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ABSTRACT

Broadband, Volumetric Negative-Refractive-Index Media
by
Scott M. Rudolph

Chair: Anthony Grbic

Since their invention, negative-refractive-index (NRI) media have been plagued by
three primary limitations: narrow bandwidth, high loss and polarization dependence.
In this thesis, each of these problems is addressed. First, a new metamaterial topology
that achieves negative permeability over a broad bandwidth is introduced. This struc-
ture is used to realize a broadband, volumetric NRI medium that is then thoroughly
analyzed using multiconductor transmission line (MTL) theory. A homogenized, pe-
riodic form of MTL analysis is used to derive a simplified dispersion equation, as well
as expressions for the Bloch impedance, permittivity and permeability for an infinite
NRI medium.

The analytical methods are supported by both full-wave simulation and measured
results. Two broadband NRI lenses are presented: one contained inside a waveguide
and the other in free space. Both lenses exhibit super-resolving capabilities: the first
at 2.45GHz and the second at 10.435GHz. The transmission and reflection coefficients
of the free-space lens are measured using a quasioptical Gaussian beam telescope, and
the material parameters of the lens are extracted for these measurements. This lens

exhibits a negative index of refraction over a fractional bandwidth of 41.2%. The

xviil



low-loss performance of this metamaterial lens is experimentally verified. The lens
exhibits 0.17dB of loss per unit cell and a figure of merit (FOM = n'/n") of 314
at the operating frequency of 10.435GHz. These properties allow the recovery of
evanescent spatial frequencies over a bandwidth of 7.4%. Additionally, the measured
focal pattern at the image plane of the lens is accurately predicted using the material
parameters obtained from the transmission measurements.

A polarization-independent NRI medium is also reported. The design of this
structure uses stereolithography and electroplating to complete the requisite three-
dimensional fabrication on a large scale (more than 400 unit cells). The NRI band-
width of this medium is 24%. A NRI lens that operates at 1.54GHz is designed
and fabricated using this isotropic topology. At this frequency, the lens produced a

super-resolved focus independent of the type of source and its polarization.
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CHAPTER I

Introduction

1.1 Background

When building a bridge, the designer does not consider the fact that the steel he is
using is actually a collection of iron and carbon atoms. The doctor performing surgery
has no need to analyze how the carbon and hydrogen bond together to form human
tissue. Instead, both of these professionals treat the materials that they encounter
as homogeneous media, each with their own specific properties. Microwave engineers
also regard most natural materials as being homogeneous with electrical character-
istics specific to each. Despite the fact that all materials consist of molecular and
atomic structures, the simplifying assumptions of homogeneous material properties
have yielded reliable results in the field of microwave engineering.

The discovery of the atom drastically changed mankind’s perception of the ob-
jects that surround us. The materials that make up the natural world were no longer
uniform regions of space as they were previously thought to be. Instead, any non-
vacuous medium was found to consist of microscopic arrangements of particles. Sci-
entist quickly learned that the nature of these particles and how they were arranged
gave a particular medium unique material properties. In Fig. 1.1(a) for example, the
depicted periodic structure of carbon atoms produces a diamond: the hardest natural

mineral and a low-loss dielectric. However, a different periodic arrangement of the



carbon atoms yields graphite (Fig. 1.1(b)): a comparatively soft material and a good
electrical conductor. This example demonstrates how the microscopic structure of a

material gives rise to its physical and electrical properties.

(a) One unit cell of a diamond crystal. (b) Two layers of the graphite depicting the
atomic structure of the material.

Figure 1.1: The atomic structures of two carbon allotropes. The spheres represent
carbon atoms, and the rods indicate the bonds between the atoms.

Simply because modern science has demonstrated that materials have an atomic
substructure is no reason to stop treating these materials as homogeneous objects.
The fields of microwave engineering and optics both existed prior to the development
of quantum theory and also predated the discovery of the atom. In these fields,
treating materials as homogeneous media allows scientists and engineers to make
simple, accurate predictions of the behavior of electromagnetic waves that interact
with them. Without this simplified view, the design of most current microwave and
optical components would be impractically complex.

However, at higher frequencies, such as gamma and x-rays, natural materials no
longer behave as homogeneous media. Rather, they must be considered on the molec-

ular level in order to accurately predict how electromagnetic waves interact with them



[1]. The reason for the difference is that the wavelength of these electromagnetic fields
is comparable to or even smaller than the molecular or atomic structure of natural
materials. In this case, the medium no longer appears homogeneous. Conversely,
if the wavelength of an electromagnetic wave is much larger than the substructure
of the medium through which it travels, the wave propagates through the material
as though it were completely homogeneous. A consequence of this condition is that
the substructure of a material need not be on the atomic or molecular scale to give
the appearance of homogeneity at microwave or optical frequencies. Instead, the
substructure must only be much smaller than the wavelength of interest.

This concept led to the development of effective medium theory [2]. Using this
theory, engineers could combine different materials to achieve effective dielectric con-
stants that were not readily available. Subsequently, metals were also used to achieve
desired dielectric material parameters [3, 4, 5]. Fig. 1.2 shows an example of metallic
spheres arranged in a periodic lattice used to focus microwaves like an optical lens [4].
The periodic arrangement of the metallic spheres in Fig. 1.2 has a similar appearance
to the depiction of the diamond crystal in Fig. 1.1(a). This illustrates the similarities
between artificial and natural materials. Both are periodic arrays of inclusions, whose
electrical properties change depending on the type and arrangement of the inclusions.
The most obvious difference between the two is their periodicity: the diamond crystal
lattice is periodic over 0.357nm and behaves like a homogeneous medium for frequen-
cies beyond the optical spectrum, while the array of metallic spheres has a periodicity
of several millimeters and exhibits homogeneity for microwave frequencies and below.

The use of metallic inclusions allowed the natural limits of material parameters
to be overcome. Artificial dielectrics with uncommon properties, such as media with
an effective relative permittivity less than 1 [6] or even less than 0 [7], could be con-
structed using periodic arrays of wires. While these material parameters seem exotic,

such media do exist naturally over limited frequency ranges. Metals exhibit this



Figure 1.2: An array of metallic spheres used to create a conventional lens at mi-
crowave frequencies.

property at optical frequencies and ionized gases display similar performance in the

microwave regime. Although the frequency range was still limited, these macroscopic

inclusions allowed media to be designed to exhibit specific relative permittivity values

less than 1 at nearly any frequency.

In the late 1990s, John Pendry developed an effective medium that broke the
limits that nature seemed to set for material parameters. Using metallic inclusions
known as split-ring resonators (SRRs), his research group was able to design effective
media that exhibited a negative permeability [8]. Since a negative permeability had
never been observed in natural materials (although certain natural materials have
subsequently been made to exhibit negative permeability by biasing them with ex-
ternal magnetic fields [9, 10]), this structure represented the first medium to exhibit
material parameters beyond those found in nature. Taking the Greek word “meta”,
which means “beyond”, these scientists called their new media “metamaterials”.

Metamaterials sparked great interest within the electromagnetic and optic com-

munities since they provided the means to realize electromagnetic media that were



never before possible. Of particular interest were media that exhibited both neg-
ative permittivity and permeability for overlapping frequency ranges, which Victor
Veselago investigated in the 1960s [11]. These media, he showed, would exhibit a
negative index of refraction and a positive characteristic wave impedance, leading
to phase propagation and power flow in antiparallel directions. This phenomenon
was referred to as backward-wave propagation since the unusual phase progression
made the waves appear to be propagating backwards through the medium. As a
consequence of backward-wave propagation, Veselago demonstrated that flat slabs of
negative-refractive-index (NRI) media could focus electromagnetic waves. If properly
designed, these flat NRI lenses would also not reflect any energy, which is a short-
coming of all conventional lenses. After demonstrating that SRRs could be used to
build NRI media, Pendry revisited Veselago’s NRI lens and showed that it would also
exhibit the remarkable property of super resolution by restoring a source’s evanescent
spectrum at the focus [12]. Around the same time, the first metamaterial that exhib-
ited a negative index of refraction was realized [13], consisting of arrays of SRRs and
wires.

This achievement ushered in an era of rapid development in the field of meta-
materials. Exciting applications, such as the NRI lens and electromagnetic cloaking
[14], fueled the popularity of metamaterials. The ability to design materials that
exhibit tailored electrical properties gives unprecedented flexibility to scientists and
engineers. However, despite the thrilling prospects offered by these media, there are
key issues that must be addressed before the field of metamaterials can realize its full

potential.

1.2 Motivation

Microwave engineers have been reluctant to incorporate NRI metamaterials into

practical applications because of three primary limitations: narrow bandwidth, high



loss and polarization dependence. Because metamaterials give engineers unprece-
dented control over electromagnetic fields, making them practical represents a sig-
nificant advance in the discipline of electromagnetism. In order to understand the
problems that arise from these limitations and how we can solve them, we must first
identify their causes. To do this, let us first consider the typical constitutive elements
of NRI media.

Typical NRI media rely on separate inclusions to achieve negative permittivity
and negative permeability. As mentioned in the previous section, metallic wire ar-
rays are the most common way to achieve a negative effective permittivity. This is
not surprising given that metals naturally exhibit negative permittivity below their
plasma frequencies (the frequency at which € = 0), which typically occur in the opti-
cal spectrum. Wire arrays are used at microwave frequencies rather than solid metal
blocks to lower the plasma frequency into the microwave regime. Unfortunately, ma-
terials that naturally exhibit negative permeability are not so readily available. This
is because there is no magnetic analogue for an electrical conductor. As a result,
the development of a negative effective permeability medium is more complex than
an array of wires. Instead SRR arrays are the most common method of producing
negative permeability.

SRR arrays produce negative effective permeability by using a resonance to en-
hance the antiparallel magnetic field produced by the Faraday currents induced in the
ring [8]. In a closed ring, a time-varying magnetic flux induces Faraday currents, the
amplitudes of which are limited primarily by the loop’s inductance. These currents
produce a magnetic field which opposes the incident magnetic field, reducing the mag-
netic flux density. In an array of subwavelength loops, the individual loops exhibit
this same behavior, collectively giving the appearance of a diamagnetic medium (that
is, a medium with a relative permeability less than 1). The inductance of the loops

prevents the average induced magnetic field from overwhelming the incident field,



ensuring that the total magnetic flux density is always in the same direction as the
incident magnetic field, and, consequently, the effective permeability of the medium
remains positive.

Negative permeability can be achieved by canceling the inductance which limits
the Faraday current. This is done by placing a capacitor (or a capacitive gap) in the
loop. Since the impedance of the inductance is directly proportional to frequency
while the impedance of the capacitance is inversely proportional to it, there must
necessarily be a frequency where the magnitude of the capacitive reactance is equal
to that of the inductive reactance. At this resonant frequency, the net reactance of
the entire loop is zero, meaning the Faraday currents are limited only by the resistive
losses in the loop. At frequencies just above the resonance, the high currents produce a
magnetic field that is both antiparallel to and higher in amplitude than the incident
magnetic field. Treating an array of these resonant loops as an effective medium
gives rise to a negative permeability, since the magnetic field incident in a particular
direction creates a magnetic flux density in the opposite direction.

Here the issue of loss in SRRs becomes apparent. When the loop’s reactance
is very small only the resistance of the metallic loop limits the current amplitude.
At these frequencies, large currents flow in the loop, and the resistive loss (IfOOpR)
is substantial. As the operating frequency is moved away from the resonance, the
reactance of the loop begins to limit the current, reducing the resistive losses. Unfor-
tunately, the diminishing current in the loop also reduces the anti-parallel magnetic
field responsible for negative permeability, ultimately limiting the bandwidth over
which negative permeability can be achieved. The first condition suggests that the
operating frequency should be as far away from the resonant frequency as possible.
However, the second condition does not permit the desired negative permeability

values to be achieved at frequencies far above the resonance.

The typical SRR array can achieve negative permeability over a fractional band-



width of only about 10% [15, 16]. Such narrow bandwidth forces the operating point
to be close to the resonant frequency of the split ring, where losses are high. Further-
more, in this frequency range the permeability changes rapidly, further reducing the
bandwidth for applications that require a specific relative permeability value. The
narrow bandwidth and high loss inherent in SRR arrays make it clear that a new
method of realizing negative permeability media is needed.

The preceding discussion demonstrates how the reliance on SRR arrays as neg-
ative permeability media has led to the issues of narrow bandwidth and loss. The
third issue, polarization dependence, is challenging not because of inherent physical
limitations but because of fabrication difficulties. It is not difficult to conceive of a
SRR/wire medium that is isotropic and polarization independent; a unit cell of such
a design can be seen in Fig. 1.3. However, imagining how to construct this design
is much more difficult. An “egg-crate” lattice of SRRs could be implemented using
printed-circuit-board technology. In fact, such a design has been constructed for use
in magnetic resonance imaging (MRI) [17]. Additionally, the three-dimensional wire
grid has also been constructed before. The challenge lies in bringing these components
together on a large scale (i.e. hundreds or thousands of unit cells). For instance, the
junctions of the wire grid must be electrically connected to achieve isotropic behavior,
but access to these junctions is limited since they are surrounded by layers of SRRs
on all sides.

Yet even if this challenge could be overcome and a polarization-independent
medium could be made, the medium would still exhibit the same bandwidth and
loss issues as the polarization-dependent SRR/wire media discussed above. Some
structures that exhibit isotropic, polarization-independent NRI over a broader band-
width have been proposed [18, 19]. Unfortunately, these structures require three-
dimensional interconnecting transmission lines, which present fabrication challenges

still more daunting than those of the three-dimensional SRR/wire media. In order



Figure 1.3: One unit cell of an isotropic, polarization-independent SRR /wire medium.

to completely address the issue of polarization dependence, a method of achieving
isotropic NRI behavior over a broad bandwidth must be developed with large-scale

fabrication in mind.

1.3 Thesis Outline

In this thesis, solutions to all three of the issues discussed in the previous section
are presented. In Chapter II, the design of a broadband, low-loss NRI unit cell
is introduced. To explain the operation of the structure, a circuit model is derived
based on multiconductor-transmission-line (MTL) theory. Two types of MTL analysis
are then applied to the structure: traditional and homogenized. The traditional
MTL analysis allows for the rapid calculation of the dispersion diagrams and can
also be used to calculate the scattering parameters (S-parameters) of finite slabs of
the NRI metamaterial. The homogenized MTL analysis allows for the derivation
of closed-form equations for the propagation constant, impedance, permittivity and

permeability. These expressions provide intuition into the NRI medium’s operation



and insight into how such a structure can be optimized.

Chapter III discusses the realization of broadband, polarization-dependent NRI
lenses in experiment. Two designs for NRI lenses are presented: the first contained
in a parallel plate waveguide and the second in free space. Both designs are real-
ized through printed-circuit-board technology, making them simple to fabricate. The
designs are tested through near-field focusing experiments, and both lenses exhibit
resolution beyond the diffraction limit at their operating frequencies. For the free-
space design, the normal-incidence S-parameters are also presented. The measured
S-parameters allow the calculation of the material properties of the NRI lens which
are reported in this chapter as well. The measured material parameters are used to
predict the focusing abilities of the NRI lens with good agreement, demonstrating the
validity of the effective medium theory for these metamaterials.

In Chapter IV, the design of a broadband, low-loss, polarization-independent NRI
medium is introduced. The structure relies on a new, three-dimensional element
to achieve negative permeability called the split-cube resonator (SCR). The SCRs
achieve negative permeability over a much larger bandwidth than an array of SRRs.
Using these elements, the fabrication of an isotropic NRI lens is presented in detail.
Near-field measurements in free space demonstrate the isotropy of the lens by achiev-
ing super-resolved focusing with the same beamwidth independent of the orientation
of the lens with respect to the source. Analytical derivations of the predicted field
patterns corroborate the near-field focusing results for both electric and magnetic
dipole sources.

Finally, Chapter V provides a summary of the work presented in this thesis. The
notable achievements are outlined, and conclusions drawn from the research are briefly
discussed. Several ideas for future research in NRI metamaterials are also presented.
Some expand upon the work presented in the previous chapters, while others highlight

directions not investigated in this thesis. A list of the publications resulting from the
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contributions of this thesis is also given.
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CHAPTER II

The Design of Broadband, Low-Loss, Volumetric

NRI Media

2.1 The Development of Broadband Negative-Refractive-Index

Media

Of all the issues affecting negative-refractive-index (NRI) metamaterials, the nar-
row bandwidth of split-ring resonator (SRR)/wire media represents the most signif-
icant limitation. Using SRR arrays to achieve negative permeability constrains the
fractional NRI bandwidths of these media to approximately 10%. To make matters
worse, the material parameters are dispersive throughout this frequency range. The
SRR arrays exhibit a Lorentzian permeability response [8], and the permittivity of the
wire arrays follows the Drude model [7]. Consequently, specific material parameters
can only be maintained with reasonable tolerances over a fraction of the 10% band-
width. To make NRI metamaterials practical, their bandwidth must be improved.

When freed from this limitation, engineers can fully embrace the positive attributes

of NRI media.
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2.1.1 NRI Transmission-Line Media

Shortly after the introduction of SRR /wire arrays, a new class of NRI metama-
terials was developed: NRI transmission lines [20, 21, 22, 23, 24]. Their invention
provided a new perspective on NRI media. Rather than loading positive-refractive-
index media with resonant inclusions like the SRR, the loading elements in NRI
transmission lines are standard circuit components. To make a NRI transmission
line, loading capacitors are placed periodically in series with a standard transmission
line, and loading inductors are connected in parallel with the same periodicity. The
circuit diagram depicting one unit cell of this configuration is shown in Fig. 2.1.
In this topology, the negative series reactance of the loading capacitors overcomes
the positive series reactance of the transmission-line inductor at low frequencies. By
making the series reactance negative, the transmission line now appears to have neg-
ative permeability. Similarly, the negative shunt susceptance of the loading inductor
overcomes the positive shunt susceptance of the transmission-line capacitance, which
is equivalent to the transmission line exhibiting negative permittivity.

T | °

Lt C

— L

Cn

Figure 2.1: One unit cell of a NRI transmission line.

By exhibiting negative material parameters, the NRI transmission lines were sim-
ilar to traditional SRR /wire media. However, the backward-wave bandwidth of the
NRI transmission lines was substantially greater than that of the SRR/wire arrays.
The reason for this was that the loading capacitor decreases the series reactance

over all frequencies and gives the transmission-line medium a Drude permeability re-
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sponse. This means that the effective permeability of a NRI transmission line does
not depend on a narrowband resonance as is the case for SRR arrays. Consequently,
negative permeability (as well as NRI) can be achieved over much broader bandwidths
in transmission-line media.

Unfortunately, with propagation confined to circuit boards, the NRI transmission
lines could not interface directly with free-space electromagnetic waves like SRR /wire
media. For this reason, NRI transmission lines are referred to as “planar” metamate-

4

rials, while the SRR /wire arrays are described as “volumetric” metamaterials. Many
of the envisioned applications of NRI media, such as free-space lenses, radomes and
waveguide filters, require that the metamaterials interact with volumetric electro-
magnetic waves rather than voltages and currents on a transmission-line network.
Consequently, planar NRI transmission lines could not be used as replacements for
volumetric NRI media such as SRR /wire arrays, despite their superior backward-wave
bandwidths.

Although NRI transmission lines cannot interface effectively with free-space waves,
examining the reasons behind their broadband performance can help determine how
volumetric NRI media can be improved. The wires in the SRR/wire array are the
volumetric analogue of the inductors in the planar NRI transmission lines. Both cause
their respective media to exhibit a Drude permittivity response, which provides nega-
tive permittivity with minimal dispersion. By designing the electric plasma frequency
(where €, = 0) to occur at or above the magnetic plasma frequency (where p, = 0),
the negative permittivity medium does not limit the NRI bandwidth at all. Instead,
it is the negative permeability medium that is responsible for the bandwidth lim-
itations of volumetric NRI metamaterials. Unfortunately, the series capacitors in
NRI transmission lines do not have a volumetric analogue capable of achieving a
Drude permeability response. Theoretically, the analogue should be a wire made of

a magnetic conductor oriented in the direction of the magnetic field, but magnetic
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conductors do not exist. Still, other characteristics of planar metamaterials can be
used to improve the performance of volumetric NRI media.

In NRI transmission lines, the loading components are integrated into the host
transmission line to form a traveling-wave structure. Traveling-wave structures, such
as distributed amplifiers [25] and traveling-wave antennas [26], are known for their
broadband operation. Each SRR, on the other hand, is an isolated LC resonator
that does not interact significantly with its neighboring elements. Consequently,
the effective permeability of SRR arrays changes rapidly with frequency, particularly
close to the LC resonance. However, if the SRRs could be made into a traveling-wave
structure, the medium would no longer be reliant on an isolated resonance to achieve

negative permeability and would be less dispersive as a result.

2.1.2 Realization of Broadband, Volumetric Negative Permeability
2.1.2.1 The Transmission-Line Cage

To transform the isolated SRRs into a traveling-wave structure, researchers sought
to increase the coupling between neighboring SRRs. First, inductive coupling was
used in the form of magnetoinductive waves [27]. This did increase the bandwidth
of the negative permeability response, however, the mutual inductance between the
neighboring SRRs was insufficient to produce anything beyond a marginal improve-
ment. The coupling between neighboring SRRs will be greatest if adjacent SRRs
are electrically connected, forming a “transmission-line cage” [28, 29|, as depicted in
Fig. 2.2. The individual transmission-line cage unit cell appears as either a two-
dimensional array of SRRs that are electrically connected in the horizontal directions
(Fig. 2.3(a)) or a two-dimensional grid of two-wire NRI transmission lines (Fig.
2.3(b)), depending on the planes chosen for the unit-cell boundaries. Both perspec-
tives indicate that the structure will exhibit broadband behavior. When viewed as

Fig. 2.3(a), the perfect coupling between SRRs leads one to expect a wide-band
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frequency response. Considering the structure as a grid of NRI transmission lines
emphasizes the traveling-wave nature of the transmission-line cage, which suggests

the structure should be minimally dispersive.
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Figure 2.2: An array of electrically connected SRRs which forms the broadband nega-
tive permeability medium. The black rectangles represent chip capacitors
used to tune the resonance of the transmission-line cage.

It should be noted that the structures in Figs. 2.2 and 2.3 only produce neg-
ative permeability for horizontally polarized magnetic fields. For this polarization,
negative permeability is achieved by enhancing the Faraday currents induced in the
transmission-line cage, similar to what happens in SRR arrays [8]. However, if the
magnetic field is vertically polarized, the connections between adjacent rings cause
the currents induced in one ring to cancel the currents induced by its neighbors. The
induced currents would cancel in a similar fashion for horizontally polarized magnetic
fields if the rings were electrically connected in the vertical direction. For this reason,
the electrical connections are only made in the horizontal directions, while the vertical
layers remain separated.

To observe the propagation characteristics of the transmission-line cage, the dis-
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(a) SRR view of the transmission-line cage. (b) Two-wire NRI transmission-line view of

the transmission-line cage.

Figure 2.3: Two perspectives of the transmission-line cage unit cell. The

persion diagram for on-axis propagation in the horizontal direction was calculated
through full-wave simulation and is plotted in Fig. 2.4 (for an explanation of disper-
sion diagrams, refer to Appendix A). The modes of interest are plotted with solid
lines and correspond to the magnetic field polarized in the horizontal direction; the
dotted lines denote modes in which the magnetic field is vertically polarized. Since
the transmission-line cage exhibits positive permittivity over all frequencies for the
modes of interest, the frequency range over which the medium exhibits negative per-
meability corresponds to a stopband in the dispersion diagram. The medium exhibits
negative permeability from 1.71GHz to 3.22GHz: a fractional bandwidth of 61%. This

bandwidth is approximately six times the typical bandwidth of SRR arrays [15, 16].

2.1.2.2 Contra-Directional Coupling

To better understand the performance of the transmission-line cage, the unit cell
shown in Fig. 2.3 can be simplified without affecting the modes of interest. As

mentioned earlier, the electric field is vertically polarized and the magnetic field is

17



w

N

Frequency (GHz)

—_
T
~

0 30 60 90 120 150 180
kd (degrees)

Figure 2.4: The dispersion diagram of the first four modes of the transmission-line
cage. The solid lines correspond to modes with the electric field polarized
vertically, while dotted lines show the modes with horizontal electric fields.
The dashed line shows the light line.

polarized horizontally and orthogonal to the direction of propagation. For this po-

larization, the vertical periodicity can be modeled through image theory by placing

perfect electrical conductors (PECs) on the top and bottom of the unit cell, as shown
in stage II of Fig. 2.5. This is equivalent to placing the transmission-line cage in

a parallel plate waveguide. To make the structure still simpler, image theory can

be applied again to replace the bottom half of the unit cell with a PEC (stage III

of Fig. 2.5). The structure can now be shifted by half a unit cell in each of the

horizontal directions, as shown in stage IV of Fig. 2.5. After these transformations,
the structure looks like a two-dimensional microstrip NRI transmission-line grid in-
side a parallel plate waveguide. Examining the dispersion characteristics of these
two structures in isolation suggests that they contra-directionally couple to form the
modes of interest in the dispersion diagram shown in Fig. 2.4. It should be noted
that propagation within the parallel plate waveguide is equivalent to propagation in
free space because the conductors that form the parallel plate waveguide arise from
modeling the vertical periodicity of the volumetric medium with image theory. As

a result, the contra-directional coupling between the NRI transmission-line grid and
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Figure 2.5: Transformation of the transmission-line cage unit cell into a microstrip
NRI transmission line within a parallel plate waveguide. Stage I repre-
sents the initial connected-SRR form of the transmission-line cage. Stage
IT models the vertical periodicity with parallel conductors on the top and
bottom of the unit cell. Stage III employs image theory again to replace
the bottom half of the unit cell with a conducting plate. Stage IV shifts
the unit cell half a cell in both horizontal directions to view the connected
SRRs as a grid of NRI transmission lines. Stage V represents the unit cell
as a NRI transmission-line grid contained in a parallel plate waveguide.

the parallel plate waveguide represents the interaction of the transmission-line cage

with free-space waves.

The dispersion curves for the transmission-line cage are again shown in Fig. 2.6,
accompanied by the those of both the isolated microstrip NRI transmission-line grid
and the empty parallel plate waveguide. The microstrip NRI transmission-line grid
was simulated using Agilent’s Advanced Design System (ADS), a commercial mi-
crowave circuit simulator. It was modeled by lossless microstrip lines loaded with
series capacitors and shunt inductors (representing the vertical metallic strips in the
cage) with the same dimensions and component values as are shown in Fig. 2.3(b).
The empty parallel plate waveguide’s dispersion curve coincides with the light line,
as is expected since it models free-space propagation. By examining Fig. 2.6, it is ev-
ident that the modes of the transmission-line cage arise from the interaction between
the waves guided by the microstrip NRI transmission-line grid and the empty parallel

plate waveguide. At lower frequencies, the forward-wave mode of the parallel plate

waveguide is dominant because the NRI transmission line is still in cutoff. However,
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Figure 2.6: The dispersion curves of the isolated microstrip NRI transmission-line
grid (solid line with circles) and the unloaded parallel plate waveg-
uide (dashed). Coupling between these two structures forms the dis-
persion curve of the transmission-line cage (solid). The microstrip NRI
transmission-line grid dispersion curve was generated using ADS.

when the two modes are present at the same frequency, contra-directional coupling

occurs between the forward wave propagating within the parallel plate waveguide

and the backward wave guided by the NRI transmission line. This contra-directional

coupling produces a stopband which extends from 1.90GHz to 3.22GHz.

2.1.3 The Broadband NRI Medium

With the development of a metamaterial that exhibits negative permeability over
a wide frequency range, achieving broadband NRI is relatively simple. As mentioned
in Chapter I, the narrowband response of the SRRs was the limiting factor in the NRI
bandwidth of SRR/wire arrays. The wire array used in these metamaterials did not
constrain the bandwidth because it exhibited a Drude permittivity response. This
meant the negative permittivity frequency range was limited only at high frequencies
by the electric plasma frequency, which could be easily manipulated by changing the
effective inductance of the wires. Since the transmission-line cage allows negative
permeability to be achieved over a wide range of frequencies, adding appropriately

sized wires to each unit cell should result in a NRI bandwidth equal to the negative
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Figure 2.7: Unit cell of the broadband volumetric negative-refractive-index (NRI)
medium. The central wire has a total inductance of 2 - L,,.
permeability bandwidth of the transmission-line cage.

Rather than simply adding wires, negative permittivity was achieved by adding an
inductively loaded metallic strip to the center of the transmission-line cage unit cell, as
shown in Fig. 2.7. The loading inductor allowed the inductance of the central strip to
be manipulated directly, making it easier to tune the effective permittivity of the NRI
medium. To verify that the wire/transmission-line cage medium did indeed exhibit
a NRI, the dispersion diagram for on-axis propagation in the horizontal direction
was calculated using full-wave eigenmode simulations (Fig. 2.8). NRI behavior was
observed from 1.71GHz to 3.17GHz, which is nearly the same frequency range over
which negative permeability was achieved in the transmission-line cage. The fractional
NRI bandwidth of the structure was 60%: close to a six-fold increase over the typical

SRR /wire fractional bandwidths.
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Figure 2.8: The dispersion diagram of the first four modes of the NRI metamaterial.
The solid lines correspond to modes with the electric field polarized ver-
tically, while dotted lines show the modes with horizontal electric fields.
The dashed line shows the light line.

2.2 Analytical Modeling of the Broadband NRI Medium Us-

ing Multiconductor-Transmission-Line Theory

Wire/transmission-line cage metamaterials provided a means to achieve broad-
band volumetric NRI media, but no procedure existed to design them efficiently.
Simple, accurate methods of designing planar NRI transmission-line media in one-
and two-dimensions are well-established [30, 31]. SRR/wire media also have closed-
form equations for the permeability of SRR arrays [8] and the permittivity of peri-
odic wire media [7, 32]. Unfortunately, none of these design methods are applica-
ble to wire/transmission-line cage media. The equations for NRI transmission lines
apply only to planar transmission-line networks, so the vertical periodicity of the
transmission-line cage medium precludes these formulae from predicting its perfor-
mance. The expressions derived for SRR/wire media do not account for coupling
between SRRs. Since the SRRs are electrically connected in the transmission-line
cage, these equations also cannot be used. Even if the coupling between SRRs could
be modeled, problems would arise concerning the permittivity of the medium be-

cause the permittivity expressions for wire arrays do not account for the electrical
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effect of the SRRs. As a result of these issues, a new method is needed to model these

broadband volumetric NRI media.
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Figure 2.9: One unit cell of the MTL representation of the broadband NRI medium.

Fig. 2.5 shows that, for the polarization of interest, the broadband volumetric
negative permeability medium can be represented as a NRI transmission-line grid
inside of a parallel plate waveguide. In [33, 34|, structures similar to stage V of Fig.
2.5 were modeled using multiconductor transmission-line (MTL) theory [35, 36]. For
this analysis, the bottom conductor serves as the reference conductor for both the NRI
microstrip transmission line as well as the parallel plate waveguide. By representing
the parallel plate waveguide and the microstrip line as a MTL circuit, the coupling
between the two conductors is inherently taken into account. Adding metallic strips
from the parallel plate waveguide to ground, as shown in Fig. 2.9, introduces negative
permittivity to the negative permeability medium. Representing the broadband NRI

medium in this way shows that MTL analysis can be applied to this structure as well.

2.2.1 General Multiconductor Transmission Line Theory

Before analyzing the transmission-line cage, a brief introduction to MTL analysis
will be provided. MTL theory is a more general version of standard transmission-line

theory taught in undergraduate classes on electromagnetism. The generalization is
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Figure 2.10: Lumped element representations of single and multiconductor transmis-
sion lines.

achieved through the use of vectors and matrices, which allows the voltage and current
relationships for multiple conductors to be expressed in a single matrix equation.

To illustrate the similarities between MTL and traditional circuit theory, consider
the familiar lumped-element circuit model for a single transmission line shown in Fig.
2.10(a). Propagation along this line is governed by the well known time-harmonic

transmission-line equations (telegrapher’s equations):

d

— V=2 2.1
V= (2.1a)
d

——I=YV. 2.1b
o (2.1b)

Here V' and [ are the voltage and current waves on the transmission line, respectively,
and x is the propagation direction. Z is the series impedance of the transmission line
(defined as Z = jwL + R in terms of the circuit elements in Fig. 2.10(a)), and YV
is its shunt admittance (defined as Y = jwC + G). These two equations govern the
propagation of voltages and currents along any single transmission line.

Taking the derivative with respect to = of Eq. (2.1a) and substituting in Eq.
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(2.1b) yields the one-dimensional Helmholtz equation:

d2

The linear combination of the two solutions to Eq. (2.2) gives the voltage on the line

as a function of position:

V(z) = e VAV Iyt 4 VI ry - (2.3)

=e YT 4TV,

where V* and V'~ are the complex amplitudes of the forward- and backward-traveling
waves, respectively. Eq. (2.3) also defines the propagation constant of the transmis-

sion line as

v =VZY, (2.4)

which, in the lossless case, leads to the familiar
v =jwVLC. (2.5)

Substituting Eq. (2.3) into Eq. (2.1a) gives a similar expression for the current

on the line as a function of position:

=4/ % (e‘mw\ﬁ“ - emm‘/—> (2.6)
— i <e*\/ﬁazv+ _ e\/ﬁxvf> 7
Zo
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This expression defines the characteristic impedance of the transmission line as

y A
Zo=—L =4]= 2.
°TZ Y’ (27)

sz¢g. (2.8)

MTL theory extends this same analysis to any number of parallel transmission

or, in the lossless case,

lines. In the case of n transmission lines shown in Fig. 2.10(b) (plus a reference
ground conductor), the voltages and currents on each line are represented by n x 1
vectors, V and I, with each element representing the voltage or current on a specific
conductor. Consequently, Z and Y are n x n impedance and admittance matrices,
respectively, defined as Z = jwL + R and Y = jwC + G in accordance with the
circuit diagram in Fig. 2.10(b). The diagonal elements of these matrices describe
how the voltage on each line affects the current on the same line. The off-diagonal
elements represent the mutual coupling between each transmission line. Therefore,
if the transmission lines in a circuit are uncoupled, the matrices representing that
circuit would be diagonal. Generally, all of the matrix elements are assumed to be

non-zero, so the multiconductor telegrapher’s equations are

i Zu - Zi| | L
d d
— || = : - : : -~ V=7I 2.
dr | - : ’ : o dz (2.92)
Vn an . Znn In
[1 YVll len VYI
L I S B ) L Ve (2.9b)
de | | | - o : de ' ’

By eliminating I from Egs. (2.9a) and (2.9b), the multiconductor telegraphers

equations yield a one-dimensional Helmholtz equation, which describes propagation

26



in the 2 direction:

d2
—V=Z7ZYV. 2.10
e (2.10)
Solving this equation for V yields
V (z) = e VEYTYT 4 eVEYTY - (2.11)

e VIVt 4 VTry -

where V* represents the complex voltage waves traveling on each conductor in either
the positive or negative Z direction. Eq. (2.11) defines the propagation constant of

the MTL transmission line as the matrix
I'=vZY. (2.12)

For a brief discussion concerning I'" and the calculation of the exponential propagation

ﬁz, refer to Appendix B.

matrix e~
Inserting Eq. (2.11) into Eq. (2.9a) gives the expression for the currents on the
transmission lines:

1(z)=Z"'T (e—m"w - eﬁfv—) . (2.13)

Comparing Eq. (2.13) to Eq. (2.6), it can be seen that the characteristic impedance

matrix of the MTL system is defined by the relationship
Zo'=7Z'T — Zy=T""'Z (2.14)

It is interesting to note that the characteristic impedance matrix of the MTL circuit
cannot be simplified to the familiar form of Eq. (2.8) because the matrices in Eq.
(2.14) do not cancel in the same way as scalar variables do.

Using Egs. (2.11) and (2.13), the relationship between the voltages and currents
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at different positions along the transmission lines can be calculated using 2n x 2n

transfer matrices (ABCD matrices) [35]:

V() B cosh (T'7) —sinh (T'1)Zo | |V (0) (2.15)
1(1) ~Yosinh (Tl) Yocosh (T1) Zo| | 1(0) '

ATL BTL A\Y (0)

Crr. Dri| | I(0)

where Yo = Zo'. The transfer matrix of a MTL system is particularly powerful
since it contains both the propagation constant matrix (I') and the characteristic
impedance matrix (Zg) of the circuit. Once the transfer matrix of a MTL system has
been obtained, the effects of arbitrary excitations and terminations can be propagated

along the transmission lines.

2.2.2 Defining the Wire/Transmission-Line Cage Medium as a Multicon-

ductor Transmission-Line Circuit

For the remainder of this chapter, the discussion will be limited to the specific case
of the wire/transmission-line cage medium. Since this structure has two transmission
lines that share a common ground conductor (the parallel plate waveguide and the
NRI transmission-line grid), the matrices associated with this analysis will be 2 x 2.
The parallel plate waveguide is defined as conductor 1, while conductor 2 represents
the microstrip transmission line. The vertical metallic strips are modeled as lumped
inductors, as shown in the MTL model in Fig. 2.11.

Before beginning the MTL analysis, the values of the loading elements and the
impedance and admittance matrices of the unloaded transmission lines must be found.

In this case, the conductors are assumed to be lossless, so the impedance and admit-
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Figure 2.11: One unit cell of the MTL representation of the broadband NRI medium
shown in Fig. 2.7.

tance matrices are entirely determined by the inductance and capacitance matrices:

Zu Zio , Ly Ly

= jw - (2.16a)
Zgl Z22 L21 L22
Yii Yoo e Cii Chg ' (2.16b)
Va1 Yao Cyn Oy

The values of the capacitance and inductance matrices are obtained in the static
limit by modeling the unloaded conductors using Ansoft’s Maxwell, a commercial
finite-element electromagnetic simulator. Since separation between the conductors is
small compared to the wavelength for the frequencies of interest, the static solution
is accurate. The values of the loading elements (L, L,, and C') are extracted from
full-wave simulations at the frequency of operation using Ansoft’s HF'SS. These values
were found to vary negligibly over the entire frequency range of interest. The values

of all the variables used in this MTL analysis are tabulated in Tab. 2.1.
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Parameter Value Description
L1y 812.04 nH/m | Self inductance of the parallel plate waveguide
Loy 626.92 nH/m | Mutual inductance between the transmission lines
Los 1085.8 nH/m | Self inductance of the NRI transmission-line grid
Ci 32.33 pF/m | Self capacitance of the parallel plate waveguide
Co1 -24.12 pF/m | Mutual capacitance between the transmission lines
Coo 31.25 pF/m | Self capacitance of the NRI transmission-line grid
L 2.89 nH Loading inductor of the NRI transmission-line grid
L, 5.41 nH Loading inductor of the parallel plate waveguide
C 0.388 pF Loading capacitor of the NRI transmission-line grid
d 10 mm Horizontal dimension of the MTL unit cell
h 6.5 mm Vertical dimension of the MTL unit cell

Table 2.1: Design parameters for the MTL system shown in Fig. 2.9.

2.3 Traditional MTL Analysis

To apply MTL analysis to the structure shown in Fig. 2.9, the structure must

first be broken up into its constitutive elements: coupled transmission lines, loading

capacitors and loading inductors. The circuit which models on-axis propagation in

the NRI medium is shown in Fig. 2.12(a), with dashed lines delineating individual

components. Transfer matrices for each of the elements are shown in Fig. 2.12(b),

where the transfer matrices of the transmission-line segments are defined by Eq. 2.15.

These matrices can then be combined through standard matrix multiplication in the

order shown in Fig. 2.12(b) to obtain the transfer matrix of the entire unit cell

[35, 36]. From this complete transfer matrix, the propagation characteristics of the

broadband NRI medium can be determined.

2.3.1 Dispersion Diagrams

2.3.1.1 NRI Medium

Recalling from Eq. (2.15) that a transfer matrix actually consists of four n x n

(here, 2 x 2) submatrices, it can be noted that the upper left submatrix depends

only on the propagation constant of the medium: Ary, = coshI'l.

Diagonalizing
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(a) MTL circuit model of the NRI transmission-line medium.
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(b) Cascaded transfer matrices of the circuit elements shown in Fig. 2.12(a). The elements of the
transmission-line transfer matrix can be found in Eq. (2.15).

Figure 2.12: MTL circuit and matrix representations of the broadband NRI medium.

this submatrix and solving for the propagation constant yields the permitted modes
for the infinite medium, . and 7, [37]. By applying this analysis over a range of
frequencies, the dispersion diagram of the NRI medium is given by the imaginary
part of propagation constants (3{7.r}). Over the frequency ranges for which the
eigenmodes are in cutoff, the attenuation constants are given by the real parts of 7. ..
The attenuation and propagation constants of both modes of the NRI medium are
plotted in Fig. 2.13.

As can be seen in Fig. 2.13, the c-mode of the NRI medium is in cutoff through-
out the frequency range of interest. The attenuation constant of this mode is over
100Np/m throughout this frequency range. Thus, the 7m-mode is the only mode
present in the NRI structure. This mode exhibits the anticipated NRI behavior over
a wide frequency range. To examine the accuracy of this analysis, the propagation

constant calculated using MTL theory is compared to that obtained from finite ele-
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ment simulations (also plotted in Fig. 2.13) with good agreement. It should be noted
that MTL analysis does not predict the modes that are polarized orthogonally to the
modes of interest (plotted with dotted lines in Fig. 2.8). This is because the image
theory used to transform Fig. 2.7 into Fig. 2.9 is only valid for vertically polarized

electric fields.
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9
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Figure 2.13: Dispersion diagrams of the NRI medium as calculated by MTL analysis
and full-wave simulation (HFSS).

2.3.1.2 Negative Permeability Medium

The dispersion diagram of the negative permeability medium can also be calcu-
lated using MTL analysis. By setting the value of L,, = oo, the effect of the central
wire is removed from the third transfer matrix shown in Fig. 2.12(b). The resulting
unit cell transfer matrix is that of the transmission-line cage medium.

The propagation and attenuation constants for both the ¢- and m-modes are plot-
ted for the transmission-line cage unit cell in Fig. 2.14. These curves quantita-
tively show the contra-directional coupling that was qualitatively described in section
2.1.2.2. For frequencies below 1.82GHz, the c¢- and 7w-modes are separate. Over this
frequency range, the c-mode corresponds closely to the parallel plate waveguide mode,

exhibiting forward-wave propagation. The m-mode on the other hand is similar to
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the backward-wave transmission-line mode. It is in cutoff until a resonant frequency
(1.58GHz), at which point its propagation constant displays a negative slope with
respect to frequency. At 1.82GHz the propagation constants of the two modes meet
and a significant change is observed in the dispersion diagram. The propagation
constants of both modes become complex, such that the imaginary parts of the two
modes are identical while the real parts are equal in magnitude but opposite in sign.
These complex propagation constants indicate that as one mode travels through the
medium, it couples power into the other mode. This contra-directional coupling per-
sists over nearly the same frequency range for which a stopband is observed in Fig.
2.4, with the upper limit of the stopband occurring at 3.2GHz. At higher frequencies,
the c-mode is in cutoff, and the m-mode exhibits dispersion characteristics similar to
that of a waveguide above cutoff or a periodic wire medium above its plasma fre-
quency. Similar behavior is also observed for the NRI medium (see Fig. 2.13) over

this frequency range.
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> .___.8
g T .
1 g
¥
-1 0 1 2 3
kd(radians)

Figure 2.14: Dispersion diagrams of the NRI medium as calculated by MTL analysis
and full-wave simulation (HFSS).
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2.3.2 Finite Structures

The previous analysis dealt with finding the propagation characteristics of the
infinite NRI or negative permeability medium, however, in practice, all structures are
finite. Consequently, MTL analysis will be most useful if it can predict the behavior
of finite structures as well. This can be accomplished by again using the transfer
matrices of the complete unit cell defined in Fig. 2.12. For a slab that is n unit cells
thick, the transfer matrix of a single unit cell should be raised to the n'® power to
find the transfer matrix for the entire finite slab. This final matrix is a 4 x 4 matrix

of the form:

5) a1 a2 b bio Vi

(2.17)
ci1 ¢z dn dig L

( (
Vz(g) a1 Gz boy bao V2(0

(

(

)
4) Co1 Cyo dor da I,

The reflection and transmission coefficients for a slab of the NRI medium are typ-
ically found for a free-space wave normally-incident on the structure. Recalling that
the parallel plate waveguide represents free space propagation, this scenario can be
modeled by connecting ports to the terminals of conductor 1 and terminating con-
ductor 2 with an impedance that appropriately represents the physical situation. For
example, if conductor 2 ends in an open circuit, the impedance applied to that termi-
nal would be infinity, whereas if the conductor ends in a short circuit, the impedance
would be zero. These terminations convert the four-port MTL structure shown in
Fig. 2.15(a) into the two-port network shown in Fig. 2.15(b).

To express this simplification mathematically, the transfer matrix (Eq. 2.17)
should no longer depend on the voltage and currents on conductor 2 (V5 and ).

Applying Kirchhoff’s voltage laws at each of the terminations gives the relationships
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between V5, and Iy at both of those locations:

Va(l) = —Z; - Ly(0) (2.18h)

where Z is the impedance used to terminate conductor 2 at each end of the NRI slab.
By using a variable for the termination impedance, this method remains valid for any
symmetric 4-port structure. Further, this method can model the fringe capacitance
in the case of an open circuit or the via inductance in the case of a short circuit.
Egs. (2.18a) and (2.18b) are used as boundary conditions to reduce the 4 x 4 transfer

matrix of Eq. (2.17) to the 2 x 2 matrix

Vi (£) o A\ |Vi(0)

= , (2.19)
L, (¢) ¢ 2| | L(0)
where
(512 — a1z ZL) (CL21 — C21 ZL)
A =ay; — , 2.20
B by — (age 4+ doo) - Zp, + o0 - Z3 (2.20)
(512 — Q12 ZL) (521 —da - ZL)
B=by; — , 2.21
H bos — (ago + daa) - Zp, + Coo - Z7 ( )
<d12 —C12 ZL) (CL21 —C21 ZL)
E=ci1 — , 2.22
H boo — (age + doa) - Z, + o2 - Zﬁ ( )
D=dyy — (d12 —C12 ZL) (521 —do - ZL) (2'23)

boo — (age + daoa) - Z1, + a2 - Z%.

The finite structure considered here consists of four of the unit cells shown in Fig.
2.12, with the second conductor being terminated with an additional 2L inductor on
either end of the slab. To account for this inductance, the termination impedance was
defined as Z; = jw2L. To provide a direct comparison, the finite structure was also

simulated in Ansoft’s HF'SS. The full-wave model was a four-cell-thick slab consisting
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(a) Block diagram of the unterminated, finite (b) Block diagram of the terminated, finite MTL
MTL structure. structure.

Figure 2.15: Transformation of the four-port MTL system to a two-port system that
can be excited by a plane wave in free space.

of the unit cells shown in Fig. 2.7. This structure shows the reason for the additional
inductance used to terminate the second conductor in the MTL model. The metallic
strips at the edge of the transmission-line cage were the same thickness as those in the
middle of the slab. Since the metallic strips in the middle of the slab were modeled as
the parallel combination of two 2L inductors, those at the edges of the slab needed to
be as well. Perfect electric conductor boundary conditions were enforced on the top
and bottom of each unit cell to achieve infinite periodicity in the vertical direction
for the polarization of interest. Periodic boundary conditions with zero phase delay
were applied to the sides of the four-cell slab to enforce infinite periodicity in the
transverse direction. The reflection and transmission coefficients (equivalently, the
scattering-parameters) of the four-cell slab were calculated for normal incidence and
are compared with full-wave simulation results in Figures 2.16(a) and 2.16(b). Good
agreement is shown, except for the low-frequencies where there is a slight frequency
shift.

To provide further evidence that Eq. (2.19) is correct, the multiconductor circuit
used in the MTL analysis was simulated using lumped element and transmission-line
components in ADS. The S-parameters from this simulation agree exactly with those

obtained through MTL analysis. With this confirmation, several explanations can
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be given for the shift in the low-frequency values. The first is the extraction of the
capacitance and inductance matrices of the host MTL transmission lines in the static
limit. At low frequencies, the loading elements cause the phase delay across the unit
cell to increase significantly, which alters the field distribution assumed in the static
limit. The second explanation is the effect the finite size of the NRI slab had on the
values of the constitutive parameters of the unit cell. Since the values of the loading
elements and the host MTL transmission lines were extracted under the assumption

of infinite periodicity, their values are slightly different at the boundaries of the slab.

g 10 g s, HFSS
(2] 2]
5 5 . S, ADS
€ -20 2 S, MTL
5 g STt
S @
& -30- &
0 wn
_40,
16 18 2 22 24 26 28 3 32 16 18 2 22 24 26 28 3 32

Frequency (GHz) Frequency (GHz)

(a) Reflection coefficients calculated by full-wave (b) Transmission coefficients calculated by full-
analysis (HFSS), MTL analysis and a commercial wave analysis (HFSS), MTL analysis and a com-
circuit simulator (ADS). mercial circuit simulator (ADS).

Figure 2.16: Scattering parameters of a four-cell NRI slab.

2.4 Homogenized MTL Analysis

Rigorous MTL analysis produces fast, accurate results, but it does not yield closed-
form expressions nor much physical intuition beyond the circuit model itself. In order
to derive simple intuitive equations that represent the NRI medium, the unit cell must
be homogenized [34, 38]. To homogenize the unit cell, the transmission lines are bro-
ken down into their equivalent lumped components: inductors and capacitors. These
lumped transmission-line components are simply the elements of the impedance and

admittance matrices of the unloaded transmission lines. The transmission-line com-
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ponents and the loading inductors and capacitors are then incorporated into a circuit
model of the unit cell, as shown in Fig. 2.17. Because the unit cell is homogenized,
the order of the elements is not important. For convenience, the elements of the NRI

unit cell in Fig. 2.17 have been arranged in the form of a T-network.

Parallel Plate L11/2

Waveguide L1/2
(Cond 19—~ 000 —000" 00 —000 o
2Lw R 2lw
Cio |C21|=|Ca2|
L21/2=L12/2 L21/2=L12/2
w o] | w—— |
Transmission-Line Lo/2 Las/2
(Cond 2) 2C 2c
2L Coo 2L

Cio=Cn-|C21]
— —_ — Ca0= Ca2-|C21

Figure 2.17: Circuit model of the NRI medium used for the homogenized MTL anal-
ysis.

After representing the unit cell as a T-network of lumped element components, the
next step in the simplified MTL analysis is to solve for the homogenized impedance
and admittance matrices. To find the impedance matrix, the impedance of the series
loading element, C', is added to the impedance of the self-inductance on conductor 2
(Lgg), effectively absorbing the lumped element into the transmission line. Similarly,
to find the admittance matrix, the admittances of the shunt loading elements, L,
and L, are added to the admittances of the self-capacitances of conductor 1 (Cy;) and
conductor 2 (Cys), respectively. The resulting impedance and admittance matrices

for the circuit in Fig. 2.17 are

Zin Zn _ Ly d Loyd

= jw - (2.24a)
Zo1  Za Loyd  Lgpd — ﬁ
Y Yo . Cnd — ﬁ Cand ‘ (2.241)
Yor Yoo Cord Cood — szL
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Figure 2.18: Schematic of the two-conductor MTL system for on-axis propagation in
terms of impedance and admittance parameters.

The elements of the modified impedance and admittance matrices are subsequently
used to form the homogenized circuit model of the unit cell, shown in Fig. 2.18. Note
that reciprocity is assumed in the circuit model as well as in Eqs. (2.24a) and (2.24b).

Typically, absorbing the loading elements into the impedance and admittance
matrices of the transmission lines would neglect the effect of spatial dispersion caused
by the periodic nature of the unit cell. However, the periodicity can be accounted
for using the Floquet theorem, which states that the voltages and currents on each
end of the unit cell only differ from each other by a complex constant, here defined
as e 7@ The Floquet theorem is enforced as shown in the circuit diagram in Fig.
2.18. Therefore, this method remains valid for any phase difference across the unit
cell as long as the lengths of the interconnecting transmission lines are electrically

short (<< ).

2.4.1 Dispersion Diagram

For the case of on-axis propagation, the dispersion equation can be derived from

the circuit shown in Fig. 2.18 by solving for the complex propagation constant, ~.
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Application of Kirchhoff’s voltage law yields the following expressions:

Z Z Z Z
M-l - by —he M he T Ve =0 (229)
Z Z Z Z
Vem LYr — hYr = he SR —Le TR — Vet =0 (2.26)
Simplifying these equations yields
Z Z
Vi(l—e) = 11§ (1+e) + IQ% (1+e7) (2.27)
Z Z
Va(L=e) = Lo (L e7) + b7 (1+ 7). (2.28)

Euler’s identity states that 1—e ™74 = 2sinh (%) e7%2 and 14+e77? = 2 cosh (%) e 71%/2,
Dividing each side of Egs. (2.27) and (2.28) by cosh (%) e%2 and combining the
equations into a single matrix expression yields the relationship between the voltages

and currents in terms of the impedance matrix:

sinh(%d) i Z1 Lo I
2 —— 0 =
cosh () 1| |Za Za| |Io
1% Zi Zo | |1
2-tanh(%i) I e (2.29)
‘/2 ZQl ZZQ [2

To find the relationship between the currents and voltages in terms of the admit-

tance matrix, Kirchhoft’s current law can be applied to the circuit:

L(1—e) = V1Y — 1hYy (2.30)

L(1=e) = ViYay — VaYas., (2.31)

where V; is the voltage at the midpoint of the i conductor. V; is not known for either

conductor, but it can be found by applying Kirchhoff’s voltage law to the circuit one
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half at a time:

Vi =Vi+ L211/2+ I, 25,2 (2.32a)
‘/1 :Gwd"?l —11211/2—]2Z21/2 (232b)
Vo = Vo + 112012 + 1,725/2 (2.33a)
Vo= Vo — 1,29, )2 — [, 795 )2. (2.33b)

Solving for V; in Egs. (2.32) and (2.33) yields

~ ‘/16_’Yd/2

- 2.34
! cosh %d ( )
~ ‘/26_7‘1/2

= = 2.35
2 cosh %d ( )

Substituting Eqgs. (2.34) and (2.35) into Egs. (2.30) and (2.31), gives the desired

matrix equation:

I Y1 Y Vi
QSinh(%l) cosh<ﬁ> "= o !

200l e Ya| |V

I Yo Yal |V
simh(vd) | | =" | (2.36)

Iy Yor Y| [Va

Combining (2.29) and (2.36), the current elements can be eliminated resulting in

a 2 X 2 homogeneous system of equations (an eigenvalue problem):

ar — 4sinh? (%) by il |0 (237)
b2 Qa9 — 4sinh2 (%1) ‘/2 0
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where

ay = Z11Y11 + Zoa1Yor, ag = ZyYos + Z21Yor,

by = Z11Yo1 + Z21Yoo, by = ZyoYo1 + Zo1Y11.

In order to find nontrivial solutions, the determinant of Eq. (2.37) must be set equal

to zero. This determinant produces the dispersion equation for on-axis propagation:

ay 4+ ag + 1/ (ay — ay)? + 4byb
4-sinh2(%d): L \/(; i) (2.38)

Applying this analysis in two directions gives the following two-dimensional dispersion

equation:

4 - sinh? <%d> +4 - sinh? (%) - (2.39)

ap + as + \/(al — (12)2 -+ 4b1[?2
9 )

where 7, and -, are the propagation constants in the & or ¢ direction.

As in the traditional MTL analysis discussed in section 2.3, the dispersion equa-
tions give two unique modes. Here, the c-mode corresponds to the plus sign in front
of the radical and the m-mode to the minus sign. Both modes are plotted in Fig. 2.19,
along with the dispersion curve generated from full-wave simulations for comparison.
As shown in Fig. 2.19, the c-mode is in cutoff throughout the entire frequency range
of interest, while the m-mode supports a backward wave. The two-dimensional dis-
persion diagram (described in Appendix A) for the m-mode generated using (2.39) is
compared with full-wave analysis in Fig. 2.20.

MTL analysis can also be used to examine how the propagation constant of the

NRI medium changes with direction. In [29], full-wave analysis showed that the
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Figure 2.19: On-axis dispersion diagram. The m-mode corresponds to the backward-
wave mode while the c-mode is in cutoff throughout the frequency range

of interest.
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Figure 2.20: Two-dimensional dispersion diagram for the m-mode indicating the phase
shifts T' = (0°,0°), X = (180°,0°) and M = (180°,180°).
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structure in Fig. 2.7 exhibited isotropic behavior (negligible spatial dispersion) when
the phase difference across the unit cell was small. However, due to the amount of
time required to perform the full-wave eigenmode simulations, only k,d < 40° and
k,d < 40° were plotted. Using the two-dimensional dispersion Eq. (2.39), the isofre-
quency contours of the structure over the entire backward-wave band (shown in Fig.
3.15) can be calculated rapidly. Fig. 3.15 shows that the structure clearly exhibits
isotropic propagation at high frequencies, however, at low frequencies the propagation
constant changes significantly with direction due to spatial dispersion. This leads to
the questions of how significant these deviations in propagation constant can be while
still describing the propagation as “isotropic”. Typically, this is influenced by the spe-
cific application, and the answer depends on the overall size of the material and the
allowable deviation in phase over its extent. However, in discussing the properties of
an infinite medium, a general condition should be given.

In [39], the representation of continuous media using two-dimensional grids of
lumped elements is considered. Discretizing a continuous medium into such a grid
network results in spatial dispersion. However, effective medium theory asserts that
these lumped-element networks can be considered an accurate representation if the
cell size is at most d = %. The largest difference in propagation constant is between
on-axis propagation and propagation 45° off-axis, as shown in Fig. 3.15. Expressions
in [39] give the maximum percentage difference in propagation constant as 0.874%
for a cell size of d = %. By this stringent definition, the isotropic limit for this
metamaterial occurs at a frequency of 2.52GHz. Frequencies below 2.52GHz will
exhibit larger percentage differences in the propagation constant, however, as was
mentioned earlier, the acceptable level of variation is dependent on the application.

This limit can also be obtained directly from Eq. (2.39). For convenience, the

right hand side of the equation will be represented as —¢?. For on-axis propagation
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(e.8. Yz =0, 7y =0), Eq. (2.39) reduces to Eq. (2.38), now expressed as

4 - sinh? (W)og) = —¢°. (2.40)

For propagation 45° off-axis (v, = v, = Yase/ v/2), the dispersion equation can be

written as

8 - sinh? (%g) —3 (2.41)

Using Egs. (2.40) and (2.41), the ratio of vz to 7ge is found in terms of ¢ as

sinh_l( %’2)
s (2.42)

v ()

Thus, the value of ¢ determines the variation between on- and off-axis propagation.

In the limit where ~d is small, Eq. (2.38) becomes
»d d
—¢* = 4 - sinh® (%) + 4 - sinh? <%)

2 2
. =4 (wd
~ 4 (2)+4 (2) (2.43)

If d = 1—’\0 is again taken to be the maximum unit cell size for which propagation

can still be assumed isotropic and given that v = j 27“, the value of ¢? at this limit

becomes ¢* = (/5)° = 0.395. Using this value in Eq. (2.42), results in

T 1.0874. (2.44)
Yoe

In other words, the maximum percentage difference in propagation constant is 0.874%,

the same as that obtained in [39].
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Figure 2.21: Isofrequency contour plot (in GHz) of the backward-wave mode with
respect to two-dimensional propagation in the  and ¢ directions.

2.4.2 Impedance and Material Parameters

The impedance of a two-conductor MTL structure is typically represented by Zg
(Eq. (2.14)): a 2 x 2 matrix relating the natural voltages to the natural currents on
the two coupled lines [35]. Since the analysis in the previous section described the
dispersion of the NRI medium in terms of the structure’s ¢- and m-modes, it may
be preferable to examine the modal impedances of the infinite NRI medium. These
impedances can be found in a manner similar to that presented in [37]. Using Eq.
(2.37), two expressions for the ratio of the voltages on conductor 1 and conductor 2

(R) can be found:

Vo 4 sinh® (%d) —ay

(2.45)

or

(2.46)
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Substituting either of these relationships into Eq. (2.29) allows the currents, I; and
I, to be found in terms of either V; or V5 rather than a combination of both. The
impedances can then be found by taking the ratios of the voltage to the current on a

given conductor, yielding the expressions

Vi T\ Loy — 73

Zy = = 2 el (2.47)
-[1 2 tanh (%) . (ZQQ — ZglR)

7, = Vo (Z11Z — Z3) R (2.48)

B ]2 B 2 tanh (%d) . (ZHR - Zgl).

These equations are valid for a single mode propagating in the direction determined
by the Floquet propagation constant, v. The mode is determined by the choice of
v = 7. or v = 7v,. These impedance equations are only valid for an infinite medium. If
the material is finite, then multiple modes would be required to satisfy the boundary
conditions at the termination of the structure.

Despite not being strictly valid for finite slabs, the above impedance equations
can still provide insight into the behavior of the NRI structure. Since Fig. 2.19
shows that the c-mode is in cutoff for all frequencies of interest, this mode can be
ignored in an infinite medium. Additionally, conductor 1 represents a parallel plate
waveguide, which models plane-wave propagation through the medium. Therefore,
the transmission-line impedance of conductor 1 (Z;) for the m-mode is proportional
to the overall wave impedance of the infinite NRI medium. In order to find the exact
expression for the wave impedance (which expresses the ratio of the electric field
to the magnetic field, rather than the voltage to the current), the transmission-line

impedance should be multiplied by the width-to-height ratio,

d
e = Zir - o (2.49)

The wave impedance for the infinite medium composed of the unit cells shown in
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Figure 2.22: Wave impedance of the m-mode on conductor 1 for the volumetric NRI
medium.
Fig. 2.7 is plotted in Fig. 2.22. The resonance that occurs around 3.28GHz is due
to the fact that the plasma frequencies are not exactly the same, resulting in a small
stopband between the electric and magnetic plasma frequencies. From this graph, it
is clear that the electric plasma frequency occurs slightly before the magnetic plasma
frequency since the impedance grows rapidly (indicating € close to zero) before going
to zero (indicating p equal to zero). It should also be noted that the impedance of
the infinite medium was not designed to match that of free-space. Instead the unit
cell was modeled exactly as it was shown in Fig. 2.7. As described in [29], the values
of the loading elements of Fig. 2.7 were selected to produce an impedance match at
2.45GHz for a four-cell slab, which is evident in Fig. 2.16(a).
In conventional materials, the wave impedance is equal to n = \/u_/e and the

propagation constant is equal to v = jw,/ue. By taking either the ratio or the
product of these formulae and dividing by the radial frequency, w, the permeability

and permittivity for the infinite medium can be defined as

iy = 2L (2.50)
WHo
P (2.51)
Wr1€0
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However, to treat this metamaterial in the same way as conventional materials, it must
behave like a homogeneous medium. This means that the propagation constant must
not be distorted by spatial dispersion. As was discussed in section 2.4.1, homogeneous
behavior is only possible when the phase difference across the unit cell is small. This
restricts the frequency range over which effective material parameters can be defined.
Under these conditions, the expressions for the material parameters can be simplified.

If vd is assumed to be small in Eq. (2.47), then the expression simplifies to

- 1 ZHZQQ — 2221

1~ — .
! vd-(Zayg — ZnR)

(2.52)

This equation is particularly useful for expressing pu, because it depends inversely on
7. Therefore, by inserting Eq. (2.52) into Eq. (2.50), v drops out of the expression,

yielding
ZnZny — 73,

] . 2.53
jwﬂoh : (222 - Z21R7r) ( )

Hr = —

In the equation for €., Z; having an inverse dependence on v is not desirable
because no cancelation would occur. This would instead result in the expression for
¢, being proportional to v2. To obtain a simpler expression, a different equation for
71 must be derived. Instead of using the ratio of the voltages on conductors 1 and 2,

the ratio of the currents is used. This ratio, r, is defined as

L 4 sinh? (V—d) —a

= = = 2 2.54
r=7 b (2.54)
or
. ]2 b1

r=_- = . 2.55
I 4sinh? (%l) — a9 ( )

Inserting this relationship into Eq. (2.36), gives the following expression for the ratio
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of V] to I;:

. Yoo — Yorr
Zy =sinh (vd) ————— 2.56
1 0 VY17 (250
Yoo — Y
~ vd 2 2 (2.57)

YiiYas — Y2

as long as yd is small. In this new equation, Z; is now directly proportional to -,

which will result in v dropping out of Eq. (2.51), yielding

j Yi1Yos — Y3
we€p (d2/h) : (Y22 - Y217“7r).

(2.58)

€ R —

The simplified expressions in Egs. (2.53) and (2.58) provide physical insight into
what determines the effective permeability and permittivity. Eq. (2.58) shows that
the permittivity depends only on elements of the admittance matrix (with the excep-
tion of the current ratio, r), i.e. the shunt elements in the circuit diagram. This is
expected since the unloaded admittance matrix consists of capacitive elements, whose
values are directly related to the permittivity of the medium. Similarly, Eq. (2.53)
depends only on elements of the impedance matrix (with the exception of the voltage
ratio, R), which are the series elements of the circuit diagram. This is expected as
well because the unloaded elements of the impedance matrix are inductances, which
are dependent on the permeability of the medium.

The form of Egs. (2.53) and (2.58) is also important. In both Egs. (2.53) and
(2.58), the zeros of the functions are isolated in their numerators. These zeros repre-
sent the magnetic and electric plasma frequencies, respectively. Using Eq. (2.53) and
the constituents of the homogenized impedance matrix in Eq. (2.24a), the magnetic

plasma frequency is found to be

1 Ly
= 2.5
“ \/ LiiLos — L2, Cd (2.59)
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In the case of the electric plasma frequency, the numerator of Eq. (2.58) has two
zeros. However, one occurs at a frequency well-above the range of interest. Ignoring

this zero, the electric plasma frequency is given by the expression

1
V2 (CriCy — C3)

Cu, G [(Cu_ Cn)"_ 4Ch
Ld " Ld Ld  L,d) ~ LdL,d

Both of the plasma frequencies will be discussed further in the following section.

(2.60)

We

The relative permittivity and permeability of the infinite medium are shown in
Fig. 2.23. Both the approximate (Egs. (2.53) and (2.58)) and the exact (Egs. (2.50)
and (2.51)) curves are plotted, but it should be emphasized that neither expressions
are valid when the medium exhibits spatial dispersion. As mentioned in the previous
section, the effective medium approximation is only valid when ~d is small. Even the
exact expressions are limited by this condition. Since vd being small was the only
assumption made to obtain the approximate expressions, the material parameters
are valid when the approximate and exact curves overlap. When the curves diverge,
this indicates that it is no longer appropriate to define effective permittivity and

permeability.

2.4.3 Resonances

In NRI media, three important frequencies can be used to characterize the dis-
persion curve: the electric and magnetic plasma frequencies and the low-frequency
backward-wave cutoff. The first two were introduced in the previous section, and
both correspond to the propagation constant being equal to zero, while the third
corresponds to the frequency at which the phase difference across the unit cell is

180°.
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Figure 2.23: Material parameters for the volumetric NRI medium. The black lines
correspond to the exact solutions given by Egs. (2.50) and (2.51). The
gray lines correspond to the approximate solutions given by Eqs. (2.53)
and (2.58).

In addition to deriving the plasma frequency equations (Egs. (2.59) and (2.60))
from the relative permeability and permittivity expressions, they can also be obtained
from physical arguments combined with circuit analysis. The series inductors of an
unloaded MTL system govern its magnetic response, and consequently, its perme-
ability response. Altering the effective inductance of the transmission lines will affect
the permeability of the medium. The effective inductance of a MTL system can be
changed by the addition of a reactive series element. In Fig. 2.17, the effective induc-
tance of the MTL system is changed by adding the series capacitor, C'. This results in
a negative effective permeability for some frequencies, as shown in Fig. 2.23. At the
magnetic plasma frequency, w,,, the inductive elements of the unloaded MTL system
resonate with the loading capacitor such that the effective permeability is zero. When
this occurs, the middle and both ends of the unit cell appear to be shorted to ground,
as depicted in Fig. 2.24. This short-circuits the shunt elements, leaving only the
series elements, as shown in Fig. 2.25. The effective permeability goes to zero when
the series-only impedance of conductor 1 goes to zero. The series-only impedance

of conductor 1, which accounts for the elements of conductor 2 through the mutual
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Figure 2.24: Schematic showing the magnetic plasma frequency resonance on the
MTL system for on-axis propagation.
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Figure 2.25: The left half of the circuit shown in Fig. 2.24 after being simplified due
to the shorting of the shunt elements.

inductance, Lo, is given by

(jWLmd)z

Zsem'es = jwlLid — .
1 = Jwln o Loggd —

— (2.61)
JC

Setting Eq. (2.61) equal to zero and solving for w yields the same expression for w,,
as Eq. (2.59).

A similar analysis can be applied to find the electric plasma frequency, w,.. In
the unloaded MTL system, the shunt capacitors are responsible for determining the
electric response, and therefore, the permittivity of the medium. Again, reactive
loading elements, such as L, and L, are placed in shunt to change the effective
capacitance and, consequently, the effective permittivity. Fig. 2.23 shows that the

introduction of these loading elements creates a negative permittivity over certain
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Figure 2.26: Schematic showing the electric plasma frequency resonance on the MTL
system for on-axis propagation.
frequencies. At the electric plasma frequency, w., the capacitive elements of the
unloaded MTL system will resonate with the loading shunt inductors such that the
effective permittivity is zero. In this case, the middle and both ends of the unit
cell appear as open circuits (shown in Fig. 2.26), thereby eliminating the effects of
the series elements. Without the series elements, the circuit appears as shown in
Fig. 2.27. The effective permittivity goes to zero when the shunt-only impedance of
conductor 1 to ground goes to infinity. The shunt-only impedance of conductor 1 to

ground is given by the expression

—jWOQQ
Zshuntl = : (262)
(CuCy —C3)d
2_ _1
W T TCoad
w4_w—2<@+@> S N——
(011022—C§1>d L L (011022—0221) d? LyL

By setting the denominator equal to zero and solving for w, two solutions are found,
one of which is exactly the same as the expression for w, given by Eq. (2.60). The
second solution corresponds to a resonance for the c-mode, which occurs at a frequency
well above those of interest.

The equation for the low-frequency backward-wave cutoff for on-axis propagation
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Figure 2.27: The left half of the circuit shown in Fig. 2.26 after being simplified due
to the elimination of the series elements.

is found by setting vd = 180° in Eq. (2.38), which is the “X” point on the dispersion
diagram in Fig. 2.20. For this resonant condition, each end of the unit cell is shorted
to ground, as shown in Fig. 2.28. Unfortunately, this results in a complicated expres-
sion with multiple solutions. Noting that the desired condition describes the lowest
frequency in the backward-wave band, higher order frequency terms can be ignored,

giving the following approximation

1
~ . 2.
Wo \/41;0 t LCyyd — CLopd (2.63)

It is interesting to note that this is the exact expression for the low-frequency cutoff of
the backward-wave transmission line (conductor 2) in isolation. This result indicates
that the coupling between conductor 1 and conductor 2 is insignificant near this cutoff
frequency.

Off-axis propagation can support propagation at even lower frequencies. The
two-dimensional low-frequency backward-wave cutoff can be found by simply setting
v-d = 180° and ,d = 180° in Eq. (2.39), which is the “M” point of the dispersion
diagram in Fig. 2.20. After applying the same approximations as were used to obtain

Eq. (2.63) for the case of on-axis propagation, the equation for the two-dimensional
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Figure 2.28: Schematic showing the low-frequency backward-wave cutoff resonance
on the MTL system for one-dimensional propagation.

low-frequency cutoff is given by

1
We \/SLC ¥ LOyd — ClLyd’

(2.64)
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CHAPTER III

The Experimental Realization of Broadband NRI

Media

The multiconductor transmission-line (MTL) analysis described in the previous
section provided theoretical evidence that negative-refractive-index (NRI) metama-
terials could indeed exhibit a broad backward-wave bandwidth. The next step was
to verify this claim experimentally through the physical realization of a broadband
NRI lens [12]. In order to achieve sub-wavelength focusing in free-space, the NRI
medium must be low loss and have a relative permittivity and permeability (e, and
i) close to -1. As mentioned earlier, impedance mismatches and high loss prevented
previous volumetric NRI lenses from achieving super resolution [40, 41, 42, 43]. In
this chapter, these issues are mitigated sufficiently such that the lenses presented here

demonstrate resolution beyond the diffraction limit.

3.1 The First Experimental Broadband NRI Lens

The first broadband NRI lens to be fabricated adhered as closely to the design
presented in Chapter II (Fig. 2.7) as possible. One unit cell of the experimental NRI
medium is shown in Fig. 3.1 [44]. One slight difference between the original design

shown in Fig. 2.7 and the one depicted in Fig. 3.1 was the inclusion of RO4003
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circuit boards to provide a substrate for the capacitive grid. A second modification
was that the inductively loaded central strip was replaced with a thin wire. There
were three reasons for this change. First, the requisite inductance could be achieved
using commercially available wires, so there was no need for the added complexity of
lumped inductors. Secondly, the wires displayed a superior quality factor compared
to commercial chip inductors. Finally, metallic strips would need to be printed on
microwave substrates like the capacitive grids, and the presence of the dielectric would

introduce a slight asymmetry to the unit cell.

Interdigitated Cell Width
Capacitors 10mm
z \
XAV e

Rogers RO4003C
Substrate (32 mil)

Posts —|
(10 mil diameter)

A
\AJ

Cell Height
13mm

vy

1 .5mmI - = g

Wire
(12.6 mil diameter)

Figure 3.1: One unit cell of the physically-realizable broadband NRI medium.

3.1.1 Design of the Broadband NRI Lens

According to simulations performed in [29], a slab thickness of four unit cells
was sufficient to realize the broad bandwidth achieved through the traveling-wave
nature of the transmission-line cage. As a result, a four-cell slab of this structure
was designed to have effective material parameters of ¢, =~ —1 and p, =~ —1 at the
design frequency of 2.45GHz. The simulated scattering parameters of this four-cell

slab were obtained using Ansoft’s HFSS and are plotted in Fig. 3.2. All simulations
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were performed with conductors as the boundaries on the top and bottom of the unit
cell. This ensured that the electric field was always polarized in vertical direction and

more accurately represented the experiments described in section 3.1.3.
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Figure 3.2: Simulated S-parameters of a four-cell thick slab of NRI metamaterial con-
tained within a parallel plate waveguide.

The effective material parameters were extracted from the simulated S-parameters.
To tune the permittivity of the medium, the diameters of the both the central wire
and the posts of the transmission-line cage (see Fig. 3.1) were varied. The length of
the interdigital fingers of the capacitors were changed in order to realize the desired
effective permeability. After optimization, the effective material parameters of the
simulated structure were €, = —0.99 4 70.011 and p, = —1.02 — 50.054 at the design
frequency. Equivalently, the refractive index and wave impedance were found to
be n = —1.01 — j0.021 and 7, = 384 + j12€2. Since npen was close to the
free-space wave impedance of 3772, the structure was well matched to free-space
at 2.45GHz, a fact that is confirmed by Fig. 3.2. It should be noted, that for the
time-harmonic progression of e/“! used throughout this thesis, the imaginary part
of the index of refraction should be negative in passive media, as calculated above.
This may make the positive imaginary part of €, appear unphysical, however this is
not the case. The method of extraction used to obtain the material parameters is

similar to those used for natural materials (e.g. [45]). However, the equation used to
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calculate the wave impedance approaches a singularity when the electrical length of
the NRI slab is a multiple of % [46], which compromises the accuracy of the extracted
material parameters. This phenomenon has recently been analyzed in detail [47] and
is attributed to weak spatial dispersion that is neglected in the equations for natural
materials. Nevertheless, if one considers the index of refraction, n, the imaginary
part is consistent with a passive medium. This method is more reliable because
extracted value of n does not depend on the wave impedance. The passive nature of
the broadband NRI medium is further verified by Fig. 3.3, which shows that the loss
is positive for all frequencies.

The simulated value for n gave an attenuation constant of & = 1.08Np/m and
a propagation constant of 8 = 51.6rad/m at 2.45GHz. A metric commonly used to
quantify the loss in NRI media is the figure of merit (FOM) [48, 49]. It is defined as

n/

n//

FOM = i (3.1)

(0%

where n’ and n” are the real and imaginary parts of the refractive index, respectively.
For this structure the figure of merit was calculated to be FOM = 47.9 at the design
frequency. For comparison, the planar NRI transmission-line medium used to verify
super resolution in [50] had a figure of merit of FOM = 32.14. The figure of merit
of the broadband NRI medium exceeds that observed in the NRI transmission-line
medium predominantly because the wire used to achieve negative permittivity has a
higher Q than the lumped element inductors used to load the NRI transmission lines.

The dispersion curve of the optimized NRI unit cell (plotted in Fig. 3.4) indi-
cates that it exhibits a backward-wave bandwidth of 44.3%: ranging from 1.83GHz
to 2.86GHz. Due to the wide frequency range over which the index of refraction is
negative, the operating frequency of 2.45GHz is no longer close to the low-frequency

resonance of 1.83GHz (where the permeability changes from highly-positive to highly-
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negative values) as is the case for the split-ring resonator (SRR)/wire medium. The
losses are lower the further the operating frequency is from this resonance [§8], as is
evident in Fig. 3.3. The power lost due to conductor and dielectric losses is 0.37dB
at 2.45GHz for the entire four-cell slab or 0.092dB/cell (equivalently 0.092dB/cm),

demonstrating that this NRI structure has minimal power loss at the operating fre-

quency.
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Figure 3.3: Simulated conductor and dielectric losses for a four-cell slab given by

Loss(dB) = —20 10g< |S11]% + |5’21|2>. The four peaks in loss occur
when the four-cell slab is at resonant lengths of 180°, 360°, 540° and
720°.
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Figure 3.4: Simulated dispersion curve of the infinite NRI medium shown in Fig. 3.1.
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3.1.2 Fabrication

The broadband NRI lens was fabricated by first constructing the transmission-
line cage to serve as the negative permeability medium then adding the central wires
to introduce negative permittivity. The first step in fabricating the transmission-
line cage was to print a capacitively loaded grid onto two 32mil (0.81mm) RO4003
substrates (e, = 3.38), as shown in Fig. 3.5. The unit cell size of the grid was lem in
both of the horizontal directions. The capacitors were interdigital, printed capacitors
optimized through simulation to have a value of 322fF. Small holes were drilled at the
grid junctions and plated with copper to accommodate the wire posts that served as
the inductors of the NRI transmission-line grid. The capacitively loaded grids were
then spaced lem apart and the posts, made from copper wire with a 10 mil (254um)
diameter, were soldered between them. The negative permeability slab was four cells
thick and had a width of 15 cells (1.225), at the design frequency). To emulate infinite
periodicity in the vertical direction, the slab was placed between two parallel plates,
spaced 1.3cm apart. Foam blocks were cut to support the transmission-line cage
structure, ensuring a 1.5mm separation between the parallel plates and the RO4003
substrates.

Once the negative permeability medium was fabricated, making a NRI medium
was only a matter of adding wires to achieve negative permittivity. The holes in the
center of the negative permeability unit cell (2.25mm in diameter) allowed these wires
to pass through. These holes are depicted in the unit cell enlargement in Fig. 3.5.
Copper-clad RO4003 substrates were used as the parallel plates. Copper-plated holes
were drilled into these ground planes to allow for proper grounding of the negative
permittivity wires. The wires were 12.6mil (0.32mm) in diameter and 1.3cm in length.
They were soldered between the top and bottom parallel plates to create the NRI lens,
which was also four cells thick with a width of 15 cells. A photograph of the NRI lens

within the parallel plate waveguide is shown in Fig. 3.6.

62



Figure 3.5: Picture of the negative permeability slab with an enlargement of a
capacitively-loaded grid unit cell.

Figure 3.6: Photograph of the NRI lens inside the parallel plate waveguide.

3.1.3 Experiments

All the experiments for the negative permeability and NRI media were conducted
in a parallel plate waveguide (PPW) environment. Gradient absorber FL-4500CL,
manufactured by ETS-Lindgren, was used to prevent reflections from the edge of the
PPW, similar to that described in [51]. While Justice et. al. used wedge-shaped
absorber, the resonant frequency of 1.82GHz and the size of the plates (45.7-by-61.0
cm) did not permit wedges of sufficient size to fully attenuate the low frequency radia-
tion. Nevertheless, tests confirmed that the gradient absorber successfully eliminated
the reflections from the edges of the PPW. The absorber was cut into 1.3cm slabs
(to ensure the correct unit cell height) and arranged in a rectangle around the lens,
as shown in Fig. 3.7. Also pictured in Fig. 3.7 are the Amphenol Connex 132147

coaxial connectors, which were used as probes to provide the fixed-point excitations
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inside the PPW. The dielectric jackets covering the connectors were trimmed such
that only the center conductor protruded from the surface of the plates.

Gradient Absorber

Styrofoam

Figure 3.7: Photograph of the bottom plate of the parallel-plate waveguide with gra-
dient absorber walls and the negative permeability slab. This photograph
shows the two-probe experimental setup used to measure the stopband
characteristics of the negative permeability medium. The probes have
been placed 7cm from the cell so that only the transmission of the prop-
agating waves is considered.

3.1.3.1 Negative Permeability Stopband Measurements

When the permeability and permittivity of a medium have opposite signs, waves
attenuate exponentially as they travel through the medium. The negative permeabil-
ity medium, therefore, exhibits a stopband over the region where negative permeabil-
ity occurs, as discussed in section 2.1.2.2. For the fabricated negative permeability
metamaterial, this stopband is shown by the dispersion curve in Fig. 3.8. While
the dispersion curve could not be measured directly from experiments, the negative
permeability medium was tested to verify its attenuation characteristics. This was
done by placing two sources (coaxial connector probes) 7em (0.57\) away from either
face of the slab (see Fig. 3.7). This distance placed the air/slab interfaces beyond the
reactive near-field of the probes and into the Fresnel region. This ensured that all of
the evanescent fields emanating from the probes would attenuate sufficiently before

reaching the slab, eliminating the possibility of evanescent field recovery. This was
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important for stopband measurements because any evanescent waves that reached
the first slab interface could be resonantly amplified, producing enhanced fields at
the receiving probe. Further, because the distance from the source to the slab was
greater than the thickness of the slab, no internal nor external focusing of the evanes-
cent spectrum could occur. The transmission between the two probes was measured,
and both the simulated and experimental results are displayed in Fig. 3.9. The
plot shows total attenuation better than 20dB for the measured four-cell slab with
respect to the parallel plate environment without the slab present. At the design

frequency of 2.45GHz, the slab corresponds to an electrical thickness of just less than

A

2. Therefore, the negative permeability slab acts as a highly-attenuating stopband

medium.
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Figure 3.8: Simulated dispersion curve of the infinite negative permeability medium.

The exact frequencies over which the medium exhibits a stopband (a negative
permeability) cannot be accurately determined from Fig. 3.9, since the impedance,
index of refraction and attenuation constant of the slab all play an important role in
determining the magnitude of S5;. In contrast, the stopband edges are clearly defined
in Fig. 3.8, which shows the propagating eigenmodes of the negative permeability

medium. This is because the eigenmode analysis assumes infinite periodicity, and,
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Figure 3.9: Stopband performance of the negative permeability slab shown in Fig.
3.5. Measurements are denoted by the solid line and simulated results
are shown with the dashed line. The darker lines denote the transmission
coefficients when the slab is present, while the lighter lines denote the
transmission coefficients when the slab is removed.

therefore, even the slightest attenuation constant results in a stopband. In a finite
structure, such as the one shown in Fig. 3.7, the small attenuation constants near
the stopband edges do not significantly affect the transmission through the slab.
Therefore, one cannot say with exact certainty where the stopband begins and ends
based only on the transmission data.

Given the knowledge of the high- and low-frequency edges of the stopband from
Fig. 3.8, both the simulated and experimental data plotted in Fig. 3.9 show coun-
terintuitive behavior at the edges of the stopband. At the low-frequency end, the
magnitude of Sy is nearly the same with the transmission-line cage as without it. On
the other hand, at the high-frequency edge, the transmission-line cage provides more
than 10dB of attenuation. The difference in transmission magnitude at these two
frequencies is not a result of attenuation within the negative permeability medium.
Instead, it is an effect of the experimental setup and the specific material parameters
at each frequency.

Similar to arrays of split-ring resonators, the broadband negative permeability
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slab exhibits a high, positive permeability at frequencies just below the low-frequency
stopband edge. In this same frequency range, the electrical loading caused by the slab
also increases the permittivity. Together, these two effects increase the positive index
of refraction of the medium while maintaining a wave impedance that is similar to
that of free space. Consequently, the slab remains reasonably well-matched to free
space and refracts the cylindrical wave emanating from the transmitting probe toward
the slab’s normal, increasing the power density at the receiving probe. This explains
why both the measured and simulated magnitudes of Sy; are greater with the slab
than without it at frequencies below the stopband.

At frequencies above the high-frequency edge of the stopband, the magnitude of
Sa1 remains low due to the reflections from the slab. As the permeability transitions
from negative to positive, it remains much lower than that of free space. Since the
permittivity of the medium is still high due to the electrical loading caused by the
slab, the slab exhibits a low impedance and reflects much of the power incident on
it. Furthermore, the low index of refraction above the magnetic plasma frequency
means the slab refracts the cylindrical wave away from the normal, decreasing the
power density at the receiving probe. Both of these effects result in low transmission
at frequencies above the high-frequency edge of the stopband. For these reasons,
the eigenmode analysis shown in Fig. 3.8 is typically used to determine where the
medium exhibits a stopband due to negative permeability rather than transmission

data.

3.1.3.2 Negative-Refractive-Index Focusing Measurements

To test the focusing characteristics of the NRI medium, the source was moved to
a location 2cm away from the first interface of the lens. Now a substantial portion
of the evanescent spectrum could reach the lens and could therefore be recovered by

the NRI lens. In order to measure the fields over a two-dimensional space within the
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PPW containing the NRI lens, a small slit less than 3mm in height was cut into the
absorber at the end of the PPW opposite the source. A horizontal probe made out of
0.086in (2.18mm) semirigid cable, with the inner conductor polarized in the vertical
direction, was inserted into the slit and could be moved independently with respect
to the PPW. The probe was then used to scan the electric fields at the exit face of the
lens and beyond using an automated computer routine that controlled the position of
the translation stage to which the probe was attached. This program also interfaced
with a HP8753D network analyzer to store the S-parameters observed at the probe
locations. The performance of the probe was tested by measuring the fields within
the empty PPW, that is, without the NRI lens present. The fields of the PPW were
not disturbed by the presence of the probe in any observable way.

The NRI lens performed best at 2.424GHz, which corresponds to a shift of 1%
from the design frequency of 2.45GHz. Since this frequency was found to be optimal
for two separate lenses that were made, the shift can primarily be attributed to the
manufacturing tolerances in the fabrication of the interdigitated capacitors. Fig. 3.10
shows contour plots of both magnitude and phase of a region up to 6.5cm beyond
the second interface of the lens. Measurements were taken every 1.2mm in the z
(longitudinal) direction and every 2.5mm in the ¢y (transverse) direction. To prevent
the NRI lens from being damaged by the probe or vice versa, the scan was started
2mm away from the face of the lens. The high fields observed close to the interface of
the lens in Fig. 3.10(a) indicate the resonant amplification of the evanescent spectrum.
The phase diagram shows a cylindrical wave emanating from the focus (located at
[x,y] = [2,0]), confirming source reconstruction.

Fig. 3.11 plots the normalized measured electric field amplitude along the im-

age plane (x = 2cm), as well as the diffraction-limited curve as a reference. The
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Magnitude at 2.424GHz
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(a) Normalized field magnitude beyond the exit face
of the NRI lens.
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(b) Relative phase of the electric field beyond the exit
face of the lens.

Figure 3.10: Plots of the measured vertically-polarized electric field at 2.424GHz

diffraction-limited curve is given by the following equation [50]:

S e_jkz()de_jkznde_jkyy
C dk,
o0 1320

koo = —kpn = /K2 — k2 for ky, < K, (3.2)
Koo = kan = —jy/ K2 — k3 for k, > ko

where d = 4.00cm and is defined as the thickness of the lens, k.o represents the -

directed propagation outside of the lens, k., represents the z-directed propagation
inside of the lens, and C' is a normalization constant [50]. This equation accounts for
both the propagating and evanescent portions of the spectrum at the focal plane. The
propagating spectrum experiences phase advancement in the longitudinal direction
as it travels through the NRI slab, hence kyo = —k,,, for k, < k. The evanescent

waves, on the other hand, are assumed to decay in both media, thus producing a

69



diffraction-limited curve. It is apparent by comparing the diffraction-limited curve
and the experimental data that the proposed lens design does achieve super-resolution.
The half-power beamwidth of the diffraction-limited curve is 0.36), as is expected for
a line source of TM polarization outside of the reactive near field. The half-power
beamwidth of the experimental curve is 0.252\, which corresponds to a resolution
enhancement of 2.0. In the experiment, this resolution enhancement is maintained

over a bandwidth of SMHz or 0.33%.
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Figure 3.11: Normalized electric field magnitude at the image plane (x = 2cm). The
experimental field magnitude is plotted with a solid line, the theoretical
diffraction-limited field magnitude is plotted with a dotted line and the
field magnitude as predicted by assuming a homogeneous, isotropic, lossy
slab of the simulated material parameters given in the second section is
plotted with a dashed line.

The bandwidth of resolution enhancement is notably smaller than the backward-
wave bandwidth, but this is inherent to the phenomenon of super resolution. As
mentioned previously and rigorously shown in [40, 41, 42, 43|, to achieve super res-
olution at the image plane, u, and €, must be very close to -1. Because backward
waves are inherently dispersive, the material parameters necessarily diverge from the
ideal values as the frequency changes. The resolution enhancement bandwidth mea-

sures the bandwidth over which the material parameters are close enough to produce