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ABSTRACT

OPTICAL AND INFRARED SCATTERING FROM IRREGULARLY-SHAPED
PARTICLES SMALL COMPARED TO THE WAVELENGTH

by Leland Emery Pierce

Chairmen: Herschel Weil, Thomas B. A. Senior

Absorption resonances due to shape and material composition are explored in
the context of small (=~ 100 nm through 40 pgm) naturally-occurring particles. This
resonance is very dramatic for small particles that are illuminated at a frequency
near the material’s bulk absorption band. Here, the dielectric constant has a neg-
ative real part, thereby allowing the coupling of energy into the resonant modes
for this shape, all of which are characterized by negative, real dielectric constants.
The extent of this resonant absorption is governed by the spreading of the energy
between the modes, and hence by the number of modes and their spacing along the
real axis.

This study explored two cases in detail: (1) the enhanced coagulation of two
spheres falling in the atmosphere when illuminated near an absorption band, and
(2) the absorption of visible light by specialized structures in chloroplasts as the
first step in photosynthesis.

The coagulation of two very small dielectric particles is found to be greatly

enhanced by the application of an appropriate field, in this case sunlight, during the



process. The forces due to the surrounding atmosphere are also taken into account,
but only affect the motion for distant particles, whereas the electromagnetic force
dominates for the near interactions at resonance. The simulations also reproduce
the known result that small particles tend to coagulate into chains aligned with the
applied electric field vector.

Photosynthesis in some plants seems to use this resonant absorption phenomenon
as well. The absorbing pigments are distributed on the surface of stacked thin disks
in many plants, and it is found that this configuration optimizes their light ab-
sorption capability at certain wavelengths. There is also a differential absorption
depending on the orientation of the stack to the incident field. It is possible that

plants use this phenomenon for regulating the amount of light they absorb.



CHAPTER I

INTRODUCTION

1.1 Motivation

Electromagnetic scattering from particles that are small compared to the inci-
dent wavelength has many applications. One of these is the remote sensing of cloud
and aerosol properties. Another is the analysis of colloids and other similar chemical
and biological systems with light scattering and transmission measurements. Also,
Raman scattering and fluorescence from molecules adsorbed at particle surfaces can
be better understood with a complete theory of the molecules’ interaction with the
surface field of the particle.

The major emphasis of this thesis is the study of a class of electromagnetic
resonances of these particles in the context of areas in nature where it is operative.
These resonances are significant for only certain materials at certain wavelengths.
Despite this, they are found to be important in many instances. This is true be-
cause when illumination is over a broad spectrum that contains the resonance, the
response is often dominated by the resonant response.

Physically, this resonance can be explained as a coupling of electromagnetic
energy into an internal, non—electromagnetic vibrational mode of the material: the
electromagnetic energy is used to drive the lattice vibrations. This mode occurs
in dielectric materials and is called a polariton. Another resonant mode occurs in

metals with similar enhanced local fields, however the mechanism is quite different,



where the coupling is to longitudinal plasma waves. This excited mode is called a
surface plasmon (see, e.g., Nelson (1979)).

Previous work in the Radiation Laboratory of the EECS Department along lines
similar to that used here has been used to analyze the scattering and absorption
characteristics of many different shapes (e.g., Czerwinski (1984); Senior and Ahlgren
(1972); Weil (1986); Weil, et al. (1985); Willis (1982); Senior and Willis (1982)).
The present research uses and extends this for two families of shapes: coagulated
spheres (not just tangent spheres) and agglomerating spheres as a start to modeling
the complex electromagnetic behavior of the many aerosol and colloidal systems that
consist of aggregated particles. The work with agglomerating spheres investigates
the electric fields in and surrounding a pair of particles as well as the effects of these
fields on the agglomeration dynamics and final shapes of such clusters. Another
application of the theory is made to the mechanism of photosynthesis in plants.

Our study of the particles consists of a variety of measures of their scattering

and absorption characteristics, as well as their near and internal field structures.

1.2 Overview of the Literature

Since the pioneering work of Rayleigh (1897) in small particle scattering, there
has been much research in the area. Phillips (1934) formulated the static problem
as an integral equation for a general homogeneous dielectric body. Later Steven-
son formulated the three lowest-order terms of the expansion in kd (a dimension-
less measure of frequency) for a general body (Stevenson (1953a)) and an ellipsoid
(Stevenson (1953b)). A good survey book by van de Hulst (1957) helped to unify
the notation and gather many important results. Siegel (1959a, 1959b) established
some approximate formulas for any body. Later, a series of papers by Kleinman,
Senior, and Keller rigorously established many general facts concerning the far
field (Kleinman (1967)), induced dipole moments (Keller, et al. (1972); Kleinman

(1973)), and polarizability tensors (Kleinman (1965); Kleinman and Senior (1972,



1986); Senior (1976, 1980, 1982); Senior and Ahlgren (1972)), all for general homo-
geneous dielectric bodies, as well as perfect conductors. More specialized studies
followed: Herrick and Senior (1972), Weil (1986), Weil, Senior, and Willis (1985),
Fuchs (1975, 1978), and Ruppin (1978), as well as more general numerical tech-
niques: Mei and van Bladel (1963); Arvas, Harrington, and Mautz (1986); Sarkar,
et al. (1981). In addition Ramm (1982) formulated the integral equations in a very

rigorous way, without actually implementing them on a computer.

Recently, particle shape came to be recognized as more important than previ-
ously thought. Many specific particle shapes have been investigated experimentally,
theoretically, and numerically. While nobody has presented analytical closed-form
results for the coagulated-sphere shape mentioned previously, there have been re-
sults for these shapes in terms of integrals, but only for perfect conductors (Mac-
donald (1895), Snow (1949)). Nobody has yet investigated the coagulated-sphere
shape for dielectric materials and low frequencies, but many authors have studied
the two-sphere family of shapes, where the spheres are either separate or touching.
Several have looked at the two-sphere problem analytically, as the surfaces are com-
plete spheres. Dielectric sphere pairs were treated by Olaofe (1970), Borghese, et al.
(1987a, 1987b), Ross (1975, 1976), Goyette and Navon (1976), Ruppin (1982) and,
most completely, by Love (1975), although his formulation is not valid if the two
spheres are touching. Of course, these treatments are confined to just two separate
spheres, and do not do the type of extended analysis included here. Perfectly con-
ducting and touching spheres were treated by: Smith and Barakat (1975); Jeffrey
and Onishi (1980); Féat and Levine (1973, 1976a, 1976b); and also O’Meara and
Saville (1980), while the problem of nearly-touching perfectly conducting spheres
was treated by Jeffrey and van Dyke (1978). Experimental investigations have been
done by Wang, et al. (1981), with subsequent numerical verification by Kattawar

and Dean (1983), and Fuller, et al. (1986). These measurements included electri-



cally large- as well as small-particle scattering.

Many other shapes have been treated. Most of the following, however, do
not specifically treat or are not limited to electrically small particles. Included
among the shapes studied are cubes (Herrick and Senior (1977); Fuchs (1975);
Ruppin (1978)), thin disks (Willis (1982); Willis, Weil, and LeVine (1988)), spheres
with Chebyshev surface perturbations (Wiscombe and Mugnai (1980); Kiehl, et al.,
(1980)), as well as others: Embury (1980), Huffman and Bohren (1980), and Kat-
tawar and Humphreys (1980). Experimentally, many irregularly-shaped particles
have been treated: Saunders (1970, 1980); Grams (1980); Wang (1980); Zerull, et
al. (1980, 1984); Bottiger, et al. (1980); Srivistava and Brownlee (1980); Bickel and
Stafford (1980); Pinnick, et al. (1976); Holland and Gagne (1970); and also Fahlen
and Bryant (1966). Other studies of a numerical or theoretical nature include Asano
and Yamamoto (1975), spheroid theory; Fuchs (1975, 1978), cube theory; and Cz-
erwinski (1984) who numerically investigated the effects of surface roughness on

spheroid-like shapes.

Turning now to applications-oriented research, there has been, and still is, a
great interest in understanding the light scattering properties of chemical and bio-
logical systems. Early on the aim was to understand the brilliant colors of certain
colloidal solutions and much effort went into experiments and theory about them.
The most famous is the theoretical work of Mie (1908) which models the colloid as a
sparse collection of spheres, and presented the so-called Mie theory for scattering by
spheres. However, as is well-known today (see fig. 1.1), the small nearly-spherical
particles in these colloids tend to cluster together into complex chains. A modern
treatment of Mie theory can be found in many references including Bohren and
Huffman (1983). Since Mie’s time, many investigators have tried to account for the
electromagnetic effects due to this clustering in various ways and sometimes with

different applications in mind (e.g., Weitz, et al. (1986); Berry and Percival (1986)).



Figure 1.1 — Photo of aggregated gold colloid particles. (From fig. 1 of Weitz, et
al. (1985))

Hence, there are many applications where light scattering from coagulated particles
is of interest. The latter part of this research aims to shed light on this coagulation
phenomenon as it relates to light scattering.

The dynamics of the coagulation of small particles has long been of interest.
Hocking (1959) presented a simple formulation for the coagulation of two small
spherical particles falling in a fluid. Later, Kransogorskaya (1965a, 1965b) extended
his work to include the static electromagnetic forces associated with perfectly con-
ducting spheres, using the work of Davis (1962, 1964a, 1964b). The present work
extends this to the coagulation of illuminated lossy dielectric spheres, using a static

electric field approximation.

1.3 Overview of the thesis

Section 1.4 presents many of the equations governing Rayleigh scattering as
derived by Kleinman and Senior over the years, and specialized to scattering by

dielectrics. Rayleigh scattering theory is used to approximate the interactions in



this thesis. The particles are electrically small in the sense that their maximum
dimensions are small compared to the free space wavelength of the incident field.
Note that in Rayleigh scattering the appropriate permittivity is that of the mate-
rial at the frequency of the incident radiation: e(w) (complex), not that at zero
frequency: €(0). This is because the Rayleigh approximation ignores the phase of
the incident fields, as in statics, but the material still behaves as if it is in a field of

the given frequency.

Chapter 2 presents the basic formulation used throughout the thesis. First the
statics problem that is presented in section 1.4 is treated for an arbitrary homo-
geneous dielectric body using an integral equation method. Next, this solution is
specialized to a body with rotational symmetry, and the azimuthal integral carried
out. The numerical implementation is presented next, with some comments on the
integration procedures following that. Lastly, the accuracy of the programs so de-
veloped is verified through a variety of means, both theory and measurement, for

some simple shapes.

The next chapter presents the results for the change in absorption characteristics
of two spheres when they coagulate. First we present some motivation for the
study, followed by the formulation of the absorption cross-section for our system of
particles. Next we present our model for the polarizability of non-spherical particles,

which is used later. Lastly, we present our results for small gold spheres.

Chapter 4 presents an analysis of the coagulation of two dielectric spheres falling
in the atmosphere with an optical or infrared field incident on them. We explore the
forces between them and their trajectories when the vibrational aspect of the motion
can be neglected. The effects of irradiation at a wavelength near an absorption
resonance on the forces and motion is compared and contrasted with the forces and

motion when not near a resonance.

Chapter 5 presents a first approximation in applying the resonance concept



to absorption of light in photosynthesis. After the problem is made tractable by
appropriate simplifications, the absorption by different geometries that occur in
nature are compared to each other. Since chlorophyll appears to have absorption
resonances in the visible, and because it often resides in structures that are much
smaller than the incident wavelengths, resonant absorption is very probably occur-
ring. This chapter shows some aspects of that absorption, and postulates as to its
use in different plants.

Finally, the last chapter gives the conclusions and ideas for possible future

extensions to the present work.

1.4 Introduction to Rayleigh Scattering

This section follows Kleinman and Senior (1986). Their presentation is specialized
here to dielectric bodies, and sets the stage for the work in Chapter 2. This deriva-
tion is the basis for all of the electromagnetic field calculations in this thesis, and

as such is included here.

1.4.1 The Scattered Fields

Assume time-harmonic incident fields, E™¢e~ %t and H™e~ ! exterior to a
b)) M

closed finite body with bounding surface S. Hence
V x B = jko ZogH™ V x H™ = —jkyYyE"® (1.1)

except at the source. In the above we have:

1

€0

The total field in the exterior region is made up of the incident and scattered
fields:
Et _ Einc 4 Es Ht _ Hinc + Hs (13)

ext — ext —

with r € ext(S), and where the scattered fields satisfy:

V x E® =ik ZoH® V x H? = —ikoYoE® (1.4)



with r € ext(S) and
s S . S _ 13 S . s __
Jim r x (V x E®) 4 ikorE® = lim r x (V x H?) + ikorH® = 0 (1.5)

where r is a point in space and r is its magnitude.

The total field in the interior of a lossy dielectric satisfies:
V x E!, =iwu L, V x B, = (—iwe; + o1)EL, (1.6)

where the dielectric is characterized by permittivity €;, permeability p;, and con-

ductivity o1. There are also the boundary conditions:

i x El,, =# x EL, (1.7)
iaxH,, =haxH (1.8)
- (e1 + 401 /w) By = 1 - By (1.9)
- g Hiy = 1 poHey, (1.10)

for r € S and with i the outward normal to the surface at r.

One can write the representations for these fields as integrals over the surface

)AI ES

) ! B (r ))] ds’

(the Stratton-Chu equations: see Stratton (1941

ezkoR
o(r)ES(r) = E/S[ikozo i X H() + V!

(1.11)
1 'lk'(]RA ’Lko
a(r)H(r) = E/S[_ZkOYOeR i x E*(r') + V/ ) n' - HY(r
) ! H(r ))] ds’
(1.12)
r € SUext(S)
where:
1, re€ext(S);
ar)=1{3, res; (1.13)
0, r € int(S).

=|r—r| (1.14)



and S is assumed to be smooth (continuous first derivatives).

Similarly for the incident field, since it satisfies Maxwell’s equations in the in-

terior region:

] 1 . 6. - inc
o) - UE™ () = o [. [szZO i X H() + 7

X (ﬁ' X Ei"c(r'))] ds’
(1.15)

0 .
€ R ﬁ’ % Emc(rl) + V,

o) = 1E" () = +— [ [=iko¥s

(

(
ikgR ( ;
( < (& x Him(r'))] ds’

(1.16)

r ¢ Source

Combining these two sets of equations in the exterior region:

s 1 . etho ] t / ' etkolt N /
E’(r) = E/S[zkoZo 7 i x Hy,(r') +V R i - E ,(r')
! etk / / /
— V(S ) x (X Bl ))] ds
(1.17)
1 kg R tkgR
() = 1 [ [t il Bl + ¥ (5 ) L)
' etk N, t / /
-V 7 (n x Hy,,(r ))] ds
(1.18)
r € ext(S)

1.4.2 Far field
The far field is important for understanding the absorption characteristics of

small particles. Using the approximations
cikoR  pikgr—ikgi-r’)
R r

ikoR ;
V x <61; ) i = @(r X ﬁ')e(ikor_ikof'r/) (1.20)
T

(1.19)
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the fields become

sy €M7 T —ikger!
E(r):47rrzk0[r></sn x EL,,(r))e ROF T 48
— Zof X F X /S i x H_,(t')e" kot gg (1.21)
He(r) = Yyf x E*(r) (1.22)

r far from S

From Kleinman (1967):

/Sﬁ’ x FdS' = /Sr'ﬁ’ V' x FdS’ (1.23)
Applying this identity to the above equations for the far field gives:
/S i x B, (r')e" kot g/ = /S ri - V' x [Em( Ne—ikotr' | gg! (1.24)
and now:

V' [Blyy@)e 07| = 7 (e R0 ) s L) + R0V X BL, @) (1.25)
= —ikoe *0PT'p x BE (1) + e F0RT VX Y, (1) (1.26)
and using Maxwell’s equations gives:
V' [Blay()e M7 | = [—ikot x BLuy () + ik ZoHEyy () |e 07 (1.27)
Similarly:
[ x Byt ds' = [ a9 x [ ewt(r’)e—ikof'r'] ds’ (1.28)
V! (Bl (x)e 0T | = —ikoe R0TE L () + ¢ 0P X (1)
(1.29)

:[ ikof x HE_, (/) — ikoYoEL,(r )]e—““of"f' (1.30)

This gives:
zkor 2 L , ‘ , ¢ p —iknir! ,
E’(r) = - [rxrx /Sr [ZO "x H (') — @' - E! ,(r )]e T T s
—ix [, r'[ ' x Bl (r') + Zoil - HY,(r )]e—ikof*-r’ dS’] (1.31)
ikgr
= - S(I‘) (1.32)

r € far field
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1.4.3 Plane Wave Incidence

Assume a linearly-polarized, unit-amplitude plane wave incident on the body:
E’iTLC(r) — ﬁeikoko-l‘ HinC(r) — }/Oﬁe’ikoko-l‘ (133)

where b = kg x a a- ko = 0; e, a, 13, ko are mutually orthogonal.
For completeness some well-known cross-sections are defined next.

Radar Cross-Section:

) ) 5 |Es|2 1 P 2

o(F) = lim dmr? oy = S Ko 8) (1:34)

where ko is the incident field direction and & is its polarization, as in (1.33).

Total Scattering Cross-Section:
or = i/ o(#) dQ:/ E°|%dS (1.35)
T ar o Bo '
- ZgRe/ i-E° x H* dS (1.36)
Boo

where € is a unit sphere, By, is a sphere of radius oo, and ( )* denotes the complex
conjugate.

Absorption Cross-Section:
o4 = ZORe/Sﬁ “H!,, x (E,,)* dS' (1.37)

Extinction Cross-Section:

Oext =0T + 024 (1.38)

but also from the forward scattering theorem (e.g., see van de Hulst (1957), pp.
30-31, or Born and Wolf (1980), p. 657):

P
Oext = k_olm{a ’ S(k(),k(), a)} (1'39)
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1.4.4 Rayleigh Scattering of Plane Waves

Expand the incident and scattered fields in powers of (ikg):

B = 3 (B B =al (1.40)

B = 3 kB R = vt )
for all kor, and similarly:

B (r) = é (ko)) H(r) = é (ko) "HL, (1) (1.42)

for small kgr and kg X only, where X is a characteristic dimension of the body. The
coefficients of (i¢kg)™ do not depend on ko, of course.

That the permittivity is not expanded in a series as well may be of some concern.
This is especially true when e varies rapidly as a function of frequency. However,
because of the assumption of plane-wave incidence at some fixed frequency, one
would intuitively think that the material will behave with the ¢ at the incident
frequency. The verification section (2.5) will show this to be true for the cases
studied here.

Returning now to the series expressions, apply Maxwell’s equations to the series

for the scattered fields:
V x E? = ik()Z()Hs V xH = —ikonEs (1.43)

This gives the two series expressions

io: (iko)"V x E; (r) = ikoZy i (iko)"H; (r) (1.44)
n=0 n=0

S (iko)"V x HE(r) = —ikoYp 3 (iko)"ES (r). (1.45)
n=0 n=0

These can be simplified to

(o.¢] (o.¢]

S (iko)"V x B(r) = Zo 3 (iko)™ 'H, (r) (1.46)

o0

i(iko)“v x Hi(r) = Yy 3 (iko)" T ES (1), (1.47)
n=0

n=0
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giving for E?

V X E§(r)+ (iko) V X Ef (v) + (iko) 2V X B (r) +- - - = Zo | (iko)HS(r) + (iko ) HS (r) +- - -
(1.48)
Hence, the 0*"-order term gives V x E§(r) = 0. Similarly for H*: V x H§(r) = 0.
So the determination of the 0t"-order scattered fields simplifies to the determi-

nation of the solution to two Laplacians:

Ej(r) = —V&§(r) Vios(r) =0 (1.49)
Hj(r) = -Y,V¥()  V2Ti(r) = 0. (1.50)
r € ext(S)

Since the total field in the exterior is the sum of the incident and scattered fields:

Et

ext,n

=E; +Ei" and H!,,, =H; + H', the total fields are given by
Ely10(r) = —V&(r) Hyp0(r) = ~YoVTG(r). (1.51)
Because the incident fields can be expressed as
égnc(r) =—(a-r+c¢ (1.52)
Uine(r) = —(b-r+c) (1.53)
the total potentials are given by
Pi(r) = ®j(r) —a-r —c (1.54)

W(r)=Ti(r)—b-r—c, (1.55)

and so the total exterior potentials also satisfy the Laplacian: V2®}(r) = 0 and
V2W(r) = 0 for r € ext(S).

Hence, to find the 0" order fields one solves the above statics problem.
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1.4.5 Boundary Conditions

The 0*-order boundary conditions are those of the statics problem. Restating
those here, in the present notation, where € = €1 +i01 /w is the complex permittivity,

gives the following. From the continuity of the total potential
zxt,O = (I)gnt,O +éa-r+c, (1'56)

and from the continuity of the normal component of D

0 € 0 L
%@zwt,o = a%(ﬁgnt’o +n-a. (157)

1.4.6 Far Field of Dipole

The following derivation follows that of Kleinman (1973). The scattered field

satisfies Maxwell’s equations in the region exterior to the body:
V x E* = ikoZOHS V xH’ = —ikolfoEs (1.58)

and satisfies the radiation condition (1.5).

From (1.31), because the incident field has no contribution:

ikgr
B = S k2ix [ L)) x ZoHE—i - E) —v' (-1 x B+ Zof' -HE) L dS’ (1.59
A7y 0 g 0 0 0 0
where
- Jim, E°, etc. (1.60)

and ZpgH® =t x E® in the far field.
Kleinman (1973) shows that:

x /r' x (&' x F)dS' (1.61)

DN |

/(f A x F)' dS' =
If one uses F = Ef and F = Hj separately, then (1.61) becomes:

ikar
e*r o
B = — k2{fxfx/

4 0 S

ds’

1
(& Bf) + ' x (& x Bj)

1
X /S [r'ZOﬁ'- b+ 57 %0 x (i X Hg)] dS’} (1.62)
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Form an alternate expression for (1.62) using the potentials that define the static

fields:

Ej = V&, Hj = YV

(1.63)

Comparing this with (1.62) it is clear that we will need to simplify the following

expression:

/r’x(ﬁ’xV’ )ds' = /(Eij ) @ x V'f)ds’

_ Z / % x (8 x V'f)z!] dS’
1=1

Kleinman (1973) does this and gets:

/r’ x (8 x V'f)dS' = —2/fﬁ’dS’

Using this identity, (1.62) is finally transformed into:

6 /

+ix [ [-ﬂ%w%ﬂwg] dS’}

1.4.7 Equivalent Dipole Moments

gy ﬁ’@ﬁ] ds’

(1.64)

(1.65)

(1.66)

(1.67)

For dipoles (p, m) located at the origin the far field is (e.g., Senior and Kleinman

(1986); Jones (1964), p. 532):

. ezkor 5 1. . R
E :—47Wk0{6—r><r><p+Z0r><m}.
0

Hence, equating with (1.67):

0
P= 60/<ﬁl(bg — I' 9 /(1)0) dSI
m =Y /(ﬁ'\IJO —r %\Ils) ds’,
and equating with (1.62):

p

m

/[ Ef) + ;r' x (& x ES)] ds’
/[ i H) +;r’x("xH8)].dS'

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)
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1.4.8 Polarizability Tensor

In accord with the work in sec. 1.4.4, let:

3 3

=3 (4 %) P s =3"(b- %) (1.73)
1=1 =1

P = —a-r (Eirc = a) (1.74)

gine = _p.r (Hi = Yyb) (1.75)

and let p = 60? -4, where P is the polarizability tensor, whose elements are defined

as:

P;; :/S(n %@ — g@s) ds’ (1.76)

The boundary conditions (1.56) and (1.57) become:

;= ; + x; (L.77)
%@; = ergin@j +1]; (1.78)
both when r € S. Since
/a: aiqﬁds' = er/V' ZV'®)) dV’+/V’ ol %;)dV"’ (1.79)
- er/(v'cpj) & dV +/5l~j v’ (1.80)
=& [ (% 1)@;dS' + Vs, (1.81)

where V' is the volume of the body, use the boundary conditions to get:
/x —cps ds’ —er/(X, " ds'—eT/( i)a; dS' + Vs (1.82)
Substitution into (1.76) gives

P, = / [ﬁ’-i@s 7 ai@s] ds’ (1.83)

/n %05 dS’ —er/ﬁ’-ii@j dS'—i—er/(f;i-ﬁ’)x;- ds' — Vs (1.84)

—(1-¢) / i - %02 dS + ¢, / (% - )} dS' — V55 (1.85)
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and since (IDE- = @} — z;, we have

Py =(1-e) [ & %0 dS"+(1-e,) [@ %)} dS' + e [ (@ %)} dS'~ Ve,
(1.86)

Pj=(1-¢) /ﬁ’-ﬁ@; ds’ (1.87)



CHAPTER 11

THE STATICS PROBLEM

2.1 Integral Equations for the Potentials

This section follows Senior (1976).
Start with the theorem from Kellogg (1953), p. 223:
If Uy is harmonic and continuously differentiable in a region with bounding

surface S, then for r inside the body bounded by S:

oU;(r 0 (1
0=, [ @ (E)] a5’ 21)
and for r outside the body:
oU;(r 0 /1
0=/, [ U5 (E)] a5’ (22)

where i is the outward normal of the bounding surface, R = |[r — /|, and r’ is a
point on the surface of the body.
If Uj is harmonic and continuously differentiable outside a region with bounding

surface S, then for r inside the body:

o=l [ w5 ()] 4 23
and for r outside the body:
D= L[ ok (e e

18
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where i is the outward normal of the bounding surface, R = [r — 1’|, and r’ is a
point on the surface of the body.
Assume that the total interior potential is Uy, and that the total exterior po-

tential is Uy + ¥, where W is the potential due to an incident field, so that on the

boundary:
oU; 8(U2 + ‘1/) ‘
2 =g 2.
‘1 on s -9 on S (2:5)
A y
1), =+ (2.6)
See the figure below for a clarification of the geometry.
A
n
rl
S
0.
For r inside the body:
1 [0U; 1 o (1 ,
_ 1 L A 2.
U 471'//5 o R Vow (R)] a5 (2.7)
1 [0V 1 0 (1
= — — U ()| dS 2.
47r//5 |On' R on' (R)] 5 (2:8)
1 [—0Us 1 a (1 y
= wlls | o 7t P (E)] a5 (2.9)

Because of the boundary conditions, form the combination: €1 x (2.7)+€2 % (2.9),

to give:

1= () - (3) o (] o5

ozl () o+l forn v (D] e en

Using (2.8), this gives:

2€1 2¢€9 62 —€ 1 !
Uy = // ( ) ds 2.12
€&+ € ! €2+ 61 62 + €1 2T an ( )
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for the interior potential of a homogeneous dielectric body.

Going through a similar derivation for r outside the body:

1 [ 8U2 0 /1 ,

U2_47r// o' R U2 (R)] a5 (2.13)
1o Jourt 8 (1 ,
= s o Ul%(ﬁ)] a5 (2:14)
1 [0V 1 0 (1 ,
= i lls |ow s~ Vo (ﬁ)] a5 (2.15)

Because of the boundary conditions, form the combination: ez X (2.13) + €1 X

(2.14), to give:

o, oy 9 (1\] o
eaUs = i // [( — € aﬂ,)g—(elUl—GQUg)%(Eﬂ ds (2.16)
yielding:
g esa sacf[[01 g0 (1] 4
ale+¥) = el += 0 //Ulan( ) // lan’R o \RJ|
(2.17)

and because of (2.15) this gives:

2¢€9 2¢€9 62 —e 1 !
Uy + 0) = // ( ) ds 2.18
€2+61( 2+ 9) €2+€1 62+€127‘l’ 871 ( )

for the total exterior field of a dielectric body.

To find an integral equation for the potential on the surface, use a limiting
process from the inside. For r inside the body, use (2.12). To evaluate this in the
region of the singularity of the integrand at R = 0, let r be on the boundary and
deform the integration surface, as shown in fig. 2.1, with € representing a small
distance, into S — S5 + Se.

This is done in such a way so that lim._,o(S — Ss) + S = S, where S is the

undeformed surface. So actually evaluate the expression:

261 262 €2 —€1 1 0 / 1 /
Ui = v —]§[U—( )ds lim [ U ()dS
€a+€71 ! €9+€1 + €9+€1 27r[ S Yo' \R T Se Yo' \R

(2.19)
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r!

Figure 2.1 — Geometry for Cauchy principal value integral showing hemispherical

path, S,, around the singular point.

where ffg = [[g_ Ss defines what is meant by the Cauchy principal value integral;
the original integral with a small region surrounding the self-point eliminated from
the integral.

It is necessary to evaluate the integral

a /1N .,
I} 5.V o (E) ds (2.20)

over S; where this is a hemispherical surface centered at r. It is known that for a

sphere:
0 ! 0 1 —2 / 2 .
o’ \R) ~ 0R\R) ~ ~ = 2.21
on' (R) OR (R) R and dS" = R*sinf df d¢ ( )
Hence:
0 1 , 2 em/2 /T 5 .
on' \R - 7 =2 2.29
/SEUl on/ (R) s /45:0 /0:0 ( iz )R sin 0 df d¢ U (r) ( )

Using this in our original expression gives:

2¢1 2€9 e2—¢€ 1 n 0 ( 1 ) / ( )
€2+ €1 Ur(r) €2+ €1 () + €2 + €121 l]é[SUl (r )8n’ R 5 + Ui (r)




22

(2.23)

2¢9 €2 —¢€ 1 n O 1 !
- v - ]5[ Uy () -2 (—) ds 2.24
Ui(r) €2 + €1 (r) + e+e1 2w M s i(r )8?7,’ R ( )

for r on the surface of the body.
One could also have found the integral equation for the potential on the surface

using a limiting process from the outside, with the same result.

2.2 Rotational Symmetry

This section follows Senior and Ahlgren (1972), while filling in some steps. On

the surface S of the homogeneous dielectric body, (2.24) is valid:

262 €9 — €1 1 ’ 0 1 /
- v — ]§[ () (=) ds' (2.25
Usurs (r) €2+ €1 () + €+ €127 SU £l )Bn’ <R(r, r’)) (2:25)

where

R(r,r') = ‘r -1

b

U(r) is the external, ‘incident’, potential,
Usury is the total potential on the surface S, and
it is the outward surface normal.

Specializing this formulation to a body of revolution is carried out in what
follows. This requires the use of cylindrical coordinates (p, @, z), as illustrated in
fig. 2.2, and that ¥ is restricted to be only either —z or — z. We shall do each of

these two cases separately.

2219 =—x

Here use ¥(r) = —z, or —pcos ¢. Since the equation of the body is independent
of ¢, this gives:
Usurf(r) = Vl(s) Cos ¢ (2'26)

where s is a measure of the position on the surface in the x — z plane, i.e., the arc

length.
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Figure 2.2 — A rotationally-symmetric body in the cartesian and cylindrical

coordinate systems.

The integral in this case is rewritten as

-9 — 1 1
Vi(s) cos ¢ = _:;pcosgb 29 ]5[5 [V1(s') cos qﬁ'} % ( ) ds’

€9 €9 + €121 n' \ R(r,r’)
(2.27)
where:
R(r,r') = \/(p— p')? + (z = /)2 + 2pp/[1 — cos(¢ — @) (2.28)
dS' = p'd¢'ds’ (2.29)
i = cosa'(Xcos @’ + §sing’) —@sina’ (2.30)
with: o/ = tan™ o (2.31)
’ 07 ’

Using the above,

(2.32)
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Hence
Vi(s)cos¢p = 26 cos ¢ + 2—€1i1 (2.33)
! _62+61p €2+ e 2 )
where
sSmazx 27 0 1
I = ][0 Vi(s')' /0 cos ¢/ (E) d¢'ds’ (2.34)
sSmax
= ][0 Vi(s)p' cos¢[2{p cos Qg + [(7' — 2)sina’ — p cos 0/]91}] ds' (2.35)
s
with: Q; = / C‘md% 0y = / cos” Ly (2.36)

Notice that the cos ¢ term cancels in the equation, giving:

Smax
-9 —e 1
€9 ) e2—e 1l ][ I/'l(s/)pl{pCOSOéI92+[(zl_z) Sina’—p’cosa’]91}ds’
e2t+e€1  etemwm 0

Vi(s)=

(2.37)
for an ambient field (far from the particle) of %, or a potential of —z.

2220 =—2

In this case ¥ is independent of ¢. Hence, since the body is independent of ¢,

the surface potential is as well:

Usurt(r) = V3(s) (2.38)
This gives:
—2e9 € —e€1 1 smax 2r 1
Va(s) = ][ / (—) d¢ds' 2.39
3(5) 62+61z+€2+612ﬂ' Vs(s')p on' \R ¢ds ( )

In a manner similar to that used in sec. 2.2.1, write:

0 <)¢/an<>¢¢) (2.40)

= 2{p cosa'Q + [(7' — z)sind’ — p cos a’]QO} (2.41)

7TdrY

ith: Qg = — 2.42
Wl 0 0 R3 ( )
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which simplifies to

(2.43)

for an ambient field (far from the particle) of z, or a potential of —z.

Note that because the ¢—integral is from 0 to 27 one only need use a collection
of line segments and arcs to define the body such that this collection is contained
in the first and second quadrants of the z — x plane, i.e., x > 0, for all z.

Appendix A contains some of the details of this derivation.

2.3 Basic Numerical Implementation

Rewrite the surface integral equations [(2.37) and (2.43)]:

—2€9 € —€ 1 psmaz_ N g
Vi(s) = + —][ Vi(s)Ki(s, s') d 2.44
()= 2 O i, s (2a)
-9 —e1 1 78
V3(s) = €2 @A mang(s')Kg(s, s') ds’ (2.45)

- 62+61Z e+emJo
where the integrals have been simplified by inserting the kernel functions K; and
Ks.

Discretization of each of these equations is necessary in order to solve them on

a computer. Define:
r— 0; x < xg— Azx/2
rect ( A 0) =< 1; 29— Azx/2 <x < z¢ + Az/2 (2.46)
0; zo+ Az/2 <z

which is a rectangular pulse, centered at r = g with width Az and unit height.

Assuming that Vj,(s) is adequately represented as a finite sum of these gives

V()—% ; rect(s_si) (2.47)
m\S) = Vim As; .

=1
with m = 1,3 and where As; depends on ¢, to allow for variable sampling densities.

Putting this into the integral:

s s N P
][ V() Ko(s, ') ds’ = ][ - {Z v, mrect <8A381>] Km(s,s')ds' (2.48)
i=1 ¢

0 0
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Because both the sum and the integral are finite one can exchange their order:

sSmax s — S; SZ+ASZ/2
_ t K , / d / ][ / d /
szm][ rec ( As, ) m(s,8') ds Z Vi;m As,/ s,8)ds
(2.49)
So the integral equation is:
N
S — 8 2€9 62 —€ 1 31+A31/2 ' ’
Vi mrect = U, (s ][ (s,s")ds
Z-Zzl o ( As; ) €+ €1 m(8) 62—|—61’frZ b sj— ASZ/Q )
(2.50)
where Uy (s) = —p , and V3(s) = —z, are the ambient static potentials.

Lastly, let s = s;, i.e., enforce this equation at discrete points along the bound-

ary. This gives a set of N simultaneous equations:

K (sj, s')ds' (2.51)

2€9 € —e€1 1 N 31+A31/2
Vjim = Vim

B ,
€ + €1 m(sj)—l_eg—l—eﬂrZ 1 i—As; /2

where 7 =1,2,---, N.

Figure 2.3 shows what one of the N equations represents in graphical form. The
integral is over the i-th segement, represented by the arrow with s’ near it. The
kernel, K,,, is evaluated at s;, and over the entire i-th segment. Also note that v; y,
and ¥,,(s;) are evaluated at the point s; as indicated above.

This yields the value of the potential at sj: vj,, while using the value of the
ambient static potential at s;: W,,(s;).

This set of equations is next put into matrix form. The canonical form appears
as:

[Alx =D (2.52)
where in this case x is the unknown column vector: v, = (V1,m, V2a.m, - - - ’UN’m)T,

and [A] is an N x N matrix.

Putting the present set of equations into this canonical form:

2 —e 1 s;+As; /2
Vjm = = \I]m(sj 62 “ Z zm][ ' ' SJ, )dSI (253)

€2 + €1 €+ €]
—2mey € + €1 Le-a 8 +Asz/2 N
Upn(sj) =—m Vjm Z Vi;m ][ Kp(sj,s')ds (2.54)
€ — €1 € — €1 €2 — €1, 8;—As; /2
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Figure 2.3 — Diagram for the evaluation of one of the N equations.

For convenience of notation, let v;, = —:;j_’renl, €9 = 1, and €; = €. This gives:
LI S 7 Jév‘; i iij Konlsy, ) s (255
Hence:
_Wi "+ é Wim ][fi; sz(sj, §)ds' = 20Uy (s;) (2.56)

for j=1,2,---,N.
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This can be written in matrix form as follows:

_ o+ N - 4 - -
‘WE’{“UCSE Km(sla Sl)d'sl T f;;N Km(sla Sl) ds' W1,m 27T‘I/m(81)
+
fjl K (s2,5")ds' e .- w2, m 270, (52)
1 _
st 1 s 2l
- Kmy(Sy,8)ds ces Tr—+ 5 2 Kp(Sy, $)as N,m m\°n~
f811 K ( I)d 1 1+: fS;VK ( I)d || w e (S )
(2.57)

where s; = s; — As;/2 and slf" = s; + As;/2.
Note that the Cauchy principal value only need be considered when evaluating
the terms on the diagonal. In all others K, is not singular because s; is not between

(s; — As;/2) and (s; + As;/2). Also note that e appears only in the term —zrite

1—e’
which is present in the diagonal terms alone. This is helpful later on.
In terms of the variable names used in the computer program:
[Az]|W =B (2.58)

where [Az] is an N x N matrix of complex numbers (in general) whose entries are:

o 3j+Asj/2 , , ] )
Az (i, j) = / K. (s,8") ds (j #1) (2.59)
Sj—ASj/Q
1 s;+As;/2
Ax(i,1) = —m i_z + ][si—Asi/2Km(Si’ s')ds' (2.60)

and W and B are column vectors of length N. The entries of W are unknown, while

the entries of B are from the ‘incident’ field:
B(i) = 27¥,,,(s5) (2.61)

Using the standard LINPACK routines, this matrix equation is readily solved
for the unknown vector W.
This is the standard method that is used for solving for the potentials , V;, given

a geometry and material, but one may also solve for the values of € that will cause
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the matrix to be singular: they are simple functions of the eigenvalues of a related
matrix (one without the e—terms in the diagonal elements).

To see why, rewrite the matrix equation as
{[F] - A\I]}W=B (2.62)

where in this case [F] is [Az]| without the e—terms in its diagonal, and [I] is the

identity matrix. Hence
1+e

A\ =
7r1—6

(2.63)

For the eigenvalue problem one sets the excitation vector equal to zero to get:

[E]W = AW (2.64)
Thus one obtains
A—T
— 2.
= i (2.65)

as the values for the relative permittivity that cause the matrix problem
[Az]W = B (2.66)

to be singular. The matrix [Az] will be singular, or nearly so, corresponding to
the physical situation where the ‘incident’ field (either X or z) is at a frequency
where the relative permittivity of the material is at or very near one of the values
calculated above. Hence, excitation of a ‘natural mode’ of the object, which causes
energy absorption to be very high will occur for these frequencies.

Remember that the set of A’s is the set of eigenvalues of the matrix [E]. This
matrix is real, unlike [Az] which is complex for some given complex e.

For the potential that is internal or external to the body use the surface potential

n (2.12) and (2.18):

2 )= 2w () = 1// ( )dS’ r € int(B)

1+e27r

(2.67)
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0] = 4 L [v00 2 (1) as reenu(p)

(2.68)
with m =1 or m = 3.
Using the expression for the internal potentials, one may solve for V,, in an

analogous way to the solution for the surface potentials:

2 2 1 —e1 X Asz/2
V() = —— W, - ][ r,s)ds' (2.
Tte m(I‘) T+e¢ 1—{-6 z Vi,m AsZ/Z 3) § ( 69)
1 1 —e1 X Asz/2
V. (r) = ~0 ][ r,s')ds' 2.70
m(l‘) m 2€ WZ Lm 8;— Asl/Z S) 5 ( )
With v; , = —u{z_T
-1 p 1N 8;—As;/2
v, :—2() =3 W, ][ K (r, s') ds' 2.71
m(r) 2¢ [ z * ﬂ_i;’wz,m s;—As;/2 m(r,5) ds ( )

for r inside the body.

For r outside the body, the total external potential is found to be:

—2W,,(r) + = Z lm][

Note that this is the same equation as for the internal potential, except for a factor

Vin(r) + ¥ (r) = —3

"ds' 2.72
sj— Asl/2 m(r, ) S] (2:72)

of e. This follows from the continuity of D. Hence, calculating all the potentials
using the equation for the internal potentials and then multiplying this number by
e if r is external to the body, gives the correct external potential. This is done in
the program.

Since the potentials have been determined, the polarizability tensor elements
can now be calculated. In the present case of rotational symmetry about the z-axis
one only need calculate Pj; = P»y and Ps3, all others being zero, as shown by Senior
(1976). From (1.89):

Pj=(1-c¢ /S i - %0 dS’ (2.73)

As was done previously, the surface integral is transformed to :

Pi=(1-¢ ][sm‘”/% [_ 1(6/)] gl ds' (2.74)
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For P33 this gives:

Smax 2T

Py = — ][0 /0 (= sin o) W3(s')p' do'ds’ (2.75)
Smax
P33 =27 ][0 o sina’ W3(s') ds’, (2.76)
and for P11:
smaz 2w
P =— ][0 /0 (cos o cos ¢')[W1(s") cos ¢']p’ dg'ds’ (2.77)
smax

=— ][0 o cos o'W (s') ds'. (2.78)

These are the equations used in the program.

2.4 Singularity Extraction and Integration

Senior (1983) and Willis (1984) have outlined procedures for computing the near
and internal fields for various special cases which are quite restrictive both in terms
of body geometry and field point position. These computations require special effort
due to the rapidly-varying integrand when near the surface or near the symmetry
axis. In this section the method of Senior and Willis is further generalized while
keeping the body axially symmetric, so that now an accurate computation can be
performed for any body profile made of circular arcs or straight lines, within the
limits of accuracy of the matrix inversion routines.

This enhanced accuracy and functionality of the program is necessary in order
to accurately model the geometries of interest in this thesis. The previous code
could not handle re-entrant shapes well, and so could not accurately model the
fields for the coagulating spheres or for clefts that were at all sharp. Furthermore,
this new version of the computational procedures gives accurate values near the
symmetry axis which was not possible in the earlier procedure. Without these, the
force calculations would be seriously compromised, as the point of closest approach
of the two spheres during coagulation is along the axis of symmetry. Also, the

field point may now be anywhere, allowing the total internal and external fields to
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be calculated at all points of space. This is important both for accurate surface

potential values and for complete field plots.

All of these enhancements require the removal and analytical integration of two
potentially nearly—singular terms from the numerical integration procedure of the
program. This allows the surface integrals to be far more accurate when the field
point is extremely close to the surface; much closer than in the previous formulation.

This integration procedure is outlined in the remainder of this section.

When a purely numerical integration is used the accuracy is low, especially near
the body’s surface. The reason is the presence of a singularity stemming from the
elliptic integral expressions. Hence, remove a small region around the singularity
from the domain of integration and do this integration analytically (although ap-
proximately). This analytical term is then added to the numerical result, giving
accurate potential values at points which are very near the body’s surface. This

procedure is summarized below and explained in more detail in Appendix B.

The evaluation of the ;s involves elliptic integrals and their derivatives. (See
Appendix 1, especially part 6.) Hence, the integrands of equations 3.1 and 3.2 con-
tain various combinations of these elliptic integrals. Unfortunately, these functions
vary rapidly under certain circumstances and hence undermine our attempt at an
approximate integral as a small finite sum. One way to get an accurate evaluation
of the integral is to increase the number of sampling points, but since the required
number becomes intolerably large, the terms in these series expressions that are
the major contributors to the rapid variation are removed and the integrations are
done analytically. Figure 2.4 shows the elliptic integrals as evaluated by the series

expressions. (See Appendix A, especially part 6.)

In particular, the terms removed from these series include a 1/(1 —m) term and

a In|1/(1 —m)| term. Each of these is plotted in fig. 2.5.

At ¢ = 0, and X-excitation, (2.71) and (2.72) give:
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Figure 2.4 — Elliptic integrals as functions of m.
outside: — 2®4(r))

bndry: —(1+4¢€)® 1
ndry: = (14€)®i(r) =2p+ —/W1 (s'){p cosa Qo+ (2 —2) sina’ — p’ cosd/] Ql}p’ds'
s

inside:  — 2e®4(r)

) (2.79)

with

1
®q(r) = —1—W1 (s)cos¢ (2.80)
—€
and where Q; and (29 are elliptic integrals containing the troublesome singularities.

Following Senior (1983), break up the integral into two pieces, one not near the
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Figure 2.5 — Singular terms as functions of m.

singular point (denote this point by sg), and one surrounding it very closely (S):
1 1
—2 +—/ Wi (s) Ky (s, s)ds' + ~W /K sds' (281
Pt lss 1(s)K1(s, 8')ds’ + —Wi(so) 5 1(s,s)ds”  (2.81)
= 2p + IlA + W1 (S())IlB (2.82)
where K stands for the kernel of (2.79).

The concern here is with the second integral, as the first can be done with good

accuracy numerically. Write I15 as a sum of non-singular and singular terms:
Iip = IK; + IK1, + 1K g (2.83)

where IK; stands for the non-singular part of the integrated kernel, IK;, stands for
the integrated kernel with only the mil-singularity terms retained, and IK;g stands
for the integrated kernel with only the In (mil)-singularity terms retained.

A similar decomposition can be employed for the z-incidence case, giving:

I3p = IK3 + IK3, + IK3g (2.84)
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where the terms have similar meanings to those in (2.83), but applied to the -
incidence kernel function.

The integrals are next simplified by integrating over a flat approximation to the
curved boundary, as shown in fig. 2.6. This entails a transfer to the s —t¢ coordinate
system Note that this is redefining the s variable from global to local, and from

curvilinear to distance on a straight line.

dielectric body

center of circular arc

Figure 2.6 — Definition of local s-¢ coordinates.

The terms are then of the form:

+A/2 q FA2

Ky, = A / - 4+ B / 5 ds (2.85)
A2 1—m A2 1—m
+A/2 YA2 o

K3, = C / EERPWY) / 5 s (2.86)
A2 1—m A2 1—m
+A/2 +A/2

IKig=FE In (L) ds' + F/ s'In (L) ds' (2.87)
—A/2 1-m —A/2 1-m
+A/2 1 +A/2 1

K35 = In(——)ds H/ " (7>d’ 2.

3 G—A/z n(l—m) s —A/2$Il 1-m 8 (2:88)

After the integrations are performed and after much tedious algebra the result
for the mil—singularity terms is

2[s2 + 2 + /2 + 2t/ sine/ (s cose!’ — tsine)](s2 + 2 — ')

Ko = ' e
{s2 + (t + t')? + 4¢' sind/ (s cosa/ — tsina/) }

T, (2.89)
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4’ cos2a/ (s sine! + t cose!) (8% + 2 — %)

K3, =
{s?2 + (t + 1) + 4¢' sinc/ (s cosa/ — tsina/) }

o Lo (2.90)

with

C2[s?+ %+ ¢ + 2t/ sine/ (s cosa’ — tsina/)](s2 + 2 — /%)

Lo = . . 5/2
{82 + (t + t')? + 4t sind/ (s cosa/ — tsina/) }
2
|[( cosa’ + Sl; a (ssina’ + tcosa’))A

2
s sind/ 8 —sA+ 82+ (' —t)?

+ 4sind/ (s sina’ + ¢ cosa’)(cosa’ +

) In

4 A2 LA+ 824 (' —t)?2

4 ino’ +1 / ) s 2 )

(s sm: j—tcosa ) [2 sine (s sino/ +t cosa )+t (cosa/ — sin®a’) + SH; a (s2—12)]
A —2s A+ 2s
S tan™ [ —— tan™! | ——— Hl 291
o (ig) oo () 240
The result for the In (mil)—singularity terms is

IK 5 = A1t cos &/T; + sin o/Ty] (2.92)
IK35 = B5[t' cos &/T; + sin o/'Ty] (2.93)

with

1
201X - Z+ =Y |2+ (¢ —t)?
o X Z4 Y [+ (¢ 1)

oy ! !
B1 =(ssina’ +t cosa’) cosa oL +6t' cosa! (s sina’ + tcoso/)]

1 1
_ I s ) Py w2l 1 2] 1
(s cosa sina’ + (1" —t) sin“a’ + t' cos a) 5 {8b1Z + 2X}

(2.94)
1 1
B3 =(ssina’ + t cosa’) COSO/YT/? {81)1Z + EX}
1
— (s cosa! sina’ 4 (t' — t) sin®o/ + ¢/ cosQa') D {(4b1 —1)X—s%— (t—t')2}
(2.95)

and
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t=[mlf|~2] (5 ~5) = [minr] ~2] (-5 ~5)

20— o <(f ) (?t'%—_t; )}

A
[1n|772 | — 2] ( [51112@ — CoS a]+2t31na cosa + 2)

A
+ [ln|n2_\ — 2] ( [sin?a/ — cos?a/] + 2t sina/ cosa’ — 5)

— 2[t(sin’a — cos?a’) —t' — 2ssind/ coso/]
tam s[sm o — cos’a]+2t sina/ cosa -I-
an
t(sin?a/ — cos?a’) —2s sine cosa —t’

. 9 / A
- +2t _4
! s[sTn2a cos?a/]+2t sina’ cosa’ — 5 (2.96)
t(sin“a/ — cos?a’) —2s sina/ cosa’ —t/
A2 +
II_— — =P (t' —t)? In| |~ sA
214 U
A A
75— S8 +3 + s
25(t — ) | ¢ -1 2 —t -1 2
+ 25( ) [ an @ —t)) an @ -0
( Az 9 )
Z—Q [ (sin?a/ — cos®’) +2t sina/ cosa]
1 +
~3 $ s In 77_2_
+ [s2+(t'—t)2+4t' cosc (s sino/+tcoso/)] 2
\ 7/

- [s( sin?a/ — cos®a/) + 2t sine cosa'] A

+2 [s( sin?o/ — cos?a’) + 2t sina/ cosa ] [t( sin?a/ — cos

) s(sin®a/ — cos?a/) +2t sina’ cosa +( )
- | tan
[t( sin?a/ — cos2a’) —t/ —2s sina/ cosa }

20/ —t' — 2ssina/ cosa']

T (s( sin?a’ — cos?a) 42t sina/ cosa — (%) )] (2.97)
[t( sin?a/ — cos2a/) —t/ —2s sina// cosa’]
and
X = 4t' cosa/ (s sina’ + t cosa’) (2.98)
Y = 5%+ (t +t')? + 4¢' sino/ (s cosa/ — tsina) (2.99)

Z=s+12+¢%+2¢ sind/ (s cosa’ — tsina) (2.100)
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This completes the specification of the analytical integration of the nearly-
singular terms. As an example of the use of these formulas, the calculated po-
tentials are compared in figure 2.7 to the purely analytical results for a sphere (see
egs. 2.103, 2.104). Note that at the sphere surface »r = 0.5 and the potential has a
lower error than at nearby points. For the non-resonant case (e.g., €, = 2.0 4 50.1)
the worst error is in the exterior, at a distance of 4 x 1075 from the surface, with a
value of 2.2%. For the near-resonant case (e.g., ¢, = —2.0 + j0.1) the error at the
same distance goes to 6.5%. Closer than this the error increases dramatically, as
can be seen by the trend in the plots. Using these plots one can get some idea as

to how accurate the near-surface results are for irregularly-shaped bodies.

2.5 Verification

This section presents further verifications of the formulation (secs. 2.1 and 2.2)
and the implementation (secs. 2.3 and 2.4). Numerical comparisons are made be-
tween the present numerical method and a number of analytic results. The purpose
of these comparisons is so that we are confident of the numerical results in later ap-
plications where analytic results are not available. For a single sphere and a hollow
sphere these include a comparison of the potentials, electric fields, polarizabilities,
and resonant dielectric constants. The comparison is very favorable. Next, eval-
uation using a theoretical formulation (Love (1975)) of the potential and electric
field for the two-sphere system is compared with our results. Following this, a com-
parison is made using two spheres near each other, showing good agreement with
the surface intensity, or |E|2, as computed by the analytical/numerical technique of
Aravind, et al. (1981) for a variety of separations. Next, very good agreement is
obtained with the theoretical resonances obtained numerically (in a similar manner
to that of Aravind, et al.) by Ruppin (1978) of the two-sphere system as a function
of separation. Lastly, good agreement is obtained with the numerical resonances for

thin disks obtained numerically by the the method of Chu, Weil, and Willis (Weil
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Figure 2.7 — Near-body accuracy for sphere of radius r = 0.5.

6 = 30°. (a) Non-resonant case, ¢, = 2.0 + j0.1. (b) Resonant case, ¢, =
~2.0 + 50.1.
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and Willis (1987)).

2.5.1 Sphere

Assume an ambient (static) electric field of unit amplitude in the direction +%,

the sphere centered at the origin. Figure 2.8 shows the geometry in the plane ¢ = 0.

o X
5
ro 6
NIEY Z

Figure 2.8 — Geometry for single sphere.

The ambient (static) field is
E, =2=Vz=V(rcosf) =cosfft — sin6 @
This gives the ambient potential:
b, = —2= —rcosb

because E, = —V®,,.

The general solution to the potential problem is

q)_{Clr0050 r <7
T U (=r+Cy/r?)cosh 1>
where:
-3 e — 1
¢ = =13 ()
! € + 2 2=T0 € + 2

(2.101)

(2.102)

(2.103)

(2.104)
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This theoretical formulation is now compared to the numerical results. Figure
2.9 shows some typical results for surface potentials of a sphere. In every case the
error is less than 0.01%, and this is typical, even near the resonance at ¢, = —2.
Naturally, there is a region of the complex ¢,-plane where ¢, will be so close to -2
that the error is very high, but that is expected due to the nature of the numerical
solution: the matrix inversion gets less accurate the closer €, is to the resonance.
Despite this, the program is clearly giving a very accurate solution for the sphere
in all cases except those where it is too near a resonance.

Figure 2.10 shows some near-field potentials for the spheres, and again the
results are excellent.

To find the polarizability of a sphere, start with the expression for a dipole field:

pcosf

(I)dipole = (2'105)

where p is the dipole moment, directed along the z-direction. The field of the sphere
is

® = (—r+Cy/r?)cosh 1> (2.106)
so that the equivalent dipole in the far field is p = 4mwegCs, giving a polarizability

a = 4n(Cy, and so:

a 4nCy €r — 1)
R 2.1

To find the resonant epsilons, one must find the zeroes of the denominator of a. It
has but one zero at ¢, = —2; this is the one resonant epsilon for the sphere.

Some typical results for the polarizability of a sphere are shown in fig. 2.11.
The plots show excellent agreement with theory, even very close to the resonance
at €, = —2. The reason that the polarizability is of interest is that the absorption
is proportional its imaginary part, for a particular polarization. This is shown in
sec. 3.2.

Lastly, some resonant values calculated by the program are shown in fig. 2.12.

As might be expected, the more subsections that are used to divide the surface,
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Real Part of Potentials

Real Part of Potentials

Figure 2.9 — Surface potentials for sphere.

Sphere radius is 0.5. Real part only. Lines show numerical results, marks
show theory: circles, X-incidence, squares, z-incidence, (a) Non-resonant case, €, =
2.0 4+ j0.1. (b) Near-resonant case, ¢, = —2.0 + j0.1.
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Figure 2.10 — Near-field potentials for sphere.

Sphere radius is 0.5. Lines show numerical results, marks show theory: circles,
%-incidence; squares, z-incidence, (a) Im{potentials}, ¢, = —2.0+;0.1, § = 30°. (b)
Re{potentials}, €, = 2.0 + 50.1, r = 0.25.
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the closer the resonant values get to theory. After about 50 subsections the values

become indistinguishable on this scale.

-1.25 s

-1.50 i
wh
% 175 i
2

2,00 |- T

D o3 A N R E R BN I

0. 10. 20.  30. 40 50. 60. 70.

Number of subsections in numerical calculations

Figure 2.12 — Resonant ¢, values for a sphere vs. the number of subsections used

in surface discretization.

2.5.2 Hollow Sphere

Assume an ambient electric field in the direction +Z, the spherical dielectric
shell centered at the origin. Figure 2.13 shows the geometry in the plane ¢ = 0.

The ambient (static) field is

E,=%=Vz=V(rcosf) = cosff —sinff (2.108)
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15.

Im(P,,)

Figure 2.11 — Polarizabilities for sphere.

Lines show numerical results, marks show theory. (a) Py1 for € = 0.5, circles:
Real part, squares: Imaginary part. (b) Im{Ps3} for €!! = —2.0.
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Figure 2.13 — Geometry for single hollow sphere.

This gives the ambient potential:

b, = —2z=—rcosb (2.109)

because E, = —V®,.

The general solution to the potential problem is

Ajircosf r<nmr
o = { (Agr+ By/r?)cos® 11 <71 <719 (2.110)
(=74 B3/r?)cosf re<r

where:

Ay = Ag + By /13 (2.111)

Ay = -1+ (B3 — By)/r3 (2.112)
1

By= - [Bs(2+ &) —r3(er — 1)] (2.113)

o3
[(2@« +1) (%) -1+ Gr] (&r — 1)+ 3er (1 — &) o

By =r3 N
[(2@ +1) (_1) 14 e,a] 2+6) +36(1—e)

This theoretical formulation is now compared to the numerical results. A typical

result for the surface potential is shown in fig. 2.14. The angle 6 is measured from
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Real Part of Potentials

Figure 2.14 — Surface potentials for hollow sphere.

Real parts only, inner radius is half the outer radius. ¢ = —2.0 + 50.1.
Lines show numerical results, marks show theory. circles: X-incidence, squares:
z-incidence, Outer and inner refer to which of the surfaces the potentials are on.

the positive z-axis, and both inside and outside surface potentials are shown. The
agreement, is excellent.
To find the polarizability of a hollow sphere, start with the expression for a

dipole field:

pcos b

(I)dipole = 471'607‘2 (2.115)

where p is the dipole moment, directed along the z-direction. The field of the hollow
sphere is

® = (—r+B3/r})cosh 1>y (2.116)
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so that the equivalent dipole in the far field is p = 4meyBs, giving a polarizability

«a = 47 Bs, and so:
(07 471'33 3B3

Voogmlri-rd) ()

(2.117)

The resonant epsilons are given by the zeroes of the denominator of Bs which are

— (503 + 4) £ 3,/a3(a + 8) (2.118)

4(a3 - 1)

6"":

These are the two resonant epsilons for the hollow sphere. The largest one (in
magnitude) is the one with the negative square-root.

A comparison of the calculated polarizabilities and theory is shown in fig. 2.15.
In each case the agreement is excellent even very near the major resonance at
er ~ —2.782. The worst case out of the many runs made (not all shown here)
occurs in the real part near the resonance, where the calculated values are positive
and the theoretical values go negative. This only happens in a small region near a
resonance.

This small region of error is unimportant in the context of this thesis. However,
if one wished to decrease the error, the eigenvalue computation could be done with
higher precision. Despite this, no matter how close the computed resonance posi-
tions are to the theoretical positions, near the region where they don’t agree the
error will be high. There is nothing more one can do except shrink this region by
using higher-precision calculations.

The computed and theoretical resonance values are compared in fig. 2.16. The
agreement is excellent. Note that calculated polarizabilities can be quite inaccu-
rate very near a resonance because of the slight difference between calculated and
theoretical resonance values: if the distance in the €,-plane of ¢, (chosen for the cal-
culation of the polarizability) to the two different resonant ¢, values is of the same
order of magnitude, then the calculated values agree with theory; if not, which is

the case when ¢, is chosen very near one of the resonance values, then the errors
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can be tremendous. Except for that situation, the numerical results are quite good.

(See the comments at the end of sec. 2.5.2 for a way to minimize this error.)

2.5.3 Fields for Two Separate Spheres

The work of Love (1975) is presented here and compared to the numerical re-
sults, while other aspects of the two-sphere problem are investigated in the following

sections.
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Potentials
For an ambient electric field Epz, and a geometry with two separate spheres,
Love obtains the following expressions for the external and internal potentials:
ext % %
Vs = —(coshn — cos 7)222 Eyd

s 1
> Py(cosT) {:I:(2n +1)eT™ 27 4 4A; p3, sinh [(n + %)n] } (2.119)
n=0
: 11

Ui = F(coshn — cos 7)222 Eod
ol 1
S Pacost) {(2n +1) +2 (@0 — 1) Aypigy } T2 (2.120)
n=0

where 7 and 7 are bispherical coordinates (see fig. 2.17) and:

o {N—(N-1)e 0} e 2N

M3n = Z

N—0 ®3NI3N—1 — B3N + V3NP3 N+1

n N-1
-{5n,N+H(n—N) I psu+HN-n) ][] q3,l} (2.121)

I=N+1 l=n
d = asinhng (2.122)
a = sphere radius (2.123)
separation = 2R = 2a coshnyg (2.124)
e — 1

Ay =— 2.12

| (2.125)
P, are the Legendre polynomials of the first kind (2.126)

0, ifx<0; (1, ifn=N;
H(z) = {1, else. On,N = {0, else. (2.127)
and where:

agy = N[0 — Aje™>Nm0 (2.128)

B3.n = (2N 4 1) coshng — Ay sinh g — NA1e 2V — (N + 1) Age 20V +Dm

(2.129)

Y. = (N +1) [e — Age D] (2130)
with the continued fractions:

a3.n V3,n3n+1 V3 n+1¥3n+2 (2 131)

D3 n =
B3n—  B3n+1—  B3ny2 —
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Y3,n A3nY3n—-1 A3n-173n-2  (3,173,0

B3n—  B3n-1—  P3n-—2— B3,0

43.n (2.132)

Similarly, for X-incidence:

3
2

1
Tsot — +(cosh77 —cosT)222 Eyd

Z Pl(cosT) cos ¢ {e:F("Jrf)" + 2A1 1, cosh

n=1

U™ = 4 (cosh 7 — cos ’7') 2 Eyd

(n+ ) |} @139

Z Pl(cosT cos¢{1 + A1 ptin ( 2n+1)mg 1)} F(nt3) (2.134)
n=1

where:

o0 {1 — e—2no} e—2Nmgy

Hin = Z

N—1 INGIN-1 — 1IN + VINP1,N+1

N-1
{5n,N+H(n— H pru+HWN-n) ] ql,l} (2.135)

I=N+1 l=n

P} are the associated Legendre functions of order 1
o1y = (N =1)[e7 4 Ay (2.136)

Bin = (2N 4 1) coshng — Ay sinh g + NA1e 2V 4 (N + 1) Age” 3N +2m

(2.137)
YN = (N +2) [e"0 + Aye= BN +2m] (2.138)
with the continued fractions:
-
’Yln A1 nV1,n—1 O1n—171,n—2 01,171,0
n = Bin— Bin1— Pia2—  Big (2.140)

To relate the bispherical coordinates to the p — z coordinates used in the rest

of this work, use the relations:

n=—In(PL/PL') 7 = the angle LPL' (2.141)
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Figure 2.17 — Definitions of 7 and 7 of the bispherical coordinate system.

where the distances and angles are indicated in the figure below:

For ¢ = 0, these relations give:

=i () -
T = tan"! (rpd) — tan™! (z _’i d) (2.143)
Also note that given R and a, then d and 7y are determined:
l=2(R—a) d=asinhny | =2a(coshny—1) (2.144)
giving:
o = cosh™! (;—a + 1) (2.145)
d = asinh [cosh_1 (2l_a + 1)] (2.146)

Since the only available FORTRAN subroutine calculates P,, but not P!, an

expression for P! in terms of P, is needed. From Abramowitz and Stegun (1964):
PH(z) = ™ PH(x + i0) (2.147)

1
P (z) = (22 = 1)72 [(v — W) 2Pl (2) — (v + W) Pi_y(2)] (2.148)

P, 1(z) = P}(2) (2.149)
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with z = x + 4y, so that

—— [ncos TPy (cosT) — nP,_1(cosT)] for n > 1;
Pl(cosT) = T (2.150)
0 for n = 0;
This completes the specification of Love’s results for the potential.

The surface potentials calculated using the procedures of sec. 2.3 are compared
to a computational version of Love’s theory in fig. 2.18. Shown is the case for ¢ = 0,
with 6 varying over the perimeter of one of the spheres. Various geometries and
dielectric constants are shown to validate the numerical methods over a wide range
of parameters. It is seen that the agreement is excellent; less than 0.1% error in
fact.

Note that all the particular shapes are a function of one parameter: the center-
to-center separation, measured in units of particle diameter. Hence a separation
of 1 gives the geometry of two whole spheres just touching, a separation of zero
gives just one sphere, and a separation of 2 gives two spheres whose surfaces are
separated by a length equal to the diameter of one sphere.

Next, figs. 2.19 and 2.20 show off-surface potentials. Figure 2.19 gives the
potentials at distances along a radial line from the center of the sphere on the
positive z-axis, at an angle of § with the z-axis. In each case the surface of the
sphere is at r = 0.5. Again, the agreement is excellent. Figure 2.20 shows the
potentials along a line at a fixed distance from the boundary, which is therefore
a circular arc either inside or outside the sphere. The angle 6 is measured from
the positive z-axis toward the positive xz-axis. Again, in each case the agreement is
excellent.

In general, every case that was tried yielded results with errors less than 0.2%.
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Figure 2.18 — Surface potentials for 2-sphere.

Lines show numerical results, marks show Love’s theory: circles, X-incidence;
squares, Z-incidence; (a) Real part, separation = 3, ¢, = 2.0 + j0.1. (b) Imaginary
part, separation = 5, ¢, = —2.0 + j0.1. (c) Real part, separation = 20, ¢, =
10.0 + 41.0.
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Lines show numerical results, marks show Love’s theory: circles, X-incidence;
squares, Z-incidence; (a) Imaginary part, inside, r = 0.25, separation = 3, ¢, =
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Electric Fields

To find the electric field, use the gradient in bispherical coordinates:

E:_(COShZ_COST) <’732‘11+7627. _|_¢Sm7-88¢ > (2.151)
Rewriting the external z-incident potential:
U5 = —(coshn—cos T)%A i P, (cosT) {j:(2n+1)e:F("ﬁlZ)"+Bn sinh [(n-i—%)n]}
" (2.152)

from which we obtain

1 1 o0 1
(%\Ilgmt - —AE(coshn —cosT) 2sinhn Z P, (cos T){:I:(2'n, + 1)62F(n+7)n
n=0
+ By sinh [(n + %)n] } (2.153)
1 & 1 1
~ Afcoshn — cos7)2 3 Palcos){ (2 + 1)[F 0+ )T
n=0

+ B, cosh [(n + %)n] (n+ %)} (2.154)

1 1 > 1
%qjgwt = —Ai(coshn —cosT)"2sinT Y Py(cos T){:I:(2n +1)eTntan
n=0

+ By, sinh [(n + %)n] } (2.155)

o0
— A(coshn — cos T) Z % P,(cosT)] {i(2n + 1)e¢("+%)’7
n=0
1
+ By sinh [(n + E)n] } (2.156)
a%‘l’“t 0 (2.157)

Rewriting the external X-incident potential:

1 X 1 1
5 = 2(coshn — cos7)2A S Pi(cosT)cos ¢ {ejF("Jr?)" + D, cosh [(n + 5)77] }

(2.158)

n=1
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which gives:

1 sl 1
%\Iﬁf"t = A(coshn — cos7)"Zsinhn Y Pa(cosT) cos ¢{e¢("+?)"
n=1
1
+ Dy, cosh [(n + 5)?7] } (2.159)

1 & 1 1
2A(coshn — cos 7)2 3 Pi(cos 1) cos p{F(n + )T+

n=1

+ D,, sinh [(n + %)n] (n+ 1)}(2 160)

0 1 0 1
E\I/‘f”t = A(coshn — cos7)"ZsinT Y Py (cosT)cos qﬁ{e;(""'?)"
n=1

1

+ D, cosh [(n + 5)77] } (2.161)
2 d a1 1
2A(coshn — cosT) Z P [P (cos 7')] cos ng{ejF("“L?)"
n=197T

1

+ Dy, cosh [(n + 5)7)] } (2.162)
1 0 —2A 1 — 1 1
Sn7 99 et — g (coshn—cos T 27;]3 cos T) sin gb{ T34 D, cosh [(n—i— 5)77]}
(2.163)
In summary:
E§" = f)Es, + 7E3; (2.164)
ES* = By, + 7E1, + ¢F1, (2.165)
where:

A =V/2Ey(coshn — cos ) (2.166)
Bn = 4A1N3n (2.167)
Dn = 2A1,u1n (2.168)

By evaluating the above formulas, the theory can be compared to the numerical

work, but because there is a need in Chapter 5 for only the external surface electric
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field, attention will be confined to this. Figure 2.21 shows the normal component of
the external surface electric field. In most cases the agreement is excellent. However,
at large separations and large dielectric constants the agreement for the z-incidence
cases is poor, and a 25% error is typical. This is mentioned here for completeness
only, as the dielectric constants used later are never nearly as high.

The reason for this large error goes back to the crude approximation used to
find the electric field: a finite difference of the potentials. As an example, in the
case shown here the potentials used in the finite difference had an accuracy of about
0.25%. The Ar necessary for an accurate value of the surface electric field under
normal circumstances was found to be 0.01 and this was also used for the large
separation, large e cases as well. This meant that the errors were multiplied 100
times, yielding the observed 25% error. Again, this is mentioned for completeness
only and does not affect later calculations because the dielectric constants used
there are much smaller.

If more accurate electric field values are required, a completely different ap-
proach is called for. Returning to the original governing integral equations in terms
of the potentials, one could form E = —V®, which would result in integral equa-
tions for the components of E on the surface. This could be solved using a numerical
procedure analogous to that used here. The only trouble is that the integrals are
more poorly behaved than is the case for the potentials.

Figure 2.22 shows the tangential component of the external surface electric field.
Again, in most cases the agreement is excellent. However, in every case with a large
dielectric constant the z-incident tangential field was inaccurate. The explanation
is the same as stated previously, except that the errors are much less dependent on

the separation.
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Figure 2.21 — Surface normal electric field for 2-sphere, as function of 6.

Lines show numerical results, marks show Love’s theory: circles, X-incidence;
squares, Z-incidence; (a) Imaginary part, separation = 3, ¢, = —2.0 + j0.1. (b)
Real part, separation = 5, ¢, = 42.0 + j0.1. (c) Real part, separation = 20,
er = 10.0 + §1.0.
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Lines show numerical results, marks show Love’s theory: circles, X-incidence;
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Real part, separation = 5, ¢, = 42.0 + j0.1. (c) Real part, separation = 20,

& = 10.0 + 41.0.
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To find the polarizability of the 2-sphere combination, and also the resonances,

one can use Love’s far-field potentials:

infcos¢p X
v — —8FyAqa® sinh® pyomr S8 9P 1 2.169
! lfar field e n;n(wr S (2169)
0 o0
v — —8EyA;a® sinh’ ng s> m+1 2.170
3 e feld 0A1 "3 nZ:O( )K3n (2.170)

Comparing these to the far field of a dipole, oriented in either the X or z direction

as appropriate, the volume-normalized polarizabilities are found to be:

o0
% = —12EpArsinh®ng 3 n(n + 1) pan (2.171)
=1
o oo
73 = —12E,A;sinhng Y (20 + 1) pan (2.172)
n=0

The values for the resonances can be found by noting the values of the real
part of the relative permittivity, €., (with the imaginary part zero) which cause the
imaginary part of the polarizability to become infinite, or equivalently, where the
real part of the polarizability has an abrupt sign change from +oc to —oo. This is
not an easy task as stated. However, if one looks at the reciprocal of the real part,
this quantity has a well-behaved sign change, going through zero smoothly at the
position of the resonance. This was the idea that was used numerically to find the
resonance values. Note that some zeroes are more easily found by the routines than
others, and to find a particular one may require a very good initial guess, otherwise
a different zero will be found instead.

The polarizabilities are compared in fig. 2.23. The agreement is excellent when
not too near a resonance. Near a resonance, i.e., when |e, — €5 < 0.08 or so,
the error can be quite large, as is seen in part (b) of the figure. There, the z-
incident polarizability is plotted with the real part of ¢, held constant at -2, and the
imaginary part allowed to vary from near zero to one. Near zero, the error in the
imaginary part is 161 out of 663, for an error of 25%. For the real part the error is

much worse: the calculated curve goes positive while the theory goes negative! At
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e/ = 0.01 the real part should be -396, but is instead 249. While this is bad, it does
not reflect poorly on the formulation, but the numerical implementation: as the
precision and accuracy of the matrix formation and inversion increase, this error
decreases. But note that there will always be a small but finite region around each
resonance where the agreement is poor. To obtain accurate results at the resonance
requires a different approach, namely using an appropriate eigenvector expansion,
as is developed in sec. 3.3. In summary, the agreement is quite good when at least

0.1 away from a resonance.

2.5.4 Two-Sphere Intensity

Aravind, et al. (1981) have carried out a theoretical investigation of the surface
and near field intensities for two nearly (but not quite) touching spheres of the same
size and material parameters. They solved the static boundary value problem but
obtained the expansion coefficients numerically, rather than analytically as Love
did. Then they solved for the intensity, |E|?, for a particular ambient uniform field
direction. The particle material they considered was silver (in vacuum). This last
point is a bit of a problem: the relative permittivity as a function of frequency,
er(w), for silver that was used was neither given nor referenced. Comparison with
their data was therefore complicated. Despite this, a good approximation to their
values was obtained (apparently) for, at least, the frequencies corresponding to
w = 3.48eV and w = 3.21eV, and very approximately elsewhere, by judiciously
varying the imaginary part of ¢, at these two frequencies until reasonable agree-
ment was obtained. These final values for ¢, were well within the limits of the
available measured data (Physik Daten (1981)). Hence, the ¢,.(w) used here was
likely somewhat different from that used by Aravind, et al., (1981) except at the
two previously-mentioned frequencies.

The plots all show the same physical situation: two silver spheres (in vacuum)

at varying separations with a uniform ambient field directed at 45° to their line of
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Figure 2.23 — Polarizability for 2-sphere (Z-incidence).

Lines show numerical results, marks show Love’s theory: circles, real part;
squares, imaginary part; (a) Separation = 3, €/ = 0.1. (b) Separation = 5,
el = —2.0. (c) Separation = 20, €/ = 0.1.
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Figure 2.24 — Geometry for two spheres near each other.

centers (see fig. 2.24 below).

Figure 2.25 shows the intensity on the surface of one of the spheres as a function
of w, where w is the energy of a photon, proportional to its frequency through
w = hv, where h is Planck’s constant. Here, the differences in €,(w) show up clearly
in the differences between the theoretical solutions for an isolated sphere: small
but noticeable differences from w = 2.5eV through w = 3.5eV. The agreement for
two spheres with center-to-center separation of 1.05 is not as good, especially below
3eV and at 3.5eV, but both methods show the dual maxima quite clearly, with a
worst case error of about 7%.

Figures 2.26 and 2.27 show the intensity along the surface of one of the spheres
(sep = 1.05), as a function of angle, #, where # = 180° is the surface point closest
to the other sphere, and § = 45° corresponds to the point used in figure 2.25.
Figure 2.26 is at w = 3.48 eV, the main peak in figure 2.25, while figure 2.27 is at
w = 3.21 eV, the minor peak in figure 2.25. The agreement is excellent except in
figure 2.27 for 6 between —120° and —60° where the error is about 10%. Possibly

this region is particularly sensitive to the choice of €, (w).
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Figure 2.25 — Calculated |E|? on sphere surface (f = 45°) compared with

Aravind et. al. v8. w.

Figures 2.28 and 2.29 show the intensity of the field along the line of centers for a
separation of 1.05. Hence, the plots are symmetric, with d/D = 0 being the surface
of one sphere, and d/D = 1 being the surface of the other. Here, the points were
particularly difficult to accurately interpolate from the plots in Aravind’s article due
to the low variability (dynamic range) of the curve, and also because of the thickness
of the line. Both the present data plot and Aravind’s are symmetric (although they
may not appear that way). The agreement here is quite good also, about 5% worst

case error.

Overall, the agreement with Aravind et al. (1981) is very good, despite using

only finite-differencing of the potentials.
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2.5.5 Two-Sphere Resonances

The resonances were also calculated by Ruppin (1975) using a theoretical for-
mulation similar to the one by Love (1975) that was presented earlier, but Ruppin’s
solution of the difference equation was numerical rather than analytical. Hence,
his results, as presented in figures 2.30 and 2.31 are estimated from his published
(graphical) results. (Note that the ratio d/R is equivalent to the previously defined
center-to-center separation, in units of diameters.) The agreement between his and
the present numerical technique is quite good except for slight differences for the
the minor resonances for nearly-touching spheres at x incidence.

Next, in fig. 2.32 the formulation of Love is compared to the present numerical
technique. The results are even better: excellent agreement everywhere, even where
there were discrepancies with Ruppin’s work. This implies that Ruppin’s numerical
solution of the difference equation was not quite good enough at that separation. In
summary, the values for the resonant dielectric constants as calculated numerically
show excellent agreement with the theory of Love and all three methods are at least

in good agreement.

2.5.6 Thin Disk Resonances

The numerical code of Chu, Weil, and Willis (Weil and Willis (1987)) (CWW
for short) was available for direct comparison of the resonances for thin disks with
flat ends. This section shows a comparison of the results for very thin disks with a
diameter-to-thickness ratio of 23:1, which is the ratio used in our Chapter 5, section
5.5, to simulate some apects of photosynthesis. Note, however, that this section
gives the comparison for flat-edged disks, while Chapter 5 uses round-end disks.
This changes the values of the resonances slightly, but was necessary, as that is all
the CWW code is capable of doing. The same code was used for the generation of
the resonances in Chapter 5 as was used here, just the input data file was changed

to account for the slightly different geometry.



71

-1.0

-15 —

20 —

25 +—

Relative permittivity

30 —

o) Ruppin

Thiswork

| | | | | | |
1.00 125 150 175 2,00 225 250 275 3.00

diR

-4.0

Figure 2.30 — Calculated resonant epsilons as a function of separation compared

with Ruppin for x-incidence.

-1.0

-15

-2.0

-25

Relative permittivity

-3.0

Ruppin

Thiswork

-35

| | | | | |
1.00 125 150 175 2,00 225 250 275 3.00

diR

-4.0
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with Ruppin for Z-incidence.
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Figure 2.32 — Resonances for 2-sphere.

The major ones are more negative. Lines show numerical results, circles show
theory. (a) %X-incidence, (b) Z-incidence.
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The table below gives a comparison of the resonance positions obtained using the
two different codes. The major and next two largest resonances for each incidence
are given. The values do not agree exactly as in the previous sections, but are quite

close.

Table 2.1 — Comparison of major resonances for thin disks.

incidence This Work CWwW
X -2.762 -2.92 4+ 0.08
-1.491 -1.67 + 0.04
-1.10 -1.08 + 0.08
Z -2.864 -2.76 + 0.08
-1.510 -1.64 + 0.08
-1.00 -1.16 £+ 0.08

A word about the CWW method is in order here. It is similar to a moment
method code, but with a set of functions (defined throughout the whole disk) already
assumed for the unknown field quantities. The coefficients of these field quantities
are the unknowns. Final output is currents and absorption and extinction cross-
sections. Given a plot of the absorption cross-section as a function of the real
part of the relative permittivity (negative), with a small imaginary part, one can
estimate where the resonances occur by picking out the highest peaks. Although
not presented here, that is what was done to obtain the numbers presented here for
the CWW code results. This is why the CWW results have the accuracy ranges:
the points used to form the plot were at that spacing, and therefore the resonances
are unknown to that degree.

In summary though, the agreement is good, and so the resonance positions

found in Chapter six are believable.
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2.6 Summary

This chapter has presented the analytical and numerical background for the
remainder of the thesis. The integral equations were derived, then specialized to the
case of rotational symmetry. The numerical implementation was covered in some
detail, giving the resultant matrix equation and some of the numerical problems
and their solutions. Lastly, exhaustive verification runs were made to be sure that
the code was performing accurately for the cases of interest in this thesis. The
verification work clearly shows that the numerical code is an accurate model of
the electromagnetic interactions in the cases of interest here. With that, the code
is next used to understand the coagulation effects on absorption (Chapter 3), the
effect of the dielectric constant on the coagulation dynamics of two dielectric spheres
(Chapter 4), and finally, the possible uses evolution has made of this phenomenon

in the tailoring of the photosynthetic apparatus in some plants (Chapter 5).



CHAPTER III

COAGULATION EFFECTS ON ABSORPTION

3.1 Motivation

The coagulation of particles is ubiquitous in physical science. Some colloidal
solutions show dramatic color changes when their constituent particles coagulate.
Also, aerosols in the Earth’s upper atmosphere are very often made up of many
different particles agglomerated together. Understanding the effect this agglomera-
tion has on the electromagnetic absorption is therefore an important issue worthy
of study.

Before beginning, however, the topic of modeling the dielectric constant of ma-
terials is important. This is particularly true when investigating absorption bands
in or near the visible range of electromagnetic radiation for particular materials;
these have a real part of ¢, that is less than zero in this frequency range. Conse-
quently, the Lorentz model for the permittivity, €, is presented in this section. The
presentation follows that given in Bohren and Huffman (1983), pp. 228-231.

The Lorentz model for € is a classical theory based on a classical model of an
atom as a mass on a spring: the valence electron being the mass and the spring
representing the force field of the remainder of the atom. With a spring constant,

K, and damping constant, b, the electron is driven by the local electric field:
mx + bx + Kx = eE (3.1)

75
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with e being the charge of the electron, m its mass, and x its position relative to

the nucleus.

When E is harmonic in time, with frequency w, so is x, giving the approximate

result:
E
x = — (6/”2”) , (3.2)
Wi — w* — iyw
where w3 = K/m, and v = b/m. The induced dipole moment of this atom is

therefore p = ex. If it is assumed that there are N atoms per unit volume then the

dipole moment per unit volume, P, is:

P= d E 3.3
wg—w2—i’yw60 (3.3)

with wf, = Ne?/(meg). By definition, then

&=1+—5—>— (3.4)

and with €, = €. + jel':

20,2 _ 2
! wp(wo —w )
=1 3.5
e =1+ (@F — 02)? + %0 (3.5)
2
¢! e (3.6)

= (g — w?)2 + 722

These functions are plotted in fig. 3.1.

In this thesis the concern is with the IR and optical range of frequencies. In this
range it is known that the physical mechanism underlying the dielectric behavior is
the relative displacements of different ions from their equilibrium positions (Kittel
(1976), pp. 410-411). To obtain a heuristic understanding one can think of the
material as being made up of dipoles with some damping mechanism. The strength

of each dipole oscillates as ex:

(e*/m)E

2 _ 2
wy w

p—— (3.7)
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Figure 3.1 — Permittivity as a funtion of w/wg for the Lorentz model.

or, in terms of the magnitude and phase:

pl o< ——
Wi — w w
\/( 2 2)2 4 242

—1 YW
argp x tan ((%7>

These functions are plotted in figs. 3.2 and 3.3.

Note that for frequencies below wg the dipole oscillates more-or-less in phase

with the excitation, but that above wp the dipole is generally 180° out of phase

with the excitation: the dipole opposes the incident field. The magnitude increases

dramatically near wgy but falls off rapidly away from the resonance. Because ¢, has

the constant term added to the dipole-like term, the values are shifted, giving ¢, a
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model.

negative value only in a finite region above wy, by virtue of the large negative dipole
moments in the atoms near, but above, resonance at wy.

Because the magnitude of the opposing dipole moment falls off for increasing
w > wp, the value of €, eventually rises above zero to 1 at w = oco.

Although this is a classical explanation and derivation, the formulas arrived
at are still valid, but with the symbols reinterpreted for quantum mechanics. See

Bohren and Huffman to explore this further.
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3.2 Formulation

In Kleinman and Senior (1986) the case of cylindrically symmetric particles is
treated. There, the polarizability tensor is shown to consist of three terms on the
diagonal, all others being zero, with Pj; = P33. The scattering coefficient S is shown
to be:

S(f‘, f(, 5) = —k% [Pllf‘X(f‘Xﬁ) + (P33 — Pll)(A . i)fx(fxi)] (3.10)

which assumes that no magnetic dipole terms are present.
For the case of the electric field polarized in the X-direction, we have: & =

—%,k = —. Putting this into the forward scattering theorem (# = —k) yields:

Oext = koIm{ P11} (3.11)
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and for an electric field polarized in the z-direction,
Oext — k‘oIm{ng} (3.12)

Lastly, the scattering cross-section is shown to approach zero for small scatter-
ers, and so:

Oext = Oabs (3'13)

for Rayleigh scatterers.
This means that the absorption characteristics of a particle are clear from the
polarizability tensor elements. Hence, in the following, these elements are the main

subject of interest.

3.3 Polarizability Model

A new model for the polarizability of small dielectric particles is now proposed.
This model is presented in Pierce and Weil (1990) where its application to coagu-
lating and coagulated spheres is investigated numerically. First, an investigation of
the solution of the scattering problem for small particles of general shape is made
and the polarizability model is presented in its general form. Then this formulation

is specialized to the case of two spheres coagulating and coagulated.

3.3.1 Introduction

The calculation of absorption spectra is useful and desirable by itself, but a
more theoretically satisfying calculation that can yield much deeper insight into the
absorption spectra of irregularly shaped particles cosiders P;; as a function of e,
instead of frequency and material. Cast in this way, there is a direct analogy with

the analytical formula for a sphere. For a Rayleigh sphere we have:

Im{Pll} == (314)

9¢!!
2
(. +2)>+¢f
where €, and €/ are the real and imaginary parts, respectively, of the complex rela-

tive permittivity of the sphere. This can intuitively be seen as a sharp resonance of
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“strength” 9/€!! at €. = —2 , which stands out against a more uniform background;
see fig. 3.4. Physically, this resonance can be explained as a coupling of electromag-
netic energy into an internal, non—electromagnetic vibrational mode of the material:
the electromagnetic energy is used to drive the lattice vibrations. In dielectric ma-
terials this mode is called a polariton, whereas in metals a similar excited mode is

called a surface plasmon (see, e.g., Nelson (1979)).

[\®]
|

(S
1

logo 1';1{1’33}

CECT

-10. -9, .g, -7. -6. —5. 4. 3. 2. .
Refe,}

Figure 3.4 — Analytical Im{Polarizability} for a sphere.

Expressions similar to those for the sphere can be obtained for ellipsoids (see
Bohren and Huffman (1983), p. 350). Using this idea, a reformulation of the nu-

merical procedure yields the eigenvalues of the integral equation. The resonant
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positions (e, to give infinite absorption when €/ = 0) are then simple functions of
these eigenvalues. Using these resonant €’s and some numerically-generated values
of Im{P;;(e)}, the data can be fitted to a generalization of the preceding formula;

ie.:

Im{Pji(e)} = % A"’G;"Iz 5 (3.15)
jim1 (€ — €resk)® + €

This procedure works quite well. The only problem with it is the chice of N: the
discretized version of the integral equation has as many eigenvalues as the size
of the matrix we create. Which of these are “real” and not an artifact of the
discretization? So far, we have chosen those resonances that are most prominent
for large €. Sometimes this leaves out certain resonances that are numerically quite
prominent when €. is small, but decay rapidly with increasing €. However, most
of the possible resonances corresponding to the eigenvalues don’t even get this far:
they have no peak near the negative real e¢ axis; hence, they are assumed to be
due to the discretization process. So far, the resonances that decay quickly are
also thought of as spurious, but more analysis in the future may reveal a different
explanation. Illustrations of this for the particular shapes investigated here are

included in sections 3.4.2 and 3.4.3.

3.3.2 General Particles

For a homogeneous particle of arbitrary shape, the integral equation for the

surface potential, from (2.24), is:

2¢€9 €2 —e€1 1 N < 1 ) /
P(r) = U — Hdr)— (=) d 1
() €+ €1 (r) + €9 + €121 ]%‘ (r )8n’ R s (3.16)

where the integral is taken to be a Cauchy principal value integral, ¥(r) is the
excitation field (static), and R = |r — r'|, with both r and r’ on the surface. See

Chapter 2 for the other definitions.

For notational convenience let ®(r) = —W(r)/(e2 — €1), and also let ¥ = 0, for
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the eigenvalue problem. This yields:

€2 + €1

]% W (r)K (r,r') dS' = 27 W (r) (3.17)

€2 — €1

or, more simply:

LW = AW (3.18)

See Arfken (1985) for an example. This linear operator equation has a discrete
spectrum of infinitely-many eigenvalues, J);, all real and negative, and a correspond-
ing orthogonal set of eigenfunctions, W;.

It is also well-known that one can represent the solution to (3.16) as an expansion

in terms of these eigenfunctions,

o) =36

) Wi(r) (3.19)

€2 —€

where W; satisfies LW; = \;W;, and 3; is some unknown coefficient. Representing

¥ in a similar way gives

Za(

) Wi(r) (3.20)

€ — €1

where in this case, the «; are known because ¥ is known. Specifically:
]§[ T(r)Wi(r) dS' = (U, W;) (3.21)

Hence, (3.16) becomes:

1 1

> BiWi(r) = 262 Zaz
i=1

€9 — €1

(Zﬂ, ) (r,r)dS"  (3.22)

since exchanging the order of integration and summation is allowable. After taking
the inner product of the whole equation with W;, an equation for the unknown

coefficients is produced:

B =~ (g, W) (3.23)

€r — €res,j

where ¢, ; is the value of €, corresponding to the eigenvalue \;, where €, = €1/es.
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Because the polarizability tensor elements are functions of the total surface

potential (1.87):
=(1-e // i - %;,)®,(x')p' dS’ (3.24)
with 7,7 = 1,2,3, and where X;,7 = 1,2, 3, represents the three orthogonal unit

vectors of a cartesian coordinate system, and using the eigenfunction expansion for

®;, this gives:

Py=(1-e) [ @ % Z BIWi (') ds’ (3.25)
with 4,7 = 1,2, 3, leading to the model:
N i
A
Pj=vV>y —k (3.26)

k=1€r — res k
where V is the volume of the body, eﬁes & 1s the value of €. that corresponds to Ay
for z-incidence (j = 3), and for z-incidence (j = 1), and lastly, Azj is the coupling

coeflicient for that term:

|
A;‘Z:V (1_67‘)(1 resk \I}J WJ // Il Xl dSI (327)

The volume is explicitly extracted because it is known that the static polarizability
is proportional to the volume. It is also assumed that only a finite number of terms
is needed for convergence to within any desired accuracy, for a given €,.. As with
Fourier series, the terms with the largest (in magnitude) coupling coeffients, A ,
should be used in the summation.

Note that each term in the summation is of the form:

]_ - 67-
J
Eres,k

f (3.28)

€ —
where f is not a function of ¢.. Hence, the variation of each term in the ¢,-plane
is already known and can be analyzed. Use P(e,) as the symbol to represent the
coefficient of f:

(3.29)
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Notice that this term does not depend on ¢, the observation polarization, but only
on j, the excitation polarization, and k, the particular eigenvalue. Hence, the terms
in a single column of the tensor all have the same set of eigenvalues and eigenvectors
and so the only difference between them must be due to the coupling coefficient term,
which expresses the inner product of an eigenfunction, W;, and the projection of
the surface normal along the excitation (¢) direction (it -%;). Hence, the symmetries
of P reflect the symmetries of the body through its excitation eigenvalues and
eigenfunctions as well as the excitation polarization.

The variation of the term P(e,) is the most critical here. This term exhibits
the dramatic resonance effects that are so important under certain circumstances.
In fact, near a resonance (e, ~ ems k) the field and the polarizability can often be
accurately represented by a single term in the series, the k-th term, which nearly

J

blows up. An analysis of a single term near ¢, , is therefore in order.

Expressing the real and imaginary parts separately, gives:

(6; - 1)(64 - eres,k) + (6¥)2

Re{P = 3.30
AP(er)} = 3 (e (3:30)
€'(1 — €res)
Im{P = r res 3.31
{P(er)} (el — Gres)2 + (641)2 ( )
where €, = ¢,/ +1i¢,”. Figure 3.5 shows this function for €..s = —5 and three different

values for €.

3.3.3 Application to Rotationally Symmetric Bodies

Equation (3.16) can be specialized to a particle or set of particles with rotational
symmetry about the z-axis, with the medium being free-space and with uniform

static fields as the excitation:

Vi(s) = (=) + L ][V(sK(ss) =13  (3.32)

1+e,
where 7 = 1 is for an incident field direction %X, and j = 3 is for Z-incidence We

also have ®1(r) = Vi(s)cos¢, and ®3(r) = V3(s), where s is the distance along
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the perimeter in the z-z plane, €, = €/¢g is the relative permittivity to that of free

space, and K is the Green’s function for each excitation:

Ki(s,s') = p/ {p cos a/Qs + [(7' — z)sina’ — p cos 0/]91} (3.33)

Ks(s,s') = p/ {p cos'Q +[(7' — 2)sina’ — p' cos a']Qg} (3.34)

in a cylindrical coordinate system (p, ¢, z), and

- / cos’ L dy, (3.35)

which can be expressed in terms of elliptic integrals and their derivatives.

For a numerical solution we discretize (3.32) with the substitution:

N s — 8
) = izzlvij rect ( A ) (3.36)
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where the rect function is a unit-amplitude rectangular pulse, centered at s = s;
with width As;. This transforms the integral equation into a matrix equation,

solvable by standard numerical techniques.

From (1.87):

2
Pij=(=e) f [* @ %)2;(r)0 d'ds (3.37)

and using an eigenfunction expansion for ®; yields
2T o0 .
Pjj=(1-¢) /0 (@' - %;) ][ > Blon(sp' d¢’ ds’ (3.38)
% k=1

which gives
00 Aij
Pjj=0-e)) -

— ;7=1,3 (3.39)
k=16 — €pes i

3

where €l pand €,

res  are the two sets of eigenvalues for the integral operator, and

ALl and A3 are the coupling coefficients:

(# W3 (p sina/, W})

AP =2n(ysp — 1) (3.40)
k res,k <W3, W]§>
' W {p' cosal, W})
Al = —x(el,, . — 1) (', Wi » k (3.41)
‘ * Wi, W)

with the inner product defined here as:

(a,b) = ][a(s')b(s') ds’ (3.42)

S
The eigenfunctions, W,g, are those of the following integral equation:

1+e,
]_—67«

]fW,{ (s")K;(s,8') ds' — ( ) Wi(s) = 209 (s) (3.43)

where j =1,3; k=1,2,...00 and with the excitation, ¥/, set to zero.
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3.4 Results for Coagulated Equal Spheres

3.4.1 Near and Internal Fields, Spectra

Two spheres were simulated, both separate and overlapping. Two examples are

shown in fig. 3.6.

separate coagulated

Figure 3.6 — Two examples from the family of coagulated spheres.

The center—to—center separation of the two spheres is given in terms of the
sphere diameter. For example, the separate spheres shown in fig. 3.6 have a center—
to—center separation of about 2, whereas the two overlapping spheres have a center—
to—center separation of about 0.8 . This is made more clear in figure 3.7.

The fields were plotted with a variety of separations and also at many different
frequencies, w, using for each frequency the e¢(w) for gold, as tabulated in Physik
Daten (1981). These values are denoted by 7 in figures 3.9 through 3.12. Due to
symmetry, only a portion of the field structure is shown. That part of the field
that intersects the plane through the symmetry axis (see fig. 3.8) and is in the first
quadrant (darkened piece of the plane) is displayed in the field plots. The see-thru

view shown in fig. 3.8 is meant to represent a particle that is being halved by the
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R =0.5 - radius of solid sphere
§ = center-to-center separation

EXAMPLES
$=0.0 -- a sphere:
s=0.5 -- 2 intersecting spheres:
s=1.0 -- 2 just-touching spheres:
s=2.0 -- 2 separate spheres:

Figure 3.7 — The coagulated sphere geometry.

cutting plane, y = 0, with the portion that is darkened being the region of the plane
that is displayed in the field plots. In the remaining quadrants the field can then
be determined by symmetry.

Typical field plots are shown in figs. 3.9-3.12 for the near-resonance case and
for an off-resonance case. Each of the field plots shows the real and imaginary parts
of the potential for a particular shape, frequency and electric field direction:

x-directed means E™¢ is vertical.

z-directed means E™ is horizontal.

Each plot has 4-6 equipotential lines, while AV (or “spacing in volts” on the
plots) between them varies from plot—to—plot. Hence a large value for AV means
that we have high local E-field concentrations.

The dimensionless average absorption cross—section, as described earlier, was

plotted for each geometry as a function of the free space wavelength. Typical
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spectra are shown in figs. 3.13-3.22.

More detailed and complete results for the coagulated sphere case are provided

d Weil (1987, 1988).
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In comparing the near— and off-resonance fields, note that the resonance itself is
numerically apparent in the magnitudes of the resonant z—directed imaginary part
of the potentials: an increase of slightly less than five times. This resonance is for
the Z-directed excitation only. The field structure for the x-directed cases changes
very little. One notable difference is that the field strength in the imaginary parts
(%-dir) becomes about ten times smaller as compared to the off-resonance case.
This is interesting and deserves further investigation to determine if it is a general
feature or just a specific occurrence.

Moving on to a comparison of the z-directed field plots, the most striking dif-
ference is in the field structure: the resonant field lines are much more curved. A
consequence of this is that the near-surface electric field is much stronger and the
internal field is much weaker: hence the term “surface mode” for this kind of reso-
nance behavior. There are a number of other distinguishing features of these field
plots, but their significance in undetermined at this time: the “chimney” in the real
part has moved from an off—center position off-resonance to, apparently, the central
position of the particle; the field concentration at the central cusp of the particle

has moved from the real part off-resonance to the imaginary part near-resonance.

The following pages show the dimensionless absorption spectrum (Im.Pj;) of
coagulated gold particles in the frequency range near that of visible light, as cal-
culated by the method outlined in Chapter 2. Note that the vertical scales are
different, and that the absorption spectrum for a single sphere is included in each
plot for comparison. Recall that ‘sep’ in these plots stands for the center-to—center
separation between the two spherical particles that make up the coagulated parti-
cle. A separation of 1.0 indicates that the two spheres are just barely touching one
another, while a separation of 0.8 indicates that the two spheres are overlapping
and are coagulated. A separation greater than one indicates that the two spheres

are near each other but not touching.
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These absorption cross—section plots are done for gold particles at approximately
optical wavelengths. The most obvious similarity among these spectra is the small-
ness of the variation of the x-directed absorption: the single absorption peak is
retained, with respect to its wavelength of occurrence, over the entire family of ge-
ometries. The magnitude of this absorption peak varies between 3 and 6 compared
to the sphere’s 4.

The variation of the Z—directed spectra is greater, as one might expect from the
previous field comparisons. The single—sphere peak appears to be retained, although
it moves slightly (about 200 Angstroms) and its magnitude varies between 4 and 6.
The most interesting feature, however, is the appearance of new absorption peaks.
These peaks only occur for coagulated spheres that are nearly—whole spheres. In
our examples, this is shown for separations of 0.8 and 1.0; i.e., for nearly—whole, but
coagulated spheres (0.8), and for whole but touching spheres (1.0). In each case the
absorption peak is 6 to 10 times as strong as the single-sphere peak, and both are
also shifted to longer wavelengths. The positions and strengths of these absorption
peaks are highly dependent on geometry. Also of note, for the just—touching spheres
(sep = 1.0), is a more complicated absorption spectrum in the region of the single—
sphere peak: there appear to be two overlapping absorption peaks, each at a longer

wavelength than the single-sphere peak.
The implications of these spectra for the colors of colloidal gold will be discussed

in section 3.4.3.

3.4.2 Polarizability Tensors

The polarizability tensor elements are functions of complex €, and are best
displayed as surfaces in three—dimensional space. The following two figures (figs.
3.23 and 3.24) show a numerically—generated surface (using the method and code
as described in secs. 2.1-2.4), and the results of applying the model from sec. 3.3.3

using the three major resonances.
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A comparison of figures 3.23 and 3.24 shows that the fit (3.27), as far as it goes,
does an excellent job. The error in regions not near Re{e,} = —1 is on the order of
1%. This shows that in those regions the simple, intuitive, and physically meaningful
model presented earlier is valid. In the region near Re{e,} = —1, however, the fit
does not agree well with the numerically-generated data. The major reason for
this is that the model chosen used only the three largest resonances. When the
other, weaker, resonances are added to the model, the fit, of course, improves in

that region.

3.4.3 Resonances

As discussed in section 3.3, the resonances, and associated strengths, for a
particle completely determine the behavior of its polarizability tensor elements, as
a function of relative permittivity. Hence, the resonances were investigated for
the coagulated sphere family of shapes. Figures 3.25 and 3.26 show the behavior
of the major resonances: major as determined by their strength. The strength
was measured using the absorption cross—section of the particle with a dielectric
constant equal to that of the resonant value with 0.1 added to its imaginary part to
give some loss. The movement of these resonances in the e—plane can be seen as a
possible cause for the variability in the color of a suspension of such particles when
observed in white light: different particle shapes (degrees of coagulation) will cause
the suspension to appear to have different colors than other shapes would.

These figures present the magnitude and position for the resonances observed in
this family of geometries in a very complete way. The positions are clearly shown in
fig. 3.25 for both x— and Z-incidence. The relative magnitudes of these resonances
are displayed in fig. 3.26.

In these figures one can easily see the movement of the resonances away from

that of the sphere (—2), and their eventual return for the case of two separated
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Figure 3.24 — 7-incidence, Im{Polarizability }, sep=0.8, model.
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spheres. Between these two extremes the behavior is quite different for the x—
and z—directed cases: the X—directed resonance remains very close to ¢, = —2 and
moves closer to ¢, = 0 during its deviation while the z—directed case spawns many
resonances all increasing rapidly as the separation approaches unity (touching whole
spheres). The major z-directed resonance is also much larger in magnitude than

the X—directed resonance.

Note that a previous paper (Weil (1986)) gave a plot similar to fig. 3.25 here,
but that the lines were drawn in the wrong direction due to insufficient data. That

has been corrected here.

An intuitive method for understanding absorption spectra is to use the numer-
ically-generated or modeled polarizability tensor elements and merely superimpose
the plot of the relative permittivity on it. This gives a line on the wavy surface
which can be visualized as a particular wavy slice through this surface to give rise
to an absorption spectrum. This concept is illustrated in figs. 3.27 and 3.28. Figure
3.27 shows the line on the surface of the polarizability tensor, while fig. 3.28 shows

the equivalent absorption cross—section, which in this case is the Im.P3s3.

Looking at fig. 3.27, note that the value of the bulk relative permittivity for
gold at about 4000 Angstroms is about —2 + 56, and so the spectrum begins in the
upper right corner. In comparing these two figures keep in mind that the surface
is plotted with a logarithmic vertical scale, while the absorption spectrum uses a
linear vertical scale. Despite this, we can still observe the two prominent absorption
peaks of fig. 3.28 in fig. 3.27. This is an intuitively pleasing way of thinking about

absorption spectra for particular materials and particle shapes.

The model of the polarizability tensor elements can be used to generate a fit to
the absorption cross—section as a function of geometry as well as wavelength. This
scheme was used to generate figure 3.29, which is in fact a good fit to the available

numerical data.

This figure shows the absorption spectrum for the Z-directed incident electric
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Figure 3.25 — Major resonances for coagulated and coagulating spheres.

The marks indicate the major resonance for a particular separation. Different
lines indicate continuity of a particular resonance as the shape changes.
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Resonance Strength

Figure 3.26 — Strengths of major resonances for coagulated and coagulating

spheres.




107

3. o
250200 150 .00 sy 00
Re{er}

5 %
jmt®

Figure 3.27 — 7-incident, Im{Polarizability}, sep=0.8.

e(freq) for gold is superimposed.

40.00 — 1

--------- Sphere il

35.00 |- — Separation: 0.80

25.00

o i
' |
A

20.00

Im{Ps}

15.00 |

10.00

5.00

7500.

incident wavelength, A, Angstroms

8500.

1

Figure 3.28 — Z-incident absorption spectrum of coagulated gold spheres,

sep=0.8.



108

field for coagulated gold spheres as a function of separation. This data is a good fit to
the computer—generated numbers; we use a fit to generate this plot in order to save
time. The features in this figure are the same as those noted for figures 3.14, 3.16,
3.18, 3.20, and 3.22: the absorption spectra for the Zz-directed incident electric field.
In this figure however, the continuous variation in the absorption peak’s position
and magnitude gives a better picture of their variability. As the separation increases
toward 1 (from 0), and hence from a single sphere, through two coagulated spheres,
and on to two just-touching spheres, we see that the single-sphere absorption peak
“spawns” other peaks as the geometry becomes more cusp-like. The first, and by far
the strongest, extra peak begins to form at a separation of 0.4 or so. This peak then
moves to progressively larger wavelengths, and increases in magnitude sharply after
a separation of about 0.9. Another, smaller, peak begins to form at a separation of
0.8 or so, and is also spawned by the persistent single-sphere absorption peak. It
moves toward longer wavelengths and increases slightly in magnitude by the time

the two spheres are just touching.

3.4.4 Comparison with Experiment

Comparison of the results presented previously for coagulated gold spheres to
experimental work is essential for confidence in these results. While there have
been many studies on gold colloids and their spectra for differing levels of coagu-
lation, to date there have been no experimental results presented in the literature
that characterize the coagulation in the colloid sufficiently to accurately compare
with the coagulated-spheres model that is presented here. We present here some
typical experimental results from Turkevitch, et al. (1954). Figure 3.30 shows the
absorption spectra of two different gold colloids: one that is very nearly uniform
size spheres, while the other has been induced to coagulate to a degree that was

not measured, but was assumed to be relatively small. That is, one curve is for
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Figure 3.29 — Z-incident absorption spectrum as function of geometry, for gold.

Note that the high-frequency structure seen in the largest resonance is an artifact
of the sampling process used to generate this plot. The variation is really smooth
and continuous.
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gold spheres, while the other is for a combination of mostly gold spheres and some
coagulated gold spheres. A direct numerical comparison with our calculations is
not possible because many critical parameters are unknown, i.e. the permittivity
of the suspending liquid, the number fractions of spheres and coagulated spheres,
and the typical geometries for coagulated spheres, but in spite this, a comparison
of the general trends in the data can be made. In particular, the non-coagulated
gold spheres show the same general behavior:

1. Small-wavelength absorption much higher than that at high wavelengths.
2. Large, narrow peak slighly above 500 nm, with roughly twice the absorption of

the low-wavelength absorption.

100. - - T ' | : | ' |
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Figure 3.30 — Absorption spectra of 40 nm diameter colloidal gold, from

Turkevitch et al. (1954).
(- - - - Spheres only; —— Spheres and Aggregated Spheres.)
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The mixed non-coagulated/coagulated spheres are also very similar overall, but
many details are quite different. First, a direct comparison with figures 3.15 through
3.18 is inappropriate because those figures are for the absorption due to coagulated
spheres only, while the Turkevitch measurements are on a mixture of spheres and
coagulated spheres. Next, the broad absorption peak centered at 700 nm in the
measurements does not look like the narrow absorption bands in our calculations.
This is most probably due to variations in the coagulation geometries, (especially
since the coagulation is not limited to sets of two merged spheres) giving a wide
spread of many narrow absorption bands. Despite this, it is obvious from the
measurements that coagulation causes a new absorption band at higher wavelengths
(between 650 nm and 800 nm) just as predicted by the calculations given here.

Hence, at least qualitatively, the calculations presented here for coagulated

spheres are consistent with the measured data.

3.5 Results for Different Coagulation Geometries

The absorption spectra presented in sec. 3.4 (figs. 3.13 - 3.22) have an intriguing
aspect about them: the absorption peak that one sees for a single sphere is evident
in each of the spectra for the coagulated spheres cases. This leads to the idea that
there are aspects about the absorption that are dependent on local shape rather
than global, because the two coagulated spheres were made of pieces of spheres. The
idea is that the absorption could be decomposed into pieces with some absorption
due to the spherical character of each particle and some due to the cleft produced
between them by the coagulation process.

The problem is explored in somewhat more generality than stated above in that
which follows. Note that a similar study was carried out at this lab by Czerwinski
(1984), where the interest focussed on surface bumps and pits (both rotationally-

symmetric) in cylinders.
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3.5.1 Cases Studied

Continuing the coagulation theme, this section closely investigates a particular
cleft and places it in coagulated spheres of differing overall shape, as well as altering
the cleft shape slightly. In this way some idea as to the importance of global/local
shape effects on the scattering can be discerned. The variations made in the cleft
shape are as follows:

a. circular arcs only,

b. straight lines only, and

c. straight lines with arcs to round the top corners.
The variation in the overall shape consisted of having two hemispheres of varying
radii attached at the coagulation point by the clefts. The basic idea is to see just
how sensitive the resonances and their strengths are to changes in a feature on a
particle of the same overall shape and likewise to see how sensitive these are to an
altered overall shape.

The clefts are shown in cross-section in fig. 3.31. The canonical coagulated

shape is shown in cross-section in fig. 3.32.

3.5.2 Resonance Variations

This part discusses the effect on the shape resonances of varying the radius of
two coagulated spheres, with the three different choices of clefts. After that, the
variability due to the slightly-different clefts is investigated. For the first cleft, that
made with two circular arcs, the results are presented in figs. 3.33 and 3.34. Note
that in every figure in this section contiguous resonances are drawn with lines, and
the major resonance is indicated by circular marks. Ignoring the change in strength
of the major x-incidence resonance for the moment, the most dramatic change is
seen in the most negative resonance for z-incidence: varying from about -8.5 at the
smallest radius of 0.5 (where it is the major resonance), to about -3.7 at a radius

of 2.0 (where it is now a minor resonance). Using the smaller of the resonances as
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(close-up)

Cleft 3:
(close-up)

Figure 3.31 — The three cleft shapes that were used.
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Figure 3.32 — The overall coagulated shape: hemispheres joined with clefts.

The radius of the hemispheres is varied to produce a family of shapes represent-
ing the different coagulation geometries. The cleft dimensions are constant.

the reference, this is a change of about 130%, hence, this resonance is a sensitive
function of the hemisphere radius.

In contrast, the major resonance in the X-incidence case only varies between
-1.76 and -1.84 over the same range, a difference of only 5%. In general, the reso-
nanaces for X-incidence are usually very slowly-varying functions of the geometry.

Returning to the z-incidence case, the other resonances shown are seen to be far
less variable than the major one. The resonance with the second largest strengths

varies from -2.64 (at large radius) to -3.24 over the range, an increase from the larger
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geometry of 23%. This is still a significant variability over the range of shapes. The
third largest resonances vary from -1.92 (at large radius) to -2.0, the isolated sphere
resonance. This is an increase of 4%. In general, the weaker a resonance is, the
less it varies numerically, though not necessarily in percentage error. The minor

%-incidence resonance varies very little (2%).

Lastly, mention should be made of the variability in the strengths of the 2-
incidence resonances. As the shape becomes more nearly a sphere, with increasing
radius, the resonance with the greatest strength approaches that of the single sphere,
as it should. The other resonances become weaker as this happens, and so the

changes in the strengths of the resonances are believable.

The second cleft is presented in figs. 3.35 and 3.36. Ignoring the change in
strength of the major X-incidence resonance for the moment, again, the most neg-
ative Zz-incidence resonance varies the most: from -7.88 at the smallest radius of
0.5 (where it is the major resonance) to -4.09 at a radius of 2.0 (where it is now a
minor resonance). Using the smaller of the resonances as the reference, this is an
increase of 93%, so again, the major Z-incidence resonance is a sensitive function

of hemisphere radius.

The major X-incidence resonance varies over the range from -2.03 to -1.94, a

variation of 5%. This is not significantly different than for the previous cleft.

The z-incidence resonances again show an interesting shift in strength: but now
the shift occurs even earlier than previously, starting to shift at about a radius of
0.9, where previously it shifted at a radius of 1.4 or so. The variability of the minor
z-incidence resonance values (ignoring their strength ranking for the moment) is as
follows: -1.86 to -2.03, a 9% increase; and -2.99 to -2.60, a 15% increase. This is no
more variable than with the first cleft, despite the extra slope discontinuity in this

cleft compared to the previous one.

The other %-incidence resonances vary on the order of 20% from about -1.47 to

-1.75, which is a much larger variation than for the first cleft.
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Figure 3.34 — Resonances for first cleft in spheres: Z-incidence .
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The third cleft is presented in figs. 3.37 and 3.38. There is very little difference
between the z-incidence results here and previously. The only difference is that
the strength shift takes place later: at about a radius of 1.0 rather than 0.8, as
compared to the second cleft. The X-incidence resonances are slightly different than
in the previous cases, but not significantly.

A comparison of these results to the known resonances of the sphere provides
very little information, unfortunately. The sphere has only one resonance at -2,
no others (for plane wave incidence). Hence, the most that can be said about the
comparison to the sphere is that as the radius of the spheres with the clefts gets
bigger they geometrically approach a sphere, and their resonances also approach

that of a sphere.

The following table summarizes the results. In table 3.1 the differences are taken
over the range in radii from 0.5 to 2. The first number is the absolute difference,
while the second number is the percentage difference over the range, using the

smaller number as the reference.

Table 3.1 — Variability of resonances in coagulated spheres

cleft 1 cleft 2 cleft 3
major z 4.8, 130% 3.8, 93% 3.91, 96%
other z 0.6, 23% 0.17, 9% 0.2, 11%
other z 0.08, 4% 0.40, 15% 0.4, 15%
major x 0.08, 5% 0.09, 5% 0.04, 2%
other x 2% 0.3, 20% 0.17, 13%

3.6 Conclusions and Suggestions for Future Work

Coagulation can have an enormous impact on the absorption characteristics of
spherical particles. The major requirement is that the real part of the dielectric

constant at the frequency of interest be negative, and, even better, be quite close,
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Figure 3.35 — Resonances for second cleft in spheres: X-incidence .
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Figure 3.36 — Resonances for second cleft in spheres: Z-incidence .
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Figure 3.37 — Resonances for third cleft in spheres: X-incidence .
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Figure 3.38 — Resonances for third cleft in spheres: z-incidence .
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in the complex plane, to a shape resonance. The final shape of a coagulated sphere
pair is dependent on mechanical and material properties, including that of the
ambient medium, not to mention the effects of the heating from the absorption
of the incident electromagnetic field. Hence, a final coagulated-spheres shape was
specified by simply intersecting two spheres, rather than attempting any kind of
detailed modeling of the ensemble of shapes that occurs in nature. That this theory
agrees, at least qualitatively, with experimental evidence available from work in
gold colloids is gratifying.

A great deal can be learned about small particle absorption with the use of
calculated near fields and polarizability tensor elements (as a function of ¢,) for
different shapes. The shape effects can be quite striking for materials that have
bulk permittivities with negative real parts and small (< 3 or so) imaginary parts.
Gold in the visible is one such material and it was used extensively in the calculations
presented here.

The model of the polarizability tensor elements given in sec. 3.3 is very simple
and has intuitively-pleasing physical interpretations for its parameters (resonance
positions and strength), while representing our numerically—generated data quite
well.

The studies shown in sec. 3.5, though limited to but a few shapes, indicate that
the resonance positions (values of €,) are strongly coupled to the existence of a cleft,
at least for the coagulated spheres family of shapes. The minor resonances show far
less sensitivity to the presence of the cleft and may be the source of the “conserved”

absorption peak, on which the global shape effects hypothesis was based.



CHAPTER IV

COAGULATION DYNAMICS OF TWO DIELECTRIC SPHERES

4.1 Motivation

This chapter presents work done to better understand the dynamical process
of coagulation of spherical particles in the atmosphere. In particular, the particles
considered are small both electromagnetically and aerodynamically (see eqs. 4.1—
4.3). Many researchers have addressed the problem of small coagulating spheres
in the atmosphere (e.g., Hocking (1959)) and others have added electric forces to
the fluid dynamics to try to account for charged particles (for perfectly conducting
spheres) and for an external static electric field (Krasnogorskaya (1965a, 1965b)).
In particular, Krasnogorskaya gave trajectories for charged and uncharged perfectly
conducting spheres either with or without an external static electric field. From this
analysis one gets collision efficiencies under each condition which can be used to infer
the importance of these conditions to the coagulation process.

This work of Krasnogorskaya has not been built upon since. In this chapter
her work is extended to the case of dielectric spheres, with the external force due
to an incident plane wave. The solution is intended to show the effect of another
external force in the coagulation picture, and as such does not include the other
previously-included static charge forces as in Krasnogorskaya’s work. The possible

contribution of this force is all that is intended, not a complete characterization
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of the actual coagulation process with full accounting for every possible external
force. The intent is to explore the possibilities with the application to atmospheric
aerosols in mind, but without actually applying the formulation to any particular
problem. The variety of responses obtained in this way is richer, and may allow
application to other areas where some of the parameters may be closer in magnitude
to those used here (e.g., colloid coagulation).

The important parameters (Hidy and Brock (1970)) and their values in this

context are as follows:

pVR

Reynolds number = Re = —— <1 (viscous flow) (4.1)
%
A
Knudsen number = Kn = fG <1 (continuum) (4.2)
AX
electrical size = AXler| <1 (quasi-static) (4.3)

where \g is the mean-free path of the air molecules, AX is the total size of the
system of particles, and ¢, is the complex relative dielectric constant of the particles
with respect to the air. We also have p as the viscosity of the fluid medium, V' the
relative velocity of the fluid medium and the particles, and R a characteristic radius
of the particle.

Both the magnitude and wavelength of the incident electric field are unre-
stricted. Unphysical values will be avoided, and the particle radius will be kept
less than 50pum, but greater than 19um, where the formulation of Hocking (1959),
which we use, is known to be valid (Hidy and Brock (1970)). The size of the entire
system of particles, AX, will be limited to about 50R &~ 1 mm. This limits the
wavelength of the incident radiation, A, to be greater than 50 mm, for R,,,;, where
the relative permittivity, €,, is limited to a reasonable magnitude of about 5. Note
that for simulations where AX is smaller (say 10R) then A, is also smaller (2

mm).
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4.2 Fluid Forces

The formulation of Hocking, including the extensions of Krasnogorskaya, is
made up of the differential equations of motion for two spheres, 1 and 2, of different
radii (within limits). The variables have been normalized as follows: all lengths
normalized by the diameter of the largest sphere (d;), and time normalized by the
quantity d; /(2ueo), where us = d?pgg/(187) is the terminal velocity of the particle.
Here, p; is the density of the particle, g is the acceleration due to gravity, and 7 is
the viscosity of the medium (air). Note that the terminal velocity is the fastest a
particle can fall under the influence of gravity with the compensating force due to
friction with the air.

The resultant equations are referred to a p — z coordinate system, as shown:

Figure 4.1 — Coordinate system used for two spheres settling in the atmosphere.

Note that this coordinate system is not to be confused with the p— z coordinates
that are referenced to the particles. The context makes clear which system is being

used. The equations of motion are:

dvy, liz—ti1p
I =1 —-—— + 1 F 4.4
gt ; + 01£7, (4.4)

dvi, lip+tiz
—r = -+ b F 4.5
dt r + o1t (4.5)

d loz —t

218 g2 TP Ry, (4.6)

dt T
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a21% = —M + by, (4.7)
and
% = V1, % =1 (4.8)
%2 ey W2y, (4.9)
2=29—21, pP=ps—p1 (4.10)
r=y\22+p2 a=dyfdy, I= pd‘é% (4.11)
by = m by = m (4.12)

where the parameters [, l2, t1, and to are complicated expressions taken from the
work of Hocking (1959).

Hence, given the initial positions and velocities of each of the two particles, these
equations can be integrated numerically to give the trajectories of the spherical
particles falling through a viscous liquid under the influence of gravity (initially
falling at their terminal velocities in our case) and also due to the influence of some,
as yet unspecified, external force, F, in Newtons. In our case, when this force is
evaluated at particle number two it is found to be equal and opposite to the force
evaluated at particle one. This is due to the attraction and repulsion between the
particles due to the disturbing influence of the other particle on the total electric
field. Hence F1 = —F3. Also in our case we use equal-sized spheres, a = 1, to
minimize the effects of coagulation due to fluid forces. In this case, inertia and fluid
forces are still operable, but the main cause of coagulation is the electromagnetic
force.

The trajectories one gets from this can be quite complex, but what overall
parameters are important for characterizing the coagulation process? The most
important one that is used by many practitioners, including Hocking and Krasno-

gorskaya, is the collision efficiency. Let pgrqzing be the initial value of p for which
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the trajectory is such that the particles just graze one another; any larger and they
would not collide. This must be evaluated for an initial z separation large enough
so that pgrezing is independent of this initial z separation. The definition of the

collision efficiency then reads:

Pgrazing 2 Pgrazing 2
Eﬂcollision:( °R ) = (7d1 ) (4.13)

This definition gives an efficiency of unity when the collisions are such that the
particles start with a lateral (p) separation equal to the sum of their radii. A
comparison of this efficiency with that when there is no applied field gives an idea
of how effective the field is in influencing the coagulation process.

But the collision efficiency is not the only important parameter. In what follows,

performance parameters will be introduced as needed for specific applications.

4.3 Vibration and Turbulence

4.3.1 Vibration

The electromagnetic force between the particles is really time dependent. In
fact, it is harmonic, at a frequency 2w for an incident field at w. For very high
frequencies and very small particles one might think that the particle vibration so
caused can be ignored in computing the trajectories — and in certain cases this is
indeed so. To develop this idea in detail, some things to consider are:

1. the effect of vibration on particle trajectories, and
2. the effect of vibration on fluid flow.

The first of these may be analyzed by an approximation using a straightforward

application of Newton’s law:

F=ma=m—: (4.14)

with the force given by:

F = mx cos?(wt) (4.15)
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After two integrations this yields:

1 1
z(t) = Cy + Cat + ZtZ ) cos(2wt) (4.16)

(t > 0) for the particle trajectory.

To assess the importance of the cosine term to the motion we compare both
z(t) and v(t) to their approximations which have the harmonic term removed.

Let xn be the trajectory of the particle with the cosine term removed. Then

the error in using x as an approximation to x is:
zn(t) — x(t)
x(t)
If we assume that C; = Cy = 0, for the worst-case error, we get:
ig cos(2wt)

1 1

7t2 — 2,2 Cos(2wt)
A cursory inspection of this equation yields a misleading and somewhat imprecise

Yoerror(t) = 100 (4.17)

%error |, (1) = 100 (4.18)

conclusion: the t*>~term in the denominator causes the error to approach zero as
the time increases to infinity. Looking more closely, the worst error occurs at times

such that 2wt = nm for n = 0,2,... This gives:

200

R (4.19)

Yerror |, (n)

the magnitude of which is shown in fig. 4.2. So when using zx(¢) as an approxi-
mation to x(t) with better than 1% accuracy in the trajectories, one would have to

ignore the results for the first five half-periods or for ¢ < g—g

The velocity is:

o(t) = Crt o+ i sin(2wt) (4.20)
t
on(t) = Cr+ ¢ (4.21)

With C7 = 0 for the worst case, this gives:

_wn(t) — o)
%error |, . (t) = NTloo (4.22)
1 .
g st 4, (4.23)

- !+ L sin(2wt)
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Figure 4.2 — Maximum percentage error as a function of the number of cycles

since the start of the force. Error is for £y used to approximate z.

The maximum error is seen to occur at times such that 2wt = W(% + n), n even,

giving:
100

A T (4.24)

Yoerror |, .. (n) = —

the magnitude of which is shown in fig. 4.3. So when using vy (¢) as an approxima-
tion to v(t) with better than 1% accuracy in the velocity, one would have to ignore

30%#
2w

the results for the first 30 half-periods or for ¢ <

All this works well when the gradient in the force field is small, and when the
particles are far apart. In our case both of these assumptions need more scrutiny
when the particles get close enough so that a vibration amplitude could cause them
to collide. From the previous analysis, both particles vibrate with an amplitude

of F/(8mw?), hence the maximum relative displacement from their approximated

values is 2F/(8mw?), because the two particles are shaken 180 degrees out of phase.
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Figure 4.3 — Maximum percentage error as a function of the number of cycles

since the start of the force. Error is for vy used to approximate v.

This means that when the particles are closer, the vibration will cause them to
collide within at least one period of oscillation.

The data presented here uses the x(t) criterion, i.e., the trajectories are pre-

sented for ¢ > 9% and wuntil they are approximately 8711: 5 apart, or until they stop

2w?

moving for other reasons.

4.3.2 Turbulence

The turbulence of the atmosphere is ignored almost completely in this analysis.
The only place it appears is when analyzing the slow-moving trajectories. Then,
turbulence is expected to make a noticeable difference, and hence invalidate any
kind of predictive quality from the results. Consequently, assuming a turbulent
atmosphere that would make a positional difference of one particle radius in 10

seconds or so, the slow-moving trajectories will be ignored and are not shown here.
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4.4 Electromagnetic Forces

The static and quasi-static electromagnetic forces between two spheres is dis-

cussed in this section. There are three main subdivisions:

1. static force between charged particles,

2. static force due to total field when in the presence of a uniform static field,

3. quasi-static force due to total field when illuminated with a plane wave.

The first two have been treated thoroughly by Davis (1962, 1964a, 1964b) for per-
fectly conducting spheres, and used by Krasnogorskaya in her analysis. The third
is the subject of this chapter, and is for dielectric spheres.

Briefly, when two perfectly conducting charged spheres approach each other the
charges rearrange along the surface. The force due to nonuniform distribution of
these charges causes relative movement between the spheres. Further details can
be found in the cited papers of Davis and in Lindblad and Semonin (1963).

For the plane wave case a quasi-static approximation is used for the field, and
hence for the force as well. This means that the problem is solved as in statics,
except with a finite complex ¢,, giving a complex field, E.

To find the force on one sphere due to the presence of the other, start with the
assumption of an arbitrary rotationally-symmetric particle. The total electric field
is known for uniform incident fields directed along the symmetry axis (z-axis) or
along a line perpendicular to the symmetry axis (z-axis). There are more particles
in the system than the one that is being focussed on, but the interest here is only
in the forces on this one particle in the known total field of the system of particles.

Choose a cylindrical coordinate system (p, ¢, z). For z-incident fields we have:
Ei" = E,3, (4.25)
P = _F,z2. (4.26)

Because the body is rotationally symmetric about the z-axis, the total potential is

a function of p and z. Hence, with s representing the distance along the perimeter
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of the body in the ¢ = 0 plane (z-z plane),

DLt = Vi (s), (4.27)
and
Eft = VOt = —V1i(s) (4.28)
.0 0 .0
—— oo+ b2 2vats) + 1A (4.29)
B = — |pVa(s) + 3o Va(s) (4:30)
3 dp 0z ' '
For x-incident fields:
Ei" = E,%, (4.31)
P = —E,z = —E,pcos ¢. (4.32)
Symmetry gives:
P = Vi(s) cos ¢, (4.33)
and hence
Elt = Vol = —V[Vi(s)cos ¢] (4.34)
- 0
—{peos p— “Vi(s)— 4.
{pcosanle(s)—l—(prl( )8¢cos¢+zcos¢ Vi(s )} (4.35)
0 0 -
tot _ il h_ — b= 1
E” = { lpale(s) + zang(s) cos ¢ ¢pV1(s) sin qﬁ} . (4.36)

The geometry of the problem is given in fig. 4.4, where E"¢ = E,[zcos 3 +

% sin 3], with E in the 2 — z plane. Hence:
E™ = EY cos 3 + Ei* sin . (4.37)

where E{’* represents the total field with a -incident field, and Ei° similarly for a

x-incident field. Since all of the numerical calculations are done in the z-z plane,



131

Einc

Figure 4.4 — Rotationally-symmetric geometry showing the incident electric field

vector in the 2-z plane at an angle 8 to the z-axis.

the following is calculated in our program:

0 0 0
Es3, = —5‘/3(8) Es3, = _3_pV3(8) = —%VZ’)(S) =0 (4'38)
B =-2y (s) By =2, (s) = Oy, (s) (4.39)
1z = 92 1 lx = ap 1 = or 1 =0 :
1

giving the total electric field as:
E' = (23, + pHs,) cos f + {[2F1. + pErs] cos ¢ + pEigsing}sing  (4.41)

Generalize the force formula for static fields found in Stratton (1946), page 152,
to the case where the field is time-varying, while the force can still be calculated at

every instant t, as if the fields were static:

{E(r, ) [, 1) 1] - —‘s(r, 1)

F(t) = ¢ / Qﬁ’} ds' (4.42)

S
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where €(r,t) denotes the real time-varying static field such that
E(r,t) = Re {Ee!} (4.43)
and the outward normal of the surface is:
i = (Xcos ¢’ + §sing’) cosa’ — @sina’ = pcosa’ — @sin o/ (4.44)

where o/ has been defined previously (see sec. 2.2). Also note that dS’ = p’ d¢’ ds’,
with s’ along the perimeter of the body. Rewrite p = Xcos¢' + ysing’ in the
expressions for E*°. This must also be written as an explicit function of time so

that it can be separated out before the integration. The result is:

E(r,t) = {Z(E3,r cos wt — E3; sinwt)
+ (X cos ¢’ + §sin ¢')(Esgr cos wt — Esgisinwt)} cos B
+ {[Z(Elzr cos wt — F1 4 sinwt)
+(xcos ¢ + §sin ¢') (E14r cos wt — Eig; sinwt)] cos ¢
+ $(E1¢r coswt — E4; sinwt) sin gb'} sin 3 (4.45)
with the added r-subscripts meaning the real part and the ¢-subscripts the imaginary
part.
Due to symmetry it is expected that there will be no net force in the &S—direction

(no rotation) and no net force in the §-direction, which is out of the plane of the

incident electric field direction. Hence it is expected that:
F = F,x + F,i. (4.46)

To finish the specification of the force it is necessary to find each component.

First the z-component:

F-2

I R(GEICRIE %5211'-2} ds’ (4.47)
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The integral becomes:

F, = ¢ {/ fap' ds' cos® wt + / fop ds’ sin® wt + / fep' ds’ sin wt cos wt} (4.48)
S S S
where:

[N / /
fo = cos? B{2d'¢ cosa’ — a?

{ sin o/ + €' sin o/}
+sin? 8 {c’g' cosa’ —1/2c¢%sina +1/2¢ sin o/ + 1/2a/? sin o/} (4.49)
= cos? {2b’f’ cosa’ —b?%sina’ + f?sin a'}
+sin® 8 {d’h’ cosa! —1/2d”sina +1/2h sin o/ + 1/2b sin o/} (4.50)
f.=2cos’p {—a'f’ cosa’ +a't'sina/ —b'e cosa’ — € f'sin a'}

+sin® 3 {—c’h' cosa + cd sina’ —d'g' cosa’ — g'h'sind’ — a}b] sin o/}

(4.51)
and

a = Es,, d = E1, (4.52)

v = Es; d' = Eiz (4.53)

¢ = E3yp g = E1zr (4.54)

f'= Esyi h' = Engi (4.55)

a1 = Eigy by = By (4.56)

Repeating this analysis for F}, gives:

Pox=q [ {€0E) - %52(11'-5:)} ds’ (4.57)

The integral can be simplified to:

F, = wepsin B cos B [/ gap' ds' cos® wt + /gbp' ds’ sin® wt + / gep' ds' sin wt cos wt
S S S
(4.58)
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where:

go =cos'[e'g’ — d'd — ale] +sind[-d g’ — € + d'al] (4.59)
gy =cos/[f'h —v'd —bid] +sind[-d f — 'R +v'b]] (4.60)
ge =cosc[a'd +alf +b'c + b —eh — flg']+

sino/[—a'b] +a'h' —alb + Vg +f +d€] (4.61)

4.5 Results

The physical situation that was investigated is that of two spherical particles
each with a diameter of 38um falling in the atmosphere at their terminal velocity
(0.046 m/sec or 0.129 mi/hr). The initial relative positions of these particles in a
plane was the only geometrical difference between the different simulations. The
incident EM field was assumed to have a wavelength longer than the total size of the
2-particle system but was otherwise unspecified. The field strength of the incident
EM plane wave was a parameter, varied between about 0.2 V/m and 700 V/m. A
typical number for the field strength of solar radiation in the upper atmosphere is
726 V/m, or 1.4 KW/m?, (Howell and Bereny (1979), p. 25). Other authors have
used numbers of similar magnitudes (Schlamp, et al., (1976)). Lastly, the (complex)
dielectric constant of the particles was chosen to be either near a resonance (e, =
—2.01 4 j0.01) or off-resonance (e, = 2.0 + j0.1).

Note that without the EM force component the two particles would remain
separated and there would be no change in their relative positions. This is so
because (1) the particles’ initial separation is so large that the fluid forces are
negligible, and (2) because the particles are the same size and mass: hence their
terminal velocities are the same (recall that the initial conditions specify the two
particles are falling at their terminal velocities), and (3) the particles carry no net

charge or intrinsic dipole moment.
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The relative trajectory of one particle with respect to the other was the raw
data that was produced here. Essentially, the governing differential equations were
integrated numerically and the resulting trajectory plotted. The numerical package

DEPISODE was used for the integration (Byrne and Hindmarsh (1975)).

The total force on one particle in the presence of the other is critical in obtaining
the trajectories. At each time step the force is evaluated anew and Newton’s first law
is integrated to obtain the next position in the trajectory. This is a computationally-

intensive process.

An intuitive feel for the likely trajectories can be gleaned from a knowledge of
this force vector as a function of relative position (and dielectric constant). The
incident field strength would mostly provide only an arbitrary scale factor and so
is ignored here. Figures 4.5 and 4.6 show the total force fields on one particle when
near one (and only one) other particle in an ambient vertical E field. The axes
are marked in units of sphere diameters. Each arrow starts at the relative position
of the particle in question and points in the direction of the force on that particle
assuming that there is another particle located at the origin. The length of the
arrows indicates the relative strength of the force. The two figures have different
scaling for the arrows and so cannot be compared as far as the force magnitudes are
concerned. (Were they to have the same scaling as the resonant case, most of the
nonresonant arrows would be invisible.) Notice that the force field is quite different
for the two cases shown: non-resonant wvs. resonant. This qualitative difference
alone is enough to generate interest in this, but as will be shown later, there is a
quantitative difference as well, with the resonant case having much larger forces.

This, too, is a good reason for this investigation.

A qualitative understanding of a large part of these force fields (the regions
where the separation is large) is possible through the use of the non-interacting

approximation. In this case this approximation yields the force between two parallel
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Figure 4.5 — Force between two spheres, resonant case.

Note that the arrows are

Region shown is +8 units from reference sphere.
not to scale between this figure and the next. Axes are marked in units of sphere

diameters.
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(vertical) dipoles, since the external field of a sphere in a uniform static electric field
is that of a dipole at the center of the sphere.
The electric field of a dipole with dipole moment, ps, in a spherical coordinate

system (1,6, ¢') (aligned with the dipole) is:

Edipole () = 47;5 jr':‘ [f’ 2cosf + §'sin 6’ (4.62)

See fig. 4.7 for the definitions of the symbols. Note that the dipole was chosen to

be centered at the origin and oriented at some angle in the z-z plane.

Figure 4.7 — Dipole at origin and associated force vectors at a distant point.

The next step is to find the force on another dipole, due to the field of this one.
From Stratton (1941), p. 176:
F=V(p-E) (4.63)

where E is the external field within which the dipole is immersed. Specializing to

parallel dipoles:

p = p17 = p1(¥' cos ' — f'sin 0') (4.64)
Hence:
-3 o
F= p1pz [f"(2 cos® 0’ —sin” 6') + 6'(2 cos #' sin 9')] (4.65)

dmegr!
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Decomposition to the z'-7' axes yields

F, =F,sin6 + Fy cost’ (4.66)
F,=F,cos0' — Fysin®, (4.67)
giving:
F, = ;j: 1:: 2 sin ¢/ [sin? 0’ — dcos?¢/] (4.68)
F, = ;jﬁ:ﬁi cos 0’ [—3 + cos? 0’] (4.69)

Lastly, transformation to the z-z coordinates is necessary. (See fig. 4.8.)

Figure 4.8 — Coordinate transformation for parallel dipoles polarized at an angle

B with respect to the z-axis.

We hayve:
0 =0—(r/2-8)=0+p—m/2 (4.70)
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and also

Fy=F,sinf8+ F,cosf3 (4.71)

F,=—-F, cospB+ F, sinf3 (4.72)

This dipole-dipole force field is shown in fig. 4.9. The similarity between this
and much of the force field in figs. 4.5 and 4.6 is obvious and can safely be assumed
to be mostly due to the the same mechanism.

This leaves us with the forces when the spheres are nearly-touching. It is there
where the qualitative differences are so dramatic. No attempt will be made to
understand the forces here quantitatively. Qualitatively, however, it is apparent
that when near an absorption resonance the fields are large and favor coagulation
over separation, while for the off-resonance case the fields are much smaller and
favor coagulation only when the particles are initially nearly vertically-aligned.

With this intuitive picture built up, the trajectories are presented next.

4.5.1 Resonant Trajectories

A typical result for a trajectory starting far away, but still close enough to be
attracted is seen in fig. 4.10. In all the other figures, there are many trajectories
shown on each plot. This is for convenience only, as each trajectory is the result of
a separate run with two particles falling in the atmosphere. Note that the smaller
of the two circles shown in the figures represents the sphere at the origin. All tra-
jectories are relative to the center of this sphere. The larger of the circles represents
the closest possible approach of a trajectory to the reference sphere, as the tra-
jectories track the center of the second sphere relative to the first. The axes are
marked in units of sphere diameters. The trajectory lasts for 37,530 scaled time
units (15.5 sec.) and the last half of the distance to the particle is covered in the

last 30 time units (12.4 msec.), or, the last half of the total distance is covered in
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Figure 4.9 — Force vectors between two parallel vertical dipoles.

Force vectors that were too long were omitted.

Note that the arrows are not to scale between this figure and figs. 4.5 and 4.6.
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Figure 4.10 — Typical trajectory for resonant case.

The marks show the time elapsed since the start of the simulation. Axes are
marked in units of sphere diameters.

0.08% of the total time. This shows the typical acceleration for the resonant case
as the particles approach each other more closely.

Figures 4.11 and 4.12 show families of trajectories for incident field strengths
of 2.24 V/m and 0.224 V/m respectively. Not shown are those trajectories that
were never affected by the electromagnetic force and so did not show any relative

movement. Also, recall that those trajectories that moved less than one diameter
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Figure 4.11 — Trajectories for resonant case, Fg = 2.24 V/m.

Each trajectory is a separate simulation run. Axes are marked in units of sphere
diameters.

in 10 minutes of real time were not shown for the same reason, the idea being that
atmospheric turbulence would be far more powerful. Consequently, an “interaction
region” can be delimited about each particle to specify the pairwise interaction
region, where attraction occurs. This region is sketched for each case in figs. 4.13
and 4.14. Because of the minimal differential affect of the fluid forces and gravity

in this case, the regions are symmetric vertically.
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Figure 4.12 — Trajectories for resonant case, Fg = 0.224 V/m.

Each trajectory is a separate simulation run. Axes are marked in units of sphere
diameters.

The trajectories show that almost all particles that interact will collide. The
exceptions are those that start close to, but horizontal, to each other. In that case,
the repulsion is dominant and the particles quickly diverge from each other. The
converging trajectories also show another interesting feature: the final geometry of
the coagulated pair lines up with the vertical. Since the major force here is electro-

magnetic, the particles are lining up with the incident electric field, which in this
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Figure 4.13 — Interaction and coagulation regions for the resonant case, Fy =

2.24 V/m.

Axes are marked in units of sphere diameters.

case is vertical. This phenomenon has been observed experimentally (Krasny-Ergen
(1936)). Besides the obvious difference in the paths of the trajectories between the
two figures, the biggest difference is that the extent of the region of starting points
from which the particles contact each other is different. The case with the higher

incident field strength, and hence stronger force field, shows a larger, or more spread
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Figure 4.14 — Interaction and coagulation regions for the resonant case, Fy =

0.224 V/m.

Axes are marked in units of sphere diameters.

out, contact region. This is possibly due to inertia.

The coagulation regions are vague at best. These are presented to give a feel
for the interactions and a convenient method for comparison between the different
cases. The region extends much farther from the reference particle in the vertical

direction, as the dipole attraction is greatest there. The minimum, when they are
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next to each other horizontally, can be thought of as due to the repulsion of two
parallel dipoles. The extent of this region is largely dependent on the incident field
strength.

The interaction region is significantly larger than the coagulation region in the

region next to the reference particle, where the dipole repulsion is large.

4.5.2 Non-Resonant Trajectories

Figures 4.15 and 4.16 show families of trajectories for incident field strengths of
2.24 V/m and 22.4 V/m respectively. Again, an “interaction region” can be delim-
ited about each particle, but also the “coagulation region” in the non-resonant cases
is much smaller than the interaction region, and much smaller than the coagulation
region in the resonant case. Both of these regions are sketched for each case in figs.

4.17 and 4.18.

The trajectories show that only those particles that are nearly vertically aligned
at the outset will collide. The remainder of the trajectories show that the force
becomes repulsive and that the particles are ejected horizontally from the reference
sphere. Another new phenomenon here is that there is a “backwater” region at
which the particles that are ejected tend to cluster, and here their relative velocities
become quite small. So many particles will tend to “cluster” without coagulating,
remaining in the backwater region of another particle. The converging trajectories
show another difference from that of the resonant trajectories, in that the contact
region here is quite large, covering most of the particle. Hence, the particles cannot
be said to be lining up with the incident electric field (vertical), as in the resonant
case.

Again, the coagulation regions are vague at best. The region extends much
farther from the reference particle in the vertical direction, as the dipole attraction

is greatest there. The minimum, when they are next to each other horizontally, can
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Figure 4.15 — Trajectories for non-resonant case, Ey = 2.24 V/m.

Each trajectory is a separate simulation run. Axes are marked in units of sphere
diameters.

be thought of as due to the repulsion of two parallel dipoles. The extent of this
region is largely dependent on the incident field strength.

The interaction region is far bigger than the coagulation region for the non-
resonant case. Most of the interaction here results only in loosely bound particles

without coagulation. No similar effect is seen in the resonant case.
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Figure 4.16 — Trajectories for non-resonant case, Ey = 22.4 V/m.

Each trajectory is a separate simulation run. Axes are marked in units of sphere
diameters.

4.6 Conclusions and Future Work

This chapter has shown that coagulation of small particles can be greatly af-
fected by the kind of resonance phenomenon that has been explored in this thesis.
Specifically, coagulation can be induced between particles when irradiated at a fre-
quency near a resonance. When not near a resonance the coagulation is driven by

other forces which are not of concern here. In addition, when the electromagnetic
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Figure 4.17 — Interaction and coagulation regions for the non-resonant case,

Eg = 2.24 V/m.

Axes are marked in units of sphere diameters.

force is dominant, as it is here, the coagulated particles are aligned along the applied

electric field vector.

One use of this could be to help determine the effect of sunlight on aerosols in the
upper atmosphere. For example, determining such properties as size and shape of

particles formed could be important to atmospheric chemistry where many reactions
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Figure 4.18 — Interaction and coagulation regions for the non-resonant case,

Eg = 22.4 V/m.

Axes are marked in units of sphere diameters.

are catalyzed on particle surfaces. Also, the possible catalytic effects of the surface
resonance itself could be explored, e.g., in the context of the recent stratospheric

ozone depletion problems.

One extension to this work would be to explore the effects of the fluid-elec-

tromagnetic interaction. This would involve two spheres of different sizes, thereby
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changing the importance of electromagnetic vs. fluid forces in a controlled way.
Through this sort of study one could see under what conditions the electromagnetic
force becomes swamped by the fluid force (and gravity), as well as the effect on
the coagulation times and trajectories. It is expected that the fluid force will easily
exceed the electromagnetic force for cases where the particles are very different in
size, and where there is no electromagnetic resonance. In cases where there is a
resonance, however, close approaches to the resonant geometry could overcome the
fluid force and cause coagulation. This sort of behavior is also expected for arbi-
trary non-spherical particles, with the added complication of a dependence on the
orientation angles of each particle. This is important, but the main ideas presented
above will not change. That is, electromagnetic resonances can still play a large
part in the coagulation process, with the relative particle sizes modulating the rel-
ative importance of fluid and electromagnetic forces. The above study might also
provide a model of the coagulation of a single particle to an already-agglomerated
mass represented by the larger sphere.

A further extension to the present theory would include using the approximate
dipole-dipole force field between arbitrary-shaped particles, but only when they are
far apart. Then, as they approach more closely, the solution of the non-rotationally-
symmetric problem should be used, including the fluid forces that are involved as
well. This is an order of magnitude more complex than the study done here.

Another possible extension would involve accounting for the relative phase of
the electromagnetic field between different particles, while ignoring it within the
same particle. The idea would be to still use the Rayleigh approximation, but to
include the known phase term on top of the static formulation. This would allow
simulations of small particles with larger separations, and would be only slightly

more complicated than the work presented here.



CHAPTER V

APPLICATION TO PHOTOSYNTHESIS: STACKED THIN DISKS

5.1 Motivation

The previous chapters of this thesis describe work in resonant absorption by
particles of various shapes. When thinking of real-life applications for this topic,
photosynthesis naturally suggested itself. Since light gathering in plants is done by
molecules embedded in the surface of stacked thin disks, it is apparent that resonant
absorption could play a major role in photosynthetic light absorption. Light gather-
ing in algae is not associated with closely-spaced stacked disks, and hence it is likely
that this stacking was an improvement during evolution. From the previous work
in this thesis, some idea as to what kinds of shapes produce what kinds of char-
acteristic resonant epsilons has been developed. Hence, it is reasonable to believe
that shapes so different from spheres, and with such a dense stacking arrangement,
would have large, negative resonant epsilons. That the chlorophyll molecules reside
on the outside of the membrane is also highly suggestive, since in resonant absorp-
tion that is where the total field is enhanced. Naturally, to investigate this idea
quantitatively required detailed modeling and calculations, which are presented in
this chapter.

This chapter presents the change in resonance positions as a function of both

stacking geometry and size and investigates the implications to absorption at the

153
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frequencies relevant to photosynthesis. The results suggest that resonant absorp-
tion occurs for a class of plants that are adapted to bright sunlight in semi-arid

conditions, called C4 plants.

5.2 Background

This section details the relevant biological knowledge needed to understand the
rest of this chapter. Two terms that are used quite often in the biological literature
are in vivo and in vitro. The term in vivo refers to a process in a living system in
its natural state. The term in vitro refers to an experiment that is done on some
system in a controlled laboratory environment, often thought of as a “test-tube”
experiment. Most experiments in photosynthesis research have been done in vitro,
with some arguments concerning the correlation to the actual system in vivo.

Photosynthesis in plants is carried out in sub-cellular structures called chloro-
plasts. A single plant cell can have many chloroplasts, depending on the cell’s
function. Within each chloroplast is the molecular machinery that carries out the
light harvesting, and conversion of the energy into energy-storage molecules, such as
glucose. (Note that light harvesting means that the light is permanently absorbed
rather than just temporarily absorbed to be re-emitted later.) The structures inter-
nal to the chloroplast where the light harvesting is carried out are called thylakoid
membranes. These are highly-folded membranes with chlorophyll pigments embed-
ded in them. Each chloroplast contains many thylakoid membranes, as well as a
large vacuole (storage sac) to contain the produced energy-storage molecules.

A comparison of the small, stacked disk-shaped thylakoid membranes of sugar
cane mesophyll cells with the larger and more widely-spaced thylakoids of sugar
cane bundle sheath cells is shown in fig. 5.1. Note that the width of a larger disk
is on the order of ten times that of the smaller disk, with a similar increase in the
average disk spacing. Usually, plants that exhibit both types of thylakoid shapes are

termed C4 plants and have unique properties. The mesophyll cells are responsible
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for the majority of the light harvesting and are the major constituent of the leaves
in these plants. However, near the “veins” of the leaves the other types of cells are
abundant and are responsible for the terminal reactions of the conversion of light
energy into starch-like molecules for transport to the rest of the plant. Corn, as

well as the sugar cane shown here, possesses such an anatomy, as discussed in more

detail later.

large and separate

Figure 5.1 — Thylakoid size and shape variation: small and stacked vs. large and
separate.
Section of sugar cane leaf showing bundle sheath chloroplast (right) and mes-

ophyll cell chloroplast (left). In mesophyll chloroplast note abundance of small,
closely-stacked thylakoids. (From fig. 14-7 of Devlin and Witham (1983))
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5.2.1 Detailed Thylakoid Structure

The structure of one thylakoid membrane complex is depicted in fig. 5.2. This
shows how the thylakoids in higher plants tend to associate into stacks of closely-
separated thin disks. There are also portions that are not stacked. Each complex

is one closed membrane that is highly folded to produce this structure.

Figure 5.2 — Stacked thylakoid membranes with membrane-bound pigment

complexes indicated. (From fig. 12-8 of Devlin and Witham (1983))

It has been determined that these membranes contain the chlorophyll and other
molecules that are associated with light harvesting. There is a complex organization
of these molecules, with two different complexes that are responsible for the termi-
nal absorption event in photosynthesis. Briefly, a specialized chlorophyll molecular
complex is surrounded by several hundred chlorophyll molecules that are termed an-
tennae chlorophyll. There are many such complexes on the surface of each thylakoid
disk. These chlorophyll are responsible for the primary absorption of photons, with
the energy being transferred from molecule-to-molecule by resonance transfer until
being absorbed by the terminal complex. (See fig. 5.3.)

Each terminal complex then catalyzes a charge separation which fixes the energy

absorbed into chemical energy. From there, the charge separation drives other reac-
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Figure 5.3 — Antennae chlorophyll, resonance energy transfer between them, and
associated photosystems of the primary light-harvesting reactions. (From fig. 13-7

of Devlin and Witham (1983))

Each photosystem complex is one of hundreds embedded in each thylakoid mem-
brane disk.

tions with the final product being energized molecules such as ATP and NADPH.
These molecules are used throughout the rest of the chloroplast to synthesize com-
plex sugars, such as glucose, for energy storage.

The terminal complexes of chlorophyll come in two varieties, called PSI and
PSII, for PhotoSystem I and II. Each has a different absorption peak, and so absorbs
photons from a different frequency band. Each also has different catalytic reactions
associated with it for the production of the molecules with high-energy phosphate
bonds. In particular, PSI is associated with the production of NADPH and PSII

with the production of ATP. (See fig. 5.4.)

Recently, the reason for two photosystems was discovered and much detail is
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Figure 5.4 — Detailed reaction scheme of molecules associated with the primary

light-harvesting reactions. (From fig. 13-12 of Devlin and Witham (1983))

now known. The photosystems are linked, as seen in fig. 5.4, and so through the
differential regulation of each the entire process can be controlled. Specifically,
plants can regulate the amount of photons being channeled to each photosytem on
a time scale of minutes, and so control the absorption spectrum of the leaf as a
whole. This rapid control mechanism allows plants to adapt to constantly changing
conditions of lighting without sacrificing efficiency.

One major function of the stacking of the thylakoids has been determined to

be this regulation of input photon energy to the two systems. By shuffling the
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photosystem molecules around, and hence unstacking slightly, this balance can be
altered dramatically. In particular, the PSI molecules are in the majority in regions
of the thylakoid membranes that are exposed directly to the internal fluid of the
chloroplast. In contrast, the PSII molecules are almost exclusively associated with
membrane regions that are adjacent to one another. Since this chapter is concerned

with the stacked membranes, PSII will be the focus of interest here.

5.2.2 The Variety of Plant Metabolisms

Another major variation among plants is that of the primary plant metabolism.
The molecules associated with carbon dioxide fixation are different and, ultimately,
the reactions involved are different. Three main categories exist, termed C3, C4,
and CAM metabolisms. Most house plants are a common example of C3 plants,
which need lots of water and varying amounts of light. Corn is representative of
C4 plants, growing in semi-arid conditions, and bright light. A well-known CAM
plant is a cactus, which is adapted to life with very little water and high-intensity
light. In fact, CAM plants close their stomata during the daylight hours to conserve
water. This leads to different cycles during the night and day: C4 at night, and C3
during the day.

Besides these macroscopic differences, there are differences in microscopic archi-
tecture as well. In particular, C4 plants tend to have thylakoids with large stacks
and small disk-widths, while C3 plants have more thylakoid stacks, with much wider
disks. In relation to the work here, it appears that C4 plants have stacks that can
be approximated as Rayleigh, while C3 plants have larger disks that are too wide

to be treated with the Rayleigh approximation.

5.2.3 Pertinent Unknowns

1. Detailed chemical makeup of fluids inside and outside the thylakoids is unknown.
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[C.F. Yocum, personal communication] * Hence: no optical properties available.

2. Optical properties of chlorophyll are known, but only in wvitro, in artificial sol-
vents. How close to in vivo is it?

3. There are no appropriate absorption measurements on bare thylakoids that
could verify this theory. [C.F. Yocum, personal communication]

4. There is no detailed survey of thylakoid size and shape across C3/C4/CAM

plants.

5.3 Modeling

The true state of the absorption process in vivo is far too complicated to simulate
here. This section presents an overview of all the major attributes involved in the
real situation, and describes the approximations used to make the problem tractable
by the present methods.

There is a tremendous amount of variability in nature. The photosynthetic
apparatus is no exception. The size, shape, and chemical makeup of the chloroplasts
and thylakoid membranes is highly variable from species-to-species and even from

cell-to-cell within the same plant.

5.3.1 Size

The characteristic size of stacked thylakoids is determined by the diameter of
the individual disks of the thylakoid membrane complex. (Because the stack is not
usually taller than the disk diameter.) The size used here is assumed to be less than
about 100 nm, the typical size of a thylakoid from a corn mesophyll chloroplast.
This is not typical, as there is no “typical,” but was chosen because it was small

enough to apply Rayleigh theory.

* C. F. Yokum: Professor and Dept. Head, Dept. of Biological Sciences, University of Michigan, Ann
Arbor.
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5.3.2 Shape

One shape of thylakoid membrane is used in this model. It is an “average” of

corn, spinach, and tobacco thylakoids found in the literature.

5.3.3 Chemistry

The chemical makeup is quite heterogeneous. Only one absorption spectrum was
chosen here (chlorophyll a, in ether) because chlorophyll a is common and gives an
approximate behavior that is typical. The detailed spectrum is quite complicated
and it was felt that such detail was unnecessary to demonstrate the enhanced ab-
sorption idea. The in vivo absorption spectrum of chlorophyll is expected to be
different, but has not been measured accurately. Hence, due to lack of alternative
data, this complication will be ignored here.

The chemical makeup of the fluids that are interior and exterior to the thylakoid
membranes is largely unknown. Hence, there is no way to accurately account for
it. The assumption is that in the visible region the main interaction of light is
carried out by the chlorophyll molecules. (This is justified in sec. 5.3.4 where the
absorption in a significant region of the visible spectrum is very large.) Hence,
the importance of the remaining material may be minimal. If the dielectric model
is accurate this is a very good approximation, since the chlorophyll model gives
very large (and negative) dielectric constants throughout a significant portion of
the visible region. This kind of behavior minimizes the medium effects because of

the tremendous absorption by the chlorophyll dielectric layer.

5.3.4 Approximate Dielectric Constant

This part presents the model used to simulate the effects of chlorophyll on the
absorption. The numerical simulation uses thin disks of uniform dielectric constant
throughout. The model presented here gives the dielectric constant of the layer

of chlorophyll within each thylakoid membrane, based on the measured absorption
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spectra of a chlorophyll suspension in ether. Hence, the validity of using a disk
of uniform composition to simulate each of the real disks which are non-uniform
is based on the plausible assumption that this outer layer absorbs most of the
radiation, and each disk therefore appears impenetrable, similar to a conductor.
This assumption is plausible because within the visible range the chlorophyll is a
strong absorber and is likely to be responsible for the majority of the absorption.
That the dielectric constant so calculated does indeed show the expected behavior

over a significant portion of the visible spectrum justifies this assumption.

The model is based on the idea that the dielectric constant is largely due to the
induced dipole moment for each molecule, as a function of frequency. The strength
of the dipole is used along with the number density of the molecule in question to
give an induced polarization field, which is directly related to the dielectric constant.
This is essentially the Lorentz model presented in sec. 3.1. The only difference here

is the determination of the induced dipole in the molecule. This is the critical step.

Given an absorption spectrum of chlorophyll a, appropriate parameters may be
measured and then used in a general formula derived in Jackson (1975) (eqn 17.70),
for the total (scattering plus absorption) cross section of a molecular dipole:

wZFFt

= 672
71(w) T (W — w?)? + W}

(5.1)

where A9 = Ag/2m; Ao, wp are the center of the absorption peak; I'; is the total
width (rad/sec) at half maximum of the peak; and I' is related to the re-radiation
lifetime, with I' < T’y for a good absorber.

All parameters are easily obtained from an absorption curve. Because chloro-
phyll a has two major absorption peaks in the visible region, the simulation required
the addition of two terms, one for each peak.

The numbers so determined are shown in table 5.1. The comparison of the

modeled absorption spectrum with that measured for Chlorophyll a in ether is
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shown in fig. 5.5. Note that in this figure the extinction coefficient, ¢, is defined by:

log1 (II) =eCY (5.2)
where I is the intensity incident on the sample, I is the intensity measured by the
spectrometer after passing through the sample, C' is the concentration of chlorophyll
molecules in the liquid, and ¢ is the path length of the light beam through the
sample. The relationship between oy and ¢ is obtained using the idea that oy
represents the portion of a light beam that is occluded by the presence of one

molecule. This gives:

Iy
1 =eC?l (5.3
P810 <I0 {1 — 1.602 x 1023 molecules/mole C(moles/liter) £ O't}> ¢ (5:3)

Table 5.1 — Model parameters for Chlorophyll a absorption spectrum in ether

wo Ft r

low-A peak | 4.373x10° rad/sec 1.8x10™ sec™! 2.403x10'0 sec~!
hi-\ peak | 2.839x10% rad/sec | 6.45x10'3 sec™! 2.836x 107 sec™?

The determination of the dielectric constant from this absorption spectrum is

carried out next. From Jackson (1975), the absorption due to a dipole, p,

p = a(w)Ege ™! (5.4)
ot(w) = 4W%Im.a(w) (5.5)

Equating this and the model for absorption yields:

I';ly;
Im. oz
Zl wh; (wf; — w?)? + Wiy,

(5.6)

where ¢+ = 1,2 corresponds to the two different peaks in the absorption spectrum
of chlorophyll a. As in chapter 3, this leads to the imaginary part of the dielectric
constant:

€ = 4r NIm.a(w) (5.7)



164

120.

|

|

ll

100. :
|
]
|
|
|

L »
'/\
]
80. '

Extinction Coefficient (mM'1 cm'l)

|
|
60. 'l T
| i
| ! !
| ! :
| ! !
1 ! '.
1 1
40. ‘ 1 Il
| J
| ! '
| ! ‘
| ! :
1 ! :
20 \ ' ‘
R ‘ , |
! //\\\// ll
\\ 7 // !
\ - S !
~_ > I \
0. .
400. 500. 600. 700.

Wavelength (nm)

Figure 5.5 — Comparison of measured (— —) and modeled (

) absorption for

chlorophyll a in ether. Measured data from Clayton (1965).

where N is the number density of chlorophyll molecules in the thylakoid membranes.
Note that this is in the same form as the Lorentz model result (egs 3.4-3.6). Hence
it immediately follows that

2 2 .
" Wi I'yw

€ =
" z:zl (W — w?)? +w?T}

(5.8)
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giving the real part:

2 w2 (w2, — w?)
=1+ pit (5.9)
" z—zl (Wi — wh)? + w2l
where
67 Nc°T;
ng = 7(03. : (5.10)
7

The only new parameter to determine here is the number density of the chloro-
phyll molecules. In particular, the density on the internal faces of the thylakoid
membrane stacks is the parameter of interest, as that is where the PSII complexes
appear. The density was estimated as follows: the number of particles on a stacked
thylakoid membrane surface (seen using freeze-fracture techniques as in fig. 2b, Gid-
dings, et al. (1980)) was counted in a small region. The identity of these particles is
still debatable. The number density of these particles is approximately 2.87 x 10%°
particles/m3. If they are assumed to be PSII complexes, with about 300 chlorophyll

molecules per particle (Hipkins and Baker (1986), sec. 1.3.1), then a density of
N = 8.6 x 10*"chlorophyll molecules/m? (5.11)

is obtained, since the thickness of the membrane is on the order of 1 A. If these
particles are not PSII complexes, there is a different number of chlorophyll molecules
per particle. However, at the present time, the best guess is that they are PSII
complexes (Staehelin (1983)).

However, because of this imprecise value for N, it is best to allow for a large
variation from the value given here. Hence, a variation of an order of magnitude
was allowed for, each way.

The real part of the modeled dielectric constant is shown in figure 5.6. The
different curves are for different values of N. Note that there are regions where the
real part of the dielectric constant is negative. The imaginary part of the modeled
dielectric constant is shown in figure 5.7. The portion of the spectrum where the

real part is negative and the imaginary part is small is where resonant absorption
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could occur. It is possible that an accurate dielectric model is best given with the
smaller N value. In that case, the losses in the absorption band (580-620 nm) are
much smaller and so the resonance would be much more pronounced than for the

value of N given here.

5.4 Numerical Results

5.4.1 The Numerical Procedure

The numerical procedure described in sections 2.1 through 2.4 of this thesis was
used here. Note that the resonant epsilons were the desired results, rather than
the absorption spectra. This was to see if the resonances occured at large negative
values, as was thought, and if so, just how large. The strength of the resonances
was used as an indicator of their importance to the overall response of the particle,
as has been done throughout the rest of this thesis. This is analogous to a coupling

coeflicient.

5.4.2 The Cases Studied

The cases studied here include thin disks with an aspect ratio of 23:1, that are
not stacked, or are stacked in 3, 5 or 7 layers, with a layer spacing of one-tenth of
the disk thickness. This geometry was selected as an accurate model of the stacked
portion of an “average” thylakoid membrane. As mentioned before, the membrane
thickness is ignored since the actual thickness is less than 1 A, much less than the
disk thickness. The number of membranes in a stack varies from species-to-species,
ranging from 1 for some algae up to 100 for many plants.

Since the interest is in the resonance positions, ¢,, no fixed relative permittivity
need be provided to the program. (Recall that this is the eigenvalue problem, and
the eigenvalues are related to the resonant epsilons.) For the numerical integration,
the number of segments that the membrane is divided into is 100 along the flat part,

and 30 along the circular end-cap. A semicircular end-cap was chosen as a good
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approximation to a real membrane as well as to avoid any resonances that could be
introduced by using a square-cut end-cap. Figure 5.8 sketches the geometry used.
The major resonances and their strengths are determined as a function of geometry

in the next section.

~

.

Figure 5.8 — Schematic diagram of Thylakoid membrane geometry simulated

with thin disks.

Dimensions for the “average” corn thylakoids were determined to be: a = 7.25 nm,
s = 0.75 nm, and » = 50 nm. The simulation done here used: a =1, s = 0.1, and
r =11.5.
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5.4.3 Results

Figure 5.9 shows a detailed picture of the stacked-disk geometry in relation to

the incident fields.

A . .
(x-incidence)
E"=E R

/ A
Eli‘lC= EO 7

(Q—incidence)

Figure 5.9 — Incident fields in relation to the stacked disks.

The major resonances and their strengths are shown in the following 4 tables.
The strengths are listed to show which resonances make the greatest contribution
to the total field for a particular incident field. The single disk is shown in table

5.2. Tables 5.3 through 5.5 show the resonances for various stacking configurations:
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1, 3, 5, and 7 disks, respectively. The strength is the magnitude of the imaginary
part of the appropriate polarizability tensor element. (As in the other chapters of
this thesis, for X-incidence use Pj1, and for Z-incidence use P33.) The change in the

major resonances as more disks are stacked is shown in fig. 5.10.

The results show that the X-incidence resonances for stacked disks are far larger
in their effect on the total field because their strengths are 10-100 times that of
the most resonant z-incidence resonance. This disparity tends to increase as more
disks are added: from 113 times with 3 stacked disks, to 63 times with 5 stacked
disks, to 175 times with 7 stacked disks. The positions of the resonances, while not
monotonic, still show a distinct and dramatic rise to values in the negative 100’s

when the disks are stacked.

Table 5.2 — Resonances for single disk.

(Values of Re.{¢,}, with Im.{e,} = 0, at which the absorption is infinite.)

X-inc Z-inc strength
-1.989 1018
-2.074 250

-0.848 107

-0.997 102

Table 5.3 — Resonances for 3 stacked disks.

(Values of Re.{¢.}, with Im.{¢,} = 0, at which the absorption is infinite.)

X-inc Z-inc strength
-370.25 177648
-68.6 3513
-118.5 1582

-45.4 216
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Table 5.4 — Resonances for 5 stacked disks.

(Values of Re.{¢ }, with Im.{e,} = 0, at which the absorption is infinite.)

X-inc Z-inc strength
-161.8 56542
-127.75 2641
-37.4 1170
-59.5 892

-243.6 142

Table 5.5 — Resonances for 7 stacked disks.

(Values of Re.{¢ }, with Im.{¢,} = 0, at which the absorption is infinite.)

X-inc Z-inc strength
-97.8 28275
-82.2 3601
-294.8 163
-153.0 122
0.0
-50.0
_ -1000
g -1500
c
@ -200.0
B
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Figure 5.10 — Variation of major resonances for stacked disks.

Major resonances (——) and minor resonances (— —) are shown for both %-
incidence (®) and for z-incidence (7).
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To compare the absorption characteristics of the stacked and unstacked disks
it is sufficient to compare the polarizability tensor elements, suitably scaled. In
fig. 5.10 the absorption of three stacked disks is compared to that of a single disk,
with the absorption scaled to be on a per chlorophyll molecule basis, which is the
same as a per unit area of thylakoid membrane, since we are assuming a uniform
distribution of chlorophyll molecules. As expected from the resonance positions
and strengths, the X-incident absorption enhancement is much larger than in the
z-incident case. Note the absorption enhancement in the two absorption bands:
z-incidence enhancement of 250 at about 430 nm, and X-incidence enhancement of
2000 at about 610 nm. Also note the z-incidence enhancement of 500 at about

670 nm. This is not at an expected absorption band.

2000.
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1600. -
1400. -
1200. -
1000. -
800. -
600. -
400. :
200. -

Absorption Enhancement (3 disks/ 1 disk)

400. 500. 600. 700.

Wavelength (nm)

Figure 5.11 — Calculated absorption enhancement of 3 stacked disks over that of

1 disk, normalized to thylakoid surface area. (——— %-inc.; — — — Z-inc.)
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5.5 Interpretation

The results presented in the previous section show that the electromagnetic
behavior of the stacked thin disks is drastically different than that for the single
thin disks. In particular, the values for the most influential resonant epsilons (those
with the largest influence on the total field) are on the order of 100 times larger
for stacked disks than for single disks. Applied to photosynthesis, via the dielectric
model presented in sec. 5.3, this means that in the spectral band where the modeled
dielectric constant has a large negative real part and a small imaginary part (approx.
580 nm to 620 nm in figs. 5.6 and 5.7) the absorption is expected to be much larger
for the stacked thylakoids than for the unstacked ones. Hence, if this enhanced
absorption can be utilized by the cell, then this would be a worthwhile adaptation,
one that would likely be conserved through the evolutionary process. That is the

hypothesis put forward here.

Note that the absorption spectra of actual stacked disks of chlorophyll have not
been presented in fig. 5.11, only the enhancement due to stacking. The main reason
for this is that the calculated absorption spectra would be misleading, especially
if thought of as something one could expect to measure. There are a number of
reasons for this. One reason is that because there is such a great variety of pigments
on a plant thylakoid, other than chlorophyll a, the true absorption spectrum for the
thylakoid would have to account for these as well. Another reason is that the
calculated € in the region where €, < 0, near 600 nm, is quite large, on the order
of 50-100. This is so large that resonance absorportion would be very small there,
because the resonance is effectively damped by the losses. If the actual € is as
large as that calculated here, then resonant absorption is probably not happening
in thylakoids. However, the calculation of ¢, was approximate at best, and so it it
is still quite possible that a resonance absorption occurs. The main result of my

estimation of €, is that the real part goes negative, and does so at a higher frequency
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(energy) than the PSII trap, hence allowing the absorbed photons to feed energy

to the PSII complex.

A note concerning the incident field polarization is in order here. Because
the X-incident resonances are on the order of 100x the strength of the Z-incident
resonances, one would expect that the thylakoids could make better use of the
partially-polarized sunlight by orienting their stacked thylakoids appropriately. A
reorientation effect has in fact been observed in some algae when exposed to bright
light: they present their thylakoids edge-on to the propagation direction of the
light. This is probably a simple “intercept less light” approach, however it makes
the concept of thylakoids rotating to better capture (or avoid) light much more
plausible. Which leads to the next idea. It is not unreasonable to suspect that
the direction-specific resonance is taken advantage of by plants, by light-intensity-
induced rotation of thylakoids. This has proved difficult to measure in plants [C.F.
Yocum, personal communication]. However, Kiss, et al. (1986) show that corn
mesophyll chloroplasts (in vitro) are very easily reoriented (a smaller applied field
for same amount of reorienting) in a magnetic field compared to other species. While
this shows nothing about what happens in vivo, the implication is clear, especially
knowing that natural sunlight is slightly polarized, that plants could take advantage
of this and reorient their stacked thylakoids in response to variable natural lighting

conditions.

One implication of this is that the resonant absorption may be used as a method
to increase the absorption when there is little light and to decrease the absorption
when there is too much. This could be thought of as a replacement for what the
algae can do with their single disk (avoiding intercepting the sunlight (edge-on), or
intercepting all of it (face-on)), but which the plants cannot do with their stacked
disks. The stacked architecture of plant thylakoids means that there is no edge-on

because even when one disk of the stack is edge-on, the stack as a whole does not
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really have an edge, and so the absorption cannot be affected significantly by such
geometrical considerations alone. That some plants (in particular corn) can use this
resonance to enhance or attenuate their light absorption could explain why they do
better in bright light. It is therefore likely that the resonance is used to increase
the dynamic range of illumination levels that are both bearable and useable to the
plant. This would quite effectively widen its niche in the environment and so would
tend to be conserved by evolution.

However, despite the fact that most plants have stacked thylakoids, there is
still tremendous variety in the details of their arrangement, size, and metabolism
between different species. This is not the place for an exhaustive survey of this, but
as an example consider corn and spinach. Corn has thick, tough leaves while spinach
has thin delicate ones. Corn uses C4 metabolism while spinach uses C3. Corn has
100 nm-wide disks in the thylakoids of its leaf mesophyll cells, while spinach leaf
cell thylakoids have 300 nm-wide disks. Hence, corn thylakoid stacks are Rayleigh
for incident wavelengths greater than 500 nm or so (yellow and red light), while
spinach thylakoids aren’t Rayleigh in the visible; they are too big.

The implication is that corn has evolved to use this enhanced absorption fea-
ture, whereas spinach has not. An inference one could draw from this, yet to be
confirmed, is that C4 plants, like corn, have evolved in their different niches and
taken advantage of this feature of stacked thylakoids. In support of this is the
fact that the efficiency of photosynthesis in bright-light C4 plants is monotonically
increasing with brightness up to the brightest possible light from the sun, while
that of C3 (average light) plants falls off before that and they suffer from other ail-
ments at such high light levels (Devlin and Witham(1983)). The task of confirming
this hypothesis would be more appropriate for a biochemist or a botanist already

familiar with these plants and their variations.
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5.6 Needed Biological Work

Because of the speculative nature of this chapter, this section on future valida-
tion experiments is included. The hope is that these suggested experiments give the
biological researcher a solid base with which to validate the claims in this chapter.
The most basic experiment which concerns the fundamental idea of this chapter is
to determine if the stacked thylakoids absorb more than unstacked ones. Obtaining
“free” thylakoids is a solved problem, and so will not be treated in any detail here.
See Hipkins and Baker (1986) for an excellent treatment of the standard techniques
used in photosynthesis research. Once free thylakoids are obtained, there is a known
mixture whose addition to the thylakoid suspension is known to induce unstacking
(Staehelin (1980)). Also, the spectroscopy is relatively straightforward, other than
the constraint that the solution be illuminated with real or simulated sunlight, as
the process of photosynthesis can work in quite a different manner when illumi-
nated with different spectra. The absorption spectra obtained must be generated
using a bandpass filter at the detector. Lastly, to avoid multiple scattering, the
solution must be relatively dilute. Just how dilute would be for the experimenter
to determine. The experiment would proceed as follows:

1. Separate the chloroplasts from maize mesophyll cells.

2. Rupture the chloroplasts. Remove the thylakoids and the intercellular fluid (cy-
toplasm), and put into the test cells used for spectroscopy. Since the cytoplasm
should be used for dilution, extra portions of it should be gathered.

3. With white light illumination, measure absorption spectra of the thylakoid/cy-
toplasm mixture at various concentrations. Find a concentration where multiple
scattering is minimal by continually diluting with cytoplasm and remeasuring
the spectrum until the shape of the absorption spectrum ceases to change appre-
ciably. This is where the nearest-neighbor interactions (between different groups

of stacked thylakoids) have ceased to play a role in the absorption process.
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4. Next add the “unstacking” mixture so that the resultant concentration of thy-
lakoids is known. Measure the absorption spectrum as before, as a function of
elapsed time since initiating the unstacking reaction. When it stops changing,
it is probably unstacked as far as possible.

5. Make sure the solutions in 3 and 4 were what was wanted: use portions of each
and perform other tests to observe the number density and percent stacked
vs. unstacked, and the like. Some iteration through the above steps may be
necessary to get pure samples of stacked and unstacked membranes with few
impurities such as broken thylakoids, broken chloroplast envelopes, stacked thy-
lakoids in the unstacked solution, etc.

6. Compare absorption spectra normalized to the concentration of chlorophyll, of
stacked disks vs. unstacked disks. Hopefully there is enhanced absorption in

the stacked thylakoids in some band near 600 nm.

A complication to the above experiment is that the distribution of PSI and
PSII complexes over the membranes changes when they are unstacked. This causes
a change in the absorption spectrum all by itself, but the extent of this change is not
known quantitatively. A possible way to avoid this redistribution of photosystems
is to freeze the membranes from the very start (just after step 2, above). Then
the unstacking may not result in photosystem redistribution if the experiment is
carried out quickly. This is because the redistribution is enabled by diffusion, which
is highly temperature-dependent. But only the experiment will be able to verify this;
apparently no one has yet done unstacking without the concomitant photosystem
redistribution.

If this fundamental experiment shows enhanced absorption for stacked thy-
lakoids at all, then more detailed experiments can be done to further quantify the

effect:

1. Find the optical dielectric constants of fluid media inside and outside thylakoids.
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2. With one unstacked thylakoid, try to get it to be flat. This may require charging
the outside of the membrane to inhibit folding by causing repulsion between
different parts of itself. Find the apparent optical dielectric constant of the thin
disk so formed by modeling it as a coated thin disk.

3. Explore the effect of PSI/PSII distribution on apparent optical dielectric con-
stant. Freeze the stacked thylakoids, if that has been shown to work in the past.
Possibly experiment with adding other large molecules to the solution which
could mimic the interactions that cause the PSI/PSII segregation in vivo.

4. Try to orient the stacks and look at absorption as a function of incident polar-
ization.

5. Explore the effect of the incident spectrum on the apparent optical dielectric
constant. This would apply to leaves shaded by other leaves in a canopy.

6. Try all this with spinach leaves, and see if there is any kind of enhancement.

7. Try all sorts of other plants, in particular a CAM plant, and see what happens.

8. Figure out an easy way to monitor the amount of stacking and the width of the
disks. Vary amount and spectrum of incident light and see how these two very
important parameters vary with time. Since other changes can vary on time
scales of days, hours, or minutes, this may vary on any of those time scales,
hence the need for a convenient assay. Possibly, the resonant epsilons could
play a part here, using a low intensity tunable laser to probe for shape, but
only as long as the particles remained small enough to be approximated with

Rayleigh theory.

5.7 Conclusions

This chapter has shown that the resonances of thin stacked disks probably play
a role in the absorption of light by plants with small thylakoid disks, very likely
the C4 plants. An hypothesis for this role has been put forward, but there may be

more involved than has been accounted for here, and more detailed measurements
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are in order, some of which have been mentioned in the previous section. Besides

the experiments, the modeling performed in this chapter could be improved in the

future. In particular:

1.

Refine the dielectric model to include the measured optical properties from the

suggested experiments in sec. 5.6.

. Include the effects of the thin shell in the numerical code.

Add a comparison with the absorption of very large thylakoid disks that cannot
be approximated by Rayleigh theory. This would require a specialized code to
be written.

Include the effects of the fluids that surround the thylakoid membranes. (Their
dielectric constants.)

Refine the dielectric model to include contributions from other pigments in the
thylakoids. Account more precisely for the variety of states that a single pigment
may occupy, and hence alter its absorption characteristics.

Add a dynamic model to the system, so that the geometry and distribution of
particles, and amount of unstacked thylakoid, etc. are accounted for by models
of how they change with changing conditions, such as brightness, moisture, and
incident spectrum. Track as a function of time, and compare to experiments.
Are the simple models accurate?

This may be a fruitful new method to use to understand the entire process of

photosynthesis. As long as the biochemical events can be modeled with macroscopic

changes, then those things can be accounted for this way. The detailed biochemistry

would not be an appropriate topic for this modeling, of course, but the large-scale

effects would be.

In summary, an analysis new to phosynthesis research has been applied to the

primary absorption event with the result that a new regulation mechanism has been

postulated for stacked thylakoids of C4 plants to allow them to control the amount
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of light absorbed on a short time scale, in response to changing light-intensity con-
ditions. Whether this regulation hypothesis is correct or not, the stacked thylakoids
of the C4 plants generally appear to be small enough that the absorption resonances
found here should be occurring in some form. Although the ultimate use to which
the plant puts this may be different than that postulated here, its occurrence is very
likely. Lastly, a series of experimental steps have been outlined which could lead
to confirmation of the computed resonance effects and validation of the regulation

hypothesis.



CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This thesis has shown several exploratory researches into the effects of the res-
onance absorption phenomenon in small particles. First, a computer program was
written for the simulation work. The program solves the electrostatics problem, but
with a complex dielectric constant corresponding to the electromagnetic wave phase
propagation. This required reworking of an already-existing program; generalizing
and augmenting it for irregularly-shaped particles and far more accurate integral
evaluations. The program works with arbitrary rotationally-symmetric particles
and groups of particles whose trace in a meridian plane can be made up of arcs and
straight lines. Their maximum dimensions must also be small sompared to the free
space wavelength. The program output consists of the surface potentials as well as
the near and internal potentials. Another program calculates the electric field using
finite differences of the potential. The polarizability tensor elements are also calcu-
lated, as well as the values of the resonances which occur in absorption regions of the
bulk materials from which the particles are composed. The resonances are shape-
dependent (and incidence-dependent) only, and so do not depend on the choice of
a dielectric constant. The program was exhaustively checked against available the-
oretical formulations for special cases and was verified to within 1% of accuracy for
the situations where it is used in this thesis. The results also compared well with

available experimental results. This gives us confidence in our non-spherical results.
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Based on the above work, a model was developed to explain the behavior of the
polarizability tensor elements. The model is quite simple and does a very good job

modeling the results of the research presented here. This model was published in

Pierce and Weil (1990).

The absorption phenomena associated with coagulated spheres was explored
in the context of explaining the dramatic color changes seen in gold colloids upon
coagulation. The results of our simulations show qualitative agreement with those
experimental studies. Quantitative agreement will have to wait for more extensive
efforts, experimental as well as theoretical, aimed just at that. The changes in the
total potential field surrounding the particle were presented in a graphic comparison
of a resonant and a non-resonant case. This showed a dramatic difference in the
shapes of the real part of the fields, with a major increase in the magnitude of the
imaginary part of the fields, where the increased absorption is apparent. Possible

fruitful future work in this area includes:

(1) Finding better ways of choosing the “major” resonances of a particle from

the set of possible resonances.

(2) Understanding the near and internal electric field structure near a reso-
nance, and subsequently exploiting that knowledge for a practical end. (For
example, see the patent of L. Brus and A. Nitzan: “Chemical Processing

using Electromagnetic Field Enhancement,” U.S. Patent 4, 481, 091.)

A study of the resoanances as a function of coagulation geometry was also un-
dertaken. These resonances are the values of the dielectric constant that produced
very large local fields. This showed that, within this family of shapes, a surface
perturbation can be noted separately from the change in shape across that family.
This was done with clefts in ever-wider spheres, but the suspicion is that it general-
izes to other families of shapes. This observation is based on the fact that a major

resonance can be dramatically affected by the clefts presence, while the change in
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overall shape has a greater affect on the minor resonances, within a family of shapes.
This research certainly requires more study if one wishes to apply it to real-world
particles which can be quite irregular.

The study of coagulation dynamics carried out here shows a major difference
in the electromagnetic-induced coagulation of small particles depending on whether
or not they exhibit a resonance and if it is excited. The non-resonant particle
pairs shown here rarely coagulate, merely approaching each other closely at most,
while the resonant particle pairs usually coagulate, and coagulate lined up with the
electric field. This aligning capability of the impressed field has been long known
(Krasny-Ergen (1936)), but this is the first study of dielectric particles to show it
in some detail.

Lastly, photosynthesis appears to take advantage of these resonances in the
context of allowing some plants to regulate the amount of sunlight that is absorbed.
Some plants do this with large disks that fall into the physical optics regime. They
can either orient the large face of the disk towards the light, or not, to regulate
their light absorption. Other plants, however, use many small closely-stacked disks.
These plants cannot use the above mechanism of control, but since they are small
the resonance phenomenon comes into play. Since the strength of the resonance
depends strongly on the orientation of the disks to the incident field, perhaps these
plants use this to regulate their light absorption. Much future work is necessary in

this area to verify and further understand this phenomenon.
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APPENDIX A

DETAILS OF ROTATIONALLY-SYMMETRIC FORMULATION

This appendix gives the details for the derivation of equations (2.37) and (2.43)
in section 2.2. It was felt that these details should be presented to provide more

completeness to the formulation.

1. The outward normal

It is relatively straightforward to derive the general expression:
n = j:(—i sin o’ + cos o/ [ cos ¢’ + § sin (}5/]) (A.1)

The sign, however, is not so straightforward. It is known that fi' must be an
outward normal: from the body into the medium. But information about out-
side/inside is not necessarily contained in a simple p(z) for a body. Hence p(2)
must be constrained so that this information is available from it. This is done by
requiring that the body be entered as directed line segments (or arcs), such that
the inside of the body is on the right as we trace that line segment from start to
finish. This definition is a standard one in several branches of mathematics.

Hence the definition of o/ is really:

op' ds

o -1 .

o = ltan (Wﬂ sign <£> (A.2)
with the choice of the positive sign for @’

i = cos o/ (% cos ¢’ + §sin¢’) — zsina’ (A.3)
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2. V’(

)

Z:UI

It is known that

R2=(p—p)2+ (2 —2)% +2pp'[1 — cos(¢ — ¢')]. (A.4)
hence:
V/(R?) = p[-2(p— p') + 2p[1 — cos(¢ — ¢)]]
+ % [~200sin(¢ — ¢)] + 2 [-2(z - 2')] (A.6)

The expression for the derivative term gives:

2w 2w —b 2
cosqﬁ/ cos(7y 8 (R) dy = —cosd)/ aCOS’YR?) cos ’Yd'y (A.7)

where a = p/cosa’ — (2 — z)sincd/, and b = pcosc/.

Hence:

27 27 2T
cosqS/O cos("y)% <l> dy = —cos¢{a A COS’Y —b/ cos® ’yd } (A.8)

R
—_2cos¢{ /Wcowd —b/ cos® Jd } (A.9)

:—l—2cos¢{[(z — 2)sind’ — p cosa]91+pcosa'Q2}

(A.10)

as desired.

1

2m
/0 % (E) d¢' = 2{pcos 'O+ [(2 — z)sinad’ — p/ cos o/]Qo}
n
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It is known that:

2r 9 (1 , $=21 — (g — bcos7y)
2 (= - _ 8T g
0 o (R) 4 /¢—0 R

with v = ¢ — ¢/ and where a and b are as given previously.

Hence

¢ dy b/¢ cosy

“ o2 ﬁ ¢—2m R3

™ dry T COS 7Y
=2 / O 4o / d
“hwTh B Y

and with the definitions for ¢ and b
= 2{[(2' — z)sina’ — p' cos &']Qg + pcos 0/91}

as desired.

5. Re-express £);’s in terms of the complete elliptic integrals.

(A.11)

(A.12)

(A.13)

(A.14)

The definitions of the complete elliptic integrals are as follows (see Abramowitz

and Stegun, 1964).

1. Complete elliptic integral of the first kind:

K(m) = /Oﬂ/2(1 — msin®0)~/2dg
2. Complete elliptic integral of the second kind:

E(m) = /Oﬂ/2(1 — msin? 0)+*1/24dp

3. dK(m)/dm:
do

dK(m) 1 /W/2 sin’ 6
dm 2Jo

- 1 — msin? §)3/2

The definition for €2 is
Qp = Tl d
0=/ R3 v

(A.15)

(A.16)

(A.17)

(A.18)
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where
4pp’ 1
2 2 N2 pp .2
- - 1— “(r—
. (p+0)"+(2-%) H (p+ )2+ (z—2')? S [2(7T ’Y)”
Make the substitutions
_ 4pp’
IR R Rk
1
0 = 5(7r—’y), df = —dv/2, dy= —2d6
Then
/
R? = App (1 — msin®0)
m

and €2 simplifies to the form

T 1 0 —2d60
Qo= | pgdv= / 3/2
0 R /2 [%&/(1 — msin? 9)] /
_1 (ﬁ)w i /m a9
4 \prf 0 [(1 — msin® 9)]3/2
From their definitions, form:
dK (m) /2 1 —msin?6 msin? 6
K om0 | do
(m) + 2m dm 0 ((1 — msin? 9)3/2 * (1 — msin®9)3/2

_/7?/2 do
~Jo (1 —msin?)3/2

which is a scaled version of the previous expression for )y, hence

e 5) e o)

The definition for €27 is

T CcoSy
Ql 2/0 R3 d’y

From previous derivations, recall that

cosy = 2sin?0 — 1

_ App’

R? (1 — msin®#0)
m
1
0= 5(7 -7)
dy=—-2d0

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
(A.30)
(A.31)

(A.32)
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Combining all of these gives

/2 2(2sin? 0 — 1
O = / , 3/(2 sin” 0 — 1) 9 (A.33)
0 (%&) (1 — msin?9)3/2
% mj2 4sin?0— 2
m Sin
=(— do A.34
(pp’) /0 8(1 — msin? 9)3/2 (A-34)

From their definitions, form:

dK(m) 1 /2 (1 — m/2)3 sin 0——(1—msm 0)
1= m/2) 8\ Ly = / do
(1=m/2) dm 4 (m) 0 (1 — msin® 9)3/2
(A.35)
/2 4sin?6 — 2
= do A.36
/ 8(1 — msin? §)3/2 (A.36)
which is a scaled version of the previous expression for €2y, hence
3/2
m dK(m) 1
Q=(— 1-m/2)——— - -K A.
= () - Lk (A37)
The definition for €29 is
s
/ cos” Ly (A.38)

As before, simplify this expression to

/2 2(2sin?26 — 1)2
0y = /0 (2sin ) df (A.39)

3/2
(M) / (1 — msin?9)3/2

m

m 7/2 2(2sin” 6 — 1)
Q= (— do A.40
2 (pp’) /0 8(1 — msin? §)3/2 (A.40)

From their definitions, form:

g dK(m) 1 1

. W(l —m?/4)K (m) + WE(m) =

2 (1-m/)

/w/z (8) L(1-m/2)?sin?0 — Elg(l —m?2/4)(1 — msin® 0) + Elg(l — msin? )2
0

do
8 (1 — msin® 9)3/2

(A.41)
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2
The numerator becomes: = 2 [2 sin?6 — 1] hence

1 (m\? , dK (m) )
Oy = ") (W) {Qm(l —m/2) T (1 —=m*/4)K(m) + E(m)} (A.42)
as desired.

6. Series expressions for elliptic integrals.

Since
4pp’
— A4
L PR L P )

and p, p’ are both non-negative, the minimum of m (being the minimum of the

numerator with a finite denominator) is zero. The maximum of m occurs at the
minimum of the denominator, with a finite numerator. This occurs for z = 2’ and
p = p', giving the maximum of m being one.

There are series expressions for the elliptic integrals in Abramowitz and Stegun
(1964), pages 591-2. There it is required that m € [0, 1], which is satisfied in this

case. The expression for K(m) given there is:

K(m) = (ag + a1rmy + ... + agmi) + (bg + bymy + ... + bgm]) In(1/my) + e(m)

ah = 0.04757 383546
ay = 0.01736 506451

bs = 0.04069 697526
b}, = 0.00526 449639

(A.44)
with [e(m)| < 2 x 1078, and
ap = 1.38629 436112 by = 0.5
a1 = 0.09666 344259 b; = 0.12498 593597
az = 0.03590 092383 by = 0.06880 248576 (A.45)
az = 0.03742 563713 b3 = 0.03328 355346
aq = 0.01451 196212 by = 0.00441 787012
with m; = 1 — m. Next, the expression for E(m) is given as:
E(m) = (1+ajmi+...+aym}]) + ®mi+...+bym?) In(1/mq) +e(m) (A.46)
with |e(m)| < 2 x 1078, and
a} = 0.44325 141463 b} = 0.24998 368310
ay = 0.06260 601220 b5 = 0.09200 180037 (A.47)
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with m; =1 — m.
For dK(m)/dm, the term-by-term derivative of the appropriate series, given
above, gives:

(a1 + 2a9my + 3a3m% + 4a4m:15)

dK(m)  dK(m) | +(b1+ 2bam1 + 3bgm? + 4bym3) In(1/my)
dm dmq

+(bg + bymy + bam? + bgm3 + bymi)my (—mi?)

(A.48)

(a1 + 2a9m; + 3a3m% + 4a4m‘;’) 1

_ | o+ 26y + 3bsm? + 4bym3) In(1/m;) (A.49)

+(bo + bimy + bzm% + bgm:{’ + b4m£11)(1/m1)

Hence:
dK (m)

am = bo(l/ml)— (a1 - bl)— (20,2 — b2)m1— (3a3 - b3)m%— (4a4 - b4)m‘;‘)

— (b + 2bymy + 3bzm?3 + 4bgm3) In(1/my) (A.50)

This series is first given in Senior and Ahlgren (1972), however no error estimate

was given for it.



192

APPENDIX B

DETAILS OF SINGULARITY EXTRACTION AND INTEGRATION

This appendix fills in some of the steps in the derivation of the singularity

integration formulas detailed in section 2.4.

1. 1/m; Term

At ¢ = 0, and %-excitation, (2.71) and (2.72) give:

outside: — 2®4(r))

bndry: — (14¢€)® 1

ndry: = (1+€)®4(r) >:2p+/Wl(sl){pcosa'92—l—[(z'—z) sina/ — p’ cosa/] Ql}p'ds'
s

inside:  — 2e®P4(r) 5

Vs

(B.1)

where

®(r) = —%_GW;[ (s)cos¢p (B.2)

and where €27 and €2y are elliptic integrals, where the troublesome singularities
occur.

Following Senior (1983), write:

- o\ 32
Q=01 + (1= m/2) <W> % (B.3)

3/2
o 22 (T /2
Q=0+ —(1-m/2) (pp,) - (B.4)
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where Q; is the ‘non-singular’ part, leftover after the removal of the ﬁ singularity
term. Now to analytically integrate this ﬁ singularity term.

A transfer to s—t coordinates is convenient (fig. 2.6). Note that this is redefining
the s variable from global to local.

Simplify the €2; ’s so that the only s’-dependence will be in the ﬁ term, and
set s’ = 0 in the coefficients, that multiply the kernel, under the assumption that
their variation with respect to s’ is small compared to that of the singularity term.

The kernel term is

K1 = {pcosa’ Qs + [(2' — z) sina’ — p’ cosa’] Q1 }p’ (B.5)
= {(s sina’ + t cosa’) cosa’ Qo+
[ [(s'—s) cosa/ — (' —t) sina/] sina’ — (5" sina/ +#' cosa’) cosa'] 0 } (s’ sina/ +t' cosa’)
(B.6)
In this case the s’ — terms inside cancel, leaving the outermost s’ — term. This must

remain, as neglecting it will cause errors when s’sina’ > t/ cosd/, i.e., near vertical

portions of the boundary. Hence write:

— 1
K1=K1+K11[
1—m

] + Ko [1 jlm] (B7)

/
S

1-m

Analytically integrating the ﬁ — and the — terms gives:.

A?/4— sA+ 82+ (t' —t)?
A%/4 4+ sA+ 82+ (¢ — t)?

7 1 I i s 1 /
ds’ = 2sina/(ssina’ 4 tcosa’) In

A
-5 1-m *

N 4s%sin?a/ +4tt’ cos®a’ +4s(t+t') sina/ coso/ - A —2s +tan! A+ 2s
vt 20 —1) 20t —1)
(B.8)

and:
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A
) : X(+A/2
/_%7 : j — ds' = (s sina’ + tCOSOt/){4Sina'A + (4s sine/ -+ 2t/ Coso/) In %‘
4 : / / A 1 2 B
4 Ms(ssing’ + ¢/ cosal) — sina/(¥ "] [y (A=25) oy (Ad2s
t'—1 2(t' —t) 2(t' — 1)
(B.9)

Now expressions for the (2; 's are required. Here treat the coefficients of the

kernels as constants during the integration, and so in these constants let s’ = 0 .

This gives:
4t' cosa/[s sina’ + t cos/] (B.10)
m = :
s2 + (t + t')2 + 4t' sinc/ (s cose’ — t sina’)
| = m2 s+ (t+t')%+ 2t sina/ (s cosa’ — tsina’) (B.11)
82+ (t4t)2 + 4t sine/ (s cosa/ — tsina/) '
3/2
8
— = (B.12)
(PP’) [s2 4+ (t + t')2 + 4t' sind/ (s cosa/ — 15511&04’)]3/2
Using these in the expressions for the €2;’s :
Q= O + 8t' cosa/ (s sina/ + t cosa’) [ 1 ] (B.13)
0= -
{82 + (t + /)2 + 4t' sinc/ (s cosa — tsina’)}‘r’/2 L—m
Q=T+ A[s2 + 2 + t'* + 2t sine/ (s cose! — ¢ sine/)] [ 1 ] (B.14)
1= -
{82+ (t +t')? + 4t' sina/ (s cosa/ — tsine/)}?/2 11 —m
Qy = Qo+
2[s2 + 2 + ¢'* + 2t sine/ (s cosa! — t sine/')]? [ 1 ]
t’ cosa/ (ssina + t cosa’) {s2 + (t + )2 + 4t' sind/ (s cosa! — tsino:’)}‘r’/2 L—m
(B.15)

Use these to find IK; and I K3, the integrated kernels, which are used to find the
potential inside and outside the body for each incidence angle. As with the ;’s ,

the IK;’s are separated into singular and non-singular pieces. Hence:
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IK, = /{p cosa’ Qo + [(7' — 2) sina’ — p’ cosa’] Q1 }p' ds’

I1K; = /{p cosa! Q1 + [(2' — 2) sind’ — p’ cosa’] Qg }p’ ds’

For notational purposes use:

IKi = I/Ez + IKi,extm

Doing I K; first:

1
I'K1 extra :Kll/ [17] +K12/l
—-m

Solve for Ki1:

2 cosa'[s2 + 2 + /2 + 2t sind/ (s cosa! — tsind/)]

S,

=

K=

After a little bit of thought it will be obvious that:

Ko =

Giving:

IK; =ITK; +

t' cosa/

K11 sina/

{s2+ (t +t')2 + 4¢' sine/ (s cosa! — tsina!) }*/2

2[5 +2+> +2¢' sina/ (s cosa’ —t sine/)] (s2+ 12— /%)

fea|

And after simplifying the {----} term:

1

sina/

{s2 4 (t +t')? + 4t' sinc/ (s cosa — ¢ sino/)}5/2

S,

1-m

|+

tl

fl

1—-m

(s2+ 2 — 1)

)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)
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2[s2 + 12 + ¢'* + 2t/ sine (s cosa! — tsine)](s? + 2 — /%)
{82+ (t + t')2 + 4t' sina/ (s cosa/ — ¢ sina’)}5/2

IK, =IK; +

4sin’c/

[[( cosa + 7 (ssina’ +tcosa’))A

2
A —sA+ 2+ (' —t)?
A2 LA+ 82+ (1 — 1)

4(ssina’ +tcosa) . . . sin2o/
( ::_ ; a)[2 sina/ (s sina’ +t cosa’) +t'( cos?a/ — sina’) + o

T(sz—t2)]
: [tan—l (%) + tan™! (%)”‘ (B.23)

Similarly for Z — excitation. At ¢ =0, (2.71) and (2.72) give:

ssina/

+ 4sind/ (s sind’ + t cosa’) (cosa’ +
tl

) In

outside:  — 2®3(r))

bndry: —(1+¢€)®3(r 1
yi= () s )>:2z—l— ;/Wg(s'){pcoso/Ql-i-[(z'—z) sina’ — p cosa/] Qo}p'dsl

inside: — 2e®3(r) s

7

(B.24)

where

1
1—c¢

P3(r) = ——Ws(s) (B.25)

and where Qg and €2; are elliptic integrals, where the troublesome singularities
occur. The €2;’s were evaluated during our solution for K;. As with the kernel
term for x—incidence, write:

!/

] + K [1 - m] (B-26)

K3=E+K31[
1—m

The integrations done for I K; are the same ones needed for I K5 and so do not need

to be repeated. Hence:
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1 s'
K3 catra = K31 / [—] + K /
1—m 1—m

where:
4t' cos3o/ (s sine! + t cose!’) (82 + 2 — /%)
31 =
{82+ (t +t')2 + 4t sind/ (s cosa/ — t sina’)}5/2
So:
Ky = [ + 4t' cosa (s sina + t cose!) (% + 2 — ')

{s2 4 (t +1')? + 4t' sinc/ (s cosa/ — ¢ sina’)}‘r)/2

oo [ 25045 [ 25))

The term with the integrals in it is the same as in /K7, hence:

4t cos2a/ (s sind! + t cosa) (s2 + 12 — /%)

IK3 = Ifklg + 572
{2 + (t + t')? + 4t sind (s cosa/ — tsina’) }
4si 2 1
|[( cosa + Sl; “ (ssina’ + tcosa’))A
s / Az 2 / 2
T —SA th—t
+ 4sind/ (s sina’ + t cosa’) (cosa’ + 5 s )In |2 + 5%+ ( )
t A2 9 , 9
G sA+s2+(t'—1t)

4(s sina/ 4+t cosa’)
t—t

[2 sine (s sino/ +t cosa )+t (cos o/ — sin®a’) +

o ) o (2]

2. In ‘mil‘ Term

sinZa/
t/

(B.27)

(B.28)

(B.29)

(s*~t%)]

(B.30)

Here repeat the same analysis as for the ﬁ term, but now extract a different

singular term: the In|1 — m| term.

The two integrals below will be needed:
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+A

1:/_é In|1 — m| ds’ (B.31)
ey

II:/_% s'In|1 — m)| ds’ (B.32)

Our expression for I becomes:

1= [Infy| - 2] (% —s) — [t | - 2] (—% - 3)

e —ofwn (G55) - (T55)

A
[ln|n2 | — 2] ( [sinza’ - COSzO/] + 2t sina/ cosa’ + 5)

_ . 9 A
+ [1n|772 | — 2] (s[sm o — cos?a/] + 2t sina/ cosa’ — 5)

— 2[t(sin’a’ — cos?a’) — t' — 2ssind/ cosa']
- L [ 8] sin’a/ — cos?a’]+2t sine/ cosa + 5
an
t(s1n2a — cos2a’) —2s sina’ cosa/ — t’

- s[s?nza’ cos?a/]+2t sina cosa! — 5 (B.33)
t(sin“a/ — cos?a/) —2s sina/ cosa/ —t/
And for II:
A2 +
II_— — — P (t' —t)? In || — sA
214 h
Ay

+2s(t' —t) [tan_l

4 A2 9
- 2 [s( sin?a/ — cos’a/) 42t sina’ cosa']

N
~

DN | —

+ [32 +(t'—t)2+4t' cosa/ (s sina’ +t cosa')]

\ 7/

- [s( sin?o/ — cos?a’) + 2t sina’ coso/] A

2 2

+2 [ (sin®a’ — cos’) + 2t sina cosa] [t( sin?o/ — cos?a/) — t' — 2ssina’ cosa']
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. s(sin®a/ — cos?a/) 42t sine/ cosa +( )
- | tan™
[t( sin?a/ — cos2a!) —t/ —2s sina/ cosa/ }

s( sinZa/ — cos?a ")+ 2t sina’ cosa’ — (%)
— tan™
[t( sin?a/ — cos?a/) —t! —2s sina/ cosa’]

Now look at €2;’s. Extracting the In-terms from the elliptic integrals:

1 1
K =by ln‘—‘ = —bgIn|my| = — = In|my|
extra my 2
dK 1
—_ :—blln‘—‘:blln\mﬂ
dm extra mi

and b; =0.12498593597  from Abramowitz and Stegun (1964).

Now substitute into the expressions for €2;, to get:

4\ pp

m 3/2 m 1
Q =|— 1—— R |
l,extra <pp,> {( 2 ) bl + 8} n\m1|

3/2
1/m 1
QO,extra = <—,> {mel — 5} ln|m1|

Qo eatra = (;’; >3ﬁ - m/2){2mb1(1—m/2)+ % (1+m/2)} In|m|

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

3/2
The expressions for m, (ﬂ,) /, and (1—m/2) are already known, but (14+m/2) is

X

p
still needed:

L s2 + (t — t')? + 6t/ cosa/ (s sina/ + t cosa!')
2 824 (t+ )2 + 4t sina/[s cosa’ — tsind/]

For conciseness let Y = s? + (¢ + t')% + 4t sind/(s cosa’ — tsina/).

Also let X = 4t' cosd/ (s sina/ + ¢ cosa’). This gives:

1
Qo eatra = (Y)—m{(zlbl—n — s’ = (t =)} In|my|

(B.40)

(B.41)
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Now let Z = s2 + t2 + /> + 2t sind/ (s cosa’ — tsine’). Note that Y = Z + X /2.

Hence:
Q _ 017 1X | B.42
1,extm—(Y)75/2{8 1 +§ } n|m| (B.42)
201X - Z+
82 Injmy|
2extra = —5375 § 1 1
X2y 5Y [32 + (t' = t)® +6t' cosa’ (s sina’ + tcosa')]
(B.43)
Now given all these expressions write:
+% (ssina/ +t cosa) cosa Qg extra
IK, = (s'sind/ +t cosa’) ds’
— (s cose!’ sino/ + (' —t) sin®a’ +¢/ cos2o/) N eatra
A
2
(B.44)
+5 ( (ssina’+t cosa’) cosa’ U extra
IK3 = (s’ sind/ +t' cosa’) ds’
- (s cosa!’ sina/ + (' —t) sin®a’ +¢/ cos20/) Qo extra
A
2
(B.45)
hence:
IK1 egtra =1K1 [t' cosa’ -1+ sina/ - II] (B.46)
K3 entra =IKs [t cosa’ - 1+ sing/ - 1] (B.47)

where:
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1 2 / 2
o 2hXﬁZ%—2Y[s—%@ t)

T, : / / /
TKy =(ssina’+1 cosa’) cosa X2vy3/2 +6t' cosa/ (s sina’ + ¢ cosa')]

1 1
- (s cosa!’ sina/ 4 (' — t) sin®a’ + ¢/ cos2o/) ) {8b1Z + §X}
(B.48)
IK3 =(ssina’ + tcosa) '—i—-8b2+1X
3 =(ssina’ 4 t cosa’') cosa OEE 1Z+ 5
1
! / / 2 1 / 2 1 2 "2
—(scosa sina’ + (t'—t) sin“o/ + ¢’ cos a) X572 {(4b1—1)X—5 —(t—-t) }
(B.49)

The two expressions for 1K1 ¢xtrq and K3 eqtrq are used to replace some of the
numerical integration over one segment of the surface boundary. The numbers so
calculated are more accurate than those from the purely numerical procedure, and

should give accurate results when the point is very close to the boundary of the

body.
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