotated
by −45◦, as shown in Fig.3.12. As expected, this dispersion dia-
gram is the same as Fig. 3.14(a) but with a −45◦ rotation.

Figure 3.14: Dispersion contours from full-wave simulation. The principal axes (com-
puted from the extracted tensor sheet impedances) are shown on the
plots. The wave numbers have been scaled to account for differences in
unit cell size between the unit cells pictured in Fig. 3.10 and Fig. 3.12.

72



CHAPTER IV

Effective Surface Impedance of a Printed-Circuit

Tensor Impedance Surface

4.1 Introduction

In the previous chapter, printed-circuit tensor impedance surfaces (PCTISs) were

analytically modeled as two-layer structures [53, 54, 55], as opposed to an idealized

TIBC. The patterned metallic cladding was approximated as a tensor impedance

sheet and the dispersion equation was derived through field analysis [53]. The unit

cell of the patterned metallic cladding must be small compared to a wavelength and

the ground plane sufficiently displaced from the cladding to avoid evanescent wave

interaction. A method that allows one to extract the tensor sheet impedance of an

arbitrary periodic metallic cladding was also proposed in the previous chapter [53].

In Chapter II, the transverse resonance technique was used to derive the dispersion

equation for scalar impedance surfaces [47]. In this chapter, a modified transverse

resonance technique is developed in order to analyze tensor impedance surfaces (TISs).

The transverse resonance technique was introduced by Marcuvitz in 1951 as a

method for analyzing composite waveguide structures [41]. The technique was ap-

plied to traveling-wave antennas for the first time in [63]. Others applied the technique

(and variants of it) to a large class of traveling-wave antennas with both rectangular
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and circular cross-sections. [64, 65, 66, 67]. In the 1970’s, the transverse resonance

technique was used to model periodic, dielectric waveguides [68, 69] in order to study

their propagation characteristics. More recently, printed-circuit structures [56, 70],

multi-layer grating structures [71], as well as photonic bandgap [72] and electromag-

netic bandgap [73] structures were analyzed and designed.

Historically, the transverse resonance technique has been used to analyze scalar

impedance surfaces. In this chapter, we introduce a modified transverse resonance

technique to analyze TISs. We use the modified transverse resonance approach to

derive the dispersion equation for an arbitrary tensor sheet impedance over a grounded

dielectric substrate. The approach provides added physical insight over the field

analysis presented in Chapter III.

Section 4.2 reviews the application of the traditional transverse resonance method

to a printed-circuit scalar impedance surface, which consists of a scalar sheet impedance

over a grounded dielectric substrate. In Section 4.3, the modified transverse resonance

technique is applied to an idealized TIBC, and the dispersion equation is derived. In

Section 4.4, insights from the previous two sections are used to derive the disper-

sion equation of a PCTIS. A PCTIS consists of a subwavelength-patterned metallic

cladding over a grounded dielectric substrate. The patterned metallic cladding is

approximated as a homogenized tensor impedance sheet. We also use the modified

transverse resonance technique to define an effective surface impedance for the PC-

TIS that is analogous to the idealized TIBC. The expression for the effective surface

impedance of a PCTIS is verified through an analytical example. It is found that the

effective surface impedance is, in general, dependent on the direction of propagation

along the PCTIS. Therefore, it exhibits spatial dispersion. In Section 4.5, expressions

for the group velocity and direction of power flow along a TIBC are found. It is

shown that a PCTIS and a TIBC can have the same surface impedance but different

directions of power flow due to the spatial dispersion of the PCTIS [74]. Expressions
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for the group velocity and direction of power flow for a PCTIS, that take spatial

dispersion into account, are also derived. Finally, Section 4.6 provides a discussion on

the conditions necessary to approximate the PCTIS as an angle-independent TIBC.

The goal of this chapter is to advance the understanding of TISs (particularly

those of the printed-circuit type) in order to facilitate the design of holographic and

transformation-electromagnetics devices based on these surfaces [33]. A detailed un-

derstanding of TISs is an important step toward the control of surface and leaky waves

for guided-wave or radiative applications. In the design of these surfaces, holographic

or transformation-based methods would provide the surface impedance tensor and

wave vector along the surface of interest. From these two quantities, the required

sheet impedance could be determined.

4.2 Surface Impedance of a Printed-Circuit Scalar Impedance

Surface.

A printed-circuit impedance surface consists of a periodically-patterned metallic

cladding over a grounded dielectric substrate. In the case of a printed-circuit scalar

impedance surface (Fig. 4.1), the metallic cladding is approximated as an isotropic

impedance sheet of constant reactance. This allows the structure to be analytically

modeled using a transmission-line model (Fig. 4.2) and its modal surface impedance

found.

In Chapter II [47, 48], the transverse resonance technique was applied to a printed-

circuit surface consisting of copper strips (modeled as a capacitive sheet) over a

grounded dielectric substrate to calculate its TM modal surface impedance. A

method for extracting the sheet impedance of the metallic strips was discussed in

Section 2.4 [47]. A general method to analyze printed-circuit scalar impedance sur-

faces using the transverse resonance technique is described next. Referring to Fig.
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Figure 4.1: Analytical model for a printed-circuit scalar impedance surface consisting
of a metallic cladding printed over a grounded dielectric substrate. The
metallic cladding is modeled as an isotropic reactive impedance sheet.

4.1, the transverse resonance condition allows us to write

Ydown(z = 0+) + Yup(z = 0+) = 0, (4.1)

where Yup is the admittance looking up into free space from a plane just above the

admittance sheet. Ydown is the admittance looking down from the same plane, and is

equal to the surface admittance. It is often convenient to use admittances instead of

impedances since the impedance sheet and the ground plane are in parallel. A matrix

representation of the transverse resonance condition can be written as

Y down(z = 0+)Et + Y up(z = 0+)Et = 0, (4.2)

where Et is the tangential electric field just above the sheet. This expression results

from the continuity of the tangential magnetic field just above the impedance sheet.

Referring to the TM and TE transmission-line models in Fig. 4.2, the admittance

looking down is given by the sum of the admittance of the sheet, and that of the

ground plane transferred through the dielectric by the distance, d. The transmission-

line impedances and normal wave numbers used in the models are the TM and TE
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wave impedances and wave numbers, as shown in Fig. 4.2. Therefore, (4.2) can be

expressed as




Ysheet 0

0 Ysheet


 Et

+



−j

(
Y1

k1

kz1

)
cot(kz1d) 0

0 −j
(
Y1

kz1

k1

)
cot(kz1d)


 Et

−




Y0
k0

kz0
0

0 Y0
kz0

k0


 Et = 0,

(4.3)

where the tangential wave number is assumed to be along the x direction. It is clear

that the Et terms can be eliminated since all the matrices are diagonal. This yields

two equations, a TM dispersion equation,

Y0
k0

kz0

= Ysheet − j

(
Y1

k1

kz1

)
cot(kz1d) (4.4)

and a TE dispersion equation,

Y0
kz0

k0

= Ysheet − j

(
Y1

kz1

k1

)
cot(kz1d). (4.5)

These are the dispersion equations for the TM and TE modes of a printed-circuit

scalar impedance surface. These results are combined with the analysis of the TIBC

(Section 4.3), in order to model two-dimensional anisotropic PCTISs in Section 4.4.
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(a) TM transmission-line model. (b) TE transmission-line model.

Figure 4.2: Modal transmission-line models for a isotropic impedance sheet over a
grounded dielectric substrate.

4.3 Modified Transverse Resonance Technique applied to a

TIS Modeled by Single Tensor Impedance Boundary Con-

dition (TIBC)

The modified transverse resonance condition is a matrix representation analogous

to that of (4.1), when the matrices are non-diagonal. In order to extend the modi-

fied transverse resonance technique to two-dimensional PCTISs, we first analyze an

idealized tensor impedance surface: a tensor impedance boundary condition (TIBC)

[10]. The surface impedance tensor,

ηsurf =




ηxx ηxy

ηyx ηyy


 , (4.6)

relates the tangential electric and magnetic fields at the surface,




Ex

Ey


 =




ηxx ηxy

ηyx ηyy






−Hy

Hx


 . (4.7)
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The TIBC can support TM waves (Fig. 4.3(a)), TE waves (Fig. 4.3(b)), or a mixture

of both. In general, this boundary condition is anisotropic, since ηxx, ηyy, and ηxy

can all have different values. Here, we assume that ηsurf is purely reactive (lossless)

and reciprocal (ηxy = ηyx). We examine a few cases and eventually build up to the

general case which considers propagation at an arbitrary angle along the surface. For

consistency, we use a surface admittance tensor in the analysis, where




Yxx Yxy

Yyx Yyy


 =




ηxx ηxy

ηyx ηyy




−1

. (4.8)

4.3.1 Surface-wave propagation along the x-axis on a diagonal TIBC

First, let’s examine the simplest anisotropic case where the surface impedance is

diagonal:

Y surf =




Yxx 0

0 Yyy


 (4.9)

and Yxx 6= Yyy. The separation relation is

k2
0 = k2

t + k2
z , (4.10)

where the wave number tangential to the surface, kt, is given by

k2
t = k2

x + k2
y. (4.11)

Let’s assume that propagation along the surface is only along the x-axis (kt = kx,

ky = 0). Therefore, for a diagonal surface admittance (4.9), propagation is aligned

with a principal axis of the surface. The principal axes are the directions in which the

surface admittance tensor is diagonal. Enforcing the continuity of tangential magnetic
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(a) TIS supporting a TM wave.

(b) TIS supporting a TE wave.

Figure 4.3: Waves supported by a tensor impedance surface (TIS). In general, the
surface can support TM , TE, or a mixture of both waves.

fields just above the surface, we can write:

Y downEt + Y upEt = 0 (4.12)

or

Y down




Ex

Ey


 + Y up




Ex

Ey


 = 0 (4.13)
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Noting that Y down is the surface admittance tensor, and Y up is a diagonal matrix

containing the TM and TE wave admittances of region 2 (free space), yields




Yxx 0

0 Yyy







Ex

Ey


 +




Y0
k0

kz
0

0 Y0
kz

k0







Ex

Ey


 = 0. (4.14)

or 


Yxx + Y0
k0

kz
0

0 Yyy + Y0
kz

k0







Ex

Ey


 = 0. (4.15)

Setting the determinant of this matrix equal to zero yields the dispersion equation,

(
Yxx + Y0

k0

kz

)(
Yyy + Y0

kz

k0

)
= 0. (4.16)

It is clear that (4.16) is satisfied when

Yxx = −Y0
k0

kz

(4.17)

or

Yyy = −Y0
kz

k0

(4.18)

Therefore, for propagation along the x-axis, a TM mode is supported by Yxx, or a

TE mode is supported by Yyy. Equation (4.16) expands to

k2
0

(
1

Yxx

)
+ k2

z

(
1

Yyy

)
+ k0kz

(
1 +

1

Yxx

1

Yyy

)
= 0. (4.19)

This matches the dispersion equation (23) given in [10] under the condition that

ηxy = 0 and ηyx = 0.
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4.3.2 Surface-wave propagation along the x-axis on a non-diagonal TIBC

Next, we consider propagation along the x-axis (kt = kx, ky = 0) of a full (non-

diagonal) TIBC. Since the surface impedance tensor is not diagonal (Yxx, Yxy = Yyx,

and Yyy are all non-zero), the propagation direction does not align with either of the

principal axes of the TIBC. Applying continuity of the tangential magnetic fields (see

(4.12)) yields the modified transverse resonance condition:




Yxx Yxy

Yyx Yyy







Ex

Ey


 +




Y0
k0

kz
0

0 Y0
kz

k0







Ex

Ey


 = 0, (4.20)

or 


Yxx + Y0
k0

kz
Yxy

Yyx Yyy + Y0
kz

k0







Ex

Ey


 = 0. (4.21)

Setting the determinant of the matrix equal to zero, results in the dispersion equation

(
Yxx + Y0

k0

kz

)(
Yyy + Y0

k0

kz

)
− YxyYyx = 0. (4.22)

This expands to

k2
0

(
Yyy

Y0

)
+ k2

z

(
Yxx

Y0

)
+ k0kz

(
1 +

Yxx

Y0

Yyy

Y0

− Yxy

Y0

Yyx

Y0

)
= 0. (4.23)

Expressed in terms of surface impedance values, the dispersion equation becomes:

k2
0

ηxx

η0

+ k2
z

ηyy

η0

+ k0kz

(
1 +

ηxx

η0

ηyy

η0

− ηxy

η0

ηyx

η0

)
= 0, (4.24)

which exactly matches dispersion equation (23) from [10], for x-directed propagation.

As expected, the TM and TE waves are mixed and are not separable as they were

in (4.16) because propagation is not along a principal axis of the structure.
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Figure 4.4: Diagram of an arbitrary tensor impedance surface with principal axes at
α and α + 90◦. Tangential propagation, (kt) occurs at an angle θ with
respect to the x-axis. The x′ axis is aligned with kt.

4.3.3 Surface-wave propagation at an arbitrary angle along a non-diagonal

TIBC

So far, we have only considered propagation along the x-direction. In order to

analyze propagation at an arbitrary angle θ (with respect to the x-axis) along the

surface, a new coordinate system (primed coordinates) is defined such that propaga-

tion is purely along the x′-axis, as shown in Fig. (4.4). The new coordinate system is

given by the x′and y′ axes. The primed system is a rotated version (about the z-axis)

of the original x, y system by an angle θ.

The surface impedance in the primed coordinate system is given by rotating the

original surface impedance by θ,

Y surf ′ =




Y ′
xx Y ′

xy

Y ′
yx Y ′

yy


 = RT (θ)




Yxx Yxy

Yyx Yyy


R(θ), (4.25)
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where R(θ) is the rotation matrix,

R(θ) =




cos θ − sin θ

sin θ cos θ


 . (4.26)

Applying continuity of the tangential magnetic fields in the primed coordinate system

yields,

RT (θ)




Yxx Yxy

Yyx Yyy


 R(θ)




E ′
x

E ′
y


 +




Y0
k0

kz
0

0 Y0
kz

k0







E ′
x

E ′
y


 = 0. (4.27)

or




Y ′
xx Y ′

xy

Y ′
yx Y ′

yy







E ′
x

E ′
y


 +




Y0
k0

kz
0

0 Y0
kz

k0







E ′
x

E ′
y


 = 0. (4.28)

Comparing (4.28) and (4.20), it is clear that the dispersion equation is identical to

(4.23), if the unprimed admittances are replaced by primed admittances:

k2
0

(
Y ′

yy

Y0

)
+ k2

z

(
Y ′

xx

Y0

)
+ k0kz

(
1 +

Y ′
xx

Y0

Y ′
yy

Y0

− Y ′
xy

Y0

Y ′
yx

Y0

)
= 0. (4.29)

As a special case, let’s assume the principal axes of the structure are at the angles

α and α + 90◦, as shown in Fig. 4.4. By definition, these are the rotation angles that

result in a diagonalized Y surf ′. When propagation is along the principal axes of the

TIBC, the TM and TE waves decouple as they did in (4.14).
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Figure 4.5: Analytical model for a PCTIS consisting of a subwavelength-patterned
metallic cladding over a grounded dielectric substrate. The metallic
cladding is modeled as a tensor sheet impedance.

4.4 Effective Surface Impedance of a PCTIS

The patterned metallic cladding of a PCTIS will again be modeled as a tensor

admittance sheet. A method for extracting the tensor sheet admittance of a patterned

metallic cladding was presented in Chapter III and Appendix E [53]. Here, we combine

the analysis of printed-circuit scalar impedance surfaces from Section 4.2, with the

analysis of single TIBCs from Section 4.3, in order to derive the dispersion equation

of PCTISs and define their effective surface impedance/admittance.

As shown in Fig. 4.5, the PCTIS is modeled as a tensor admittance sheet over a

grounded dielectric substrate. It should be noted that the tensor admittance sheet,

denoted with the superscript s, is distinct from the tensor surface admittance dis-

cussed in Section 4.3. The tensor sheet admittance is defined in terms of surface

current density J , 


Jx

Jy


 =




Y s
xx Y s

xy

Y s
yx Y s

yy







Ex

Ey


 . (4.30)

Continuity of magnetic fields just above the sheet (modified transverse resonance

condition) dictates that

Y downEt +
[
Y up

]
Et = 0 (4.31)
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Using the primed coordinate system that aligns with the direction of propagation

(direction of kt) yields




Y s′
xx Y s′

xy

Y s′
yx Y s′

yy







E ′
x

E ′
y




+






−j

(
Y1

k1

kz1

)
cot(kz1d) 0

0 −j
(
Y1

kz1

k1

)
cot(kz1d)




+




Y2
k2

kz2
0

0 Y2
kz2

k2










E ′
x

E ′
y


 = 0,

(4.32)

where Y down includes the TM and TE admittances of the tensor sheet impedance,

dielectric, and ground plane. Y up includes the TM and TE admittances of free space.

By setting the determinant of the system equal to zero, the following dispersion

equation is obtained,

k1k2kz1kz2Y
2
2 + k1kz1k

2
z2Y2Y

s′
xx

− k1k2kz1kz2Y
s′
xyY

s′
yx + k1k

2
2kz1Y2Y

s′
yy

+ k1k2kz1kz2Y
s′
xxY

s′
yy

− jk2
2k

2
z1Y1Y2 cot(kz1d)

− jk2
1k

2
z2Y1Y2 cot(kz1d)

− jk2k
2
z1kz2Y1Y

s′
xx cot(kz1d)

− jk2
1k2kz2Y1Y

s′
yy cot(kz1d)

− k1k2kz1kz2Y
2
1 cot2(kz1d) = 0.

(4.33)

This is the dispersion equation of a PCTIS as a function of frequency, the normal
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wave number, and sheet admittance. Given that




Y s′
xx Y s′

xy

Y s′
yx Y s′

yy


 = RT (θ)




Y s
xx Y s

xy

Y s
yx Y s

yy


 R(θ) (4.34)

and noting that k1 = ω
√

µ1ε1, k2 = ω
√

µ2ε2, Y1 =
√

ε1
µ1

, and Y2 =
√

ε2
µ2

, the dispersion

equation (4.33) can be written as

4ε1k
2
1k

2
2kz1kz2µ2ω cos2(kz1d)

+ j sin(2kz1d)

[2ε1k
4
2k

2
z1µ1ω + 2ε2k

4
1k

2
z2µ2ω

+ k4
1k

2
2kz2µ2Y

s
xx + ε1k

2
2k

2
z1kz2µ1µ2ω

2Y s
xx

+ k4
1k

2
2kz2µ2Y

s
yy + ε1k

2
2k

2
z1kz2µ1µ2ω

2Y s
yy

− k2
2kz2µ2(k

4
1 − ε1k

2
z1µ1ω

2)(Y s
xx − Y s

yy) cos(2θ)

− k2
2kz2µ2(k

4
1 − ε1k

2
z1µ1ω

2)(Y s
xy + Y s

yx) sin(2θ)]

− 2k2
1kz1µ1 sin2(kz1d)

[2ε2k
2
2kz2ω + k4

2Y
s
xx + ε2k

2
z2µ2ω

2Y s
xx

− 2k2
2kz2µ2ωY s

xyY
s
yx + k4

2Y
s
yy + ε2k

2
z2µ2ω

2Y s
yy

+ 2k2
2kz2µ2ωY s

xxY
s
yy

− (k4
2 − ε2k

2
z2µ2ω

2)(Y s
xx − Y s

yy) cos(2θ)

− (k4
2 − ε2k

2
z2µ2ω

2)(Y s
xy + Y s

yx) sin(2θ)] = 0.

(4.35)

It is identical to (3.27) in Chapter III [53] when kx and ky, are replaced with kx =

kt cos(θ) and ky = kt sin(θ). In order to find the effective surface admittance of a

PCTIS, we compare the expression derived using the modified transverse resonance

condition for a TIBC, to the one derived for the PCTIS. The dispersion equation of

a idealized TIBC (4.27) can be rewritten in the primed coordinate system as:
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
RT (θ)




Yxx Yxy

Yyx Yyy


 R(θ)







E ′
x

E ′
y


 = −




Y2
k2

kz2
0

0 Y2
kz2

k2







E ′
x

E ′
y


 . (4.36)

We can express the electric field vector in the x − y coordinate system using the

following relation 


Ex

Ey


 = R(θ)




E ′
x

E ′
y


 . (4.37)

Substituting (4.37) into (4.36) results in


RT (θ)




Yxx Yxy

Yyx Yyy


 R(θ)







E ′
x

E ′
y


 = −




Y2
k2

kz2
0

0 Y2
kz2

k2


 RT (θ)




Ex

Ey


 .

(4.38)

Applying the R(θ) operator to the matrices on both sides of the equation yields

R(θ)


RT (θ)




Yxx Yxy

Yyx Yyy


R(θ)







E′
x

E′
y


 = R(θ)



−Y2

k2
kz2

0

0 −Y2
kz2
k2


RT (θ)




Ex

Ey


 .

(4.39)

The expression above simplifies to







Yxx Yxy

Yyx Yyy










Ex

Ey


 = R(θ)



−Y2

k2
kz2

0

0 −Y2
kz2
k2


RT (θ)




Ex

Ey


 . (4.40)
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Noting that RT (θ) = R(−θ), and R(θ) = RT (−θ),







Yxx Yxy

Yyx Yyy










Ex

Ey


 = RT (−θ)



−Y2

k2

kz2
0

0 −Y2
kz2

k2


 R(−θ)




Ex

Ey


 .

(4.41)

The surface admittance (in x− y coordinate system)

Y surf =




Yxx Yxy

Yyx Yyy


 , (4.42)

appears in square brackets on the left hand side of (4.41). The transverse resonance

expression for a PCTIS is now be manipulated into a similar form to reveal the

effective surface impedance of a PCTIS. The transverse resonance equation (4.32) for

the PCTIS can be rewritten as:


RT (θ)




Y s
xx Y s

xy

Y s
yx Y s

yy


R(θ)+



−j

(
Y1

k1
kz1

)
cot(kz1d) 0

0 −j
(
Y1

kz1
k1

)
cot(kz1d)










E′
x

E′
y




= −




Y2
k2
kz2

0

0 Y2
kz2
k2







E′
x

E′
y


 .

(4.43)

Applying the same manipulations shown above for the TIBC, this equation can be

recast as
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





Y s
xx Y s

xy

Y s
yx Y s

yy


+ RT (−θ)



−j

(
Y1

k1
kz1

)
cot(kz1d) 0

0 −j
(
Y1

kz1
k1

)
cot(kz1d)


R(−θ)







Ex

Ey




= RT (−θ)



−Y2

k2
kz2

0

0 −Y2
kz2
k2


R(−θ)




Ex

Ey


 .

(4.44)

The right hand sides of (4.44) and (4.41) are the same. Comparing the left hand

sides, it is clear that the surface admittance of the PCTIS is given by the quantity

within the square brackets of (4.44). Therefore, the effective surface admittance of a

PCTIS in the x− y coordinate system is

Y surf (θ) =




Yxx(θ) Yxy(θ)

Yyx(θ) Yyy(θ)




=




Y s
xx Y s

xy

Y s
yx Y s

yy


 + RT (−θ)



−j

(
Y1

k1
kz1

)
cot(kz1d) 0

0 −j
(
Y1

kz1
k1

)
cot(kz1d)


R(−θ).

(4.45)

It is equal to the sum of the sheet admittance and the rotated admittance of the

grounded dielectric by an angle −θ. Equation (4.45) shows that when the tensor sheet

(modeling the metallic cladding) and the grounded dielectric substrate are treated as

a single surface, the surface impedance/admittance becomes dependent on kz1. The

normal wave number (kz1), however, is a function of the propagation angle along

the surface. Therefore, the surface impedance/admittance of a PCTIS is a function

of propagation angle. This is in contrast to the single TIBC (4.42), which is angle

independent. In other words, the surface impedance of a PCTIS exhibits spatial

dispersion due to its dielectric thickness.
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Figure 4.6: Patterned metallic cladding printed over a RO3010 grounded dielectric
substrate with thickness, d = 1.27 mm , εr1 = 10.2, and unit cell length:
a = 3 mm. The dark areas represent metallization.

4.4.1 Verification of the Angle-Dependent Tensor Surface Impedance for

a PCTIS

Next, an example is presented that verifies the expression for the effective surface

admittance (4.45) of a PCTIS. A PCTIS with the periodic metallic cladding shown

in Fig. 4.6 was analyzed in Chapter III [53]. The extracted sheet impedance for this

structure was found to be

ηsheet = −j




121.93 59.76

59.66 220.5


 Ω. (4.46)

at 8 GHz. The dispersion curves for the first guided mode of this PCTIS were

generated using (4.33). They are shown in Fig. 4.7 with solid lines for for 7.5 GHz, 8

GHz, and 8.5 GHz. There is close agreement with full-wave eigenmode results from

Ansys HFSS (dashed lines in Fig. 4.7), within the homogeneous limit. As previously
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Figure 4.7: Isofrequency dispersion contours for 7.5 GHz, 8.0 GHz, 8.5 GHz. Dashed
lines are full-wave results from an eigenmode solver. Solid lines are ana-
lytical predictions using dispersion equation (4.33) for a PCTIS. Circles
are analytical predictions using dispersion equation (4.48) for a single
TIBC with angle-dependent surface impedances/admittances (4.45).

described in Chapter III, a least squares method is used to fit the full-wave data

(dashed lines) to (4.29), in order to find the closest surface admittance tensor that is

independent of θ,

ηfitted = j




364.34 −88.55

−88.55 226.48


 Ω. (4.47)

The closest fit (solid lines) is compared to full-wave simulation results (dashed lines)

in Fig. 4.8.

The angle-independent surface admittance roughly approximates the dispersion

curve at the fitting frequency of 8 GHz. It does not accurately predict the disper-

sion curves at other frequencies when a linear frequency dependence for the fitted

surface impedance (4.47) is assumed. These results demonstrate that, in general, the

dispersion characteristics of the PCTIS cannot be accurately modeled by (4.29): the
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Figure 4.8: Isofrequency dispersion contours for 7.5 GHz, 8.0 GHz, 8.5 GHz. Dashed
lines are full-wave results from an eigenmode solver. Solid lines are ana-
lytical predictions using the dispersion equation (4.29) for a single TIBC
with a constant tensor impedance/admittance. The least squares fit (4.47)
was performed at 8 GHz. Other frequencies were predicted by assuming
a linear frequency dependence for the surface reactance of the TIBC.
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dispersion equation for a TIBC. However, using a modified version of (4.29),

k2
0

(
Y ′

yy(θ)

Y0

)
+ k2

z

(
Y ′

xx(θ)

Y0

)
+ k0kz

(
1 +

Y ′
xx(θ)

Y0

Y ′
yy(θ)

Y0

− Y ′
xy(θ)

Y0

Y ′
yx(θ)

Y0

)
= 0,

(4.48)

where the tensor admittances are angle-dependent, the dispersion characteristics of

the PCTIS can be accurately predicted. The angle-dependent tensor admittances are

given by (4.45). The circles in Fig. 4.7 show the dispersion curves generated using

dispersion equation (4.48) for a TIBC with angle-dependent surface admittances. The

close agreement verifies that (4.45) is indeed the expression for the angle-dependent

effective surface impedance of a PCTIS. Fig. 4.9 shows the angle-dependent tensor

surface impedance entries used to generate the circles in Fig. 4.7 at 8 GHz. A log

scale is used for the surface impedance values since the variation is large. For com-

parison purposes, the closest θ-independent surface impedance tensor (found using a

least squares fitting at 8 GHz), given by (4.47), is overlaid (dashed lines) in Fig. 4.9.

The kinks that create the peanut shape in Fig. 4.7 occur when the tensor impedance

sheet resonates with the grounded dielectric substrate. That is, the effective surface

impedance exhibits a parallel resonance and therefore, the determinant of (4.45) ap-

proaches zero. The surface impedance entries plotted in Fig. 4.9, given by the inverse

of (4.45), spike at these points. This drastic increase in surface impedance causes a

dramatic change (kink) in the shape of the dispersion curve of Fig. 4.7 at θ ≈ 60◦

and θ ≈ 240◦.

The effective surface impedance of a PCTIS (4.45) is analogous to the surface

impedance of a TIS (4.42) in that it represents the ratio of tangential electric field

to tangential magnetic field at its surface. However, due to spatial dispersion, a

PCTIS can have the same surface impedance (4.45) as a TIS (4.42) for a given θ,

but support a different direction of power flow. The analysis presented above can be

used in design, to find the sheet impedance necessary to implement a desired surface
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Figure 4.9: Surface impedance (solid lines) of the structure shown in Fig. 4.6 as a
function of propagation angle along the surface at 8 GHz. ηyx is not
plotted since it is identical to ηxy. Dashed lines represent the closest
θ-independent tensor (4.47) found using a single TIBC.

impedance for a specific angle of propagation.

In the next section, the expressions for group velocity and the direction of power

flow are found for both an idealized TIBC and a practical PCTIS. From their respec-

tive surface impedance expressions (4.42) and (4.45), the power flow along a TIBC

and a PCTIS is derived as a function of tangential wave vector. The PCTIS exhibits

spatial dispersion due to its electrical thickness. As a result, a PCTIS can have the

same surface impedance as a TIBC, but a different direction of power flow. The

expressions for direction of power along a TIBC and a PCTIS are verified with a

full-wave electromagnetic solver.

4.5 Group Velocity and Power Flow along TISs and PCTISs

In the previous section, it was shown that a TIBC can model a PCTIS if the

surface impedance of the TIBC is replaced with an effective surface impedance that

is a function of the direction of propagation along the surface (wave vector). In other
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Figure 4.10: Idealized TIBC in the x− y plane.

words, the effective surface impedance of a PCTIS is a function of the transverse wave

vector (kt) and is therefore spatially dispersive. The spatial dispersion results from

the PCTIS’s thickness: thickness of the grounded dielectric substrate.

In general, an angle-independent TIBC and a PCTIS can have the same surface

impedance but different directions of power flow. This difference arises due to the

spatial dispersion inherent to PCTISs. In the next section, expressions are derived for

the group velocity of an idealized TIBC and a PCTIS as a function of the transverse

wave number. Expressions for the direction of power flow are valuable since arbitrary

control of fields on a surface often requires knowledge of the wave vector and power

flow at every point on the surface [75, 76].

4.5.1 Direction of power flow along an idealized TIBC

The TIBC can be represented with an admittance tensor:

ηsurf =




ηxx ηxy

ηyx ηyy


 =




Yxx Yxy

Yyx Yyy




−1

=
1

det Y




Yyy −Yxy

−Yyx Yxx


 .

(4.49)
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The dispersion equation for an idealized TIBC, can be rewritten in a different form

than (4.23),

k2kz2(YxxYyy − YxyYyx + Y 2
2 ) + kxkyY2(−Yxy − Yyx)

+ (k2
2 − k2

x)(YxxY2) + (k2
2 − k2

y)(YyyY2) = 0,

(4.50)

where k2
x + k2

y + k2
z2 = k2

2. The dispersion equation (4.50) is a function of frequency

and transverse wave number and can be represented as:

f(ω, kx, ky) = 0. (4.51)

The group velocity is given by

~vg = vgxx̂ + vgy ˆy =
∂ω

∂kx

x̂ +
∂ω

∂ky

ŷ. (4.52)

Differentiating the dispersion equation with respect to kx, and ky separately yields

∂

∂kx

f(ω, kx, ky) =
[

∂

∂kx

Yxx

]
(k2

2Y2 − k2
xY2 + k2kz2Yyy)

−
[

∂

∂kx

Yxy

]
(kxkyY2 + k2kz2Yyx)

−
[

∂

∂kx

Yyx

]
(kxkyY2 + k2kz2Yxy)

+

[
∂

∂kx

Yyy

]
(k2

2Y2 − k2
yY2 + k2kz2Yxx)

+

[
∂

∂kx

kz2

]
(Y 2

2 − YxyYyx + YxxYyy)k2

+

[
∂

∂kx

k2

]
(2k2Y2(Yxx + Yyy)

+ kz2(Y
2
2 − YxyYyx + YxxYyy))

− Y2(2kxYxx + ky(Yxy + Yyx)) = 0

(4.53)
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and

∂

∂ky

f(ω, kx, ky) =

[
∂

∂ky

Yxx

]
(k2

2Y2 − k2
xY2 + k2kz2Yyy)

−
[

∂

∂ky

Yxy

]
(kxkyY2 + k2kz2Yyx)

−
[

∂

∂ky

Yyx

]
(kxkyY2 + k2kz2Yxy)

+

[
∂

∂ky

Yyy

]
(k2

2Y2 − k2
yY2 + k2kz2Yxx)

+

[
∂

∂ky

kz2

]
(Y 2

2 − YxyYyx + YxxYyy)k2

+

[
∂

∂ky

k2

]
(2k2Y2(Yxx + Yyy)

+ kz2(Y
2
2 − YxyYyx + YxxYyy))

− Y2(2kyYyy + kx(Yxy + Yyx)) = 0,

(4.54)

respectively. The [ ∂
∂kx

Y∗∗] and [ ∂
∂ky

Y∗∗] terms in (4.53) and (4.54) are given by −Y∗∗
ω

∂ω
∂kx

and −Y∗∗
ω

∂ω
∂ky

respectively, if the surface is purely inductive. These expressions are

fairly simple since the tensor admittance entries depend on frequency, but not the

tangential wave number. Substituting the simplified derivatives (F.2)-(F.5) from Ap-

pendix F into (4.53) and solving for ∂w
∂kx

yields the group velocity in the x-direction,

v
TIS
gx =

∂ω

∂kx
=

ω(kz2Y2(2kxYxx + ky(Yxy + Yyx)) + k2kx(Y 2
2 + det Y ))

k2
2kz2Y2(Yxx + Yyy) + kz2Y2(k2

xYxx + kxky(Yxy + Yyx) + k2
yYyy) + k2k2

z2(Y 2
2 − det Y ) + k3

2(Y 2
2 + det Y )

. (4.55)

Substituting the derivatives from Appendix F into (4.54) and solving for ∂w
∂ky

yields

the group velocity in the y-direction,

v
TIS
gy =

∂ω

∂ky
=

ω(kz2Y2(2kyYyy + kx(Yxy + Yyx)) + k2ky(Y 2
2 + det Y ))

k2
2kz2Y2(Yxx + Yyy) + kz2Y2(k2

xYxx + kxky(Yxy + Yyx) + k2
yYyy) + k2k2

z2(Y 2
2 − det Y ) + k3

2(Y 2
2 + det Y )

, (4.56)
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Figure 4.11: Arrows point in the group velocity (red) and phase velocity (blue) di-
rections for an idealized inductive TIS (4.58) at 10 GHz. The group
and phase velocities co-align along the principal axes of the surface.
The length of the red arrows represent the normalized magnitude of the
group velocity. The transverse unit cell dimension is a = 3 mm.

The direction of power flow along the TIBC, θTIBC
s , is then given by:

tan θTIBC
s =

vTIBC
gy

vTIBC
gx

=
kz2Y2(kx(Yxy + Yyx) + 2kyYyy) + k2ky(Y

2
2 + det Y )

kz2Y2(ky(Yxy + Yyx) + 2kxYxx) + k2kx(Y 2
2 + det Y )

(4.57)

For a given TIBC, the direction of power flow can be calculated as a function of

transverse wave number via (4.57). Fig. 4.11 shows the 10 GHz isofrequency contour

for the following TIBC

ηsurf = j




487.98 173.48

173.48 476.48


 , (4.58)

plotted using (4.50). The phase velocity directions (blue arrows) and group velocity
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directions (red arrows) are overlaid on the isofrequency contour. The direction of the

group velocity (direction of power flow) along the surface is calculated from (4.57).

The direction of phase velocity along the surface, θkt , is given by

tan θkt =
ky

kx

. (4.59)

An anisotropic impedance boundary condition is used in a full-wave eigenmode solver

(HFSS) to verify the eigenfrequency and directions of power flow for points on the

isofrequency contour of Fig. 4.11. Table 4.1 shows good agreement between the

direction of power flow calculated analytically using (4.57) and full-wave simulation.

Table 4.1: Full-wave verification of Modal frequency and group velocity direction for
TIBC

Prop. Angle phase in x phase in y Analytic Sim. Analytic Sim.
θkt kxa kya freq freq θTIBC

s θTIBC
s

(deg) (deg) (deg) (GHz) (GHz) (deg) (deg)
0 56.06 0 10 9.99 -22.956 -23.11

46.13 32.25 −33.55 10 9.99 -46.01 -46.00
-136.38 −52.30 −49.84 10 9.98 -136.97 -136.98
133.37 −31.97 33.83 10 9.99 133.80 133.81
89.25 0.73 55.60 10 9.99 111.92 112.04
45.12 50.96 51.18 10 9.98 46.52 46.54

In the next section, (4.53) and (4.54) is used to solve for the group velocity of a

PCTIS. For a PCTIS, the Y∗∗ terms in (4.53) and (4.54) represent the effective surface

impedance, which depends on frequency and the transverse wave numbers (kx and

ky).

4.5.2 Direction of power flow along a PCTIS

The effective surface admittance tensor of a PCTIS (see Fig. 4.12), analogous

to Yxx, Yxy, Yyx, and Yyy of an idealized surface, is a function of transverse wave

number [77]. Even though the surface impedance still relates the ratio of Et to Ht,

the direction of power flow along the PCTIS is generally different from that along
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Figure 4.12: PCTIS consisting of a tensor sheet impedance over a grounded dielectric
substrate. The tensor sheet impedance/admittance, which models a
generalized metallic cladding, is denoted with a superscript ‘s’.

a TIBC with the same surface impedance. This is due to the presence of spatial

dispersion, resulting from the substrate thickness of the PCTIS. As given by (4.45)

in Section 4.4 [77], the effective surface admittance of a PCTIS is,

Y surf (θkt) =




Yxx(θkt) Yxy(θkt)

Yyx(θkt) Yyy(θkt)


 =




Y s
xx Y s

xy

Y s
yx Y s

yy


 +

RT (−θkt)



−j

(
Y1

k1
kz1

)
cot(kz1d) 0

0 −j
(
Y1

kz1
k1

)
cot(kz1d)


R(−θkt).

(4.60)

where

R(−θkt) =




cos θkt sin θkt

− sin θkt cos θkt


 , (4.61)

and k2
1 = k2

x + k2
y + k2

z1. The effective surface admittance is equal to the sum of the

sheet admittance and the admittance of the grounded dielectric substrate rotated by

−θkt , where θkt is the direction of propagation along the surface with respect to the

x-axis. In terms of the wave vector components,
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Y surf (θkt) =




Y s
xx Y s

xy

Y s
yx Y s

yy


+

=
−jY1 cot(kz1d)

k2
x + k2

y




kx −ky

ky kx







k1
kz1

0

0 kz1
k1







kx ky

−ky kx


 .

(4.62)

The elements of the effective surface admittance tensor can therefore be rewritten as:

Yxx = Y s
xx −

jY1 cot(kz1d)

k1kz1

(k2
1 − k2

y) (4.63)

Yxy = Y s
xy −

jY1 cot(kz1d)

k1kz1

(kxky) (4.64)

Yyx = Y s
yx −

jY1 cot(kz1d)

k1kz1

(kxky) (4.65)

Yyy = Y s
yy −

jY1 cot(kz1d)

k1kz1

(k2
1 − k2

x) (4.66)

Differentiating (4.63)-(4.66) with respect to kx or ky yields

∂

∂kq

Yxx =
Y s

xx

ω

∂ω

∂kq

− jY1[cot(kz1d)(k2
1 − k2

y)(
1

k1

∂F

∂kq

+
1

kz1

∂E

∂kq

)

+
1

k1kz1

(cot(kz1d)
∂D

∂kq

+ (k2
1 − k2

y)
∂C

∂kq

)]

(4.67)
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∂

∂kq

Yxy =
Y s

xy

ω

∂ω

∂kq

− jY1[cot(kz1d)kxky(
1

k1

∂F

∂kq

+
1

kz1

∂E

∂kq

)

+
1

k1kz1

(cot(kz1d)
∂G

∂kq

+ kxky
∂C

∂kq

)]

(4.68)

∂

∂kq

Yyx =
Y s

yx

ω

∂ω

∂kq

− jY1[cot(kz1d)kxky(
1

k1

∂F

∂kq

+
1

kz1

∂E

∂kq

)

+
1

k1kz1

(cot(kz1d)
∂G

∂kq

+ kxky
∂C

∂kq

)]

(4.69)

∂

∂kq

Yyy =
Y s

yy

ω

∂ω

∂kq

− jY1[cot(kz1d)(k2
1 − k2

x)(
1

k1

∂F

∂kq

+
1

kz1

∂E

∂kq

)

+
1

k1kz1

(cot(kz1d)
∂J

∂kq

+ (k2
1 − k2

y)
∂C

∂kq

)]

(4.70)

where q = x or y, and the derivatives of C, D, E, F , G, and J are given in Appendix

F. The group velocity of a PCTIS is found by substituting (4.63)-(4.70) into the

expressions for an idealized TIBC (4.53)-(4.54), and then solving for ∂ω
∂kx

and ∂ω
∂ky

. The

x and y components of the group velocity for a PCTIS can be expressed compactly

as:

vPCTIS
gq =

∂ω

∂kq

=
−B7 + kq

kz2
B4 − ξ1B1 + ξ2(B2 + B6)− ξ4B3

χ1B1 − χ2B2 − χ3B6 + χ4B3 + νB4 + ζB5

(4.71)
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where

q = x or y, r =





y if q = x

x if q = y
. (4.72)

and Bn, χ, ζ, ν and ξ terms are given in Table F.2 in Appendix F. It should be

noted that the expressions for the group velocity along a TIBC can also be found

from (4.71) by using the appropriate terms from Table F.1. The direction of power

flow for a PCTIS is given by

tan θPCTIS
s =

vPCTIS
gy

vPCTIS
gx

. (4.73)

Fig. 4.13 shows the phase velocity and group velocity directions, overlaid onto a 10

GHz isofrequency contour, for a specific PCTIS. The PCTIS consists of a capacitive

sheet impedance,

η
s
= −j




382.58 65.00

65.00 157.42


 , (4.74)

over a grounded dielectric substrate (d = 1.27 mm, εr = 10.2). Close agreement

between the direction of power flow calculated analytically using (4.73) and full-wave

simulation is shown in Table II.

Table 4.2: Full-wave verification of Modal frequency and group velocity direction for
PCTIS

Prop. Angle phase in x phase in y Analytic Sim. Analytic Sim.
θkt kxa kya freq freq θPCTIS

s θPCTIS
s

(deg) (deg) (deg) (GHz) (GHz) (deg) (deg)
0 40.06 0 10 10.00 9.99 9.88

-75 13.05 −48.69 10 10.01 -75.00 -75.00
-45 30.05 30.05 10 10.00 30.58 30.66
15 37.76 10.17 10 10.00 15.00 15.01
159 −40.77 15.65 10 10.00 173.69 173.61
-111 −16.89 −44.01 10 10.00 -122.81 -122.75

In this section, expressions for the group velocity (4.55)-(4.56) and the direction of
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Figure 4.13: Arrows point in the group velocity (red) and phase velocity (blue) direc-
tions for an idealized PCTIS consisting of a capacitive sheet (4.74) over
a grounded dielectric substrate at 10 GHz. The substrate thickness is
1.27 mm and the dielectric constant is εr = 10.2. The group and phase
velocities co-align along the principal axes of the surface. The length of
the red arrows represent the normalized magnitude of the group velocity.
The transverse unit cell dimension is a = 3 mm.
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power flow (4.57) along an idealized TIBC were found. Additionally, expressions for

the group velocity and the direction of power flow, that account for spatial dispersion,

were found for a PCTIS. The direction of power flow along the TIBC and the PCTIS

was verified using a commercial full-wave solver. These expressions provide a valuable

tool toward the design of inhomogeneous anisotropic surfaces that support arbitrary

wave vector and power flow distributions (Chapter V).

4.6 Thin PCTISs

In general, (4.45) and Fig. 4.8 show that a PCTIS cannot be approximated by an

idealized TIBC. However, under certain conditions, it may be possible to lump the

patterned metallic cladding and the grounded dielectric substrate together and treat

it as a single surface.

A high dielectric constant (εr1 >> 1) ensures that the normal wave number,

kz1, approaches k1 (wave number in the dielectric of the PCTIS) due to the phase

matching condition at the interface between regions 1 and 2 [51, 78]. In other words,

propagation in the dielectric is nearly normal (kz1

k1
≈ 1). Making this approximation

in (4.45) yields:

Y surf (θ) =




Y s
xx Y s

xy

Y s
yx Y s

yy


 + RT (−θ)



−jY1 cot(k1d) 0

0 −jY1 cot(k1d)


 R(θ).

(4.75)

Notice that the second term is unaffected by rotation since it is isotropic. Therefore,

the effective surface impedance becomes

Y surf =




Y s
xx Y s

xy

Y s
yx Y s

yy


 +



−jY1 cot(k1d) 0

0 −jY1 cot(k1d)


 (4.76)
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and the surface impedance is no longer θ dependent. Making the additional assump-

tion that the structure is electrically thin, (k1d << 1) yields,

Y surf =




Y s
xx Y s

xy

Y s
yx Y s

yy


 +




1
jη1k1d

0

0 1
jη1k1d


 . (4.77)

In this limit, the ground plane and dielectric substrate effectively act as an inductor

and the PCTIS can be lumped. In the case of a purely capacitive sheet (e.g. the

sheet from Fig. 4.6), the surface admittance is given by

Y surf =




jωCs
xx jωCs

xy

jωCs
yx jωCs

yy


 +




1
jω(µ1d)

0

0 1
jω(µ1d)




=




jωCs
xx + 1

jωL0
jωCs

xy

jωCs
yx jωCs

yy + 1
jωL0


 ,

(4.78)

where L0 = µ1d. The surface impedance becomes independent of εr1. In fact, (4.78)

suggests a PCTIS can be treated as a single TIBC when it possesses an electrically-

thin substrate (k1d << 1) of high dielectric constant (kz1/k1 ≈ 1). To test this

hypothesis, two separate cases are considered: Case A, where the inductive surface

impedance is low, and Case B where the inductive surface impedance is high.

4.6.1 Low surface impedance values

First, we examine a PCTIS with a low surface impedance. The sheet impedance

and physical thickness of the PCTIS remains fixed and variations of dielectric constant

are explored. The sheet impedance is set equal to (4.46) at 10 GHz, resulting in a

sheet capacitance of: Cs
xx = 188.22 fF, Cs

xy = Cs
yx = −50.85 fF, and Cs

yy = 104.01

fF. The substrate thickness is chosen to be d = 0.27386 mm, such that it remains

electrically thin for all three values of permittivity considered: εr1 = 2.2, 10.2, and
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(a) εr1 = 2.2, d = λd/73.9.

(b) εr1 = 10.2, d = λd/34.3.

(c) εr1 = 30, d = λd/20.

Figure 4.14: Angle-dependent (solid lines) and angle-independent (dashed lines) ten-
sor surface impedance for a fixed tensor sheet over a grounded dielectric
substrate at 10 GHz. The sheet parameters are given by: Cs

xx = 188.22
fF, Cs

xy = Cs
yx = −50.85 fF, and Cs

yy = 104.01 fF, and L0 = µ1d. The
substrate thickness is d = 0.27386 mm.
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30. Since the lumped (angle-independent) surface impedance (4.78) does not depend

on εr1, it remains invariant for all three dielectric constants. This angle-independent

impedance, given by

ηsurf = j




29.27 −2.355

−2.355 25.37


 Ω (4.79)

at 10 GHz, is shown with dashed lines in Fig. 4.14. Figs. 4.14(a), 4.14(b), and

4.14(c) compare the angle-dependent surface impedance (4.45) to this lumped surface

impedance (4.79), for dielectric constants of εr1 = 2.2, 10.2, and 30 respectively. It is

clear that, with increasing dielectric constant, the surface impedance of the PCTIS

becomes nearly independent of θ, and approaches the lumped surface impedance

given by (4.79). Therefore, a PCTIS with a low surface impedance can be treated as

a single, angle-independent TIBC under the conditions of high εr1 and k1d << 1.

4.6.2 High surface impedance values

Now, we consider a PCTIS with a higher (on the order of 100 jΩ) surface impedance.

The surface impedance of a practical/useful PCTIS must be of this order to support

dispersion curves that differ appreciably from those of free space [11, 22, 47]. For an

inductive surface, a low surface impedance results in a loosely bound surface wave

with circular dispersion curves and wave number approaching that of free space.

As before, the sheet impedance and physical thickness of the substrate are fixed

and the dielectric constant is varied (εr1 = 2.2, and 30). The physical thickness of

the substrate is set to d = 0.152 mm and the sheet capacitance to: Cs
xx = 1.1277

pF, Cs
xy = Cs

yx = −67.97 fF, and Cyy = 1.2402 pF. These parameters are chosen

to establish a higher surface impedance value than in Case A. Again, the lumped
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(a) εr1 = 2.2, d = λd/132.9.

(b) εr1 = 30, d = λd/36.

Figure 4.15: Angle-dependent (dotted and dash-dot lines) and angle-independent
(dashed lines) surface impedance for a fixed tensor sheet over a grounded
dielectric substrate at 10 GHz. The sheet parameters are given by:
Cs

xx = 1.1277 pF, Cs
xy = Cs

yx = −67.97 fF, Cs
yy = 1.2402 pF, and

L0 = µ1d. The substrate thickness is d = 0.152 mm.
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(angle-independent) surface impedance (4.78) does not depend on εr1. It is equal to

ηsurf = j




110 −87

−87 254


 Ω (4.80)

at 10 GHz and shown with dashed lines in Fig.4.15. Figs. 4.15(a), and 4.15(b) com-

pare the angle-dependent surface impedance (4.45) to the lumped surface impedance

(4.80), for dielectric constants of εr1 = 2.2, and 30, respectively. The structure re-

mains electrically thin for both variants of dielectric constant. However, in contrast

to Case A, the angle-dependent surface impedance (4.45) does not converge to the

lumped (angle-independent) surface impedance (4.80) with increasing dielectric con-

stant. This may seem unexpected, but there is a simple explanation for this. The

higher surface impedance of Case B is achieved by operating close to the resonance

of the capacitive sheet and the grounded dielectric substrate. Therefore, even small

changes in kz1 resulting from changes in propagation angle θ can cause fairly large

changes in surface impedance. As a result, the angle dependence of the PCTIS’s

surface impedance does not vanish with increasing dielectric constant. In summary,

the angle dependence of the surface impedance tensor persists for high values of di-

electric constant, for PCTISs with practical values of surface impedance. We have

shown that a PCTIS with a high dielectric constant and small electrical thickness

can be modeled as a single surface impedance tensor with reasonable accuracy for the

case of low surface impedance. For surfaces possessing a higher surface impedance,

the lumped surface approximation may be adequate for approximate designs at a

specified frequency of operation. However, if accurate propagation characteristics are

desired, (4.45) should be used to determine the surface impedance as a function of

propagation angle along the surface.
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4.7 Chapter Summary

In this chapter, a modified transverse resonance technique for TISs was intro-

duced. First, it was used to derive the surface admittance of a printed-circuit scalar

impedance surface, consisting of a scalar admittance sheet over a grounded dielectric

substrate. Then, it was used to derive the dispersion equation for an idealized TIBC.

These results were combined to derive the dispersion equation for a PCTIS, which

consists of a tensor sheet impedance (representing a patterned metallic cladding) over

a grounded dielectric substrate. The angle-dependent effective surface impedance of

the PCTIS was derived and verified. This angle dependence is equivalent to a depen-

dence on transverse wave number. Therefore, the surface impedance of the PCTIS

exhibits spatial dispersion. It was shown, that in general, a PCTIS cannot be modeled

as an idealized TIBC that is independent of propagation angle. However, the PCTIS

can be modeled with a TIBC when the angle-dependent effective surface impedance

tensor is used. Expressions for the group velocity and the direction of power flow

along a TIBC and a PCTIS are found. This chapter also discusses electrically-thin

PCTISs, showing that even these PCTISs can only be approximately modeled with

angle-independent surface impedance tensors. If accurate propagation characteristics

are desired, the angle-dependent effective tensor surface impedance of the PCTIS

must be used. Antenna designs and cloaking applications often assume an incident

plane wave at a specified angle. When implementing such devices with PCTISs, the

impedance sheet needs to be designed with the angle dependence of (4.45) in mind,

in order for the structure to have the desired surface impedance along a specified

direction. The modified transverse resonance technique presented in this chapter can

be extended to handle multi-layer surfaces in a straightforward manner.

Up to this point, various aspects of TIBCs and PCTISs have been analyzed. Their

dispersion equations were derived using two methods: field analysis (Chapter III),

and the more intuitive modified transverse resonance technique (this chapter). The
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dispersion equation of a PCTIS was directly related to the dispersion equation of a

TIBC via the angle-dependent effective surface impedance of the PCTIS. Their group

velocity expressions were also derived. In the next chapter, a method for designing

transformation electromagnetics devices using TIBCs and PCTISs is presented. This

method, which combines all the aforementioned analysis, allows the design of TIBCs

and PCTISs that support prescribed wave vector and Poynting vector distributions

along the surface.
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CHAPTER V

Transformation Electromagnetics Devices Based

on Printed-Circuit Tensor Impedance Surfaces

5.1 Introduction

Transformation electromagnetics was first introduced in 2006 [33]. Since that time,

transformation electromagnetics methods have been applied to the design of novel mi-

crowave and optical devices such as cloaks, polarization splitters, and beam-benders

[33, 34, 39]. Transformation electromagnetics allows a field distribution to be trans-

formed from an initial configuration to a desired one through a change of material

parameters via a coordinate transformation. In addition to volumetric designs, pla-

nar transformation-based devices using transmission-line networks have been recently

introduced in [36], and subsequently pursued by other groups [35, 38, 79, 80, 81]. As

mentioned in previous chapters, great strides have been made in realizing practical

printed devices such as holographic antennas, polarization controlling surfaces, and

surface-wave guiding surfaces using the anisotropic properties of tensor impedance

surfaces (TISs) [11, 16, 17, 18, 20, 22, 82]. In this chapter, a method for designing

transformation electromagnetics devices using TISs is presented.

We first present a method to implement transformation electromagnetics devices

using an idealized tensor impedance boundary condition (TIBC) [10, 11]. Later in

114



the chapter, the method is adapted for practical printed-circuit tensor impedance

surfaces (PCTISs) [53, 54, 55, 77]. The TIBC is given by: Ēt = ¯̄ηsurf n̂ × H̄t, where

Ēt and H̄t are components of the total electric and magnetic field tangential to the

surface (at z = 0)[10]. This boundary condition can be represented in matrix form as




Ex

Ey


 = ¯̄ηsurf



−Hy

Hx


 =




ηxx ηxy

ηyx ηyy






−Hy

Hx


 , (5.1)

or in terms of admittances,



−Hy

Hx


 = ¯̄Ysurf




Ex

Ey


 =




Yxx Yxy

Yyx Yyy







Ex

Ey


 , (5.2)

where

¯̄Ysurf = ¯̄η−1
surf (5.3)

A TIS can support TM (Fig. 5.1(a)), TE (Fig. 5.1(b)), or hybrid modes. Recently,

a surface impedance cloak was designed [40] using the TM index profile, character-

istic of beam-shifters [83]. In the present work, the surface impedance profile needed

to implement transformation electromagnetics devices is found from the transformed

wave vector and Poynting vector distributions along a surface [76, 84]. Specifically,

surface impedance profiles are found that support modes (TM , TE, or hybrid) with

these transformed phase and power characteristics. The method ensures that only

the surface impedance entries need to be designed, and the free space above the TIS

need not be transformed. The method is later adapted to design practical PCTISs

that support modes with transformed wave vector and Poynting vector distributions.

A PCTIS is a practical realization of a TIBC (as explained in Chapter III. When de-

signing PCTISs, the tensor sheet impedance entries are the unknowns: the quantities

of interest.
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In the next section of this chapter, transformation electromagnetics in two dimen-

sions (2D) is reviewed. Section 5.3 outlines an approach for designing 2D transfor-

mation electromagnetics devices using TIBCs. In Section 5.4, a beam-shifting device

is designed and simulated with a commercial full-wave solver to verify the design

method outlined in Section 5.3. In Section 5.5, transformation electromagnetics is

applied to PCTISs and a beam-shifter is designed using a PCTIS in Section 5.6. The

proposed design methodology is a step towards the realization of practical, transfor-

mation electromagnetics-based devices realized using PCTISs [11, 53].

(a) TIS supporting a TM wave.

(b) TIS supporting a TE wave.

Figure 5.1: Waves interacting with a tensor impedance surface (TIS). In general, ten-
sor impedance surfaces can support both TM , TE, and hybrid modes.
The TM wave has an Ez component and the TE wave has an Hz com-
ponent.
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5.2 Two-Dimensional Transformations

In transformation electromagnetics [33], fields are transformed from an initial

state to a desired one via a change in material parameters based on a coordinate

transformation. The transformed material tensors (µ′′and ε′′) are related to the initial

material parameters (µ and ε) in the following manner:

µ′′ =
Jµ(J)T

|J |
ε′′ =

Jε(J)T

|J |
, (5.4)

where

J =




∂x′′
∂x

∂x′′
∂y

∂x′′
∂z

∂y′′
∂x

∂y′′
∂y

∂y′′
∂z

∂z′′
∂x

∂z′′
∂y

∂z′′
∂z




, (5.5)

is the Jacobian of the transformation from the (x, y, z) coordinate system to the

(x′′, y′′, z′′) system. When two-dimensional transformations are applied in the x − y

plane, the Jacobian reduces to

J =




∂x′′
∂x

∂x′′
∂y

∂y′′
∂x

∂y′′
∂y


 =




J11 J12

J21 J22


 . (5.6)

In transformation electromagnetics, material parameters transform as in (5.4). How-

ever, when designing TISs, the surface impedance/admittance is the quantity of in-

terest rather than material parameters. Therefore, we must find how the surface ad-

mittance transforms. Transformation electromagnetics dictates that the transformed

fields are related to the initial fields as [34, 85]:

E = J
T
E
′′
, (5.7)
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H = J
T
H
′′

(5.8)

or equivalently,




Ex

Ey


 =




J11 J21

J12 J22







E ′′
x

E ′′
y


 , (5.9)




Hx

Hy


 =




J11 J21

J12 J22







H ′′
x

H ′′
y


 . (5.10)

Rearranging the magnetic field components in (5.10), yields



−Hy

Hx


 =




J22 −J12

−J21 J11






−H ′′

y

H ′′
x


 = |J |J−1



−H ′′

y

H ′′
x


 . (5.11)

Substituting (5.9) and (5.11) into the tensor admittance boundary condition (5.2)

yields 

−H ′′

y

H ′′
x


 = Y

′′
surf




E ′′
x

E ′′
y


 =

JY surfJ
T

|J |




E ′′
x

E ′′
y


 . (5.12)

Comparing equations (5.2) and (5.12) reveals that the traditional transformation

electromagnetics method transforms the surface admittance in the same manner that

ε and µ are transformed in (5.4).

The transverse resonance equation that determines the guided modes, for propa-

gation along the x-axis of an idealized TIBC is given by (4.20):




Yxx Yxy

Yyx Yyy







Ex

Ey


 =




Y0
k0

kz
0

0 Yo
kz

k0







Ex

Ey


 , (5.13)
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where Y0 =
√

ε0
µ0

, and k0 = k2
t + k2

z . In general, the transverse wave number, kt,

is given by k2
t = k2

x + k2
y but in this particular case, kt = kx. The matrix on the

right-hand-side (RHS) of (5.13) contains the TM and TE admittances of free space.

Manipulating both sides of (5.13) yields


 J

|J |




Yxx Yxy

Yyx Yyy


 J

T







(
J

T
)−1




Ex

Ey







=
J

|J |




Yo
ko

kz
0

0 Yo
kz

ko


 J

T




(
J

T
)−1




Ex

Ey





 .

(5.14)

The term in square brackets on the LHS of (5.14) can be substituted with (5.12),

yielding the following equation,




Y ′′
xx Y ′′

xy

Y ′′
yx Y ′′

yy







E ′′
x

E ′′
y


 =


 J

|J |




Yo
ko

kz
0

0 Yo
kz

ko


 J

T







E ′′
x

E ′′
y


. (5.15)

Therefore, not only does the surface admittance, Y surf , have to be transformed but

so does the free space above the surface (term in square brackets of (5.15)), if the

guidance condition is to be satisfied. This is impractical, since in many applications

the space above the impedance surface is fixed. This conclusion is verified through

full-wave simulation in Section 5.4.

5.3 Transformation Electromagnetics Applied to an Ideal-

ized Tensor Impedance Boundary Condition (TIBC)

In the previous section, it was shown that the transformed surface admittance

( ¯̄Y ′′
surf ) can be found from an initial surface impedance ( ¯̄Ysurf ) in the same manner
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Figure 5.2: Transforming the surface via the traditional transformation electromag-
netics method (5.12) results in a transformation of all space. An alternate
method that does not transform the space above the surface, but rather
the TIBC alone is presented in Section 5.3.

that the transformed material parameters are computed. However, to maintain the

guidance condition, the free space above the surface must also be transformed. This

section proposes an alternative design approach. In this alternative approach, tensor

impedance entries (η′′xx, η
′′
xy = η′′yy, and η′′yy) are found that support the spatially vary-

ing wave vector and Poynting vector of the transformation electromagnetics device,

while maintaining free space above the surface.

The wave vector and Poynting vector tangential to the surface transform as [75]:

k′′t =




k′′x

k′′y


 = (JT )−1kt, (5.16)

S ′′t =




S ′′x

S ′′y


 = (

J

|J |)St. (5.17)

At a given spatial coordinate, the Poynting vector points at an angle, θ′′power, with

respect to the x-axis,
S ′′y
S ′′x

= tan(θ′′power) = b. (5.18)

Similarly, the transformed wave vector points at an angle, θ′′kt
= k′′y/k

′′
x with respect

to the x-axis. In addition to supporting the transformed wave vector and Poynting
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vector, the tensor impedance entries of interest (η′′xx, η
′′
xy = η′′yy, and η′′yy) must also

satisfy the guidance condition for propagation along the surface.

5.3.1 Propagation along TIBCs

The following eigenvalue equation ((3.5) in Chapter III) can be written to find

the modes supported by a TIBC [53]:




b11 b12

b21 b22







E ′′
z

H ′′
z


 = 0, (5.19)

where

b11 = k′′xk
′′
z +

k′′xk0η
′′
xx

η0

+
k′′yk0η

′′
xy

η0

b12 = k0k
′′
yη0 + k′′yk

′′
zη
′′
xx − k′′xk

′′
zη
′′
xy

b21 = k′′yk
′′
z +

k′′xk0η
′′
yx

η0

+
k′′yk0η

′′
yy

η0

b22 = −k0k
′′
xη0 + k′′yk

′′
zη
′′
yx − k′′xk

′′
zη
′′
yy.

(5.20)

The eigenvalue equation above is found by expressing the tangential field components

(E ′′
x , E ′′

y , H ′′
x , and H ′′

y ) in terms of the normal components E ′′
z and H ′′

z corresponding

to TM and TE fields, respectively (see (3.1) and (3.2) in Chapter III). It should be

noted that the double primes denote field quantities corresponding to the transformed

wave vector (5.16) and Poynting vector (5.17), not the transformed fields ((5.7), (5.8))

from transformation electromagnetics. From (5.19), the dispersion equation of a TIBC

((3.7) in Chapter III) can be derived [10, 53]:

b11b22 − b12b21 = 0, (5.21)
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and the direction of power flow along a TIBC (4.57):

tan θ′′power =

k′′zY0(k
′′
x(Y

′′
xy + Y ′′

yx) + 2k′′yY
′′
yy) + k0k

′′
y(Y

2
0 + det Y ′′

surf )

k′′zY2(k′′y(Y ′′
xy + Y ′′

yx) + 2k′′xY ′′
xx) + k0k′′x(Y

2
0 + det Y ′′

surf )
,

(5.22)

can be found as shown in Chapter IV [74]. The eigenvalue equation (5.19) will be

used to design TIBCs that support surface waves with the transformed wave vector

and Poynting vector distributions given by (5.16) and (5.17).

5.3.2 Design Approach

In transformation electromagnetics, the transformed material parameters are de-

rived from an initial medium. This initial medium is typically free space. Since the

intent here is to apply transformation electromagnetics to TIBCs, an initial isotropic

surface impedance,

ηsurf =




η 0

0 η


 , (5.23)

in free space is chosen that supports a surface wave at a desired frequency of operation.

The surface impedance supporting a TM surface wave is given by

η = η0

√
1−

(
kt

k0

)2

, (5.24)

The tangential wave number (kt) along the surface is chosen to be greater than that

of free space (kt > k0) to ensure a bound surface wave. Next, a surface impedance,

η
′′
surf =




η′′xx η′′xy

η′′yx η′′yy


 , (5.25)
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is found which supports the transformed wave vector and Poynting vector distribu-

tions on the surface. By writing the Poynting vector components (S ′′x , S ′′y ) in terms of

E ′′
z and H ′′

z , (5.18) can be recast as

E ′′
z

H ′′
z

= −η0(k
′′
x + bk′′y)k

′′
z

k0(bk′′x − k′′y)
±

j
√

η2
0(−k2

0(−bk′′x + k′′y)2 − (k′′x + bk′′y)2k′′2z )

k0(bk′′x − k′′y)
. (5.26)

Therefore, the transformed wave vector (k′′x, k
′′
y) and direction of the Poynting vector

(b = tan(θ′′power)) on the surface,uniquely defines the ratio of the normal electric and

magnetic fields (ratio of TM to TE fields) supported by the TIBC. Even though the

isotropic medium supports a TM wave only, the anisotropic region can support a

mixture of TM and TE waves, as indicated by (5.26). Substituting (5.26) into (5.19)

yields two equations for finding the surface impedance entries: η′′xx, η
′′
xy = η′′yx, and

η′′yy. Setting the determinant of the transformed surface impedance tensor equal to

the square of the initial surface impedance (η), results in a third equation,

η′′xxη
′′
yy − η′′xyη

′′
yx = η2, (5.27)

The transformed surface impedance entries can now be found using these three equa-

tions. This condition on the determinant of the surface impedance is analogous to

the condition on the permittivity and permeability tensors in transformation electro-

magnetics devices [33, 34]. Solving this system of three equations yields the surface

impedance tensor necessary (at each point on the surface) to ensure the desired dis-

tributions of wave vector (5.16) and direction of power flow (5.17) along the surface.

Alternatively, the system of three equations needed to find the surface impedance

entries can be chosen as: the dispersion equation (5.21), the direction of power flow

(5.22), and (5.27).
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5.4 Example: A Beam-shifting Surface using a TIBC

In this section, a transformation-based beam-shifter [37, 83] is designed using

TIBCs. The device can bend a surface-wave beam by an angle of θ′′power. The device

consists of three regions (as shown in Fig. 5.3): an anisotropic region with surface

impedance ¯̄η′′surf sandwiched between two isotropic regions with surface impedance

¯̄ηsurf . In the uppermost isotropic region, propagation is set to be purely in the x-

direction. The wave number is chosen to be kx = 1.557k0 = 326.14 rad/m at 10

GHz, to ensure a tightly bound wave. The corresponding surface impedance, given

by (5.24), is

ηsurf = j




450 0

0 450


 Ω. (5.28)

This surface will support a TM surface wave with the following propagation charac-

teristics:

kt =




kx

ky


 =




326.14

0


 rad/m, (5.29)

St =




Sx

Sy


 =




Sx

0


 W/m2. (5.30)

The anisotropic region is designed by finding the anisotropic surface impedance

tensor (¯̄η′′surf ) needed to bend the beam by an angle θ′′power (Fig. 5.3). A coordinate

transformation is applied to k̄t and S̄t to find the transformed tangential wave vector

(k̄′′t ) and Poynting vector (S̄ ′′t ) in the anisotropic region. The Jacobian of the coor-

dinate transformation governing the anisotropic region of the beam-shifting device is

given by [34]

J =




1 0

b 1


 , (5.31)
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Figure 5.3: A beam-shifting surface consisting of three regions. Two different homog-
enized media need to be designed; one isotropic and one anisotropic. The
anisotropic region is designed to bend the incident beam by θ′′power.

where b = tan(θ′′power). The beam-shift angle is chosen to be θpower = −23◦or equiva-

lently, b = −0.424. Applying the transformation to kt and St, using (5.16) and (5.17)

yields,

k′′t =




k′′x

k′′y


 =




326.14

0


 (5.32)

and

S ′′t =




S ′′x

S ′′y


 =




Sx

bSx


 . (5.33)

Applying the design procedure described in the previous section yields the following

surface impedance tensor for the anisotropic region:

η′′surf =




η′′xx η′′xy

η′′yx η′′yy


 = j




488.0 173.5

173.5 476.7


 Ω. (5.34)

Its dispersion contour is shown in Fig. 5.4.

The beam-shifter was simulated using Ansys HFSS. The isotropic and anisotropic

regions (as shown in Fig. 5.3) were modeled using the screening impedance boundary
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condition in HFSS. The boundaries of the simulation domain were terminated with

radiation boundaries, and one edge was illuminated with a Gaussian beam. The

results of the simulation at 10 GHz are shown in Fig. 5.5. As expected, the Gaussian

excitation couples energy into the uppermost isotropic surface, and a surface wave

propagates in the x-direction. Upon encountering the anisotropic medium, the beam

is refracted by −23◦. To an observer at the far edge of the lower isotropic region,

(edge opposite of the source), the source appears to have shifted laterally.

Had the surface admittance (5.28) been transformed by (5.12), the transformed

surface impedance would be:

η′′surf =




η′′xx η′′xy

η′′yx η′′yy


 = j




530.9 190.8

190.8 450.0


 Ω. (5.35)

This surface impedance tensor does not satisfy the guidance condition at 10 GHz

unless the free space above the surface is transformed to

ε′′ = ε0




1 b

b b2 + 1


 = ε0




1 −0.424

−0.424 1.180


 (5.36)

µ′′ = µ0




1 b

b b2 + 1


 = µ0




1 −0.424

−0.424 1.180


 (5.37)

via (5.4). This fact was verified using HFSS’s eigenmode solver by stipulating the wave

vector given by (5.32), across the TIBC (5.35), implemented in HFSS with a screening

impedance. The medium above the surface was assigned material parameters given

by (5.36) and (5.37). As a result of this simulation, an eigenfrequency of 10 GHz

is found by the eigenmode solver. Additionally, finding the ratio of S ′′y to S ′′x from

the simulation verifies the direction of power flow as θ′′power = −23◦. When the free

space above the surface is left untransformed in simulation, the guidance condition
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Figure 5.4: The 10 GHz isofrequency contour for the idealized inductive TIBC
(anisotropic region) corresponding to the designed TIBC beam-shifter
(5.34). Arrows point in the group velocity (red) and phase velocity (blue).
The group and phase velocities co-align along the principal axes of the
surface. The length of the red arrows represent the normalized magni-
tude of the group velocity. For propagation along the x-axis (θ′′kt

= 0),
the group velocity vector is separated from the phase velocity arrow by
−23◦ as designed.

is satisfied at 9.65 GHz, which agrees with analytical predictions from the dispersion

equation.

In the next section, a beam-shifter is implemented with a PCTIS. In the case of a

PCTIS, the unknowns are the sheet admittance tensor entries (Y s′′
xx ,Y s′′

xy , and Y s′′
yy ).

5.5 Transformation Electromagnetics Applied to Printed-Circuit

Tensor Impedance Surfaces (PCTISs)

In this section, a procedure for designing transformation electromagnetics devices

using PCTISs is presented. A PCTIS consists of a tensor impedance sheet over a

grounded dielectric substrate, where the tensor sheet impedance models a patterned

metallic cladding. As shown in the analytical model of a PCTIS (Fig. 5.6), the

quantities of interest are the sheet admittance entries. The effective surface impedance
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Figure 5.5: Normalized surface current density for the beam-shifting surface. The
incoming beam is deflected by −23◦ in the anisotropic region. The total
size of the surface is 48× 30 cm. Each region is 48× 10 cm.

Figure 5.6: PCTIS consisting of a tensor sheet impedance over a grounded dielec-
tric substrate. The tensor sheet impedance/admittance, which models a
generalized metallic cladding, is denoted with a superscript ‘s’.

of a PCTIS was related to the surface impedance of an idealized TIBC in Chapter

IV [77]. It was found that a PCTIS exhibits spatial dispersion due to its electrical

thickness. As a result of this spatial dispersion, a PCTIS can have the same surface

impedance as a TIBC, but a different direction of power flow [74]. The design method

presented in the section is analogous to the design procedure for TIBCs from Section

5.3. However, in the case of a PCTIS, one must find the sheet admittance entries

(Y s′′
xx ,Y s′′

xy = Y s′′
yx , and Y s′′

yy ) that support the transformed wave vector and Poynting

vector distributions of a transformation electromagnetics device.
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5.5.1 Propagation along PCTISs

The modes supported by a PCTIS can be found from eigenvalue equation (3.26)

in Chapter III [53]. The dispersion equation for a PCTIS, derived in Chapters III

and IV [53, 77], can be written as

4ε1k
2
1k

2
2k
′′
z1k

′′
z2µ2ω cos2(k′′z1d)

+ j sin(2k′′z1d)

[2ε1k
4
2(k

′′
z1)

2µ1ω + 2ε2k
4
1(k

′′
z2)µ2ω

+ k4
1k

2
2k
′′
z2µ2Y

s′′
xx + ε1k

2
2(k

′′
z1)

2k′′z2µ1µ2ω
2Y s′′

xx

+ k4
1k

2
2k
′′
z2µ2Y

s′′
yy + ε1k

2
2(k

′′
z1)

2k′′z2µ1µ2ω
2Y s′′

yy

− k2
2k
′′
z2µ2(k

4
1 − ε1(k

′′
z1)

2µ1ω
2)(Y s′′

xx − Y s′′
yy ) cos(2θ′′k)

− k2
2k
′′
z2µ2(k

4
1 − ε1(k

′′
z1)

2µ1ω
2)(Y s′′

xy + Y s′′
yx ) sin(2θ′′k)]

− 2k2
1k
′′
zµ1 sin2(k′′z1d)

[2ε2k
2
2k
′′
z2ω + k4

2Y
s′′
xx + ε2k

2
z2µ2ω

2Y s′′
xx

− 2k2
2k
′′
z2µ2ωY s′′

xy Y s′′
yx + k4

2Y
s′′
yy + ε2(k

′′
z2)

2µ2ω
2Y s′′

yy

+ 2k2
2k
′′
z2µ2ωY s′′

xx Y s′′
yy

− (k4
2 − ε2(k

′′
z2)

2µ2ω
2)(Y s′′

xx − Y s′′
yy ) cos(2θ′′k)

− (k4
2 − ε2(k

′′
z2)

2µ2ω
2)(Y s′′

xy + Y s′′
yx ) sin(2θ′′k)] = 0.

(5.38)

Furthermore, the group velocity and direction of power flow were derived in Section

4.5 of Chapter IV [74]. The dispersion equation and the direction of power flow

constitute two of the three equations needed to design a PCTIS that supports a

surface wave with transformed wave vector and Poynting vector distributions.
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5.5.2 Design Approach

Similar to the design approach for TIBCs outlined in Section 5.3, an initial

anisotropic medium must be determined. An isotropic sheet admittance,

Y sheet =




Y s 0

0 Y s


 , (5.39)

is chosen to support a surface wave, with a desired transverse wave number, kt, at

a frequency of operation. For a TM surface wave, the isotropic sheet impedance is

found from the TM transverse resonance equation

Y s = Y TM
surf + jY1

k1

kz1

cot(kz1d). (5.40)

or equivalently,

Y s =
Y0√

1−
(

kt

k0

)2
+ jY1

k1√
k2

1 − k2
t

cot(
√

k2
1 − k2

t d). (5.41)

The transformed wave vector and Poynting vector are found from (5.16) and (5.17),

respectively. Next, the sheet impedance tensor,

Y
′′
sheet =




Y s′′
xx Y s′′

xy

Y s′′
yx Y s′′

yy


 , (5.42)

that supports the transformed wave vector and Poynting vector, is found by solving a

system of three equations: the dispersion equation for a PCTIS (5.38), the direction

of power flow along a PCTIS (equation (4.71) from Chapter IV), and a condition on

the determinant of the transformed sheet admittance,

Y s′′
xx Y s′′

yy − Y s′′
xy Y s′′

yx = (Y s)2. (5.43)
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Additionally, we must ensure that only a single TM mode is supported by the

PCTIS. That is, the next TE mode should be avoided. The TE mode cutoff occurs

when Y TE
surf = 0. The TE transverse resonance equation is given by

Y s
critical = jY1

kz1

k1

cot(kz1d), (5.44)

where Y s
critical is the sheet admittance at cutoff. The eigenvalues (Y s

λ1
and Y s

λ2
) of

Y ′′
sheet can be found by diagonalizing Y ′′

sheet,

P
−1

Y
′′
sheetP =




Y s
λ1

0

0 Y s
λ2


 , (5.45)

where P is a matrix containing the eigenvectors of Y ′′
sheet. In order to ensure that

the TE mode is not excited, the eigenvalues (Y s
λ1

and Y s
λ2

) of Y ′′
sheet must not exceed

Y s
critical. When either of the eigenvalues is equal to Y s

critical, the TE mode can be

excited. Beyond this resonance, the surface impedance is capacitive and a TE mode

is supported in addition to the TM mode. In other words, the following conditions

must be satisfied in order to guarantee only one TM mode exists:

Y s
λ1

< Y s
critical (5.46)

and

Y s
λ2

< Y s
critical (5.47)

where

Y s
λ1

=
Y s′′

xx + Y s′′
yy −

√
Y s′′

xx
2 + 4Y s′′

xy Y s′′
yx − 2Y s′′

xx Y s′′
yy + Y s′′

yy
2

2
, (5.48)

Y s
λ2

=
Y s′′

xx + Y s′′
yy +

√
Y s′′

xx
2 + 4Y s′′

xy Y s′′
yx − 2Y s′′

xx Y s′′
yy + Y s′′

yy
2

2
. (5.49)
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Simultaneously solving the three aforementioned equations under the constraints of

(5.46) and (5.47), the tensor sheet admittance entries (Y s′′
xx ,Y s′′

xy , and Y s′′
yy ) can be

found. The initial isotropic medium (Y s) may have to be adjusted in (5.43) in order

to satisfy (5.46) and (5.47). Essentially, this condition places a limitation on the

beam-shift angles achievable for a substrate with a given thickness and dielectric

constant.

5.6 Example: A Beam-shifter using a PCTIS

In this section, a beam-shifter is designed using a PCTIS. The device can bend a

surface-wave beam by −13.93◦ at 10 GHz. It consists of three regions, as shown in

Fig 3. The PCTIS beam-shifter consists of an isotropic sheet impedance in the upper

and lower regions and an anisotropic sheet impedance in the middle. The sheets

are on a 1.27 mm thick grounded dielectric substrate with εr=10.2. In the isotropic

region, propagation is chosen to be in the x-direction with a transverse wave number

of kx = 1.1882k0 = 248.85 rad/m. The isotropic sheet impedance, calculated using

(5.39) and (5.41) is

ηsheet=Y −1
sheet = j



−199.33 0

0 −199.33


 Ω. (5.50)

The transformed wave and Poynting vectors are found to be

k′′t =




k′′x

k′′y


 =




248.85

0


 , (5.51)

and

S ′′t =




S ′′x

S ′′y


 =




Sx

bSx


 . (5.52)
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Figure 5.7: The 10 GHz isofrequency contour for the anisotropic region of the de-
signed PCTIS beam-shifter (5.34). Arrows point in the group velocity
(red) and phase velocity (blue). The group and phase velocities co-align
along the principal axes of the surface. The length of the red arrows rep-
resent the normalized magnitude of the group velocity. For propagation
along the x-axis (θ′′kt

= 0), the group velocity vector is separated from the
phase velocity arrow by −13.93◦ as designed.

Solving the system of three equations ((5.38), (4.71), and (5.43)) discussed in the de-

sign procedure yields the following sheet impedance tensor for the anisotropic region:

η′′sheet=(Y ′′
sheet)

−1 = j



−288.09 82.59

82.59 −184.88


 Ω. (5.53)

The dispersion contour for this PCTIS is shown in Fig. 5.7.

The beam-shifter was simulated using HFSS. The isotropic and anisotropic regions

were modeled using the screening impedance boundary condition over a grounded

dielectric substrate. The boundaries of the simulation domain were terminated with

radiation boundaries, and one edge was illuminated with a Gaussian beam. The

results of the simulation at 10 GHz are shown in Fig. 5.8. As expected, the Gaussian

beam is refracted by −13.9◦ upon encountering the anisotropic medium.

For the chosen substrate, Y s
critical = 1/(−130j) S at 10 GHz. The eigenvalues
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Figure 5.8: Normalized surface current density for the PCTIS beam-shifting surface.
The incoming beam is deflected by −13.93◦ in the anisotropic region. The
total size of the surface is 96 × 72 cm. Each isotropic region is 48 × 180
cm. The dimensions of the anisotropic region are 48× 36 cm.
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Figure 5.9: The 10 GHz isofrequency contour for the anisotropic region of a PCTIS
beam-shifter with two modes present. (5.34).

134



x

y

Iso
tro

p
ic 

R
eg

io
n

 

A
n

iso
tro

p
ic 

R
eg

io
n

 

Iso
tro

p
ic 

R
eg

io
n

 

Normalized Surface  

Current Density (A/m)  

    1.0000 

    0.7992 

    0.6386 

    0.5104 

    0.4079 

    0.3260 

    0.2605 

    0.2082 

    0.1664 

    0.1329 

    0.1062 

    0.0849 

    0.0679 

    0.0542 

    0.0433 

Figure 5.10: Normalized surface current density for the PCTIS beam-shifting sur-
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anisotropic region. This is due to the presence of two modes as shown
in Fig. 5.7. The total size of the surface is 96 × 72 cm. Each isotropic
region is 48 × 180 cm. The dimensions of the anisotropic region are
48× 36 cm.

(diagonalized sheet admittance values) of (5.53) are Y s
λ1

= 1/(−333.87j) S and Y s
λ2

=

1/(−139.10j) S, and therefore satisfy (5.46) and (5.47). If conditions (5.46) and (5.47)

are not satisfied, a TM and a TE mode co-exist. The 10 GHz dispersion contour

for such a situation is shown in Fig. 5.9. The sheet impedance corresponding to this

dispersion contour is

η′′sheet=(Y ′′
sheet)

−1 = j



−384.84 65.72

65.72 −115.16


 Ω. (5.54)

and the eigenvalues of Y ′′
sheet are Y s

λ1
= 1/(−100j) S and Y s

λ2
= 1/(−400j) S. In this

case, propagation along certain directions of the the beam-shifter will produce two

beams. This is verified with full-wave simulation (results shown in Fig. 5.10) for

propagation along the x-axis.

5.7 Chapter Summary

In this chapter, it was shown how the idealized TIBC transforms according to

the traditional transformation electromagnetics method. Further, it was shown that
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transforming an impedance/admittance surface necessarily results in a transformation

of the free space above it. An alternate procedure is proposed that allows transfor-

mation electromagnetics devices to be implemented using TISs, while maintaining

free space above. The proposed method allows anisotropic TIBCs and PCTISs to

be designed that support tangential wave vector and Poynting vector distributions

specified by a coordinate transformation. Beam-shifters are designed (both a TIBC

and a PCTIS version) that laterally shift a surface wave beam at 10 GHz. These

designs highlight the TIS toolkit that has been developed in Chapters III and IV.
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CHAPTER VI

Conclusion

6.1 Summary of Contributions

The aim of this thesis has been to provide an improved understanding of the

guidance characteristics of scalar and tensor impedance surfaces, and to develop step-

by-step methods for determining the surface impedance profile necessary to achieve

desired radiative or wave-guiding properties. Developing methods to implement these

surfaces as practical printed-circuit structures, and building and testing prototype

devices were also goals of this thesis.

In Chapter II, sinusoidally modulated surface impedances were explored. A sim-

plified design procedure was presented that allows phase and leakage constants to be

independently controlled along a surface. This procedure allowed the design of sur-

faces with prescribed beam pointing directions (off-broadside) and beam widths. A

leaky-wave antenna was realized by implementing the designed surface as a printed-

circuit structure consisting of metallic strips over a grounded dielectric substrate. A

method for determining the appropriate metal strip widths from normal incidence

scattering simulations was presented. The antenna was fabricated and measured and

showed close agreement with full-wave simulation.

Chapters III and IV were dedicated to idealized tensor impedance boundary condi-

tions (TIBCs) and their implementation as printed-circuit tensor impedance surfaces
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(PCTISs). A PCTIS consists of a tensor impedance sheet over a grounded dielec-

tric substrate. The tensor impedance sheet models a patterned metallic cladding.

The respective dispersion equations for a TIBC and a PCTIS were derived using

field analysis in Chapter III, and then again using a modified transverse resonance

technique in Chapter IV. The modified transverse resonance technique is a general-

ization of the conventional transverse resonance technique [41] that is valid for tensor

impedances. It provides an elegant method for analyzing the modes supported by

TIBCs and PCTISs. An extraction method, which allow the sheet impedance of a

PCTIS’s metallic cladding to be found using two normal incidence scattering simu-

lations (without prior knowledge of the structure’s principal axes), was introduced

in Chapter III. Combining the extraction method and the dispersion equation for a

PCTIS, the dispersion characteristics of a few example PCTISs were accurately pre-

dicted over a range of frequencies. This was accomplished with better accuracy and

less simulation time compared to previous methods in literature. An explicit expres-

sion for the effective surface impedance of a PCTIS was derived, allowing PCTISs

and TIBCs to be directly related. It was found that the effective surface impedance

is, in general, dependent on the direction of propagation along the PCTIS. Therefore,

it exhibits spatial dispersion. The conditions necessary to approximate the PCTIS as

an angle-independent TIBC were discussed. Additionally, expressions for the group

velocity and direction of power flow along TIBCs and PCTISs were derived.

In Chapter V, a method for designing transformation electromagnetics devices

using tensor impedance surfaces (TISs) was outlined. The transformed wave vector

and Poynting vector distributions of the device were found using transformation elec-

tromagnetics. The method allowed TIBCs and PCTISs to be designed that support

the transformed wave-vector and Poynting vector distributions, while maintaining

free space above the surface. Finally, beam-shifters that shifted a surface-wave beam

laterally were designed using both a TIBC and a PCTIS.
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6.2 Future Work

The research presented in the previous chapters aimed to extend the theoretical

understanding of TISs and improve the way that devices based on TISs are currently

characterized. We have established a fertile platform that can be used for many

applications. However, there are many aspects of the research presented in this thesis

that deserve further attention.

6.2.1 Realization of PCTIS Beam-shifter

In Chapter V, a method for designing transformation electromagnetics devices

using TIBCs was introduced. The method was also adapted for PCTISs. A PCTIS

beam-shifter was designed by finding the necessary sheet impedances for the isotropic

and anisotropic regions of the beam-shifting device. Some work for the near future

could include fabricating this device. The metallic cladding must be patterned to

realize the required sheet impedances. Once the appropriate cladding patterns are

found, the beam-shifter can be realized on a printed-circuit board (PCB) and its

performance tested.

The PCTIS beam-shifter designed in the Chapter V can be implemented by pat-

terning the metallic cladding above a 1.27 mm thick grounded dielectric substrate

with εr = 10.2. Using the extraction method from Chapter III [53], a unit cell can be

designed for the anisotropic region (see Fig. 6.1) that has a sheet impedance identical

to that of (5.54). The isotropic region of the beam-shifter can be implemented by

printing a square patch over the grounded dielectric substrate, similar to Fig. 6.1,

but without the diagonal gap through it.

6.2.2 Circuit-model for tensor impedance sheets

In Chapter V, we presented a method to design transformation electromagnetics

devices using PCTISs. This method maps a desired wave vector and Poynting vector
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Figure 6.1: Unit cell of PCTIS beam-shifter implementation (anisotropic region).
Dark areas represent metal. The sheet impedance can be designed to
be identical to (5.54).

distribution to the required sheet impedance tensors at every point on the surface.

Therefore, when realizing these anisotropic and inhomogeneous surfaces with PCBs,

there is a need for a design database that maps sheet impedance tensors to metallic

cladding patterns. In Chapter III of this thesis, we presented an efficient way to

map metallic cladding patterns to sheet impedance tensors (tensor sheet extraction

method), which would allow a design database to be constructed with significantly

fewer full-wave simulations than methods reported previously in literature. However,

full-wave simulation would still be necessary. Future work could include developing

analytical methods (based on expressions for gap capacitance, for example) for map-

ping sheet impedance to metallic cladding patterns. Combining this with a circuit

model, similar to the one introduced in [36], could ultimately allow wave vector and

Poynting vector distributions to be mapped analytically to cladding geometries.

6.2.3 Leaky-waves

The dispersion equations presented in Chapters III and IV were solved for their

surface wave solutions. These dispersion equations are also valid for leaky-waves.

Future work could include solving these equations for their leaky wave roots. For

leaky waves, the transverse wave number can be complex.
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6.2.4 Multi-layer structures

The modified transverse resonance technique, introduced in Chapter IV, was ele-

gant in the sense that dispersion equations for a TIBC and a PCTIS could be found

virtually by inspection. Future work could include generalizing this method to handle

multi-layer stackups.
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APPENDIX A

Sheet Impedance Approximation At Normal

Incidence

The extraction method presented in Chapter II is approximate since the sheet

impedance extracted from normal incidence scattering simulations (β = 0), is used to

find the modal surface impedance (away from β = 0). In general, the sheet impedance

can be a function of β. This is typically true for frequency selective surfaces (FSSs)

where the unit cell size is comparable to a wavelength. However, for low frequencies,

where the unit cell size is much smaller than a wavelength, the sheet impedance at

normal incidence (β = 0) is accurate even for oblique incidence (β away from zero).

This fact is verified in this Appendix.

The equivalent admittance of a printed-circuit FSS is expressed in [56], as the par-

allel combination of the sheet admittance of the FSS (Ysheet(β, ω)) and the grounded

dielectric substrate. For a TM wave, the sheet admittance is given by (4) in [56]:

Y TM
sheet(β, ω) =

jωCTM
0 (ω2 − [ωTM

z1 (β)]2)(ω2 − [ωTM
z2 (β)]2)...

(ω2 − [ωTM
p1 (β)]2)(ω2 − [ωTM

p2 (β)]2)...
. (A.1)

where CTM
0 is a constant and ωTM

zn (β) and ωTM
pn (β) are the zeroes and poles of the

sheet admittance. The poles and zeros can be identified from full-wave reflection
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Figure A.1: Phase of reflection coefficient at normal incidence for a bare grounded
slab (blue dotted), 1280 µm gap (green solid), and 550 µm gap (red
dashed).

coefficient data. The phase of the reflection coefficient is denoted 6 Γ. The poles are

at those frequencies where 6 Γ transitions from +180◦ to −180◦. The zeroes occur

at the frequencies where 6 Γ equals the phase of the reflection coefficient of the bare

grounded dielectric slab.

Fig. A.1 shows the phase of the reflection coefficient at normal incidence for the

largest (1280 µm) and smallest (550 µm) printed gap geometries used in the leaky-

wave antenna of Chapter II. Fig. A.2 shows the phase of the reflection coefficient at

45◦ incidence. At the operating frequency of 10 GHz (unit cell size of about λ/11),

we are operating far from poles and zeros. The resonance at approximately 24 GHz

is where the thickness of the slab is λdielectric/2.

The dashed lines in Fig. A.3 and Fig. A.4 show the simulated phase of the

reflection coefficient at 45◦ incidence for both gap geometries. The solid lines with

markers show the analytically calculated reflection coefficient phases, assuming a sheet

impedance extracted from normal incidence HFSS simulations. There is very close

agreement (in Figs. A.3 and A.4) up to approximately 24 GHz between simulated
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Figure A.2: Phase of reflection coefficient for oblique incidence (45 degrees from nor-
mal) for a bare grounded slab (blue dotted), 1280µm gap (green solid),
and 550 µm gap (red dashed).

and analytically calculated reflection coefficient phase. This indicates that the sheet

impedance extracted from normal incidence simulation is a valid approximation for

the sheet impedance even away from β = 0 when the cell size is small compared to

the wavelength. The design frequency of our antenna is 10 GHz, which is well within

the range where the approximation holds.

Fig. 2.13 in Chapter II is a plot comparing the Driven Method (proposed in

Section 2.4 of this thesis) to the Eigenmode Method. The Eigenmode Method does

not use normal-incidence simulations to determine the sheet impedance. We see close

agreement between the two methods further indicating that the sheet impedance does

not vary significantly as a function of β for our frequency range of operation.
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Figure A.3: Phase of reflection coefficient for oblique incidence (45 degrees from nor-
mal) from HFSS simulation of 550µm gap geometry (red dashed), and
analytical calculation using the sheet impedance extracted from normal
incidence scattering simulation (red solid with markers).
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Figure A.4: Phase of reflection coefficient for oblique incidence (45 degrees from nor-
mal) from HFSS simulation of 1280µm gap geometry (green dashed), and
analytical calculation using the sheet impedance extracted from normal
incidence scattering simulation (green solid with markers).
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APPENDIX B

Modified Formulation Accounting for Dielectric

Thickness and Periodic Sheet Impedance

B.1 Dispersion Equation for an Arbitrary Periodic Sheet

Impedance over a Grounded Dielectric Substrate

This formulation seeks to accurately predict both α and β for a arbitrary periodic

sheet impedance over a grounded dielectric substrate by accounting for dielectric

thickness (see Fig. B.1). The fields in regions 1 and 2 can be expressed in terms of

their Floquet harmonics due to the periodicity of ηsheet. The fields in regions 1 and 2

are:
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Figure B.1: Geometry of modified formulation for finding κ accounting for dielectric
thickness and arbitrary periodic sheet impedance.

Hy1 =
∞∑

n=−∞
An cos(kzn1(d + z))e−jkxnx (B.1)

Ez1 =
∞∑

n=−∞
An
−kxn

ωε1

cos(kzn1(d + z))e−jkxnx (B.2)

Ex1 =
∞∑

n=−∞
An

jkzn1

ωε1

sin(kzn1(d + z))e−jkxnx (B.3)

Hy2 =
∞∑

n=−∞
Bne

−jkzn2ze−jkxnx (B.4)

Ez2 =
∞∑

n=−∞
Bn
−kxn

ωε2

e−jkzn2ze−jkxnx (B.5)

Ex2 =
∞∑

n=−∞
Bn

kzn2

ωε2

e−jkzn2ze−jkxnx (B.6)

where kxn = κ + 2πn
a

and the coefficients An and Bn represent the amplitudes of the

magnetic field spatial harmonics inside the dielectric and in free space, respectively.

Applying the PEC (perfect electric conductor) boundary conditions at z = 0, the

total tangential electric field must vanish and Ex1 − Ex2 = 0. This yields
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∞∑
n=−∞

An
jkzn1

ωε1

sin(kzn1d)e−j(κ+ 2πn
a )x (B.7)

=
∞∑

n=−∞
Bn

kzn2

ωε2

e−j(κ+ 2πn
a )x

The magnetic field boundary condition at z = 0 states that Hy1 −Hy2 = Jx = Ex2

ηsheet

where Jx represents the surface currents. This equation yields

∞∑
n=−∞

Bn
kzn2

ωε2

e−j(κ+ 2πn
a )x

ηsheet(x)
(B.8)

=
∞∑

n=−∞
An cos(kzn1d)e−j(κ+ 2πn

a )x −Bne−j(κ+ 2πn
a )x

Taking the inner product of (B.7) and ej(κ+ 2πg
a )x over one period, and invoking or-

thogonality yields

An
jkzn1

ε1

sin(kzn1d) = Bn
kzn2

ε2

, (B.9)

which relates the An coefficients to the Bn coefficients. Using (B.9) to substitute for

An in (B.8) yields an expression solely in terms of Bn’s which are the magnetic field

amplitudes of the spatial harmonics in free space.
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∞∑
n=−∞

Bn
kzn2

ωε2

e−j(κ+ 2πn
a )x (B.10)

= ηsheet

[ ∞∑
n=−∞

Bn(−j)
kzn2

kzn1

ε1

ε2

cot(kzn1d)e−j(κ+ 2πn
a )x

−
∞∑

n=−∞
Bne

−j(κ+ 2πn
a )x

]

The ηsheet due to a certain ηsurf can be found using (2.11). Since ηsheet is periodic, it

can be represented by a Fourier series

ηsheet =
∞∑

m=−∞
ηme−j 2πm

a
x (B.11)

where ηm represents the Fourier series weighting coefficient of the mth term. Substi-

tuting (B.11) into (B.10) and then taking the inner product of the resulting equation

and ej(κ+ 2πp
a )x over one period gives

1

ωε2

Bpkzp2 =
∞∑

n=−∞
Bnηp−n

(
−j

kzn2

kzn1

ε1

ε2

cot(kzn1d)− 1

)

This can be written in the form of a matrix equation representing an infinite number

of equations and an infinite number of unknowns.

¯̄QB̄n =
1

ωε2

B̄p (B.12)

where the entries of the matrix Q are functions of κ and are given by

Qp,n =
1

kzp2

(
−j

kzn2

kzn1

ε1

ε2

cot(kzn1d)− 1

)
ηp−n (B.13)
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By truncating indicies n and p symmetrically about zero and to identical ranges (for

example, n = −2 to 2 and p = −2 to 2) equation (B.12) can be rewritten as

[
¯̄Q− 1

ωε2

¯̄I

]
B̄n = ¯̄Q′B̄n = 0 (B.14)

where the Bn’s are unknowns that represent the amplitudes of the spatial harmonics

and

¯̄Q′ =




Q−2,−2 − 1
ωε2

Q−2,−1 Q−2,0 Q−2,1 Q−2,2

Q−1,−2 Q−1,−1 − 1
ωε2

Q−1,0 Q−1,1 Q−1,2

Q0,−2 Q0,−1 Q0,0 − 1
ωε2

Q0,1 Q0,2

Q1,−2 Q1,−1 Q1,0 Q1,1 − 1
ωε2

Q1,2

Q2,−2 Q2,−1 Q2,0 Q2,1 Q2,2 − 1
ωε2




(B.15)

Since the determinant of ¯̄Q′ must be zero for non-trivial solutions of equation B.14,

and all the entries in ¯̄Q′ are functions of κ, the value of κ that satisfies this zero

determinant condition will be the solution of interest. Solving this eigenvalue equation

can be challenging since κ may be complex, and is beyond the scope of this thesis.

B.2 Dispersion Equation for a Sinusoidally-modulated Sheet

Impedance over a Grounded Dielectric Substrate

The formulation presented in the previous section if valid for an arbitrary, periodic

variation of ηsheet. In the special case when ηsheet varies sinusoidally,

ηsheet = jXs(1 + Ms cos(
2π

a
)x) = jXs +

jXsMs

2
(ej 2π

a
x + e−j 2π

a
x), (B.16)

where Xs is the average sheet reactance, and Ms is the modulation factor for the

sheet reactance. Substituting (B.16) this into (B.10), taking the inner product of the
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resulting equation and ej(κ+ 2πm
a

x) over one period, and invoking orthogonality yields

Bm
kzm2

ωε2

= jXsBm(−j)
kzm2

kzm1

ε1

ε2

cot(kzm1d)− jXsBm

+
jXsMs

2
Bm+1(−j)

kz(m+1)2

kz(m+1)1

ε1

ε2

cot(kz(m+1)1d)− jXsMs

2
Bm+1

+
jXsMs

2
Bm−1(−j)

kz(m−1)2

kz(m−1)1

ε1

ε2

cot(kz(m−1)1d)− jXsMs

2
Bm−1,

(B.17)

or equivalently,

0 =
jXsMs

2

[
(−j)

kz(m−1)2

kz(m−1)1

ε1

ε2

cot(kz(m−1)1d)− 1

]
Bm−1

+
jXsMs

2

[
(−j)

kz(m+1)2

kz(m+1)1

ε1

ε2

cot(kz(m+1)1d)− 1

]
Bm+1

+

[
jXs

(
(−j)

kzm2

kzm1

ε1

ε2

cot(kzm1d)− 1

)
− kzm2

ωε2

]
Bm.

(B.18)

This infinite set of equations can be expressed as an eigenvalue equation,

0 =




. . . . . .
...

...
...

...

. . . Qm−2 Pm−1 0 0 0 · · ·

. . . Pm−2 Qm−1 Pm 0 0 · · ·

. . . 0 Pm−1 Qm Pm+1 0 · · ·

. . . 0 0 Pm Qm+1 Pm+2
. . .

. . . 0 0 0 Pm+1 Qm+2
. . .

...
...

...
...

. . . . . .







...

Bm−2

Bm−1

Bm

Bm+1

Bm+2

...




. (B.19)

Therefore, the dispersion equation can be expressed as

Pm−1Bm−1 + QmBm + Pm+1Bm+1 = 0 (B.20)

where

Pm =
jXsMs

2

[
(−j)

kzm2

kzm1

ε1

ε2

cot(kzm1d)− 1

]
, (B.21)

155



Qm =

[
jXs

(
(−j)

kzm2

kzm1

ε1

ε2

cot(kzm1d)− 1

)
− kzm2

ωε2

]
. (B.22)

Dividing (B.20) by Pm+1Bm yields

Pm+1Bm+1

Pm+1Bm

+
QmBm

Pm+1Bm

+
Pm−1Bm−1

Pm+1Bm

= 0, (B.23)

Bm+1

Bm

+
Qm

Pm+1

+
Pm−1

Pm+1

Bm−1

Bm

= 0, (B.24)

Bm+1

Bm

= −
(

Qm

Pm+1

+
Pm−1

Pm+1

Bm−1

Bm

)
. (B.25)

Therefore,

Bm

Bm+1

= − 1(
Qm

Pm+1
+ Pm−1

Pm+1

Bm−1

Bm

) = − 1
Pm−1

Pm+1

(
Qm

Pm−1
+ Bm−1

Bm

) , (B.26)

and

Bm−1

Bm

= − 1(
Qm−1

Pm
+ Pm−2

Pm

Bm−2

Bm−1

) = − 1
Pm−2

Pm

(
Qm−1

Pm−2
+ Bm−2

Bm−1

) . (B.27)

Dividing (B.20) by Pm−1Bm yields

Pm+1Bm+1

Pm−1Bm

+
QmBm

Pm−1Bm

+
Pm−1Bm−1

Pm−1Bm

= 0, (B.28)

Pm+1Bm+1

Pm−1Bm

+
Qm

Pm−1

+
Bm−1

Bm

= 0, (B.29)

Bm−1

Bm

= −
(

Pm+1Bm+1

Pm−1Bm

+
Qm

Pm−1

)
, (B.30)

and

Bm

Bm+1

= −
(

Pm+2Bm+2

PmBm+1

+
Qm+1

Pm

)
. (B.31)
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Taking the inverse of (B.30) yields

Bm

Bm−1

=
−1(

Pm+1Bm+1

Pm−1Bm
+ Qm

Pm−1

) =
−1

Pm+1

Pm−1

(
Qm

Pm+1
+ Bm+1

Bm

) . (B.32)

Equating (B.26) to (B.30) yields

Pm+2

Pm

Bm+2

Bm+1

+
Qm+1

Pm

=
1

Qm

Pm+1
+ Pm−1

Pm+1

Bm−1

Bm

(B.33)

Taking the inverse of (B.33) yields

Qm

Pm+1

+
Pm−1

Pm+1

Bm−1

Bm

=
1

Pm+2

Pm

Bm+2

Bm+1
+ Qm+1

Pm

, (B.34)

Qm

Pm+1

=
1

Pm+2

Pm

Bm+2

Bm+1
+ Qm+1

Pm

− Pm−1

Pm+1

[
Bm−1

Bm

]
. (B.35)

Substituting (B.27) into (B.35) yields

Qm

Pm+1

=
1

Pm+2

Pm

Bm+2

Bm+1
+ Qm+1

Pm

+

Pm−1

Pm+1

Qm−1

Pm
+ Pm−2

Pm

Bm−2

Bm−1

, (B.36)

Qm

Pm+1

=
1

Pm+2

Pm

(
Qm+1

Pm+2
+ Bm+2

Bm+1

) +
1

Pm+1

Pm−1

Pm−2

Pm

(
Qm−1

Pm−2
+ Bm−2

Bm−1

) , (B.37)

Qm =
Pm+1

Pm+2

Pm

(
Qm+1

Pm+2
+

[
Bm+2

Bm+1

]) +
Pm−1

Pm−2

Pm

(
Qm−1

Pm−2
+

[
Bm−2

Bm−1

]) . (B.38)

Substituting expressions similar to (B.26) and (B.32) into (B.37) yields
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Qm =
Pm+1

Pm+2

Pm




Qm+1

Pm+2
− 1

Pm+3
Pm+1


 Qm+2

Pm+3
− 1

Pm+4
Pm+2

(
Qm+3
Pm+4

+

[
Bm+4
Bm+3

])







+
Pm−1

Pm−2

Pm




Qm−1

Pm−2
− 1

Pm−3
Pm−1


 Qm−2

Pm−3
− 1

Pm−4
Pm−2

(
Qm−3
Pm−4

+

[
Bm−4
Bm−3

])







,

(B.39)

or equivalently,

Qm =
Pm+1

Pm+2

Pm




Qm+1

Pm+2
− 1

Pm+3
Pm+1


 Qm+2

Pm+3
− 1

Pm+4
Pm+2

(
Qm+3
Pm+4

+···
)







+
Pm−1

Pm−2

Pm




Qm−1

Pm−2
− 1

Pm−3
Pm−1


 Qm−2

Pm−3
− 1

Pm−4
Pm−2

(
Qm−3
Pm−4

+···
)







(B.40)

Equation (B.40) is the dispersion equation (in continued fraction form) of a sinu-

soidally varying sheet impedance over a grounded dielectric substrate.
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APPENDIX C

Matrix Coefficients of the Eigenvalue equation and

Relative Amplitudes of Fresnel Coefficients for a

PCTIS

C.1 Matrix coefficients

The elements of a from (3.26) are given by (C.1).

a11 =ε1ω
[
jk4

2ky(k
2
x + k2

y)kz1µ1 sin (kz1d)

+k2
2(k

2
x + k2

y)kz2µ2

(
k2

1ky cos (kz1d) + jkz1µ1w(kxY
s
yx + kyY

s
yy) sin (kz1d)

)]

a12 =µ1

[−ε1k
2
2kx(k

2
x + k2

y)kz1kz2µ2ω
2 cos (kz1d)+

jk2
1

(−ε2kx(k
2
x + k2

y)k
2
z2µ2ω

2 + k2
2(k

2
x + k2

y)kz2µ2ω(kyY
s
yx − kxY

s
yy)

)
sin (kz1d)

]

a21 =ε1ω
[
jk4

2kx(k
2
x + k2

y)kz1µ1 sin (kz1d)

+k2
2(k

2
x + k2

y)kz2µ2

(
k2

1kx cos (kz1d) + jkz1µ1w(kxY
s
xx + kyY

s
xy) sin (kz1d)

)]

a22 =µ1

[
ε1k

2
2ky(k

2
x + k2

y)kz1kz2µ2ω
2 cos (kz1d)+

jk2
1

(
ε2ky(k

2
x + k2

y)k
2
z2µ2ω

2 + k2
2(k

2
x + k2

y)kz2µ2ω(kyY
s
xx − kxY

s
xy)

)
sin (kz1d)

]

(C.1)
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C.2 Relative Amplitudes of Fresnel Coefficients

The relative amplitudes of the Fresnel coefficients from illumination I (3.44) (in

Chapter III) are given by:

BI

AI

=
4e(3jk1d)k2µ1(k1µ2 cos (k1d) + jµ1(k2 + µ2ωY s

yy) sin (k1d))

U

CI

AI

=
4e(3jk1d)jk2µ

2
1µ2ωY s

yx sin (k1d)

U

DI

AI

=
4e(jk1d)k2µ1(k1µ2 cos (k1d) + jµ1(k2 + µ2ωY s

yy) sin (k1d))

U

EI

AI

=
4e(jk1d)jk2µ

2
1µ2ωY s

yx sin (k1d)

U
FI

AI

=2e(2jk1d)
[−2k2

1µ
2
2 cos (k1d)2

+2j2µ2
1(k

2
2 + k2µ2ω(−Y s

xx + Y s
yy)

+µ2
2ω

2(Y s
xyY

s
yx − Y s

xxY
s
yy)) sin (k1d)2

−jk1µ1µ
2
2ω(Y s

xx + Y s
yy) sin (2k1d)

]
/U

GI

AI

=
8e(2jk1d)j2k2µ

2
1µ2ωY s

yx sin (k1d)2

U

U =4e(2djk1)(jµ1 sin (k1d)
[
jµ1 sin (k1d)(k2

2 + k2µ2ω(Y s
xx + Y s

yy)

+µ2
2ω

2(Y s
xxY

s
yy − Y s

xyY
s
yx)) + k1µ

2
2ω(Y s

xx + Y s
yy) cos (k1d)

]

+ 4e(2jk1d)
[
jk1k2µ1µ2 sin (2k1d) + k2

1µ
2
2 cos2 (k1d)

]

(C.2)

The relative amplitudes of the Fresnel coefficients from illumination II (3.48) (in
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Chapter III) are given by:

BII

AII

=
4e(3jk1d)jk2µ

2
1µ2ωY s

xy sin (k1d)

U

CII

AII

=
4e(3jk1d)k2µ1(k1µ2 cos (k1d) + jµ1(k2 + µ2ωY s

xx) sin (k1d))

U

DII

AII

=
4e(jk1d)jk2µ

2
1µ2ωY s

xy sin (k1d)

U

EII

AII

=
4e(jk1d)k2µ1(k1µ2 cos (k1d) + jµ1(k2 + µ2ωY s

xx) sin (k1d))

U

FII

AII

=
8e(2jk1d)j2k2µ

2
1µ2ωY s

xy sin (k1d)2

U
GII

AII

=2e(2jk1d)
[−2k2

1µ
2
2 cos (k1d)2

+2j2µ2
1(k

2
2 + k2µ2ω(−Y s

xx + Y s
yy)

+µ2
2ω

2(Y s
xyY

s
yx − Y s

xxY
s
yy)) sin (k1d)2

−jk1µ1µ
2
2ω(Y s

xx + Y s
yy) sin (2k1d)

]
/U

U =4e(2djk1)(jµ1 sin (k1d)
[
jµ1 sin (k1d)(k2

2 + k2µ2ω(Y s
xx + Y s

yy)

+µ2
2ω

2(Y s
xxY

s
yy − Y s

xyY
s
yx)) + k1µ

2
2ω(Y s

xx + Y s
yy) cos (k1d)

]

+ 4e(2jk1d)
[
jk1k2µ1µ2 sin (2k1d) + k2

1µ
2
2 cos2 (k1d)

]

(C.3)
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APPENDIX D

Alternate Derivation for Sheet Impedance

Extraction using an Equivalent Transmission-Line

In this appendix, an alternative method for deriving the sheet extraction formula

(3.65) using an equivalent transmission-line model is discussed. Assume an arbitrary

tensor sheet admittance is given by

Y sheet =




Y s
xx Y s

xy

Y s
yx Y s

yy


 . (D.1)

Diagonalizing this matrix yields

Y d
sheet =




Y s
xx′ 0

0 Y s
yy′


 , (D.2)

where

Y s
xx′ =

Y s
xx + Y s

yy −
√

Y s
xx

2 + 4Y s
xyY

s
yx − 2Y s

xxY
s
yy + Y s

yy
2

2

Y s
yy′ =

Y s
xx + Y s

yy +
√

Y s
xx

2 + 4Y s
xyY

s
yx − 2Y s

xxY
s
yy + Y s

yy
2

2

(D.3)
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Figure D.1: Two orthogonal transmission-line models representing the diagonalized
sheet impedance over a grounded dielectric substrate.

This diagonalized tensor sheet admittance over a grounded dielectric substrate

can be represented by two orthogonal transmission lines (Fig. D.1) when the electric

field is aligned with the principal axes of the sheet. Applying (2.11) from Chapter II

to each transmission line separately, the following equation can be written.




Y in
xx ′ 0

0 Y in
yy ′


 =




Y s
xx′ 0

0 Y s
yy′


 +




k1 cot k1d
jµ1ω

0

0 k1 cot k1d
jµ1ω


 . (D.4)

Simplifying and rotating back to the original axes yields




Y in
xx Y in

xy

Y in
yx Y in

yy


 =




Y s
xx + k1 cot k1d

jµ1ω
Y s

xy

Y s
yx Y s

yy + k1 cot k1d
jµ1ω


 . (D.5)

= Y sheet +




1
jη1 tan (k1d)

0

0 1
jη1 tan (k1d)


 , (D.6)

which agrees with (3.65) in Chapter III (Section 3.4).
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APPENDIX E

Alternate Tensor Sheet Impedance Extraction

Method using a Reflection Coefficient Matrix

A method for extracting the tensor sheet impedance of an arbitrarily patterned

metallic cladding was presented in Section 3.4 of Chapter III. An alternate method

is presented here. A normally incident plane wave is being reflected from a PCTIS as

shown in Fig. 3.6. The electric and magnetic field at the surface (z = 0) of a printed-

circuit tensor impedance surface (PCTIS) can be represented as a superposition of

incident and reflected waves,




Hy

Hx


 =




H+
y

H+
x


 +




H−
y

H−
x


 , (E.1)




Ex

Ey


 =




E+
x

E+
y


 +




E−
x

E−
y


 , (E.2)

where “+” denotes the incident waves (traveling in the -z direction) and “-” denotes

the reflected waves (traveling in the +z direction). The components of the incident

electric field are related to the components of the reflected electric field by
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


E−
x

E−
y


 =




Γxx Γxy

Γyx Γyy







E+
x

E+
y


 , (E.3)

Applying Ampere’s and Faraday’s Law to plane waves yields,

E = (−k̂ ×H)η, (E.4)

H = (k̂ × E)
1

η
. (E.5)

By substituting (E.4) into (E.3), the incident magnetic field can be related to the

reflected magnetic field

η0




H−
y

−H−
x


 =




Γxx Γxy

Γyx Γyy


 η0



−H+

y

H+
x


 , (E.6)

and consequently,




H−
y

H−
x


 =



−Γxx Γxy

Γyx −Γyy







H+
y

H+
x


 . (E.7)

Since the total magnetic field is given by,




Hy

Hx


 =




H+
y

H+
x


 +




H−
y

H−
x


 , (E.8)

it can be written as




Hy

Hx


 =







1 0

0 1


 +



−Γxx Γxy

Γyx −Γyy










H+
y

H+
x


 , (E.9)
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

−Hy

Hx


 =






−1 0

0 1


 +




Γxx −Γxy

Γyx −Γyy










H+
y

H+
x


 . (E.10)

Given that 


H+
y

H+
x


 =

1

η0



−E+

x

E+
y


 , (E.11)

the magnetic field can be written as



−Hy

Hx


 =






−1 0

0 1


 +




Γxx −Γxy

Γyx −Γyy









−E+

x

E+
y


 1

η0

, (E.12)



−Hy

Hx


 =







1 0

0 1


 +



−Γxx −Γxy

−Γyx −Γyy










E+
x

E+
y


 1

η0

. (E.13)

Similarly, the total electric field at the surface can be expressed in terms of the incident

electric field as




Ex

Ey


 =







1 0

0 1


 +




Γxx Γxy

Γyx Γyy










E+
x

E+
y


 . (E.14)

At normal incidence, the tensor admittance boundary condition is given by



−Hy

Hx


 =

¯̄
Y in




Ex

Ey


 =




Y in
xx Y in

xy

Y in
yx Y in

yy







Ex

Ey


 . (E.15)

Substituting (E.13) and (E.14) into (E.15) yields







1 0

0 1


 +



−Γxx −Γxy

−Γyx −Γyy





 1

η0




E+
x

E+
y


 =




Y in
xx Y in

xy

Y in
yx Y in

yy










1 0

0 1


 +




Γxx Γxy

Γyx Γyy










E+
x

E+
y


 ,

(E.16)
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





1 0

0 1


 +



−Γxx −Γxy

−Γyx −Γyy





 1

η0

=




Y in
xx Y in

xy

Y in
yx Y in

yy










1 0

0 1


 +




Γxx Γxy

Γyx Γyy





 .

(E.17)

Solving for the input admittance tensor, Y in yields




Y in
xx Y in

xy

Y in
yx Y in

yy


 = Y0




1− Γxx −Γxy

−Γyx 1− Γyy







1 + Γxx Γxy

Γyx 1 + Γyy




−1

. (E.18)

The value of Y in can be found from (E.18), once the reflection coefficients, Γxx, Γxy,

Γyx, and Γyy are known. These reflection coefficients can be found from two normal

incidence scattering simulations or measurements. For example, Γyx represents how

much y-polarized field is reflected due to an incident x-polarized incident field.
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APPENDIX F

Useful expressions for Calculating Group Velocity

and Power Flow along TIBCs and PCTISs

F.1 Useful derivatives for calculating group velocity of an

idealized TIBC

The following expressions can be used in (4.53) and (4.54) to find the group

velocity of a TIBC.

q = x or y, r =





y if q = x

x if q = y
(F.1)

∂k2

∂kq

=
k2

ω

∂ω

∂kq

(F.2)

∂k2
2

∂kq

=
2k2

2

ω

∂ω

∂kq

(F.3)

∂kz2

∂kq

=

k2
2

ω
∂ω
∂kq

− kq

kz2

(F.4)

If the surface impedance is inductive and only a function of frequency:

168



∂Y∗∗
∂kq

= −Y∗∗
ω

∂ω

∂kq

(F.5)

Table F.1: Variables in the group velocity expression (4.71) of a TIBC

V ariable TIS

χ1 −Yqq/ω
χ2 −Yqr/ω
χ3 −Yrq/ω
χ4 −Yrr/ω
ξ1 0
ξ2 0
ξ4 0
ν k2

2/(ωkz2)
ζ k2/ω

B1 k2
2Y2 − k2

qY2 + k2kz2Yrr

B2 kqkrY2 + k2kz2Yrq

B3 k2
2Y2 − k2

rY2 + k2kz2Yqq

B4 (Y 2
2 + det Y )k2

B5 2k2Y2(Yqq + Yrr) + kz2(Y 2
2 + det Y )

B6 kqkrY2 + k2kz2Yqr

B7 −Y2(2kqYqq + kr(Yqr + Yrq))

F.2 Useful expressions for calculating group velocity of ide-

alized PCTIS

The following expressions can be used in (4.67)-(4.70) to find the group velocity

of a PCTIS.

q = x or y, r =





y if q = x

x if q = y
(F.6)

∂k1

∂kq

=
k1

ω

∂ω

∂kq

(F.7)

∂k2
1

∂kq

=
2k2

1

ω

∂ω

∂kq

(F.8)

∂kz1

∂kq

=

k2
1

ω
∂ω
∂kq

− kq

kz2

(F.9)
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C = cot(kz1d) (F.10)

D = k2
1 − k2

y (F.11)

E =
1

k1

(F.12)

F =
1

kz1

(F.13)

G = kxky (F.14)

J = k2
1 − k2

x (F.15)

M =
1

k1k3
z1ω

(F.16)

∂E

∂kq

= − 1

ωk1

∂ω

∂kq

(F.17)

∂F

∂kq

= − 1

k3
z1

(
k2

1

ω

∂ω

∂kq

− kq) (F.18)

∂C

∂kq

= − csc2(kz1d)
d

kz1

(
k2

1

ω

∂ω

∂kq

− kq) (F.19)

∂D

∂kx

= 2
k2

1

ω

∂ω

∂kx

(F.20)
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∂D

∂ky

= 2
k2

1

ω

∂ω

∂ky

− 2ky (F.21)

∂J

∂kx

= 2
k2

1

ω

∂ω

∂kx

− 2kx (F.22)

∂J

∂ky

= 2
k2

1

ω

∂ω

∂ky

(F.23)

∂G

∂kq

= kr (F.24)

Assuming a capacitive sheet:

∂Y s
∗∗

∂kq

=
Y s
∗∗
ω

∂ω

∂kq

(F.25)

Table F.2: Variables in group velocity expression (4.71) of a PCTIS

V ariable PCTIS

χ1 jM
(
C(Dk2

1 + Dk2
z1 − 2k2

1k
2
z1)Y1 − jk1k

3
z1Y

s
qq + Dk2

1kz1dY1 csc2(kz1d)
)

χ2 jM(CG(k2
1 + k2

z1)Y1 − jk1k
3
z1Y

s
qr + Gk2

1kz1dY1 csc2(kz1d))
χ3 jM(CG(k2

1 + k2
z1)Y1 − jk1k

3
z1Y

s
rq + Gk2

1kz1dY1 csc2(kz1d))
χ4 jM(C(Jk2

z1 + k2
1(J − 2k2

z1))Y1 − jk1k
3
z1Y

s
qq + Jk2

1kz1dY1 csc2(kz1d))
ξ1 −jωM(k2

1 − k2
r)kqY1(C + kz1d csc2(kz1d))

ξ2 −jωMY1(CGkq + Ckrk
2
z1 + Gkqkz1d csc2(kz1d))

ξ4 −jωMkqY1(C((k2
1 − k2

q)− 2k2
z1) + (k2

1 − k2
q)kz1d csc2(kz1d))

ν k2
2/(ωkz2)

ζ k2/ω

B1 k2
2Y2 − k2

qY2 + k2kz2[Y s
rr − jY1C

k1kz1
(k2

1 − k2
q)]

B2 kqkrY2 + k2kz2[Y s
rq − jY1C

k1kz1
(kqkr)]

B3 k2
2Y2 − k2

rY2 + k2kz2[Y s
qq − jY1C

k1kz1
(k2

1 − k2
r)]

B4 (Y 2
2 + [ (det Y s)k1kz1+CY1(−Ck1kz1Y1+j(k2

qY s
qq+kqkr(Y s

qr+Y s
rq)+k2

rY s
rr−k2

1(Y s
qq+Y s

rr)))

k1kz1
])k2

B5 2k2Y2[
−jC(k2

1+k2
z1)Y1+k1kz1(Y

s
qq+Y s

rr)

k1kz1
] + kz2

k2
B4

B6 kqkrY2 + k2kz2[Y s
qr − jY1C

k1kz1
(kqkr)]

B7 −Y2(2kq[Y s
qq − jY1C

k1kz1
(k2

1 − k2
r)] + kr[Y s

qr + Y s
rq − 2 jY1C

k1kz1
(kqkr)])
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