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ABSTRACT

Polarizable Particles and their Two-Dimensional Arrays: Advances in Small
Antenna and Metasurface Technologies

by

Carl Pfeiffer

Chair: Anthony Grbic

Metamaterials are subwavelength-structured materials designed to exhibit tailored

electromagnetic properties. Metamaterials have allowed extreme control over con-

stituent material parameters (i.e. permittivity, permeability, and chirality), which

has enabled a myriad of counterintuitive physical phenomena. However, metamate-

rials typically suffer from high losses, difficulties in fabrication, and are bulky. This

has led to the development of metasurfaces, which are the two dimensional equivalent

of metamaterials. Metasurfaces can impart abrupt discontinuities on electromagnetic

wavefronts, allowing electromagnetic fields to be tailored across subwavelength length

scales.

The building blocks of metasurfaces are subwavelength textured, polarizable par-

ticles. Near resonance, these particles support strong currents, which makes them

excellent small antennas. In this thesis, a circuit model is developed that can model

an arbitrary small antenna based on its frequency dependent polarizability. In addi-

tion, a direct transfer patterning process is developed that allows metallic patterns

to be printed onto arbitrarily contoured substrates. This work will find immediate
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applications in a number of emerging technologies resulting from the rapid expansion

of the mobile electronics industry.

Next, extreme control of the polarization and profile of a wavefront is demon-

strated using two-dimensional arrays of polarizable particles (i.e. metasurfaces). A

new class of metasurfaces, referred to as metamaterial Huygens’ surfaces, is shown

to have a significantly improved efficiency over the state of the art. Metamaterial

Huygens’ surfaces utilize polarizable particles that exhibit both an electric and mag-

netic response, which allows for reflectionless wavefront control. Next, it is shown

that simply cascading patterned metallic sheets can also provide high transmission

and complete phase control. To demonstrate the design methodology, several differ-

ent metasurfaces are developed that deflect incident Gaussian beams to a stipulated

angle or convert an incident Gaussian beam into a vector Bessel beam. Further, uti-

lizing sheets with anisotropic patterns provides additional magneto-electric coupling,

which enables complete control of a wavefront (i.e. amplitude, phase, and polariza-

tion control). The experimental verification at frequencies ranging from microwaves

to optics highlights the versatility of this work.
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CHAPTER I

Introduction

1.1 Background

Metamaterials are materials with subwavelength granularity that can be designed

to exhibit tailor electromagnetic properties. They are typically realized by arranging

metal and/or dielectric inclusions in a specified manner to achieve their novel proper-

ties. When the periodicity of these inclusions is much less than the wavelength of the

electromagnetic field, they can be characterized as an effective medium [1]. To date,

extreme control over constituent material parameters (i.e. permittivity, permeabil-

ity, and chirality) has been achieved. With this control, a myriad of counterintuitive

physical phenomena has resulted. Perfect lenses [2], invisibility cloaks [3], and tai-

loring of the photonic density of states [4] are just a few of the exciting applications

enabled by these structures.

However, There are some limitations to these materials. Most notably, they typi-

cally suffer from narrow bandwidths, high losses, and difficulties in fabrication [5, 6].

This has led to the development of metasurfaces which are the two dimensional analog

of metamaterials [7,8]. Just as metamaterials provide complete control of an electro-

magnetic field within a volume, metasurfaces provide control of an electromagnetic

wavefront at a surface. For example, consider Fig. 1.1 where both a homogeneous

negative-index metamaterial and an inhomogeneous near-field plate metasurface re-

alize subwavelength focal spots. The metamaterial achieves a subwavelength focus

by resonant restoration of the evanescent spectrum within the material [2, 9]. In

contrast, the metasurface imparts discontinuities onto the field to generate highly

oscillatory fields whose interference results in a subwavelength focal spot [10, 11].

Metasurfaces have the advantage of being very thin, which results in reduced weight

and a lower profile compared metamaterials. In addition, electromagnetic fields decay

exponentially as they propagate through a material, which means a reduced thickness
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generally leads to lower losses. Metasurfaces are also much easier to fabricate. They

typically consist of patterned metal/dielectric on a dielectric substrate, which can be

fabricated with standard fabrication processes from centimeter to nanometer length

scales [12].

Metamaterial

(a)

Metasurface

(b)

Figure 1.1: Comparison of metamaterials and metasurfaces. (a) Negative index
metamaterial lens for subdiffractive focusing. (b) Near-field plate meta-
surface for subdiffractive focusing.

Metamaterials and metasurfaces are realized by distributing individually designed

unit cells in a three-dimensional or two-dimensional lattice, respectively. Thus the

cell’s design is of utmost importance since it determines the properties of the overall

structure. Each unit cell is realized with a subwavelength textured geometry. When

the unit cell is near resonance, it can act as an open, short, resistor, inductor, or ca-

pacitor with slight variations in the cell geometry. In an analogous way that lumped

components (i.e. inductors, capacitors, and resistors) control electric signals in elec-

tronic devices, metamaterial unit cells can control electromagnetic fields throughout

a region of space [13].

Next, let us consider removing a unit cell from a metasurface and illuminating

it with a plane wave. Near the resonant frequency of the cell, it supports a strong

current, and becomes an excellent radiator. Therefore, each unit cell of a metasur-

face can be viewed as a small antenna. These antennas act as building blocks of

the metasurface. In fact, the size, bandwidth, resonant frequency, as well as loss

are important design considerations that are common to both small antennas and
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metasurfaces [14,15].

Aside from providing insight into the design of metasurfaces, small antennas are

also important for a number of emerging wireless technologies. The rapid expansion

of the mobile electronics industry has created a glaring need for devices that are

both small and able to communicate wirelessly. The largest component of wireless

devices today is typically the antenna. This fact alone has driven numerous antenna

miniaturization studies and research efforts into the design and fabrication of small

antennas.

First, this thesis presents novel methods to both analyze and fabricate small an-

tennas. This work is immediately relevant for small antennas that are currently being

developed for portable, vehicular, and aeronautical applications. Furthermore, since

small antennas can be though of as building blocks for metasurfaces, this work also

introduces many important concepts that are needed for the design of metasurfaces.

Next, metasurfaces that tailor the wavefront and polarization of electromagnetic fields

are developed. The majority of the presented metasurfaces achieve a similar function-

ality as previously reported structures, but with a significantly improved performance.

Thus, this work provides a link between basic research in physics and practical com-

mercial applications.

1.2 Motivation

1.2.1 Electrically Small Antennas

The microelectronics industry has enabled a wide range of devices that provide

high computing power within a small size. This has led to a dramatic increase in the

number of portable electronic devices such as cellular phones and sensor networks.

Virtually all of these devices need low-profile antennas for communication. Addition-

ally vehicles and aircraft often require low-profile antennas for aerodynamic reasons.

This has generated a large research effort into antennas that are physically small.

There is also a desire to operate these antennas at large wavelengths because the

distance over which antennas can communicate is directly proportional to the square

of the operating wavelength, in accordance with the Friis Transmission Equation [16].

Longer wavelengths also are useful because the radiated signal will easily bend around

obstacles, so that it is not necessary for the transmitter to be within the line of sight

of the receiver. Thus there is a strong desire to realize antennas that are much smaller

than the operating wavelength, which are known as electrically small antennas.

The most significant issues related to designing electrically small antennas is
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achieving a good impedance match, high radiation efficiency, and maximal operating

bandwidth. However, the input impedance of a small antenna generally presents a

large reactance in addition to a low resistance, which makes matching to 50 Ω port

impedances difficult. Furthermore, attempts to utilize conventional matching net-

works typically suffer from narrow operating bandwidths, and are inherently lossy.

In addition, the matching network itself can occupy a significant size, thus reducing

the benefits provided by the small antenna size. This has motivated the design of

self-resonant electrically small antennas.

The highest performance self-resonant small antennas are typically realized by

arranging metal in a volumetric geometry such as a hemisphere [14,17–19]. The most

common method to fabricate these complex designs is by manually bending a wire.

However, this method is imprecise, time consuming, and expensive. More recently,

a method was introduced to print conductive ink onto a volumetric surface [20].

In that case, the ink used had a conductivity approximately 30% that of copper,

which ultimately limited the antenna efficiency. In addition, since it was a direct

write process, every trace was individually drawn, making the process relatively slow.

Another method that is used to fabricate volumetric antennas is to first print the

antenna onto a flexible printed circuit board using conventional photolithography,

and then deform the circuit board into a desired shape [21]. However, this method is

limited to fabricating relatively flat shapes, since substantial substrate deformation

can cause the metallic lines to crack.

When designing small antennas, it is important to note that an antenna of any

size can theoretically be made self-resonant at an arbitrary frequency. Thus, there are

no fundamental limitations on achieving a good impedance match and high radiation

efficiency. However, there exist fundamental limitations for the maximum achievable

bandwidth. Therefore, the goal is to design an antenna that maximizes its bandwidth

for a given electrical size. Of utmost importance to analyzing these limitations is the

radiation quality factor (Q) of the antenna [22]. At the resonant frequency (ω◦) of

the antenna, Q is defined as,

Q(ω◦) =
ω◦W (ω◦)

Prad(ω◦)
, (1.1)

where W (ω◦) is the time-averaged stored electric and magnetic energy and Prad(ω◦)

is the radiated power [22].

The Q of an arbitrary resonator can then be related to its maximum achievable
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bandwidth as demonstrated by Bode and Fano, [23, 24],

BQ ≤ π

ln( 1
Γm

)
(1.2)

where B is the 3 dB fractional bandwidth and Γm is the maximum allowable reflection

coefficient within the passband. Thus, the goal when designing small antennas is to

minimize the antenna Q, so that the bandwidth can be maximized. However, it

should be mentioned that the Bode-Fano limit does assume that all elements are

passive. If active elements are utilized, the Bode-Fano limits no longer apply, and

there is no limit on the achievable bandwidth [25–28]. Although promising, addressing

the oscillation and noise of active components remains an ongoing area of research.

In the 1940’s, Chu and Wheeler analytically solved for the minimum quality factor

of an electrically small antenna [29, 30]. In Wheeler’s work [30], he modeled a small

antenna as a lumped capacitor or inductor in combination with a radiation resistance.

Using well-known formulas for the inductance, capacitance, and resistance of various

geometries, he showed that the Q of an antenna is inversely proportional to its volume.

In particular, by analyzing the Q of a spherical coil surrounding a high permeability

sphere, he derived the minimum Q for a single mode electrically small antenna,

QWheeler =
1

(ka)3
(1.3)

where k = ω
√
µ◦ε◦ = 2π/λ is the free space wave number, λ is the wavelength in

free space, and a is the minimum radius of a sphere that circumscribes the antenna

(see Fig. 1.2). Wheeler used circuit models to derive the first fundamental bounds

relating the antenna size to a minimum Q. Although this approach was physically

insightful, it was not entirely rigorous since a full-wave analysis was not performed.

This caused the model to break down as the antenna size increased.

Chu performed a more rigorous full wave analysis of small antennas [29]. Chu used

the recurrence relations of the spherical Bessel functions to develop an equivalent cir-

cuit to model the radiation of transverse electric (TE) and transverse magnetic (TM)

spherical modes. By analyzing the Q of this circuit, the minimum Q of electrically

small antennas was established, and is often referred to as the Chu limit,

QChu =
1

(ka)3
+

1

ka
(1.4)

Chu rigorously showed that the bandwidth of an antenna is directly proportional
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a

Figure 1.2: Arbitrary antenna that fits inside a sphere of radius a.

to its volume. Although the circuit model developed by Chu provides useful metrics

for determining the performance of an optimal antenna, it provides little physical

intuition. It is based only on the recurrence relations of the spherical Bessel functions

rather than physical intuition.

Since then, fundamental limitations that relate bandwidth, size, loss, and directiv-

ity, while making additional assumptions that are more relevant for a given antenna

implementation, have been derived [31]. These analyses have shed light on the limita-

tions of various antenna designs. To date, many antenna designs have been reported

that approach these fundamental limitations. However, generalized methods to ana-

lyze these antennas have been complex, making it difficult to gain physical intuition.

Furthermore, the vast majority of small antennas radiate as either an electric

dipole or magnetic dipole. These radiation patterns are relatively omni-directional

with a directivity of 1.5. However, for many applications a low directivity is unde-

sirable since radiation in directions other than toward the receiver hurts the signal-

to-noise ratio of the system. Therefore, it is desirable to develop a small antenna

that exhibits a high directivity. This motivated the development of Huygens’ sources

which have a directivity of 3 [32]. These antennas radiate the electric and magnetic

dipole modes simultaneously, so that the fields add constructively in one direction and

destructively in the opposite direction. Huygens’ sources are so named because they

can generate the outgoing spherical wavefronts envisaged by the well-known Huygens’

principle [33].

1.2.2 Metasurfaces for wavefront and polarization control

The second part of this thesis focuses on electromagnetic wavefront manipulation

with two-dimensional metasurfaces. Electromagnetic wavefronts are typically con-
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trolled using dielectric lenses, spatial light modulators, and waveplates. However,

these devices rely on phase shifts that are gradual. This leads to bulky devices that

are many wavelengths in thickness. This is especially problematic at microwave fre-

quencies since dielectric lenses are required to be centimeters in thickness. This leads

to a much larger volume and weight than most systems can afford. In addition,

methods to fabricate these complex, three-dimensional geometries are expensive.

This has motivated wavefront control by an electrically thin surface (metasurface).

This concept was first demonstrated in the 1960’s to focus microwave radiation and

realize high gain antennas [34]. These metasurfaces were generally referred to as re-

flectarrays and transmitarrays for the manipulation of wavefronts upon reflection and

transmission, respectively. Transmitarrays are also commonly referred to as frequency

selective surfaces [35], phase shifting surfaces [36], and antenna-filter-antennas [37].

Reflectarrays with high efficiency and broad bandwidth have been demonstrated at

mm-wave frequencies [38, 39]. However, a feed placed in front of the antenna can

degrade radiation patterns and significantly adds to the antenna size. Conversely,

transmitarrays do not suffer from feed blockage. In addition, their configuration is

more favorable for integrating the radiating element with the transceiver, which pro-

vides a more compact system [40]. The inclusion of active elements has also enabled

beam scanning [41–44]. Although transmitarrays worked well at low GHz frequencies,

scaling them to higher frequencies is not straightforward [36, 45–49]. For example,

transmitarrays commonly employ receive antennas, connected to a phase shifter, and

then connected to a transmitting antenna [37,50]. However, these structures are lossy

and complex to fabricate at high frequencies. This is important because there is a

desire to increase the operating frequency for many applications [51–53].

A particularly attractive method of providing wavefront control at wavelengths

ranging from millimeter to nanometer was recently proposed in [54]. An inhomoge-

neous, two-dimensional array of V-antennas imparted abrupt phase discontinuities

onto light passing through the surface. The surface can be designed to transform an

incident wavefront into an arbitrary transmitted wavefront. However, there are some

limitations to this work. First, the structure only employs electric dipoles, which are

bidirectional radiators. Therefore, the power scattered into the forward direction is

equal to the power scattered in the backward direction. This leads to high reflec-

tion losses. In addition, only the cross-polarized component of the transmitted field

can be extensively controlled. From symmetry and reciprocity arguments this funda-

mentally limits the maximum achievable efficiency. Accounting for the reflection and

polarization losses, the maximum achievable efficiency of these structures is 25% [55].
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In fact, the limitations of V-antennas become clear by considering the work of

Shelkunoff in 1936 [56]. Shelkunoff developed the surface equivalence principle, which

demonstrated that both electric and magnetic surface currents are necessary to realize

complete control of an electromagnetic wavefront. Generating the electric response

is relatively easy, and a vast literature of work has been published [57]. However,

generating a magnetic response is more challenging. The first metamaterials real-

ized magnetic responses with split-ring-resonators consisting of capacitively loaded

loops [58]. A magnetic flux through the middle of the loop excites currents which

resonate with the capacitance. By operating throughout the resonance, the effec-

tive permeability can take on nearly arbitrary values. In addition, controlling the

response is simple and intuitive. This effect was employed to realize collocated elec-

tric and magnetic dipole moments in some of the first reported metamaterials [2].

Even today, split-ring-resonators are commonly used to realize a magnetic response

in metamaterials. Although utilizing collocated electric and magnetic responses is

common when designing metamaterials, this concept has not been applied to the

design of metasurfaces.

Split-ring-resonators do have some significant limitations. Split-ring-resonators

suffer from excessive loss and complex fabrication at higher frequencies. Creating

isotropic split-ring-resonators is also challenging. To address these limitations an

alternative method of realizing a magnetic response was proposed in [59]. It was shown

that a magnetic response is achievable by cascading patterned metallic sheets. This

led to the well known fishnet structure for achieving a negative index of refraction at

optical frequencies [60]. Realizing a magnetic response with cascaded metallic sheets

has several advantages over the split-ring-resonator. It is easier to fabricate cascaded

metallic sheets since they adhere to the standard 2.5 dimensional fabrication processes

commonly employed in the microelectronics industry. They have also demonstrated

a much lower loss than split-ring-resonators [5].

In addition to beam shaping, polarization control is also desirable for numerous

applications [61]. Most often, polarization control is achieved with waveplates such as

a quarter-wave plate [62,63]. For a quarter-wave plate, the transmitted phase differ-

ence between two orthogonal electric field components is a quarter of the wavelength

(90◦). When an incident field is linearly polarized at 45◦ relative to its crystal axes, the

quarter-wave plate converts the transmitted field to circular polarization, which has

applications in satellite communication and rain clutter suppression [62]. Although

quarter-wave plates have been realized with metasurfaces since the 1960s [62], there

are few examples of metasurfaces that efficiently incorporate both wavefront and po-
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larization control [40, 64]. For example, focusing transmitarrays that receive linear

polarization and transmit circular polarization were reported at 60 GHz by Hamza

Kaouach et al. [40]. However, the vias connecting the transmit and receive antennas

presented increased fabrication costs, and the coarse phase quantization led to an ad-

ditional 4 dB of loss. Although a method to address these limitations was proposed,

no design was reported [40].

While wave plates provide some polarization control, complete control of the polar-

ization requires a bianisotropic response (i.e. electric, magnetic, and chiral responses).

To date there are many structures that exhibit novel polarization effects such as asym-

metric transmission [65], and giant optical activity [66]. However, the performance of

most devices is far from optimal because there is no systematic design methodology

for realizing these low symmetry structures. In most cases, the design procedure is to

use a resonant geometry that exhibits the necessary mirror and rotational symmetry

so that a desired bianisotropic response is simply possible. But there is no guaran-

tee that the performance will be near optimal [67]. Additionally, the description of

the physics involved is often device specific, and its generalization to future designs

is not straightforward. Alternatively, it is possible to achieve novel polarization ef-

fects by simply cascading dielectric wave-plates and linear polarizers [68]. However,

this approach leads to bulky structures that do not easily lend themselves to system

integration.

1.3 Thesis Outline

This thesis addresses many of the current limitations of electrically small anten-

nas and metamaterials. Chapters 2-4 present new methods to fabricate and analyze

electrically small antennas that achieve near optimal bandwidths and improved di-

rectivities. Chapters 5-9 detail metasurfaces that provide extreme control over a

wavefront and its polarization, which significantly advances the state-of-the-art.

In Chapter II, a direct transfer patterning process is presented. This process allows

arbitrary metallic patterns to be stamped onto a contoured substrate, such as a sphere.

This process can be used to accurately and rapidly fabricate volumetric electrically

small antennas on a variety of shaped substrates. In addition, this technology allows

components with small features, (e.g., interdigitated capacitors or densely packed

metallic conductors) to be placed onto arbitrarily contoured substrates. This has

potential applications in diverse areas such as high gain antennas, conformal antenna

arrays, RFIDs, metamaterials, and transformation optics. Here, this process is used to
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make some of the most efficient electrically small antennas to date, while maintaining

bandwidths approaching the physical limit.

In Chapter III, a circuit model for electrically small antennas is introduced that is

based on their frequency-dependent polarizabilities. This model is useful for straight-

forwardly analyzing several different small antenna geometries. A negative permit-

tivity sphere, shell, and spheroid are all analyzed. An inductively loaded dipole, a

top-hat loaded dipole, and a spherical sheet impedance are also analyzed. The cir-

cuit model provides the antenna’s radiation quality factor (Q), radiation efficiency

(ηrad), and bandwidth. Unlike the circuit model developed by Chu, the circuit model

developed here provides physical intuition, which can aid and simplify design.

Chapter IV discusses how to increase the directivity of small antennas using Huy-

gens’ sources. An electrically-small Huygens’ source is introduced that is realized

as two concentric spherical sheet impedances. Closed-form expressions for the elec-

tric and magnetic polarizabilities, the directivity, and the scattering bandwidth of

the Huygens’ source are found. A trade-off between scattering bandwidth and direc-

tivity is explicitly shown. Design methodologies and practical implementations are

introduced. An impedance-matched, electrically-small antenna (ESA) of the same

topology with a directivity of 7.6 dB is presented. The antenna is simply fed with a

coaxial connector. In addition to its usefulness as an electrically small antenna, the

analysis also provides great insight into the design of impedance-matched metasur-

faces, which are discussed in the following chapters.

In Chapter V, Huygens principle is applied to develop designer surfaces that pro-

vide extreme control of electromagnetic wavefronts across electrically thin layers.

These reflectionless surfaces, referred to as metamaterial Huygens surfaces, provide

new beam shaping, steering, and focusing capabilities. The metamaterial Huygens

surfaces are realized with two-dimensional arrays of polarizable particles that pro-

vide both electric and magnetic polarization currents to generate prescribed wave

fronts. This structure can be envisaged as a nonperiodic distribution of Huygens’

sources. A straightforward design methodology is demonstrated and applied to de-

velop a beam-refracting surface and a Gaussian-to-Bessel beam transformer. This

metasurface demonstrates a dramatic improvement in efficiency over previous meta-

surfaces that only use electric currents for wavefront control.

In Chapter VI, it is shown that metasurfaces can deflect a normally incident

wavefront off to a specified angle, while simultaneously converting the polarization

from linear to circular. In this chapter, two separate metasurfaces that operate at

77 GHz are designed and fabricated. The first metasurface acts as a quarter-wave

10



plate that transforms a linearly polarized incident wave into a circularly polarized

transmitted wave. The second metasurface acts as both a quarter-wave plate and

a beam refracting surface to provide polarization and wavefront control. When the

second metasurface is illuminated with a normally incident, linearly polarized beam,

the transmitted field is efficiently refracted to 45◦, and the polarization is converted

to circular. The half-power bandwidth was measured to be 17%, and the axial ratio

of the transmitted field remained below 2.5 dB over the entire bandwidth. Both

designs have a subwavelength thickness of 0.4 mm (λ◦/9.7). The developed structures

are fabricated with low cost printed-circuit-board processes on flexible substrates.

The metasurfaces are realized by cascading three patterned metallic surfaces (sheet

admittances) to achieve complete phase control, while maintaining high transmission.

Polarization conversion is accomplished with anisotropic sheets that independently

control the field polarized along the two orthogonal axes. The structures are analyzed

using circuit-based and fields-based approaches.

Chapter VII demonstrates that the design methodology presented in the previ-

ous chapter can be used to achieve unprecedented control of electromagnetic wave-

fronts. Specifically, reflectionless metasurfaces are developed that can manipulate

vector Bessel beams: cylindrical vector beams with a Bessel profile. First, two meta-

surfaces are developed to convert linearly and circularly polarized Gaussian beams

into vector Bessel beams. Each unit cell of the metasurfaces provides polarization and

phase control with high efficiency. Next, the reciprocal process is demonstrated: an

incident radially-polarized Bessel beam is transformed into collimated, linearly and

circularly polarized beams. In this configuration, a planar Bessel beam launcher is in-

tegrated with a collimating metasurface lens to realize a low profile lens-antenna. This

is the first lens-antenna with a subwavelength overall thickness that achieves a high

gain (exceeding 20 dB). This work experimentally demonstrates that metasurfaces

can be used to generate arbitrary combinations of radial and azimuthal polarizations

for applications such as focus shaping or generating tractor beams.

Chapter VIII demonstrates that Huygens’ surfaces composed of cascaded sheet

admittances can be realized even at optical wavelengths. In this chapter, a meta-

surface lens that focuses light and controls its polarization at a wavelength of 2 µm

is presented. This lens demonstrates high transmission and complete phase control

within a subwavelength thickness at near-infrared frequencies. By cascading four pat-

terned sheets, the efficiency is dramatically improved over more common single sheet

designs. In addition, by utilizing anisotropic sheets, arbitrary birefringence can be

achieved. A planar lens that both focuses light and converts its polarization from
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linear to circular is analyzed. Next, a broadband Huygens surface that efficiently

refracts normally incident light at the telecommunication wavelength of 1.5 µm is re-

ported. The cascaded sheets have a subwavelength overall thickness of 430 nm. The

metasurface is experimentally characterized, and measured to have a peak efficiency

and extinction ratio that are 3 and 4 times larger than the state of the art V-antenna

geometries, respectively [69].

In Chapter IX, more exotic forms of polarization control are demonstrated with

metasurfaces exhibiting bianisotropic responses (i.e. electric, magnetic, and chiral

responses). This work represents the most general description of the interaction be-

tween metasurfaces and electromagnetic fields to date. In this section, an arbitrary

bianisotropic metasurface is analyzed using closed-form expressions that relate the

reflection and transmission coefficients to its constituent surface parameters. Next, a

systematic method to synthesize bianisotropic metasurfaces is outlined. It is analyti-

cally shown that bianisotropic metasurfaces can be realized by cascading anisotropic,

patterned metallic sheets (electric sheet admittances). This geometry allows for

straightforward design and fabrication from microwave to optical wavelengths. To

demonstrate the utility of the proposed method, four devices exhibiting novel polar-

ization transformations are presented: a polarization rotator, an asymmetric circular

polarizer, an asymmetric linear polarizer, and a symmetric circular polarizer. The op-

timal performance at centimeter, millimeter, and micrometer wavelengths highlights

the versatility of the design process.
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CHAPTER II

Direct Transfer Patterning of Electrically Small

Antennas

2.1 Chapter Introduction

The most basic electrically small antenna (ESA) consists of a small dipole an-

tenna with an external matching circuit. However, this antenna generally exhibits

a narrow bandwidth and relatively low efficiency [14]. Other miniaturized antenna

designs include resonant, magnetically-coupled antenna elements packed into a small

volume [70], space-filling curve antennas, and fractal curve antennas [71]. ESAs can

be categorized as either volumetric or planar. Volumetric ESAs offer excellent per-

formance, whereas planar designs exhibit limited performance: relatively low band-

widths and low radiation efficiencies [14]. Planar designs, on the other hand, are

popular since their fabrication is simple and inexpensive. Here, the advantages of

these two technologies are combined by developing a simple method to fabricate high

performance, volumetric, printed ESAs.

In this chapter, a direct transfer patterning process that allows printing by direct

stamping of arbitrary patterns onto a contoured substrate is presented. This process

can be used to accurately and rapidly fabricate volumetric ESAs on a variety of

shaped substrates. In addition to the fabrication of electrically small antennas, this

process can also be applied to other wireless technologies such as high gain antennas,

antenna arrays, radio-frequency identification devices (RFIDs), metamaterials and

transformation optics [3, 72]. To demonstrate the value of this process, we designed,

fabricated, and measured ESAs of various electrically small sizes that operate over

several frequency ranges. We show that the antennas fabricated using this direct

transfer patterning process have significantly higher performance and are potentially

easier to mass produce than with previously reported methods on non-planar surfaces.
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A common metric used to analyze the performance of an ESA is the ratio Q/Qlb,

where Q is the quality factor of the antenna under consideration and Qlb is the lower

bound given by Qlb = 1/(ka)3 + 1/(ka). To date, there are several examples of

antennas that closely approach the fundamental limit [14,18–20,30,70]. We chose to

fabricate the spherical helix antenna because it closely approaches this limit, and its

design is relatively simple [18]. The spherical helix antenna inductively loads a dipole

antenna by winding metallic arms around the surface of a hemisphere. By varying

the number of arms and the number of turns each arm makes around the sphere, it

can be impedance-matched to 50 Ω.

2.2 Direct Transfer Patterning

Direct transfer patterning has been previously used to fabricate photodetector

arrays on a hemispherical surface [73]. To realize ESAs, the process is modified

to dramatically (by a factor of 500) increase the thickness of the metallic patterns,

allowing very low resistance, conductive antenna arms to be fabricated. This process

can also be used to pattern metal onto extreme curvatures, such as the entire surface

of a hemisphere down to its equator. The process involves stamping metallic patterns

onto a contoured substrate, and then electroplating the patterns to a thickness of

5-10 µm. A summary of the process is shown in Figure 2.1.

The substrate used to fabricate the antenna is 0.5 mm thick, glycol-modified

polyethylene terephthalate (PETg), which has a relative dielectric constant εr = 3.1

and loss tangent tan δ=0.015 [74]. To begin, a flat sheet of PETg is deformed into

the desired shape by heating to 150◦C (above its softening temperature), and then

drawing it into a vacuum mold where it is cooled. Next, 30 nm thick SiO2 and 3

nm thick Cu layers are sputtered onto the contoured substrate followed by deposition

of an 8 nm Au strike layer. The SiO2 and Cu serve to improve the adhesion of Au

to the substrate. Then, a Si pattern master is prepared by etching 40 µm trenches

using standard lithography and deep reactive ion etching. The location of the trenches

corresponds to the final location of the metal patterns to be printed onto the substrate.

A liquid polydimethyl-siloxane (PDMS) pre-polymer and hardening agent are then

poured onto the Si pattern master at a 10:1 mass ratio. The PDMS is cured at 100◦C

for 2 hrs, after which it is peeled from the pattern master to form a stamp. The

PDMS stamp is approximately 0.5 mm thick, with 40 µm high ridges corresponding

to the pattern that is to be printed on the contoured substrate. Next, a 17 nm Au

seed layer is added to the stamp using electron beam evaporation (Figure 2.1(a), Step
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Figure 2.1: (a) Outline of the direct transfer patterning process that is used to stamp
metallic patterns onto a contoured substrate. (b) Patterned Au on a
hemispherical substrate prior to electroplating (between Step 5 and 6).
Note that there are areas where unwanted Au is stamped onto the sub-
strate, which are later removed. (c) The fabricated spherical helix an-
tenna after connection to a ground plane. (d) Optical micrograph and
profilometry scan of a metal conductor. The surface roughness is 0.5 µm.
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1).

To pattern the substrate, the stamp is drawn into the same vacuum mold used to

deform the substrate (Step 2). The substrate is subsequently placed in close proximity

to the deformed stamp. When the vacuum is released and a small amount of pressure

(∼1 atm) is applied to the back of the stamp, the ridges contact the surface of the

substrate, resulting in a cold-welded metallic bond formed between the Au on the

stamp and that on the substrate (Step 3). Then the vacuum is reapplied to separate

the stamp from the substrate, transferring the 17 nm thick Au patterns to the surface

of the contoured substrate (Step 4). Next, the substrate is etched in an Ar plasma

at 30 mTorr and 150 W for 70 s to remove the strike layer that electrically connects

all of the transferred patterns (Step 5). Exposure to the Ar plasma substantially

heats the substrate, which is problematic since PETg has a relatively low softening

temperature. To minimizing heating, the plasma is pulsed (10 s on, 60 s off). Figure

2.1(b) shows the patterned substrate after the plasma etch. Finally, the patterns are

electroplated to a thickness of 5-10 µm (Step 6). This process allows one to print

arbitrary patterns onto contoured substrates, such as the spherical helix antenna

shown in Figure 2.1(c).

It can be seen in Figure 2.1(b) that there is additional Au, between the helical

conductors. When pressure is applied to the back of the stamp, its ridges contact

the substrate to form a cold-welded metallic bond. When these ridges are spaced

sufficiently far apart, additional areas of the flexible PDMS stamp also contact the

substrate, thereby creating transfer of Au in between the conductive traces. The

interstitial Au can be removed using a wet Au etch (Transene TFA Au Etch). Fol-

lowing the plasma etch, there is a gap between the unwanted Au and the desired

pattern. This gap creates electrical isolation such that only the desired pattern is

electroplated. After electroplating, a wet Au etch is used to remove the 17 nm thick,

unwanted Au with minimal effect on the electroplated pattern.

The direct transfer patterning process relies on forming a cold-welded bond be-

tween the stamp and substrate (Figure 2.1(a), Step 3). For cold-welding to occur,

the two surfaces must be coated with identical metal layers and brought into intimate

contact so that they adhere [75–78]. The surfaces must be clean and smooth since

small dust particles or surface nonplanarity will inhibit intimate contact. Elastomers

such as PDMS can mold themselves around surface defects, thereby limiting their

adverse effects [75, 76]. In direct transfer patterning, it is desirable to transfer metal

thicknesses that are significantly thicker than the strike layer to provide a high con-

trast for the plasma etch (Figure 2.1(a), Step 5). It has been shown that thicknesses
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up to 20 nm can be transferred using this process [73]. However, greater thicknesses

were difficult to obtain, possibly due to wrinkling of the PDMS during the metal

deposition [73,79].

To maximize antenna efficiency, the conductor thickness should be at least 3δ,

where δ is the skin depth ( 2 µm at L-band) at the operating frequency. Several

factors influence the optimal metal plating thickness. When the metal is plated

too thick, it becomes overly stressed, forcing it to peel off the substrate. Rougher

substrates can employ thicker metal films due to increased mechanical anchoring [80].

The surface roughness of the PETg substrate is 14 nm, measured using atomic force

microscopy (AFM). For Cu and Au plating, we achieved a thickness of 12 µm and 7

µm, respectively, without the metal peeling. In addition, the use of adhesion layers

can significantly increase the maximum thickness of the metal. We found that SiO2

and Cu adhesion layers work well because they offer sufficient adhesion to electroplate

to the desired thickness, while Cu is easy to remove during the Ar plasma etch [81].

The minimum achievable feature size is limited by the lithography techniques used

to pattern the Si pattern master, and the thickness of the electroplated conductors.

Typically, feature sizes of <10 µm can be achieved using this process for 10 µm

thick patterns. Figure 2.1(d) shows an optical micrograph and profilometry scan of

an antennas conductive arm. The surface roughness is 0.5 µm. We chose to use

a PETg substrate because of its low cost, tolerance to the electroplating process,

and vacuum forming properties. In general, any other substrate that can be shaped

into the desired contour could also be utilized, but attention should be paid to its

electroplating properties.

2.3 Antenna Measurements

We fabricated and measured three spherical helix antennas whose performance is

provided in Figure 2.4. Figure 2.2 shows the dimensions of a spherical helix antenna

that operates at 1.12 GHz. Each arm was designed to have 1.5 turns using [18](Eqs.

(1-5)), except that the arms begin spiraling 2 mm above the surface of the ground

plane rather than at the ground plane. All but one of the arms was connected to a

200 mm x 200 mm ground plane using Ag-loaded epoxy, while the remaining arm was

connected to the inner conductor of a coaxial transmission line acting as an antenna

feed. The radius of the hemisphere is 10 mm. A 2 mm radius cap was placed at

the top of the antenna to allow for an easy electrical connection while electroplating.

Since the current near the top of the antenna is small, the cap does not affect the
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Figure 2.2: Dimensions of a spherical helix antenna that operates at 1.12 GHz.

performance. The width of the conducting paths is 0.4 mm, and their thickness is

5 µm. All antennas are impedance-matched to 50 Ω with a return loss greater than

15 dB, as shown in Figure 2.3(a). The antennas that operate at 1.52 GHz and 2.7

GHz are identical to that in Figure 2.2 except they each have 3 arms with 1.0 and

0.5 turns per arm respectively. The input impedance was used to calculate the Q

of the antenna [22]. The radiation patterns of the antennas were also measured (see

Figures 2.3(b)-(d)), and all antennas exhibit the expected electric dipole radiation

patterns. Simulations also show that as the size of the ground plane increases, the

dipole radiation patterns approach those of a monopole, as expected.

The radiation efficiency of the antennas was measured using both the Wheeler

cap method and the gain comparison method [16, 30]. In the Wheeler cap method,

the input impedance of the antenna is measured in free space. Next, a Wheeler cap

is placed over the antenna and secured to the ground plane, and the input impedance

is remeasured. These two measurements are used to find the radiation and loss

resistances, and therefore the radiation efficiency. The accuracy of this method can

be improved when postprocessing the data by adding an ideal transmission line to

rotate the input impedance around the Smith chart, such that it resembles a constant

resistance or conductance circle [82].

The radiation patterns were measured using the University of Michigans 18 m

anechoic chamber. The antenna under test (AUT) is placed on a rotating styrofoam

platform in the quiet zone of the chamber. The AUT is then connected to a signal
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generator (Agilent N5183A). At the other end of the chamber is a recieving, standard

gain horn antenna connected to a spectrum analyzer (Hewlett Packard 8592L) to

measure the recieved power. By rotating the AUT and measuring the power recieved

by the horn antenna, the radiation patterns are measured. Then the radiation effi-

ciency is found using the gain comparison method [16]. For this, the AUT is replaced

by a reference horn antenna with a known gain. By comparing the recieved power

of the AUT to the reference, the gain and radiation efficiency are determined. The

radiation efficiency measured using the gain comparison method agreed to within 2%

of the efficiency found using the Wheeler cap method.

Finally, the radiation quality factor (Q) was found using the measured input

impedance of the antenna. It can be shown that for single resonant antennas, the Q

is related to the input impedance through the following relation [22],

Q(ω◦) =
ω◦

2R◦(ω◦)

∣∣∣∣
dZ(ω)

dω

∣∣∣∣
ω◦

(2.1)

Here, ω◦ is the resonant frequency of the antenna, R◦ is the input resistance, and

dZ(ω)/dω is the frequency derivative of the input impedance evaluated at the resonant

frequency.

Using the stamping process, three different spherical helix antennas were designed

and fabricated to operate at three different frequencies. These results allow for the

direct comparison of the antennas with previously published data of similar electrical

sizes. To highlight the effect of the fabrication method on antenna performance, Table

1 summarizes the results of some competing fabrication methods such as manually

bending wires [18], silver ink printing [20], and conventional 2D printed circuit board

(PCB) techniques [15].

Manually fabricated spherical helix antennas provide the best performance since

they have a very low Q and high efficiency. The increased Q of the direct transfer pat-

terning technique primarily results from the presence of a substrate [83]. The reasons

for the decreased efficiency of the antenna fabricated using direct transfer patterning

is the additional substrate loss, and the lower skin depth due to the higher frequency

of operation [84]. Although manual fabrication offers improved performance, manu-

ally bending wires is a time consuming and potentially expensive process. Silver ink

printing achieves comparable Q’s, but significantly lower efficiency than direct trans-

fer patterned devices since the conductivity of the ink is only 30% that of copper [20].

This lower efficiency leads to an increased bandwidth of the silver ink printed anten-

nas. In addition, the ink printing process is relatively slow since every conductive
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Figure 2.3: (a) Reflection coefficient of the antennas compared with simulation. (b)-
(d) Co-polarization and cross-polarization gain patterns along the electric
(E) and magnetic (H) field planes of the spherical helix antennas operating
at 1.12 GHz, 1.52 GHz, and 2.7 GHz, respectively.
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Fabrica�on 
Method

Frequency 
(GHz) ka Q/Q lb η eff

Half Power 
Bandwidth

1.12 0.23 2.1 52% 2.0%
1.52 0.31 1.8 69% 5.3%
2.70 0.56 2.2 88% 14.2%
0.30 0.38 1.5 98% 7.6%
0.30 0.45 1.8 99% 6.7%
0.79 0.21 2.0 14% 6.3%
1.70 0.46 1.5 71% 15.2%
0.43 0.35 5.8 58% 2.3%
1.40 0.50 5.4 89% 4.1%

Direct transfer 
pa�erning

Manually 
bending wires

Silver ink 
prin�ng

Printed-circuit-
board

Figure 2.4: The performance of electrically small, spherical helix antennas fabricated
using the direct transfer patterning process. For comparison, the per-
formances of several alternative fabrication techniques are also provided.
The direct transfer process has a slightly lower efficiency than manu-
aly bending wires, but otherwise outperforms the other fabrication tech-
niques. Several different electrical sizes (ka) are shown to demonstrate
their scaling properties.

trace needs to be individually drawn. Finally, conventional two-dimensional printed

circuit board fabrication offers a significantly higher Q and lower efficiency since the

antennas do not take advantage of the volume provided by a spherical geometry.

2.4 Chapter Summary

In summary, a process to rapidly stamp antennas onto arbitrarily contoured sub-

strates was presented. In addition, the ability to fabricate antennas whose bandwidths

approach the maximum achievable limit for a given electrical size was demonstrated.

It was shown that direct transfer patterning can produce electrically small antennas

that are significantly more efficient than previously published methods and potentially

less expensive to fabricate. In addition, this technology allows components with small

features, (e.g. interdigitated capacitors or densely packed metallic conductors) to be

placed onto arbitrarily contoured substrates. This has potential applications in di-

verse areas such as high gain antennas, conformal metasurfaces and antenna arrays,

RFIDs, metamaterials, and transformation optics [3, 72].
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CHAPTER III

A Circuit Model for Electrically Small Antennas

3.1 Chapter Introduction

In [29], Chu developed an equivalent circuit to model the radiation of transverse

electric (TE) and transverse magnetic (TM) spherical modes. By analyzing the Q of

this circuit, the minimum Q of ESAs was established. The minimum achievable Q

for an ESA is known as the Chu limit, QChu = 1/(ka)3 + 1/(ka). The results of Chu

did not consider the energy stored within the antenna, and they were later revisited

to obtain more accurate bounds for realistic small antennas [85–87].

The vast majority of ESAs radiate either the TE10 or TM10 modes, and can

therefore be characterized by an electric or magnetic polarizability [88, 89]. The

polarizability relates the radiated fields to those of a small electric or magnetic dipole,

and indicates how well an antenna scatters the fields of an incident plane wave. It

will be shown that using the polarizability of an arbitrary ESA for a polarization of

interest, an equivalent circuit can be found to model its performance: bandwidth,

Q, and efficiency. The analysis reported here allows one to analyze the fundamental

operation of the antenna, independent of the effects of a particular feed.

In this chapter, circuit models are presented for electrically small antennas in-

cluding a negative permittivity sphere, shell and spheroid, based on their frequency-

dependent polarizabilities. The Q of the equivalent circuits is analyzed and compared

to previously reported values. The advantage of the proposed technique for evaluat-

ing antenna Q is that it can be applied to many different types of small antennas.

The equivalent circuit for the inductively loaded dipole and top-hat loaded dipole is

also found using the same approach. In addition, inductive and capacitive spherical

sheet impedances are analyzed. The inductive sheet, which radiates the TM10 mode,

is shown to have the same circuit as the negative permittivity sphere. Finally, it is

shown how the feed of a small antenna can be modeled by analyzing the negative
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permittivity hemisphere antenna design reported in [90], as well as a conventional

inductively loaded dipole and top-hat loaded dipole.

3.2 Concept

Consider the case where an ESA scatters the field of an incident plane wave. For

the time being, let’s assume the antenna is not loaded by a particular feed, and is thus

acting as a scatterer. When the antenna is small compared to the wavelength, the

scattered fields are predominately those of a small electric and/or magnetic dipole [88].

We will first investigate the electric dipole (TM10) mode. The incident electric field

of the plane wave will be denoted as ~E◦, and assumed to be polarized along the dipole

moment of the antenna. In the near field, reactive components of the electric field

dominate. These fields can be compared to those of a short dipole with polarizability

(α). The dipole moment of the ESA is equal to ~P = ε◦α ~E◦, which can in turn be

related to that of a dipole: ~P = q~dl. If these fields are time harmonic and assumed

to be quasi-static, then jωq~dl = I ~dl = jωε◦α ~E◦. As a result I = jωε◦αV/dl
2. Thus,

an equivalent impedance Zelectric can be defined for the electric dipole,

Zelectric =
dl2

jωε◦α
. (3.1)

An equivalent circuit representing Zelectric can provide physical insight into the

operation of the small antenna. The ESA is not loaded by a feed since it is excited

by a plane wave instead. This allows one to investigate the fundamental operation

of the small antenna independent of its feed. In addition, feeding the antenna with

a plane wave offers insight into the minimum Q, and also provides the equivalent

circuit for the antenna when it is operated in the receiving mode [88]. Fortunately,

near the operating (resonant) frequency of ESAs, the current distribution is the same

for both the transmitting and receiving modes [91]. Therefore, (3.1) is also valid

for transmitting antennas. When the effects of the feed are desired, it is relatively

straightforward to include in the circuit, as will be shown in Section 3.7.

Since the radiated fields are of interest, an accurate model of the polarizability

must take into account radiative damping [90,92]. At resonance (when α approaches

infinity), the magnitude of a radiation reaction field ~Er = −j(2/3)k3 ~P/(4πε◦) be-

comes non-negligible. Adding ~Er to the excitation ~E◦, results in the following dipole
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moment [92]:

~P = ε◦α

[
~E◦ −

jk3 ~P

6πε◦

]
(3.2)

By solving for ~P , the effective polarizability αeff is given by,

αeff =
α

1 + j αk
3

6π

. (3.3)

For lossless ESAs, α is purely real. By substituting αeff for α in (3.1), Zelectric can

be written as

Zelectric =
dl2

jωε◦α
+
dl2k3

6πε◦ω
. (3.4)

The term dl2/(jωε◦α) represents a reactive element in series with a resistor of value

dl2k3/(6πε◦ω). Energy stored in the reactive component is proportional to the energy

stored in the reactive field of the ESA, while the energy dissipated by the resistor is

proportional to the radiated energy. Note that the resistance is independent of the

ESA and is equal to that of a small dipole of height dl, consistent with the results

of [93].

Since the impedance in (3.4) is of the form R(ω) + jX(ω), the Q of the circuit at

resonance can be easily found using the result of [94],

Q(ω◦) =
ω◦

2R(ω◦)
X ′(ω◦), (3.5)

where X ′(ω◦) is the derivative of X(ω) evaluated at the resonant frequency ω◦. In-

serting (3.4) into (3.5) results in the Q at resonance of an arbitrary ESA based on its

frequency-dependant polarizability,

Q(ω◦) =
−3πω◦
k3

d( 1
α

)

dω
. (3.6)

Electrically small antennas are often required to fit within an overall geometry that

is stipulated by the application (e.g. cell phones and laptops require planar antennas).

Therefore, a practical case is to consider the equivalent circuit of a perfect electrically

conducting (PEC) object with a frequency-independent polarizability given by αpec.

No assumption is made about the object’s shape. This case is useful for understanding

the physical limitations of arbitrarily shaped small antennas since a PEC object

exhibits the lowest achievable Q that is excited by electric currents only [88]. If we

assume that this object is somehow tuned to a resonant frequency ω◦ with an ideal
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inductor, Zelectric simplifies to,

Zelectric =
dl2

jωε◦αpec

+
jωdl2

ω2
◦ε◦αpec

+
dl2k3

6πε◦ω
. (3.7)

When (3.7) is inserted into (3.5), the Q of this circuit simplifies to,

Q(ω◦) =
6π

k3αpec

, (3.8)

which is identical to the minimum achievable Q for an electric dipole mode excited

by electric currents only [88] .

It is also important to examine the effects of material absorption on the circuit

model. Absorption causes the polarizability to become complex: αc = Re(αc) −
jIm(αc). Inserting αc into (3.4) results in a circuit impedance,

Zelectric =
dl2Re(αc)

jωε◦|αc|2
+
dl2Im(αc)

ωε◦|αc|2
+
dl2k3

6πε◦ω
. (3.9)

From the expression above, it is evident that there are two resistors in series with

a reactive component, where Rloss ∝ Im(αc) accounts for material absorption, and

Rrad ∝ k3 accounts for the radiated power. To find the radiation efficiency (ηrad), one

can simply divide the energy radiated by the total energy dissipated,

ηrad =
Rrad

Rrad +Rloss

=
1

1 + 6πIm(αc)
k3|αc|2

. (3.10)

3.3 Negative Permittivity Sphere

The first small antenna to be considered is a negative permittivity sphere. Let’s

consider scattering from such an electrically small sphere by a plane wave. The

polarizability of an electrically-small sphere with relative dielectric constant εs is [92],

α =
4πa3(εs − 1)

(εs + 2)
. (3.11)

A negative permittivity material must be dispersive to obey the well-known causality

relationships. A Drude model will be assumed for the permittivity dispersion, since

this model has the lowest frequency derivative (lowest Q) that satisfies the Landau-

Lifshitz criteria for the frequency derivative of the permittivity [95,96]. The frequency-
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dependant permittivity εs(ω) has the form,

εs(ω) = 1− ω2
p

ω(ω − jγ)
. (3.12)

Here ωp is the plasma frequency and γ represents material absorption, which at first

will be assumed to be zero.

When the permittivity of the sphere is εs = −2, the sphere resonates since α

becomes infinite and Zelectric from (3.4) becomes purely resistive. From (3.12), it is

clear that the frequency necessary for resonance is ω◦ = ωp/
√

3. Combining (3.4),

(3.11) and (3.12), the circuit impedance simplifies to

Zelectric =
dl2

j4πωa3ε◦
+
j3dl2ω

4πω2
pa

3
+
dl2k3

6πε◦ω
. (3.13)

This impedance is the same as that formed by a series RLC resonator with equivalent

circuit values given in Fig. 3.1. The Q of this circuit is found from the ratio of the

energy stored in the reactive circuit elements (
∑ |1/2Li2|+ |1/2Cv2|) to the energy

dissipated by the resistor (i2R) and is equal to,

Qsphere =
1.5

(ka)3
, (3.14)

consistent with [90].

Comparing the results of [97] with (3.13), it can be seen that the negative permit-

tivity material provides a distributed inductance (Lsph) which cancels the capacitance

of the fringing electric fields (Cfringe) and the internal electric fields (Cin). Since the

fields outside the sphere are identical to the fields of the TM10 spherical wave, the fact

that Qsphere = 1.5 QChu implies that the electric energy internal to the sphere is half

of the fringing electric energy. This fact allows the determination of a unique ratio of

Cfringe to Cin in the equivalent circuit of Fig. 3.1, and provides physical insight into

where exactly energy is stored.

Figure 3.1: Equivalent circuit for the negative permittivity sphere.
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Let’s consider absorption by a negative permittivity sphere. To arrive at an equiv-

alent circuit and radiation efficiency, the complex polarizability (αc) is first found by

substituting (3.12) into (3.11). Assuming a nonzero γ, αc is given by,

αc =
4πa3ω2

p

3jωγ − 3ω2 + ω2
p

. (3.15)

Then αc is inserted into (3.9) and (3.10) to provide the impedance and the radiation

efficiency, respectively. As expected, the equivalent circuit is identical to Fig. 3.1

except with an added resistor of value,

Rloss =
3dl2γ

4πε◦ω2
pa

3
. (3.16)

Inserting αc into (3.10), the efficiency at resonance (ω◦ = ωp/
√

3) is found to be,

ηrad =
1

1 + 3
√

3γ
2(ka)3ωp

, (3.17)

identical to the results of [90].

3.4 Comparison to Other Small Antenna Circuit Models

In the previous sections, it was shown that knowledge of the frequency-dependent

polarizability of an ESA can be used to easily develop an equivalent circuit model,

which can in turn be used to calculate the antenna’s Q and efficiency. Note that these

equivalent circuits are valid for all frequencies for which the antenna is considered to

be electrically small, and not just simply around the resonance. An antenna’s Q can

also be calculated by directly integrating the stored internal and external energies, as

well as the power radiated [86]. However, the use of a circuit model provides further

intuition into the antenna’s operation, which can aid in design.

Others have also developed circuit models for ESAs. The circuit models developed

in [87,97,98] are very useful for analyzing particular designs, but they are not appli-

cable to as broad of a range of antennas as the Zelectric circuit model presented in this

chapter. In [98], it is shown that a negative index material can be used to match an

ESA to free space. However, some of the reactive circuit elements have negative val-

ues, which has limited physical meaning if the antenna is a passive device. In [97], it

is demonstrated that nanocapacitors, nanoinductors and nanoresistors can be made
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by simply distributing different plasmonic and dielectric materials into various ge-

ometries. However, no mention is made of radiative damping, which is necessary to

model an ESA’s Q and efficiency. In [97, 98], the values of the reactive components

are frequency-dependent, whereas here they are only functions of the geometry and

materials used to make the antenna. Also, there was no attempt in these papers to

predict a small antenna’s Q using a circuit model. A practical circuit model for the

design of an ESA is shown in [87]. It provides a circuit model that can be used to

analyze all the spherical modes, but is only valid for spherical wire antennas.

In [90], the use of a negative permittivity material to match an ESA is introduced,

and the Q of the negative permittivity sphere is calculated from the scattering cross

section (Csca). However, this method involves using a Lorentzian approximation,

which only models the behavior of the antenna near resonance.

3.5 Other Useful Geometries

One advantage of the technique presented here is that it can be applied to find

the Q of several different electrically small antennas. All that needs to be known is

the frequency response of the polarizability. In this section, the negative permittivity

shell and spheroid are considered.

3.5.1 Negative Permittivity Shell

The negative permittivity shell, shown in Fig. 3.2(a), will be analyzed first. In [99],

the polarizability was found to be

α = 4πr3
2[
εnεa − εb
εnεa + 2εb

], (3.18)

where,

εa = εin(3− 2T ) + 2εnT (3.19)

εb = εinT + εn(3− T )

T = 1− (
r1

r2

)3.

Combining (3.4), (3.12), and (3.18), the impedance Zelectric can be found. This

impedance can be represented by the circuit shown in Fig. 3.2(b). The values of the
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Figure 3.2: (a) Negative permittivity shell geometry. (b) Circuit model for a negative
permittivity shell. (c) Simplified circuit model for a negative permittivity
shell when εin = 1. (d) Q at resonance for the circuit shown in Fig. 3.2(b)
for various ratios of r2/r1 and εin.

circuit elements are:
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pr
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Cin =
12πr3

2ε◦
dl2

Cfringe =
6πr3

2ε◦
dl2

Rrad =
dl2k3

6πε◦ω

x = (ε2inr
6
2 + 4ε2inr

3
2r

3
1 + 4r6

2εin − 26r3
2εinr

3
1

+4ε2inr
6
1 + 4εinr

6
1 + 4r6

2 + 4r3
2r

3
1 + r6

1)1/2.

However, if the permittivity within the shell is equal to free space (εin = 1), the

circuit simplifies to that in Fig. 3.2(c). Similar to the negative permittivity sphere,

the negative permittivity material acts as a distributed inductance to cancel the

capacitance resulting from the fringing and internal electric field. However, within

this distributed inductance, there is an additional positive internal permittivity (εin).

This contributes an added capacitance C1shell, which raises the stored energy and

therefore the Q. The circuit model shows that the Q of the negative permittivity

shell is always greater than the Qsphere = 1.5/(ka)3 of the negative permittivity sphere,

since the shell’s circuit contains added reactive components that store energy. For the

circuit shown in Fig. 3.2(b), the minimum Q/QChu at resonance vs. the ratio r2/r1

for various values of εin is plotted in Fig. 3.2(d). Since there are two inductors in the

circuit, there exist two values of ω (or equivalently εn) that cause this structure to

resonate. However, one of the resonances will provide a lower Q than the other. This

physically means that there exists two possible modes which can radiate. Depending

on the ratio r2/r1 and εin, either one of these modes may have the minimum Q. In

Fig. 3.2(d), the locations where the traces are not smooth for εin = 5 and εin = 7,

indicate points where two modes have the same Q.

The electric field profiles for the modes where the εin = 5 trace is not smooth

are plotted in Fig. 3.3. The incident electric field is polarized along the vertical

axis, and the modes are azimuthally symmetric. Although the modes have different

electric field profiles near the negative permittivity shell, they both have the far field

radiation pattern of a small electric dipole.
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Figure 3.3: Comparison of the normalized electric field of two different modes with the
same Q. (a) ω = 0.388ωp. (b) ω = 0.728ωp. For both modes r2/r1 = 1.83,
εin = 5, and Q = 3.3/(ka)3.

3.5.2 Negative Permittivity Spheroid

Another structure that will be investigated is the negative permittivity spheroid

depicted in Fig. 3.4(a) [100–103]. The spheroid in Fig. 3.4(a) is rotationally invariant

around the vertical axis. A spheroid is considered to be prolate (pencil-shaped) if

b > a and oblate (pancake-shaped) if a > b (see Fig. 3.4(a)). The eccentricity of the

spheroid is ep =
√

1− (a/b)2 if it is prolate, and eo =
√

1− (b/a)2 if it is oblate. If
~E◦ is polarized along the vertical axis, the polarizability of a spheroid is [102]

α =
4πa2b(εs − 1)

3f(εs + (1/f − 1))
, (3.20)

where,

f =
1− e2

p

e2
p

(
−1 +

1

2ep
ln

1 + ep
1− ep

)
(3.21)

for a prolate spheroid and,

f =
1

e2
o

−
√

1− e2
o

e3
o

[
π

2
− tan−1

√
1− e2

o

eo

]
(3.22)

for an oblate spheroid. The parameter f is dimensionless and depends only on the

ratio b/a. It ranges between 0 (prolate) and 1 (oblate).

From (3.20), it can be seen that if εs = 1 − 1/f , α becomes infinite causing the

spheroid to resonate. Again combining (3.4), (3.12), and (3.20), the circuit impedance
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Figure 3.4: (a) Negative permittivity spheroid geometry. (b) The circuit model for
the negative permittivity spheroid.

Zelectric can be found. Similar to the negative permittivity sphere, the impedance is

equivalent to that of a series RLC circuit, but with the values given in Fig. 3.4(b).

The stored energy in the fringing and internal electric fields can be found from [88],

which provides the values of Cspd in and Cspd fringe. When a = b, f reduces to 1/3, and

the circuit simplifies to that for a negative permittivity sphere. The Q of the circuit

in Fig. 3.4(b) at resonance is,

Qspheroid =
6πf

V k3
, (3.23)

where V is the volume of the spheroid. This is identical to the result in [96] and

is also equal to the minimum Q for a spheroidal geometry that is fed with electric

currents only [88]. It should be noted that f is defined differently here than in [96].

The value of Q normalized to the Chu limit is plotted for various ratios of b/a in

Fig. 3.5. The fact that Q varies much less rapidly for prolate spheroids than for

oblate spheroids as the ratio b/a changes, suggests that pencil-shaped geometries are

preferable to pancake-shaped geometries. Also note that Fig. 3.5 differs from that

in [100], since the analysis presented in this chapter considers stored energy internal

to the spheroid in addition to the energy external to it.
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Oblate Prolate

Figure 3.5: Q/QChu of a negative permittivity spheroid for various ratios of b/a

3.5.3 Inductively Loaded Dipole

In the previous examples, a negative permittivity material was used to provide

a distributed inductance. This inductance cancelled the capacitance of the fringing

electric fields which are inherent to electrically small antennas that radiate the TM10

mode. However, the use of a negative permittivity material requires a bulk medium.

Either the antenna must operate at very high frequencies (typically above 30 THz)

where negative permittivity occurs naturally, or it can be achieved using plasmas

[104,105] or metamaterials [106,107], which can be challenging.

Next, some more conventional ESAs are considered. First, let’s consider a short

wire dipole, loaded with a 240 nH inductor at its center, as shown in Fig. 3.6(a).

The wire is perfect electrically conducting (PEC), with a 0.2 mm radius and a 20 mm

length. The antenna was designed to resonate near 1 GHz (ka = 0.210).

To arrive at an equivalent circuit, we first need to find the frequency-dependent

polarizability of this antenna. This example differs from all the previous examples in

that a closed-form expression for the polarizability of a short conducting cylinder does

not exist [89]. Therefore the polarizability must be solved numerically. Here, we used

a commercial finite element electromagnetic solver, Ansoft’s HFSS, to numerically

solve for the polarizability.

To begin, the antenna is excited with a plane wave traveling in the ŷ direction

with a ẑ polarized incident electric field. The scattered far field is found and can be

represented as the sum of a ẑ directed electric dipole and a x̂ directed magnetic dipole

whose amplitudes are proportional to the polarizabilities αe and αm respectively. The
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radar cross section σ(θ, φ) can be easily related to the polarizabilities [108],

σ(θ, φ) =
k4
∣∣αeff

m sin(φ) + αeff
e sin(θ)

∣∣2

4π

+
k4
∣∣αeff

m cos (φ) cos (θ)
∣∣2

4π
, (3.24)

where

αeff
e,m =

αe,m

1 + j αe,mk3

6π

. (3.25)

Here, αeff
e,m is the effective electric or magnetic polarizability that accounts for radiative

damping (see Section 3.2).

Now there are several ways in which αe,m can be solved for. The simplest method

would be to simply find σ(θ, φ) along two different directions which results in two

equations and two unknowns to be solved. However, a more accurate approach would

be to take advantage of the fact that a single simulation provides σ(θ, φ) in all di-

rections. In this case, the system of equations is overdetermined, and a least squares

method can be used to find a solution that is robust against small simulation errors.

However, there is no closed form solution to finding the values of αe and αm that

minimize the squares of the residuals, since the equations are nonlinear. MATLAB’s

optimization toolbox was used to find a numerical solution by utilizing an active-set

algorithm [109]. To verify the accuracy of this method, the extracted polarizability

was compared to theory by simulating a PEC sphere, which has an analytical solu-

tion. The error was less than 0.1% between the numerically found polarizability and

the analytical solution to the polarizability.

The frequency-dependent polarizability extracted from simulation is then inserted

into (3.4), which is used to find the input impedance in the circuit model. Next, the

actual circuit elements that model this impedance are found. These reactive circuit

elements are found by first noting the form of the impedance, and then using MAT-

LAB’s non-linear curve fitting tool to find their values. For example, the reactance of

the circuit model based on the extracted polarizability is plotted in Fig. 3.6(b). We

note that the form of the reactance is identical to that of a series LC resonator which

is in parallel with a capacitor, as shown in Fig. 3.6(c). We then used MATLAB’s

non-linear curve fitting tool to numerically solve for the values of the circuit elements.

Fig. 3.6(b) illustrates the accuracy of the circuit model based on the numerically ex-

tracted polarizability and (3.4). It can be seen that there is excellent agreement over

all frequencies less than 5 GHz (ka < 1). This general procedure can be used to find
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Figure 3.6: (a) Inductively loaded dipole geometry. (b) Comparison of the reactance
of the circuit model and the reactance from (3.4). (c) Circuit model for
the inductively loaded dipole.

the equivalent circuit of an arbitrary small antenna that does not have a closed-form

polarizability.

The equivalent circuit that models this antenna is shown in Fig. 3.6(c). Again

we can gain insight into where exactly energy is stored by extracting the capacitance

due to the fringing electric field (Cfringe) that is inherent to the geometry of the

antenna [88]. However, the fringing electric energy inherent to this geometry accounts

for only 60% of the actual stored electric energy. In the previous examples, the

additional electric energy was stored in the electric field that is internal to the antenna.

However, the internal energy here accounts for less than 1% of the total amount due to

the small volume of the antenna. The remaining energy is due to the non-ideal current

distribution along the dipole. An inductively loaded, short dipole antenna exhibits

a triangular current distribution whereas the current distribution of an unloaded

short dipole is parabolic [91]. We know that the parabolic current distribution of

the unloaded short dipole exhibits the lowest possible stored energy [88]. Therefore,

the added energy due to the triangular current distribution must be modelled by

an additional capacitor (Cdip). A similar result was obtained in [110], where it was
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shown that as the current distribution becomes more uniform, the Q decreases. By

separating Cfringe from Cdip it can be easily seen that a single inductive loading

placed in the center of a short wire dipole does not provide the optimal Q for the

given geometry.

In addition, there is a capacitance Chigher, which models the electric energy that

results from higher order modes [111]. This capacitance does not affect the Q at

resonance, but is necessary if the equivalent circuit is to model the antenna at all

frequencies in which the antenna is electrically small. It is responsible for the diverging

reactance near 1.6 GHz in Fig. 3.6(b).

The circuit has a Q that is 1.6 times the fundamental limit for the minimum

cylinder that circumscribes the antenna and is excited with electric currents only [88].

This also corresponds to Q = 20.5QChu, which illustrates the advantage that spherical

geometries have over cylindrical ones.

One common approximation that is made is that the minimum Q of the wire

dipole is the same as that of the prolate spheroid whose major and minor axes are

the height and width respectively [88, 103]. As the ratio of the height to width

approaches infinity, this assumption becomes accurate. However, for more realistic

antennas, this assumption results in a significant error. For a height to width ratio

of 50 as shown here, the minimum Q of the cylinder is 25% lower than that of the

spheroid. This suggests the polarizability must be solved numerically for practical

wire antennas, which are not extremely thin.

3.5.4 Top-Hat Loaded Dipole

Another common ESA is the top-hat loaded dipole, as depicted in Fig. 3.7(a).

The top-hat of the antenna significantly increases the capacitance at the dipole ends

so that a much smaller lumped inductor is needed to achieve resonance at a given

frequency. The antenna was designed to have roughly the same size (ka = 0.211) and

frequency as the inductively loaded dipole in Fig. 3.6(a). The exact dimensions of

the antenna are shown in Fig. 3.7(a). In addition to a top-hat, it is also loaded with

a 18.8 nH inductor to further miniaturize its size.

Again there is no analytical expression for the polarizability of this antenna. We

therefore followed the same approach as in the previous subsection to find the polariz-

ability, and thus the equivalent circuit. A comparison of the reactive impedance from

(3.4) and the reactance of the equivalent circuit over all frequencies for which ka < 1

is shown in Fig. 3.7(b). It can be seen that the two curves begin to diverge near

3.5 GHz (ka = 0.75). The reason for this is that as the antenna becomes electrically
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large (ka > 0.5), additional circuit elements may be required to correctly represent

the stored energy in the higher order modes. The equivalent circuit is shown in Fig.

3.7(c). In the circuit model, Cfringe and Cin account for the electric energy that is

stored in the fringing and internal electric fields, respectively. Again, there is an ad-

ditional Chat that models the energy that is due to the non-ideal current distribution.

It should be noted though, that Chat is very large, and stores roughly only 8% of

the total electric energy. This suggests that the top-hat loaded dipole makes fairly

efficient use of its volume. The circuit has a Q that is 1.08 times the fundamental

limit for the minimum cylinder that circumscribes the antenna and is excited with

electric currents only [88]. This corresponds to a Q = 9.4QChu.
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Figure 3.7: (a) Top-hat loaded dipole geometry. (b) Comparison of the reactance of
the circuit model and the reactance from (3.4). (c) Circuit model for the
top-hat loaded dipole.

3.6 Spherical Impedance Sheet

In the previous section, it was shown how a negative permittivity material can

provide a distributed inductance which allows the Q to approach the Chu limit. An-

other way to provide a distributed inductance is through the use of an inductive sheet

impedance. If a dielectric sphere is covered with an inductive sheet impedance, the
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sheet impedance can resonate with the (capacitive) fringing electric fields. Further-

more, an inductive sheet impedance is easier to fabricate than a negative permittivity

medium. Once the desired sheet impedance is determined, it can be realized using

techniques from frequency selective surface (FSS) design [112]. For example, a metal-

lic grid could be printed onto the surface of the dielectric sphere. In contrast, the use

of a capacitive sheet impedance can be used to create an ESA that radiates the TE10

mode, similar to a magnetic dipole.

The use of a sheet impedance has been recently used to achieve cloaking [113].

The goal in cloaking applications is exactly opposite to the goal here. For a cloak, the

desired sheet impedance causes the polarizability to approach zero in order to pro-

vide minimal scattering, while in antenna applications the polarizability approaches

infinity.

A design approach similar to that in [113] will be followed. A plane wave illu-

minates a sphere covered by an infinitesimally thin sheet impedance. The sphere is

assumed to have a radius a, relative permittivity εs, relative permeability µs, and

wavenumber ks = ω
√
µsµ◦εsε◦ within it. The fields inside and outside the dielectric

are expressed as spherical waves. They are related to each other by Ampere’s law at

the surface of the sphere. The sheet impedance ηs obeys the following relation,

~Etan = ηs ~Jsurf, (3.26)

where ~Etan is the tangential electric field and ~Jsurf is the electric surface current. By

choosing the correct sheet impedance ηs, the surface currents will resonate, forcing

the scattered fields to become much larger than those of the incident plane wave.

For example, if one desires to force the nth TM mode to radiate, the necessary sheet

impedance is,

ηs =
jk
√
µsĤ

′
n(ka)Ĵ ′n(ksa)

ωε◦(
√
εsĤ ′n(ka)Ĵn(ksa)−√µsĤn(ka)Ĵ ′n(ksa))

, (3.27)

where Ĥn(·) and Ĵn(·) are the spherical Bessel-Schelkunoff functions such that B̂n(·) =√
πkr/2Bn+1/2(·), with Bn(·) being the ordinary Bessel functions of the first, second,

and third kind [108].

For electrically small antennas, it is usually desired to only radiate the lowest

order TM10 or TE10 modes, since they have the lowest Qs. Assuming ka � 1 and

taking only the small argument expressions for the Bessel-Schelkunoff functions, the

necessary sheet impedances for radiation of the TM10 and TE10 modes are found to
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be:

TM10: ηs =
2j

ωaε◦(εs + 2)
(3.28)

TE10: ηs =
ωaµsµ◦
j(2 + µs)

. (3.29)

3.6.1 TM radiation

When only the TM10 mode is excited, the necessary sheet impedance is imaginary

and positive (inductive). It is assumed to obey Foster’s reactance theorem, and have

a frequency response ηs = jωLs, where Ls = 2/(ω2
◦aε◦(εs + 2)) is found from (3.28)

for a given frequency of operation ω◦. By relating the field strength of the scattered

TM10 fields to those of an electric dipole, the electric polarizability is found to be,

α =
4πa3(2 + jωηsaε◦(εs − 1))

2 + jωηsaε◦(εs + 2)
. (3.30)

By inserting (3.30) into (3.4) the equivalent circuit shown in Fig. 3.8 can be found.

In general the Q at resonance is given by,

QTMsheet =
1 + εs/2

(ka)3
. (3.31)

Figure 3.8: Equivalent circuit for the inductive sheet impedance radiating the TM10

mode

When the dielectric inside is equal to free space, CTMsh becomes 0 and the circuit

simplifies to that of the series RLC circuit with a Q equal to 1.5/(ka)3. When the

dielectric inside is free space, the circuit elements for the inductive sheet impedance

are identical to those for the negative permittivity sphere. Although the negative per-

mittivity sphere and inductive sheet impedance may seem to operate under different

principles, they are identical with respect to their frequency response and Q.

One method of achieving an inductive sheet impedance is through winding wires

around a sphere such as in spherical helix antennas [114]. To demonstrate the similar-
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ities between an ideal inductive sheet impedance and the spherical helix antenna, the

scattering cross section (Csca) vs. frequency for both were simulated using Ansoft’s

HFSS (see Fig. 3.9). The Csca was found for two spherical helix antennas similar to

those presented in [114], with their terminals short circuited. Both antennas have a

radiation resistance of 50 Ω when fed at their terminals. The spherical helix in Fig.

3.9(a) has a radius of 58.9 mm (ka = 0.38), 4 arms with 1 turn per arm, and the

width of each arm is 2.64 mm. The spherical helix in Fig. 3.9(b) has the same radius

of 58.9 mm (ka = 0.12), 8 arms with 3.5 turns per arm, and the width of each arm is

1 mm. Next, Csca was found for the ideal inductive spherical sheet impedances. The

inductive sheet impedances (ηs = jωLs) were designed to have the same resonant

frequencies as the spherical helix antennas, and Ls was found using the imaginary

part of the result obtained from (3.27). Eqn. (3.27) was used instead of (3.28) in

order to account for the finite electrical size of the sphere. The resulting impedance

found from the two equations differs by 10% when ka = 0.38 and 1% when ka = 0.12.
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Figure 3.9: Comparison of the spherical helix antenna with an inductive spherical
sheet impedance. Csca vs frequency for the 4 armed (a) and 8 armed (b)
spherical helix antennas and their equivalent inductive sheet impedances.
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The simulated resonant frequency for the inductive sheet impedance was about

0.3% greater than the designed value. The slight frequency shift is attributed to nu-

merical errors in the finite element (HFSS) simulation of the inductive sheet impedance.

Therefore, to provide a better comparison between the spherical helix antenna and

the inductive sheet antenna, a frequency-shifted version of Csca for the inductive sheet

impedance is plotted in Fig. 3.9. The frequency response of the spherical helix an-

tenna is very similar to that of the ideal inductive sheet impedance. In [114], it was

stated that as the length of each metal arm increased, the antenna’s Q more closely

approached the Chu limit. This is consistent with the assumption that it is well

approximated by an inductive sheet impedance. As the metal on the spherical helix

covers more area, it more closely approximates a sheet impedance that covers the en-

tire surface area. This is evidenced by the results shown in Fig. 3.9. The scattering

bandwidth for the 8 armed spherical helix antenna is very similar to the scattering

bandwidth of its equivalent inductive sheet impedance. This is in contrast to the 4

armed spherical helix antenna, which has a noticeably smaller scattering bandwidth.

Since the entire surface of the inductive sheet impedance is covered with currents, its

radiation resistance and bandwidth are larger.

It is also possible to predict Csca using the circuit model in Fig. 3.8. A plane wave

excitation corresponds to simply exciting the circuit model with a voltage source of

amplitude E◦dl. The power scattered by the antenna (Prad) is identical to the power

dissipated across Rrad, which can in turn be used to predict Csca,

Csca =
Prad

1
2

√
ε◦
µ◦
|E◦|2

=
8π

3
k4a6 ω4

◦

(ω2 − ω2
◦)

2 +
(
ω2
◦

2k3a3

3

)2 . (3.32)

The scattering cross section predicted using the circuit model is also plotted in Fig.

3.9 and agrees well with the simulations. By comparing 3.9(a) with 3.9(b), it can

be seen that as the electrical size of the antenna decreases, the circuit model more

accurately predicts Csca for the inductive sheet impedance. It is also not surprising

to note that the expression for Csca in (3.32) is identical to that of the negative

permittivity sphere in [90] since the equivalent circuits are the same for these two

structures.

3.6.2 TE radiation

The TE10 mode is also of interest since the Q of this mode can closely approaches

the Chu limit if high permeability materials are used [87, 115]. For the case of TE
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modes, much of the analysis is as before except that quantities are replaced by their

duals. For example, a small magnetic dipole radiates the TE10 mode, while a small

electric dipole radiates the TM10 mode. Since the analysis in Section 3.2 dealt with a

small electric dipole, some changes needed to be made to analyze the magnetic dipole.

To begin, a magnetic polarizability given by ~Pm = αm ~H◦ must be defined, which

relates the scattered fields of the antenna to those of a magnetic dipole. Assum-

ing the fields are quasi-static in the near field of the antenna, it is found that Im =

jωαmµ◦ ~H◦·~dl/dl2 where Im is magnetic current. Therefore, Im/( ~H◦·~dl) = jωαmµ◦/dl
2

represents Zmagnetic for small antennas that radiate as magnetic dipoles. After con-

sidering the effects of radiative damping, (3.3) is again arrived at for the effective

magnetic polarizability. Assuming αm is purely real (lossless), the equivalent circuit

impedance is,

Zmagnetic =
1

dl2

jωµ◦αm
+ dl2k3

6πµ◦ω

. (3.33)

The term jωαmµ◦/dl
2 represents the impedance of a reactive circuit element in

parallel with a resistor of value 6πµ◦ω/(dl
2k3). When considering an antenna that

scatters the TE10 mode, an analysis similar to that used in the previous sections can

be performed. The most significant difference is that α is replaced with αm, and (3.4)

is replaced with (3.33).

Let’s now consider scattering by a magnetic sphere surrounded by a sheet impedance.

The sheet impedance, ηs, is given by (3.29) to ensure that the antenna radiates the

TE10 mode. We will assume that only electric currents can be supported by the

sheet. The sheet impedance is negative and imaginary (capacitive), so it is assumed

to be of the form ηs = 1/(jωCs), where Cs = (2 +µs)/(ω
2
◦aµsµ◦) is found from (3.29)

for a given frequency of operation ω◦. Then comparing these fields with those of a

magnetic dipole, αm is given by,

αm =
2πa3j((2µs − 2)ηs − jaµsµ◦ω)

(µs + 2)jηs − aµsµ◦ω
. (3.34)

Inserting (3.34) into (3.33) and assuming that µs ≥ 1 provides the impedance

(Zmagnetic) of the equivalent circuit, shown in Fig. 3.10. At the operating frequency,

CTEsh resonates with the internal and fringing magnetic fields (Lin and Lfringe). As the

permeability increases, the magnetic energy stored within the sphere (Lin) decreases

thereby lowering the Q. If we ignore the self inductance of the feed (LFeed), and

the presence of the sheet impedance (ηs → ∞), the circuit simplifies to an inductor

(LTEpol) in parallel with a resistor (Rrad). Therefore the energy stored in LTEpol is
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Figure 3.10: Equivalent circuit near resonance for the capacitive sheet impedance
radiating the TE10 mode

proportional to the energy stored in the polarization currents of the magnetic sphere.

The variable M represents the mutual inductance between the feed and the an-

tenna. In the circuit model, M2 > (Lin + Lfringe)LTEpol. This means that with-

out modelling the self inductance of the feed, (LFeed), the total, stored energy can

be negative which is unphysical. Therefore LFeed and M must satisfy the relation,

M2 < (Lin +Lfringe)(LTEpol +LFeed). This suggests that the value of M is determined

by the geometry of the feed. It is also interesting to note that M has no effect on the

Q for any frequency, and that LFeed and LTEpol have no effect on the Q at resonance.

At resonance,

QTEsheet =
1 + 2/µs

(ka)3
, (3.35)

consistent with the results of [87,115]. From (3.35), it can be seen that increasing the

permeability of the sphere lowers the Q. This is in contrast to the case of the electric

dipole, where increasing the permittivity of the sphere increases the Q.

3.7 Feeding

Thus far, it was assumed that the analyzed ESAs were excited by a plane wave.

This provided insight into how they operate independent of their feed. A realistic

antenna however, requires a feed. The plane wave excitation allows the determination

of an unloaded Q of the structure, which is the quality factor of the antenna assuming

the feed can perfectly couple energy to the structure, without affecting its operation.

The overall quality factor that includes the feed is known as the loaded Q, and if

designed properly, can closely approach the unloaded Q. The feed also increases or

decreases the radiation resistance of the antenna so that it can be impedance matched.

Fortunately the effects of a feed can be obtained straightforwardly from the circuit

model. For example, let’s first revisit the negative permittivity sphere which has

the series RLC equivalent circuit shown in Fig. 3.1. An antenna design previously
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Figure 3.11: (a) Negative permittivity hemisphere fed by a coaxial cable. (b) Circuit
model for a negative permittivity hemisphere including the coaxial feed.

considered in [90] consisted of a negative permittivity hemisphere over a ground plane.

It was fed by a short monopole stub connected to a coaxial transmission line, as

shown in Fig. 3.11(a) [90]. The negative permittivity hemisphere is assumed to have

a plasma frequency fp = 3.54 GHz and radius a = 8 mm, which corresponds to an

electrical size of ka = 0.34. The coaxial cable has an inner conductor radius of 1.5

mm and an outer conductor radius of 3.5 mm. The vertical electric field of the feed

couples to the resonant mode of the negative permittivity sphere to provide a return

loss greater than 35 dB at 2.026 GHz, and a loaded Q equal to 1.47 times the Chu

limit.

Essentially the coaxial transmission line is capacitively coupled to the negative

permittivity sphere. In the circuit model, this corresponds to a coupling capacitor

that is in parallel with the impedance of the negative permittivity sphere, Zelectric.

However, this coupling capacitor is filled with a negative permittivity dielectric that

has a Drude frequency response. The dispersion of the dielectric affects the equivalent

circuit of the coupling capacitor. The capacitance will be of the form C = ε◦εsK,

where K is a constant that depends on the geometry of the capacitor. If εs has a

Drude response given by (3.12), the impedance of the coupling capacitor filled with
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a negative permittivity becomes,

Zcap =
1

jωε◦K +
ω2
pε◦K

jω

. (3.36)

Zcap has the same form as an inductor and capacitor in parallel with values Ccoup =

ε◦K and Lcoup = 1/(ω2
pε◦K). By adjusting the height of the monopole stub, the value

of K can be tuned to provide an impedance match to 50 Ω. For this design, the

optimum stub height was found to be 3 mm. The overall equivalent circuit which

combines Zelectric of the sphere with Zcap of the feed is shown in Fig. 3.11(b). Note

that the impedance of a monopole antenna over a ground plane is twice that of its

dipole equivalent. Therefore the impedance in (3.4) was doubled to arrive at the

circuit in Fig. 3.11(b). However, the exact values of dl and K are still unknown.

Although their exact values do not affect the Q significantly, they are important

because they determine the impedance match of the antenna. To determine their

values, the antenna was simulated at three different frequencies near resonance. If

a slight frequency shift ∆f is also allowed between the simulated antenna and the

circuit model due to the fact that the simulated antenna has a notable electrical

size, there are now three unknown variables, (dl, K, ∆f). By requiring the input

impedance of the circuit model to be equal to that of the simulated antenna at three

separate frequencies, we arrive at three equations and three unknowns which can be

solved. For the antenna shown here, dl = 26.2 mm, K = 19.7 mm, and ∆f = 10.4

MHz.
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Figure 3.12: Comparison of the input impedance of the equivalent circuit shown in
Fig. 3.11(b) with the simulated design shown in Fig. 3.11(a).

To demonstrate the accuracy of this model, Fig. 3.12 shows the input impedance of

the circuit shown in Fig. 3.11(b) compared with the simulated input impedance. The

impedance and quality factor of the equivalent circuit indeed matches the simulated
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antenna very well. The circuit has a loaded Q = 1.50/(ka)3. Finally, it should be

noted that the inductor and capacitor Lcoup and Ccoup in 3.11(b) provide an impedance

transformation that dramatically increases the radiation resistance to 50 Ω while at

the same time negligibly affects the Q. This result is consistent with the various

matching techniques demonstrated in [116].

In addition to the negative permittivity sphere, the feed of the inductively loaded

dipole and the top-hat loaded dipole were also analyzed. These antennas are often

cut in half and placed over a large (assumed to be infinite) ground plane to form a

monopole since a monopole can be directly fed with a coaxial transmission line, as

shown in Figs. 3.13(a) and 3.14(a). Since both of these antennas have very small

radiation resistances, small inductive stubs need to be added in parallel with the feed

to provide an impedance match to 50 Ω [116]. For the inductively loaded dipole and

top-hat loaded dipole, the necessary inductances were found to be Lshunt = 0.7 nH and

Lshunt = 0.28 nH, respectively. For both structures the return loss from simulation

and the circuit model is greater than 20 dB. Again, the shunt inductors have little

effect on the Q.

To find the effective height (dl), we could employ the same method used for the

negative permittivity hemisphere. However, a simpler approach is to find dl by re-

quiring that the inductances in the circuit model are equal to the actual ones used in

simulation. We were unable to use this approach when analyzing the negative permit-

tivity hemisphere because the negative permittivity provided a distributed inductive

loading, whose equivalent lumped element value was unknown. Using this approach,

the effective height of the inductively loaded and top-hat loaded monopoles were

found to be 4.42 mm and 1.90 mm, respectively.

The equivalent circuit for the inductively loaded monopole is shown in Fig. 3.13(b).

It has a Q = 20.4QChu, which is within 1% of the quality factors of the simulated

antenna and the unloaded structure analyzed in Section 3.5.3. Fig. 3.13(c) shows

a comparison of the simulated input impedance and input impedance of the circuit

model near resonance. The results agree very well and there is only a minimal fre-

quency shift due to the notable electrical size.

The equivalent circuit for the top-hat loaded monopole is shown in Fig. 3.14(b).

The Q of the circuit model and the simulated structure are both Q = 9.4QChu,

agreeing with the earlier result of Section 3.5.4. A comparison of the input impedances

for the circuit model and simulated structure can be seen in Figs. 3.14(c), and there

is very good agreement.
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Figure 3.13: (a) Inductively loaded monopole geometry. (b) Circuit model for the
inductively loaded monopole. (c) Comparison of the input impedance of
the simulated inductively loaded monopole and the circuit model.

3.8 Chapter Summary

It was shown that the frequency-dependent polarizability of an electrically small

antenna can be used to find an equivalent circuit that models its behavior. Specifically,

for antennas radiating in the TM10 mode, the polarizability (α) is inserted into (3.4) to

find its impedance, and subsequently an equivalent circuit. A similar approach is used

for analyzing antennas that radiate the TE10 mode. An equivalent circuit is useful

since it provides physical insight into the antenna operation. An equivalent circuit

also allows one to easily find the Q of a small antenna. This is in contrast to directly

integrating the near field of the antenna, or considering the time-averaged stored

energy in dispersive media. This chapter also showed that loss can be incorporated

into the circuit approach. It should be noted that the equivalent circuits shown here do

not account for coupling between electric and/or magnetic dipole modes. Future work

should account for this coupling if one wishes to model electrically small, circularly

polarized or unidirectional antennas [32,117–120].

Several different antennas were analyzed using their equivalent circuits. It was

shown that a spherical inductive sheet impedance and negative permittivity sphere
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Figure 3.14: (a) Top-hat loaded monopole geometry. (b) Circuit model for the top-
hat loaded monopole. (c) Comparison of the input impedance of the
simulated top-hat loaded monopole and the circuit model.

can have a Q = 1.5 QChu, consistent with previously reported results [87, 90, 114].

Also, it was demonstrated that the the negative permittivity shell and spheroid must

have a larger Q than the negative permittivity sphere because their equivalent circuits

have added reactive elements. In addition, the equivalent circuits for the inductively

loaded dipole and top-hat loaded dipole were found by numerically solving for the

frequency-dependent polarizability. As new and innovative electrically small antennas

are developed, it will be useful to analyze and compare their equivalent circuits using

the techniques described here. For example, the fact that the negative permittivity

sphere and the inductive sheet impedance have the same circuit suggests that their

operation is fundamentally the same. Circuit models may also guide the design of

multiband or multiresonant small antennas.
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CHAPTER IV

Huygens’ Sources Consisting of Concentric

Spherical Sheet Impedances

4.1 Chapter Introduction

ESAs generally radiate as either electric or magnetic dipole modes because these

modes have the lowest Q and therefore largest bandwidth [19, 114, 121–126]. How-

ever, if these two modes are both radiated in-phase, with equal amplitude, and with

orthogonal orientations, a Huygens’ source is created with twice the directivity of the

electric or magnetic dipole alone (D = 3 = 4.77 dB). Further, if two of these Huygens’

sources are combined, a directivity of 12 dB is possible in the presence of a ground

plane [117]. Fundamental limitations on the gain and bandwidth of spherical modes

have been extensively studied, but few antenna designs have been reported [127–135].

These electrically small, directive antennas would find wide application.

Huygens’ sources are designed by placing an electric dipole orthogonal to a mag-

netic dipole [32, 136, 137]. However, optimizing the design of these antennas has not

been straightforward. The design and analysis of the structures thus far has been

simulation based, which can be time consuming and computationally intensive. An-

alytic models of the radiation patterns have been presented for infinitesimal electric

and magnetic dipole sources, but these models are unable to predict the overall band-

width, since they neglect mutual coupling between the two dipoles [132–134,138].

Here, closed-form expressions for the performance of a Huygens’ source, realized as

two concentric spherical sheet impedances, are presented [139]. Previously, a negative

permittivity sphere was analyzed in closed-form [90], and proved valuable in the design

and analysis of many electric dipole ESAs [121,125,140–142]. Similarly, the spherical

symmetry here allows for the electric and magnetic polarizabilities to be solved for

in closed form using a Mie scattering approach. The sheet impedances necessary
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to create a Huygens’ source, as well as the Q, bandwidth, and directivity are all

determined. The value of these expressions is that they provide intuition that can aid

the design of future Huygens’ sources. Next, a straightforward design process as well

as some practical realizations of a spherical sheet impedance are presented. Finally,

an antenna based on a Huygens’ source, with a simple coaxial feed, is described. The

performance of the described antenna offers an increased bandwidth and directivity

compared to previously reported, electrically small Huygens’ source antennas [32,136].

4.2 Single Sheet Impedance

The Huygens’ source, consisting of two spherical sheet impedances, is designed

based on its scattering properties when illuminated by an incident plane wave. There-

fore, it is instructional to briefly review the Mie scattering solution to the problem at

hand. First, let us review the simplified problem discussed in the previous chapter:

a single sheet impedance. Without loss of generality, consider an x̂-polarized plane

wave traveling in the ẑ direction with electric field magnitude E◦, incident upon a di-

electric sphere covered by a sheet impedance. The sphere has radius, a, permittivity,

εs, and permeability, µs. The sheet impedance is defined as the ratio of the tangential

electric field to the surface current,

~Etan = ηs ~Jsurf, (4.1)

where ~Etan is the tangential electric field and ~Jsurf is the electric surface current.

The goal here is to solve for the electric and magnetic polarizabilities as a function

of the sheet impedance. The fields are expressed in terms of spherical waves, and by

equating the electric field within and outside the sheet impedance, as well as applying

Ampere’s law at the boundary, the scattered field can be found. Since the sphere is

electrically small, the scattered field can be expressed in terms of the TM11 and

TE11 modes. The field, in turn, can be related to electric (αe) and magnetic (αm)

polarizabilities by comparing it with the field radiated by orthogonal electric and

magnetic dipoles:

αe =
4πa3(2 + jωηsaε◦(εs − 1))

2 + jωηsaε◦(εs + 2)
(4.2)

αm =
2πa3j((2µs − 2)ηs − jaµsµ◦ω)

(µs + 2)jηs − aµsµ◦ω
. (4.3)

The sheet impedance needed for either the electric or magnetic polarizability to
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diverge can then be found:

TM11: ηs =
2j

ω◦aε◦(εs + 2)
(4.4)

TE11: ηs =
ω◦aµsµ◦
j(2 + µs)

. (4.5)

Near resonance, the polarizabilities become singular, and therefore radiative damp-

ing cannot be neglected. This leads to an effective polarizability of [92],

αeff =
α

1 + j αk
3

6π

, (4.6)

where α is either an electric or magnetic polarizability. Now, the Q of this resonant

structure can be found. First, it is assumed that the sheet impedances are frequency

dispersive to satisfy Fosters’ reactance theorem. Therefore, the sheet impedance for

the electric dipole resonance is given by, ηs = jωLs, and the sheet impedance for the

magnetic dipole resonance is given by, ηs = 1/(jωCs). By inserting (4.4) into (4.2),

and the result into (4.6), the Q of the electric dipole resonance can be found, as shown

in the previous chapter [143, 144]. Similarly, the Q of the magnetic dipole resonance

can also be derived. The resulting Q’s for the electric and magnetic dipole modes are

given by,

Qe =
1 + εs/2

(ka)3
(4.7)

Qm =
1 + 2/µs

(ka)3
(4.8)

4.3 Double Sheet Impedance

In the previous section, it was shown that a single isotropic sheet impedance

covering a magneto-dielectric sphere can be designed to resonate as either an electric

or magnetic dipole. In this section, we will show that an internal, capacitive sheet

impedance enclosed by an external, inductive sheet impedance can resonate both

the magnetic and electric dipole modes simultaneously. Again, let us consider an

x̂-polarized plane wave traveling in the ẑ direction with electric field magnitude E◦,

incident upon two concentric spherical sheet impedances, as shown in Fig. 4.1. The

scattered, radially directed electric and magnetic vector potentials in the three regions
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are given by [108],

Region III

Ar3 =
E◦αek

3

4πωµ◦
cos(φ)sin(θ)Ĥ

(2)
1 (kr) (4.9)

Fr3 =
E◦αmk

3

4πk
sin(φ)sin(θ)Ĥ

(2)
1 (kr) (4.10)

Region II

Ar2 =
E◦
ωµ◦

cos(φ)sin(θ)
(
A2Ĵ1(

√
εs2µs2kr)

+B2Ŷ1(
√
εs2µs2kr)

)
(4.11)

Fr2 =
E◦
k

sin(φ)sin(θ)
(
C2Ĵ1(

√
εs2µs2kr)

+D2Ŷ1(
√
εs2µs2kr)

)
(4.12)

Region I

Ar1 =
E◦
ωµ◦

cos(φ)sin(θ)A1Ĵ1(
√
εs1µs1kr) (4.13)

Fr1 =
E◦
k

sin(φ)sin(θ)C1Ĵ1(
√
εs1µs1kr) (4.14)

μ3 = μo , ε3 = εo

 μs2 = 1, εs2 

 μs1 , εs1 

a1

a2

I

II

III

ηs2

ηs1

Figure 4.1: Geometry of two concentric spherical sheet impedances.

The coefficients αe, αm, A1,2, B2, C1,2, and D2 must all be solved simultaneously

by applying (4.1) and Ampere’s law at the spherical boundaries located at r = a1

and r = a2. Specifically, the boundary conditions separating any two regions is given
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by,

~Js = r̂ ×
(
~H2 − ~H1

)

(4.15)

0 = r̂ ×
(
~E2 − ~E1

)

The electric and magnetic fields can be related to the vector potentials of Eqns.

(4.9)-(4.14) as demonstrated in [108]. Both the θ and φ components of the electric and

magnetic fields are related at the two boundaries, thus providing eight equations for

the eight unknowns. For example, Eθ can be related on the surface between regions

I and II by,

0 = −Eθ1 + Eθ2

0 =
1

a1 sin(θ)

dFr1
dφ
− 1

ja1ωε◦εs1

dAr1
dφ

+
−1

a1 sin(θ)

dFr2
dφ

+
1

ja1ωε◦εs1

dAr2
dφ

0 =
C1Ĵ1(

√
εs1µs1ka1)

ka1

− D1 cos(θ)
dĴ1(
√
εs1µs1kr)

dr
|r=a1

jkεs1

−C2Ĵ1(
√
εs2ka1)

ka1

+
A2 cos(θ)

dĴ1(
√
εs2kr)

dr
|r=a1

jkεs2

+
−D2Ŷ1(

√
εs2ka1)

ka1

+
B2 cos(θ)

dŶ1(
√
εs2kr)

dr
|r=a1

jkεs2
(4.16)

It is then assumed that ka � 1, and only the leading order terms of the Taylor

series expansion of the spherical bessel functions are kept,

0 =
C1ka1εs1

3
− j2D1 cos(θ)

3

+
−C2ka1εs2

3
+

D2

k2a2
1εs2

+
A22 cos(θ)

3j
+

B2 cos(θ)

jk3a3
1(εs2)3/2

(4.17)

This is just one of the eight equations that must be solved simultaneously to

calculate αe and αm. The other equations can be solved for straightforwardly by

appropriately applying the boundary conditions between each surface. Let’s assume
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µs2 = 1, since it has a relatively small effect on the structure’s Q. In addition, let’s

also assume the internal sheet is capacitive where limka→0[ηs1 = 0], in accordance

with (4.5), and the external sheet is inductive where limka→0[ηs2 =∞], in accordance

with (4.4). In other words, for ka� 1 the inductive sheet is absent when finding the

magnetic polarizability. Similarly, the capacitive sheet is a short when finding the

electric polarizability. Once the eight coefficients are solved for, the polarizabilities

become,

αe =
4πa3

2(2 + jωηs2a2ε◦(
(
εs2

a32+2a31
a32−a31

)
− 1))

2 + jωηs2a2ε◦(
(
εs2

a32+2a31
a32−a31

)
+ 2)

(4.18)

αm =
2πa3

1j((2µs1 − 2)ηs1 − ja1µs1µ◦ω)

(µs1 + 2)jηs1 − a1µs1µ◦ω
. (4.19)

The resulting electric and magnetic polarizabilities are both functions of a1, but

are otherwise completely independent of each other. This analysis inherently takes

into account the mutual coupling between the two surfaces.

The magnetic polarizability of the geometry shown in Fig. 4.1 is identical to (4.3)

except that a is replaced by a1, and µs is replaced by µs1. The electric polarizability

is equal to (4.2) except that a is replaced by a2, and εs is replaced by εeff, where εeff is

the effective relative permittivity resulting from the presence of the capacitive sheet,

εeff = εs2
a3

2 + 2a3
1

a3
2 − a3

1

. (4.20)

The necessary impedances for resonance and Q’s are given by the expressions in

Section 4.2, with the above mentioned substitutions. Mutual coupling between the

two sheet impedances results in the increased effective relative permittivity given by

(4.20). All additional mutual coupling effects are second order in nature (O((ka)2)),

and have been neglected here. The inner (capacitive) sheet impedance creates a

magnetic dipole resonance that radiates the TE11 mode, and the outer (inductive)

sheet impedance creates an electric dipole resonance that radiates the TM11 mode.

It should be noted that if the sheet impedances were reversed (outer is capacitive,

and inner is inductive) the electric dipole mode cannot resonate when (ka � 1).

This scenario would be similar to placing an electric dipole within a metallic sphere

because of the low reactance of the capacitive sheet. Clearly, the electric dipole would

not be able to radiate effectively if this were the case.

Let’s first consider the electric dipole mode. The Q of this mode is minimized
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when εeff is minimized. The minimum εeff appears when a1/a2 → 0. However, this

forces Qm to diverge, which is undesirable for a Huygens’ source. Therefore, one

approach to designing a Huygens’ source is to force the Q’s of both the electric and

magnetic dipole to be equal, so that the directivity remains constant over the entire

operating bandwidth. This amounts to enforcing

Qm

Qe

=
2a3

2(2 + µs1)

a3
1µs1(2 + εeff)

= 1. (4.21)

This condition stipulates a unique a1/a2 ratio and Q for a given material loading. It is

informative to consider some limiting cases of this expression. The quality factors in

Figure 4.2 are obtained by inserting the effective permittivity (4.20) into the expres-

sion for the electric dipole quality factor (4.7), and enforcing (4.21). The minimum Q

results from minimizing the dielectric loading and maximizing the magnetic loading.

µs 1 = 1 µs 1 > 1

s 2 = 1
9

2(ka 2 ) 3
4 + 5 µs 1

2µs 1 (ka 2 ) 3

s 2 > 1
12 ( s 2 − 1)

− 8 − s 2 + 16 + 64 s 2 + 2
s 2 (ka 2 ) 3

4 ( s 2 − 1) ( µs 1 + 2)

− 4 − s 2µs 1 − 4µs 1 + 16 + 40 s 2µs 1 + 24 s 2µ2
s 1 +

2
s 2µ

2
s 1 (ka 2 ) 3

Figure 4.2: Qe = Qm of a Huygens’ source realized through two concentric, spherical,
sheet impedances under various material loading conditions.

Further, tradeoffs between directivity and bandwidth can be made. If one of the

resonances is slightly shifted in frequency with respect to the other, the structure has

two closely-spaced resonances that can be used to increase the overall bandwidth. If

the sheet impedance (4.5) is again assumed to be frequency dispersive and inserted

into the polarizability expression (4.3), and the result inserted into (4.6), the effective

magnetic polarizability simplifies to,

αeff
m =

6π (3ω2
◦ + (ω2 − ω2

◦)Qmk
3a3

1)

k3 (3Qm (ω2
◦ − ω2) + j3ω2

◦ + jQma3
1k

3 (ω2 − ω2
◦))

. (4.22)

where ω◦ is the resonant frequency. The same procedure can be applied to obtain the

electric polarizability,

αeff
e =

6π (3ω2 + (ω2
◦ − ω2) 2Qek

3a3
2)

k3 (3Qe (ω2
◦ − ω2) + j3ω2 + j2Qea3

2k
3 (ω2

◦ − ω2))
. (4.23)

Enforcing (4.21), causes the electric and magnetic dipole modes to have identical Q’s
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(Q = Qe = Qm). If an additional assumption is made that the Huygens’ source

operates near resonance (ω ≈ ω◦), the effective electric and magnetic polarizabilities

simplify to,

αres
e = αres

m =
6πω◦

k3(2Q(ω◦ − ω) + jω◦)
, (4.24)

Note that (4.24) is valid for both the electric and magnetic polarizabilities because

(4.21) enforces that their Q’s are identical. To increase the bandwidth of the scattered

power, the resonant frequency of the electric and magnetic dipoles can be offset by a

frequency shift ∆ω,

α± =
6πω◦

k3(2Q(ω◦ ∓∆ω/2− ω) + jω◦)
. (4.25)

Here α± denotes the polarizabilities at the resonant frequencies ω◦ ±∆ω/2.

The directivity and bandwidth can now be found as a function of ∆ω. The

directive gain of a Huygens’ source is given by [138],

D(θ, φ) =
3/2

|αe|2 + |αm|2
[
|αesin(φ) + αmsin(φ)cos(θ)|2

+ |αecos(φ)cos(θ) + αmcos(φ)|2
]

(4.26)

In the ẑ direction (θ = 0), (4.26) simplifies to,

D =
3/2 |α+ + α−|2

|α+|2 + |α−|2
, (4.27)

and is equal to,

D(ω◦) =
3

(
Q∆ω
ω◦

)2

+ 1
, (4.28)

at the center frequency (ω◦). As expected, the directivity at ω◦ decreases with in-

creasing ∆ω. When Q∆ω/ω◦ < 1, the electric and magnetic dipole modes are in

phase, and the maximum directive gain is in the +ẑ (forward-scattered) direction.

However, when Q∆ω/ω◦ > 1 the two modes become out of phase. This causes the di-

rective gain in the −ẑ (back-scattered) direction to become largest, and the maximum

directivity is no longer given by (4.27) and (4.28).

To find the bandwidth, we first note that the scattering cross section is given by,

Csca =
Prad

1
2

√
ε◦
µ◦
|E◦|2

=
k4

6π

(
|α+|2 + |α−|2

)
, (4.29)
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which is simply a superposition of two frequency shifted Lorentzians. The fractional

bandwidth (FBWν) is defined as,

FBWν =
ωu − ωl
ω◦

, (4.30)

where ωu,l are the upper and lower frequencies at which the scattering cross section

is (1 − ν) of the scattering cross section at ω◦ (ν = 1/2 for the -3 dB bandwidth).

From (4.29) and (4.30), the FBWν can be found,

FBWν =
[√

1− 6δ2 + 24νδ2 + 9δ4 − 8νδ4 − 16ν2δ2

− 1 + 3δ2 − 2νδ2 + 2ν
]1/2 1

Q
√

2(1− ν)
, (4.31)

where

δ =
Q∆ω

ω◦
. (4.32)

As ∆ω increases so does FBWν . When ∆ω = 0, the bandwidth is identical to that of

a single resonant antenna [94, Eqn. 34]. Note that connecting a matched load to the

antenna doubles the FBWν [111]. Since a nonzero ∆ω creates two offset resonances,

we can no longer apply the well known relationships between bandwidth and Q that

are valid for single resonant antennas [145]. It should also be noted that the Q that

appears in (4.31) and (4.32) is not the overall antenna Q, but is the Q of the individual

electric and magnetic dipole modes. Eqns. (4.28) and (4.31) are particularly valuable

because they provide closed-form expressions for the tradeoff between D and FBWν .

To verify the above analysis, two concentric sheet impedances with a1 = 10.0 mm

and a2 = 11.18 mm were simulated using a commercial finite-element full wave solver,

Ansoft’s HFSS. The necessary sheet impedances to achieve a directivity of 3 at 1 GHz

(ka = 0.23) are ηs2 = 311j Ω and ηs1 = −25.1j Ω. It was assumed the inductive

and capacitive sheets again obeyed Foster’s reactance theorem. By slightly detuning

the sheet impedances from the values necessary for maximum directivity, D and Csca

were found at 1 GHz for various values of ∆ω, as shown in Fig. 4.3.

D and Csca were obtained semi-analytically. From the directivity (4.28) and as-

suming Q = 4.5Qlb for no material loading (see Figure 4.2), ∆ω was found by noting

the simulated directivity at 1 GHz. The polarizabilities α+ and α− were then found

from (4.25), and inserted into (4.27) and (4.29) to arrive at the frequency response for

D and Csca. A comparison of the semi-analytic formulation and the simulated results
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Figure 4.3: Scattering cross section (Csca) (a) and directivity (D) (b) in the ẑ direction
vs. frequency for various values of ∆ω. As ∆ω increases both Csca and
the D at 1 GHz decrease. The values of ∆ω/(2π) considered here are 0.33
MHz, 1.28 MHz, 1.88 MHz, 2.86 MHz, and 3.44 MHz.

are shown in Fig. 4.3, which demonstrates the accuracy of the derived expressions.

It should be noted that due to the spherical symmetry of this problem, it is possible

to exactly solve for the scattered field, and thereby obtain D and Csca in closed-form

without any information from simulation. This can be done if the exact expressions

for the spherical bessel functions and the higher order terms (O((ka)2)) are retained,

but this significantly lengthens the necessary algebra. In the presented analysis,

many terms were eliminated by assuming ka2 � 1, but this creates a slight frequency

shift between the simulated and analytic response [144]. This is problematic since a

frequency shift as small as 0.1% would be significant because it is on the order of the

fractional bandwidth, as well as the numerical error of the finite element simulations.

This error does not detract from the utility of the derived results though, since the

58



simple expressions developed provide valuable insight into the design of Huygens’

sources.

4.4 Practical Antennas

The inductive and capacitive sheet impedances are necessary to radiate electric

and magnetic dipole modes. However, such ideal sheet impedances do not exist in

nature, and therefore must be approximated using metallic patterns. To realize an

inductive sheet impedance, a grid of wires loaded with inductors at the equator can

be used, as shown in Fig. 4.4. The conductor distribution supports the necessary

currents to radiate the TM11 mode, and the lumped inductors force the currents to

resonate at a desired frequency. To achieve a capacitive sheet impedance, loops of

wires loaded with capacitors (see Fig. 4.4) can be used. This structure is similar to

that introduced by Kim and Wheeler [19, 146]. It should be noted that realizing the

sheet impedances with wire distributions does couple energy into higher order spher-

ical modes that are not considered here. These higher order modes store additional

energy that increase Q.

Lumped
Capacitors
(123 fF)

Lumped
Inductors
(2.86 nH)

0.2 mm

1 mm

1 mm

Figure 4.4: Anisotropic Huygens’ source realized through capacitively-loaded loops
(capacitive sheet) and an inductively-loaded grid (inductive sheet).

The metallic grids in Fig. 4.4 are equivalent to anisotropic sheet impedances since

they are not rotationally symmetric. Such anisotropic sheet impedances were chosen

because they are easier to design and fabricate. Therefore, the structure shown in

Fig. 4.4 only works for a single polarization. Since the earlier expressions are valid

for isotropic sheet impedances, we expect some inaccuracy in their ability to predict

the behavior of these structures. However, the analysis is still useful for developing
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an iterative design methodology.

Let’s design a Huygens’ source with an electrical size near ka = 0.42 to operate

at 1.84 GHz without any material loading. We will use the structure shown in Fig.

4.4, and tune the lumped inductors and capacitors until the directivity is maximized.

Internal and external radii were chosen to be a1 = 10 mm and a2 = 11 mm. Initially,

the sheet impedances were simulated independently of each other. They were excited

with an incident plane wave in two separate simulations. To first order, the capacitive

sheet resonates at the same frequency as the Huygens’ source and the inductive sheet

impedance resonates at a higher frequency because of the increased effective relative

permittivity (εeff) due to mutual coupling. Therefore, the lumped elements were

tuned such that the scattered power of the capacitive and inductive sheets peaked

near 1.8 GHz, and and 2.2 GHz, respectively. Then, the two sheets were combined

and simulated again. By noting the differential scattering cross section (Csca(θ, φ)) vs.

frequency, ∆ω and the Q’s of the two modes can be approximated. Then the lumped

elements and a1 are adjusted to bring the electric and magnetic dipole resonances

closer, and the structure is re-simulated. Using this iterative design process, the two

modes can be made to resonate at the same frequency, and thereby obtain a Huygens’

source.

The structure shown in Fig. 4.4 has an inductive grid at an 11 mm radius made

up of 0.2 mm wide perfect electrically conducting (PEC) traces. The grid consists

of 12 arms connected at the top and bottom. Each arm is loaded with a 2.86 nH

inductor at the equator. At the internal radius (a1 = 10 mm), there are 8 loops that

each have a 1 mm width, and are spaced 1 mm apart from each other. Each loop is

loaded with two 123 fF capacitors at the equator. This Huygens’ source achieves a

directivity of 3 at 1.84 GHz. By detuning the lumped capacitors and inductors, it is

also possible to increase the bandwidth by increasing ∆ω, while maintaining a center

frequency of 1.84 GHz.

Eqns. (4.28) and (4.31) allow one to find the directivity and bandwidth for all

values of ∆ω, given the Q of the TM11 and TE11 modes (see Fig. 4.5). Simulated

values of the directivity and bandwidth for the ideal sheet impedance and the realized

Huygens’ source are shown in Fig. 4.5. The electric and magnetic dipole modes

of the ideal sheet impedance were assumed to have Q = 4.5Qlb. The Q’s of the

realized Huygens’ source were estimated from (4.31) to be Q = 6.7Qlb from the

simulated scattering bandwidth when D(ω◦) = 3. Under such conditions, ∆ω ≈ 0.

Here, the bandwidth obeys well known relationships for single resonant antennas

(FBWν=1/2 = 3FBWν=1/10) [94].
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Thus far, the scattering properties of spherical Huygens’ sources have been an-

alyzed. This allowed closed-formed expressions to be developed that model the be-

havior of these resonant structures. However, a realistic antenna cannot be fed with

a plane wave. Therefore, a coaxially-fed monopole version of a Huygens’ source was

designed, as shown in Fig. 4.6. The coaxial cable was connected to the capacitive

sheet. The lumped inductors present in Fig. 4.4 were removed, and the metallic

traces were instead spiraled to achieve the necessary inductive loading. The helical

arms were designed using [114, Eqns. 1-5], except here the spiraling began 7.3 mm

above the surface of the ground plane, rather than at the ground plane itself. This

increased the coupling between the inductive and capacitive sheets, which was nec-

essary for the antenna to be fed with a single coaxial line. There are 4 arms with

0.55 turns per arm. The internal capacitive loops are identical to the previous design

shown in Fig. 4.4, except that an additional loop was added so that the structure

could be symmetrically fed. The input resistance of this antenna was initially greater

than 500 Ω, so a L-section matching network was added at the feed. The match-

ing network consisted of a series 410 fF capacitor and a shunt 18 nH inductor, to

transform the input resistance to 50 Ω. It should be noted that the feed was not

optimized, and it may be possible to realize an impedance match without the use of a

L-section matching network by employing some of the techniques used in the design
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of near-field resonant parasitic antennas [120,121].
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y
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Figure 4.6: Huygens’ source realized through capacitively-loaded loops (capacitive
sheet) and a spherical helix (inductive sheet).

It is not possible to construct this antenna through traditional printed-circuit-

board (PCB) techniques because of its spherical geometry. However, chapter 2 de-

scribed recent advances in fabrication that allow for the printing of arbitrary metallic

patterns onto three dimensionally contoured substrates [20,143,147]. A polyethylene

substrate was chosen here (εr = 2.25, tan(δ)=0.001) because of its low loss and vac-

uum forming properties. A capacitive sheet can be printed onto a 10 mm radius,

0.5 mm thick, polyethylene substrate, and an inductive sheet printed onto an 11 mm

radius, 1 mm thick, polyethylene substrate. The 123 fF capacitors on the capacitive

sheet can be realized by printing interdigitated traces to eliminate the lumped ele-

ments. The inductive sheet can then be placed on top of the capacitive sheet, and

both structures secured to the ground plane. It was assumed that all metallic traces

were made from copper. Metal and substrate losses were included in the simulation,

and the shunt inductor in the L-section matching network had a Q = 75.

The simulated realized gain, directivity, reflection coefficient, and radiation pat-

terns are shown in Fig. 4.7. The center frequency of the antenna is 1.93 GHz

(ka = 0.44). At the center frequency the radiation efficiency, directivity, and re-

alized gain are 52%, 7.6 dB, and 4.6 dB, respectively. The -10 dB bandwidth is 70

MHz (FBW1/10 = 0.036). The directivity in Fig. 4.7(a) is not constant over the en-

tire operating frequency because of the simple feeding method. Below the operating

frequency, more energy is coupled from the coaxial feed into the magnetic monopole

mode, whereas above the resonant frequency, more energy is coupled into the elec-
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Figure 4.7: (a) Directivity and realized gain vs. frequency. (b) Directivity pattern at
1.93 GHz in the E-plane and H-plane. (c) Reflection coefficient (dB) and
input impedance (inset).

tric monopole mode. However, an advantage of this feed is that the directivity is

maximized, rather than minimized, at the center frequency when the bandwidth is

maximized. It can be seen in Fig. 4.7(c) that there are two closely spaced resonances.

The distance between these resonances was optimized to maximize the -10 dB band-

width by tuning the capacitors on the capacitive sheet. The -10 dB bandwidth of

this antenna is 1/2.6 times that of a single resonant antenna with a Q = Qlb. The

defined lower bound, Qlb, is equal to both the single mode minimum Q, as well as the

Huygens’ source minimum Q [135].

4.5 Chapter Summary

A method to design a Huygens’ source based on the electric and magnetic polariz-

abilities of two concentric, spherical sheet impedances was presented. Such a Huygens’

source is particularly interesting because it can be analyzed analytically, and the di-
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rectivity and bandwidth can be found in closed-form. The physical intuition gained

here can aid the design of other Huygens’ sources that are not realized through sheet

impedances, but instead through alternate resonant structures that are described in

the following chapters. Practical implementations of the concentric, spherical, sheet

impedance have also been described, which is relevant to current antenna design.

These implementations were looked at first from a scattering perspective, and then

fed directly to develop a directional, electrically small antenna.

In the remainder of this thesis, we no longer consider the radiation properties of in-

dividual polarizable particles (i.e. small antennas). Instead, we distribute polarizable

particles along two-dimensional arrays to realize metasurfaces that can arbitrarily

control electromagnetic wavefronts.
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CHAPTER V

Metamaterial Huygens’ Surface

5.1 Chapter Introduction

The previous chapters analyzed individual polarizable particles. Next, we consider

two-dimensional arrays of polarizable particles, which are commonly referred to as

metasurfaces. Until recently, most metasurfaces have been periodic, which generally

limited their application to filters, waveguides, and absorbers [1,7,148–151]. Here, we

introduce non-periodic metasurfaces that react to both electric and magnetic fields.

We will refer to these surfaces as metamaterial Huygens’ surfaces, since their design

is based on a rigorous formulation of Huygens’ principle.

Huygens’ principle qualitatively states that each point on a wavefront acts as a

secondary source of outgoing waves [33]. In 1901, Love developed a rigorous form of

Huygens’ principle, which specified the secondary sources in terms of well defined, fic-

titious electric and magnetic currents [152]. Schelkunoff later extended Love’s Equiva-

lence Principle to allow for arbitrary field distributions on either side of a surface [56].

Schelkunoff’s formulation is known today as simply the Surface Equivalence Principle,

and is readily employed in the analysis of aperture antennas, diffraction problems,

and computational electromagnetics formulations [16].

The contribution of this work is twofold. First, it is shown how the Surface Equiv-

alence Principle can be employed to design electrically-thin layers (sheets) capable of

establishing arbitrary field patters for a given illumination. The previously fictitious

currents introduced by Schelkunoff are replaced with physical, polarization currents

produced by a nonperiodic distribution of polarizable particles exhibiting both elec-

tric and magnetic responses. Secondly, it is detailed how to realize these arbitrary

electric and magnetic polarization currents with metamaterial (subwavelength tex-

tured) surfaces. To outline the design methodology, a reflectionless Huygens’ surface

that provides a spatially varying phase response is experimentally demonstrated at
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microwave frequencies. This structure can be envisaged as a non-periodic distribution

of Huygens’ sources [153,154].

5.2 Huygens Surface Design

In the Surface Equivalence Principle, independent field distributions are stipulated

in two regions of space (Regions I and II of Fig. 5.1). Since the fields are generally

discontinuous at the surface S, fictitious electric and magnetic surface currents are

needed on the surface to satisfy the boundary conditions,

~Js = n̂×
(
~H2 − ~H1

)
, ~Ms = −n̂×

(
~E2 − ~E1

)
(5.1)

1 1,E H

Region I
(Excitation Field) 

Region II
(Desired Field)

sJ

sM

n�S

2 2,E H

Sources

Figure 5.1: Arbitrary fields in two regions separated by a closed surface S that pro-
vides electric and magnetic surface currents. The fields in Region I and
Region II are defined independently of each other, and the Surface Equiv-
alence Principle is employed to find the fictitious electric and magnetic
surface currents that satisfy the boundary conditions.

Here, we replace Schelkunoff’s fictitious surface currents with physical, polariza-

tion currents. The polarization currents are generated by exciting a prescribed two-

dimensional array of polarizable particles with an incident field. Each polarizable

particle can be characterized by its quasi-static electric and magnetic polarizabilities

(αe,m), defined as the ratio of the dipole moment to the local field. When these

particles are closely spaced across a two-dimensional surface, a surface polarizability

(αeff
e,m) that accounts for coupling between particles can be defined. By averaging the

fields of the electric and magnetic dipole moments over S, the surface polarizability
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can be related to the equivalent electric and magnetic surface currents [155],

~Js = jωα
eff
e · ~Et,av

∣∣∣
S
, ~Ms = jωα

eff
m · ~Ht,av

∣∣∣
S

(5.2)

A time-harmonic progression of ejωt is assumed, where ω is the radial frequency and

t is the time. The expressions ~Et,av|S and ~Ht,av|S represent the average, electric and

magnetic fields tangential to the surface S.

The Surface Equivalence Principle is generally formulated in terms of fields and

surface currents at a boundary. Therefore it may be more appropriate to define an

impedance boundary condition. This can be done by defining an electric sheet admit-

tance (Y es = jωα
eff
e ) and magnetic sheet impedance (Zms = jωα

eff
m ) in terms of the

surface polarizabilities. In general, Y es and Zms are tensorial quantities. For illustra-

tion purposes, we will assume that the sheet impedance is isotropic: Yes=Y
yy
es =Y zz

es

and Zms=Z
yy
ms=Z

zz
ms for a sheet in the x = 0 plane.

Once the necessary values of Yes and Zms are known, the surface is discretized into

unit cells. The sheet impedance of each cell is then realized through subwavelength

texturing of a metallic cladding on a dielectric substrate. Field averaging techniques

could be employed to find αeff
e,m for a designed metallic pattern [155], but a more

straightforward method is used here. The impedance is directly extracted from the

complex reflection (R) and transmission (T ) coefficients. As demonstrated in [156], R

and T can be related to the sheet impedances of a periodic metasurface for a normally

incident plane wave,

Yes =
2 (1− T −R)

η (1 + T +R)
, Zms =

2η (1− T +R)

(1 + T −R)
(5.3)

where η =
√
µ/ε is the wave impedance of free space. From Eq. (5.3), it can be

easily shown that if the normalized electric sheet admittance and magnetic sheet

impedance are equal and purely imaginary (Yesη = Zms/η), the amplitude of the unit

cell’s transmission coefficient becomes unity. In addition, the transmitted phase can

be varied anywhere between −180◦ and +180◦ to provide complete phase coverage

by adjusting the magnitude of the impedance.

5.3 Relation to Previous Work

Metamaterial Huygens’ surfaces introduce abrupt field discontinuities across electrically-

thin layers. They are distinct from the work of Nanfang Yu et al. [54,157] and Xingjie
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Ni et al. [158], which also allow field discontinuities. Unlike the metamaterial inter-

faces reported by these two groups, Huygens’ surfaces do not incur reflection losses,

and are not restricted to solely manipulating the phase of cross-polarized radiation.

Huygen’s surfaces can manipulate both co-polarized and cross-polarized radiation.

This polarization control can be used to generate linear, circular, or elliptical po-

larization from a given excitation without reflection. Finally, Huygens’ surfaces can

redirect an incident beam with nearly 100% efficiency into a refracted beam. This is

in contrast to the metamaterial interfaces reported earlier, which necessarily incurred

reflection due to their exclusively electric response, and produced two refracted beams:

an ordinary beam in addition to the anomalous beam. An alternative method that

efficiently manipulates a wavefront involves stacking multiple layers of frequency se-

lective surfaces [47, 159–162]. This approach is considered in the following chapters.

5.4 Beam Refraction

To demonstrate the proposed design methodology, a metamaterial Huygens’ sur-

face was developed to efficiently refract a normally incident plane wave to an angle

φ = 45◦ from normal, as shown in Fig. 5.2(a). The fields are TM-polarized (mag-

netic field is ẑ-polarized), and an operating frequency of 10 GHz was chosen. Once

the fields in Regions I and II are stipulated, the necessary sheet impedances can be

solved. The fields in Region I are those of a plane wave traveling in the x̂ direction,

and the fields in Region II are those of a plane wave traveling at an angle of φ = 45◦

relative to x̂,

~E1 = −ŷe−jkx
~H1 = −ẑ/ηe−jkx

(5.4)

~E2 = 21/4 (x̂ sin(φ)− ŷ cos(φ)) e−jk(ysin(φ)+xcos(φ))

~H2 = −ẑ21/4/ηe−jk(ysin(φ)+xcos(φ))

Here, k = ω
√
εµ = 2π/λ is the propagation constant of free space and η =

√
µ/ε is

the wave impedance of free space. For φ = 45◦, the magnitude of the field in Region

II is 21/4 times that of Region I to ensure that power flow normal to the surface is

conserved.

The Surface Equivalence Principle is then invoked to determine the necessary

currents on the Huygens’ surface. The resulting sheet impedance is calculated by
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taking the ratio of the current to the tangential fields,

Yes =
2 (Hz

1 −Hz
2 )

Ey
1 + Ey

2

=
2− 25/4e−jkysin(φ)

η + 21/4ηcos(φ)e−jkysin(φ)

(5.5)

Zms =
2 (Ey

1 − Ey
2 )

Hz
1 +Hz

2

=
2η − 25/4ηcos(φ)e−jkysin(φ)

1 + 21/4e−jkysin(φ)

(a) (b)
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Figure 5.2: (a) Simulated time snapshot of the magnetic field (Hz) of a ŷ-polarized
plane wave, normally incident upon the designed Huygens’ surface. (b)
Dimensions of the unit cells comprising the metamaterial Huygens’ sur-
face. The particular unit cell shown has Yes = (0.02 + 3.14j)/η and
Zms = (0.07 + 2.3j)η. (c) One period of the real and imaginary sheet
impedances to refract a normally incident electromagnetic wave to an an-
gle of 45◦. Lines are the computed values, and asterisks are the simulated
values.

Since the incident and refracted waves are plane waves, the sheet impedances ex-

hibit periodicity in the ŷ direction with a period of λ/sin(φ). Each period is discretized

into 12 unit cells, consisting of patterned copper traces on a low loss, Roger’s RO4003
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substrate (εr = 3.55, tan(δ) = 0.0027). The top layer of the substrate presents ca-

pacitively and inductively loaded traces to realize both positive and negative electric

sheet reactances. The bottom layer presents capacitively loaded loops (split-ring-

resonators) to realize the magnetic sheet reactances [58]. The sheet impedances ex-

tracted from simulation along with the desired values are plotted in Fig. 5.2(c). In

Fig. 5.2(b), a unit cell with Yes = (0.02+3.14j)/η and Zms = (0.07+2.3j)η is shown.

The designed Huygens’ surface was then simulated using a commercial, full-wave elec-

tromagnetics solver (Ansoft HFSS). Fig 5.2(a) shows a steady-state time snapshot of

the simulated, ẑ directed magnetic field. The plane wave normally incident from the

bottom is steered to φ = 45◦ by the metamaterial Huygens’ surface. From simulation,

4.7% of the incident power is absorbed by the Huygens’ surface and 3.9% is scattered

into undesired directions.

Since the sheet impedances are periodic, Floquet theory is employed to analyze

the structure [1]. This discretizes the fields such that only well specified Floquet har-

monics are allowed to propagate. When steering a wavefront to an angle φ = 45◦, the

impedances have a periodicity of
√

2λ. In this case, the allowed propagating Floquet

harmonics are simply plane waves traveling at angles ±45◦ and 0◦, as shown in Fig.

5.3(a). From simulation, the fraction of the incident power that is scattered into the

various propagating Floquet harmonics can be found. Fig. 5.3(b) shows this fraction

for the simulated beam-refracting Huygens’ surface. It can be seen that the Huygens’

surface couples nearly all the incident power into the transmitted:n=1 harmonic, with

minimal excitation of the other harmonics. We also note that Floquet theory dic-

tates that this Huygens’ surface exhibits frequency scanning, which is advantageous

in many radar applications. For example, the direction of the n=1 harmonic changes

from 51.8◦ to 36.1◦ as the frequency is scanned from 9 GHz to 12 GHz.

In general, the necessary sheet impedances can be complex for arbitrary fields on

either side of the Huygens’ surface. Imaginary components correspond to reactive

sheets, while positive real components represent loss and negative real components

represent gain. To simplify fabrication and minimize loss, the sheet impedances are

approximated as being purely reactive (Re(Yes) = Re(Zms) = 0). There are several

methods by which this can be done, and they are compared in Fig. 5.4. In [10],

the real part of the sheet impedance was simply set to zero (Method 1 of Fig. 5.4).

Another method would be to analyze the reflection and transmission coefficients of

a plane wave that is normally incident upon a periodic metasurface. To have a uni-

directional scattered field, each unit cell of the approximated Huygens’ surface could

have a transmission coefficient with magnitude equal to unity and phase equal to that
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Figure 5.3: (a) Plane wave Floquet harmonics for a Huygens’ surface with
√

2λ peri-
odicity. The red lines correspond to the desired harmonics. (b) Fraction
of the incident power that is coupled into the various Floquet harmonics.
The Huygens’ surface demonstrates high efficiency with -0.4 dB of the
incident power coupled into the n=1 harmonic at 10.5 GHz, as well as a
broad bandwidth of 26.1%

of the computed sheet impedance (Method 2 of Fig. 5.4). Here, we chose an alter-

nate method. We chose the reactive sheet impedances such that they most closely

approach the reflection and transmission coefficients of the computed complex sheet

impedances. This was done using Matlab’s nonlinear optimization toolbox to mini-

mize the cost function, (|Rcomp−Rapprox|2 + |Tcomp−Tapprox|2), where (R, T )comp,approx

are the complex reflection and transmission coefficients of the computed and ap-

proximated sheet impedances respectively (Method 3 of Fig. 5.4). In general these

three methods produce similar results. Approximating the sheet impedances as being

purely reactive does lead to slight scattering into undesired directions. However, if

the arbitrary phase difference between the fields in Regions I and II is judiciously

chosen, its effect can be minimized.

Finally, it is well known from frequency selective surfaces that subwavelength unit

cells exhibit minimal spatial dispersion [161, 163]. Small cell sizes ensure that the

surface maintains the desired, gradient phase shift when excited at oblique angles of

incidence. The angle of the refracted wave (φr) can be related to the incident angle

(φi) using the generalized law of refraction that accounts for the phase discontinuity
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Figure 5.4: Three methods of approximating the computed, complex sheet impedance
for the beam-refracting surface with purely reactive sheet impedances.
Solid lines ( ) correspond to the computed, complex sheet impedances.
In Method 1, the real parts are simply set to zero. The dotted lines ( )
correspond to Method 2, where the sheet impedances have a transmission
coefficient with unity amplitude and phase equal to the computed sheet
impedance. The dashed lines ( ) correspond to Method 3, where the
sheet impedances are approximated as those minimizing the cost function
(|Rcomp −Rapprox|2 + |Tcomp − Tapprox|2).

between Regions I and II [54],

sin(φr) = sin(φi) + sin(45◦) (5.6)

Figs. 5.5(a) and 5.5(b) show simulated contour plots of the ẑ-polarized magnetic

field values at 10.5 GHz for incident angles φi = 15◦ and φi = −45◦, respectively.

It can be seen that the plane wave, incident from the bottom, is efficiently refracted

by the surface. Fig. 5.5(c) shows the percentage of power that is refracted into the

direction φr vs. the angle of incidence. The Huygens’ surface performs as designed for

angles of incidence from φi = −65◦ to φi = 15◦. As φi approaches 19◦, φr approaches

90◦ and the performance begins to deteriorate since the refracted wave becomes a

surface wave.

5.5 Measured Performance

To experimentally measure the performance of the metamaterial Huygens’ surface,

the normally incident plane wave was approximated with a Gaussian beam with a

57 mm beam waist. This required the fabricated surface to be 226 mm x 226 mm

to capture 99.9% of the incident power [164]. A section of the fabricated Huygens’

surface is shown in Fig. 5.6(a). It is composed of a vertical stack of 58 identical
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Figure 5.5: (a)-(b) Simulated time snapshot of the magnetic field of a TM-polarized
plane wave, incident upon the designed Huygens’ surface at angles φ =
15◦, and −45◦, respectively. (c) Percentage of power that is refracted into
the φr direction for various angles of incidence.

circuit board strips, with 2.35 mm air gaps between each of the boards. The top and

bottom sides of the boards are shown in Figs. 5.6(b), and 5.6(c), which provide the

required electric and magnetic polarization currents, respectively.

The Huygens’ surface was measured using a near field scanning system [165,166],

and the performance is summarized in Fig. 5.7(a)-(e). All the contour plots of Figs.

5.7(a)-(d) are normalized by the magnitude of the incident Gaussian beam. The

ratio of power transmitted in the refracted direction to the incident power, over the

operating frequencies, is plotted in Fig. 5.7(e). The half-powered bandwidth and

peak efficiency of the structure were measured to be 24.2% and 86%, respectively.

73
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(b)

λ = 30 mm 

(c)

Figure 5.6: (a) Photograph of the fabricated Huygens’ surface. (b) Copper traces on
the top side of each substrate provide the necessary electric polarization
currents. The pattern inside the red box repeats itself every 12 unit cells.
(c) Split-ring resonators on the bottom side of each substrate provide the
necessary magnetic polarization currents.

5.6 Theoretical Gaussian-to-Bessel Beam Transformer

Next, a metamaterial Huygens’ surface that provides beam shaping capabilities

is demonstrated with a Gaussian-to-Bessel beam transformer [157]. This example

is particularly interesting because Bessel beams confine their energy to a narrow

beamwidth, which has applications in fields such as near field probing, medical imag-

ing, and radiometry [167,168]. For simplicity, we assume the fields are invariant along

ẑ, and the electric field is ẑ-polarized. Since ideal Bessel beams carry infinite energy

they must be truncated with a windowing function (a Gaussian was chosen), which

causes them to diffract. To compensate for this, the field just behind the Huygens’

surface in Region II, is stipulated to be the phase conjugated wavefront of a diffracted

Bessel beam. This causes the wavefront to refocus to the desired Bessel beam profile

at the designed focal plane (x = 8.33λ). Once the fields at the Huygens’ surface

are specified, the necessary reactive sheet impedances are determined. The incident
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Figure 5.7: (a and b) Measured and simulated far field radiation patterns, respec-
tively. (c and d) Measured and simulated magnetic field magnitudes in
the xy plane, respectively. The incident field is shown for x < 0, and
the transmitted field is shown for x > 0. (e) Measured and simulated
efficiency of the Huygens’ surface. The efficiency is defined as the ratio
of the power in the refracted beam to the incident power.

electric field just in front of the Huygens’ surface (x = 0−) is given by,

Ez = exp

( −y2

(5.33λ)2

)
, (5.7)

while a Bessel beam is desired in Region II (x > 0). In this case, we stipulate the

field at the focal plane (x = 8.33λ) to be a Gaussian truncated Bessel function,

Ez = 2.04J0(0.3ky) exp

( −y2

(8.33λ)2

)
(5.8)

The amplitude of the Bessel function was chosen such that power was conserved

between the incident and transmitted wavefronts. To apply the surface equivalence

principle, the field just behind the lens (x = 0+) is found by back propagating the field

at the focal plane (x = 8.33λ) to the Huygens’ surface. This causes the transmitted

wavefront just behind the lens to refocus into the desired Bessel profile of Eq. (5.8)

at the focal plane. Once the field at x = 0 is specified, the Huygens’ surface can be

realized with the reactive sheet impedances shown in Fig. 5.8.

In simulation, the computed impedances are realized with electrically thin (in
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Figure 5.8: Sheet impedances that comprise the Gaussian-to-Bessel beam trans-
former. The real parts are zero.

terms of free space wavelengths) material slabs with identical reflection and transmis-

sion coefficients as the desired sheet impedance. This permits the use of commercial

electromagnetic solvers for simulation, while maintaining virtually identical perfor-

mance. Fig. 5.9(a) shows the magnitude of the simulated ẑ-directed electric field.

The Gaussian beam at x < 0 is transformed into a Bessel beam at x > 0 with greater

than 99% transmission. In Fig. 5.9(b) the simulated and desired values of |Ez| are

plotted at the input face of the Huygens’ surface (x = −1.67λ), and at the focal plane

(x = 8.33λ).
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Figure 5.9: (a) Electric field (Ez) magnitude of a two-dimensional Gaussian beam
incident upon a Gaussian-to-Bessel beam transformer located at x = 0.
(b) Simulated and computed electric field magnitude at the focal plane
(x = 8.33λ) and at the input face of the Huygens’s surface (x = −1.67λ).
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5.7 Chapter Summary

The developed metamaterial Huygens’ surfaces use both electric and magnetic

polarization currents to manipulate electromagnetic wavefronts without reflection.

These surfaces are composed of electrically small, polarizable particles which provide

surface currents that satisfy the Surface Equivalence Principle between two regions.

A design methodology was developed, and applied to demonstrate beam steering and

shaping. A proof-of-concept Huygens’ surface was experimentally demonstrated at

microwave frequencies.

Metamaterial Huygens’ surfaces could enable a myriad of novel devices. In the

next chapter, surfaces possessing tensorial electric sheet admittances and magnetic

sheet impedances with off-diagonal entries are shown to enable devices that manip-

ulate the field profile, and allow polarization control such as linear-to-circular po-

larization conversion [169]. Further, in chapter 9 it is shown that metasurfaces of

bianisotropic particles allow arbitrary polarization control and beamshaping. Such

surfaces build on recent work showing that periodic metasurfaces exhibiting bian-

isotropy can perform any plane-wave polarization transformation [170]. Huygens sur-

faces may also find use in stealth applications. For example, two-dimensional arrays

of electric and magnetic polarizable particles could be used to tailor reflected wave-

fronts. In addition, absorbers that are impedance matched to non-uniform wavefronts

could be designed [171]. It is shown in chapter 8 that metamaterial Huygens’ surfaces

can also be extended to optical frequencies.
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CHAPTER VI

Wavefront and Polarization Control using

Cascaded Metallic Sheets

6.1 Chapter Introduction

In this chapter, we scale the concept of Huygens’ surfaces up to millimeter-wave

frequencies. In addition, polarization control is demonstrated. Millimeter-wave fre-

quencies have become attractive for high bandwidth communication [51]. In particu-

lar, multi-gigabit data rates could enable emerging technologies such as wireless high-

definition video, wireless local area networks, and “gigabit offices” [40,172]. Another

important application is point-to-point wireless communication, which promises to

provide a lower cost alternative to fiber optic cables [52,53]. Additionally, millimeter

wavelengths offer high-resolution for imaging systems and radars in applications such

as concealed weapons detection, automotive collision avoidance, missile guidance, and

satellite tracking [173,174].

All the above mentioned applications require antennas with high bandwidth, gain,

and efficiency, while maintaining a low profile. At these frequencies, integrated an-

tenna arrays suffer from excessive transmission-line losses. This has motivated sys-

tems that combine a low gain radiating element with a focusing lens. Dielectric lenses

are viable options, but also bulky and expensive [172,175,176]. This has inspired the

development of low profile metasurfaces that are capable of efficient phase and polar-

ization control. Previously, these metasurfaces were often referred to as reflectarrays

or transmitarrays for manipulation of a wavefront upon reflection and transmission,

respectively.

Here, a beam-refracting Huygens’ surface that also provides polarization control

is presented at W-band frequencies. It is shown that it is possible to generate an

arbitrary phase shift across a subwavelength thickness using three metallic sheets.

78



A cell design is presented that allows for independent control of the field polar-

ized along the two orthogonal axes. The vias and complex networks that are com-

monly employed in traditional transmitarrays are not needed with the outlined design

methodology [37,50]. This increases efficiency and reduces fabrication costs. Previous

transmitarrays often achieved polarization control by placing a separately designed

quarter-wave plate in front of the aperture [177]. In contrast, the beam-refracting

surface developed here achieves polarization and phase control simultaneously with a

single subwavelength thickness surface. This enables low-profile, high efficiency, beam

shaping lenses that also incorporate polarization control.

It should be mentioned that it is often more common to design a focusing lens

rather than a beam-refracting lens. However, it is more difficult to accurately char-

acterize the fundamental performance of a focusing lens. Since the memory and time

requirements for simulating entire focusing lenses are restrictive, approximations are

required to characterize its performance. In contrast, a beam-refracting surface has

a periodicity on the order of the wavelength, which allows simulation of the entire

structure with a full wave electromagnetics solver. Additionally, the efficiency of a

beam-refracting lens is easier to experimentally characterize since the feed does not

present added loss such as spill-over and illumination taper. Finally, the numerical

aperture of a focusing lens is limited by its ability to provide a steep phase progression

at its edges. Therefore, a beam-refracting lens provides insight into the limitations of

realizing focusing lenses.

6.2 Quarter-Wave Plate

To begin, polarization control is studied by considering a quarter-wave plate de-

sign. Quarter-wave plates have been extensively studied in the microwave engineering

community. Some of the first reported quarter-wave plates cascaded three or four

patterned sheets to realize large bandwidths on the order of 50% [62, 63, 178, 179].

However, the overall thickness of these designs was electrically large. More recently,

single and double layer split-ring-resonators have been used [180, 181]. However, the

bandwidth of these structures was approximately 10%. An improved design was pre-

sented in [182], where a reduced thickness and a large bandwidth were demonstrated.

Consider a plane wave propagating in the x̂ direction, and normally incident upon

a periodic quarter-wave plate in the yz plane. It is assumed that the quarter-wave

plate is composed of three cascaded sheet admittances (patterned metallic sheets)

as shown in Fig. 6.1(a). It should be noted that this geometry will be referred to
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throughout the chapter. A necessary condition for achieving 100% transmission is

that the quarter-wave plate must be symmetric, thus requiring the outer sheets to

be identical. Each sheet admittance is anisotropic, diagonalized with eigenvectors in

the ŷ and ẑ directions such that ŷ and ẑ polarized fields can be analyzed independent

of each other. This scenario is usually modeled in terms of a circuit equivalent: free

space is replaced with transmission lines and the sheet admittances with shunt loads.

This enables the use of circuit based filter theory [183]. If it is assumed that all

materials are lossless, the shunt loads become purely imaginary (reactive).
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Figure 6.1: (a) Geometry of a generic unit cell that consists of three cascaded sheet
admittances. In general each sheet admittance is anisotropic. (b) Mate-
rial layers of the quarter-wave plate and beam-refracting Huygens’ surface.

The unit cell shown in Fig. 6.2 was developed using a similar design proce-

dure to the one presented in [182]. The quarter-wave plate consists of three cas-

caded patterned sheets, as shown in Fig. 6.1(b). The cell size is 1.1 mm x 1.1 mm

(λ◦/3.5 x λ◦/3.5) with an overall thickness of 0.4 mm (λ◦/9.7). From the circuit

model presented in Fig. 6.1(a), the necessary admittances of the outer and middle

sheets are determined. In general, there are many admittance values that satisfy the

condition of 90◦ phase difference between ŷ and ẑ polarizations while also maintain-

ing high transmission. The solution that is chosen here consists of the outer sheets

(Y s1) being capacitive in the ŷ direction and inductive in the ẑ direction. Then

simple heuristic guidelines are used to realize the necessary sheet admittances, while
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also attempting to maximize the bandwidth over W-band frequencies, as suggested

in [182]. To achieve an inductive response in the ẑ direction, a central trace with

dimensions 0.1 mm x 1.1 mm is used (see Fig. 6.2). Then, to increase the effective

inductance further, the patches at the edges of the unit cell with dimensions 0.15

mm x 0.26 mm are added. These patches provide a capacitance in parallel with the

central inductance. This increases the impedance below resonance. To achieve the

capacitive response in the ŷ direction, the rectangle with dimensions 0.79 mm x 0.2

mm is added to the center of the unit cell. The middle sheet (Y s2) however is required

to be inductive in the ŷ direction and have a small capacitance in the ẑ direction.

Again, to realize the inductive response, a central trace with dimensions 1.1 mm x

0.1 mm is used in conjunction with capacitive patches (0.35 mm x 0.1 mm) at the

edges of the unit cell. The required capacitance in the ẑ direction is quite small. It

is attained by the capacitive patches that have dimensions 0.35 mm x 0.1 mm.

0.15mm

0.26mm

0.2mm

0.79mm

0.1mm

1.1mm

Outer Sheets (Ys1) Middle Sheet (Ys2)

0.35mm

0.1mm

0.1mm

1.1mm (λo/3.5)

z

y 1.1mm (λo/3.5)

Figure 6.2: Dimensions of the outer and middle sheets of the designed quarter-wave
plate.

This unit cell can be thought of as a building block for the Huygens’ surface that

will be developed in the next sections. When a plane wave traveling in the x̂ direction

is normally incident upon the quarter-wave plate, a 90◦ phase difference between ŷ

and ẑ directed electric fields is achieved. Therefore, if the incident field is polarized

along the ŷ ± ẑ directions such that the two polarizations are equally excited, the

transmitted field will be circularly polarized.

The substrate was chosen to be the liquid crystal polymer, Rogers Ultralam 3850

(εr = 3.19 and tan(δ) = 0.0045) with an 18 µm thick (1/2 oz.) copper cladding. The

permittivity and loss tangent of the bonding film (Rogers 2929) were roughly the same

as that of the Ultralam substrate. These materials were chosen because they have a

low permittivity and loss, and are well characterized at mm-wave frequencies [184].

In addition, their low water absorption rate, low thermal expansion characteristics,
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and flexibility make them extremely attractive for a broad range of applications [21].

Since the maximum substrate thickness that is commercially available is 100 µm,

multiple layers needed to be stacked together to achieve the desired thickness of 400

µm, as shown in Fig. 6.1(b).

The quarter-wave plate was simulated with the full wave electromagnetic solver

CST Microwave Studio. The simulated transmission coefficient and axial ratio are

plotted in Fig. 6.3 for various angles of incidence along the xy plane. At normal

incidence (φ = 0◦), the 3 dB axial ratio bandwidth is 40%, and the transmission

coefficient is above -3 dB over this entire bandwidth. The performance of the quarter-

wave plate is relatively insensitive to the angle of incidence. Only when the angle

of incidence approaches φ = 40◦ does the performance begin to deteriorate. These

results are quite similar to the design presented in [182], which represents the state

of the art. The primary differences are we operate at frequencies that are four times

higher, and chose to use materials that are compatible with commercial printed-

circuit-board processes.
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Figure 6.3: Simulated transmission coefficient and axial ratio of the transmitted field
when illuminated with a linearly polarized plane wave with electric field
oriented along ŷ+ ẑ. Also shown is the performance at angles of incidence
other than normal.

6.3 Cascaded Sheet Admittances

Only 90◦ phase coverage is necessary to realize quarter-wave plates. However, a

full 360◦ phase coverage is desired for most applications. It has been shown that a

three layer structure contains the minimum number of layers in which it is possible to

provide perfect transmission and complete phase coverage [48]. A further increase in

the number of layers would lead to increased bandwidth, fabrication complexity, and
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cost. The reflection and transmission coefficients of the geometry shown in Fig. 6.1(a)

can be related to the sheet admittances, using the transmission matrix approach [185].

First the ABCD matrix that relates the field on either side of the cascaded sheets is

found,

(
A B

C D

)
=

[(
1 0

Ys1 1

)(
cos(βd) jηdsin(βd)

jsin(βd)/ηd cos(βd)

)

·
(

1 0

Ys2 1

)(
cos(βd) jηdsin(βd)

jsin(βd)/ηd cos(βd)

)(
1 0

Ys1 1

)]
(6.1)

The ABCD matrix can then be related to the S-parameters of the structure,

(
S11 S12

S21 S22

)
=




B/η◦−Cη◦
2A+B/η◦+Cη◦

2
2A+B/η◦+Cη◦

2
2A+B/η◦+Cη◦

B/η◦−Cη◦
2A+B/η◦+Cη◦


 (6.2)

Note that Eqn. (6.2) was simplified from that in [185], using the symmetry of the

structure (A = D).

Alternatively, it is possible to relate the transmission matrix of the cascaded sheets

to an image impedance and phase delay, which provides additional insight. The phase

delay (φ) and image impedance (Zi) of a reciprocal and symmetric structure are

recalled in terms of the transmission matrix (ABCD) [185],

cos(φ) = A, Zi =
−jB

D tan(φ)
(6.3)

Then the ABCD matrix from Eqn. (6.1) is inserted into Eqn. (6.3) to yield the phase

delay and image impedance in terms of the sheet admittances (Ys1 and Ys2), wave

impedance in the substrate (ηd), wavenumber in the substrate (β), and separation

between sheet admittances (d),

sin2

(
φ

2

)
= (−jsin(2βd)/2) [ηd(Ys1 + Ys2/2)

+ jtan(βd)(1 + Ys1Ys2η
2
d/2)

]

(6.4)

Zi =
1

(jYs1 + cot(βd)/ηd) tan(φ/2)

From the image impedance and phase delay, the S-parameters of the cascaded sheets
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can be solved [185],

S21 =
1

cos(φ) + j sin(φ)
2

(Zi

η◦
+ η◦

Zi
)

(6.5)

S11 = j

(
Zi
η◦
− η◦
Zi

)
sin(φ)

2
S21

Inserting Eqn. (6.4) into (6.5), the reflection and transmission coefficients can be

written in terms of the sheet admittances.

Alternatively, it is possible to derive the sheet admittances in terms of the S-

parameters. This is done by first solving for the phase delay and image impedance

as a function of the S-parameters [186],

cos(φ) =
1− S2

11 + S2
21

2S21

(6.6)

Zi = ±η◦

√
(1 + S11)2 − S2

21

(1− S11)2 − S2
21

Next, the sheet admittances from Eqn. (6.4) are solved for as a function of the image

impedance (Zi), phase delay (φ), wave impedance in the substrate (ηd), wavenumber

in the substrate (β), and separation between sheet admittances (d),

Ys1 =
j

ηdtan(βd)
− j

Zitan(φ/2)

(6.7)

Ys2 = j [−Zisin(φ/2)− Zisin(3φ/2)
+ 2ηdsin(2βd)cos(φ/2)] /(2η

2
dcos(φ/2)sin

2(βd))

Inserting Eqn. (6.6) into (6.7), the sheet admittances can be expressed in terms of

the reflection and transmission coefficients.

In Figs. 6.4 (a) and (b), the transmittance (|S21|2) and phase of the transmission

coefficient are plotted as a function of Ys1 and Ys2, assuming that the sheets in Fig.

6.1(a) are lossless. A dashed blue line is superimposed on the figures to outline points

where the metasurface provides perfect transmission. Fig. 6.4(c) plots the transmit-

ted phase as a function of the outer sheet admittances (Ys1) along the dashed blue

lines in Figs. 6.4 (a) and (b). It can be seen that the transmitted phase asymptoti-

cally approaches 360◦ coverage, while the magnitude maintains 100% transmittance.

84



Also shown in Fig. 6.4(c) is the relationship between the sheet admittance of the

middle sheet (Ys2) and outer sheets (Ys1) that provides perfect transmission. In this

analysis, it is assumed that all materials are lossless, the electrical length between

each sheet is βd = (2π)0.092, and the wave impedance of the dielectric spacers is

ηd = (1/
√

3.19)η◦ =
√
µ◦/3.19ε◦.

Note that as the magnitude of the outer sheet admittances is increased, the region

of high transmission in Fig. 6.4(a) is reduced. Therefore, as the transmitted phase

goes to 0◦, the transmission bandwidth approaches 0%, since all reactive elements

are frequency dispersive. To illustrate this point further, consider a cell that has

an impedance of Ys1η◦ = −5j and Ys2η◦ = 2.8j (see Fig. 6.4). This cell has a

transmittance of 100% and transmitted phase of −12◦. However, if either admittance

is perturbed slightly due to its frequency dispersion, the transmittance quickly drops

off. In contrast, the cells operating closer to Ys1η◦ = 0j and Ys2η◦ = 0j have a much

larger region of high transmittance, and therefore a larger transmission bandwidth.

A more physical, fields-based explanation can also demonstrate how complete

phase control and high transmission are achieved with the cascaded sheet admit-

tances shown in Fig. 6.1(a). Provided that the overall thickness of the cascaded

sheet admittances is subwavelength, this structure can be treated as a single meta-

surface: a single boundary condition that supports both electric and magnetic surface

currents [7]. In the previous chapter, it was shown that to maintain high transmission

while generating complete phase coverage, both the electric and magnetic surface cur-

rents need to be independently controlled [187,188]. To demonstrate how this control

is achieved here, let’s first consider a quasi-static magnetic field interacting with the

three sheet structure shown in Fig. 6.5. A ŷ-directed magnetic field generates cir-

culating electric currents on the outer surfaces, thus creating an equivalent magnetic

current [59]. However, the magnetic field will not interact with the middle sheet since

the induced currents are canceled out due to symmetry considerations. Conversely, all

three sheets will interact with a ẑ-directed electric field. Therefore, the outer sheets

can be designed first, to realize any desired magnetic response. Then, the middle

sheet can be designed to independently control the electric response, without affect-

ing the magnetic response. This enables independent control over both the electric

and magnetic surface currents, which in turn provides complete phase control.
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Figure 6.4: (a) Transmittance (|S21|2) as a function of the outer sheet admittances
(Ys1) and middle sheet admittance (Ys2). (b) Transmitted phase as a
function of the outer and middle sheet admittances. (c) Transmitted
phase (left) and inner sheet admittance (right) as a function of the outer
sheet admittance for points that satisfy perfect transmission (dashed blue
line of (a) and (b)).

6.4 Cell Design

Arrays of capacitively loaded dipoles are used to realize the Huygens’ surfaces’

cascaded sheet admittances, as shown in Fig. 6.6. Using the insight gained from Figs.

6.4 (a) and (b), each unit cell is individually designed assuming infinite periodicity,

which is known as the local periodicity approximation [35,39,64].

Each sheet admittance (Y s1 and Y s2) can be modeled as a series LC circuit, with

independent control of the admittance for the ŷ and ẑ polarizations. The dimensions

Wy and Gy primarily influence C and the dimension Sy primarily influences L, for a

ŷ-polarized electric field. Similarly, Wz, Gz, and Sz influence L and C for a ẑ-polarized

electric field. By tuning the resonance of the series LC circuit, the sheet admittance
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Figure 6.5: Induced currents on the three sheet admittances from a ŷ-directed, quasi-
static magnetic field. There is no net current on the middle sheet due
to symmetry. The sheet admittance of the outer sheets can control the
magnetic response while the admittance of the middle sheet only controls
the electric response.

can be made inductive or capacitive so that complete phase control is achievable.

The minimum feature size was set to 75 µm so that standard PCB processes could

be used for fabrication. The substrate was again chosen to be Rogers Ultralam 3850

(εr = 3.19 and tan(δ) = 0.0045) with an 18 µm thick (1/2 oz.) copper cladding, as

was previously shown in Fig. 6.1(b).

An iterative design approach is used to find the necessary design dimensions (W ,

G, and S) to achieve a desired phase shift while maintaining high transmission. First,

the transmission coefficient is simulated for a unit cell whose dimensions are chosen

arbitrarily. From the magnitude and phase of the transmission coefficient, the sheet

admittances of the unit cell are estimated using Fig. 6.4. Then, the dimensions are

changed to tune the sheet admittances closer to those that achieve high transmission

and a desired phase shift. Generally, only a few iterations are necessary before the

desired transmission coefficient is achieved. This process can be used to realize an

arbitrary phase shift for both ŷ and ẑ polarizations.

The performance of a typical unit cell is shown in Fig. 6.7. This cell is designed

to provide high transmission, a 105◦ phase delay for a ŷ-polarized electric field, and

a 195◦ phase delay for a ẑ-polarized electric field, at 77 GHz. Reflection primarily

accounts for the loss away from the center frequency.

In the next section, unit cells with varying dimensions will be distributed across a

surface to generate a beam-refracting Huygens’ surface. In non-periodic designs such
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Figure 6.6: (a) Perspective view of a typical unit cell that can provide complete phase
control while maintaining high transmission. (b) Design dimensions of

the outer (Y s1) and middle (Y s2) layers. With reference to Fig. 6.1(a), the
dimensions Sz, Gz, and Wz primarily influence the Y zz

s admittance, and
the dimensions Sy, Gy, and Wy primarily influence the Y yy

s admittance.

as this, there are two competing issues that must be weighed when designing each

unit cell. For series LC resonators, bandwidth is enlarged with an increase in C, and

corresponding decrease in L. This motivates maximizing the capacitance between

neighboring cells. However, since two neighboring unit cells will be different, the

assumption of infinite periodicity is somewhat inaccurate. This inaccuracy increases

as the capacitance between cells is increased. In other words, increasing C creates a

higher bandwidth, but more inaccuracy in the model. Therefore a compromise must

be made between bandwidth and accuracy of the local periodicity approximation.

6.5 Beam-Refracting Huygens’ Surface

Next, a metasurface that refracts a normally incident plane wave to an angle of

φr = 45◦ and converts the polarization from linear to circular at 77 GHz is designed.

This represents a steep phase progression compared to previous metasurfaces [36].

To realize a beam-refracting Huygens’ surface with a discrete number of unit cells,

88



70 75 80 85−10

−8

−6

−4

−2

0

Tr
an

sm
is

si
on

 C
oe

ffi
ci

en
t (

dB
)

Frequency (GHz)

 

 

−450

−360

−270

−180

−90

0

Tr
an

sm
itt

ed
 P

ha
se

 (D
eg

re
es

)

Ez
Ey

Figure 6.7: Frequency dependance of the transmitted amplitude and phase for a typ-
ical unit cell (Cell# 5 of the next section). Reflection primarily accounts
for the loss away from the center frequency.

Floquet theory dictates that if the phase shift between each cell is given by [1],

δn = 2πn/N + δ◦ (6.8)

the angle of the refracted beam will satisfy,

sin(φr) =

(
λ◦
Na

)
− sin(φi) (6.9)

Here, δn is the transmitted phase at cell n, N is the number of cells, δ◦ is an arbitrary

phase shift, and a is the cell size. The angles φi and φr represent the angles of the

incident and refracted beams from normal, as shown in Fig. 6.8. A ẑ-directed electric

field will be referred to as the transverse electric (TE) polarization and a ẑ-directed

magnetic field will be referred to as the transverse magnetic (TM) polarization.

It should be noted that the refracted direction (φr) is a function the number of

cells (N) as given by Eqn. (6.9). Here, the angle of refraction (φr = 45◦), incident

angle (φi = 0◦), wavelength (λ◦ = 3.9) mm, and cell size (a = 1.1) mm were all

stipulated and then the necessary number of cells was solved for (N = 5).

As was previously mentioned, a tradeoff must be made between the bandwidth

and the validity of the local periodicity approximation. This also led us to consider

designing for a reduced phase coverage across the surface. By providing reduced phase

coverage, both the bandwidth and model accuracy are improved since the variation

in mutual coupling from cell-to-cell is decreased. On the other hand, if the phase

coverage is reduced excessively, the efficiency decreases since more power scatters

into undesired directions (Floquet harmonics). To illustrate this, consider the case
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Figure 6.8: A linearly polarized plane wave is refracted by the Huygens’ surface and
its polarization is converted to circular.

where N = 3, δ◦ = 0, and φi = 0◦. If a theoretical beam-refracting surface has

100% transmission and the ideal phase shifts given by Eqn. (6.8) across it (δ1,2,3 =

120◦, 240◦, 360◦), 100% of the power will be refracted. However, if the phase of the

third cell is reduced from 360◦ to 330◦ for example, only 94% of the incident power

will be refracted since other Floquet harmonics will be excited as well [189]. From

simulations, it was found that reducing the phase coverage to 279◦ from the ideal

phase coverage of 306◦ resulted in a maximum efficiency of 74% at 77 GHz. The

efficiency is defined here as the ratio of the power refracted into the desired direction

to the incident power [187].

In this example, the ideal phase coverage is 306◦ due to the metasurface’s dis-

cretization. Due to discretization, the phase difference between adjacent cells should

be 72◦, according to Eqn. (6.8). For Cell# 1, let us assume that the phase of the ẑ-

polarized transmitted field is 0◦, and the ŷ-polarized transmitted field is −90◦. Since

Cell# 5 is the furthest away from Cell# 1, it intuitively should have the largest trans-

mitted phase. For Cell# 5, the phase is −72◦ ∗ 4 = −288◦ for the ẑ-polarized trans-

mitted field and −90◦− 72◦ ∗ 4 = −378◦ for the for the ŷ-polarized transmitted field.

However, a phase of −378◦ is equivalent to a phase of −18◦, due to phase wrapping.

Therefore, we turn to Cell# 4 to see whether it affects the required phase coverage.

For Cell# 4, the phase of the ŷ-polarized transmitted field is −90− 72◦ ∗ 3 = −306◦,

and therefore it dictates the maximum transmission phase for the metasurface. As a

result, the required phase coverage is 306◦.

One period of the optimized beam-refracting Huygens’ surface is shown in Fig. 6.9,
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Figure 6.9: Designed geometry of the outer and middle sheets for the beam-refracting
Huygens’ surface.

and the dimensions of the patterns are listed in Tables 6.1 and 6.2. The transmitted

power and phase at 77 GHz for each simulated cell is shown in Table 6.3. It can

also be seen that each cell individually acts as a quarter-wave plate since the phase

difference between the ŷ and ẑ polarizations is 90◦. From the simulated reflection and

transmission coefficients of each unit cell, the imaginary part of the sheet admittances

in the equivalent circuit presented in Sections 6.2 and 6.3 were extracted, and they are

listed in Table 6.4. The relationship between the outer and middle sheet admittances

(Ys1 and Ys2) extracted from simulation are shown in Fig. 6.10. For comparison

purposes, the theoretical curve for perfect transmission from Fig. 6.4 is also shown.

It can be seen that the simulated sheet admittances closely follow the theoretical

curve, thus validating the circuit model and design. Note that the two cells with

largest values of the sheet admittance do not follow the theoretical curve as closely.

The admittance of these cells was reduced to increase bandwidth.

Table 6.1: Dimensions (µm) of the outer sheets (Y s1) of the beam-refracting Huygens’
surface

Cell# Gy1 Wy1 Sy1 Gz1 Wz1 Sz1
1 150 500 200 210 500 400

2 400 300 300 170 420 300

3 320 200 200 0 300 300

4 190 240 200 0 100 100

5 200 450 300 220 300 300

The simulated performance of the Huygens’ surface at normal incidence is pre-

sented in Fig. 6.11. Simulations assumed that a linearly polarized plane wave with

electric field directed along ŷ + ẑ was normally incident upon the metasurface. A

time snapshot of the simulated co-polarized electric field is shown in Fig. 6.11(a).
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Table 6.2: Dimensions (µm) of the middle sheet (Y s2) of the beam-refracting Huy-
gens’ surface

Cell# Gy2 Wy2 Sy2 Gz2 Wz2 Sz2
1 150 400 250 350 600 450

2 140 550 114 140 200 200

3 200 700 170 310 200 200

4 150 600 100 400 100 100

5 180 300 300 100 570 100

Table 6.3: Amplitude (Ty,z) and phase (φy,z) of the transmission coefficient at 77 GHz
of the various cells that comprise the beam-refracting Huygens’ surface.

Cell# Ty (dB) Tz (dB) φy (Deg.) φz (Deg.)

1 -2.29 -0.81 -270 -180

2 -1.30 -1.33 -14 -251

3 -0.19 -0.78 -51 +9

4 -0.08 -0.27 -122 -33

5 -0.14 -0.04 -194 -105

The component of the electric field polarized along ŷ + ẑ is shown for x < 0, and the

left-handed circular component is shown for x > 0. If the incident field were polarized

along ŷ − ẑ, the transmitted field would be right-handed circular instead. It can be

seen that the linearly polarized plane wave from the bottom is efficiently refracted by

the metasurface, and at the same time the polarization is converted to circular. This

is better quantified in Fig. 6.11(b), which shows the frequency dependence of the

axial ratio and transmission coefficient of the field in the refracted direction given by

Eqn. (6.9). It should be noted that Floquet theory requires the refracted direction to

scan with frequency, since Eqn. (6.9) is a function of the wavelength. Therefore, as

the frequency is scanned from 70 GHz to 80 GHz, the angle of refraction varies from

φr = 51◦ to φr = 43◦.

From simulation, it is possible to determine the loss mechanisms of the beam-

refracting Huygens’ surface, as shown in Fig. 6.12. First of all, a small percentage of

the refracted power is converted to cross-polarized, right-handed circular polarization.

In addition, Floquet theory stipulates that some of the power is also transmitted into

the undesired φr = 0◦ and φr = −45◦ directions since a reduced phase coverage is

used. Finally, some of the incident power is reflected and absorbed by the metasurface.

Since the cell size of the metasurface is subwavelength, it is expected that it will
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Table 6.4: Imaginary parts of the normalized admittances of the outer and middle
sheets at 77 GHz

Cell# Im(Y yy
s1 )η Im(Y yy

s2 )η Im(Y zz
s1 )η Im(Y zz

s2 )η

1 4.75 10.76 2.96 0.94

2 0.29 -3.75 3.92 11.17

3 1.02 -4.74 -6.48 3.10

4 2.24 -4.26 -2.72 1.84

5 2.91 7.27 1.98 -4.88
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Perfect Transmission
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Figure 6.10: Sheet admittances extracted from simulation for each polarization (Y yy
s

and Y zz
s ) of the five unit cells comprising the beam-refracting Huygens’

surface. Also shown is the relationship between the sheet admittances
of the outer and middle sheets that correspond to perfect transmission
(see Fig. 6.4).

be well behaved over a large range of incident angles [161]. As illustrated in Fig. 6.13,

simulations show that the lens efficiently refracts the incident beam and converts the

polarization from linear to circular for incident angles between −10◦ to 70◦. The

reason the performance is not symmetric with respect to incident angle is due to the

additional
(
λ◦
Na

)
term from Eqn. (6.9). This causes the refracted angle to approach

90◦ as the incident angle approaches −18◦. However, if the incident angle is +18◦ the

refracted angle will be 23◦

93



y/λ

x/
λ

 

 

−1 0 1

−1

0

1

−1

−0.5

0

0.5

1

(a)

70 75 80

−4

−2

0

2

4

Frequency (GHz)

 

 

Axial Ratio
Transmission
Coefficient

dB

(b)

Figure 6.11: Simulated performance of the metasurface at normal incidence. (a)
Time snapshot of the co-polarized electric field of a linearly polarized
plane wave incident upon the designed Huygens’ surface at 77 GHz.
The component of the electric field polarized along ŷ + ẑ is shown for
x < 0, and the left-handed circular component is shown for x > 0. (b)
Frequency dependence of the axial ratio and transmission coefficient for
the field transmitted in the refracted direction.

6.6 Measurements

6.6.1 Near Field Scanning System

Both the quarter-wave plate and beam-refracting Huygens’ surface were fabricated

using commercially available, printed-circuit-board processes with a minimum feature

size of 75 µm. The sample sizes were 81.4 mm x 81.4 mm. To characterize the

fabricated structures, the near-field scanning system shown in Fig. 6.14 was used

[165]. A Gaussian-Optics-Antenna (Millitech GOA-10-R00004F) was connected to

the transmitting port of a vector network analyzer (Agilent E8361A). The antenna

illuminated the Huygens’ surface at normal incidence with a focused Gaussian beam

with a measured beam waist of 40 mm in diameter [164]. The incident field was

linearly polarized with electric field oriented along the ŷ + ẑ direction to equally

excite the TE and TM polarizations. An open-ended WR-10 waveguide probe was

connected to the receive port of the network analyzer to measure the transmitted,

ŷ+ ẑ directed electric field. A scattering cone was used to minimize backscatter from

the metallic structure supporting the waveguide probe [190]. Using a two-dimensional

translation stage with 5 µm accuracy, the field was sampled over an 81 mm x 81 mm
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Figure 6.13: Axial ratio and transmission coefficient in the refracted direction when
illuminated at angles away from normal incidence. Note that the re-
fracted direction is a function of the incident angle as detailed in Eqn.
(6.9).

area (20.8λ◦ x 20.8λ◦) at the x = 17 mm (4.4λ◦) plane. The field was sampled every

1.35 mm (λ◦/3.5), which ensured that sampling errors were well below the noise

floor. Next, an open-ended waveguide probe with a 90◦ twist was connected to the

receive port of the network analyzer to measure the ŷ− ẑ directed electric field. The

transmitted field was again sampled, thus providing the transmitted amplitude and

phase for two orthogonal polarizations. From these two measurements, the far-field

radiation pattern was determined.

To ensure that the measurements were accurate, a number of precautions were

taken. The diameter of the sample was twice the measured beam waist diameter

of the incident Gaussian beam, which limited diffraction effects [164]. The field at

the edge of the sampled area was approximately -30 dB below the peak value, which

ensured that the majority of power was sampled. To reduce the effects of multiple

reflections, time domain gating techniques were employed. To properly extract the
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Figure 6.14: Experimental setup of the near field scanning system used to characterize
the performance of the quarter-wave plate and Huygens’ surface

far-field using a waveguide probe, the probe’s radiation pattern was determined using

full wave electromagnetic simulations, and probe correction was applied [165]. The

system was calibrated by first measuring the far-field of the incident Gaussian beam,

without the metasurface present. The metasurface was then placed at the beam

waist of the Gaussian beam, and again the far-field measured. The far-field of the

metasurface was then normalized by the peak amplitude of the incident beam’s far-

field. The transmission coefficient of the samples was characterized by taking the

ratio of the field in the transmitted main beam to the field in the incident beam. The

axial ratio was determined by noting its value in the direction with highest radiated

field.

6.6.2 Quarter-Wave Plate Measurements

The quarter-wave plate presented in Section 6.2 was measured to demonstrate

polarization conversion. A section of the fabricated quarter-wave plate is shown in

Fig. 6.15(a). The measured axial ratio and transmission coefficient of the transmit-

ted beam is plotted in Fig. 6.15(b). It can be seen that there is agreement between

measurement and simulation. However, the measured axial ratio is higher than ex-

pected near 85 GHz. The axial ratio peaks at 3.7 dB, which corresponds to a 13.6

dB difference between the cross-polarization and co-polarization. Unfortunately, the

near field scanning system only works between 70 GHz and 100 GHz, so the over-

all bandwidth of the quarter-wave plate could not be measured. The discrepancy

between measurement and simulation can be attributed to fabrication errors.
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Figure 6.15: Quarter-wave plate and its performance. (a) Section of the fabricated
quarter-wave plate when viewed through an optical microscope. (b)
Measured transmission coefficient and axial ratio of the transmitted field
in the x̂ direction.

6.6.3 Beam-Refracting Huygens’ surface Measurements

Next, the beam-refracting Huygens’ surface with polarization control was charac-

terized. A section of the Huygens’ surface is shown in Fig. 6.16. The dimensions of

the metallic patterns on the outer sheets were measured with an optical microscope.

It was found that on average, the fabricated gaps (G) were 10 µm larger and widths

(W ) were 15 µm smaller than designed. In addition, all the corners were rounded with

an approximate radius of curvature of 50 µm. These fabrication errors caused the

capacitance of each cell to be smaller than designed, which increased the operating

frequency by 4.5 GHz.

Fig. 6.17(a) shows the total transmitted far-field. It can be seen that the metasur-

face efficiently refracts the normally incident beam to an angle φ = 42◦ at 82 GHz. As

outlined in Fig. 6.17(b), the metasurface also provides a high polarization conversion

from linear to circular by noting that the axial ratio in the direction of the main beam

is 0.7 dB. The frequency dependence of the metasurface’s performance is shown in

Fig. 6.18. Fig. 6.18(a) plots the radiated field as a function of frequency and the

angle of refraction (φ) in the θ = 90◦ plane. The blue dashed line superimposed on

the figure plots the theoretical relationship between refracted angle and frequency

given by Eqn. (6.9). On the other hand, Fig. 6.18(b) plots both the axial ratio and

transmission coefficient into the refracted direction as a function of frequency. The
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Figure 6.16: Section of the fabricated beam-refracting Huygens’ surface when viewed
through an optical microscope.
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Figure 6.17: Performance of the Huygens’ surface at 82 GHz. (a) Far-field radiation
pattern. (b) Axial ratio of the far-field.

transmission coefficient is above -3 dB from 71 GHz to 84.5 GHz, which suggests a

bandwidth of 17%. The axial ratio is below 2.5 dB over this entire frequency range.

6.7 Chapter Summary

A Huygens’ surface that provides wavefront and polarization control near 77 GHz

was presented. A design methodology was developed that provides high transmission

and complete phase control for both the TE and TM polarizations. First, a broad-

band, quarter-wave plate that solely converts the polarization from linear to circular

was introduced. This was then extended to develop a metasurface that deflects a

normally incident, linearly polarized plane wave to an angle of 45◦, while also con-

verting the polarization to circular. The results were experimentally verified, and a
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Figure 6.18: Frequency dependance of the beam-refracting metasurface’s perfor-
mance. (a) Far-field radiation pattern as a function of frequency and
φ in the plane θ = 90◦. The dashed blue line shows the theoretical de-
pendance of the refracted angle vs. frequency given in Eqn. (6.9). (b)
Axial ratio and transmission coefficient of the field transmitted into the
refracted direction.

17% half-powered bandwidth was reported. In the next chapter, it is shown that this

design process can be applied to develop novel lenses that simultaneously provide

beam focusing and polarization control.
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CHAPTER VII

Controlling Vector Bessel Beams with

Metasurfaces

7.1 Chapter Introduction

In this chapter, it is first demonstrated that metasurfaces can simultaneously focus

an incident wavefront and control its polarization [191]. Specifically, two metasurfaces

are developed to convert linearly and circularly polarized Gaussian beams into vector

Bessel beams: cylindrical vector beams with a Bessel profile. The unit cells of the

two metasurface lenses are designed to act as anisotropic wave plates to convert the

linearly-polarized and circular-polarized incident wavefronts to cylindrical polariza-

tions (i.e. radial and azimuthal). The metasurfaces were fabricated using standard

printed circuit board processes, and were experimentally characterized.

Next, the two metasurfaces are operated in a reciprocal manner to provide wave-

front collimation. The metasurfaces are excited with a planar, leaky radial waveguide

(Bessel beam launcher) that generates a radially polarized Bessel beam. The meta-

surfaces then collimate the radiation with minimal reflection loss, to realize high gain

lens-antennas. The lens-antennas achieve an order of magnitude thickness reduc-

tion over previously reported lens-antennas since the metasurface lenses are directly

integrated with the antenna feed (Bessel beam launcher) [191].

7.2 Gaussian-to-Bessel Metasurfaces

7.2.1 Motivation

Vector Bessel beams play a critical role in many optical systems [168]. These

beams maintain a high intensity focus over a considerable distance for applications
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such as particle trapping, tractor beams, near-field probes, laser machining, lithog-

raphy, and optical data storage [192–194]. In addition, their azimuthal and radial

polarizations are useful for the spectroscopy of magnetic dipole transitions in quan-

tum dots [195]. Such beams also provide information about the orientation of a

single molecule and are ideal sources for exciting surface plasmons in axially sym-

metric structures [61, 195]. Therefore, developing a simple means of transforming a

commonplace Gaussian beam into a vector Bessel beam is highly desirable. How-

ever, this requires both polarization and phase control, which typically involves mul-

tiple lenses, spatial light modulators, dielectric waveplates, or other bulky compo-

nents [61,167,168].

Here, two metasurfaces are introduced to efficiently convert normally incident

Gaussian beams into Bessel beams. The first metasurface transforms x- and y-

polarized Gaussian beams into transverse magnetic (TM or radially polarized) and

transverse electric (TE or azimuthally polarized) polarized Bessel beams, respectively.

The second metasurface transforms an incident left-handed-circularly polarized Gaus-

sian beam into a transmitted TM-polarized Bessel beam, as shown in Fig. 7.1. Cor-

respondingly, the two metasurfaces will be referred to as the linear-to-Bessel and the

circular-to-Bessel metasurfaces. The unit cells comprising both metasurfaces utilize

three anisotropic sheet admittances cascaded along the direction of propagation (ẑ).

The cells are individually designed to realize a stipulated phase shift along their re-

spective spatially-varying principle axes, while at the same time maintaining high

transmission. Thus, the metasurfaces are low-loss and impedance-matched to free

space to maximize efficiency.

x

y z

Figure 7.1: An inhomogeneous, anisotropic metasurface transforms a circularly po-
larized Gaussian beam into a vector Bessel beam with high efficiency.
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7.2.2 Review of Vector Bessel Beams

Vector Bessel beams are axially symmetric beam solutions to Maxwell’s equations

[196,197]. They can be written as,

E = e−jkzz
(
CTMJ0(kρρ)ẑ − CTE

kη

kρ
jJ1(kρρ)φ̂+ CTM

kz
kρ
jJ1(kρρ)ρ̂

)

H = e−jkzz
(
CTEJ0(kρρ)ẑ + CTM

k

ηkρ
jJ1(kρρ)φ̂+ CTE

kz
kρ
jJ1(kρρ)ρ̂

)
(7.1)

where CTM and CTE represent the coefficients of the TM (radially) and TE (az-

imuthally) polarized Bessel beams, respectively. A time-harmonic progression of ejωt

and propagation in the ẑ direction is assumed. In (7.1), kρ and kz are the transverse

and longitudinal wavenumbers, which satisfy the separation relation k2
z + k2

ρ = k2 =

ω2εµ, and J0(kρρ) and J1(kρρ) are the zeroth and first order Bessel functions of the

first kind. Non-paraxial Bessel beams with transverse wavenumbers of kρ = 0.8k

were chosen in this study. The Bessel beams under consideration are truncated with

a Gaussian windowing function (exp(−ρ2/w2
0)). Hence, these beams are often referred

to as Bessel-Gauss beams.

7.2.3 Metasurface Design

It is well known how to transform linear or circular polarization to cylindrical

polarization using the Jones matrices of spatially varying waveplates [61,198,199]. In

short, each unit cell of the linear-to-Bessel metasurface acts as a half-wave-plate, and

each unit cell of the circular-to-Bessel metasurface acts as a quarter-wave-plate. Such

configurations allow the polarization to be transformed from linear and circular, re-

spectively, to cylindrical. In addition, the metasurfaces must apply an inhomogeneous

phase shift across their surfaces to transform the wavefront from a Gaussian profile to

a Bessel profile. The necessary phase shift provided by each unit cell is determined by

simply subtracting the phase of the desired wavefront (Bessel beam) from the phase

of the incident wavefront (Gaussian beam). Fig. 7.2 shows the slow axis of each unit

cell and the phase shift that should be imparted by the fast axis of the metasurface.

For clarity only the middle portion of the metasurfaces are shown. Note that the

circular-to-Bessel metasurface requires quarter-wave plates whose fast axis provides

a full 2π phase coverage. This should not be confused with earlier metasurfaces that

provided complete phase control for circularly polarized light by local changes in the

polarization (Pancharatnam-Berry phase) [200].
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Figure 7.2: (a) Designed metasurface that converts a linearly polarized Gaussian
beam into a vector Bessel beam. Each unit cell acts as a half-wave-
plate. When the incident polarization of the Gaussian beam is oriented
along x̂ and ŷ, the transmitted Bessel beam is TM and TE polarized,
respectively. (b) Designed metasurface that converts a circularly polar-
ized Gaussian beam into a TM polarized bessel beam. Each unit cell acts
as a quarter-wave plate. For both plots, the lines and color correspond
to the orientation of the slow axis and the phase shift of the fast axis,
respectively.

The geometry shown in Fig. 7.3(a) is employed to realize the unit cells of the

metasurfaces. It consists of patterned metallic sheets (sheet admittances) cascaded

in the direction of propagation. The metallic patterns are separated by Rogers 4003

substrates (εr = 3.55, tan δ = 0.0027) that are 1.52 mm (λ/19.7) in thickness. A

typical unit cell of the linear-to-Bessel metasurface is shown in Fig. 7.3(b). Each

sheet admittance of a unit cell can be modelled as a parallel LC circuit. The in-

ductance results from the metallic grid outlining the cell, and the capacitance from

the top-hat loaded crossed-dipole at the center. Each sheet admittance can be con-

trolled by adjusting the dimensions and orientation of the crossed-dipole relative to

the x-axis. An additional advantage of this geometry is that the metallic grid out-

lining the unit cell reduces undesired coupling between neighboring unit cells, which

is inherent to inhomogeneous designs such as this [201]. As a result it simplifies

design. The average simulated transmittance of the fast and slow axes of all unit

cells comprising the linear-to-Bessel metasurface are 0.93 and 0.84, respectively. The

average simulated transmittance of the fast and slow axes of all unit cells comprising

the circular-to-Bessel metasurface are 0.80 and 0.79, respectively. This high transmit-

tance demonstrates that both metasurface designs exhibit low loss and are impedance
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Figure 7.3: (a) Analytic model used to design each unit cell. (b) Schematic of a
typical unit cell. This particular cell acts as a half wave plate with its
fast axis oriented along φ = −π/8. (c) Fabricated metasurface that
converts a linearly polarized Gaussian beam into a vector Bessel beam.
(d) Fabricated metasurface that converts a circularly-polarized Gaussian
beam into a TM-polarized Bessel beam.
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matched to free space.

7.2.4 Measurements

The metasurfaces were fabricated using standard printed-circuit-board processes.

The top layers are shown in Figs. 7.3 (c) and (d). Both metasurfaces have an

operating frequency of 9.9 GHz, a radius of 99 mm (3.3λ), and an overall thickness

of 3.13 mm (λ/9.6). They were experimentally characterized by illuminating them

with a Gaussian beam. The transmitted fields were scanned at a distance z = 15 mm

from the surface. The normally incident Gaussian beam had a beam waist radius of

w0 = 57 mm (1.9λ). The experimental setup is identical to that described in [187].

First, the linear-to-Bessel metasurface was illuminated with x- and y-polarized

electric fields, and the transmitted tangential magnetic field was measured, as shown

in Figs. 7.4 (a) and (b). When illuminated with x- and y-polarization, the transmitted

magnetic field is polarized along φ̂ and ρ̂, respectively. Note that radially (TM) and

azimuthally (TE) polarized Bessel beams have tangential magnetic fields that are

polarized in the φ̂ and ρ̂ directions, as given by (7.1). The non-diffracting property of

the TM-polarized Bessel beam was also verified by measuring the longitudinal electric

field, as shown in Fig. 7.4(c). It can be seen that the electric field closely resembles

a zeroth order Bessel function, as expected.

Next, the circular-to-Bessel metasurface was characterized. As shown in Fig. 7.4

(d), a left-handed-circular polarization incident on the circular-to-Bessel metasurface

results in a TM-polarized Bessel beam, as evidenced by the φ̂ directed magnetic field.

In addition, Fig. 7.4(e) shows that the Bessel beam propagates a considerable dis-

tance from the metasurface located at the z = 0 plane. It should be noted that if the

incident Gaussian beam were to travel in the −ẑ direction rather than the +ẑ direc-

tion, the circular-to-Bessel metasurface would instead convert right-handed-circular

polarization into the TM polarization. Fig. 7.4(f) plots the profile of the transmitted

wavefront for the cases where an x-polarized field is incident upon the linear-to-Bessel

metasurface and a left-handed-circular polarized field is incident upon the circular-to-

Bessel metasurface. In addition, an ideal Bessel-Gauss pattern (J0(kρρ)exp(−ρ2/w2
0))

is plotted as a reference.
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Figure 7.4: Measurements of the fabricated metasurfaces at the operating frequency
of 9.9 GHz. For all plots, arrows point in the direction of the magnetic
field, and the color corresponds to the absolute value of the magnetic
or electric fields. (a) and (b) Transmitted magnetic field when x- and
y-polarized Gaussian beams are incident on the linear-to-Bessel meta-
surface, respectively. (c) Transmitted z-directed electric field when an
x-polarized Gaussian beam is incident upon the linear-to-Bessel meta-
surface. (d) and (e) Transmitted magnetic field in the xy-plane and
z-directed electric field in the xz-plane, respectively, when a ẑ propagat-
ing, left-handed-circularly polarized Gaussian beams is incident on the
circular-to-Bessel metasurface. (f) Profile of the transmitted wavefront
when x-polarized and left-handed-circular polarized Gaussian beams are
incident upon the linear-to-Bessel and circular-to-Bessel metasrufaces, re-
spectively. In addition, an ideal Gaussian truncated Bessel pattern is
plotted as a reference.

7.3 Collimating Vector Bessel Beams

7.3.1 Motivation

In this section, the developed metasurfaces are operated in the reciprocal manner.

A radially polarized Bessel beam is transformed into collimated, linearly and circularly

polarized wavefronts, to realize high gain lens-antennas. High gain lens-antennas
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are commonly employed for long range communication, radar, and radiometry [36].

These antennas utilize a lens to collimate the radiation from a low gain radiating

element. Previously, dielectric lenses provided high efficiency and bandwidth, but

they suffered from being heavy, bulky, and expensive [36, 202]. This motivated the

development of ultra-thin metasurface lenses [36]. Although much effort has been

spent on reducing the thickness of the collimating lens, the overall thickness of the

lens-antenna combination has remained electrically large. To date, all lens-antennas

have an overall thickness larger than the radius of the focusing element. This allows

the fields from the feed to spread out to achieve a high aperture illumination efficiency

(see Fig. 7.5). However, the large overall thickness of the system is limiting.

Horn
Antenna

Collimating
Lens

(a)

Bessel Beam
Generator

Collimating
Lens

(b)

Figure 7.5: (a) Conventional lens-antenna collimates the radiation from a low gain
horn antenna. This system is bulky since the overall thickness of the lens-
antenna is larger than the radius of the lens. (b) Proposed lens-antenna
collimates the radiation from a planar leaky-wave antenna (Bessel beam
launcher). This proposed system is more compact since the lens can be
placed directly above the antenna feed.

Alternatively, traveling-wave antennas can generate a high gain within a low

profile. Some examples include partially reflecting surfaces [203], radial line slots

[204], fast-wave structures [205], and modulated surface impedances [206]. How-

ever, they scan with frequency and their design process is completely different from

lens-antennas. Radial line slot antennas have demonstrated high antenna efficiencies

exceeding 80%. However, full-wave optimization techniques are required to account

for undesired slot-to-slot coupling [207,208]. Partially reflecting surface antennas are

most similar to conventional lens-antennas since they also use a low gain radiating

element that is collimated by the surface [203]. However, the surface of these anten-

nas provides high reflection rather than high transmission, and they typically suffer

from prohibitively narrow bandwidths since their bandwidth is inversely proportional
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to the gain.

Here, an alternative approach to realizing high gain lens-antennas is reported.

The lens-antenna utilizes a low profile vector Bessel beam launcher as its feed, and a

metasurface lens collimates the radiation (see Fig. 7.6). The two metasurface lenses

developed in the previous section transform the TM (radial) polarization radiated by

the Bessel beam launcher into linear and circular polarizations, respectively. First,

the Bessel beam launcher is reviewed. Then, calculations and measurements of the

lens-antenna combination are reported.

Bessel Beam
Launcher

Metasurface
Lens

Bessel Beam

Collimated Beam

4 mm (λ/7.5)

89 mm
(3.3λ)

Figure 7.6: Schematic of the Bessel beam launcher and metasurface lens combination
for realizing a high gain antenna. Dimensions are not to scale. A contour
plot of the the simulated, tangential electric field between the Bessel beam
launcher and metasurface lens is shown.

7.3.2 Antenna Feed: Vector Bessel Beam

The Bessel beam launcher reported in [209, 210] acts as the feed for the lens-

antenna system. This feed is particularly attractive because it is low profile, and

radiates a field with relatively uniform amplitude directly above its aperture. This

enables a high aperture illumination efficiency for a small antenna-lens separation. In

addition, the radiated field can be described by closed-form expressions. Therefore,

designing the collimating lens is straightforward.

The launcher radiates a TM-polarized Bessel beam, which is an axially symmetric

beam solution to Maxwell’s equations [196, 197]. The radiated field can be written

as,

E = e−jkzz
(
J0(kρρ)ẑ − kz

kρ
jJ1(kρρ)ρ̂

)

H = e−jkzz
(

k

ηkρ
jJ1(kρρ)φ̂

)
(7.2)

The Bessel beam launcher consists of a coaxially fed, leaky-radial waveguide, as

shown in Fig. 7.7. The waveguide has a deeply subwavelength thickness of 0.588 mm
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(λ/50) and a radius of 89 mm (3λ). The top of the Bessel beam launcher is a capacitive

sheet admittance. The capacitance of the sheet, radius, and height of the Bessel beam

launcher were designed to generate outward and inward propagating Hankel functions

within the radial waveguide. The interference of these Hankel functions produces a

propagating Bessel beam with kρ = 0.8k at the operating frequency of 9.9 GHz. It

should be noted that a quarter-wave transformer was added to the coaxial feed of the

Bessel beam launcher to improve the impedance match to a 50 Ω load, which adds a

considerable thickness to the launcher. In the future, alternative matching techniques

could be utilized to avoid the added thickness.

Coax Feed
89 mm
(3.3λ)

Bessel Beam Launcher

Figure 7.7: A Bessel beam launcher radiates a TM-polarized Bessel beam with kρ =
0.8k. The inset shows a zoomed in view of the capacitive sheet on top of
the launcher.

7.3.3 Metasurface Lenses

Next, the planar Bessel beam launcher is integrated with the two developed meta-

surface lenses to realize low profile lens-antennas. The Bessel beam launcher radiates

a TM-polarized Bessel beam just above its surface. The linear-to-Bessel and circular-

to-Bessel metasurfaces are placed a subwavelength distance from the launcher to

collimate the radiation and convert the polarization from radial to linear or circular,

respectively (see Fig. 7.6). A 4 mm thick foam spacer composed of Rohacell 31

HF (εr = 1.046, tan δ = 0.0017) is used to separate the metasurfaces from the Bessel

beam launcher. The experimental setup of the Bessel beam launcher and metasurface

lens combination is shown in Fig. 7.8.

The field radiated by the Bessel beam launcher (incident on the metasurface) is

shown in Fig. 7.9(a). Here, we assume that the beam radiated by the Bessel beam

launcher is equal to that of an ideal Bessel beam (see Eq. (7.2)). Fig. 7.9(b) plots

the field transmitted by the linear polarizing lens. The transmitted field across the
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3.1 mm (λ/9.7)

198 mm (6.6λo)

Bessel Beam Launcher

Metasurface Lens

Figure 7.8: Experimental setup of the circular polarizing lens placed on top of the
Bessel beam launcher. A 4 mm thick, Rohacell 31 HF foam spacer sepa-
rates the Bessel beam launcher and the metasurface lens.

surface is calculated by simply multiplying the incident, transverse electric field at

each point by the transmission coefficient of the corresponding unit cell. It can be

seen that the metasurface efficiently rotates the spatially varying, radial polarization

to a common direction (x̂). In addition, the metasurface provides an inhomogeneous

phase shift so that the transmitted phase is uniform (i.e. the transmitted electric field

is real and positive).
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Figure 7.9: (a) Time snap-shot of the transverse electric field radiated by the Bessel
beam launcher. The color corresponds to the radial component of the
electric field, and the arrows plot the direction of the electric field vec-
tor in the xy plane. (b) Time snap-shot of the transverse electric field
transmitted by the linear polarizing lens. The color corresponds to the x̂
component of the electric field, and the arrows plot the direction of the
electric field vector in the xy plane.

It should be emphasized that this design procedure is not only limited to colli-

mating vector Bessel beams. In general a metasurface that provides polarization and
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phase control can be placed in the near field of any simple radiator to generate a

desired transmitted field profile. For example, the radiative near field of a ẑ directed,

Hertzian dipole has an electric field that is also radially polarized in the z = 0.1λ

plane. Therefore, a metasurface similar to the ones presented here could also colli-

mate the radiation from a closely spaced dipole that is oriented perpendicular to the

plane of the lens.

7.3.4 Calculated Performance

Simulating the entire Bessel beam launcher and metasurface lenses in a full-wave

simulation was not feasible given the computational resources available. Therefore,

Huygens’ principle was applied to predict the overall performance of the lens-antenna

[64]. First the Bessel beam launcher alone was simulated. This was done using the

two-dimensional, axially symmetric solver in COMSOL. The capacitive sheet of the

Bessel beam launcher was modelled as a homogenous sheet admittance boundary

condition. This simulation predicted the reflection coefficient, loss of the Bessel beam

launcher, and the field that is incident upon the metasurface lenses.

Huygens principle was then applied to model the metasurface lenses. Each unit cell

of the metasurface lens was represented as a Huygens’ source, which consists of crossed

electric and magnetic hertzian dipoles [153]. It should be noted that this is somewhat

of an approximation since it neglects undesired coupling between neighboring unit

cells [201]. The magnitude and phase of each Huygens’ source was determined by

multiplying the incident field (Bessel beam) by the transmission coefficient of the

designed unit cells. The incident field was determined from COMSOL simulations of

the Bessel beam launcher. Once the phase and amplitude of each Huygens’ source was

determined, the far field from each cell was added to calculate the radiation pattern,

directivity, and gain at each frequency.

7.3.5 Measurements

Measurements of the linearly and circularly polarized lens-antennas are shown

in Figs. 7.10 and 7.11. In all plots, the calculated and measured performance is

denoted by solid lines and dashed lines, respectively. It should be noted that at

the operating frequency of the metasurface lenses (9.9 GHz) there is close agreement

between measurement and calculation. The far-field radiation patterns, gain, and

realized gain were measured in the University of Michigan, Radiation Laboratory’s

anechoic chamber. The gain was measured using the gain comparison method. The
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realized gain is the antenna gain (G) multiplied by the reflection loss. From the

gain, the antenna efficiency could be determined from eant = Gλ2/(4πA), where A

is the physical area of the metasurface lens. Characterizing the radiation efficiency

and aperture illumination efficiency requires the antenna’s directivity (D), which was

measured using a near-field scanning system. The near-field scanning system provides

the complete, three-dimensional radiation pattern above the lens-antenna, and thus

was most accurate at estimating the directivity. The aperture illumination efficiency

is defined as eapt = Dλ2/(4πA), and the radiation efficiency is defined as erad = G/D.
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Figure 7.10: Measured and calculated performance of the linearly polarized lens-
antenna. Measurements and calculations are denoted by dashed and
solid lines, respectively. (a) Reflection coefficient of the lens-antenna.
(b) Radiation pattern at the operating frequency of 9.9 GHz. (c) Fre-
quency dependence of the realized gain. (d) Radiation efficiency, aper-
ture illumination efficiency, and antenna efficiency.

The reflection coefficient of the linearly polarized lens-antenna is shown in Fig.

7.10(a). The measured reflection coefficient is larger than the calculated response

below the operating frequency of 9.9 GHz. This is most likely due to reflections from

the linear-to-Bessel metasurface, which are not accounted for in calculations. The

measured radiation pattern is shown in Fig. 7.10(b). It can be seen that the main

beam is symmetric and the sidelobes are low due to the cylindrical symmetry of the
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lens-antenna. The measured and calculated realized gain is shown in Fig. 7.10(c).

The peak gain was measured to be 22.1 dB. The half-power gain bandwidth was

measured to be 8.1% and the ratio of the cross-polarized to co-polarized radiation

is less than -20 dB in the broadside direction over this bandwidth. The radiation

efficiency, aperture illumination efficiency, and the antenna efficiency are shown in

Fig. 7.10(d), from 9 to 11 GHz.

The reflection coefficient of the circularly polarized lens-antenna is shown in Fig.

7.11(a). The measured radiation pattern is shown in Fig. 7.11(b). The measured

and calculated realized gain is shown in Fig. 7.11(c). The peak gain was measured to

be 20.4 dB. The half-power gain bandwidth was measured to be 7.6% and the axial

ratio is less than 3 dB in the broadside direction over this bandwidth. The radiation

efficiency, aperture illumination efficiency, and the antenna efficiency are shown in

Fig. 7.11(d). Simulations show that the radiation efficiency is primarily limited by

losses in the Bessel beam launcher, for both the linearly polarized and circularly

polarized lens-antennas. In the future, the Bessel beam launcher can employ lower

loss materials, which should significantly increase the radiation efficiency.

7.4 Chapter Summary

This work extends the capabilities of metasurfaces to enable increased control of

a wavefront. This is demonstrated with two different metasurfaces that transform

linearly and circularly polarized Gaussian beams to vector Bessel beams. In addition,

the metasurfaces are operated in a reciprocal manner. They are combined with a

planar Bessel beam launcher (leaky radial waveguide) to realize the first lens-antenna

with a subwavelength overall thickness that achieves a high gain (exceeding 20 dB).

In future work, lens-antennas can be further optimized by incorporating alternative

leaky-wave or surface-wave feeding structures to replace the Bessel beam launcher.

This would enable amplitude control as well as phase and polarization control. In

addition, it should be emphasized that the same design procedure could be used to

realize metasurfaces that control the radiative near field of any elementary source.
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Figure 7.11: Measured and calculated performance of the circularly polarized lens-
antenna. Measurements and calculations are denoted by dashed and
solid lines, respectively. (a) Reflection coefficient of the lens-antenna.
(b) Radiation pattern at the operating frequency of 9.9 GHz. (c) Fre-
quency dependence of the realized gain. (d) Radiation efficiency, aper-
ture illumination efficiency, and antenna efficiency.
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CHAPTER VIII

Optical Huygens’ Surfaces

8.1 Chapter Introduction

At optical frequencies, phase and polarization control are typically achieved with a

combination of optically-thick wave plates and large dielectric lenses. An alternative

technology is a spatial light modulator, which can achieve arbitrary phase shifts

dynamically. However, these devices are bulky and have coarse pixel densities [211,

212]. More recently, metasurfaces exhibiting only an electric response have proved to

be a viable option, but they exhibited efficiencies of only a few percent [54, 157, 158,

213–216]. In the previous chapters, it was shown that high performance metamaterial

Huygens’ surfaces can be realized if a magnetic response is added. However, these

impedance-matched metasurfaces are far less common at optical frequencies [47,217,

218].

In this chapter, a theoretical Huygens’ surface that both focuses light and controls

its polarization at a wavelength of 2 µm is first demonstrated. The metasurface is

realized with a grid of spatially-varying, unit cells that are each (λ◦/2.5 x λ◦/2.5)

in size. It is shown that cascading four patterned sheets dramatically improves the

efficiency over the more common single sheet designs. The magnetic response is gener-

ated by circulating, longitudinal electric currents supported by the cascaded metallic

sheets. Simulations demonstrate that the proposed structure achieves large phase

coverage while maintaining high transmission. In addition, by utilizing anisotropic

sheets, extreme birefringence can be achieved. A planar lens that both focuses light

and converts its polarization from linear to circular is developed.

Next, the first experimental metamaterial Huygens’ surface at optical frequencies

is demonstrated. To simplify fabrication, the experimental Huygens’ surface consists

of three, rather than four, patterned metallic sheets. The metasurface is designed to

refract normally incident light to an angle of 35◦ from normal at the design wavelength
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of 1.5 µm. Simulations show that the surface exhibits a high efficiency of 30%, and

an order of magnitude improvement in the extinction ratio over previously reported

metasurfaces. The metamaterial Huygens’ surface is then fabricated by sequentially

patterning three gold (Au) sheets using standard electron beam lithography and liftoff

processes, while employing SU-8 dielectric spacers between them. Measurements

are performed using a spectroscopic ellipsometer, and the performance significantly

exceeds previously reported metasurfaces. In addition, this work presents the first

experimental demonstration of an isotropic metasurface that is capable of providing

wavefront control for arbitrarily polarized light.

8.2 Theoretical Metasurface for Complete Phase Control

8.2.1 Four Sheet Design

To begin, let’s consider a plane wave normally incident upon a periodic meta-

surface in the xy plane. We first assume the metasurface is composed of a single,

metallic sheet with a subwavelength pattern. It has been shown that this structure

can be modeled by a well defined sheet admittance boundary condition given by [7],

~Jt,av

∣∣∣
S

= Y s · ~Et,av
∣∣∣
S

(8.1)

The expressions ~Jt,av|S and ~Et,av|S represent the average surface current and electric

field tangential to the surface S. In general, Y s is a tensorial quantity, assumed here

to be diagonalized with eigenvectors in the x and y directions.

It was shown in chapter 6 that it is theoretically possible to obtain a symmetric

structure with perfect transmission and complete phase coverage with only three

layers. However, since the metasurface is required to operate next to a stop-band to

achieve phase delays near 0◦, the achievable bandwidth is limited. Therefore, a four

layer design will be investigated first, as shown in Figure 8.1(a). In Figure 8.1(b), the

magnitude and phase of the transmission coefficient are plotted as a function of Ys,

assuming that the sheets are lossless for the time being (Ys is purely imaginary). It can

be seen that the transmitted phase spans an entire 360◦ region, while the magnitude

maintains a transmittance greater than 60%. To simplify the analysis, it is assumed

that all 4 sheets are identical, the electrical length between each layer is βd = π/2,

and the wave impedance of the dielectric spacers is ηd = (2/3)η◦ =
√
µ◦/2.25ε◦.

It should be noted that if each sheet is allowed to be different, the transmittance

could be 100% for every desired phase shift, as shown in chapter 6. However, chapter

116



6 assumed low-loss materials were utilized, and arbitrary metallic patterns could be

fabricated with high accuracy. Neither of these assumptions are valid at optical

frequencies. Therefore, we limit ourselves to the simplified case for the time being.
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Figure 8.1: (a) Generic structure that consists of four cascaded metasurfaces (electric
sheet admittances) separated by dielectric layers. In general, the sheet
admittances are anisotropic such that x and y polarized light can be
controlled independently. (b) Transmitted power and phase as a function
of the normalized sheet admittance for βd = π/2 and ηd = (2/3)η◦ =√
µ◦/2.25ε◦.

To realize the necessary sheet admittances, the geometry shown in Figure 8.2 is

employed. It consists of four Au layers patterned on a SiO2 substrate. The substrate

is modeled as a lossless dielectric with an index of refraction of 1.5. The permittivity

of the Au near an operating wavelength of 2 µm is described by a Drude model with

plasma frequency fp = 2180 THz and collision frequency fc = 20 THz.

Each of the four sheet admittances can be modeled as a parallel LC circuit. The

inductance is created by both electron inertia and the wire grid outlining each unit

cell. The capacitance is created by the central patch. This structure is similar to

the well-known fishnet structure [219], with the primary difference being that the

capacitive patches do not touch the wire grid. This increases inductance and reduces

capacitance, which in turn enhances the bandwidth near resonance. By adjusting the

dimensions of the patch and wires (sx, sy, wx, wy), the admittance can be sufficiently

controlled to provide complete phase coverage. Realizing anisotropic sheet admit-

tances is also straightforward since the inductance and capacitance in the x and y

directions can be independently controlled. This is equivalent to extreme birefringence

in optical crystals since arbitrary phase shifts between the two axes are achievable

within a subwavelength thickness. The minimum feature size for this structure is set
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Figure 8.2: (a) Perspective view of a typical unit cell. This particular cell is isotropic.
(b) Side view of each cell. The dimensions are not to scale. (c) Top view
of a generic unit cell. By adjusting the parameters sx, sy, wx, and wy, the
transmitted phase of both polarizations can be independently controlled.

to 90 nm.

8.2.2 Comparison to Fishnet Structure

The proposed geometry exhibits a larger bandwidth than the well-known fishnet

structure [60, 219]. To illustrate this, consider the unit cells shown in Figures 8.3(a)

and 8.3(b). For the polarization shown, Figure 8.3(a) has an identical operation as the

geometry presented in Figure 8.2 (c), whereas Figure 8.3(b) is the fishnet geometry.

Both structures are similar since they can be modeled as parallel LC circuits. The di-

mension ‘w’ primarily affects the inductance and ‘d’ primarily affects the capacitance.

Both geometries can also be made to resonate at the same frequency. However, the

geometry shown in Figure 8.3(a) has a larger inductance and correspondingly smaller

capacitance than the geometry shown in Figure 8.3(b).

Let both geometries have a resonant frequency of ω◦ = 1/
√
L1C1 = 1/

√
L2C2,

where L1 > L2 and C1 < C2. The impedance of this structure is given by its parallel

combination, Z = (1/(jωL) + jωC + 1/R)−1. The resistance (R) models the metallic

loss and is assumed to be equal for both geometries. The impedance bandwidth is

inversely proportional to its frequency derivative at resonance,

dZ

dω
=

jLR2(1 + ω2LC)

R− ω2RLC + jωL
(8.2)
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Figure 8.3: (a) Proposed geometry that has an identical operation as the geometry
presented in Figure 8.2 (c) for the polarization shown. (b) Fishnet geom-
etry. The fishnet geometry has a larger capacitance and correspondingly
smaller inductance than the proposed geometry.

Operating near resonance, ω = ω◦, C = 1/(ω2
◦L), it can be seen that the frequency

derivative is inversely proportional to the inductance,

dZ

dω

∣∣∣∣
ω=ω◦

=
−j2R2

Lω2
◦

(8.3)

Thus, to achieve a maximal bandwidth, the inductance should be maximized and

the capacitance should be minimized. However, it should be noted that this analysis

is only accurate when the spacing between metallic sheets along the z axis is large

enough that evanescent coupling can be neglected. When realizing bulk negative

index metamaterials, the spacing between metallic sheets is usually reduced from the

360 nm spacing used here, and there is significant evanescent coupling between the

sheets [60].

8.2.3 Four Sheet Unit Cell Simulations

The unit cell shown in Figure 8.2 was simulated for many values of its free pa-

rameters (sx, sy, wx, wy). By interpolating between the swept points, the transmitted

phases that can be achieved were determined, as shown in Figure 8.4(a). The x and y

axes of Figure 8.4(a) correspond to the transmitted phase of x and y polarized light,

respectively. The color represents the average of the transmittance for the two po-

larizations. The black areas correspond to regions where it is not possible to achieve

the desired transmitted phase due to either low transmittance or requiring feature

sizes below 90 nm. Figure 8.4(b) shows the dimensions of the cascaded unit cells
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that act as quarter wave plates (dashed green lines of 8.4(a)). It can be seen that

the proposed metasurface provides high transmission and complete phase control for

both polarizations.
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Figure 8.4: (a) The transmitted phases that can be achieved by the cascaded meta-
surfaces shown in Figure 8.2. The x and y axes denote the transmitted
phase of x and y polarized light, respectively. The color represents the
average of the transmittance for the two polarizations. Black areas corre-
spond to regions where it is not possible to achieve the desired transmitted
phase. The blue box outlines a region with complete control of the trans-
mitted phase for both polarizations. The dashed green lines correspond
to cells that act as a quarter-wave plate. Also shown are three different
unit cells that achieve the corresponding phases shifts. (b) Dimensions
of the cascaded unit cells (sx, sy, wx, wy) that act as quarter-wave plates.

8.2.4 Calculations of Focusing and Polarization Control

Let’s consider a metasurface lens that both focuses and controls the polarization

of a normally incident plane wave. It is assumed that the incident wave is linearly

polarized at 45◦ relative to the x-axis so that the x and y components of the metasur-

face are equally excited. If the unit cells are restricted to act as quarter-wave-plates

(dashed green lines of Figure 8.4(a)), each cell will convert the polarization from

linear to circular. In addition, a quadratic phase with a focal length of 400 µm is

realized across a 160 µm diameter lens (NA=0.20). This is accomplished by spatially
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distributing the unit cells across the lens to achieve the desired transmitted phase

at each point, as shown in Figure 8.5(a). This effectively amounts to combining a

parabolic lens and quarter-wave plate into a single, low profile device. If the polar-

ization of the incident light was different, the lens would still focus the light to a

spot, but it would convert the polarization to elliptical in general. Since an ideal

phase distribution can be generated across the surface, the lens does not suffer from

spherical aberration, coma, and astigmatism [157].
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Figure 8.5: (a) Zoomed in view of a section of the designed metasurface. (b) Trans-
mitted power and phase along the diameter of the lens for x and y polar-
ized light.

Given the computational resources available, it was not feasible to simulate the

entire array using a full wave electromagnetics solver. Therefore, Love’s equivalence

principle is employed to validate the design [152]. Each unit cell is approximated as a

crossed electric and magnetic, infinitesimal dipole (Huygens’ source) with phase and

amplitude given by its simulated transmission coefficient. This method has proven

accurate at modeling previous lens designs, and accounts for any amplitude variation

across the lens [47, 220]. Figure 8.5(b) shows the magnitude and phase of the x and

y directed Huygens’ sources across the diameter of the lens. When these sources are

radiated, the intensity at the focal plane can be found, as shown in Figure 8.6(a). The

magnitude is normalized by the peak intensity of an ideal lens that provides 100%

transmittance and ideal parabolic phase. The simulated lens has a peak intensity

that is 62% of the ideal lens. Wherever the normalized intensity is above 1% of

121



the peak value, the axial ratio (AR) is less than 1 dB, as shown in Figure 8.6(b).

This indicates a pure circular polarization. The axial ratio is defined here as AR =

20 log10(Emax/Emin), where Emax and Emin are the major and minor axes of the

polarization ellipse, respectively. Note that although the phase distribution across

the lens is ideal, there is variation in the amplitude. This causes some abberation in

the focal plane.

x/λ

y/
λ

 

 

−4 −2 0 2 4

−4

−2

0

2

4

0.1

0.2

0.3

0.4

0.5

0.6

(a)

x/λ

y/
λ

 

 

−4 −2 0 2 4

−4

−2

0

2

4 0

0.5

1

1.5

2

2.5

3
dB

(b)

Figure 8.6: (a) Intensity at the focal plane normalized by the peak intensity of an
ideal lens with 100% transmittance and ideal phase. (b) Axial ratio (AR)
at the focal plane. AR < 1 dB wherever the normalized intensity is above
1% of the peak value, thus indicating a pure circular polarization.

8.3 Experimental Validation

Next, the design process is experimentally verified by again considering the exam-

ple of beam refraction as shown in Fig. 8.7. To simplify fabrication, the experimental

Huygens’ surface consists of three, rather than four, patterned metallic sheets. In

addition, the experimental Huygens’ surface is isotropic.

8.3.1 Three Sheet Unit Cell Design

The isotropic unit cell of the experimental Huygens’ surface consists of three 30 nm

thick Au sheets patterned on a SiO2 substrate, as shown in Fig. 8.8. The Au sheets

are separated by 200 nm thick SU-8 dielectric spacers to realize an overall thickness

of 430 nm (λ◦/3.5). The SiO2 substrate is modeled as a lossless, infinite half space
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Figure 8.7: (a) Perspective view of an optically thin, isotropic metamaterial Huygens’
surface that efficiently refracts a normally incident beam at telecommu-
nication wavelengths. (b) Top view of the beam-refracting metamaterial
Huygens’ surface.

with an index of refraction of nSiO2 = 1.45. The index of refraction of the SU-8 is

nSU-8 = 1.57. Near the operating wavelength of 1.5 µm, the relative permittivity of

Au is described by the Drude model εAu = ε∞ − ω2
p/(ω

2 + jωωc), with ε∞ = 9.0, the

plasma frequency is ωp = 1.363x1016 rad/s (8.97 eV), and the collision frequency is

ωc = 3.60x1014 rad/s (0.24 eV). This collision frequency assumes a loss that is over

three times that of the previous section. This increased loss takes into account thin

film surface scattering and grain boundary effects [221].

As in the previous section, each of the three sheet admittances can be modeled

as a parallel LC circuit (see Figure 8.8(c)). The inductance arises from both electron

inertia and the wire grid outlining each unit cell. The capacitance is created by

the central disk. In other words, increasing ‘w’ decreases the imaginary part of the

sheet admittance, whereas increasing ‘d’ increases the imaginary part of the sheet

admittance. The central disc is circular rather than square, which eases fabrication

tolerances. Once the sheet admittances are realized, their cascaded response can be

calculated using the transfer matrix approach described earlier. In Figure 8.9, the

transmittance, transmitted phase, and reflectance are plotted as a function of the

outer sheet admittances (Ys1 = Ys3). From the analytic model that includes losses, it

was found that enforcing the condition Ys1 = Ys3 = Ys2/1.5, provides a good trade-off

between maximizing transmission bandwidth and phase coverage, while minimizing

loss and reflection. It should be noted that transmittance and phase coverage increase

with reduced metallic loss.

123



βd, ηd

Ys1

Ys3Ys2

y
x z

βd, ηd

Free
Space

SiO2

(a)

y
x

430 nm
(λ/3.5)

520 nm
(λ/2.9)

Bulk
SiO2

SU-8

z

(b)

d

w/2
w/2

x

y
520 nm
(λ/2.9)

(c)

Figure 8.8: Experimental unit cell design. (a) Analytic model of a unit cell consist-
ing of three metallic sheets cascaded in the direction of propagation. (b)
Perspective view of a typical unit cell. (c) Top view of each of the three
sheet admittances. The imaginary part of the sheet admittance increases
with increasing ‘d,’ whereas the imaginary part of the sheet admittance
decreases with increasing ‘w’. It can be seen that the cell is isotropic.
Therefore, there is no scattered power in the cross-polarized field compo-
nent.

The imaginary part of the sheet admittance is primarily responsible for controlling

the phase delay through a unit cell, and the real part accounts for the loss. For an

accurate model of the cascaded sheet admittances, the relationship between the real

and imaginary parts of the sheet admittance must be determined. From simulations

of the geometry shown in Figure 8.8(c), it was found that the real part of the sheet

admittance increases nearly monotonically with the magnitude of the imaginary part

of the sheet admittance, as shown in Figure 8.10. This relationship between the real

and imaginary parts of the sheet admittance is incorporated in the analytic model

presented in Figure 8.9.

8.3.2 Beam Refraction Simulations

Table 8.1: Designed dimensions (nm) of each sheet admittance. The subscripts 1, 2,
and 3 denote the dimensions of the first, second, and third layers, respec-
tively.

Cell# w1 d1 w2 d2 w3 d3

1 166 0 212 0 206 0

2 78 0 110 0 110 0

3 60 278 60 210 60 214

4 60 324 60 298 60 270

5 60 364 60 306 60 296

A beam-refracting metamaterial Huygens’ surface is then realized by stipulating
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Figure 8.9: Transmittance, transmitted phase, and reflectance as a function of the
imaginary part of the outer sheet admittances (Ys1 = Ys3) at a wave-
length of 1.5 µm. Light is incident from the SiO2 substrate side. The
squares indicate the simulated reflection and transmission coefficients of
the five unit cells shown in Figure 8.11(a). It is assumed the middle sheet
admittance is 1.5 times the outer sheet admittances (Ys1 = Ys3 = Ys2/1.5),
which limits reflection loss. The loss of the sheet admittance is estimated
from simulations of the unit cell shown in 8.8(b).

a linear phase gradient across the surface. This example was again chosen because

its performance is straightforward to characterize in experiment [158]. Figure 8.11(a)

shows a section of the designed Huygens’ surface that refracts normally incident light

to an angle of 35.2◦ at a wavelength of 1.5 µm. The exact dimensions are supplied

in Table 8.1. Each supercell contains five unit cells whose simulated performance is

shown in Figure 8.9. Simulations were performed using the full-wave solver, CST Mi-

crowave Studio. It can be seen that there is a good agreement between the simulated

data points and the analytic model. Figure 8.11 shows the wavelength dependence

of the transmittance and transmitted phase shift of the five unit cells. It should be

noted that the achievable phase coverage was reduced due to Au loss. If the minimum

transmittance of each unit cell is stipulated to be 0.15, the achievable phase coverage

is limited to 260◦ rather than the ideal 360◦. In addition, the transmittances of each

unit cell are not identical. Both the reduced phase coverage and nonidentical trans-

mittance creates aberration in the transmitted field. For periodic structures such

as beam-refracting surfaces, these aberrations can be easily quantified using well-

known Floquet theory [189]. In short, the transmitted field can be decomposed into

propagating Floquet harmonics. For example, transmission into the n = 0 harmonic

corresponds to light that is transmitted in the normal direction (φr = 0◦), whereas
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the n = 1 harmonic corresponds the refracted direction (φr = 35.2◦). The goal here

is to maximize the power in the n = 1 harmonic, while minimizing the power in other

harmonics.

The simulated performance of the designed metamaterial Huygens’ surface is

shown in Figure 8.12. Figure 8.12(a) shows a time snapshot of the steady-state

electric field when a plane wave is normally incident from the SiO2 substrate at a

wavelength of 1.5 µm. It can be seen that the Huygens’ surface efficiently refracts

the incident light to (φr = 35.2◦). The ripple in the field is from power that is

scattered into undesired Floquet harmonics. In Figure 8.12(b), the transmittance is

plotted as a function of the refracted angle and wavelength. This shows the angular

dependence of the various Floquet harmonics. It can be seen that the majority of

the transmitted power is in the n = 1 harmonic. As the operating wavelength varies

from 1.2 µm to 2 µm, the refracted angle of this harmonic scans from (φr = 27.5◦) to

(φr = 50.3◦). The power that is refracted is better quantified in Figure 8.13, which

plots the transmittance and reflectance versus wavelength. In this plot, the s- and

p-refracted curves correspond to the transmittance of the two polarizations into the

n = 1 Floquet harmonic. Also shown are two of the loss mechanisms of the Huygens’

surface, which include reflection and transmission into undesired Floquet harmonics

(for example, n = −2, n = −1, n = 0, n = 2 harmonics). Virtually no power (<-60

dB) is scattered into cross-polarized light. The power that is lost due to Au absorption

is 1 - (refracted) - (reflected) - (transmitted undesired), which is approximately 60%

at the wavelength of 1.5 µm. The metamaterial Huygens’ surface is isotropic since

the s- and p-polarized curves coincide over much of the operating wavelengths. The
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Figure 8.11: Designed beam-refracting Huygens’ surface. (a) Perspective view of the
metamaterial Huygens’ surface when viewed from the bulk SiO2 side. All
dimensions are to scale. The five unit cells comprising the surface are
outlined. (b,c) Simulated wavelength dependence of the transmittance
and transmitted phase shift of each unit cell comprising the designed
metamaterial Huygens’ surface.

difference between the two polarizations is most likely due to the coupling between

spatially varying unit cells since this is not accounted for in the analytic model. It

should also be noted that the response is broadband. The refracted field maintains a

transmittance that is greater than half its peak value over a bandwidth of 1.33 µm to

1.95 µm (38%) for both polarizations. Two important performance metrics are the

peak efficiency (transmittance in the refracted direction) and extinction ratio (ratio

of the refracted transmittance to normal transmittance) [49]. Simulations demon-

strate a peak efficiency and extinction ratio of 32.6% and 11.6 dB, respectively, for

s-polarized light and 30.4% and 10.3 dB, respectively, for p-polarized light.
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Figure 8.12: Simulated beam-refracting metamaterial Huygens’ surface. (a) Time
snapshot of the steady-state, y-polarized electric field when a plane wave
is normally incident from the bottom at a wavelength of 1.5 µm. The
incident electric field has an amplitude of 1 V/m. (b) Transmittance as
a function of wavelength and transmitted angle for s-polarized light. At
the design wavelength of 1.5 µm, the transmittance of the n = 1 Floquet
harmonic (φr = 35.2◦) is much larger than the n = −1 (φr = −35.2◦)
and n = 0 (φr = 0◦) harmonics.

8.3.3 Fabrication

The metasurface was fabricated and measured at Purdue University by Naresh

Emani, and Amr Shaltout, who are in Alexandra Boltasseva’s and Vladimir Shalaev’s

research groups [222]. The fabrication process is shown in Figure 8.14(a) [12]. The

design is fabricated on a 500 µm thick SiO2 substrate. First, the bottom sheet

admittance (Ys3) is fabricated by patterning a 2 nm Ti adhesion layer and 28 nm Au

layer using standard electron beam lithography and liftoff. Next, a 200 nm thick, SU-

8 dielectric layer is spin coated onto the wafer, which naturally planarizes the surface

for the following layer (measured roughness < 5 nm). This process is repeated until

three Au layers are patterned to achieve the unit cell shown in Figure 8.8(b). The

patterned area is 500 µm x 500 µm. Scanning electron microscope (SEM) pictures of

the fabricated metamaterial Huygens’ surface are shown in Figure 8.14. As measured

from SEM pictures, the fabricated dimensions of each layer are shown in Table 8.2,

and are 30 nm different from the design dimensions.
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s- and p-refracted denotes the transmittance of light that is refracted into
the n = 1 harmonic for the s- and p-polarizations, respectively. s- and p-
reflected denotes the total reflectance. s- and p-undesired transmittance
denotes the total transmittance that is not in the n = 1 harmonic.
Virtually no power (<-60 dB) is scattered into cross-polarized light.

8.3.4 Measurements

The fabricated sample is measured using the transmission module of an ellipsome-

ter (V-VASE, J. A. Woollam Co.) A monochromator scans the wavelength of a nor-

mally incident light source, and the transmitted power is measured at each refracted

angle. Unlike in the simulations of Figure 8.12, the incident light in measurements

propagates in the +z direction, which simplifies the alignment procedure. This has

minimal effect on the transmittance but does increase the reflectance. Simulations

suggest that when the incident light propagates in the +z direction, the refracted

transmittance is at most 3% different from when the incident light propagates in the

z direction. The measured transmittance in the refracted direction and normal direc-

tion are shown in Figure 8.15 for s-polarized and p-polarized light, respectively. As

mentioned, SEM pictures show that the dimensions of the fabricated surface are off

by 30 nm, which causes the discrepancy between the measured performance and the

simulations presented in Figure 8.12. To demonstrate that the difference between the

fabricated and designed dimensions is the cause of error between measurement and

simulation, the fabricated dimensions are also simulated, which is shown in Figure

8.15. It can be seen that the re-simulated and measured performance agree for the
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Figure 8.14: Fabrication of the metamaterial Huygens’ surface. (a) Fabrication pro-
cess involves sequential patterning of each 2 nm/28 nm thick Ti/Au
layer using standard electron-beam lithography and liftoff, followed by
spin coating of a 200 nm thick SU-8 dielectric layer. Three metallic lay-
ers are patterned using the process resulting in an overall thickness of
430 nm. (b) Scanning electron microscope (SEM) picture of a section
of the metamaterial Huygens’ surface. (c) Perspective view of the edge
of the Huygens’ surface, such that all three layers can be seen.

refracted power. However, the power that is transmitted into the normal direction is

still roughly 5% larger in measurement than simulation, but the trends are the same.

The difference between simulation and measurement can be attributed to additional

fabrication and measurement errors. If the fabricated sample is not centered on the

incident beam for the ellipsometry measurements, a small percentage of the power is

not captured by the metamaterial Huygens’ surface. In addition, there is some un-

certainty when modeling the surface roughness and loss of the Au, which introduces

error into the simulations. Despite the various sources of error, these measurements

achieve a peak efficiency and extinction ratio of 19.9% and 2.93 dB, respectively, for

s-polarized light, and 18.0% and 3.05 dB, respectively, for p-polarized light. This is

an improvement of a factor of 3 in efficiency and a factor of 4 in extinction ratio

over the state of the art V-antenna [69]. In addition, the response is isotropic, which

enables control of an arbitrary incident polarization. However, it should be noted

that this increased performance does come at the expense of an increased thickness

and a multilayer fabrication process.
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Table 8.2: Fabricated dimensions (nm) of each sheet admittance measured with SEM
pictures. It can be seen that the fabricated dimensions are 30 nm different
from the design dimensions, which reduced the measured performance.

Cell# w1 d1 w2 d2 w3 d3

1 255 0 255 0 270 0

2 140 0 140 0 190 0

3 93 200 93 200 110 220

4 93 290 93 290 110 325

5 93 340 93 340 110 355
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Figure 8.15: Transmittance measurement results. (a) Transmittance of s-polarized
light into the refracted and normal directions versus wavelength. (b)
Transmittance of p-polarized light into the refracted and normal direc-
tions versus wavelength. For both (a,b), the simulation values account
for the fabricated dimensions of the Au patterns, which are off by roughly
30 nm from the design values based on SEM pictures.

8.4 Chapter Summary

In summary, an efficient metasurface with complete control over the transmitted

phase of x and y polarized light was presented. Since both polarizations of light can

be independently controlled, arbitrary waveplates can be generated. A lens that both

focuses light and converts the polarization from linear to circular is demonstrated.

This lens has a simulated peak intensity that is 62% of an ideal lens (i.e. a lens

with 100% transmission and parabolic phase gradient) of the same dimensions. This

phase and polarization control can find applications in the design of novel lenses that

manipulate both the profile and polarization of light.
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Next, a low profile metamaterial Huygens’ surface was experimentally demon-

strated for the first time at optical wavelengths. In addition, the surface exhibits an

isotropic response and large extinction ratio. In future work, the fabrication process

can be further optimized so that the fabricated dimensions are closer to the design. In

addition, large area soft lithography processes, such as nanoimprint lithography, can

be used to dramatically reduce the cost of metasurfaces. This work can find numerous

applications such as low profile lenses [157], computer-generated-holography [218],

nondestructive evaluation [223], and stealth technologies [151]. In addition, novel

types of beams such as Airy beams [224], Bessel beams [167], and vortex beams [54]

can be generated.
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CHAPTER IX

Bianisotropic Metasurfaces for Optimal

Polarization Control: Analysis and Synthesis

9.1 Chapter Introduction

In the previous chapters, it was shown that adding a magnetic response to meta-

surfaces can dramatically increase their efficiency [55, 187, 225]. Here, electric and

magnetic anisotropy and magnetoelectric coupling are also systematically incorpo-

rated into metasurface design to allow for complete control of an electromagnetic

wavefront’s polarization and phase. To date, many structures have been reported

that exhibit novel polarization effects such as asymmetric transmission [?,65,226,227],

and giant optical activity [66, 170]. However, the performance of most devices has

been suboptimal since systematic design methodologies for realizing these low sym-

metry structures has been limited [170]. Designs typically employ a resonant geom-

etry that exhibits the necessary mirror and rotational symmetry such that a desired

bianisotropic response is observed rather than attempting to provide optimal perfor-

mance [67]. Additionally, the principle of operation is often device specific, and its

generalization to other designs is not straightforward.

Previously reported analyses modeled bianisotropic metasurfaces as coupled elec-

tric and magnetic dipoles [228]. In [170], the interaction of neighboring particles is

also considered. However, the model is rather complex since the polarizabilities relate

the induced dipole moment to the incident field rather than the average field [170].

Alternatively, it is possible to model a metasurface as a thin bianisotropic slab [229].

However, the scattering parameters cannot be solved for in closed form unless some

simplifying approximations are made [?]. Further, the interpretation is not strictly

appropriate since the thickness of a metasurface is ill-defined [230].

In this chapter, methods to both analyze and design bianisotropic metasurfaces are
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presented. First, bianisotropic metasurfaces are analyzed using closed-form expres-

sions that relate the reflection and transmission coefficients (scattering parameters) to

constituent surface parameters. This is an alternative approach to that used in [170],

and provides additional physical intuition. Here, the constituent surface parame-

ters relate the induced dipole moments to the average field quantities as in standard

homogenization techniques for bulk materials. Next, a method to systematically de-

sign bianisotropic structures is introduced. It is shown that cascading anisotropic,

patterned metallic sheets can provide significant control over the constituent surface

parameters. A transfer matrix approach is used to directly solve for the scattering pa-

rameters (S-parameters) of the structure, enabling devices with optimal performance:

polarization purity and high transmission. It should be emphasized that the main

claim is that the performance, rather than the implementation, is optimal. Finally,

the ability to realize a wide range of constituent surface parameters is demonstrated

with four different devices: a polarization rotator, an asymmetric circular polarizer,

an asymmetric linear polarizer, and a symmetric circular polarizer.

9.2 Analysis: Relating S-parameters to Constituent Surface

Parameters

Let us consider two regions of space (Regions 1 and 2) with wave impedances

given by η1 =
√
µ1/ε1 and η2 =

√
µ2/ε2, respectively. The two regions of space

are separated by an arbitrary metasurface along the z = 0 plane, as shown in Fig.

9.1. The metasurface is illuminated by normally incident plane. The scattering

parameters (S-parameters) are equal to the ratio of the scattered electric field to the

incident electric field. In general, Snm =

(
Sxxnm Sxynm

Syxnm Syynm

)
is a 2x2 matrix relating the

field scattered into Region n when a plane wave is normally incident from Region m.

For example, Syx21 represents the y-polarized field transmitted into Region 2 when an

x-polarized plane wave is incident from Region 1. The parameters S11 and S22 are

the reflection coefficients when viewed from Regions 1 and 2 respectively, and S21 and

S12 are the transmission coefficients when viewed from Regions 1 and 2, respectively.

The transmission coefficient is often referred to as the Jones matrix [67].

An arbitrary metasurface can be modeled as a two-dimensional array of polarizable

particles [155]. Each particle is characterized by its quasi-static electric and magnetic

polarizabilities (αe,m), defined as the ratio of the dipole moment to the local field.

When these particles are closely spaced across a two-dimensional surface, a surface
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Figure 9.1: Bianisotropic metasurfaces exhibiting electric, magnetic, and magneto-
electric responses can achieve complete control of the polarization of an
electromagnetic wavefront. This artistic rendering shows the example of
an asymmetric circular polarizer converting right-handed-circularly polar-
ized light from Region 1 to left-handed-circularly-polarized light in Region
2. However, right-handed-circularly polarized light is completely reflected
when incident from Region 2.

polarizability (αs
e,m) that accounts for coupling between particles can be defined [155].

They represent the effective polarizability per unit area,

(
ps

ms

)
=

(
αs
ee αs

em

αs
me αs

mm

)(
E

H

)
(9.1)

Here, ps = [psx psy]
T and ms = [ms

x ms
y]
T represent the electric and magnetic dipole

moments, while E = [Ex Ey]
T and H = [Hx Hy]

T represent the average field

tangential to the surface.

A time-harmonic progression of ejωt is assumed, where ω is the radial frequency

and t is time. We then define an electric sheet admittance tensor (Y = jωαs
ee),

magnetic sheet impedance tensor (Z = jωαs
mm), and dimensionless magnetoelectric

coupling tensors (χ = jωαs
em,Υ = jωαs

me) in terms of the surface polarizabilities.

Multiplying both sides of (9.1) by jω and noting that a time-varying dipole moment

can be equated to a surface current, the electric and magnetic surface currents es-

tablished on the metasurface can be related to the average, tangential electric and

magnetic fields, (
Js

Ms

)
=

(
Y χ

Υ Z

)(
E

H

)
= Λ

(
E

H

)
(9.2)
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The variables Y, χ, Υ, and Z are all 2x2 tensors that relate the x and y field

components to the x and y current density components: Y =

(
Yxx Yxy

Yyx Yyy

)
, χ =

(
χxx χxy

χyx χyy

)
, Υ =

(
Υxx Υxy

Υyx Υyy

)
, Z =

(
Zxx Zxy

Zyx Zyy

)
. Intuitively, Y and Z are the two

dimensional equivalent of electric and magnetic material susceptibilities, respectively

[7]. Similarly, χ and Υ are the two dimensional equivalent of the magetoelectric

material parameters. If the metasurface is reciprocal, Y = YT , Υ = −χT , and

Z = ZT [231]. In addition, if it is lossless, Y and Z are purely imaginary, whereas Υ

and χ are purely real [231].

Next, relations between the S-parameters and the constituent parameters are de-

rived. The boundary condition given by (9.2) is explicitly written in terms of the

tangential field in Regions 1 and 2,

Y

(
E1 + E2

2

)
+ χ

(
H1 + H2

2

)
=n̂× (H2 −H1) = n(H2 −H1) (9.3)

Υ

(
E1 + E2

2

)
+ Z

(
H1 + H2

2

)
=− n̂× (E2 − E1) = −n(E2 − E1) (9.4)

Consider an x-polarized plane wave, normally incident on the bianisotropic meta-

surface from Region 1. The field in Region 1 is expressed as E+
1 = Ix + Sx11 and

H+
1 = η−1

1 n(Ix−Sx11). The field in Region 2 is written as E+
2 = Sx21 and H+

2 = η−1
2 nSx21.

Here, the + sign indicates the excitation is incident from Region 1 (traveling in the +z

direction), Ix = (1 0)T , Sx11 = (Sxx11 Syx11 )T , Sx21 = (Sxx21 Syx21 )T , and n =

(
0 −1

1 0

)
.

Substituting these expressions for E+ and H+ into (9.3) and (9.4), the S-parameters

are related to the constituent surface parameters,

Y

2
(Ix + Sx11 + Sx21) +

χn

2

(
Ix
η1

− Sx11

η1

+
Sx21

η2

)
= −

(−Ix
η1

+
Sx11

η1

+
Sx21

η2

)
(9.5)

Υ

2
(Ix + Sx11 + Sx21) +

Zn

2

(
Ix
η1

− Sx11

η1

+
Sx21

η2

)
= −n(−Ix − Sx11 + Sx21) (9.6)

This linear system of equations is solved in closed form,




Sx11

Sx21


 =




Y
2
− χn

2η1
+ I

η1
Y
2

+ χn
2η2

+ I
η2

− Zn
2η1

+ Υ
2
− n Zn

2η2
+ Υ

2
+ n



−1

−YIx

2
− χnIx

2η1
+ Ix

η1

−ZnIx
2η1
− ΥIx

2
+ nIx


 (9.7)
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where I =

(
1 0

0 1

)
is the identity matrix. Similarly, Sy11 and Sy21 are solved by

replacing Ix = (1 0)T with Iy = (0 1)T .

The variables, S12 and S22 are also solved using the boundary conditions (9.3) and

(9.4). A normally incident x-polarized plane wave excitation is stipulated in Region 2.

The field in Region 2 is then expressed as E−2 = Ix+Sx22, and H−2 = η−1
2 n(−Ix+Sx22).

The field in Region 1 is written as E−1 = Sx12 and H−1 = −η−1
1 nSx12. As before, the

− sign indicates the excitation is incident from Region 2, Sx12 = (Sxx12 Syx12 )T , and

Sx22 = (Sxx22 Syx22 )T . The expressions for E− and H− are then substituted into (9.3)

and (9.4),

Y

2
(Ix + Sx12 + Sx22) +

χn

2

(
−Ix
η2

− Sx12

η1

+
Sx22

η2

)
= −

(−Ix
η2

+
Sx12

η1

+
Sx22

η2

)
(9.8)

Υ

2
(Ix + Sx12 + Sx22) +

Zn

2

(
−Ix
η2

− Sx12

η1

+
Sx22

η2

)
= −n(Ix − Sx12 + Sx22) (9.9)

Again, there are two equations and two unknowns that can be solved,




Sx12

Sx22


 =




Y
2
− χn

2η1
+ I

η1
Y
2

+ χn
2η2

+ I
η2

− Zn
2η1

+ Υ
2
− n Zn

2η2
+ Υ

2
+ n



−1

−YIx

2
+ χnIx

2η2
+ Ix

η2

ZnIx
2η2
− ΥIx

2
− nIx


 (9.10)

The expressions Sy12 and Sy22 are solved by replacing Ix with Iy. Therefore, all the

S-parameters are written concisely as,




S11 S12

S21 S22


 =




Y
2
− χn

2η1
+ I

η1
Y
2

+ χn
2η2

+ I
η2

− Zn
2η1

+ Υ
2
− n Zn

2η2
+ Υ

2
+ n



−1

·



−Y

2
− χn

2η1
+ I

η1
−Y

2
+ χn

2η2
+ I

η2

− Zn
2η1
− Υ

2
+ n Zn

2η2
− Υ

2
− n


 (9.11)

Alternatively, the constituent surface parameters can be written in terms of the

S-parameters. In total, there are four illuminations (x-polarized and y-polarized from

the front and back of the metasurface). These illuminations are inserted into (9.3)

and (9.4),

(
Y χ

Υ Z

)


E+
1 +E+

2

2

E−
1 +E−

2

2

H+
1 +H+

2

2

H−
1 +H−

2

2


 =

(
n(H+

2 −H+
1 ) n(H−2 −H−1 )

−n(E+
2 − E+

1 ) −n(E−2 − E−1 )

)
(9.12)
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Substituting the expressions for E+,−
1,2 and H+,−

1,2 , and bringing the average field

values to the right-hand side of the equation, the constituent surface parameters can

be solved for,

(
Y χ

Υ Z

)
= 2

(
I
η1
− S11

η1
− S21

η2
I
η2
− S12

η1
− S22

η2

n + nS11 − nS21 −n + nS12 − nS22

)

·
(

I + S11 + S21 I + S12 + S22

n
η1
− nS11

η1
+ nS21

η2
− n
η2
− nS12

η1
+ nS22

η2

)−1

(9.13)

Similar to material parameter extraction procedures for bulk metamaterials [186],

(9.11) and (9.13) provide a powerful framework to design and analyze metasurfaces

that realize arbitrary polarization, phase, and amplitude transformations.

9.3 Synthesis

9.3.1 Relating S-parameters to Cascaded Sheet Admittances

Next, a geometry is proposed that can achieve a wide range of constituent surface

parameters. The geometry consists of cascaded metallic sheets (electric sheet admit-

tances) separated by subwavelength dielectric spacers, as shown in Fig. 9.2. It should

be emphasized that this cascaded structure can be modeled using the constitutive sur-

face parameters derived in the previous section, provided that its overall thickness

is subwavelength. This geometry is attractive because it allows for straightforward

design and fabrication from microwave to optical wavelengths [12,35,222]. Inspiration

for this geometry is derived from recent work showing that the diagonal elements of

the electric and magnetic surface susceptibility tensors can be completely controlled

with cascaded sheets [55]. Recent work has also shown that polarization controlling

devices, such as quarter-wave plates, half-wave plates, and circular polarizers, can be

realized by cascading anisotropic sheets [64,201,232].

Following an approach similar to that in [233], the reflection and transmission

properties of the cascaded sheet admittances are solved. The transfer matrix approach

is taken (ABCD matrix), which reduces the analysis to matrix multiplication once

the transfer matrix of the sheet admittances and dielectric substrate are derived.

The transfer matrix (ABCD matrix) of an arbitrary structure relates the total

field in Regions 1 and 2, (
E1

H1

)
=

(
A B

C D

)(
E2

H2

)
(9.14)
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Figure 9.2: Anisotropic sheet admittances cascaded in the direction of propagation
can realize a wide range of constituent surface parameters. Provided the
overall thickness of the cascaded sheets is subwavelength, they can be
modeled as a single bianisotropic metasurface.

As before, we define, E1,2 = [Ex
1,2 Ey

1,2]T , H1,2 = [Hx
1,2 Hy

1,2]T , A =

(
Axx Axy

Ayx Ayy

)
,

B =

(
Bxx Bxy

Byx Byy

)
, C =

(
Cxx Cxy

Cyx Cyy

)
, and D =

(
Dxx Dxy

Dyx Dyy

)
.

The ABCD matrix of an electric sheet admittance Ys is then derived. First, it

is noted that the boundary condition of an electric sheet admittance can be written

as,

n̂× (H2 −H1) = n (H2 −H1) = YsE1 = YsE2 (9.15)

Two separate conditions are then stipulated to provide two linearly independent equa-

tions: Condition A (E2 = I, and H2 = 0) and Condition B (E2 = 0, H2 = I). Thus

we have, (
EA

1 EB
1

HA
1 HB

1

)
=

(
A B

C D

)(
EA

2 EB
2

HA
2 HB

2

)
=

(
A B

C D

)
(9.16)

Enforcing the boundary condition of an electric sheet admittance under the two sep-

arate conditions, the field in Region 1 is solved. This provides the ABCD matrix of

an electric sheet admittance,

(
A B

C D

)
=

(
I 0

nYs I

)
(9.17)

It should be noted that −nn = I.

The ABCD matrix of a dielectric substrate with wave impedance ηd and thickness

βd is then derived. First consider Condition A (E2 = I, and H2 = 0). This is
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equivalent to the case where a plane wave is incident from Region 1 with an incident

electric field of I/2. In addition, Region 1 must have a wave impedance of ηd, and

Region 2 an infinite wave impedance (perfect magnetic conductor). Thus the field in

Region 1 can be written as,

EA
1 = I

ejβd + e−jβd

2
= I cos(βd)

HA
1 = n

ejβd − e−jβd
2ηd

= njη−1
d sin(βd) (9.18)

Similarly, Condition B (E2 = 0, H2 = I) is equivalent to the case where a plane

wave is incident from Region 1 with an incident magnetic field of I/2. In addition,

Region 1 has a wave impedance of ηd, and Region 2 is replaced with a perfect electric

conductor,

EB
1 = −nηd

ejβd − e−jβd
2

= −njηd sin(βd)

HB
1 = I

ejβd + e−jβd

2
= I cos(βd) (9.19)

Thus the ABCD matrix of a dielectric substrate can be written as,

(
A B

C D

)
=

(
cos(βd)I −jsin(βd)ηdn

jsin(βd)η−1
d n cos(βd)I

)
(9.20)

When three electric sheet admittances are separated by dielectric spacers, the

ABCD matrix of the entire structure becomes,

(
A B

C D

)
=

[(
I 0

nYs1 I

)(
cos(βd)I −jsin(βd)ηdn

jsin(βd)η−1
d n cos(βd)I

)

·
(

I 0

nYs2 I

)(
cos(βd)I −jsin(βd)ηdn

jsin(βd)η−1
d n cos(βd)I

)(
I 0

nYs3 I

)]
(9.21)

Next, the ABCD matrix entries of an arbitrary structure can be related to its

S-parameters. The total field in Regions 1 and 2 can be written as,

(
I + S11 S12

n
η1

(I− S11) − n
η1

S12

)
=

(
A B

C D

)(
S21 I + S22

n
η2

S21
n
η2

(−I + S22)

)
(9.22)

Then, the ABCD matrix of an arbitrary structure is written in terms of the S-
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parameters by solving (9.22),

(
A B

C D

)
=

(
I + S11 S12

n
η1

(I− S11) − n
η1

S12

)(
S21 I + S22

n
η2

S21
n
η2

(−I + S22)

)−1

(9.23)

Alternatively, the S-parameters can be written in terms of the ABCD matrix by

solving (9.22),

(
S11 S12

S21 S22

)
=

(
−I Bn

η2
+ A

n
η1

Dn
η2

+ C

)−1(
I Bn

η2
−A

n
η1

Dn
η2
−C

)
(9.24)

9.3.2 Finding and Realizing the Sheet Admittances

Analytically solving for the S-parameters of a given structure is straightforward.

For example, the S-parameters of three cascaded sheet admittances can be found by

inserting (9.21) into (9.24). However, we are looking to solve the inverse problem:

stipulating the S-parameters and solving for the necessary sheet admittances. Since

the necessary sheet admittances have not been solved analytically, a numerical solver

was employed. The fmincon function provided by Matlab’s optimization toolbox

was used to perform a gradient descent method. The specific cost function that was

minimized was |Sxx21 − T xx|2 + |Sxy21 − T xy|2 + |Syx21 − T yx|2 + |Syy21 − T yy|2, where S21

is the transmission coefficient of the cascaded sheet admittances, and T is the de-

sired transmission coefficient. Since this is a nonlinear problem, the gradient descent

method may only return a local minimum rather than the global minimum, depend-

ing on the initial starting point. Nevertheless, the optimizer typically converged to

the global minimum with less than 10 randomly seeded initial starting points. Once

the required sheet admittances are known, their physical realization is straightfor-

ward using frequency-selective surface theory [57]. Typically, each sheet consists of

patterned metal on a dielectric substrate. At optical frequencies, dielectric patterning

also becomes an attractive option [55,234].

9.4 Bianisotropic Metasurface Examples

To demonstrate the versatility of the design process, four devices exhibiting novel

polarization transformations are presented: a polarization rotator, an asymmetric

circular polarizer, an asymmetric linear polarizer, and a symmetric circular polarizer.

Each structure requires significantly different constituent surface parameters.
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It should be emphasized that the reported structures operate fundamentally differ-

ent from devices that achieve polarization control through cascading Jones matrices.

The structures reported here rely on the interference of multiple reflections between

the sheets to achieve various phase discontinuities and novel polarization effects, while

also maintaining a subwavelength profile. In contrast, simply cascading the Jones

matrices of wave-plates and linear polarizers does not take advantage of the multi-

ple reflections between sheets, and therefore the resulting devices are significantly

bulkier [68].

9.4.1 Polarization Rotator at Microwave Frequencies

Chiral materials with a strong rotary power are commonly used in analytical chem-

istry, biology, and crystallography for identifying the spatial structure of molecules

[235]. Chirality can also provide an alternative route to achieve negative refrac-

tion [236]. A particularly interesting structure that exhibits a strong chiral response

is the polarization rotator, which rotates an incident linear polarization by 90◦ upon

transmission. Previously, polarization rotation was accomplished with an isotropic

helical structure [170]. However, the three-dimensional geometry requires metallized

via holes, which become prohibitively difficult to fabricate at higher frequencies, es-

pecially optical frequencies. In addition, the structure exhibited a large insertion loss

(S21=-5 dB) at the 10 GHz operating frequency. Alternatively, bilayered metamate-

rials that utilize two sheet admittances (patterned metallic surfaces) separated by an

electrically thin dielectric can also act as polarization rotators [66,235]. These works

demonstrated that complex helical patterns are not required to achieve significant

chirality. In [235], it was shown that such bilayered metamaterials can have orders

of magnitude larger rotary powers than naturally occurring gyrotropic crystals in the

visible spectrum. The rotary power was later increased by optimizing the patterns

on each sheet [66]. However, the design process was not straightforward, which led

to a narrow bandwidth and low transmission coefficient (-5 dB) at the operating fre-

quency. Here, a systematic method for designing polarization rotators is presented,

resulting in optimal performance.

A polarization rotator with a reflection coefficient equal to zero and transmission

coefficient equal to,

S21 = ejφ

(
0 −1

1 0

)
(9.25)

is considered [66, 170]. In other words, any linearly-polarized incident plane wave
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traveling in the +z direction will undergo a clockwise polarization rotation of 90◦

upon transmission, when viewed from Region 1. By inserting (9.25) into (9.13), the

ideal constituent parameters of such a device are,

Λ =




−2j tan(φ)
η◦

0 −2 sec(φ) 0

0 −2j tan(φ)
η◦

0 −2 sec(φ)

2 sec(φ) 0 −2jη◦ tan(φ) 0

0 2 sec(φ) 0 −2jη◦ tan(φ)




(9.26)

The metasurface is isotropic and chiral.

When realizing polarization transformations, the absolute phase delay (φ) gener-

ated by the metasurface is typically not important for most applications. Therefore,

the phase delay can be viewed as a free parameter that can be adjusted to increase

the bandwidth and reduce the loss of the metasurface.

The polarization rotator considered here consists of four patterned metallic sheets.

The fourth sheet allows added bandwidth. To analyze this structure, (9.21) is modi-

fied to account for the fourth sheet,

(
A B

C D

)
=

[(
I 0

nYs1 I

)(
cos(βd1)I −jsin(βd1)ηdn

jsin(βd1)η−1
d n cos(βd1)I

)

·
(

I 0

nYs2 I

)(
cos(βd2)I −jsin(βd2)ηdn

jsin(βd2)η−1
d n cos(βd2)I

)(
I 0

nYs3 I

)

(
cos(βd1)I −jsin(βd1)ηdn

jsin(βd1)η−1
d n cos(βd1)I

)(
I 0

nYs4 I

)]
(9.27)

It should be noted that due to the adhesive layers used in fabrication, the middle

dielectric spacer (d2) is a different thickness than the outer dielectric spacers (d1).

The necessary cascaded sheet admittances that realize a polarization rotator are

numerically found by inserting (9.25) into (9.24), and combining the result with

(9.27). If the operating frequency equals 10 GHz, φ = −40◦, η1 = η2 = η◦,

ηd = η◦/1.88, βd1 = 2π/10.48, and βd2 = 2π/9.54, the required sheet admittances are

Ys1 = j
η◦

(
0.92 −1.39

−1.39 2.14

)
, Ys2 = j

η◦

(
5.21 −8.07

−8.07 5.21

)
, Ys3 = j

η◦

(
7.88 −1.17

−1.17 2.50

)
,

and Ys4 = j
η◦

(
5.67 0

0 −2.63

)
. It was found that a transmitted phase of φ = −40◦

maximized the bandwidth.
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The metallic patterns that realize the desired sheet admittances of the polarization

rotator are shown in Fig. 9.3. Each sheet has a periodicity of 3.7 mm x 3.7 mm

(λ◦/8.11 x λ◦/8.11). It can be seen that the sheet admittance of the first sheet (Ys1)

has a small capacitance along 0.838x̂+0.545ŷ and a larger capacitance along 0.547x̂−
0.837ŷ, which are its principle axes. The large capacitance along the 0.547x̂− 0.837ŷ

direction is realized with interdigitated capacitors. For the second sheet (Ys2), the

sheet admittance is inductive along the (x̂+ ŷ)/
√

2 direction and capacitive along the

(x̂ − ŷ)/
√

2 direction. For the third sheet (Ys3), the sheet admittance is capacitive

along both principle axes, 0.204x̂ + 0.979ŷ and 0.979x̂− 0.205ŷ. The fourth sheet is

similar to the second in that it is inductive along one principle axis (ŷ) and capacitive

along the other (x̂).
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Figure 9.3: Dimensions of the polarization rotator. (a)-(d) Dimensions (mm) of the
first, second, third, and fourth sheets, respectively. (e) Perspective view
of a section of the polarization rotator.

The bianisotropic metasurface was fabricated by patterning four metallic sheets

on 1.52 mm thick, Rogers 4003 substrates (εr = 3.55, tan δ = 0.0027). A section of

the developed polarization rotator is shown in Fig. 9.4(a), while the bottom sheet of

the fabricated structure is shown in Fig. 9.4(b). The simulated and measured perfor-
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mance is shown in Fig. 9.4(c). There is a 2% frequency shift between measurement

and simulation due to fabrication tolerances. For comparison purposes, a 0.2 GHz

frequency shift was added to the measured data in Fig. 9.4(c).
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Figure 9.4: Metasurface exhibiting polarization rotation near 10 GHz. (a) Schematic
of the unit cell. For clarity, the z-axis is scaled by a factor of 3 so that all
four sheets are visible. (b) Bottom sheet (Ys4) of the fabricated polar-
ization rotator. (c) Transmission coefficient for an incident plane wave
traveling in the +z direction. Measured data is denoted by solid lines,
whereas simulated is denoted by dashed lines. For clarity, the measured
data is frequency shifted by +0.20 GHz in the plot.

It is also important to note that (9.26) dictates that a polarization rotator must be

isotropic. The isotropic response of the fabricated structure was verified by rotating

the incident linear polarization by an angle θ about the z-axis. As shown in Figs. 9.5

(a)-(d) and Fig. 9.6, the cross-polarized transmission is near 0 dB and co-polarized

transmission is near or below -20 dB, for all angles θ around 10 GHz. A slight

frequency shift of 2% can be seen between the measured (Figs. 9.5 (a) and (c)) and

simulated (Figs. 9.5 (b) and (d)) transmission coefficients. This is in contrast to the

more common half-wave plate, which only achieves high cross-polarization (rotated
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Figure 9.5: Additional performance metrics of the polarization rotator. (a) Measured
cross-polarized transmission (Syx21 ) as a function of frequency and input
linear polarization. The angle θ refers to the angle between the x and y
axes of the input linear polarization. (b) Simulated cross-polarized trans-
mission (Syx21 ) as a function of frequency and input linear polarization. It
can be seen that the cross-polarized transmission coefficient is near 0
dB, independent of θ. (c) Measured co-polarized transmission (Sxx21 ) as
a function of frequency and input linear polarization. (d) Simulated co-
polarized transmission (Sxx21 ) as a function of frequency and input linear
polarization.

field) when the incident field is polarized 45◦ relative to its crystal axis. The fractional

bandwidth of this structure was measured to be 8.7%. The bandwidth is defined as

the frequency range over which the cross-polarized transmission coefficient is greater

than -3 dB and a co-polarized transmission coefficient is less than -10 dB, independent

of the incident linear polarization. The simulated metasurface is well matched at the

operating frequency, as shown in Fig. 9.7.

It should be noted that the polarization rotator is the only structure presented

here that utilizes four patterned sheets. Initially, three sheets were used to realize

a polarization rotator. However, the simulated bandwidth was narrow (0.6%) and

the loss was high (S21=-1.7 dB). This led to a structure that was extremely sensitive

to fabrication tolerances. Therefore, a fourth layer was added to provide additional
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linear polarization at the measured (9.78 GHz) and simulated (10.00 GHz)
operating frequencies.

8.5 9 9.5 10 10.5 11 11.5
−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

Re
fle

ct
io

n 
C

oe
ffi

ci
en

t (
dB

)

 

 

S
11
xx

S
11
yx

S
11
xy

S
11
yy

Figure 9.7: Simulated reflection coefficient of the polarization rotator.

degrees of freedom that were exploited to increase bandwidth and reduce loss.

Unlike the other metasurfaces presented here, the sheet admittances comprising

the polarization rotator are not periodic with respect to a single coordinate system.

Thus Fig. 9.4(a) is not a unit cell of the structure, but rather a section of the struc-

ture. Since the polarization rotator cannot be discretized into a single unit cell, its

performance cannot be verified using a full-wave simulation with periodic boundary

conditions [237]. Instead, the simulated responses shown in Fig. 9.5 is found by

simulating each sheet admittance individually, and calculating the overall cascaded

response analytically. Specifically, each sheet admittance is extracted from full wave

simulations, and their values are inserted into (9.27) to find the overall ABCD matrix

of the entire structure. The S-parameters are then evaluated by inserting the ABCD

matrix into (9.24). In contrast, all the other structures presented here (e.g. asymmet-
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ric circular polarizer, asymmetric linear polarizer, symmetric circular polarizer) can

be discretized into periodic unit cells, and their performances were simulated using

Ansys HFSS.

The constituent surface parameters of the polarization rotator can be determined

from simulation by inserting the S-parameters of the structure into (9.13). They

are shown in Fig. 9.8. The plot shows that at the operating frequency of 10 GHz,

Yxyη◦ = Zxy/η◦ = 2, and χxy = χyx = −2.8. In addition, all the off diagonal

constituent parameters are zero (e.g. Yxy = Zxy = χxy = χyx = 0). This is consistent

with the ideal values of the constituent surface parameters (Eq. (9.26)) when φ =

−45◦. The terms leading to loss (Re(Y), Re(Z), Im(χ)) are low and are not plotted.

All other terms that are not plotted can be inferred from the fact that the structure

is reciprocal.
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Figure 9.8: Constituent surface parameters of the simulated polarization rotator. The
terms leading to loss (Re(Y), Re(Z), Im(χ)) are low and are not plotted.
All other terms that are not plotted can be inferred by noting that the
structure is reciprocal.

9.4.2 Asymmetric Circular Polarizer at mm-wave Frequencies

Additional control over the constituent surface parameters is demonstrated with a

metasurface that provides asymmetric transmission for circularly polarized waves at

millimeter-wave frequencies. This effect exhibits some similarity to Faraday rotation,

but requires no magnetic field or nonreciprocal materials [65]. It should be empha-

sized that this structure is reciprocal. In addition, this metasurface acts as a circular

polarizer since it transmits circular polarization of one handedness and reflects the
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other. Demonstrating this effect at millimeter-wave frequencies is particularly useful

for a number of reasons. Millimeter wavelengths are long enough to easily prop-

agate through visibly opaque media, while short enough to realize large operating

bandwidths and millimeter resolution [52]. This enables high resolution radar and

imaging systems, as well as high bandwidth communication. In particular, 77 GHz

is relevant to automotive radar systems [238].

To date, the most common method to realize asymmetric circular transmission is

with a purely electric response: printing two-dimensional chiral patterns on a single

sheet [65]. In such a scheme, the asymmetric response is significant only when the

eigenvectors of the sheet admittance are complex, which requires high loss. Therefore,

the efficiency of these structures is fundamentally limited. The asymmetric response

is often defined as the difference between the transmittance of a given handedness

of circular polarization, propagating in the +z and −z directions. It is typically

low for single sheets geometries (not exceeding 0.25) [226]. Alternatively, it was re-

cently shown that a bi-layered metasurface realized by cascading two-dimensional

chiral patterns can achieve a larger asymmetric response of 0.6 [226]. However, the

design procedure and physical description were vague, and the transmittance and

asymmetric response were still too low for most applications. In contrast, the meta-

surface presented here achieves a near-optimal asymmetric response of 0.99 at the

design frequency. In addition, a thorough analysis and systematic design procedure

is outlined.

The metasurface converts right-handed-circular to left-handed-circular when trav-

eling in the +z direction. It exhibits the following transmission coefficient,

S21 =
ejφ

2

(
1 j

j −1

)
(9.28)

However, when propagating in the −z direction, the same metasurface converts left-

handed-circular to right-handed-circular. Therefore it exhibits asymmetric transmis-

sion for circularly polarized waves. It should be noted that this does not violate

reciprocity since S21 = ST12. Hence, the performance of the structure can be analyzed

by only considering plane waves incident from Region 1. The constituent surface
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parameters of the metasurface are given by,

Λ =




−2j tan(φ/2)
η◦

0 0 0

0 2j cot(φ/2)
η◦

0 0

0 0 −2jη◦ tan(φ) 2jη◦ sec(φ)

0 0 2jη◦ sec(φ) −2jη◦ tan(φ)




(9.29)

As was previously noted, asymmetric transmission does not require three-dimensional

chirality (χ = Υ = 0) [65,67]. However, the principle axes of the electric and magnetic

responses should be rotated with respect to each other since Yxy = 0 and Zxy 6= 0.
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Figure 9.9: Metasurface exhibiting asymmetric circular transmission at millimeter-
wave frequencies. (a) Schematic of the unit cell. (b) Top sheet (Ys1)
of the fabricated asymmetric circular polarizer. (c) Transmission coeffi-
cient for an incident plane wave traveling in the +z direction, where the
superscript ‘+’ denotes right-handed-circular and ‘-’ denotes left-handed-
circular. Measured data is denoted by solid lines, whereas simulated is
denoted by dashed lines.

The asymmetric circular polarizer has the following properties: φ = 175◦, βd =

2π/6.37, ηd = η◦/1.483, and η1 = η2 = η◦. The necessary sheet admittances were then
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numerically solved for, Ys1 = j
η◦

(
1.01 −1.00

−1.00 1.01

)
, Ys2 = j

η◦

(
2.19 0

0 −200

)
, and

Ys3 = j
η◦

(
1.01 −1.00

−1.00 1.01

)
. To realize the sheet admittances, copper was patterned

on 380 µm thick, Rogers 5880 Duroid substrates (εr = 2.2, tan δ = 0.0009). For an

operating frequency of 77 GHz, the designed unit cell is shown in Fig. 9.9(a), while

the top sheet of the fabricated structure is shown in Fig. 9.9(b). The simulated and

measured transmission coefficients are shown in Fig. 9.9(c). The surface exhibits near

perfect conversion of right-handed-circular into left handed circular when propagating

in the +z direction. In addition the measured asymmetric response is broadband:

S++
21 , S+−

21 , and S−−21 are below -10 dB, and S−+
21 is above -0.8 dB, over a bandwidth of

20%. The superscript ‘+’ denotes right-handed-circular polarization and ‘-’ denotes

left-handed-circular polarization.

The detailed metallic patterns of the sheets comprising the asymmetric circular

polarizer are shown in Fig. 9.10. The structure is reflection symmetric along the

z = 0 plane (Ys1 = Ys3), which causes all magnetoelectric coupling terms to reduce

to zero [67]. All three sheets are capacitive along one principle axis and inductive along

the other. It should be noted that although the second sheet looks very similar to a

wire grid polarizer, there are important differences. Wire grid polarizers are generally

designed to minimize the inductance along the y axis, while also minimizing the

capacitance along the x axis to provide high reflection and transmission, respectively.

Here, the cell size and patterned copper are chosen to realize a specific capacitance

(Y xx
s2 = 2.19j/η◦) along the x axis, in order to achieve an optimal performance at the

design frequency.
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Figure 9.10: Dimensions of the asymmetric circular polarizer. (a) Dimensions of the
first and third sheets. (b) Dimensions of the second sheet.
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It should be noted that the constituent surface parameters of the ideal asymmetric

circular polarizer (Eq. (9.29)) are a function of the stipulated reflection coefficients in

addition to the transmission coefficient. Eq. (9.29) assumes the reflection coefficients

are equal to,

S11 = S22 =
ejφ

2

(
1 −j
−j −1

)
(9.30)

In other words, when left-handed-circular is incident in the +z direction, all of the

power is reflected to left-handed-circular [68]. Similarly, when right-handed-circular

is incident in the −z direction, all of the power is reflected to right-handed-circular.

As was mentioned, when left-handed-circular is incident in the +z direction, all

of the power is ideally reflected to left-handed-circular [68]. Similarly, when right-

handed-circular is incident in the −z direction, all of the power is reflected to right-

handed-circular. The reflection coefficients of the simulated asymmetric circular po-

larizer are shown in Fig. 9.11.
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Figure 9.11: Reflection coefficient of the asymmetric circular polarizer.

The constituent parameters of the asymmetric circular polarizer are shown in

Fig. 9.12. It can be seen that all magnetoelectric coupling terms are zero since the

structure is reflection symmetric about the z = 0 plane. At the design frequency of

77 GHz, the principle axes of the electric susceptibility are aligned along the x̂ and ŷ

axes since Yxy = 0, and the principle axes of the magnetic susceptibility are aligned

along (x̂ + ŷ)/
√

2 and (x̂ − ŷ)/
√

2, since Zxx = Zyy and Zxy 6= 0. In other words,

the principle axes of the electric and magnetic response are rotated by 45◦ from each

other to achieve an optimal performance. It should be noted that, some degree of

asymmetric transmission is present whenever the principle axes of the electric and

magnetic susceptibilities are not aligned. This can be shown using (9.11).
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Figure 9.12: Constituent surface parameters of the simulated asymmetric circular po-
larizer. The terms leading to loss (Re(Y), Re(Z), Im(χ)) are low and
are not plotted. All other terms that are not plotted can be inferred by
noting that the structure is reciprocal.

9.4.3 Asymmetric Circular Polarizer at Optical Frequencies

Next we demonstrate that the asymmetric circular polarizer can be scaled to opti-

cal frequencies. The designed unit cell is shown in Figure 9.13, while exact dimensions

are shown in Fig. 9.14
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Figure 9.13: Perspective view of the designed asymmetric circular polarizer that op-
erates at optical frequencies.

As in the previous chapter, the SiO2 substrate is modeled as a lossless, infinite

half space with an index of refraction of nSiO2 = 1.45. The index of refraction of the

SU-8 is nSU-8 = 1.57. The relative permittivity of Au at near-infrared wavelengths

is described by the Drude model εAu = ε∞ − ω2
p/(ω

2 + jωωc), with ε∞ = 9.0, the

plasma frequency is ωp = 1.363x1016 rad/s (8.97 eV), and the collision frequency is

ωc = 3.60x1014 rad/s (0.24 eV). This collision frequency assumes a loss that is over
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Figure 9.14: Designed dimensions of the first, second, and third sheets.

three times that of bulk Au [239], to take into account thin film surface scattering

and grain boundary effects [221].

At the design wavelength of 1.5 µm, the metallic patterns shown in Figure 9.13

realize simulated sheet admittances of Ys1 = 1
η◦

(
0.24 + 1.36j 0

0 0.36− 1.85j

)
, Ys2 =

1
η◦

(
1.01− 2.87j −0.98 + 3.67j

−0.98 + 3.67j 1.01− 2.87j

)
, and Ys3 = 1

η◦

(
0.17 + 1.67j 0

0 0.54− 2.28j

)
, for

the first, second, and third patterned Au sheets, respectively. All three sheets are

inductive along one principle axis and capacitive along the orthogonal axis. In other

words, each sheet has a continuous metallic trace along one principle axis and small

gaps along the orthogonal axis. Using full-wave electromagnetic simulations, the

width of each metallic trace and the size of the gap were designed such that the induc-

tance and capacitance approached the ideal values that were numerically computed

using the analytic model. It should be noted that if material losses are neglected,

the sheet admittances are purely imaginary. In this lossless case, the structure can

provide 100% polarization conversion from RHCP to LHCP [240]. However, all met-

als exhibit loss at near-infrared wavelengths. This causes the sheet admittances to

become complex, where the real part represents absorption in the metal. The loss

reduced the efficiency of the metasurface to 53%.

The metasurface was fabricated by Cheng Zhang in L. Jay Guo’s research group

at the University of Michigan [241]. The metasurface is fabricated on a 500 µm thick

fused silica substrate using the process shown in Figure 9.15(a) [12, 222]. First, the

bottom sheet admittance (Ys3) is fabricated by patterning a 2 nm Ti adhesion layer

and 28 nm Au layer using electron beam lithography and liftoff. Next, a 200 nm

thick, SU-8 dielectric layer is spin coated onto the wafer, which naturally planarizes

the surface for the following layer. This process is repeated until three Au layers
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are patterned to achieve the unit cell shown in Figure 9.13. The patterned area is

250 µm x 250 µm. Scanning electron microscope (SEM) pictures of the three Au

layers comprising the fabricated metasurface are shown in Figures 9.15(b)-(d). In the

future, large area soft lithography processes, such as nanoimprint lithography, can be

employed to dramatically reduce the fabrication cost [242].
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Figure 9.15: Fabrication of the asymmetric circular polarizer. (a) Fabrication process
involves sequential patterning of each 2 nm/28 nm thick Ti/Au layer us-
ing electron-beam lithography and liftoff, followed by spin coating of a
200 nm thick SU-8 dielectric layer. Three metallic layers are patterned
using the process, resulting in an overall thickness of 430 nm. (b) Scan-
ning electron microscope (SEM) picture of the first Au sheet (Ys1). The
second sheet can be seen below the first, although it is less clear. (c)
SEM picture of the second Au sheet (Ys2). The third sheet can be seen
below it. (d) SEM picture of the third Au sheet (Ys3).

Following fabrication, the metasurface was experimentally characterized. The

output of a 1.5 µm tunable laser (Newport TLB 6326) was sent through a linear

polarizer, followed by a quarter-wave plate, and then focused upon the metasurface.

The transmitted power was collected by another quarter-wave plate, followed by a

linear polarizer, and then received by a power meter. Rotating the quarter-wave

plates allowed for characterization of the metasurfaces Jones matrix. The measured

and simulated transmittance is plotted in Figure 9.16, and show close agreement.

At the operating wavelength of 1.5 µm, the fabricated metasurface provides a high

transmittance of 50% for left-handed-circular polarization when right-handed-circular

polarization is incident. In addition, all other elements of the Jones matrix in the

circular polarization basis are below 2.5%, which suggests an extinction ratio of 20:1.
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The extinction ratio is defined as the ratio of transmittance from RHCP to LHCP

(S−+
21 ) relative to the maximum transmittance of RHCP to RHCP (S++

21 ), LHCP to

LHCP (S−−21 ), and LHCP to RHCP (S+−
21 ). These experimental results represent

an order of magnitude improvement in the extinction ratio over the state-of-the-art

optical structures providing asymmetric transmission for both linear and circular po-

larizations [243–246]. This extinction ratio is comparable to that of the Au helix

metamaterial, which acts as a symmetric circular polarizer [247]. However, the Au

helix operates at longer wavelengths (3.5 µm to 7.5 µm), requires a complex fabrica-

tion process (3D laser writing and gold plating), and its design cannot be extended

to alternative polarization controlling devices. In contrast, the design and fabrica-

tion procedures presented here can realize a large range of bianisotropic metasurfaces

such as symmetric circular polarizers, polarization rotators, and asymmetric linear

polarizers by simply fabricating different metallic patterns [240].
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Figure 9.16: Measured and simulated Jones matrix of the metasurface on linear (a)
and logarithmic (b) scales. Solid lines correspond to simulation whereas
circles correspond to measurements. Error bars denote one standard de-
viation in the measured data. It can be seen that the metasurface pro-
vides high transmission of 50% for the left-handed-circular when right-
handed-circular is incident. In addition, all other elements of the Jones
matrix in the circular polarization basis are below 2.5% at the operating
wavelength of 1.5 µm.

Figure 9.16 shows that the simulated response is quite broadband. However,

the bandwidth of the available laser source limited measurements to the wavelength

range of 1.47 µm to 1.53 µm. Simulations indicate that when right-handed-circular

is incident, 37% of the power is absorbed in the Au patterns while 10% is reflected,

thus resulting in a 53% efficiency (see. Figure 9.17). Alternatively, when left-handed-

circular is incident, 37% of the power is absorbed and 60% of the power is reflected.

The metasurface also has a robust angular tolerance due to the subwavelength cell
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Figure 9.17: (a),(b) Simulated reflection coefficients from Regions 1 and 2, respec-
tively. (c) Simulated dissipation in the Au patterns when left and right

handed circular polarization is incident from Region 1 (A
(−,+)
1 ) and Re-

gion 2 (A
(−,+)
2 ), respectively.

size, as shown in Figure 9.18 [35]. Only when the incident angle exceeds 40◦ does the

performance begin to deteriorate, which is useful for many applications [248,249]. It

should also be noted that the angle of incidence is always identical to the angle of

the transmitted wave for periodic metasurfaces with cell sizes less than λ/2, as is the

case here.

9.4.4 Asymmetric linear polarizer at mm-wave frequencies

Asymmetric transmission for linearly-polarized waves requires geometries that do

not exhibit mirror or rotational symmetry [67]. These metasurfaces can be used to in-

crease the polarization diversity of microwave and optical devices. Previously, devices

exhibiting asymmetric linear transmission were realized with two and three layered

chiral meta-atoms [245, 246, 250] or asymmetric helical geometries [228]. Although a

near-optimal polarization purity was achieved, the response was narrowband [246].

A more straightforward design procedure based on Fabry-Perot resonances was re-
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1.5 µm at various angles of θ along the yz and xz planes, respectively.

ported in [45]. This approach led to an enhanced bandwidth, but at the expense of

an increased electrical thickness.

Here, an analytic approach is used to systematically design arbitrarily thin meta-

surfaces. The asymmetric linear polarizer considered here has the following transmis-

sion coefficient,

S21 = ejφ

(
0 0

1 0

)
(9.31)

When an x-polarized plane wave is incident from Region 1, it is transmitted as a

y-polarized plane wave in Region 2. However, if an x-polarized plane wave is incident

from Region 2, all the power is reflected. Hence, the structure exhibits asymmetric

transmission for linear polarization. Assuming the undesired polarization is com-

pletely reflected,

S11 = ejφ

(
0 0

0 −1

)
, S22 = ejφ

(
−1 0

0 0

)
(9.32)

158



this metasurface has the constituent surface parameters given by,

Λ =




4jη−1
◦ cot(φ) −4jη−1

◦ csc(φ) 0 −2

−4jη−1
◦ csc(φ) 4jη−1

◦ cot(φ) −2 0

0 2 0 0

2 0 0 0




(9.33)

It can be seen that both an anisotropic electric susceptibility and an anisotropic

magnetoelectric response are required. Again, the necessary sheet admittances are

solved by inserting (9.31) and (9.32) into (9.24), and combining the result with (9.21).

Setting φ = 135◦, βd = 2π/6.37, ηd = η◦/1.483, and η1 = η2 = η◦, the necessary

sheet admittances are Ys1 = j
η◦

(
0.88 0

0 −77.0

)
, Ys2 = j

η◦

(
−0.70 4.15

4.15 −0.70

)
, and

Ys3 = j
η◦

(
−77.0 0

0 0.88

)
.

A unit cell of this metasurface is shown in Fig. 9.19(a). The simulated cross-

polarized and co-polarized transmission coefficients are shown in Fig. 9.19(b). Al-

though the structure is designed for an operating frequency of 77 GHz, the perfor-

mance is quite broadband. A 1 dB transmission bandwidth of 2.43:1 for the desired

polarization is achieved. The rejection of the unwanted polarization is greater than

30 dB in this band. Syy11 is greater than -0.01 dB, and all other S-parameters are less

than -30 dB over the entire operating bandwidth, and are not shown.

The metallic patterns that realize the desired sheet admittances of the asymmetric

linear polarizer are shown in Fig. 9.20. It can be seen that the sheet admittance of

the first layer (Ys1) is capacitive along x̂ and inductive along ŷ. The second sheet is

inductive along the (x̂−ŷ)/
√

2 direction and capacitive along the (x̂+ŷ)/
√

2 direction.

The third sheet is identical to the first, except rotated by 90◦.

The constituent surface parameters of the metasurface providing asymmetric lin-

ear transmission are shown in Fig. 9.21. They were determined from simulation by

inserting the S-parameters of the structure into (9.13). It can be seen that over the

entire frequency range, the magnetic susceptibility is near zero and the crystal axes

of the electric susceptibility are located in the (x̂+ ŷ)/
√

2 and (x̂− ŷ)/
√

2 directions.

In addition, the magnetoelectric term is χ =

(
0 −2

−2 0

)
, which is consistent with

(9.33). Note that Yxx = Yyy for all plotted frequencies.
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Figure 9.19: Metasurface exhibiting asymmetric linear transmission. (a) Schematic
of the unit cell. (b) Simulated co-polarized reflection coefficient (Sxx11 )
and cross-polarized transmission coefficient (Syx21 ) for an incident plane
wave traveling in the +z direction. Syy11 is greater than -0.01 dB, and all
other S-parameters are less than -30 dB over the entire frequency range,
and are not shown.

9.4.5 Symmetric Circular Polarizer at Optical Frequencies

As a final demonstration of the versatility of the design process, a symmetric

circular polarizer is demonstrated at optical frequencies. Analogous to conventional

linear polarizers, these structures transmit one handedness of circular polarization but

reflect the other, independent of the propagation direction (+ẑ or −ẑ). At optical

frequencies, circular polarizers are attractive for color displays, microscopy, and pho-

tography [251]. These devices are most commonly realized by combining quarter-wave

plates and linear polarizers [68]. However, this leads to bulky structures that do not

lend themselves to optical integration. Recently, helical structures have demonstrated

a reduced thickness and much broader bandwidth [247,251]. However, they require a

restrictively difficult fabrication process. This motivated cascading patterned metallic

sheets with rotated principle axes [232].

The symmetric circular polarizer considered here transmits right-handed-circularly

polarized light but reflects the left-handed-circular polarization, regardless of the

propagation direction. The transmission coefficient is given by,

S21 =
ejφ

2

(
1 j

−j 1

)
(9.34)
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Figure 9.20: (a)-(c)Dimensions first, second and third sheets of the asymmetric linear
polarizer, respectively.
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and the constituent surface parameters are given by,

Λ =




−2j tan(φ/2)
η◦

0 0 0

0 2j cot(φ)
η◦

0 −2 csc(φ)

0 0 −2jη◦ tan(φ/2) 0

0 2 csc(φ) 0 2jη◦ cot(φ)




(9.35)

This metasurface exhibits anisotropic electric and magnetic susceptibilities, as well

as anisotropic magnetoelectric coupling. Eq. (9.35) assumes that both Regions 1 and
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2 are composed of free space and that the reflection coefficients are given by,

S11 =
ejφ

2

(
1 −j
−j −1

)
, S22 =

ejφ

2

(
1 j

j −1

)
(9.36)

In other words, left-handed-circularly polarized light is completely reflected into left-

handed-circular polarization from both the front and the back of the metasurface,

whereas right-handed-circularly polarized light has zero reflection.

Again looking to (9.24) and (9.21), and setting φ = 170◦, βd = 2π/4.77, ηd =

η◦/1.572, η1 = η◦, and η2 = η◦/1.444, the necessary sheet admittances to realize a

symmetric circular polarizer become, Ys1 = j
η◦

(
0.34 −1.11

−1.11 0.34

)
, Ys2 = j

η◦

(
1.10 0

0 −9.00

)
,

and Ys3 = j
η◦

(
0.57 1.57

1.57 0.57

)
. When solving for the cascaded sheet admittances, an

upper bound on the maximum value of the sheet admittances was imposed due to

limitations in achieving extremely small feature sizes at optical frequencies. The

magnitude of the sheets were required to be less than 9.0/η◦. The designed unit cell

is shown in Fig. 9.22(a). The simulated transmission coefficient is shown in Fig.

9.22(b). The superscript ‘+’ denotes right-handed-circular polarization and ‘-’ de-

notes left-handed-circular polarization. It can be seen that at the design frequency of

1.5 µm, the metasurface achieves low loss for right-handed-circularly polarized light,

and provides greater than 15 dB of rejection for left-handed-circularly polarized light.

For completeness, the transmittance is also plotted on a linear scale in Fig. 9.22(c), so

that its performance can be easily compared to earlier reported structures [232,247].

The metallic patterns that realize the desired sheet admittances of the symmetric

circular polarizer are shown in Fig. 9.23. All corners are rounded with a radius of

curvature of 40 nm to resemble a fabricated structure. As in the previous metasur-

faces, each sheet admittance is individually designed such that its imaginary part

is identical to the desired sheet admittances. However, the analytic model assumes

the sheets are lossless, which is somewhat of an approximation. Therefore, the per-

formance can be improved further by using the optimizer provided by Ansys HFSS.

The dimensions are varied to minimize the real part of the admittance while also

approaching an ideal imaginary part. The optimization process is relatively quick

since the initial structure represents a good starting point. The dimensions shown in

Fig. 9.23 correspond to the optimized structure. Each sheet is capacitive along one

principle axis and inductive along the other.
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Figure 9.22: Symmetric circular polarizer at near-infrared wavelengths. The surface
is designed to operate at a wavelength of 1.5 µm. (a) Schematic of
the unit cell. (b) Transmission coefficient, where the superscript ‘+’
denotes right-handed-circular and ‘-’ denotes left-handed-circular. (c)
Transmittance (|S21|2) on a linear scale.

This metasurface is impedance matched for right-handed-circularly polarized light

at the design frequency. This is confirmed by the reflection coefficients shown in Fig.

9.24. The power absorbed by the metasurface can be calculated by subtracting the

incident power from the transmitted and reflected power 1− |S11|2 − |S21|2, which is

∼40%.

The constituent surface parameters of the symmetric circular polarizer can be

determined from simulation by inserting the S-parameters of the structure into (9.13).

They are shown in Figs. 9.25 (a) and (b). The terms representing loss (Re(Y), Re(Z),

Re(χ)) cannot be neglected. It can be seen that at the operating wavelength of 1.5
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Figure 9.23: (a)-(c) Dimensions of the first, second, and third sheets of the symmetric
circular polarizer, respectively.
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Figure 9.24: Symmetric circular polarizer at near-infrared wavelengths. Reflection
coefficient.

µm, Re(χyy) is much larger than the other magnetoelectric terms. In addition Im(Yxx)

∼ Im(Zxx) and Im(Yyy) ∼ Im(Zyy), which are all necessary conditions for symmetric

circular polarization, as given by (9.35). Although (9.35) assumes that η1 = η2, which

is not the case here, it is still valuable at providing physical insight since the wave

impedance of SiO2 is similar to that of free space.

The performance of this structure exceeds that of previous metasurfaces in a

few respects. At the operating frequency, the structure presented here achieves a

polarization rejection of 15 dB. This is comparable to the rejection levels of the

Au helix metamaterial [247], which achieved a larger bandwidth at the expense of

significantly increased fabrication complexity and overall thickness. This polarization

rejection is also an order of magnitude higher than the previous three layer structure

that cascaded identical electric dipoles with a rotation between the sheets [232].
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Figure 9.25: (a) Constituent surface parameters of the symmetric circular polarizer.
(b) The terms leading to loss (Re(Y), Re(Z), Im(χ)). All other terms
that are not plotted can be inferred by noting that the structure is
reciprocal.

9.4.6 Symmetric Circular Polarizer at mm-wave Frequencies

Next, a symmetric circular polarizer was also developed at 77 GHz. Most re-

flectarray antennas are linearly polarized. These antennas could also be made to

operate with circularly polarized radiation by incorporating symmetric circular po-

larizers. This would be beneficial for applications such as satellite communication,

remote sensing, and radar [68, 252]. Conventional circular polarizers at microwave

frequencies are realized with a helical geometry [68,253–255]. However, these designs

suffer from a complex fabrication process that is prohibitive at higher frequencies.

This motivated two and three layer structures that can be fabricated using standard

printed-circuit-board processes [252, 256]. However, these designs suffered from a

narrow bandwidth, relatively low extinction ratio, and high insertion loss.

Using the same design procedure as before, it can be shown that the necessary

sheets of this structure are identical to those of the metasurface providing asymmetric

circular transmission, except the first sheet is rotated by 90◦. The transmission

coefficient for the desired polarization is near unity, while the rejection of the undesired

polarization is greater than 30 dB at the design frequency (see Fig. 9.26(b)). In

addition, the constituent surface parameters are very close to the ideal values that

achieve a symmetric polarizer at the design frequency of 77 GHz. This can be verified

by looking to (9.35) and letting the transmitted phase be φ = −103◦, and then

comparing the result with Fig. 9.26(c).
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Figure 9.26: Symmetric circular polarizer at mm-wave frequencies. (a) Perspective
view of the symmetric circular polarizer. (b) Transmission coefficient,
where the superscript ‘+’ denotes right-handed-circular and ‘-’ denotes
left-handed-circular. (c) Constituent surface parameters.

9.5 Chapter Summary

Closed-form expressions are derived that relate the reflection and transmission co-

efficients of a general bianisotropic metasurface to its constituent surface parameters.

In addition, a systematic method to design bianisotropic metasurfaces is reported.

Specifically, it is analytically shown that cascading anisotropic, patterned metallic

sheets provides control of the electric, magnetic, and magnetoelectric responses. This

geometry is particularly attractive because it allows for straightforward design and

fabrication from microwave to optical wavelengths. Four different polarization con-

trolling devices are reported. In the future, three-dimensional metamaterials can also

benefit from this work [236]. By cascading the unit cell in the propagation direction

(ẑ-direction), a bulk bianisotropic response is attainable [150].
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CHAPTER X

Conclusion

10.1 Summary

Significant advances in the small antennas and metasurfaces were reported in this

thesis. First, a novel fabrication process was developed to mass produce small an-

tennas with near optimal performance. The small antennas were fabricated using a

direct transfer patterning process that allows one to stamp a desired metallic pattern

onto an arbitrarly contoured substrate. The small antennas that were fabricated op-

erated around 1 GHz and had quality factors approaching the fundamental limits set

out by Chu and Wheeler. In the future, this same fabrication process can potentially

be used in other areas such as high gain antennas, conformal antenna arrays, RFIDs,

and metamaterials.

Next, a physically intuitive method to analyze small antennas was introduced. By

considering the frequency dependent polarizability of an arbitrary geometry, a circuit

model was derived that predicts the radiation quality factor (Q), radiation efficiency

(ηrad), and bandwidth. This circuit model will aid in the design of small antennas. In

addition, analyzing a particle’s frequency dependent polarizability provides intuition

for its response when distributed along a two-dimensional array (i.e. metasurface).

Next, the directivity of a conventional small antenna was doubled by utilizing a

geometry that generates equal electric and magnetic dipole moments to realize a

Huygens’ source. Closed-form expressions were derived that accurately modeled the

directivity and bandwidth of these Huygens’ sources.

It was then shown that placing Huygens’ sources along a two-dimensional array

provides efficient wavefront control without reflection. These metasurfaces are termed

as Huygens’ surfaces because they control electromagnetic wavefronts in the same

manner that was envisioned by Christiaan Huygens in 1690. In contrast, the majority

of previously reported metasurafes used only an electric response which necessarily
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suffered from significant polarization and reflection losses. It was experimentally

shown that Huygens’ surfaces can achieve a high efficiency of 86% at microwave

frequencies.

The initially proposed Hugyens’ surface utilized split-ring-resonators to achieve its

magnetic response, which is difficult to fabricate. Therefore, an alternative geometry

was proposed that consists of cascaded metallic sheets. It was shown that this struc-

ture also exhibits electric and magnetic responses, but is much simpler to fabricate

than split-ring-resonators. In addition, polarization control is straightforward with

the proposed geometry. Using cascaded metallic sheets, a beam refracting surface

was developed that also converts the polarization from linear to circular. Next, more

extreme examples of wavefront and polarization control were investigated by develop-

ing metasurfaces that converted normally incident Gaussian beams into vector Bessel

beams. These metasurfaces represent the state-of-the-art in terms of the extent to

which they provide both extreme wavefront control and high efficiency.

The cascaded metallic sheet geometry was scaled to near-infrared wavelengths to

realize the first Huygens’ surface that controls light. It was theoretically shown that

by utilizing anisotropic sheets, the unit cells of a metasurface can generate arbitrary

phase shifts along the x and y axes, independent of each other. A beam refract-

ing Huygens’ surface with an isotropic response was designed and fabricated. This

metasurface achieved a peak efficiency of 18% and extinction ratio of 3 dB, which

represented the state-of-the-art in terms of wavefront control by a metasurface at

optical frequencies.

Finally, magneto-electric coupling (i.e. chirality) was systematically added to

metasurfaces to enable complete control of a wavefront. Such metasurfaces provide

the utmost in field control, since they allow coupling between electric and magnetic

fields. Since these metasurfaces exhibit electric, magnetic, magnetoelectric responses

we refer to them as bianisotropic metasurfaces. Systematic methods to analyze and

design these metasurfaces were developed. It was shown that cascading anisotropic,

patterned metallic sheets allows for significant control of their bianisotropic responses.

These metasurfaces were experimentally verified at microwave, mm-wave, and optical

frequencies, which highlighted their versatility.

10.2 Future Directions

In this thesis, it was shown that anisotropic metasurfaces can be designed to con-

vert a normally incident beam into any desired wavefront. In the future, a myriad
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of useful beams can be generated by simply illuminating a metasurface with a Gaus-

sian beam. For example, Gaussian-to-Bessel beam transformers were demonstrated

at microwave frequencies in chapter 7. These metasurfaces could also be straightfor-

wardly scaled to the optical regime using the techniques presented in chapter 8. In

addition, a bianisotropic response could be added to allow for additional polariza-

tion control [240]. For example, it was shown that the linear-to-Bessel metasurface

generates radial polarization when illuminated with x-polarization, and azimuthal

polarization when illuminated with y-polarization. In contrast, it can be shown that

the circular-to-Bessel metasurface requires an additional chiral response in order to

achieve the same effect with incident right-handed circular and left-handed circu-

lar polarizations. Alternatively, a bianisotropic metasurface could be developed that

converts an incident x-polarized Gaussian beam into a tractor beam (i.e. nonparax-

ial vector Bessel beam with both TE and TM polarizations) to pull small particles

towards the laser source [257]. In addition, the same metasurface could convert an in-

cident y-polarized Gaussian beam into a linearly polarized Bessel beam, which pushes

small particles away from the source laser. Thus, by varying the polarization of the

incident Gaussian beam, a single bianisotropic metasurface can produce near-optimal

beams for arbitrarily manipulating and sorting small particles, which may find many

applications in chemistry and biology [258].

In addition to arbitrary polarization and phase control of the transmission co-

efficient, bianisotropic metasurfaces can also control the amplitude, phase, and po-

larization of the reflection coefficient. Therefore, we can envision metasurfaces that

simultaneously control transmitted and reflected fields. For example, Fig. 10.1 shows

a bianisotropic metasurface that focuses half the incident light to a radially polarized

point, while also reflecting half the light off to an anomalous direction.

Figure 10.1: A metasurface focuses half the incident light to a radially polarized point,
while reflecting half the light off to an anomalous direction.

Bianisotropic metasurfaces could also be combined with a metallic ground plane
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to realize a wave guiding structure, as shown in Fig. 10.2. By controlling the phase

and amplitude of the reflection coefficient, the propagation constant and leakage rate

can be completely controlled. Setting the leakage rate to 0, implies the metasurface

and ground plane combination supports surface waves that do not radiate into free

space [259]. This is analogous to a dielectric slab supporting total internal reflection.

Having a nonzero leakage rate allows the metasurface and ground plane combination

to slowly radiate as the wave propagates. The angle of emission is determined by

the propagation constant within the wave guiding structure. To first order, the am-

plitude of the metasurfaces reflection coefficient controls the leakage rate, while the

phase controls the propagation constant/angle of emission. If the metasurfaces are

inhomogeneous, this should permit waves with different tangential wavevectors and

polarizations to be supported on either side of the metasurface. These metasurfaces

will, in turn, allow the generation of arbitrary modes within an optical cavity, while

also independently shaping the beam radiated from the cavity. This should allow

for the realization of cavities with arbitrary Q factors that radiate tailored beams of

arbitrary polarization. For instance, cavities that can generate unconventional beams

such as optical vortex beams, Bessel beams, and Airy beams could be envisioned.

Bianisotropic
Metasurface

Dielectric

Ground Plane

Figure 10.2: A bianisotropic metasurface combined with a ground plane supports
guided modes with arbitrary propagation constants and leakage rates.

In this thesis, all the reported optical metasurfaces were fabricated using electron-

beam lithography, which is an expensive process. This fabrication process is gen-

erally only used for developing proof-of-concept devices since any commercial de-

vices using this process would be far too expensive for most consumer applications.

Electron-beam lithography is a direct write process, which means that every trace

is individually drawn. In the future, large area soft lithography processes, such as

nanoimprint lithography, could be used to dramatically reduce the cost of optical

metasurfaces [242]. Nanoimprint lithography uses a hard mold to mechanically pat-

tern nanometer feature sizes into a soft material. Using this process, large areas

could be rapidly fabricated by simply ‘stamping’ the desired pattern. This would

allow optical metasurfaces to be transitioned from interesting devices to commercial
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products.
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