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ABSTRACT

Broadband, Volumetric Negative-Refractive-Index Media

by

Scott M. Rudolph

Chair: Anthony Grbic

Since their invention, negative-refractive-index (NRI) media have been plagued by

three primary limitations: narrow bandwidth, high loss and polarization dependence.

In this thesis, each of these problems is addressed. First, a new metamaterial topology

that achieves negative permeability over a broad bandwidth is introduced. This struc-

ture is used to realize a broadband, volumetric NRI medium that is then thoroughly

analyzed using multiconductor transmission line (MTL) theory. A homogenized, pe-

riodic form of MTL analysis is used to derive a simplified dispersion equation, as well

as expressions for the Bloch impedance, permittivity and permeability for an infinite

NRI medium.

The analytical methods are supported by both full-wave simulation and measured

results. Two broadband NRI lenses are presented: one contained inside a waveguide

and the other in free space. Both lenses exhibit super-resolving capabilities: the first

at 2.45GHz and the second at 10.435GHz. The transmission and reflection coefficients

of the free-space lens are measured using a quasioptical Gaussian beam telescope, and

the material parameters of the lens are extracted for these measurements. This lens

exhibits a negative index of refraction over a fractional bandwidth of 41.2%. The

xviii



low-loss performance of this metamaterial lens is experimentally verified. The lens

exhibits 0.17dB of loss per unit cell and a figure of merit (FOM = n′/n′′) of 31.4

at the operating frequency of 10.435GHz. These properties allow the recovery of

evanescent spatial frequencies over a bandwidth of 7.4%. Additionally, the measured

focal pattern at the image plane of the lens is accurately predicted using the material

parameters obtained from the transmission measurements.

A polarization-independent NRI medium is also reported. The design of this

structure uses stereolithography and electroplating to complete the requisite three-

dimensional fabrication on a large scale (more than 400 unit cells). The NRI band-

width of this medium is 24%. A NRI lens that operates at 1.54GHz is designed

and fabricated using this isotropic topology. At this frequency, the lens produced a

super-resolved focus independent of the type of source and its polarization.
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CHAPTER I

Introduction

1.1 Background

When building a bridge, the designer does not consider the fact that the steel he is

using is actually a collection of iron and carbon atoms. The doctor performing surgery

has no need to analyze how the carbon and hydrogen bond together to form human

tissue. Instead, both of these professionals treat the materials that they encounter

as homogeneous media, each with their own specific properties. Microwave engineers

also regard most natural materials as being homogeneous with electrical character-

istics specific to each. Despite the fact that all materials consist of molecular and

atomic structures, the simplifying assumptions of homogeneous material properties

have yielded reliable results in the field of microwave engineering.

The discovery of the atom drastically changed mankind’s perception of the ob-

jects that surround us. The materials that make up the natural world were no longer

uniform regions of space as they were previously thought to be. Instead, any non-

vacuous medium was found to consist of microscopic arrangements of particles. Sci-

entist quickly learned that the nature of these particles and how they were arranged

gave a particular medium unique material properties. In Fig. 1.1(a) for example, the

depicted periodic structure of carbon atoms produces a diamond: the hardest natural

mineral and a low-loss dielectric. However, a different periodic arrangement of the
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carbon atoms yields graphite (Fig. 1.1(b)): a comparatively soft material and a good

electrical conductor. This example demonstrates how the microscopic structure of a

material gives rise to its physical and electrical properties.

(a) One unit cell of a diamond crystal. (b) Two layers of the graphite depicting the
atomic structure of the material.

Figure 1.1: The atomic structures of two carbon allotropes. The spheres represent
carbon atoms, and the rods indicate the bonds between the atoms.

Simply because modern science has demonstrated that materials have an atomic

substructure is no reason to stop treating these materials as homogeneous objects.

The fields of microwave engineering and optics both existed prior to the development

of quantum theory and also predated the discovery of the atom. In these fields,

treating materials as homogeneous media allows scientists and engineers to make

simple, accurate predictions of the behavior of electromagnetic waves that interact

with them. Without this simplified view, the design of most current microwave and

optical components would be impractically complex.

However, at higher frequencies, such as gamma and x-rays, natural materials no

longer behave as homogeneous media. Rather, they must be considered on the molec-

ular level in order to accurately predict how electromagnetic waves interact with them
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[1]. The reason for the difference is that the wavelength of these electromagnetic fields

is comparable to or even smaller than the molecular or atomic structure of natural

materials. In this case, the medium no longer appears homogeneous. Conversely,

if the wavelength of an electromagnetic wave is much larger than the substructure

of the medium through which it travels, the wave propagates through the material

as though it were completely homogeneous. A consequence of this condition is that

the substructure of a material need not be on the atomic or molecular scale to give

the appearance of homogeneity at microwave or optical frequencies. Instead, the

substructure must only be much smaller than the wavelength of interest.

This concept led to the development of effective medium theory [2]. Using this

theory, engineers could combine different materials to achieve effective dielectric con-

stants that were not readily available. Subsequently, metals were also used to achieve

desired dielectric material parameters [3, 4, 5]. Fig. 1.2 shows an example of metallic

spheres arranged in a periodic lattice used to focus microwaves like an optical lens [4].

The periodic arrangement of the metallic spheres in Fig. 1.2 has a similar appearance

to the depiction of the diamond crystal in Fig. 1.1(a). This illustrates the similarities

between artificial and natural materials. Both are periodic arrays of inclusions, whose

electrical properties change depending on the type and arrangement of the inclusions.

The most obvious difference between the two is their periodicity: the diamond crystal

lattice is periodic over 0.357nm and behaves like a homogeneous medium for frequen-

cies beyond the optical spectrum, while the array of metallic spheres has a periodicity

of several millimeters and exhibits homogeneity for microwave frequencies and below.

The use of metallic inclusions allowed the natural limits of material parameters

to be overcome. Artificial dielectrics with uncommon properties, such as media with

an effective relative permittivity less than 1 [6] or even less than 0 [7], could be con-

structed using periodic arrays of wires. While these material parameters seem exotic,

such media do exist naturally over limited frequency ranges. Metals exhibit this
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Figure 1.2: An array of metallic spheres used to create a conventional lens at mi-
crowave frequencies.

property at optical frequencies and ionized gases display similar performance in the

microwave regime. Although the frequency range was still limited, these macroscopic

inclusions allowed media to be designed to exhibit specific relative permittivity values

less than 1 at nearly any frequency.

In the late 1990s, John Pendry developed an effective medium that broke the

limits that nature seemed to set for material parameters. Using metallic inclusions

known as split-ring resonators (SRRs), his research group was able to design effective

media that exhibited a negative permeability [8]. Since a negative permeability had

never been observed in natural materials (although certain natural materials have

subsequently been made to exhibit negative permeability by biasing them with ex-

ternal magnetic fields [9, 10]), this structure represented the first medium to exhibit

material parameters beyond those found in nature. Taking the Greek word “meta”,

which means “beyond”, these scientists called their new media “metamaterials”.

Metamaterials sparked great interest within the electromagnetic and optic com-

munities since they provided the means to realize electromagnetic media that were
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never before possible. Of particular interest were media that exhibited both neg-

ative permittivity and permeability for overlapping frequency ranges, which Victor

Veselago investigated in the 1960s [11]. These media, he showed, would exhibit a

negative index of refraction and a positive characteristic wave impedance, leading

to phase propagation and power flow in antiparallel directions. This phenomenon

was referred to as backward-wave propagation since the unusual phase progression

made the waves appear to be propagating backwards through the medium. As a

consequence of backward-wave propagation, Veselago demonstrated that flat slabs of

negative-refractive-index (NRI) media could focus electromagnetic waves. If properly

designed, these flat NRI lenses would also not reflect any energy, which is a short-

coming of all conventional lenses. After demonstrating that SRRs could be used to

build NRI media, Pendry revisited Veselago’s NRI lens and showed that it would also

exhibit the remarkable property of super resolution by restoring a source’s evanescent

spectrum at the focus [12]. Around the same time, the first metamaterial that exhib-

ited a negative index of refraction was realized [13], consisting of arrays of SRRs and

wires.

This achievement ushered in an era of rapid development in the field of meta-

materials. Exciting applications, such as the NRI lens and electromagnetic cloaking

[14], fueled the popularity of metamaterials. The ability to design materials that

exhibit tailored electrical properties gives unprecedented flexibility to scientists and

engineers. However, despite the thrilling prospects offered by these media, there are

key issues that must be addressed before the field of metamaterials can realize its full

potential.

1.2 Motivation

Microwave engineers have been reluctant to incorporate NRI metamaterials into

practical applications because of three primary limitations: narrow bandwidth, high
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loss and polarization dependence. Because metamaterials give engineers unprece-

dented control over electromagnetic fields, making them practical represents a sig-

nificant advance in the discipline of electromagnetism. In order to understand the

problems that arise from these limitations and how we can solve them, we must first

identify their causes. To do this, let us first consider the typical constitutive elements

of NRI media.

Typical NRI media rely on separate inclusions to achieve negative permittivity

and negative permeability. As mentioned in the previous section, metallic wire ar-

rays are the most common way to achieve a negative effective permittivity. This is

not surprising given that metals naturally exhibit negative permittivity below their

plasma frequencies (the frequency at which ϵ = 0), which typically occur in the opti-

cal spectrum. Wire arrays are used at microwave frequencies rather than solid metal

blocks to lower the plasma frequency into the microwave regime. Unfortunately, ma-

terials that naturally exhibit negative permeability are not so readily available. This

is because there is no magnetic analogue for an electrical conductor. As a result,

the development of a negative effective permeability medium is more complex than

an array of wires. Instead SRR arrays are the most common method of producing

negative permeability.

SRR arrays produce negative effective permeability by using a resonance to en-

hance the antiparallel magnetic field produced by the Faraday currents induced in the

ring [8]. In a closed ring, a time-varying magnetic flux induces Faraday currents, the

amplitudes of which are limited primarily by the loop’s inductance. These currents

produce a magnetic field which opposes the incident magnetic field, reducing the mag-

netic flux density. In an array of subwavelength loops, the individual loops exhibit

this same behavior, collectively giving the appearance of a diamagnetic medium (that

is, a medium with a relative permeability less than 1). The inductance of the loops

prevents the average induced magnetic field from overwhelming the incident field,
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ensuring that the total magnetic flux density is always in the same direction as the

incident magnetic field, and, consequently, the effective permeability of the medium

remains positive.

Negative permeability can be achieved by canceling the inductance which limits

the Faraday current. This is done by placing a capacitor (or a capacitive gap) in the

loop. Since the impedance of the inductance is directly proportional to frequency

while the impedance of the capacitance is inversely proportional to it, there must

necessarily be a frequency where the magnitude of the capacitive reactance is equal

to that of the inductive reactance. At this resonant frequency, the net reactance of

the entire loop is zero, meaning the Faraday currents are limited only by the resistive

losses in the loop. At frequencies just above the resonance, the high currents produce a

magnetic field that is both antiparallel to and higher in amplitude than the incident

magnetic field. Treating an array of these resonant loops as an effective medium

gives rise to a negative permeability, since the magnetic field incident in a particular

direction creates a magnetic flux density in the opposite direction.

Here the issue of loss in SRRs becomes apparent. When the loop’s reactance

is very small only the resistance of the metallic loop limits the current amplitude.

At these frequencies, large currents flow in the loop, and the resistive loss (I2loopR)

is substantial. As the operating frequency is moved away from the resonance, the

reactance of the loop begins to limit the current, reducing the resistive losses. Unfor-

tunately, the diminishing current in the loop also reduces the anti-parallel magnetic

field responsible for negative permeability, ultimately limiting the bandwidth over

which negative permeability can be achieved. The first condition suggests that the

operating frequency should be as far away from the resonant frequency as possible.

However, the second condition does not permit the desired negative permeability

values to be achieved at frequencies far above the resonance.

The typical SRR array can achieve negative permeability over a fractional band-
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width of only about 10% [15, 16]. Such narrow bandwidth forces the operating point

to be close to the resonant frequency of the split ring, where losses are high. Further-

more, in this frequency range the permeability changes rapidly, further reducing the

bandwidth for applications that require a specific relative permeability value. The

narrow bandwidth and high loss inherent in SRR arrays make it clear that a new

method of realizing negative permeability media is needed.

The preceding discussion demonstrates how the reliance on SRR arrays as neg-

ative permeability media has led to the issues of narrow bandwidth and loss. The

third issue, polarization dependence, is challenging not because of inherent physical

limitations but because of fabrication difficulties. It is not difficult to conceive of a

SRR/wire medium that is isotropic and polarization independent; a unit cell of such

a design can be seen in Fig. 1.3. However, imagining how to construct this design

is much more difficult. An “egg-crate” lattice of SRRs could be implemented using

printed-circuit-board technology. In fact, such a design has been constructed for use

in magnetic resonance imaging (MRI) [17]. Additionally, the three-dimensional wire

grid has also been constructed before. The challenge lies in bringing these components

together on a large scale (i.e. hundreds or thousands of unit cells). For instance, the

junctions of the wire grid must be electrically connected to achieve isotropic behavior,

but access to these junctions is limited since they are surrounded by layers of SRRs

on all sides.

Yet even if this challenge could be overcome and a polarization-independent

medium could be made, the medium would still exhibit the same bandwidth and

loss issues as the polarization-dependent SRR/wire media discussed above. Some

structures that exhibit isotropic, polarization-independent NRI over a broader band-

width have been proposed [18, 19]. Unfortunately, these structures require three-

dimensional interconnecting transmission lines, which present fabrication challenges

still more daunting than those of the three-dimensional SRR/wire media. In order
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Figure 1.3: One unit cell of an isotropic, polarization-independent SRR/wire medium.

to completely address the issue of polarization dependence, a method of achieving

isotropic NRI behavior over a broad bandwidth must be developed with large-scale

fabrication in mind.

1.3 Thesis Outline

In this thesis, solutions to all three of the issues discussed in the previous section

are presented. In Chapter II, the design of a broadband, low-loss NRI unit cell

is introduced. To explain the operation of the structure, a circuit model is derived

based on multiconductor-transmission-line (MTL) theory. Two types of MTL analysis

are then applied to the structure: traditional and homogenized. The traditional

MTL analysis allows for the rapid calculation of the dispersion diagrams and can

also be used to calculate the scattering parameters (S-parameters) of finite slabs of

the NRI metamaterial. The homogenized MTL analysis allows for the derivation

of closed-form equations for the propagation constant, impedance, permittivity and

permeability. These expressions provide intuition into the NRI medium’s operation

9



and insight into how such a structure can be optimized.

Chapter III discusses the realization of broadband, polarization-dependent NRI

lenses in experiment. Two designs for NRI lenses are presented: the first contained

in a parallel plate waveguide and the second in free space. Both designs are real-

ized through printed-circuit-board technology, making them simple to fabricate. The

designs are tested through near-field focusing experiments, and both lenses exhibit

resolution beyond the diffraction limit at their operating frequencies. For the free-

space design, the normal-incidence S-parameters are also presented. The measured

S-parameters allow the calculation of the material properties of the NRI lens which

are reported in this chapter as well. The measured material parameters are used to

predict the focusing abilities of the NRI lens with good agreement, demonstrating the

validity of the effective medium theory for these metamaterials.

In Chapter IV, the design of a broadband, low-loss, polarization-independent NRI

medium is introduced. The structure relies on a new, three-dimensional element

to achieve negative permeability called the split-cube resonator (SCR). The SCRs

achieve negative permeability over a much larger bandwidth than an array of SRRs.

Using these elements, the fabrication of an isotropic NRI lens is presented in detail.

Near-field measurements in free space demonstrate the isotropy of the lens by achiev-

ing super-resolved focusing with the same beamwidth independent of the orientation

of the lens with respect to the source. Analytical derivations of the predicted field

patterns corroborate the near-field focusing results for both electric and magnetic

dipole sources.

Finally, Chapter V provides a summary of the work presented in this thesis. The

notable achievements are outlined, and conclusions drawn from the research are briefly

discussed. Several ideas for future research in NRI metamaterials are also presented.

Some expand upon the work presented in the previous chapters, while others highlight

directions not investigated in this thesis. A list of the publications resulting from the
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contributions of this thesis is also given.
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CHAPTER II

The Design of Broadband, Low-Loss, Volumetric

NRI Media

2.1 The Development of Broadband Negative-Refractive-Index

Media

Of all the issues affecting negative-refractive-index (NRI) metamaterials, the nar-

row bandwidth of split-ring resonator (SRR)/wire media represents the most signif-

icant limitation. Using SRR arrays to achieve negative permeability constrains the

fractional NRI bandwidths of these media to approximately 10%. To make matters

worse, the material parameters are dispersive throughout this frequency range. The

SRR arrays exhibit a Lorentzian permeability response [8], and the permittivity of the

wire arrays follows the Drude model [7]. Consequently, specific material parameters

can only be maintained with reasonable tolerances over a fraction of the 10% band-

width. To make NRI metamaterials practical, their bandwidth must be improved.

When freed from this limitation, engineers can fully embrace the positive attributes

of NRI media.
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2.1.1 NRI Transmission-Line Media

Shortly after the introduction of SRR/wire arrays, a new class of NRI metama-

terials was developed: NRI transmission lines [20, 21, 22, 23, 24]. Their invention

provided a new perspective on NRI media. Rather than loading positive-refractive-

index media with resonant inclusions like the SRR, the loading elements in NRI

transmission lines are standard circuit components. To make a NRI transmission

line, loading capacitors are placed periodically in series with a standard transmission

line, and loading inductors are connected in parallel with the same periodicity. The

circuit diagram depicting one unit cell of this configuration is shown in Fig. 2.1.

In this topology, the negative series reactance of the loading capacitors overcomes

the positive series reactance of the transmission-line inductor at low frequencies. By

making the series reactance negative, the transmission line now appears to have neg-

ative permeability. Similarly, the negative shunt susceptance of the loading inductor

overcomes the positive shunt susceptance of the transmission-line capacitance, which

is equivalent to the transmission line exhibiting negative permittivity.

LTL C

L

CTL

Figure 2.1: One unit cell of a NRI transmission line.

By exhibiting negative material parameters, the NRI transmission lines were sim-

ilar to traditional SRR/wire media. However, the backward-wave bandwidth of the

NRI transmission lines was substantially greater than that of the SRR/wire arrays.

The reason for this was that the loading capacitor decreases the series reactance

over all frequencies and gives the transmission-line medium a Drude permeability re-
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sponse. This means that the effective permeability of a NRI transmission line does

not depend on a narrowband resonance as is the case for SRR arrays. Consequently,

negative permeability (as well as NRI) can be achieved over much broader bandwidths

in transmission-line media.

Unfortunately, with propagation confined to circuit boards, the NRI transmission

lines could not interface directly with free-space electromagnetic waves like SRR/wire

media. For this reason, NRI transmission lines are referred to as “planar” metamate-

rials, while the SRR/wire arrays are described as “volumetric” metamaterials. Many

of the envisioned applications of NRI media, such as free-space lenses, radomes and

waveguide filters, require that the metamaterials interact with volumetric electro-

magnetic waves rather than voltages and currents on a transmission-line network.

Consequently, planar NRI transmission lines could not be used as replacements for

volumetric NRI media such as SRR/wire arrays, despite their superior backward-wave

bandwidths.

Although NRI transmission lines cannot interface effectively with free-space waves,

examining the reasons behind their broadband performance can help determine how

volumetric NRI media can be improved. The wires in the SRR/wire array are the

volumetric analogue of the inductors in the planar NRI transmission lines. Both cause

their respective media to exhibit a Drude permittivity response, which provides nega-

tive permittivity with minimal dispersion. By designing the electric plasma frequency

(where ϵr = 0) to occur at or above the magnetic plasma frequency (where µr = 0),

the negative permittivity medium does not limit the NRI bandwidth at all. Instead,

it is the negative permeability medium that is responsible for the bandwidth lim-

itations of volumetric NRI metamaterials. Unfortunately, the series capacitors in

NRI transmission lines do not have a volumetric analogue capable of achieving a

Drude permeability response. Theoretically, the analogue should be a wire made of

a magnetic conductor oriented in the direction of the magnetic field, but magnetic
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conductors do not exist. Still, other characteristics of planar metamaterials can be

used to improve the performance of volumetric NRI media.

In NRI transmission lines, the loading components are integrated into the host

transmission line to form a traveling-wave structure. Traveling-wave structures, such

as distributed amplifiers [25] and traveling-wave antennas [26], are known for their

broadband operation. Each SRR, on the other hand, is an isolated LC resonator

that does not interact significantly with its neighboring elements. Consequently,

the effective permeability of SRR arrays changes rapidly with frequency, particularly

close to the LC resonance. However, if the SRRs could be made into a traveling-wave

structure, the medium would no longer be reliant on an isolated resonance to achieve

negative permeability and would be less dispersive as a result.

2.1.2 Realization of Broadband, Volumetric Negative Permeability

2.1.2.1 The Transmission-Line Cage

To transform the isolated SRRs into a traveling-wave structure, researchers sought

to increase the coupling between neighboring SRRs. First, inductive coupling was

used in the form of magnetoinductive waves [27]. This did increase the bandwidth

of the negative permeability response, however, the mutual inductance between the

neighboring SRRs was insufficient to produce anything beyond a marginal improve-

ment. The coupling between neighboring SRRs will be greatest if adjacent SRRs

are electrically connected, forming a “transmission-line cage” [28, 29], as depicted in

Fig. 2.2. The individual transmission-line cage unit cell appears as either a two-

dimensional array of SRRs that are electrically connected in the horizontal directions

(Fig. 2.3(a)) or a two-dimensional grid of two-wire NRI transmission lines (Fig.

2.3(b)), depending on the planes chosen for the unit-cell boundaries. Both perspec-

tives indicate that the structure will exhibit broadband behavior. When viewed as

Fig. 2.3(a), the perfect coupling between SRRs leads one to expect a wide-band
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frequency response. Considering the structure as a grid of NRI transmission lines

emphasizes the traveling-wave nature of the transmission-line cage, which suggests

the structure should be minimally dispersive.

Figure 2.2: An array of electrically connected SRRs which forms the broadband nega-
tive permeability medium. The black rectangles represent chip capacitors
used to tune the resonance of the transmission-line cage.

It should be noted that the structures in Figs. 2.2 and 2.3 only produce neg-

ative permeability for horizontally polarized magnetic fields. For this polarization,

negative permeability is achieved by enhancing the Faraday currents induced in the

transmission-line cage, similar to what happens in SRR arrays [8]. However, if the

magnetic field is vertically polarized, the connections between adjacent rings cause

the currents induced in one ring to cancel the currents induced by its neighbors. The

induced currents would cancel in a similar fashion for horizontally polarized magnetic

fields if the rings were electrically connected in the vertical direction. For this reason,

the electrical connections are only made in the horizontal directions, while the vertical

layers remain separated.

To observe the propagation characteristics of the transmission-line cage, the dis-
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Figure 2.3: Two perspectives of the transmission-line cage unit cell. The

persion diagram for on-axis propagation in the horizontal direction was calculated

through full-wave simulation and is plotted in Fig. 2.4 (for an explanation of disper-

sion diagrams, refer to Appendix A). The modes of interest are plotted with solid

lines and correspond to the magnetic field polarized in the horizontal direction; the

dotted lines denote modes in which the magnetic field is vertically polarized. Since

the transmission-line cage exhibits positive permittivity over all frequencies for the

modes of interest, the frequency range over which the medium exhibits negative per-

meability corresponds to a stopband in the dispersion diagram. The medium exhibits

negative permeability from 1.71GHz to 3.22GHz: a fractional bandwidth of 61%. This

bandwidth is approximately six times the typical bandwidth of SRR arrays [15, 16].

2.1.2.2 Contra-Directional Coupling

To better understand the performance of the transmission-line cage, the unit cell

shown in Fig. 2.3 can be simplified without affecting the modes of interest. As

mentioned earlier, the electric field is vertically polarized and the magnetic field is
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Figure 2.4: The dispersion diagram of the first four modes of the transmission-line
cage. The solid lines correspond to modes with the electric field polarized
vertically, while dotted lines show the modes with horizontal electric fields.
The dashed line shows the light line.

polarized horizontally and orthogonal to the direction of propagation. For this po-

larization, the vertical periodicity can be modeled through image theory by placing

perfect electrical conductors (PECs) on the top and bottom of the unit cell, as shown

in stage II of Fig. 2.5. This is equivalent to placing the transmission-line cage in

a parallel plate waveguide. To make the structure still simpler, image theory can

be applied again to replace the bottom half of the unit cell with a PEC (stage III

of Fig. 2.5). The structure can now be shifted by half a unit cell in each of the

horizontal directions, as shown in stage IV of Fig. 2.5. After these transformations,

the structure looks like a two-dimensional microstrip NRI transmission-line grid in-

side a parallel plate waveguide. Examining the dispersion characteristics of these

two structures in isolation suggests that they contra-directionally couple to form the

modes of interest in the dispersion diagram shown in Fig. 2.4. It should be noted

that propagation within the parallel plate waveguide is equivalent to propagation in

free space because the conductors that form the parallel plate waveguide arise from

modeling the vertical periodicity of the volumetric medium with image theory. As

a result, the contra-directional coupling between the NRI transmission-line grid and
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Figure 2.5: Transformation of the transmission-line cage unit cell into a microstrip
NRI transmission line within a parallel plate waveguide. Stage I repre-
sents the initial connected-SRR form of the transmission-line cage. Stage
II models the vertical periodicity with parallel conductors on the top and
bottom of the unit cell. Stage III employs image theory again to replace
the bottom half of the unit cell with a conducting plate. Stage IV shifts
the unit cell half a cell in both horizontal directions to view the connected
SRRs as a grid of NRI transmission lines. Stage V represents the unit cell
as a NRI transmission-line grid contained in a parallel plate waveguide.

the parallel plate waveguide represents the interaction of the transmission-line cage

with free-space waves.

The dispersion curves for the transmission-line cage are again shown in Fig. 2.6,

accompanied by the those of both the isolated microstrip NRI transmission-line grid

and the empty parallel plate waveguide. The microstrip NRI transmission-line grid

was simulated using Agilent’s Advanced Design System (ADS), a commercial mi-

crowave circuit simulator. It was modeled by lossless microstrip lines loaded with

series capacitors and shunt inductors (representing the vertical metallic strips in the

cage) with the same dimensions and component values as are shown in Fig. 2.3(b).

The empty parallel plate waveguide’s dispersion curve coincides with the light line,

as is expected since it models free-space propagation. By examining Fig. 2.6, it is ev-

ident that the modes of the transmission-line cage arise from the interaction between

the waves guided by the microstrip NRI transmission-line grid and the empty parallel

plate waveguide. At lower frequencies, the forward-wave mode of the parallel plate

waveguide is dominant because the NRI transmission line is still in cutoff. However,
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Figure 2.6: The dispersion curves of the isolated microstrip NRI transmission-line
grid (solid line with circles) and the unloaded parallel plate waveg-
uide (dashed). Coupling between these two structures forms the dis-
persion curve of the transmission-line cage (solid). The microstrip NRI
transmission-line grid dispersion curve was generated using ADS.

when the two modes are present at the same frequency, contra-directional coupling

occurs between the forward wave propagating within the parallel plate waveguide

and the backward wave guided by the NRI transmission line. This contra-directional

coupling produces a stopband which extends from 1.90GHz to 3.22GHz.

2.1.3 The Broadband NRI Medium

With the development of a metamaterial that exhibits negative permeability over

a wide frequency range, achieving broadband NRI is relatively simple. As mentioned

in Chapter I, the narrowband response of the SRRs was the limiting factor in the NRI

bandwidth of SRR/wire arrays. The wire array used in these metamaterials did not

constrain the bandwidth because it exhibited a Drude permittivity response. This

meant the negative permittivity frequency range was limited only at high frequencies

by the electric plasma frequency, which could be easily manipulated by changing the

effective inductance of the wires. Since the transmission-line cage allows negative

permeability to be achieved over a wide range of frequencies, adding appropriately

sized wires to each unit cell should result in a NRI bandwidth equal to the negative
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permeability bandwidth of the transmission-line cage.

Rather than simply adding wires, negative permittivity was achieved by adding an

inductively loaded metallic strip to the center of the transmission-line cage unit cell, as

shown in Fig. 2.7. The loading inductor allowed the inductance of the central strip to

be manipulated directly, making it easier to tune the effective permittivity of the NRI

medium. To verify that the wire/transmission-line cage medium did indeed exhibit

a NRI, the dispersion diagram for on-axis propagation in the horizontal direction

was calculated using full-wave eigenmode simulations (Fig. 2.8). NRI behavior was

observed from 1.71GHz to 3.17GHz, which is nearly the same frequency range over

which negative permeability was achieved in the transmission-line cage. The fractional

NRI bandwidth of the structure was 60%: close to a six-fold increase over the typical

SRR/wire fractional bandwidths.
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Figure 2.8: The dispersion diagram of the first four modes of the NRI metamaterial.
The solid lines correspond to modes with the electric field polarized ver-
tically, while dotted lines show the modes with horizontal electric fields.
The dashed line shows the light line.

2.2 Analytical Modeling of the Broadband NRI Medium Us-

ing Multiconductor-Transmission-Line Theory

Wire/transmission-line cage metamaterials provided a means to achieve broad-

band volumetric NRI media, but no procedure existed to design them efficiently.

Simple, accurate methods of designing planar NRI transmission-line media in one-

and two-dimensions are well-established [30, 31]. SRR/wire media also have closed-

form equations for the permeability of SRR arrays [8] and the permittivity of peri-

odic wire media [7, 32]. Unfortunately, none of these design methods are applica-

ble to wire/transmission-line cage media. The equations for NRI transmission lines

apply only to planar transmission-line networks, so the vertical periodicity of the

transmission-line cage medium precludes these formulae from predicting its perfor-

mance. The expressions derived for SRR/wire media do not account for coupling

between SRRs. Since the SRRs are electrically connected in the transmission-line

cage, these equations also cannot be used. Even if the coupling between SRRs could

be modeled, problems would arise concerning the permittivity of the medium be-

cause the permittivity expressions for wire arrays do not account for the electrical
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effect of the SRRs. As a result of these issues, a new method is needed to model these

broadband volumetric NRI media.
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Cond 2

 Ground

(Cond 0)

Figure 2.9: One unit cell of the MTL representation of the broadband NRI medium.

Fig. 2.5 shows that, for the polarization of interest, the broadband volumetric

negative permeability medium can be represented as a NRI transmission-line grid

inside of a parallel plate waveguide. In [33, 34], structures similar to stage V of Fig.

2.5 were modeled using multiconductor transmission-line (MTL) theory [35, 36]. For

this analysis, the bottom conductor serves as the reference conductor for both the NRI

microstrip transmission line as well as the parallel plate waveguide. By representing

the parallel plate waveguide and the microstrip line as a MTL circuit, the coupling

between the two conductors is inherently taken into account. Adding metallic strips

from the parallel plate waveguide to ground, as shown in Fig. 2.9, introduces negative

permittivity to the negative permeability medium. Representing the broadband NRI

medium in this way shows that MTL analysis can be applied to this structure as well.

2.2.1 General Multiconductor Transmission Line Theory

Before analyzing the transmission-line cage, a brief introduction to MTL analysis

will be provided. MTL theory is a more general version of standard transmission-line

theory taught in undergraduate classes on electromagnetism. The generalization is
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Figure 2.10: Lumped element representations of single and multiconductor transmis-
sion lines.

achieved through the use of vectors and matrices, which allows the voltage and current

relationships for multiple conductors to be expressed in a single matrix equation.

To illustrate the similarities between MTL and traditional circuit theory, consider

the familiar lumped-element circuit model for a single transmission line shown in Fig.

2.10(a). Propagation along this line is governed by the well known time-harmonic

transmission-line equations (telegrapher’s equations):

− d

dx
V = ZI (2.1a)

− d

dx
I = Y V. (2.1b)

Here V and I are the voltage and current waves on the transmission line, respectively,

and x is the propagation direction. Z is the series impedance of the transmission line

(defined as Z = jωL + R in terms of the circuit elements in Fig. 2.10(a)), and Y

is its shunt admittance (defined as Y = jωC + G). These two equations govern the

propagation of voltages and currents along any single transmission line.

Taking the derivative with respect to x of Eq. (2.1a) and substituting in Eq.
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(2.1b) yields the one-dimensional Helmholtz equation:

d2

dx2
V = ZY V. (2.2)

The linear combination of the two solutions to Eq. (2.2) gives the voltage on the line

as a function of position:

V (x) = e−
√
ZY xV + + e

√
ZY xV − (2.3)

= e−γxV + + eγxV −,

where V + and V − are the complex amplitudes of the forward- and backward-traveling

waves, respectively. Eq. (2.3) also defines the propagation constant of the transmis-

sion line as

γ =
√
ZY , (2.4)

which, in the lossless case, leads to the familiar

γ = jω
√
LC. (2.5)

Substituting Eq. (2.3) into Eq. (2.1a) gives a similar expression for the current

on the line as a function of position:

I (x) =
γ

Z

(
e−

√
ZY xV + − e

√
ZY xV −

)
=

√
Y

Z

(
e−

√
ZY xV + − e

√
ZY xV −

)
(2.6)

=
1

Z0

(
e−

√
ZY xV + − e

√
ZY xV −

)
,
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This expression defines the characteristic impedance of the transmission line as

Z0 =
γ

Z
=

√
Z

Y
, (2.7)

or, in the lossless case,

Z0 =

√
L

C
. (2.8)

MTL theory extends this same analysis to any number of parallel transmission

lines. In the case of n transmission lines shown in Fig. 2.10(b) (plus a reference

ground conductor), the voltages and currents on each line are represented by n × 1

vectors, V and I, with each element representing the voltage or current on a specific

conductor. Consequently, Z and Y are n × n impedance and admittance matrices,

respectively, defined as Z = jωL + R and Y = jωC + G in accordance with the

circuit diagram in Fig. 2.10(b). The diagonal elements of these matrices describe

how the voltage on each line affects the current on the same line. The off-diagonal

elements represent the mutual coupling between each transmission line. Therefore,

if the transmission lines in a circuit are uncoupled, the matrices representing that

circuit would be diagonal. Generally, all of the matrix elements are assumed to be

non-zero, so the multiconductor telegrapher’s equations are

d

dx


V1

...

Vn

 =


Z11 · · · Z1n

...
. . .

...

Zn1 · · · Znn



I1
...

In

 −→ − d

dx
V = ZI (2.9a)

d

dx


I1
...

In

 =


Y11 · · · Y1n

...
. . .

...

Yn1 · · · Ynn



V1

...

Vn

 −→ − d

dx
I = YV. (2.9b)

By eliminating I from Eqs. (2.9a) and (2.9b), the multiconductor telegraphers

equations yield a one-dimensional Helmholtz equation, which describes propagation
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in the x̂ direction:

d2

dx2
V = ZYV. (2.10)

Solving this equation for V yields

V (x) = e−
√
ZYxV+ + e

√
ZYxV− (2.11)

= e−
√
ΓxV+ + e

√
ΓxV−,

where V± represents the complex voltage waves traveling on each conductor in either

the positive or negative x̂ direction. Eq. (2.11) defines the propagation constant of

the MTL transmission line as the matrix

Γ =
√
ZY. (2.12)

For a brief discussion concerning Γ and the calculation of the exponential propagation

matrix e−
√
Γx, refer to Appendix B.

Inserting Eq. (2.11) into Eq. (2.9a) gives the expression for the currents on the

transmission lines:

I (x) = Z−1Γ
(
e−

√
ΓxV+ − e

√
ΓxV−

)
. (2.13)

Comparing Eq. (2.13) to Eq. (2.6), it can be seen that the characteristic impedance

matrix of the MTL system is defined by the relationship

Z0
−1 = Z−1Γ −→ Z0 = Γ−1Z. (2.14)

It is interesting to note that the characteristic impedance matrix of the MTL circuit

cannot be simplified to the familiar form of Eq. (2.8) because the matrices in Eq.

(2.14) do not cancel in the same way as scalar variables do.

Using Eqs. (2.11) and (2.13), the relationship between the voltages and currents
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at different positions along the transmission lines can be calculated using 2n × 2n

transfer matrices (ABCD matrices) [35]:

V (l)

I (l)

 =

 cosh (Γl) − sinh (Γl)Z0

−Y0 sinh (Γl) Y0 cosh (Γl)Z0


V (0)

I (0)

 (2.15)

=

ATL BTL

CTL DTL


V (0)

I (0)

 ,

where Y0 = Z0
−1. The transfer matrix of a MTL system is particularly powerful

since it contains both the propagation constant matrix (Γ) and the characteristic

impedance matrix (Z0) of the circuit. Once the transfer matrix of a MTL system has

been obtained, the effects of arbitrary excitations and terminations can be propagated

along the transmission lines.

2.2.2 Defining the Wire/Transmission-Line Cage Medium as a Multicon-

ductor Transmission-Line Circuit

For the remainder of this chapter, the discussion will be limited to the specific case

of the wire/transmission-line cage medium. Since this structure has two transmission

lines that share a common ground conductor (the parallel plate waveguide and the

NRI transmission-line grid), the matrices associated with this analysis will be 2× 2.

The parallel plate waveguide is defined as conductor 1, while conductor 2 represents

the microstrip transmission line. The vertical metallic strips are modeled as lumped

inductors, as shown in the MTL model in Fig. 2.11.

Before beginning the MTL analysis, the values of the loading elements and the

impedance and admittance matrices of the unloaded transmission lines must be found.

In this case, the conductors are assumed to be lossless, so the impedance and admit-
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Figure 2.11: One unit cell of the MTL representation of the broadband NRI medium
shown in Fig. 2.7.

tance matrices are entirely determined by the inductance and capacitance matrices:

Z11 Z12

Z21 Z22

 = jω ·

L11 L12

L21 L22

 (2.16a)

Y11 Y12

Y21 Y22

 = jω ·

C11 C12

C21 C22

 . (2.16b)

The values of the capacitance and inductance matrices are obtained in the static

limit by modeling the unloaded conductors using Ansoft’s Maxwell, a commercial

finite-element electromagnetic simulator. Since separation between the conductors is

small compared to the wavelength for the frequencies of interest, the static solution

is accurate. The values of the loading elements (L, Lw and C) are extracted from

full-wave simulations at the frequency of operation using Ansoft’s HFSS. These values

were found to vary negligibly over the entire frequency range of interest. The values

of all the variables used in this MTL analysis are tabulated in Tab. 2.1.
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Parameter Value Description
L11 812.04 nH/m Self inductance of the parallel plate waveguide
L21 626.92 nH/m Mutual inductance between the transmission lines
L22 1085.8 nH/m Self inductance of the NRI transmission-line grid
C11 32.33 pF/m Self capacitance of the parallel plate waveguide
C21 -24.12 pF/m Mutual capacitance between the transmission lines
C22 31.25 pF/m Self capacitance of the NRI transmission-line grid
L 2.89 nH Loading inductor of the NRI transmission-line grid
Lw 5.41 nH Loading inductor of the parallel plate waveguide
C 0.388 pF Loading capacitor of the NRI transmission-line grid
d 10 mm Horizontal dimension of the MTL unit cell
h 6.5 mm Vertical dimension of the MTL unit cell

Table 2.1: Design parameters for the MTL system shown in Fig. 2.9.

2.3 Traditional MTL Analysis

To apply MTL analysis to the structure shown in Fig. 2.9, the structure must

first be broken up into its constitutive elements: coupled transmission lines, loading

capacitors and loading inductors. The circuit which models on-axis propagation in

the NRI medium is shown in Fig. 2.12(a), with dashed lines delineating individual

components. Transfer matrices for each of the elements are shown in Fig. 2.12(b),

where the transfer matrices of the transmission-line segments are defined by Eq. 2.15.

These matrices can then be combined through standard matrix multiplication in the

order shown in Fig. 2.12(b) to obtain the transfer matrix of the entire unit cell

[35, 36]. From this complete transfer matrix, the propagation characteristics of the

broadband NRI medium can be determined.

2.3.1 Dispersion Diagrams

2.3.1.1 NRI Medium

Recalling from Eq. (2.15) that a transfer matrix actually consists of four n × n

(here, 2 × 2) submatrices, it can be noted that the upper left submatrix depends

only on the propagation constant of the medium: ATL = coshΓl. Diagonalizing
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Figure 2.12: MTL circuit and matrix representations of the broadband NRI medium.

this submatrix and solving for the propagation constant yields the permitted modes

for the infinite medium, γc and γπ [37]. By applying this analysis over a range of

frequencies, the dispersion diagram of the NRI medium is given by the imaginary

part of propagation constants (ℑ{γc,π}). Over the frequency ranges for which the

eigenmodes are in cutoff, the attenuation constants are given by the real parts of γc,π.

The attenuation and propagation constants of both modes of the NRI medium are

plotted in Fig. 2.13.

As can be seen in Fig. 2.13, the c-mode of the NRI medium is in cutoff through-

out the frequency range of interest. The attenuation constant of this mode is over

100Np/m throughout this frequency range. Thus, the π-mode is the only mode

present in the NRI structure. This mode exhibits the anticipated NRI behavior over

a wide frequency range. To examine the accuracy of this analysis, the propagation

constant calculated using MTL theory is compared to that obtained from finite ele-
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ment simulations (also plotted in Fig. 2.13) with good agreement. It should be noted

that MTL analysis does not predict the modes that are polarized orthogonally to the

modes of interest (plotted with dotted lines in Fig. 2.8). This is because the image

theory used to transform Fig. 2.7 into Fig. 2.9 is only valid for vertically polarized

electric fields.
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Figure 2.13: Dispersion diagrams of the NRI medium as calculated by MTL analysis
and full-wave simulation (HFSS).

2.3.1.2 Negative Permeability Medium

The dispersion diagram of the negative permeability medium can also be calcu-

lated using MTL analysis. By setting the value of Lw = ∞, the effect of the central

wire is removed from the third transfer matrix shown in Fig. 2.12(b). The resulting

unit cell transfer matrix is that of the transmission-line cage medium.

The propagation and attenuation constants for both the c- and π-modes are plot-

ted for the transmission-line cage unit cell in Fig. 2.14. These curves quantita-

tively show the contra-directional coupling that was qualitatively described in section

2.1.2.2. For frequencies below 1.82GHz, the c- and π-modes are separate. Over this

frequency range, the c-mode corresponds closely to the parallel plate waveguide mode,

exhibiting forward-wave propagation. The π-mode on the other hand is similar to
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the backward-wave transmission-line mode. It is in cutoff until a resonant frequency

(1.58GHz), at which point its propagation constant displays a negative slope with

respect to frequency. At 1.82GHz the propagation constants of the two modes meet

and a significant change is observed in the dispersion diagram. The propagation

constants of both modes become complex, such that the imaginary parts of the two

modes are identical while the real parts are equal in magnitude but opposite in sign.

These complex propagation constants indicate that as one mode travels through the

medium, it couples power into the other mode. This contra-directional coupling per-

sists over nearly the same frequency range for which a stopband is observed in Fig.

2.4, with the upper limit of the stopband occurring at 3.2GHz. At higher frequencies,

the c-mode is in cutoff, and the π-mode exhibits dispersion characteristics similar to

that of a waveguide above cutoff or a periodic wire medium above its plasma fre-

quency. Similar behavior is also observed for the NRI medium (see Fig. 2.13) over

this frequency range.
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Figure 2.14: Dispersion diagrams of the NRI medium as calculated by MTL analysis
and full-wave simulation (HFSS).
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2.3.2 Finite Structures

The previous analysis dealt with finding the propagation characteristics of the

infinite NRI or negative permeability medium, however, in practice, all structures are

finite. Consequently, MTL analysis will be most useful if it can predict the behavior

of finite structures as well. This can be accomplished by again using the transfer

matrices of the complete unit cell defined in Fig. 2.12. For a slab that is n unit cells

thick, the transfer matrix of a single unit cell should be raised to the nth power to

find the transfer matrix for the entire finite slab. This final matrix is a 4× 4 matrix

of the form: 

V1(ℓ)

V2(ℓ)

I1(ℓ)

I2(ℓ)


=



a11 a12 b11 b12

a21 a22 b21 b22

c11 c12 d11 d12

c21 c22 d21 d22





V1(0)

V2(0)

I1(0)

I2(0)


. (2.17)

The reflection and transmission coefficients for a slab of the NRI medium are typ-

ically found for a free-space wave normally-incident on the structure. Recalling that

the parallel plate waveguide represents free space propagation, this scenario can be

modeled by connecting ports to the terminals of conductor 1 and terminating con-

ductor 2 with an impedance that appropriately represents the physical situation. For

example, if conductor 2 ends in an open circuit, the impedance applied to that termi-

nal would be infinity, whereas if the conductor ends in a short circuit, the impedance

would be zero. These terminations convert the four-port MTL structure shown in

Fig. 2.15(a) into the two-port network shown in Fig. 2.15(b).

To express this simplification mathematically, the transfer matrix (Eq. 2.17)

should no longer depend on the voltage and currents on conductor 2 (V2 and I2).

Applying Kirchhoff’s voltage laws at each of the terminations gives the relationships
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between V2 and I2 at both of those locations:

V2(0) = ZL · I2(0) (2.18a)

V2(ℓ) = −ZL · I2(ℓ) (2.18b)

where ZL is the impedance used to terminate conductor 2 at each end of the NRI slab.

By using a variable for the termination impedance, this method remains valid for any

symmetric 4-port structure. Further, this method can model the fringe capacitance

in the case of an open circuit or the via inductance in the case of a short circuit.

Eqs. (2.18a) and (2.18b) are used as boundary conditions to reduce the 4×4 transfer

matrix of Eq. (2.17) to the 2× 2 matrix

V1(ℓ)

I1(ℓ)

 =

A B

C D


V1(0)

I1(0)

 , (2.19)

where

A =a11 −
(b12 − a12 · ZL) (a21 − c21 · ZL)

b22 − (a22 + d22) · ZL + c22 · Z2
L

, (2.20)

B=b11 −
(b12 − a12 · ZL) (b21 − d21 · ZL)

b22 − (a22 + d22) · ZL + c22 · Z2
L

, (2.21)

C=c11 −
(d12 − c12 · ZL) (a21 − c21 · ZL)

b22 − (a22 + d22) · ZL + c22 · Z2
L

, (2.22)

D=d11 −
(d12 − c12 · ZL) (b21 − d21 · ZL)

b22 − (a22 + d22) · ZL + c22 · Z2
L

. (2.23)

The finite structure considered here consists of four of the unit cells shown in Fig.

2.12, with the second conductor being terminated with an additional 2L inductor on

either end of the slab. To account for this inductance, the termination impedance was

defined as ZL = jω2L. To provide a direct comparison, the finite structure was also

simulated in Ansoft’s HFSS. The full-wave model was a four-cell-thick slab consisting
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Figure 2.15: Transformation of the four-port MTL system to a two-port system that
can be excited by a plane wave in free space.

of the unit cells shown in Fig. 2.7. This structure shows the reason for the additional

inductance used to terminate the second conductor in the MTL model. The metallic

strips at the edge of the transmission-line cage were the same thickness as those in the

middle of the slab. Since the metallic strips in the middle of the slab were modeled as

the parallel combination of two 2L inductors, those at the edges of the slab needed to

be as well. Perfect electric conductor boundary conditions were enforced on the top

and bottom of each unit cell to achieve infinite periodicity in the vertical direction

for the polarization of interest. Periodic boundary conditions with zero phase delay

were applied to the sides of the four-cell slab to enforce infinite periodicity in the

transverse direction. The reflection and transmission coefficients (equivalently, the

scattering-parameters) of the four-cell slab were calculated for normal incidence and

are compared with full-wave simulation results in Figures 2.16(a) and 2.16(b). Good

agreement is shown, except for the low-frequencies where there is a slight frequency

shift.

To provide further evidence that Eq. (2.19) is correct, the multiconductor circuit

used in the MTL analysis was simulated using lumped element and transmission-line

components in ADS. The S-parameters from this simulation agree exactly with those

obtained through MTL analysis. With this confirmation, several explanations can
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be given for the shift in the low-frequency values. The first is the extraction of the

capacitance and inductance matrices of the host MTL transmission lines in the static

limit. At low frequencies, the loading elements cause the phase delay across the unit

cell to increase significantly, which alters the field distribution assumed in the static

limit. The second explanation is the effect the finite size of the NRI slab had on the

values of the constitutive parameters of the unit cell. Since the values of the loading

elements and the host MTL transmission lines were extracted under the assumption

of infinite periodicity, their values are slightly different at the boundaries of the slab.
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circuit simulator (ADS).
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(b) Transmission coefficients calculated by full-
wave analysis (HFSS), MTL analysis and a com-
mercial circuit simulator (ADS).

Figure 2.16: Scattering parameters of a four-cell NRI slab.

2.4 Homogenized MTL Analysis

Rigorous MTL analysis produces fast, accurate results, but it does not yield closed-

form expressions nor much physical intuition beyond the circuit model itself. In order

to derive simple intuitive equations that represent the NRI medium, the unit cell must

be homogenized [34, 38]. To homogenize the unit cell, the transmission lines are bro-

ken down into their equivalent lumped components: inductors and capacitors. These

lumped transmission-line components are simply the elements of the impedance and

admittance matrices of the unloaded transmission lines. The transmission-line com-
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ponents and the loading inductors and capacitors are then incorporated into a circuit

model of the unit cell, as shown in Fig. 2.17. Because the unit cell is homogenized,

the order of the elements is not important. For convenience, the elements of the NRI

unit cell in Fig. 2.17 have been arranged in the form of a T-network.

2L

2Lw

L11/2

|C21|=|C12|

2C

C20

L22/2

C10

NRI 

Transmission-Line

(Cond 2)

Parallel Plate 

Waveguide

(Cond 1)

L11/2

L22/2

L21/2=L12/2
L21/2=L12/2

2Lw

2L

2C

C10 = C11-|C21|

C20 = C22-|C21|

Figure 2.17: Circuit model of the NRI medium used for the homogenized MTL anal-
ysis.

After representing the unit cell as a T-network of lumped element components, the

next step in the simplified MTL analysis is to solve for the homogenized impedance

and admittance matrices. To find the impedance matrix, the impedance of the series

loading element, C, is added to the impedance of the self-inductance on conductor 2

(L22), effectively absorbing the lumped element into the transmission line. Similarly,

to find the admittance matrix, the admittances of the shunt loading elements, Lw

and L, are added to the admittances of the self-capacitances of conductor 1 (C11) and

conductor 2 (C22), respectively. The resulting impedance and admittance matrices

for the circuit in Fig. 2.17 are

Z11 Z21

Z21 Z22

 = jω ·

L11d L21d

L21d L22d− 1
ω2C

 (2.24a)

Y11 Y21

Y21 Y22

 = jω ·

C11d− 1
ω2Lw

C21d

C21d C22d− 1
ω2L

 . (2.24b)
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Free Space (Cond 1)
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Figure 2.18: Schematic of the two-conductor MTL system for on-axis propagation in
terms of impedance and admittance parameters.

The elements of the modified impedance and admittance matrices are subsequently

used to form the homogenized circuit model of the unit cell, shown in Fig. 2.18. Note

that reciprocity is assumed in the circuit model as well as in Eqs. (2.24a) and (2.24b).

Typically, absorbing the loading elements into the impedance and admittance

matrices of the transmission lines would neglect the effect of spatial dispersion caused

by the periodic nature of the unit cell. However, the periodicity can be accounted

for using the Floquet theorem, which states that the voltages and currents on each

end of the unit cell only differ from each other by a complex constant, here defined

as e−γd. The Floquet theorem is enforced as shown in the circuit diagram in Fig.

2.18. Therefore, this method remains valid for any phase difference across the unit

cell as long as the lengths of the interconnecting transmission lines are electrically

short (<< λ).

2.4.1 Dispersion Diagram

For the case of on-axis propagation, the dispersion equation can be derived from

the circuit shown in Fig. 2.18 by solving for the complex propagation constant, γ.
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Application of Kirchhoff’s voltage law yields the following expressions:

V1 − I1
Z11

2
− I2

Z21

2
− I2e

−γdZ21

2
− I1e

−γdZ11

2
− V1e

−γd = 0 (2.25)

V2 − I2
Z22

2
− I1

Z21

2
− I1e

−γdZ21

2
− I2e

−γdZ22

2
− V2e

−γd = 0. (2.26)

Simplifying these equations yields

V1

(
1− e−γd

)
= I1

Z11

2

(
1 + e−γd

)
+ I2

Z21

2

(
1 + e−γd

)
(2.27)

V2

(
1− e−γd

)
= I1

Z21

2

(
1 + e−γd

)
+ I2

Z22

2

(
1 + e−γd

)
. (2.28)

Euler’s identity states that 1−e−γd = 2 sinh
(
γd
2

)
e−γd/2 and 1+e−γd = 2 cosh

(
γd
2

)
e−γd/2.

Dividing each side of Eqs. (2.27) and (2.28) by cosh
(
γd
2

)
e−γd/2 and combining the

equations into a single matrix expression yields the relationship between the voltages

and currents in terms of the impedance matrix:

2 ·
sinh

(
γd
2

)
cosh

(
γd
2

)
V1

V2

 =

Z11 Z21

Z21 Z22


I1
I2


2 · tanh

(
γd

2

)V1

V2

 =

Z11 Z21

Z21 Z22


I1
I2

 . (2.29)

To find the relationship between the currents and voltages in terms of the admit-

tance matrix, Kirchhoff’s current law can be applied to the circuit:

I1
(
1− e−γd

)
= Ṽ1Y11 − Ṽ2Y21 (2.30)

I1
(
1− e−γd

)
= Ṽ1Y21 − Ṽ2Y22., (2.31)

where Ṽi is the voltage at the midpoint of the ith conductor. Ṽi is not known for either

conductor, but it can be found by applying Kirchhoff’s voltage law to the circuit one
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half at a time:

Ṽ1 = V1 + I1Z11/2 + I2Z21/2 (2.32a)

V1 = eγd · Ṽ1 − I1Z11/2− I2Z21/2 (2.32b)

V2 = Ṽ2 + I1Z21/2 + I2Z22/2 (2.33a)

V2 = eγd · Ṽ2 − I1Z21/2− I2Z22/2. (2.33b)

Solving for Ṽi in Eqs. (2.32) and (2.33) yields

Ṽ1 =
V1e

−γd/2

cosh γd
2

(2.34)

Ṽ2 =
V2e

−γd/2

cosh γd
2

. (2.35)

Substituting Eqs. (2.34) and (2.35) into Eqs. (2.30) and (2.31), gives the desired

matrix equation:

2 sinh

(
γd

2

)
cosh

(
γd

2

)I1
I2

 =

Y11 Y21

Y21 Y22


V1

V2


sinh (γd)

I1
I2

 =

Y11 Y21

Y21 Y22


V1

V2

 . (2.36)

Combining (2.29) and (2.36), the current elements can be eliminated resulting in

a 2× 2 homogeneous system of equations (an eigenvalue problem):

a1 − 4 sinh2
(
γd
2

)
b1

b2 a2 − 4 sinh2
(
γd
2

)

V1

V2

 =

0
0

 , (2.37)

41



where

a1 = Z11Y11 + Z21Y21, a2 = Z22Y22 + Z21Y21,

b1 = Z11Y21 + Z21Y22, b2 = Z22Y21 + Z21Y11.

In order to find nontrivial solutions, the determinant of Eq. (2.37) must be set equal

to zero. This determinant produces the dispersion equation for on-axis propagation:

4 · sinh2

(
γd

2

)
=

a1 + a2 ±
√
(a1 − a2)

2 + 4b1b2

2
. (2.38)

Applying this analysis in two directions gives the following two-dimensional dispersion

equation:

4 · sinh2

(
γxd

2

)
+ 4 · sinh2

(
γyd

2

)
= (2.39)

a1 + a2 ±
√
(a1 − a2)

2 + 4b1b2

2
,

where γx and γy are the propagation constants in the x̂ or ŷ direction.

As in the traditional MTL analysis discussed in section 2.3, the dispersion equa-

tions give two unique modes. Here, the c-mode corresponds to the plus sign in front

of the radical and the π-mode to the minus sign. Both modes are plotted in Fig. 2.19,

along with the dispersion curve generated from full-wave simulations for comparison.

As shown in Fig. 2.19, the c-mode is in cutoff throughout the entire frequency range

of interest, while the π-mode supports a backward wave. The two-dimensional dis-

persion diagram (described in Appendix A) for the π-mode generated using (2.39) is

compared with full-wave analysis in Fig. 2.20.

MTL analysis can also be used to examine how the propagation constant of the

NRI medium changes with direction. In [29], full-wave analysis showed that the
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structure in Fig. 2.7 exhibited isotropic behavior (negligible spatial dispersion) when

the phase difference across the unit cell was small. However, due to the amount of

time required to perform the full-wave eigenmode simulations, only kxd ≤ 40◦ and

kyd ≤ 40◦ were plotted. Using the two-dimensional dispersion Eq. (2.39), the isofre-

quency contours of the structure over the entire backward-wave band (shown in Fig.

3.15) can be calculated rapidly. Fig. 3.15 shows that the structure clearly exhibits

isotropic propagation at high frequencies, however, at low frequencies the propagation

constant changes significantly with direction due to spatial dispersion. This leads to

the questions of how significant these deviations in propagation constant can be while

still describing the propagation as “isotropic”. Typically, this is influenced by the spe-

cific application, and the answer depends on the overall size of the material and the

allowable deviation in phase over its extent. However, in discussing the properties of

an infinite medium, a general condition should be given.

In [39], the representation of continuous media using two-dimensional grids of

lumped elements is considered. Discretizing a continuous medium into such a grid

network results in spatial dispersion. However, effective medium theory asserts that

these lumped-element networks can be considered an accurate representation if the

cell size is at most d = λ
10
. The largest difference in propagation constant is between

on-axis propagation and propagation 45◦ off-axis, as shown in Fig. 3.15. Expressions

in [39] give the maximum percentage difference in propagation constant as 0.874%

for a cell size of d = λ
10
. By this stringent definition, the isotropic limit for this

metamaterial occurs at a frequency of 2.52GHz. Frequencies below 2.52GHz will

exhibit larger percentage differences in the propagation constant, however, as was

mentioned earlier, the acceptable level of variation is dependent on the application.

This limit can also be obtained directly from Eq. (2.39). For convenience, the

right hand side of the equation will be represented as −ϕ2. For on-axis propagation
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(e.g. γx = γ0◦ , γy = 0), Eq. (2.39) reduces to Eq. (2.38), now expressed as

4 · sinh2

(
γ0◦

d

2

)
= −ϕ2. (2.40)

For propagation 45◦ off-axis (γx = γy = γ45◦/
√
2), the dispersion equation can be

written as

8 · sinh2

(
γ45◦√
2

d

2

)
= −ϕ2. (2.41)

Using Eqs. (2.40) and (2.41), the ratio of γ45◦ to γ0◦ is found in terms of ϕ as

γ45◦

γ0◦
=

sinh−1

(√
−ϕ2

4

)
√
2 · sinh−1

(√
−ϕ2

8

) . (2.42)

Thus, the value of ϕ determines the variation between on- and off-axis propagation.

In the limit where γd is small, Eq. (2.38) becomes

−ϕ2 = 4 · sinh2

(
γxd

2

)
+ 4 · sinh2

(
γyd

2

)
≈ 4 ·

(
γxd

2

)2

+ 4 ·
(
γyd

2

)2

(2.43)

≈ (γd)2 .

If d = λ
10

is again taken to be the maximum unit cell size for which propagation

can still be assumed isotropic and given that γ = j 2π
λ
, the value of ϕ2 at this limit

becomes ϕ2 = (π/5)2 = 0.395. Using this value in Eq. (2.42), results in

γ45◦

γ0◦
= 1.0874. (2.44)

In other words, the maximum percentage difference in propagation constant is 0.874%,

the same as that obtained in [39].
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Figure 2.21: Isofrequency contour plot (in GHz) of the backward-wave mode with
respect to two-dimensional propagation in the x̂ and ŷ directions.

2.4.2 Impedance and Material Parameters

The impedance of a two-conductor MTL structure is typically represented by Z0

(Eq. (2.14)): a 2× 2 matrix relating the natural voltages to the natural currents on

the two coupled lines [35]. Since the analysis in the previous section described the

dispersion of the NRI medium in terms of the structure’s c- and π-modes, it may

be preferable to examine the modal impedances of the infinite NRI medium. These

impedances can be found in a manner similar to that presented in [37]. Using Eq.

(2.37), two expressions for the ratio of the voltages on conductor 1 and conductor 2

(R) can be found:

R =
V2

V1

=
4 sinh2

(
γd
2

)
− a1

b1
(2.45)

or

R =
V2

V1

=
b2

4 sinh2
(
γd
2

)
− a2

. (2.46)
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Substituting either of these relationships into Eq. (2.29) allows the currents, I1 and

I2, to be found in terms of either V1 or V2 rather than a combination of both. The

impedances can then be found by taking the ratios of the voltage to the current on a

given conductor, yielding the expressions

Z1 =
V1

I1
=

Z11Z22 − Z2
21

2 tanh
(
γd
2

)
· (Z22 − Z21R)

(2.47)

Z2 =
V2

I2
=

(Z11Z22 − Z2
21)R

2 tanh
(
γd
2

)
· (Z11R− Z21)

. (2.48)

These equations are valid for a single mode propagating in the direction determined

by the Floquet propagation constant, γ. The mode is determined by the choice of

γ = γc or γ = γπ. These impedance equations are only valid for an infinite medium. If

the material is finite, then multiple modes would be required to satisfy the boundary

conditions at the termination of the structure.

Despite not being strictly valid for finite slabs, the above impedance equations

can still provide insight into the behavior of the NRI structure. Since Fig. 2.19

shows that the c-mode is in cutoff for all frequencies of interest, this mode can be

ignored in an infinite medium. Additionally, conductor 1 represents a parallel plate

waveguide, which models plane-wave propagation through the medium. Therefore,

the transmission-line impedance of conductor 1 (Z1) for the π-mode is proportional

to the overall wave impedance of the infinite NRI medium. In order to find the exact

expression for the wave impedance (which expresses the ratio of the electric field

to the magnetic field, rather than the voltage to the current), the transmission-line

impedance should be multiplied by the width-to-height ratio,

η1π = Z1π ·
d

h
. (2.49)

The wave impedance for the infinite medium composed of the unit cells shown in
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Figure 2.22: Wave impedance of the π-mode on conductor 1 for the volumetric NRI
medium.

Fig. 2.7 is plotted in Fig. 2.22. The resonance that occurs around 3.28GHz is due

to the fact that the plasma frequencies are not exactly the same, resulting in a small

stopband between the electric and magnetic plasma frequencies. From this graph, it

is clear that the electric plasma frequency occurs slightly before the magnetic plasma

frequency since the impedance grows rapidly (indicating ϵ close to zero) before going

to zero (indicating µ equal to zero). It should also be noted that the impedance of

the infinite medium was not designed to match that of free-space. Instead the unit

cell was modeled exactly as it was shown in Fig. 2.7. As described in [29], the values

of the loading elements of Fig. 2.7 were selected to produce an impedance match at

2.45GHz for a four-cell slab, which is evident in Fig. 2.16(a).

In conventional materials, the wave impedance is equal to η =
√
µ/ϵ and the

propagation constant is equal to γ = jω
√
µϵ. By taking either the ratio or the

product of these formulae and dividing by the radial frequency, ω, the permeability

and permittivity for the infinite medium can be defined as

µr =
−jγπηπ1
ωµ0

(2.50)

ϵr =
−jγπ
ωηπ1ϵ0

. (2.51)
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However, to treat this metamaterial in the same way as conventional materials, it must

behave like a homogeneous medium. This means that the propagation constant must

not be distorted by spatial dispersion. As was discussed in section 2.4.1, homogeneous

behavior is only possible when the phase difference across the unit cell is small. This

restricts the frequency range over which effective material parameters can be defined.

Under these conditions, the expressions for the material parameters can be simplified.

If γd is assumed to be small in Eq. (2.47), then the expression simplifies to

Z1 ≈
1

γ

Z11Z22 − Z2
21

d · (Z22 − Z21R)
. (2.52)

This equation is particularly useful for expressing µr because it depends inversely on

γ. Therefore, by inserting Eq. (2.52) into Eq. (2.50), γ drops out of the expression,

yielding

µr ≈ −j
Z11Z22 − Z2

21

ωµ0h · (Z22 − Z21Rπ)
. (2.53)

In the equation for ϵr, Z1 having an inverse dependence on γ is not desirable

because no cancelation would occur. This would instead result in the expression for

ϵr being proportional to γ2. To obtain a simpler expression, a different equation for

Z1 must be derived. Instead of using the ratio of the voltages on conductors 1 and 2,

the ratio of the currents is used. This ratio, r, is defined as

r =
I2
I1

=
4 sinh2

(
γd
2

)
− a1

b2
(2.54)

or

r =
I2
I1

=
b1

4 sinh2
(
γd
2

)
− a2

. (2.55)

Inserting this relationship into Eq. (2.36), gives the following expression for the ratio
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of V1 to I1:

Z1 = sinh (γd)
Y22 − Y21r

Y11Y22 − Y 2
21

(2.56)

≈ γd · Y22 − Y21r

Y11Y22 − Y 2
21

, (2.57)

as long as γd is small. In this new equation, Z1 is now directly proportional to γ,

which will result in γ dropping out of Eq. (2.51), yielding

ϵr ≈ −j
Y11Y22 − Y 2

21

ωϵ0 (d2/h) · (Y22 − Y21rπ)
. (2.58)

The simplified expressions in Eqs. (2.53) and (2.58) provide physical insight into

what determines the effective permeability and permittivity. Eq. (2.58) shows that

the permittivity depends only on elements of the admittance matrix (with the excep-

tion of the current ratio, r), i.e. the shunt elements in the circuit diagram. This is

expected since the unloaded admittance matrix consists of capacitive elements, whose

values are directly related to the permittivity of the medium. Similarly, Eq. (2.53)

depends only on elements of the impedance matrix (with the exception of the voltage

ratio, R), which are the series elements of the circuit diagram. This is expected as

well because the unloaded elements of the impedance matrix are inductances, which

are dependent on the permeability of the medium.

The form of Eqs. (2.53) and (2.58) is also important. In both Eqs. (2.53) and

(2.58), the zeros of the functions are isolated in their numerators. These zeros repre-

sent the magnetic and electric plasma frequencies, respectively. Using Eq. (2.53) and

the constituents of the homogenized impedance matrix in Eq. (2.24a), the magnetic

plasma frequency is found to be

ωm =

√
1

L11L22 − L2
21

L11

Cd
. (2.59)
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In the case of the electric plasma frequency, the numerator of Eq. (2.58) has two

zeros. However, one occurs at a frequency well-above the range of interest. Ignoring

this zero, the electric plasma frequency is given by the expression

ωe =
1√

2 · (C11C22 − C2
21)

· (2.60)√√√√√
C11

Ld
+

C22

Lwd
−

√(
C11

Ld
− C22

Lwd

)2

− 4C2
21

LdLwd

.

Both of the plasma frequencies will be discussed further in the following section.

The relative permittivity and permeability of the infinite medium are shown in

Fig. 2.23. Both the approximate (Eqs. (2.53) and (2.58)) and the exact (Eqs. (2.50)

and (2.51)) curves are plotted, but it should be emphasized that neither expressions

are valid when the medium exhibits spatial dispersion. As mentioned in the previous

section, the effective medium approximation is only valid when γd is small. Even the

exact expressions are limited by this condition. Since γd being small was the only

assumption made to obtain the approximate expressions, the material parameters

are valid when the approximate and exact curves overlap. When the curves diverge,

this indicates that it is no longer appropriate to define effective permittivity and

permeability.

2.4.3 Resonances

In NRI media, three important frequencies can be used to characterize the dis-

persion curve: the electric and magnetic plasma frequencies and the low-frequency

backward-wave cutoff. The first two were introduced in the previous section, and

both correspond to the propagation constant being equal to zero, while the third

corresponds to the frequency at which the phase difference across the unit cell is

180◦.

51



2 2.5 3 3.5 4 4.5
−8

−6

−4

−2

0

2

R
el

at
iv

e 
M

at
er

ia
l P

ar
am

et
er

s
Frequency (GHz)

 

 

ε
r

µ
r

Figure 2.23: Material parameters for the volumetric NRI medium. The black lines
correspond to the exact solutions given by Eqs. (2.50) and (2.51). The
gray lines correspond to the approximate solutions given by Eqs. (2.53)
and (2.58).

In addition to deriving the plasma frequency equations (Eqs. (2.59) and (2.60))

from the relative permeability and permittivity expressions, they can also be obtained

from physical arguments combined with circuit analysis. The series inductors of an

unloaded MTL system govern its magnetic response, and consequently, its perme-

ability response. Altering the effective inductance of the transmission lines will affect

the permeability of the medium. The effective inductance of a MTL system can be

changed by the addition of a reactive series element. In Fig. 2.17, the effective induc-

tance of the MTL system is changed by adding the series capacitor, C. This results in

a negative effective permeability for some frequencies, as shown in Fig. 2.23. At the

magnetic plasma frequency, ωm, the inductive elements of the unloaded MTL system

resonate with the loading capacitor such that the effective permeability is zero. When

this occurs, the middle and both ends of the unit cell appear to be shorted to ground,

as depicted in Fig. 2.24. This short-circuits the shunt elements, leaving only the

series elements, as shown in Fig. 2.25. The effective permeability goes to zero when

the series-only impedance of conductor 1 goes to zero. The series-only impedance

of conductor 1, which accounts for the elements of conductor 2 through the mutual

52



L21/2

2L

2Lw

L11/2

-C21/2

2C

C20/2

L22/2

C10/2

Backward-wave

T-Line (Cond 2)

Free Space (Cond 1)
Voltage Wave

L21/2

2L

2Lw

L11/2

2C

C20/2

L22/2

C10/2

-C21/2

C10=C11+C21

C20=C22+C21

Figure 2.24: Schematic showing the magnetic plasma frequency resonance on the
MTL system for on-axis propagation.

L11/2

2CL22/2

L21/2

Cond 1

Cond 2

Figure 2.25: The left half of the circuit shown in Fig. 2.24 after being simplified due
to the shorting of the shunt elements.

inductance, L21, is given by

Zseries1 = jωL11d−
(jωL21d)

2

jωL22d− 1
jωC

. (2.61)

Setting Eq. (2.61) equal to zero and solving for ω yields the same expression for ωm

as Eq. (2.59).

A similar analysis can be applied to find the electric plasma frequency, ωe. In

the unloaded MTL system, the shunt capacitors are responsible for determining the

electric response, and therefore, the permittivity of the medium. Again, reactive

loading elements, such as Lw and L, are placed in shunt to change the effective

capacitance and, consequently, the effective permittivity. Fig. 2.23 shows that the

introduction of these loading elements creates a negative permittivity over certain
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Figure 2.26: Schematic showing the electric plasma frequency resonance on the MTL
system for on-axis propagation.

frequencies. At the electric plasma frequency, ωe, the capacitive elements of the

unloaded MTL system will resonate with the loading shunt inductors such that the

effective permittivity is zero. In this case, the middle and both ends of the unit

cell appear as open circuits (shown in Fig. 2.26), thereby eliminating the effects of

the series elements. Without the series elements, the circuit appears as shown in

Fig. 2.27. The effective permittivity goes to zero when the shunt-only impedance of

conductor 1 to ground goes to infinity. The shunt-only impedance of conductor 1 to

ground is given by the expression

Zshunt1 =
−jωC22

(C11C22 − C2
21) d

· (2.62)

ω2 − 1
LC22d

ω4 − ω2

(C11C22−C2
21)d

(
C11

L
+ C22

Lw

)
− 1

(C11C22−C2
21)

2
d2

1
LwL

.

By setting the denominator equal to zero and solving for ω, two solutions are found,

one of which is exactly the same as the expression for ωe given by Eq. (2.60). The

second solution corresponds to a resonance for the c-mode, which occurs at a frequency

well above those of interest.

The equation for the low-frequency backward-wave cutoff for on-axis propagation
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Figure 2.27: The left half of the circuit shown in Fig. 2.26 after being simplified due
to the elimination of the series elements.

is found by setting γd = 180◦ in Eq. (2.38), which is the “X” point on the dispersion

diagram in Fig. 2.20. For this resonant condition, each end of the unit cell is shorted

to ground, as shown in Fig. 2.28. Unfortunately, this results in a complicated expres-

sion with multiple solutions. Noting that the desired condition describes the lowest

frequency in the backward-wave band, higher order frequency terms can be ignored,

giving the following approximation

ωo ≈
√

1

4LC + LC22d− CL22d
. (2.63)

It is interesting to note that this is the exact expression for the low-frequency cutoff of

the backward-wave transmission line (conductor 2) in isolation. This result indicates

that the coupling between conductor 1 and conductor 2 is insignificant near this cutoff

frequency.

Off-axis propagation can support propagation at even lower frequencies. The

two-dimensional low-frequency backward-wave cutoff can be found by simply setting

γxd = 180◦ and γyd = 180◦ in Eq. (2.39), which is the “M” point of the dispersion

diagram in Fig. 2.20. After applying the same approximations as were used to obtain

Eq. (2.63) for the case of on-axis propagation, the equation for the two-dimensional
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Figure 2.28: Schematic showing the low-frequency backward-wave cutoff resonance
on the MTL system for one-dimensional propagation.

low-frequency cutoff is given by

ωc ≈
√

1

8LC + LC22d− CL22d
. (2.64)
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CHAPTER III

The Experimental Realization of Broadband NRI

Media

The multiconductor transmission-line (MTL) analysis described in the previous

section provided theoretical evidence that negative-refractive-index (NRI) metama-

terials could indeed exhibit a broad backward-wave bandwidth. The next step was

to verify this claim experimentally through the physical realization of a broadband

NRI lens [12]. In order to achieve sub-wavelength focusing in free-space, the NRI

medium must be low loss and have a relative permittivity and permeability (ϵr and

µr) close to -1. As mentioned earlier, impedance mismatches and high loss prevented

previous volumetric NRI lenses from achieving super resolution [40, 41, 42, 43]. In

this chapter, these issues are mitigated sufficiently such that the lenses presented here

demonstrate resolution beyond the diffraction limit.

3.1 The First Experimental Broadband NRI Lens

The first broadband NRI lens to be fabricated adhered as closely to the design

presented in Chapter II (Fig. 2.7) as possible. One unit cell of the experimental NRI

medium is shown in Fig. 3.1 [44]. One slight difference between the original design

shown in Fig. 2.7 and the one depicted in Fig. 3.1 was the inclusion of RO4003
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circuit boards to provide a substrate for the capacitive grid. A second modification

was that the inductively loaded central strip was replaced with a thin wire. There

were three reasons for this change. First, the requisite inductance could be achieved

using commercially available wires, so there was no need for the added complexity of

lumped inductors. Secondly, the wires displayed a superior quality factor compared

to commercial chip inductors. Finally, metallic strips would need to be printed on

microwave substrates like the capacitive grids, and the presence of the dielectric would

introduce a slight asymmetry to the unit cell.

Interdigitated

   Capacitors

        Posts

(10 mil diameter)

           Wire

(12.6 mil diameter)

Rogers RO4003C

Substrate (32 mil)

x y

z

Cell Width

    10mm

Cell Height

     13mm

     1.5mm

Figure 3.1: One unit cell of the physically-realizable broadband NRI medium.

3.1.1 Design of the Broadband NRI Lens

According to simulations performed in [29], a slab thickness of four unit cells

was sufficient to realize the broad bandwidth achieved through the traveling-wave

nature of the transmission-line cage. As a result, a four-cell slab of this structure

was designed to have effective material parameters of ϵr ≈ −1 and µr ≈ −1 at the

design frequency of 2.45GHz. The simulated scattering parameters of this four-cell

slab were obtained using Ansoft’s HFSS and are plotted in Fig. 3.2. All simulations
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were performed with conductors as the boundaries on the top and bottom of the unit

cell. This ensured that the electric field was always polarized in vertical direction and

more accurately represented the experiments described in section 3.1.3.
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Figure 3.2: Simulated S-parameters of a four-cell thick slab of NRI metamaterial con-
tained within a parallel plate waveguide.

The effective material parameters were extracted from the simulated S-parameters.

To tune the permittivity of the medium, the diameters of the both the central wire

and the posts of the transmission-line cage (see Fig. 3.1) were varied. The length of

the interdigital fingers of the capacitors were changed in order to realize the desired

effective permeability. After optimization, the effective material parameters of the

simulated structure were ϵr = −0.99 + j0.011 and µr = −1.02− j0.054 at the design

frequency. Equivalently, the refractive index and wave impedance were found to

be n = −1.01 − j0.021 and ηBloch = 384 + j12Ω. Since ηBloch was close to the

free-space wave impedance of 377Ω, the structure was well matched to free-space

at 2.45GHz, a fact that is confirmed by Fig. 3.2. It should be noted, that for the

time-harmonic progression of ejωt used throughout this thesis, the imaginary part

of the index of refraction should be negative in passive media, as calculated above.

This may make the positive imaginary part of ϵr appear unphysical, however this is

not the case. The method of extraction used to obtain the material parameters is

similar to those used for natural materials (e.g. [45]). However, the equation used to
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calculate the wave impedance approaches a singularity when the electrical length of

the NRI slab is a multiple of λ
2
[46], which compromises the accuracy of the extracted

material parameters. This phenomenon has recently been analyzed in detail [47] and

is attributed to weak spatial dispersion that is neglected in the equations for natural

materials. Nevertheless, if one considers the index of refraction, n, the imaginary

part is consistent with a passive medium. This method is more reliable because

extracted value of n does not depend on the wave impedance. The passive nature of

the broadband NRI medium is further verified by Fig. 3.3, which shows that the loss

is positive for all frequencies.

The simulated value for n gave an attenuation constant of α = 1.08Np/m and

a propagation constant of β = 51.6rad/m at 2.45GHz. A metric commonly used to

quantify the loss in NRI media is the figure of merit (FOM) [48, 49]. It is defined as

FOM =

∣∣∣∣ n′

n′′

∣∣∣∣ = ∣∣∣∣βα
∣∣∣∣ (3.1)

where n′ and n′′ are the real and imaginary parts of the refractive index, respectively.

For this structure the figure of merit was calculated to be FOM = 47.9 at the design

frequency. For comparison, the planar NRI transmission-line medium used to verify

super resolution in [50] had a figure of merit of FOM = 32.14. The figure of merit

of the broadband NRI medium exceeds that observed in the NRI transmission-line

medium predominantly because the wire used to achieve negative permittivity has a

higher Q than the lumped element inductors used to load the NRI transmission lines.

The dispersion curve of the optimized NRI unit cell (plotted in Fig. 3.4) indi-

cates that it exhibits a backward-wave bandwidth of 44.3%: ranging from 1.83GHz

to 2.86GHz. Due to the wide frequency range over which the index of refraction is

negative, the operating frequency of 2.45GHz is no longer close to the low-frequency

resonance of 1.83GHz (where the permeability changes from highly-positive to highly-
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negative values) as is the case for the split-ring resonator (SRR)/wire medium. The

losses are lower the further the operating frequency is from this resonance [8], as is

evident in Fig. 3.3. The power lost due to conductor and dielectric losses is 0.37dB

at 2.45GHz for the entire four-cell slab or 0.092dB/cell (equivalently 0.092dB/cm),

demonstrating that this NRI structure has minimal power loss at the operating fre-

quency.
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Figure 3.3: Simulated conductor and dielectric losses for a four-cell slab given by

Loss(dB) = −20 log
(√

|S11|2 + |S21|2
)
. The four peaks in loss occur

when the four-cell slab is at resonant lengths of 180◦, 360◦, 540◦ and
720◦.
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Figure 3.4: Simulated dispersion curve of the infinite NRI medium shown in Fig. 3.1.
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3.1.2 Fabrication

The broadband NRI lens was fabricated by first constructing the transmission-

line cage to serve as the negative permeability medium then adding the central wires

to introduce negative permittivity. The first step in fabricating the transmission-

line cage was to print a capacitively loaded grid onto two 32mil (0.81mm) RO4003

substrates (ϵr = 3.38), as shown in Fig. 3.5. The unit cell size of the grid was 1cm in

both of the horizontal directions. The capacitors were interdigital, printed capacitors

optimized through simulation to have a value of 322fF. Small holes were drilled at the

grid junctions and plated with copper to accommodate the wire posts that served as

the inductors of the NRI transmission-line grid. The capacitively loaded grids were

then spaced 1cm apart and the posts, made from copper wire with a 10 mil (254µm)

diameter, were soldered between them. The negative permeability slab was four cells

thick and had a width of 15 cells (1.225λ0 at the design frequency). To emulate infinite

periodicity in the vertical direction, the slab was placed between two parallel plates,

spaced 1.3cm apart. Foam blocks were cut to support the transmission-line cage

structure, ensuring a 1.5mm separation between the parallel plates and the RO4003

substrates.

Once the negative permeability medium was fabricated, making a NRI medium

was only a matter of adding wires to achieve negative permittivity. The holes in the

center of the negative permeability unit cell (2.25mm in diameter) allowed these wires

to pass through. These holes are depicted in the unit cell enlargement in Fig. 3.5.

Copper-clad RO4003 substrates were used as the parallel plates. Copper-plated holes

were drilled into these ground planes to allow for proper grounding of the negative

permittivity wires. The wires were 12.6mil (0.32mm) in diameter and 1.3cm in length.

They were soldered between the top and bottom parallel plates to create the NRI lens,

which was also four cells thick with a width of 15 cells. A photograph of the NRI lens

within the parallel plate waveguide is shown in Fig. 3.6.
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Figure 3.5: Picture of the negative permeability slab with an enlargement of a
capacitively-loaded grid unit cell.

Figure 3.6: Photograph of the NRI lens inside the parallel plate waveguide.

3.1.3 Experiments

All the experiments for the negative permeability and NRI media were conducted

in a parallel plate waveguide (PPW) environment. Gradient absorber FL-4500CL,

manufactured by ETS-Lindgren, was used to prevent reflections from the edge of the

PPW, similar to that described in [51]. While Justice et. al. used wedge-shaped

absorber, the resonant frequency of 1.82GHz and the size of the plates (45.7-by-61.0

cm) did not permit wedges of sufficient size to fully attenuate the low frequency radia-

tion. Nevertheless, tests confirmed that the gradient absorber successfully eliminated

the reflections from the edges of the PPW. The absorber was cut into 1.3cm slabs

(to ensure the correct unit cell height) and arranged in a rectangle around the lens,

as shown in Fig. 3.7. Also pictured in Fig. 3.7 are the Amphenol Connex 132147

coaxial connectors, which were used as probes to provide the fixed-point excitations
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inside the PPW. The dielectric jackets covering the connectors were trimmed such

that only the center conductor protruded from the surface of the plates.

Probe

Gradient Absorber

Styrofoam

Figure 3.7: Photograph of the bottom plate of the parallel-plate waveguide with gra-
dient absorber walls and the negative permeability slab. This photograph
shows the two-probe experimental setup used to measure the stopband
characteristics of the negative permeability medium. The probes have
been placed 7cm from the cell so that only the transmission of the prop-
agating waves is considered.

3.1.3.1 Negative Permeability Stopband Measurements

When the permeability and permittivity of a medium have opposite signs, waves

attenuate exponentially as they travel through the medium. The negative permeabil-

ity medium, therefore, exhibits a stopband over the region where negative permeabil-

ity occurs, as discussed in section 2.1.2.2. For the fabricated negative permeability

metamaterial, this stopband is shown by the dispersion curve in Fig. 3.8. While

the dispersion curve could not be measured directly from experiments, the negative

permeability medium was tested to verify its attenuation characteristics. This was

done by placing two sources (coaxial connector probes) 7cm (0.57λ) away from either

face of the slab (see Fig. 3.7). This distance placed the air/slab interfaces beyond the

reactive near-field of the probes and into the Fresnel region. This ensured that all of

the evanescent fields emanating from the probes would attenuate sufficiently before

reaching the slab, eliminating the possibility of evanescent field recovery. This was
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important for stopband measurements because any evanescent waves that reached

the first slab interface could be resonantly amplified, producing enhanced fields at

the receiving probe. Further, because the distance from the source to the slab was

greater than the thickness of the slab, no internal nor external focusing of the evanes-

cent spectrum could occur. The transmission between the two probes was measured,

and both the simulated and experimental results are displayed in Fig. 3.9. The

plot shows total attenuation better than 20dB for the measured four-cell slab with

respect to the parallel plate environment without the slab present. At the design

frequency of 2.45GHz, the slab corresponds to an electrical thickness of just less than

λ0

3
. Therefore, the negative permeability slab acts as a highly-attenuating stopband

medium.
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Figure 3.8: Simulated dispersion curve of the infinite negative permeability medium.

The exact frequencies over which the medium exhibits a stopband (a negative

permeability) cannot be accurately determined from Fig. 3.9, since the impedance,

index of refraction and attenuation constant of the slab all play an important role in

determining the magnitude of S21. In contrast, the stopband edges are clearly defined

in Fig. 3.8, which shows the propagating eigenmodes of the negative permeability

medium. This is because the eigenmode analysis assumes infinite periodicity, and,
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Figure 3.9: Stopband performance of the negative permeability slab shown in Fig.
3.5. Measurements are denoted by the solid line and simulated results
are shown with the dashed line. The darker lines denote the transmission
coefficients when the slab is present, while the lighter lines denote the
transmission coefficients when the slab is removed.

therefore, even the slightest attenuation constant results in a stopband. In a finite

structure, such as the one shown in Fig. 3.7, the small attenuation constants near

the stopband edges do not significantly affect the transmission through the slab.

Therefore, one cannot say with exact certainty where the stopband begins and ends

based only on the transmission data.

Given the knowledge of the high- and low-frequency edges of the stopband from

Fig. 3.8, both the simulated and experimental data plotted in Fig. 3.9 show coun-

terintuitive behavior at the edges of the stopband. At the low-frequency end, the

magnitude of S21 is nearly the same with the transmission-line cage as without it. On

the other hand, at the high-frequency edge, the transmission-line cage provides more

than 10dB of attenuation. The difference in transmission magnitude at these two

frequencies is not a result of attenuation within the negative permeability medium.

Instead, it is an effect of the experimental setup and the specific material parameters

at each frequency.

Similar to arrays of split-ring resonators, the broadband negative permeability
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slab exhibits a high, positive permeability at frequencies just below the low-frequency

stopband edge. In this same frequency range, the electrical loading caused by the slab

also increases the permittivity. Together, these two effects increase the positive index

of refraction of the medium while maintaining a wave impedance that is similar to

that of free space. Consequently, the slab remains reasonably well-matched to free

space and refracts the cylindrical wave emanating from the transmitting probe toward

the slab’s normal, increasing the power density at the receiving probe. This explains

why both the measured and simulated magnitudes of S21 are greater with the slab

than without it at frequencies below the stopband.

At frequencies above the high-frequency edge of the stopband, the magnitude of

S21 remains low due to the reflections from the slab. As the permeability transitions

from negative to positive, it remains much lower than that of free space. Since the

permittivity of the medium is still high due to the electrical loading caused by the

slab, the slab exhibits a low impedance and reflects much of the power incident on

it. Furthermore, the low index of refraction above the magnetic plasma frequency

means the slab refracts the cylindrical wave away from the normal, decreasing the

power density at the receiving probe. Both of these effects result in low transmission

at frequencies above the high-frequency edge of the stopband. For these reasons,

the eigenmode analysis shown in Fig. 3.8 is typically used to determine where the

medium exhibits a stopband due to negative permeability rather than transmission

data.

3.1.3.2 Negative-Refractive-Index Focusing Measurements

To test the focusing characteristics of the NRI medium, the source was moved to

a location 2cm away from the first interface of the lens. Now a substantial portion

of the evanescent spectrum could reach the lens and could therefore be recovered by

the NRI lens. In order to measure the fields over a two-dimensional space within the
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PPW containing the NRI lens, a small slit less than 3mm in height was cut into the

absorber at the end of the PPW opposite the source. A horizontal probe made out of

0.086in (2.18mm) semirigid cable, with the inner conductor polarized in the vertical

direction, was inserted into the slit and could be moved independently with respect

to the PPW. The probe was then used to scan the electric fields at the exit face of the

lens and beyond using an automated computer routine that controlled the position of

the translation stage to which the probe was attached. This program also interfaced

with a HP8753D network analyzer to store the S-parameters observed at the probe

locations. The performance of the probe was tested by measuring the fields within

the empty PPW, that is, without the NRI lens present. The fields of the PPW were

not disturbed by the presence of the probe in any observable way.

The NRI lens performed best at 2.424GHz, which corresponds to a shift of 1%

from the design frequency of 2.45GHz. Since this frequency was found to be optimal

for two separate lenses that were made, the shift can primarily be attributed to the

manufacturing tolerances in the fabrication of the interdigitated capacitors. Fig. 3.10

shows contour plots of both magnitude and phase of a region up to 6.5cm beyond

the second interface of the lens. Measurements were taken every 1.2mm in the x̂

(longitudinal) direction and every 2.5mm in the ŷ (transverse) direction. To prevent

the NRI lens from being damaged by the probe or vice versa, the scan was started

2mm away from the face of the lens. The high fields observed close to the interface of

the lens in Fig. 3.10(a) indicate the resonant amplification of the evanescent spectrum.

The phase diagram shows a cylindrical wave emanating from the focus (located at

[x,y] = [2,0]), confirming source reconstruction.

Fig. 3.11 plots the normalized measured electric field amplitude along the im-

age plane (x = 2cm), as well as the diffraction-limited curve as a reference. The
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Figure 3.10: Plots of the measured vertically-polarized electric field at 2.424GHz

diffraction-limited curve is given by the following equation [50]:

C

∫ ∞

∞

e−jkx0de−jkxnde−jkyy

kx0
dky

kx0 = −kxn =
√

k2
0 − k2

y for ky < k0, (3.2)

kx0 = kxn = −j
√

k2
y − k2

0 for ky > k0

where d = 4.00cm and is defined as the thickness of the lens, kx0 represents the x̂-

directed propagation outside of the lens, kxn represents the x̂-directed propagation

inside of the lens, and C is a normalization constant [50]. This equation accounts for

both the propagating and evanescent portions of the spectrum at the focal plane. The

propagating spectrum experiences phase advancement in the longitudinal direction

as it travels through the NRI slab, hence kx0 = −kxn for ky < k0. The evanescent

waves, on the other hand, are assumed to decay in both media, thus producing a
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diffraction-limited curve. It is apparent by comparing the diffraction-limited curve

and the experimental data that the proposed lens design does achieve super-resolution.

The half-power beamwidth of the diffraction-limited curve is 0.36λ, as is expected for

a line source of TM polarization outside of the reactive near field. The half-power

beamwidth of the experimental curve is 0.252λ, which corresponds to a resolution

enhancement of 2.0. In the experiment, this resolution enhancement is maintained

over a bandwidth of 8MHz or 0.33%.
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Figure 3.11: Normalized electric field magnitude at the image plane (x = 2cm). The
experimental field magnitude is plotted with a solid line, the theoretical
diffraction-limited field magnitude is plotted with a dotted line and the
field magnitude as predicted by assuming a homogeneous, isotropic, lossy
slab of the simulated material parameters given in the second section is
plotted with a dashed line.

The bandwidth of resolution enhancement is notably smaller than the backward-

wave bandwidth, but this is inherent to the phenomenon of super resolution. As

mentioned previously and rigorously shown in [40, 41, 42, 43], to achieve super res-

olution at the image plane, µr and ϵr must be very close to -1. Because backward

waves are inherently dispersive, the material parameters necessarily diverge from the

ideal values as the frequency changes. The resolution enhancement bandwidth mea-

sures the bandwidth over which the material parameters are close enough to produce
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a resolution enhancement of a particular value, in this case Re = 2.0. This frequency

range can be only a fraction of the full backward-wave bandwidth. Lowering the tar-

get resolution enhancement results in a broader range of material parameters that are

capable of recovering the desired portion of the evanescent spectrum. As a result, the

bandwidth of a specific resolution enhancement increases as the target enhancement

value decreases.

The resolution enhancement is given by the equation

Re =
kymax

k0
(3.3)

where kymax is the maximum transverse wavenumber that contributes to the image.

This quantity can be obtained by finding kxmax, which is given by the equation [41]

kxmax =
−j ln |Γ1|

d
=

−j

d
ln

∣∣∣∣∣
ωµn

kxn
− ωµ0

kx0
ωµ0

kx0
+ ωµn

kxn

∣∣∣∣∣ (3.4)

where Γ1 is the Fresnel reflection coefficient at the first interface of the lens, kxn

is the magnitude of the x̂ component of the wave vector in the NRI lens, µn is

the permeability in the NRI lens and d is again the lens thickness. The indices of

refraction for the lens and free-space are predicted to be approximately the same,

therefore kxn ≈ kx0. The equation simplifies to

kxmax ≈ −j

d
ln

∣∣∣∣µr − 1

µr + 1

∣∣∣∣ (3.5)

where µr is relative permeability of the NRI lens as given in the section 3.1.1. Once

kxmax is found, kymax is given by the separation relation kymax =
√
k2
0 − k2

xmax. Then

using Equation (3.3), the resolution enhancement is calculated to be 2.01, which is in

excellent agreement with the experimental value of 2.0.

Alternatively, the expected resolution enhancement can be found by deriving the
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optical transfer function (OTF) for an isotropic, homogeneous NRI lens of thickness

d, infinite width and the same material parameters that were reported in section

3.1.1. This method does not rely on the approximations used in Eq. (3.5), so it

remains applicable even if the condition kxn ≈ kx0 is not satisfied. From the OTF,

the resolution enhancement was determined to be 1.98, again in good agreement with

the experiments.

Both of the previous methods used to calculate the resolution enhancement assume

that the slab is infinite in extent. To verify that these equations are still applicable

to the finite structure used in the experiments, two homogeneous slabs having the

same material parameters as those given in section 3.1.1 were simulated using HFSS.

The first had a transverse (ŷ) dimension equal to 15cm; the second had a transverse

dimension equal to 40cm. These widths correspond to numerical apertures of NA =

sin(75.1◦) = 0.966 and NA = sin(84.3◦) = 0.995, respectively. The normalized

electric field magnitude at the image plane is shown in Fig. 3.12. The smaller

numerical aperture exhibited a resolution of 0.248λ and the larger numerical aperture

exhibited a resolution of 0.255λ, which both closely match the measured value of

0.252λ. This shows that the resolution enhancement is not significantly affected by

the truncation of the structure.

3.2 Free Space Measurements of NRI Media

The previous section provided verification that broadband volumetric NRI me-

dia could be designed and used for super-resolved focusing. However, the material

parameters of the slab, such as the permeability, permittivity and loss, could only

be calculated from simulation rather than extracted from experimental data. The

simplest method of measuring the material parameters of a metamaterial slab is to

illuminate it with a normally incident plane wave to obtain the S-parameters. This

was not possible using cylindrical sources in a parallel plate waveguide, so a new lens
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Figure 3.12: Normalized electric field magnitude at the image plane (x = 2cm) for
two homogeneous slabs having numerical apertures of 0.966 (dashed)
and 0.995 (dotted) compared to the experimental results (solid).

was designed to operate in free space over X-band frequencies. One unit cell of the

design is shown in Fig. 3.13. This design, while similar to the one in Fig. 3.1, was

much easier to fabricate because the transmission-line cage was constructed using

a single circuit board. The capacitive grids were printed on either side of a single

substrate and were connected by copper-plated vias rather than wire posts that must

be soldered manually. The ease of fabrication allowed for the construction of an elec-

trically large slab, which had a transverse extent of 5λ at its operating frequency of

10.435GHz.

3.2.1 Design

One unit cell of the broadband NRI medium is shown in Fig. 3.13, with the physi-

cal dimensions provided in Table 3.1. In the absence of the central wire, the structure

represents one unit cell of the negative permeability medium, which is formed by the

remaining transmission-line cage introduced in Chapter II. Again, the central wire is

used to achieve negative permittivity in the NRI medium for waves with vertically-

polarized electric fields.
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Figure 3.13: Unit cell of the broadband NRI medium with an enlargement of the
interdigitated capacitor footprint. Removing the central wire results in
the unit cell of the broadband negative-permeability medium.

As in the earlier NRI lens, the material parameters of the free-space metamate-

rial were designed such that the lens would produce a super-resolved focus at the

operating frequency, necessitating that µr ≈ ϵr ≈ −1. The electric response of the

transmission-line cage generally increases the relative permittivity of the medium,

similar to structures described in [52]. In the structure shown in Fig. 3.13, the in-

crease in permittivity is particularly significant due to the large area occupied by

the interdigital capacitors. This higher permittivity has two consequences: one ad-

Parameter Description Designed Measured
a Unit cell width 2.54mm 2.54mm
b Unit cell height 3.40mm 3.40mm
h Substrate height 2.34mm 2.29mm
t Conductor thickness 52µm 40µm
Rw Central wire radius 39µm 39µm
Rv Via radius 127µm 165µm
Rc Drilled hole radius 457µm 457µm
L Length of capacitor finger 1.22mm 1.22mm
W Width of capacitor finger 100µm 100±10µm
s Spacing between fingers 100µm 100±10µm

Table 3.1: Dimensions of the NRI unit cell.
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vantageous and one detrimental. The advantage is that thicker wires (i.e. lower

inductances) can be used to achieve ϵr = −1 at the design frequency. This is par-

ticularly important since higher gauge wires (AWG>40 or Rw<39µm) exhibit higher

losses and are quite fragile. The disadvantage is that as frequency increases the rel-

ative permittivity approaches a value above ϵr = 1, while the relative permeability

remains lower than µr = 1. Since µr = ϵr = −1 at a lower frequency, the slope (with

respect to frequency) of the permittivity is greater than the slope of the permeabil-

ity at these higher frequencies. Consequently, in impedance-matched structures, the

electric plasma frequency is significantly lower than the magnetic plasma frequency

(fe < fm), and the high-frequency end of the backward-wave band is limited by the

permittivity response.

This decrease in bandwidth for the impedance-matched structure is illustrated in

Fig. 3.14. The dispersion diagram of the NRI medium with the nominal parame-

ters given in Table 3.1 shows that the backward-wave bandwidth of this structure is

49.2%. However, if the impedance of the medium is not a concern, the bandwidth can

be made much larger. Increasing the height of the unit cell, b, and the wire radius,

Rw, increases the electric plasma frequency providing a wider NRI bandwidth. Ad-

ditional bandwidth can be achieved by lowering the low-frequency resonance of the

negative permeability medium. This is done by extending the length of the interdig-

ital fingers of the capacitor, thereby increasing the capacitance. By optimizing these

three parameters, the NRI bandwidth can be increased up to 68.2%. This shows that

this topology of NRI media can achieve bandwidths even larger than those measured

in the experimental structure, if one is not constrained by the impedance matching

criterion.

For all metamaterials that can be described by effective medium theory, the unit

cell width is required to be much smaller than a wavelength (specifically, a < λ0

10
) to

ensure isotropic propagation throughout the medium. The design in Fig. 3.13 satisfies
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Figure 3.14: Variations in backward-wave bandwidth of the NRI medium through
the change of its geometric parameters. In all cases except the nominal,
fe = fm, but the medium is not impedance-matched to free-space.

this condition for all frequencies in the backward-wave band, ensuring the validity of

effective medium theory at the operating frequency where n ≈ −1. Despite meeting

this requirement, the effective medium theory breaks down at low frequencies, where

the permeability diverges and the phase delay across the unit cell is large. In this

region, the refractive index has a very large magnitude, such that a ≈ λNRI

2
. When

this occurs, the NRI medium exhibits spatial dispersion, as can be seen in Fig. 3.15.

However, for frequencies closer to the operating point (f > 9GHz), the medium

exhibits two-dimensionally isotropic behavior for waves propagating in the x̂-ŷ plane,

as indicated by the circular contours at these frequencies.

3.2.2 S-Parameter Measurements

Using the design with the physical parameters listed in Table 3.1, NRI and

negative-permeability slabs with thicknesses of four cells (1.02cm) were constructed

in order to measure their material properties. The slabs were built using 46 horizontal

printed-circuit-board layers, which were spaced 1.07mm apart. Each layer consisted

of a capacitive grid printed on each face of the board (shown in Fig. 3.16). These

grids were connected to each other by vias of radius Rv, as shown in Fig. 3.13. The
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Figure 3.15: Equifrequency contour plot of the infinite NRI medium. The frequencies
of each contour are labeled in GHz.

Figure 3.16: Photograph of the capacitive grid on one of the printed-circuit-board
layers used to construct both the negative-permeability and NRI slabs.

layers were held with the prescribed spacing by a plastic holder on either end. Once

assembled, this structure formed the negative-permeability slab discussed below. The

NRI lens was constructed using the same printed-circuit-board layers which were sup-

ported in the same fashion, but vertical wires were threaded through the center of

each unit cell. The wires were then attached with silver epoxy to ground planes

located at the top and bottom of the structure.

To measure the scattering parameters (S-parameters) of these slabs in free space,

the samples were illuminated with a tightly focused, collimated source. In order to

produce a collimated beam that was confined within a small radius, a quasi-optical

Gaussian beam telescope was used [53]. The telescope consisted of a rectangular

horn antenna and a pair of lenses, known as an achromatic doublet [54]. As the
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Figure 3.17: Schematic of the Gaussian beam telescope measurement system. The
reference planes of the Gaussian beam telescopes are assumed to be
aligned at the green plane.

name suggests, the achromatic doublet produced a focus whose size and location

were independent of frequency. An additional benefit of using a pair of lenses rather

than a single lens was that the spot size at the focus was much smaller. Each lens

in the doublet was made of Rexolite (n = 1.59) and was bi-hyperbolic in shape. The

diameters of the lenses were 32.5cm and the input and output focal distances were

equal to 45cm. The reference plane of the Gaussian beam telescope occurred at the

output focus of the second lens, 1.8m away from the input beam waist of the horn

antenna. A schematic of the quasi-optical measurement setup is shown in Fig. 3.17.

Figure 3.18: Photograph of the quasi-optical, free-space measurement system.

The S-parameters of the slabs were measured by placing the metamaterial sam-

ple between two Gaussian-beam telescopes, as shown in Fig. 3.18. Each telescope

was placed on a separate linear translation stage, whose position was controlled by

a stepper motor with 5µm accuracy. This allowed the reference planes to be exactly

aligned with the faces of the slab. The beam radii at the focal planes were approx-

imately 5cm, while the slabs measured 16cm high and 16cm wide. As a result, the

amplitude of the Gaussian beam was 20dB lower at the edge of the sample than at its
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center, limiting diffraction from the slab. The horn antennas of each telescope were

connected to the two ports of an Agilent E8361A network analyzer, which collected

the transmission and reflection data.

Before any data were taken, the system was calibrated using a free-space Thru-

Reflect-Line (TRL) calibration method. This calibration de-embedded the S-parameters

of the slab from those of the entire measurement system. The calibration of the mea-

surement system was particularly important because it corrected for the imperfections

inherent in the system’s design. One such issue was that the phase centers of the horn

antennas were frequency dependent. This caused the input beam waist (the phase

center of the horn) to deviate from the input focus of the achromatic doublet for some

frequencies. This, in turn, caused the output beam waist not to coincide with the

output focus of the doublet, which resulted in imperfect collimation at the reference

plane for those frequencies. This effect, however, was slight since the deviation in

beam waist position was small relative to the Rayleigh range [53]. Nevertheless, the

TRL calibration was able to account for the phase variation over the reference plane

and eliminate its effects. A second issue was that the Gaussian beam telescopes were

designed to focus the fundamental Gaussian mode. However, the rectangular horn

antennas only coupled 88% of their power into the fundamental mode [55], with the

rest of the power being coupled into higher-order modes. These higher-order modes

have larger effective beam radii than the fundamental, which made them more sus-

ceptible to diffraction losses. Consequently, some of the power in higher-order modes

escaped the measurement system. Fortunately, these losses increased the purity of

the transmitted beam, while the effect of the lost power was eliminated through the

calibration process. The TRL calibration also accounted for scattering from proxi-

mate objects, most notably, the plastic stand which supported the sample. To check

the accuracy of the calibration, commercial microwave substrates were measured and

their permittivity and permeability values were verified.

79



Due to errors in the manufacturing process, some of the dimensions shown in Fig.

3.13 were slightly different from those on the fabricated structure. Both the values of

the original design as well as those measured on the fabricated boards are presented

in Table 3.1. The most significant changes were in the substrate height (designed as

2.34mm, measured as 2.29mm) and the via diameter (designed as 254µm, measured

as 330µm). These errors shifted the design frequency from 10GHz to 10.435GHz.

The simulations were redone to accurately reflect the dimensions of the measured

structure. The new simulated results are used in the remainder of this section, rather

than those of the original design.
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Figure 3.19: Simulated and measured magnitudes of S11 and S21 for the negative-
permeability slab.
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Figure 3.20: Simulated and measured magnitudes of S11 and S21 for the NRI lens.

The measured S-parameters of the negative-permeability medium are compared

to simulation in Fig. 3.19. By calculating the effective permeability from the S-
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parameters, the structure was found to exhibit negative permeability over a band-

width of 45.3%. In this negative-permeability region, the slab provided excellent

attenuation (S21<-30dB) over a frequency range of 8.86GHz to 12.3GHz. Addition-

ally, the medium exhibited low loss throughout this frequency range. At the operating

frequency of 10.435GHz, the four-cell negative-permeability slab experienced material

losses of only 0.235dB.
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Figure 3.21: Real (solid lines) and imaginary (dashed lines) parts of the measured
(thick, black lines) and simulated (thin, red lines) index of refraction of
the NRI slab.
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Figure 3.22: Real (solid lines) and imaginary (dashed lines) parts of the measured
(thick, black lines) and simulated (thin, red lines) impedance of the NRI
slab. The singularities are due to Fabry-Perot resonances of the slab.

The measured and simulated S-parameters of the NRI lens are shown in Fig. 3.20.

The slab exhibited S11<-10dB from 8.99GHz to 11.91GHz, indicating that the struc-

ture was well-matched to free space over this frequency range. The S-parameters were

used to calculate the material properties of the NRI lens, such as index of refraction

(Fig. 3.21), impedance (Fig. 3.22), permeability and permittivity (Fig. 3.23), and

loss (Fig. 3.24). As shown in Fig. 3.23, both permittivity and permeability are
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Figure 3.23: Real (solid lines) and imaginary (dashed lines) parts of the measured
relative permittivity (blue) and permeability (red) of the NRI slab. The
singularities are due to Fabry-Perot resonances.
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Figure 3.24: Measured loss of the NRI (solid line) and negative-permeability (dashed
line) four-cell slabs.

negative over a bandwidth of 41.2%. The resonant frequency of the permeability

(fo = 7.86GHz) limits the bandwidth at low frequencies, while the high-frequency

limit is the electric plasma frequency (fe = 11.93GHz). The extracted permittivity

and permeability curves display unusual behavior below 10GHz. At these frequen-

cies, the unit cells exhibit spatial dispersion, degrading the accuracy of the effective

medium theory. Additionally, the material parameter extraction method used to cal-

culate the wave impedance breaks down when the electrical length of the NRI slab

is a multiple of λ
2
[46]. This phenomenon occurs around 7.8GHz, 8.2GHz, 8.7GHz

and 10.0GHz for the measured slab (see Fig. 3.22). Since the wave impedance is

used to calculate relative permittivity and permeability, the extraction inaccuracies

are inherent in these curves as well. As a result, the permittivity curve has a positive
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imaginary part close to the resonant frequencies, which might raise concerns about

the structure exhibiting gain. To verify the passivity of the medium, one should fo-

cus on the index of refraction (Fig. 3.21), for which the extraction method remains

accurate even at resonant lengths. The imaginary part of the index of refraction is

negative for all frequencies, as is required for a passive structure. The passivity the

material is further verified by Fig. 3.24, which shows that the loss is positive for all

frequencies. Additionally, Fig. 3.24 shows that despite having high losses close to the

resonant frequency (fo), the losses are less than 1dB for the entire four-cell slab for

all frequencies above 9.5GHz. This means that the majority of the backward-wave

bandwidth is low-loss, making this lens suitable for practical microwave applications.

The operating frequency of the NRI lens is 10.435GHz, which corresponds to

the frequency at which the relative permeability was closest to -1. The material

parameters at this frequency were found to be ϵr = −1.16− j0.01 and µr = −1.00−

j0.05. At the operating frequency, the entire four-cell (λ0

3
) slab exhibited a loss of

only 0.67dB, or 0.17dB/cell. The low loss performance of the slab was further verified

by the measured figure of merit (FOM = n′

n′′ ), which was calculated to be 31.4 at the

design frequency.

The bandwidth, loss and FOM of the NRI lens are compared with other NRI media

reported in literature in Table 3.2. These media represent several different topological

approaches to achieving a negative index of refraction, including SRR/wire arrays

[56, 57], a planar NRI transmission-line (TL) medium [50] and volumetric NRI TL

media [58, 59] in addition to the proposed structure. The planar NRI TL medium has

a bandwidth conspicuously larger than any of the other topologies. This is primarily

because this medium uses chip components, by which much higher capacitance and

inductance values can be realized compared to printed elements. This medium also

exhibits a FOM slightly higher than the one measured in the proposed structure,

however, the value in [50] is taken from simulation. Comparison of this value to the
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Author Frequency Bandwidth Loss Per Cell FOM
Measured Structure 10.435GHz 41.2% 0.17dB 31.4
Simulated Structure 10GHz 41.1% 0.07dB 70.2

Li et. al. [56] ∗ 14.2GHz 10.1% 0.37dB -
Grbic et. al. [50] 1.057GHz 107.3% - 32.1 †

Aydin et. al. [57] 3.74GHz 7.9% 2.7dB 12.07
Iyer et. al. [58] 11.5GHz 24.2% 1.2dB -
Iyer et. al. [59] 2.4GHz 20.7% 0.2dB † -

Table 3.2: Comparison of the loss performance of NRI media

full-wave simulation of the proposed structure is more appropriate. In that case, the

FOM of the planar NRI TL medium is less than half of the proposed structure’s

FOM, despite operating at a frequency one order of magnitude lower.

Compared to all other volumetric structures, the measured structure exhibits lower

loss and wider bandwidth regardless of topology or frequency of operation. As is

expected, the SRR/wire media have the narrowest bandwidths compared to other

topologies. The bandwidths of the volumetric NRI TL media are better but still

about half that of the proposed structure. Unlike the bandwidth, the per-unit-cell

losses of these NRI media do not form a predictable pattern. While the proposed

structure exhibits the best loss performance, a relationship between topology and

loss remains unclear. Such variation can be attributed to a lack of standardization

in the way each medium is designed. In each structure, the substrate, Q-factor of

the loading elements, unit cell size (in terms of wavelength) and operating frequency

are different. All of these factors influence the loss performance of a NRI medium.

Further confusing the matter, the reported losses are often the minimum losses that

occur in the backward-wave band, rather than those that occur at the frequency of

operation. To exemplify the difference, the proposed structure exhibits losses as low

as 0.095dB/cell at the high-frequency edge of the backward-wave band (11.9GHz),

*One-dimensional propagation only
†Quoted from simulation
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which is much lower than the 0.17dB measured at the operating frequency. Regardless

of these many differences, the structure in Fig. 3.13 clearly represents the realization

of a volumetric NRI medium with the widest bandwidth and lowest loss performance

of any design published to date.

Figure 3.25: Photograph of the near-field focusing measurement setup. The inset
shows an enlargement of the dipole probe with a sleeve balun.

3.2.3 Focusing Experiments

In addition to measuring the S-parameters of the NRI lens, focusing experiments

were also performed. Two dipoles with sleeve baluns were used to excite the lens and

probe the fields around it. The dipoles (each of which were 7.1mm or λ0/4 in length)

were oriented such that the electric field incident on the lens was vertically polarized.

One probe was used as a source and held a fixed distance of 5.08mm (half the lens

thickness) away from the lens. The other probe was attached to a three-dimensional

translation stage and used to scan the fields beyond the exit face of the lens. The

vertically-polarized electric field was measured on a horizontal plane, such that both

the scanning probe and the source probe were at the same height. The half-power

beamwidth was measured at the image plane, located 5.08mm away from the exit

face of the lens, and evanescent spatial frequencies were recovered from 10.015GHz

to 10.78GHz, a fractional bandwidth of 7.4%. The normalized magnitude and phase

85



Transverse distance from source (λ)D
is

ta
nc

e 
fr

om
 e

xi
t f

ac
e 

(λ
) Normalized Magnitude

 

 

−0.5 0 0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

(a) Contour plots of the normalized electric field
magnitude on the exit side of the NRI lens.
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(b) Contour plots of the unwrapped electric field
phase on the exit side of the NRI lens.

Figure 3.26: Plots of the measured vertically-polarized electric field at 10.435GHz.

of the vertically-polarized electric field at 10.435GHz are shown in Fig. 3.26.

Fig. 3.27 shows the normalized field amplitude at the image plane at 10.435GHz.

A half-power beamwidth of 0.27λ0 was observed, which is significantly narrower than

the diffraction-limited beamwidth for a line source of 0.36λ0. Fig. 3.28 shows how

the focus changes with frequency, plotting curves for several frequencies at which

super-resolution is observed.

To provide a point of comparison, the field was measured in the absence of the

lens as well. The normalized field amplitude for this measurement is also plotted

at the operating frequency of 10.435GHz in Fig. 3.27. Prior to normalization, the

electric field magnitude measured with the lens present was 88% higher than without

the lens.

The dashed curve in Fig. 3.27 represents the theoretical image of a vertically-

directed line current as predicted by the impedance and propagation constant of the
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Figure 3.27: Normalized electric field magnitude at the image plane at 10.435GHz for
the measured field with (solid line) and without (dotted line) the lens,
as well as the predicted field with the lens (dashed line).
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Figure 3.28: Normalized electric field magnitude at the image plane for several fre-
quencies exhibiting sub-diffraction-limited focusing.

NRI medium (ηn and kn, respectively), which were measured in section 3.2.2. The

field at the image plane is calculated by first finding the transfer function of the lens

in terms of the transverse wavenumber k||. This is given by the expression

T
(
k||
)
=

Eimage

(
k||
)

Isource
(
k||
) (3.6)

=
η0k0
k⊥0

· (1− Γ2) · e−jk⊥04ae−jk||x

ejk⊥n4a − Γ2 · e−jk⊥n4a
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where

Γ =
ηnknk⊥0 − η0k0k⊥n

ηnknk⊥0 + η0k0k⊥n

k⊥0 =
√
k2
0 − k2

|| for k|| < k0,

k⊥n = −
√
k2
n − k2

|| for k|| < kn,

k⊥0 = −j
√

k2
|| − k2

0 for k|| > k0

k⊥n = j
√
k2
|| − k2

n for k|| > kn.

Then the contribution of the continuum of transverse wavenumbers was calculated

for each point x along the image plane, resulting in the expression

EN(x) = C · Isource
∫ ∞

∞
T
(
k||
)
dk|| (3.7)

where C is a constant that normalizes the maximum field amplitude at the image

plane to 1. As Fig. 3.27 shows, the focus predicted by this analysis agrees well

with the one obtained experimentally. The agreement between the focusing and

transmission measurements confirms the results of both experiments. Furthermore,

since the predicted curve was calculated under the assumption of a homogeneous slab,

its agreement with the measured focal pattern validates the use of effective medium

theory in designing the NRI metamaterial.

To further demonstrate the resolution enhancement produced by the lens, Fourier

transforms of all three curves shown in Fig. 3.27 were calculated and are plotted in

Fig. 3.29. Again, the spectrum of the field measured with the lens present exhibited

good agreement with the spectrum predicted analytically using the measured material

parameters. Both of these curves include evanescent Fourier components (
∣∣k||∣∣ > k0 =

2π
λ0
), indicating the recovery of evanescent waves at the focal plane. However, the

spectrum calculated from the field in the absence of the lens only includes
∣∣k||∣∣ ≤ k0,
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corresponding to propagating waves. This shows that without the lens, the evanescent

waves decayed completely before reaching the focal plane, while with the lens, part

of the evanescent spectrum was recovered.
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Figure 3.29: Normalized Fourier transform magnitude of the field at the image plane
for the measured field with (solid line) and without (dotted line) the
lens, as well as the predicted field with the lens (dashed line). The values
of these curves are normalized by the peak amplitude of the spectrum
calculated with the lens present.
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CHAPTER IV

Isotropic NRI Media

Expanding the backward-wave bandwidth of negative-refractive-index (NRI) me-

dia represented an important step towards making these metamaterials suitable for

real-world applications. However, the designs presented worked only for electromag-

netic waves of a specified polarization. In fact, all of the NRI metamaterials that have

been fabricated to date were polarization dependent [13, 15, 44, 56, 57, 58, 59, 60].

This shortcoming has prevented NRI lenses from achieving the three-dimensional re-

construction of arbitrary sources that has been discussed theoretically [12]. In this

chapter, the problem of polarization-dependent material parameters in NRI media is

addressed through the development of a volumetric metamaterial that exhibits a NRI

for waves of any polarization over a broad backward-wave bandwidth.

4.1 Design of the Isotropic NRI Medium

One might think that isotropic NRI media have not been fabricated due to the

inability to realize either negative permittivity or negative permeability isotropically,

but this is not the case. In fact, isotropic negative permittivity and negative per-

meability have both been observed, albeit in separate materials. Isotropic negative

permittivity media exist in the natural world in the form of metals below their plasma

frequencies [61] and ionized gases in the ionosphere. Further, specific negative permit-
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tivity values can be engineered at microwave frequencies by using a three-dimensional

wire grid [7, 32] rather than a solid block of metal, as used at optical wavelengths.

Although isotropic negative permeability media are not as readily available, one such

medium was constructed from a lattice of split-ring resonators (SRRs) designed to res-

onate at 63.28MHz [17]. Despite the ability to realize isotropic negative permeability

and isotropic negative permittivity separately, metamaterials with both properties

have remained elusive due to the fabrication challenges associated with combining

the elements responsible for negative permittivity and negative permeability into a

single medium. Several theoretical designs for isotropic NRI media have been pro-

posed [18, 19, 62], but none have been manufactured due to their complicated three-

dimensional assembly.

Beyond the fabrication difficulties inherent in creating isotropic NRI metamateri-

als, the practical issues of bandwidth and loss discussed in the preceding chapters also

hindered the development of polarization-independent media. Naturally, maintaining

the improved bandwidth and loss performance achieved in broadband polarization-

dependent structures [44, 58, 59, 60, 63] was emphasized in the design of the isotropic

NRI medium. The development of a broadband, low-loss, isotropic NRI metamate-

rial would address three of the most significant problems with NRI media and would

allow them to be more readily incorporated into practical microwave applications.

4.1.1 Topology of the Isotropic NRI Medium

The desire for the isotropic NRI metamaterial to exhibit broad bandwidth pre-

cludes the use of SRR [17] or resonant-sphere arrays [62] to achieve negative perme-

ability. The electrical connections between unit cells in the transmission-line cage

introduced in Chapter II prevent that topology from being used to realize isotropic

negative permeability as well. As a result, a new metamaterial element that ex-

hibits isotropic negative effective permeability was developed: the split-cube res-
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Figure 4.1: One unit cell of the 3-D isotropic NRI medium.

onator (SCR), which can be seen in Fig. 4.1 [64]. The SCR can be considered the

three-dimensional analogue to the SRR. Instead of a two dimensional ring shape,

the SCR is based on a three-dimensional cubic frame. Since the SCR is already a

three-dimensional structure, the complete negative permeability medium can be con-

structed simply by placing these structures side-by-side. This fabrication method is

much easier than assembling interconnected lattices of two-dimensional printed circuit

boards, as is necessary when using SRRs.

In addition to its straightforward manufacturing process, the cubic shape of the

SCR gives it full octahedral symmetry (i.e. it is of the point group Oh [65]). This

means that the structure can be rotated 24 different ways and reflected 24 different

ways without changing its appearance. The symmetry allows the SCR to produce the

same magnetic response regardless of the direction in which the incident magnetic field

is oriented, making this single element capable of producing polarization-independent

negative permeability.

As in the previous NRI media discussed in this thesis, negative permittivity is

realized using thin wires. To achieve isotropic negative permittivity, the wires are
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oriented along all three axes of the cubic unit cell, as shown in Fig. 4.1. This wire

grid also exhibits full octahedral symmetry, so the permittivity response is the same

no matter the direction of the electric field. When the wire grid is integrated with

the SCR array, the complete medium exhibits a NRI independent of polarization.

4.1.2 Eigenmode Simulations
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(a) Isofrequency countours in the x̂− ŷ plane.
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(b) Isofrequency countours in the x̂− ŷz plane.

Figure 4.2: Isofrequency contour plots for the unit cell shown in Fig. 4.1. The green
planes indicate the plane in which propagation was confined for a each
contour plot.

The symmetry of the unit cell alone does not guarantee isotropic propagation.

The phase delay across the unit cell must also be sufficiently small to ensure that

the metamaterial does not suffer from spatial dispersion. The maximum allowable

phase delay depends on the specific application, but as a general rule, the electrical
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length of the unit cell should be less than λ0/10. A target operating frequency of

1.5GHz (λ0 = 20cm) and a unit cell size of 1.5cm (0.075λ) were chosen in order to

ensure isotropic propagation over all frequencies of interest. In order to determine the

isotropy explicitly, the isofrequency contours [66] for the NRI index mode of the unit

cell were obtained from HFSS eigenmode simulations. Fig 4.2 shows the isofrequency

contours for propagation in two different planes: the horizontal plane (Fig. 4.2(a))

and a plane that cuts the unit cell along a diagonal (Fig. 4.2(b)). Each isofrequency

contour plot indicates the plane in which the propagation vector was confined by the

green plane in the adjacent unit cell diagram. In Fig. 4.2(a), kxd and kyd were swept

independently from 0◦ to 180◦ while kzd was held constant at 0◦. In Fig. 4.2(b), the

phase delay kxd was swept independently from 0◦ to 180◦, while the phase delays in

the ŷ and ẑ were both swept from 0◦ to 180◦ such that kyd = kzd. The isofrequency

contours are plotted with respect to kxd and kyzd, where kyzd =
√
(kyd)

2 + (kzd)
2.

As a result, kyzd has a maximum value of 254.6◦ rather than 180◦. As can be seen in

Fig. 4.2, the simulated isofrequency contours for the unit cell’s NRI mode are nearly

circular for frequencies above 1.4GHz. Therefore, the unit cell exhibits isotropic

propagation for frequencies above 1.4GHz that are also in the NRI frequency range.

Eigenmode simulations were also performed to obtain the three-dimensional dis-

persion diagram (described in Appendix A) of the infinite isotropic NRI medium.

The first four modes of the unit cell are plotted in Fig. 4.3. The lowest two modes

are the NRI modes, as indicated by the negative slope of their eigenfrequencies as the

phase delay varies from Γ (kxd = 0◦, kyd = 0◦, kzd = 0◦) to X (kxd = 180◦, kyd = 0◦,

kzd = 0◦). These two modes represent the two orthogonal polarizations that can

propagate through the medium in a specific direction (e.g. for propagation in the x̂

direction: a ẑ-directed electric field with a −ŷ-directed magnetic field and a ŷ-directed

electric field with a ẑ-directed magnetic field). For frequencies between 1.33GHz and

1.61GHz these modes overlap, indicating polarization-independent behavior. Below
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1.33GHz, the two modes split, indicating that waves traveling through the medium

in the same direction but with different polarizations experience different propaga-

tion constants. Thus, the design is polarization dependent below 1.33GHz and is

unsuitable for three-dimensional focusing in that frequency range. The contour plots

in Fig. 4.2 indicate that the medium also suffers from spatial dispersion over these

frequencies, so the multimode behavior simply confirms that this design is best-suited

for use above 1.4GHz.
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Figure 4.3: Three-dimensional dispersion diagram for the isotropic NRI medium.

Fig. 4.3 illustrates that the overlapping NRI modes are the only modes found

between 1.33GHz and 1.61GHz. A previous three-dimensional isotropic structure [18]

displayed an undesired mode within the NRI frequency range. Such spurious modes

can couple power from the evanescent spectrum. Therefore, ensuring the design is

free of spurious modes is of particular importance for near-field applications, such as

the NRI lens.

The dispersion diagram also shows the broadband behavior of the proposed NRI

medium. For on-axis propagation (Γ to X), the structure exhibits NRI behavior from

1.27GHz to 1.61GHz: a fractional bandwidth of 24.1%. This is more than twice the

bandwidth that would be expected of a three-dimensional SRR/wire array and is still
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greater than any previously proposed three-dimensional NRI medium [18, 19, 62].

Still more remarkable is the negative permeability bandwidth that is achieved by the

SCR arrays. The dispersion diagram for the SCR array without the wire grid (plotted

in Fig. 4.4) exhibits a stopband between 1.27GHz and 1.98GHz. This stopband is

due to the negative effective permeability of the medium over these frequencies. This

represents a fractional negative permeability bandwidth of 43.7%, which is more than

four times what can be expected from an array of SRRs.
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Figure 4.4: Three-dimensional dispersion diagram for the isotropic negative perme-
ability medium.

In Chapter II, the broadband performance of the polarization-dependent NRI and

negative permeability media was shown to be a result of strong cell-to-cell coupling.

However, unlike the unit cells of the transmission-line cage, the SCRs are not elec-

trically connected to their neighbors. As a result, the cell-to-cell interaction must

be achieved through other coupling methods: such as mutual inductance or mutual

capacitance. Researchers have coupled SRRs through magnetoinductive waves [27],

but the mutual inductance that can be achieved between SRRs in the same plane is

small. As a result, the magnetoinductive coupling only resulted in a minor increase in

negative permeability bandwidth. On the other hand, strong coupling exists between

adjacent SCRs, as depicted in Fig. 4.5(a). Adjacent SCRs are closely spaced and
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exhibit a large mutual capacitance between opposing faces. In contrast, only weak

capacitive coupling is observed between adjacent SRRs (Fig. 4.5(b)) despite having

the same interelement spacing as the SCRs. The significant coupling between neigh-

boring SCRs allows the SCR array to behave as a traveling-wave structure, which

results in broadband performance.

(a) Coupling between SCR unit cells. (b) Coupling between SRR unit cells.

Figure 4.5: Drawings comparing the cell-to-cell capacitive coupling between SCR unit
cells and SRR unit cells.

4.1.3 Finite Structure Simulations
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Figure 4.6: Simulated magnitudes of the reflection and transmission coefficients of
the NRI slab for normal incidence.

The isotropy and broad bandwidth of the proposed unit cells make them suit-
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able for the construction of a three-dimensional NRI lens. As in the case of the

polarization-dependent metamaterials designed in Chapter III, the NRI lens was

simulated using Ansoft’s HFSS. By exciting a four-cell-thick slab of infinite trans-

verse extent with a normally-incident free-space plane wave, the S-parameters of the

isotropic NRI medium (Fig. 4.6) were calculated. The refractive index (Fig. 4.7),

impedance (Fig. 4.8), loss (Fig. 4.9), Figure of Merit (Fig. 4.10), relative perme-

ability (Fig. 4.11) and permittivity (Fig. 4.12) were all extracted from the simulated

S-parameters. The lens was optimized such that µr ≈ ϵr ≈ −1 at the design frequency

by adjusting the wire diameters, the capacitor values and the physical dimensions of

the SCRs. The dimensions and values of the optimized design are depicted in Fig.

4.1. Due to the availability of only discrete wire sizes and capacitor values, the design

frequency shifted marginally to 1.51GHz. At this frequency, the simulated relative

permeability and permittivity are µr = −1.006 − j0.017 and ϵr = −1.007 − j0.011,

respectively, leading to an index of refraction of n =
√
µrϵr = −1.006 − j0.014 and

a wave impedance of η = 376.5 + j1.1Ω. Since the impedance of the medium is

close to that of free space (η0 = 376.7Ω) at the design frequency, the lens is nearly

reflectionless, with a simulated reflection coefficient magnitude of |S11| = −51.6dB.

Furthermore, the S-parameters show that the structure is well matched to free space

over a large bandwidth, ranging from 1.31GHz to 1.59GHz.
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Figure 4.7: The simulated refractive index of the NRI slab extracted from the normal
incidence transmission data.
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Figure 4.8: The simulated Bloch impedance of the NRI slab extracted from the nor-
mal incidence transmission data. The resonances that occur in the lower
frequencies are a result of the electrical length of the slab being a multiple
of λ/2.
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Figure 4.9: The simulated loss of the NRI slab extracted from the normal incidence
transmission data.

As can be immediately noticed from Figs. 4.7, 4.9 and 4.10, the structure was low

loss, exhibiting a simulated loss of 0.25dB for the entire four cell slab and a Figure

of Merit (|n′/n′′|) equal to 72 at the operating frequency. This loss performance is

comparable the simulated structure presented in section 3.2, the experimental version

of which exhibited the lowest loss per cell for any NRI medium.

Figs. 4.11 and 4.12 also reveal why a medium with more than 40% negative

permeability bandwidth has a NRI bandwidth of just over half of that. The reason

for this is that the slope of the permittivity curve at ϵr = −1 is much steeper than
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Figure 4.10: The simulated Figure of Merit (|n′/n′′|) of the NRI slab extracted from
the normal incidence transmission data.
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Figure 4.11: The simulated relative permeability of the NRI slab extracted from the
normal incidence transmission data.

the slope of the permeability curve at µr = −1. As a result, the electric plasma

frequency will be well below the magnetic plasma frequency for a medium with the

material parameters ϵr = µr = −1 at the operating frequency. Fig. 4.12 shows that

this was the case for this design. The electric plasma frequency occurs at 1.61GHz,

while the magnetic plasma frequency was shown in section 4.1.2 to be 1.98GHz. This

bandwidth limitation illustrates the cost of realizing an impedance matched structure

on the bandwidth of the NRI medium.
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Figure 4.12: The simulated relative permittivity of the NRI slab extracted from the
normal incidence transmission data.

4.2 Fabrication of the Isotropic NRI Medium

With the four-cell NRI lens designed, the next challenge was to build the isotropic

NRI medium. This challenge was an important one because previously proposed

designs of isotropic NRI media were prohibitively difficult to fabricate [18, 19]. The

difficulty with earlier structures was primarily caused by their reliance on printed-

circuit-board techniques to realize three-dimensional structures. In such structures,

the printed circuit boards would be assembled at right angles to each other, requiring

extensive manual effort. More importantly, loading circuit components had to be

electrically connected across these 90◦ junctions in both designs. Such connections

are not only challenging to execute but are also mechanically unstable, since any

flexing of the joints will result in significant stress on the electrical connection. To

avoid these issues, the SCRs were fabricated using stereolithography: a fabrication

technique that uses a laser to cure plastic resin layer-by-layer in order to construct

three-dimensional forms. This fabrication procedure produced a solid cubic frame,

which added to the mechanical strength of the isotropic NRI medium rather than

compromising it.

The fabrication of each SCR began with the formation of the 13.75mm cubic

frame out of plastic (Accura 60 resin) using the stereolithography process. Each leg
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of the frame had a cross-sectional area of 50mil×50mil with a notch in the center

70mil long and 20mil deep into which a capacitor was placed when the SCR was

complete. The next step was to electroplate the frame with copper. The notches

had to remain free from copper, so that they would not short circuit the capacitors

that would be placed across them. This was accomplished by masking the surface

of these notches during the electroplating process. The frames were subsequently

wrapped in wire to ensure uniform copper plating over their surfaces. The frames

were plated in batches of 60 using a LPKF MiniContac RS copper plating system.

After the electroplating process, the masks were removed from the notches, exposing

the bare plastic underneath. The final step of the SCR fabrication was to solder a

1.8pF capacitor into every notch (for a total of 12 capacitors per SCR). A photograph

of the cubic frame and a complete SCR is shown in Fig. 4.13.

More than 400 SCRs were fabricated using this process. They were arrayed in

a 10 × 10 × 4 lattice to produce a negative permeability medium. A separation of

1.25mm was maintained between the SCRs in all directions by placing the 400 SCRs

into ten custom-machined trays made from 4mm Rohacell foam. Arrays of 10 × 4

SCR-footprints were milled to a depth of 1.375mm in both sides of the Rohacell (Fig

4.14). The double-sided milling allowed each row of SCRs to be locked in proper

alignment with the row above and below it. The ten trays were stacked atop each

other to create the negative permeability medium. As a result of the low permittivity

and loss tangent of the Rohacell (ϵr = 1.05, tan δ < 0.0002), the presence of the trays

only slightly perturbed the material parameters of the medium.

Negative permittivity was then introduced by threading 24 AWG (20mil diameter)

wires through the unit cells in all three axial directions. As shown in Fig. 4.1, the

junctions of the wires were electrically connected. These connections were required

in order to maintain NRI behavior when the incident electric field is not aligned with

any of the wires. To aid in the mechanical stability of the connections, the wires were
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Figure 4.13: A plastic 3-D cu-
bic frame (left) and
a completed cube
(right).

Figure 4.14: Top-view of one of the
Rohacell trays.

Figure 4.15: Front-view of the completed
NRI Lens.
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woven together, alternating their over-under pattern every unit cell. This weave kept

the wires in place and allowed reliable electrical connections to be achieved at the

junctions using silver epoxy. With the integration of the wire grid, the construction

of the three-dimensional, isotropic NRI medium (Fig. 4.15) was complete. The

fabricated NRI lens measured 15cm×15cm×6cm or 0.75λ× 0.75λ× 0.3λ.

4.2.1 Differences Between the Designed and Fabricated Lens

Any process that is not well-characterized through prior experience will produce

some unanticipated results. Electroplating the plastic frames of the SCRs using a

printed-circuit-board copper plating system proved to be a challenge in this respect.

While it was anticipated that electroplating the cubic frames would increase their

thickness, the actual increase was larger than expected. Measurements of the SCR

dimensions after the plating process showed that the size of the cubic frame was

13.85mm (compared to anticipated 13.75mm) and the cross-sectional area of each leg

increased from 50mil×50mil to 60.5mil×60.5mil.
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Figure 4.16: Simulated magnitudes of the reflection and transmission coefficients of
the NRI slab for normal incidence. The blue curves represent the original
design; the red curves more accurately reflect the dimensions of the
fabricated structure.

To observe the effects of the added copper thickness on the material parameters of

NRI medium, the HFSS simulations of the finite structure were redone using the new
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Figure 4.17: The simulated refractive index of the NRI slab extracted from the nor-
mal incidence transmission data. The blue curves represent the original
design; the red curves more accurately reflect the dimensions of the fab-
ricated structure.

dimensions. The red curves in Fig. 4.16 represent the updated S-parameters of the

four-cell slab. For comparison, the S-parameters of the original design are also plotted

in Fig. 4.16 and are denoted by the blue curves. Using the S-parameters from both the

original and the updated simulations, the refractive index (Fig. 4.17), impedance (Fig.

4.18), loss (Fig. 4.19), Figure of Merit (Fig. 4.20), relative permeability (Fig. 4.21)

and permittivity (Fig. 4.22) were calculated for both the original design (blue curves)

and the design accounting for the excess copper plating present in the fabricated lens

(red curves). Figs. 4.21 and 4.22 best illustrate the effect of over-plating on the

material parameters of the medium. The permittivity curve shifted down in frequency

due to the thicker legs of the cubic frames as well as reduced space between adjacent

SCRs (since the unit cells were still 15mm). The reduced spacing resulted in a higher

mutual capacitance between neighboring SCRs and the thicker legs resulted in lower

inductances separating those mutual capacitances. The overall consequence of these

effects was an increase in the relative permittivity of the medium, similar to the

structures reported in [52]. The permeability curve on the other hand shifted higher

in frequency due to the overplating of the SCRs. The additional copper thickness

lowered the inductance of the cubic frame, which raised both the resonant frequency
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Figure 4.18: The simulated Bloch impedance of the NRI slab extracted from the nor-
mal incidence transmission data. The blue curves represent the original
design; the red curves more accurately reflect the dimensions of the fab-
ricated structure. The resonances that occur in the lower frequencies are
a result of the electrical length of the slab being a multiple of λ/2.

of the SCR as well as the magnetic plasma frequency.

Since the material parameters of the NRI lens changed, the operating frequency

shifted as well. The permeability of the medium is most critical for achieving super-

resolved focusing. Therefore, the new operating point was set to where µr ≈ −1.

At 1.54GHz, the simulated material parameters for the fabricated structure were

found to be µr = −0.994 − j0.027 and ϵr = −0.179 − j0.016. Since the operating

point follows the permeability and the permittivity curve shifted in the opposite

direction with respect to frequency, the permittivity value deviated significantly from

the original design. While this compromised the resolution of the lens, a predictable,

super-resolved focus was still expected.

Another difference between the fabricated structure and the original design was

the loss. The higher loss observed in the fabricated structure can be attributed to the

capacitors not having as high a Q-factor as expected as well as the extra resistance

caused by the solder joints, which were not included in the original simulation. In

either case, the representative loss can be effectively modeled in simulation by adjust-

ing the shunt resistance of the capacitors from R = 28.6kΩ (which was used in the
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Figure 4.19: The simulated loss of the NRI slab extracted from the normal incidence
transmission data. The blue curves represent the original design; the red
curves more accurately reflect the dimensions of the fabricated structure.

original design) to R = 17.7kΩ. Both Figs. 4.19 and 4.20 show that the simulated

loss of the fabricated structure was higher than in the original design. Despite the dif-

ference, the simulation of the fabricated structure still exhibits low-loss performance

in these simulations, with a maximum Figure of Merit above 40 (at 1.45GHz) and a

loss of about 0.31dB at the operating frequency. It should be noted that the Figure

of Merit was 17.2 at the operating point, however this does not reflect an increase

in loss (represented by the imaginary part of the index of refraction n′′) so much as

it does a decrease in the magnitude of the real part of the index of refraction (|n′|)

which was | − 0.422| as a result of the changes in permittivity.

4.3 Setup of the Focusing Experiments

Although the NRI lens did not have sufficient transverse extent to measure the

material parameters directly using a quasioptical gaussian beam measurement system

as in Chapter III, considerable information can be gained through near-field focusing

experiments. The experimental setup for these focusing experiments is similar to the

free-space focusing measurements conducted in Chapter III, except this time both

electric and magnetic dipoles were used as the sources and probes. As an example,
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Figure 4.20: The simulated Figure of Merit (|n′/n′′|) of the NRI slab extracted from
the normal incidence transmission data. The blue curves represent the
original design; the red curves more accurately reflect the dimensions of
the fabricated structure.

a diagram of the experimental setup with electric dipoles can be seen in Fig. 4.23.

Regardless of whether electric or magnetic dipole probes are used, the source dipole

was located 3cm (half the thickness of the NRI lens) from the input face of the lens,

while the second dipole (identical to the source dipole) probed the fields on the op-

posite side of the lens (i.e. beyond the output face). A three-dimensional translation

stage controlled the location of the second dipole, allowing it to be positioned with

an accuracy of 5µm. To perform a scan of the fields, the translation stage moved

the second dipole probe by 2.5mm intervals, while a computer recorded the complex

transmission coefficients measured with an Agilent E8361A network analyzer at each

position.

The orientation of the probes depended on whether they were electric or mag-

netic dipoles. In the case of the electric dipoles (each of which were 2cm or λ0/10

in length), the dipole was oriented vertically, as shown in Fig. 4.23. Other polar-

izations were tested by rotating the lens rather than the dipoles. By rotating the

device under test rather than the probes, the surrounding test environment remained

constant, producing more reliable results. In the “vertical” lens orientation, the Ro-

hacell trays were stacked vertically, as depicted in Fig. 4.15. The “horizontal” and
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Figure 4.21: The simulated relative permeability of the NRI slab extracted from the
normal incidence transmission data. The blue curves represent the orig-
inal design; the red curves more accurately reflect the dimensions of the
fabricated structure.

“off-axis” orientations were tested by rotating the lens 90◦ and 45◦, respectively. The

best focusing results were found to occur at 1.54GHz, exactly corresponding to the

operating point predicted by the updated simulation. The measured electric field

magnitudes at 1.54GHz are plotted in both the horizontal plane (the plane normal

to the dipoles that extends beyond the output face of the lens) and the focal plane

(the plane parallel to the output face of the lens but 3cm away), in Figs. 4.24(a) and

4.24(b), respectively.

The magnetic dipole probes were implemented as shielded loops. Each loop was

approximately 1cm in diameter and made from 1.17mm semirigid coaxial cable. The

loops lay in a plane parallel to the face of the NRI lens such that the magnetic dipole

(aligned along the axis of the loop) was perpendicular to the face of the lens. Using

these magnetic dipole probes, scans were performed in the horizontal plane and the

focal plane for the same three polarizations that were tested using the electric dipole

probes. The results of these scans are plotted in Fig. 4.25.
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Figure 4.22: The simulated relative permittivity of the NRI slab extracted from the
normal incidence transmission data. The blue curves represent the orig-
inal design; the red curves more accurately reflect the dimensions of the
fabricated structure.

4.4 Comparison of the Experimental Results to Theory

Analyzing the focusing results of the NRI lens quantitatively requires theoretical

predictions of the expected performance of the NRI lens based on the material pa-

rameters extracted from simulation. These predictions were made by deriving the

three-dimensional Green’s functions for a dipole source in front of a slab with infinite

transverse extent and arbitrary material parameters, similar to the procedure derived

in [67].

4.4.1 Plane Wave Propagation

In order to derive the complete Green’s functions for an infinitesimal source, the

behavior for TE and TM plane waves incident on the slab should be characterized.

All other waves can be expressed as the superposition of these plane waves, allowing

the response of arbitrary sources to be calculated. To start, the expressions for TM

waves (Hz = 0) will be derived. Equations for TE waves (Ez = 0) can then be found

by duality.

Consider the diagram in Fig. 4.26. Since the slab has infinite transverse extent,

the geometry exhibits cylindrical symmetry with respect to ϕ (although the plane
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Figure 4.23: Diagram depicting the experimental setup (with electric dipoles) for the
measurement of the isotropic NRI lens.

wave does not). However, this symmetry allows the coordinate system to be oriented

to best suit the needs of the solution. The value of ϕ can be chosen such that the

direction of propagation lies in the ρ̂-ẑ plane. For the TM waves considered here,

this means the magnetic field is always oriented in the ϕ̂ direction. The electric field

vectors are, therefore, defined as

E+
1 = E0

(
ρ̂
kz0
k0

+ ẑ
kρ
k0

)
(4.1a)

E−
1 = RTM · E0

(
ρ̂
kz0
k0

− ẑ
kρ
k0

)
(4.1b)

E+
2 = TTM · E0

(
ρ̂
kz2
k2

+ ẑ
kρ
k2

)
(4.1c)

E−
2 = (−ΓTM)TTM · E0

(
ρ̂
kz2
k2

− ẑ
kρ
k2

)
(4.1d)

E+
3 =

η0
η2

(1 + ΓTM)TTM · E0

(
ρ̂
kz0
k0

+ ẑ
kρ
k0

)
, (4.1e)

where ΓTM is the reflection coefficient seen by a TM plane wave incident from free

space onto an infinite half space of the NRI medium (the Fresnel reflection coefficient).
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(a) Plots of the measured electric field at 1.54GHz
in the horizontal plane.
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(b) Plots of the measured electric
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Figure 4.24: Normalized electric field magnitudes.

112



V
e

rt
ic

a
l p

o
la

ri
za

ti
o

n
O

�
-a

x
is

 p
o

la
ri

za
ti

o
n

H
o

ri
zo

n
ta

l p
o

la
ri

za
ti

o
n

 

 

−0.2 0 0.2 

−0.3 

−0.2 

−0.1 

0

0.5

1.0

Transverse distance from source

 

 

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.5

1

 

 

−0.2 0 0.2 

−0.3 

−0.2 

−0.1 

0

0.5

1

D
is

ta
n

ce
 f

ro
m

 e
x

it
 f

a
ce

(a) Plots of the measured magnetic field at 1.54GHz
in the horizontal plane.

V
e

rt
ic

a
l p

o
la

ri
za

ti
o

n
O

�
-a

x
is

 p
o

la
ri

za
ti

o
n

H
o

ri
zo

n
ta

l p
o

la
ri

za
ti

o
n

 

 

−0.2 0 0.2 

−0.2 

0

0.2 

0

0.2

0.4

0.6

0.8

1

 

 

−0.2 0 0.2 

−0.2 

0

0.2 

0

0.2

0.4

0.6

0.8

1

 

 

−0.2 0 0.2 

−0.2 

0

0.2 

0

0.2

0.4

0.6

0.8

1

V
e

rt
ic

a
l 
d

is
ta

n
c
e

 f
ro

m
 s

o
u

rc
e

Horizontal distance from source

(b) Plots of the measured magnetic
field at 1.54GHz in the image plane.

Figure 4.25: Normalized magnetic field measurements.
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Figure 4.26: Electric field components for the TM plane waves incident on a homo-
geneous slab with infinite transverse extent.

This can be defined as

ΓTM =
ϵ0kz2 − ϵ2kz0
ϵ0kz2 + ϵ2kz0

. (4.2)

The coefficients RTM and TTM relate |E−
1 | and |E+

2 | to E0, respectively. These

quantities can be found using the boundary conditions at the first free space/slab

interface for the ρ̂-components and the ẑ-components:

kz0
k0

E0 ·
(
e−jkz0d1 +RTMejkz0d1

)
=

kz2
k2

TTME0·
(
ejkz2(d2−d1) − ΓTMe−jkz2(d2−d1)

) (4.3)

ϵ0kρ
k0

E0 ·
(
e−jkz0d1 −RTMejkz0d1

)
=

ϵ2kρ
k2

TTME0·
(
ejkz2(d2−d1) + ΓTMe−jkz2(d2−d1)

) (4.4)
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Solving these equations for RTM and TTM yields

RTM = e−jkz0·2d1 · ΓTM − ΓTMe−jkz2·2(d2−d1)

1− Γ2
TMe−jkz2·2(d2−d1)

(4.5)

TTM = e−jkz0d1 · τTMe−jkz2(d2−d1)

1− Γ2
TMe−jkz2·2(d2−d1)

, (4.6)

where τTM is the transmission coefficient seen by a TM plane wave incident from free

space onto an infinite half space of the NRI medium. This can be defined as

τTM =
2ϵ0kz0

ϵ0kz2 + ϵ2kz0
· k2
k0

. (4.7)

Using Eqs. (4.1), and accounting for propagation in both the ρ̂ and ẑ directions, a

complete description of the electric fields in each of the three regions can be derived:

E1 = e−jkρρE0

(
ρ̂
kz0
k0

(
ejkz0z +RTMe−jkz0z

)
+ ẑ

kρ
k0

(
ejkz0z −RTMe−jkz0z

))
(4.8a)

E2 = e−jkρρTTM · E0

(
ρ̂
kz2
k2

(
ejkz2(z+d2) − ΓTMe−jkz2(z+d2)

)
+ẑ

kρ
k2

(
ejkz2(z+d2) + ΓTMe−jkz2(z+d2)

)) (4.8b)

E3 = e−jkρρejkz0(z+d2)
η0
η2

(1 + ΓTM)TTM · E0

(
ρ̂
kz0
k0

+ ẑ
kρ
k0

)
. (4.8c)

The TE fields (Ez = 0) can be found by applying duality to Eqs. (4.8):

H1 = e−jkρρH0

(
ρ̂
kz0
k0

(
ejkz0z +RTEe

−jkz0z
)
+ ẑ

kρ
k0

(
ejkz0z −RTEe

−jkz0z
))

(4.9a)

H2 = e−jkρρTTE ·H0

(
ρ̂
kz2
k2

(
ejkz2(z+d2) − ΓTEe

−jkz2(z+d2)
)

+ẑ
kρ
k2

(
ejkz2(z+d2) + ΓTEe

−jkz2(z+d2)
)) (4.9b)

H3 = e−jkρρ
η2
η0

(1 + ΓTE)TTEe
jkz0(z+d2) ·H0

(
ρ̂
kz0
k0

+ ẑ
kρ
k0

)
. (4.9c)
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The TE reflection and transmission coefficients in Eq. (4.9) (also found by duality)

are defined as

ΓTE =
µ0kz2 − µ2kz0
µ0kz2 + µ2kz0

(4.10)

τTE =
2µ0kz0

µ0kz2 + µ2kz0
· k2
k0

(4.11)

RTE = e−jkz0·2d1 · ΓTE − ΓTEe
−jkz2·2(d2−d1)

1− Γ2
TEe

−jkz2·2(d2−d1)
(4.12)

TTE = e−jkz0d1 · τTEe
−jkz2(d2−d1)

1− Γ2
TEe

−jkz2·2(d2−d1)
. (4.13)

4.4.2 Point Source Excitation

If the NRI lens were excited by a plane wave Eqs. (4.8) and (4.9) would completely

describe the fields both inside and outside of the lens. Since the lens is instead excited

by a dipole source that is quite close to the lens interface, this difference in excitation

must be taken into account. Considering the dipole probes are much smaller than a

wavelength (λ0/10), they can be approximated as infinitesimal. As a result, the source

dipole should radiate a spherical wave. The fields produced by a dipole radiating

in front of a slab can be predicted using the Green’s functions which describe this

situation. The Green’s function for a point source radiating at the origin in free space

is e−jk0r/ (4πr).

As shown in the previous section, the waves incident on the slab will behave

differently depending on the orientations of their fields. Consequently, the spherical

wave emitted by the dipole source must be decomposed into TM and TE waves. Only

the TM waves have a non-zero Ez component, so the Ez component of the electric

field uniquely determines all the field components of the TM waves. For an electric

dipole source oriented in the x̂ direction, the Ez component is defined as

Ez =
−jIl

4πωϵ
· ∂2

∂z∂x

e−jkr

r
. (4.14)
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Similarly, the TE modes are defined by the Hz component radiated by the dipole:

Hz =
−Il

4π
· ∂

∂y

e−jkr

r
. (4.15)

The next step is to consider the effects of the slab on these fields. These effects

have been characterized in the previous section for plane waves, but Eqs. (4.14) and

(4.15) are spherical waves. To address this issue, the Sommerfeld identity [67] can be

used to represent the free-space Green’s function as an integral of cylindrical waves

e−jkr

r
= −j

∫ ∞

0

kρ
kz

J0 (kρρ) e
−jkz |z|dkρ. (4.16)

Substituting Eq. (4.16) into Eqs. (4.14) and (4.15) yields:

Ez =
−Il

4πωϵ

∫ ∞

0

kρ
kz

∂

∂x
J0 (kρρ)

∂

∂z
e−jkz |z|dkρ (4.17)

Hz =
jIl

4π

∫ ∞

0

kρ
kz

∂

∂y
J0 (kρρ) e

−jkz |z|dkρ. (4.18)

The chain rule can be used to take the Cartesian derivatives of the quantities in

cylindrical coordinates:

∂

∂x
=

∂ρ

∂x

∂

∂ρ
(4.19a)

∂

∂y
=

∂ρ

∂y

∂

∂ρ
. (4.19b)

In Cartesian coordinates, ρ is written as

ρ =
√

x2 + y2, (4.20)
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so

∂ρ

∂x
=

x√
x2 + y2

=
x

ρ
(4.21a)

∂ρ

∂y
=

y√
x2 + y2

=
y

ρ
. (4.21b)

In cylindrical coordinates,

x = ρ cosϕ (4.22a)

y = ρ sinϕ. (4.22b)

Substituting Eq. (4.22) into Eq. (4.21) and simplifying yields

∂ρ

∂x
= cosϕ (4.23a)

∂ρ

∂y
= sinϕ. (4.23b)

After performing the derivatives, the TM and TE fields radiated by a x̂-directed

infinitesimal electric dipole in free space are completely defined by:

Ez =


− jIl cosϕ

4πωϵ

∫∞
0

k2
ρJ1 (kρρ) e

−jkzzdkρ z > 0

jIl cosϕ
4πωϵ

∫∞
0

k2
ρJ1 (kρρ) e

jkzzdkρ z < 0

(4.24)

Hz =
−jIl sinϕ

4π

∫ ∞

0

k2
ρ

kz
J1 (kρρ) e

−jkz |z|dkρ. (4.25)

With the radiated fields in this form, accounting for the reflection from and trans-

mission through the interfaces of the slab is straightforward. The reflection and

transmission coefficients at these interfaces are the same as those derived for the

plane waves in the previous section. The ẑ-directed electric fields are written as
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follows:

Ez0 = −jIl cosϕ

4πωϵ0

∫ ∞

0

k2
ρ · (1 +RTM) e−jkz0zJ1 (kρρ) dkρ (4.26a)

Ez1 =
jIl cosϕ

4πωϵ0

∫ ∞

0

k2
ρ

(
ejkz0z −RTMe−jkz0z

)
· J1 (kρρ) dkρ (4.26b)

Ez2 =
jIl cosϕ

4πωϵ2

∫ ∞

0

k2
ρTTM

(
ejkz2(z+d2) + ΓTMe−jkz2(z+d2)

)
· J1 (kρρ) dkρ (4.26c)

Ez3 =
jIl cosϕ

4πωϵ0

∫ ∞

0

k2
ρ

η0
η2

(1 + ΓTM)TTMejkz0(z+d2) · J1 (kρρ) dkρ, (4.26d)

where Ezi is the Ez component in the ith region as depicted in Fig. 4.26. Note that a

new region, “Region 0”, has been defined in the case of the point source excitation.

Region 0 is the region above the source plane (z > 0) and was previously regarded

as part of Region 1. However, since the source fields must propagate away from the

dipole, Region 1 was split to allow the source fields to propagate in the +ẑ direction

for values of z > 0.

The ẑ-directed magnetic fields which describe the TE fields of the electric dipole

are found in the same manner, except using the TE reflection and transmission coef-

ficients. The Hz components in the different regions of Fig. 4.26 are:

Hz1 =
−jIl sinϕ

4π

∫ ∞

0

k2
ρ

kz0

(
e−jkz0|z| −RTEe

−jkz0z
)
· J1 (kρρ) dkρ (4.27a)

Hz2 =
−jIl sinϕ

4π

∫ ∞

0

k2
ρ

kz2
TTE

(
ejkz2(z+d2) + ΓTEe

−jkz2(z+d2)
)
· J1 (kρρ) dkρ (4.27b)

Hz3 =
−jIl sinϕ

4π

∫ ∞

0

k2
ρ

kz0

η2
η0

(1 + ΓTE)TTEe
jkz0(z+d2) · J1 (kρρ) dkρ. (4.27c)

Eqs. (4.26) and (4.27) allow all the remaining field components to be derived,

however at this point, attention will be given only to the field quantities that will be

measured experimentally. As explained in section 4.3, the probe will scan only the

fields on the opposite side of the lens from the probe (Region 3). Further, since the

probe dipole will be oriented the same as the source dipole, only the x̂-directed electric
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fields will ultimately be measured. To find the Ex3 field component, the electric fields

parallel to the lens interface must be derived. These fields are given by the expression

[67]

E|| =

∫ ∞

0

1

k2
ρ

(
∇||

∂ez
∂z

+ jωµẑ ×∇||hz

)
dkρ (4.28)

where ez and hz are the integrands of Eqs. (4.26) and (4.27), respectively, and

∇|| = x̂
∂

∂x
+ ŷ

∂

∂y
(4.29a)

= ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
. (4.29b)

Since ez and hz are in cylindrical coordinates already, the cylindrical definition of ∇||

will be used. In Region 3, the parallel electric fields are

E||3 =
jIlωµ0

4π

∫ ∞

0

(
η0
η2k2

0

(1 + ΓTM)TTM · ∂e
jkz0(z+d2)

∂z
∇|| cosϕJ1 (kρρ)

− jη2
η0kz0

(1 + ΓTE)TTEe
jkz0(z+d2) · ẑ ×∇|| sinϕJ1 (kρρ)

)
dkρ.

(4.30)

=
−Ilωµ0

4π

∫ ∞

0

ejkz0(z+d2)

·
(
kz0η0
k2
0η2

(1 + ΓTM)TTM ·
(
ρ̂ cosϕ

∂

∂ρ
J1 (kρρ) + ϕ̂

J1 (kρρ)

ρ

∂ cosϕ

∂ϕ

)
− η2
η0kz0

(1 + ΓTE)TTE ·
(
ϕ̂ sinϕ

∂

∂ρ
J1 (kρρ)− ρ̂

J1 (kρρ)

ρ

∂ sinϕ

∂ϕ

))
dkρ.

(4.31)

The individual field components are given by:

Eρ3 =
−Ilωµ0 cosϕ

4π

∫ ∞

0

ejkz0(z+d2)

·
(
kρkz0η0
2k2

0η2
(1 + ΓTM)TTM · (J0 (kρρ)− J2 (kρρ))

+
η2

ρkz0η0
(1 + ΓTE)TTE · J1 (kρρ)

)
dkρ

(4.32a)
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and

Eϕ3 =
Ilωµ0 sinϕ

4π

∫ ∞

0

ejkz0(z+d2)

·
(
kz0η0
ρk2

0η2
(1 + ΓTM)TTM · J1 (kρρ)

+
kρη2
2kz0η0

(1 + ΓTE)TTE · (J0 (kρρ)− J2 (kρρ))

)
dkρ.

(4.32b)
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Figure 4.27: Theoretical electric field at the image plane for a electric dipole source
in front of a homogeneous slab with infinite transverse extent.

Ultimately, the field vectors will be most useful in the cartesian form. The con-

version between the cylindrical and cartesian coordinates is given by

Ex = Eρ cosϕ− Eϕ sinϕ (4.33a)

Ey = Eρ sinϕ+ Eϕ cosϕ. (4.33b)

The actual electric fields measured in Fig. 4.24(b) are oriented in the same direction

as the source dipole. Since the source was assumed to be x̂-polarized in this discussion,

the desired component is Ex. The final expression for the x̂-directed electric fields at
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the image plane (z = −d3) are given by the expression

Ex|z=−d3 =
−Ilωµ0

4π

∫ ∞

0

ejkz0(d2−d1−d3)e−jkz2(d2−d1)

·
(
cos2 ϕ ·

(
kρkz0η0
2k2

0η2
· (1 + ΓTM) τTM

1− Γ2
TMe−jkz2·2(d2−d1)

· (J0 (kρρ)− J2 (kρρ))

+
η2

ρkz0η0
· (1 + ΓTE) τTE

1− Γ2
TEe

−jkz2·2(d2−d1)
· J1 (kρρ)

)
+ sin2 ϕ ·

(
kz0η0
ρk2

0η2
· (1 + ΓTM) τTM

1− Γ2
TMe−jkz2·2(d2−d1)

· J1 (kρρ)

+
kρη2
2kz0η0

· (1 + ΓTE) τTE

1− Γ2
TEe

−jkz2·2(d2−d1)
· (J0 (kρρ)− J2 (kρρ))

))
dkρ.

(4.34)

The electric field that should theoretically be measured at the image plane is

shown in Fig. 4.27. Qualitatively, the measurements are very similar to the predicted

fields. Both display an elliptical pattern with the major axis aligned with the electric

dipole. Without the theoretical plot, one might think that such a pattern was a result

of the finite size of the dipole probes. However, the predicted fields were produced

by an infinitesimal dipole, and they still exhibit the same elliptical shape.

4.4.3 Magnetic Field Plots

For the scans conducted using the magnetic dipole probes, the magnetic dipole

source was polarized perpendicular to the face of the lens (ẑ-polarized for the co-

ordinate system describe in Fig. 4.26). This orientation of source excites the TE

polarization exclusively. Since the probe in this measurement was also a magnetic

dipole with the same orientation as the source, only the ẑ-component of the magnetic

field (Hz) will be measured. These facts greatly simplify the analysis since only the

TE polarized fields need to be calculated and the parallel components need not be

found. For the magnetic dipole source described above, Hz is given by the equation
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Hz =
−ωϵIml

4πk2

∫ ∞

0

(
k2 +

∂2

∂z

2
)

kρ
kz

J0 (kρρ) e
jkzzdkρ (4.35)

Performing the derivatives and simplifying the equations yields

Hz =
−Iml

4πωµ

∫ ∞

0

k3
ρ

kz
J0 (kρρ) e

jkzzdkρ. (4.36)

The presence of the slab can then be accounted for by including the effects of the

reflections from and transmission through the interfaces of the slab. As in Eq. (4.9),

different regions are described by different formulae:

Hz1 =
−Iml

4πωµ0

∫ ∞

0

k3
ρ

kz0

(
e−jkz0|z| −RTEe

−jkz0z
)
· J0 (kρρ) dkρ (4.37a)

Hz2 =
−Iml

4πωµ2

∫ ∞

0

k3
ρ

kz2
TTE

(
ejkz2(z+d2) + ΓTEe

−jkz2(z+d2)
)
· J0 (kρρ) dkρ (4.37b)

Hz3 =
−Iml

4πωµ0

∫ ∞

0

k3
ρ

kz0

η2
η0

(1 + ΓTE)TTEe
jkz0(z+d2) · J0 (kρρ) dkρ. (4.37c)
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Figure 4.28: Theoretical magnetic field at the image plane for a magnetic dipole
source in front of a homogeneous slab with infinite transverse extent.

Substituting in the expression for TTE, the theoretical magnetic fields at the image
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plane of the lens are given by

Hz3|z=−d3 =
−Imlη2
4πωµ0η0

∫ ∞

0

ejkz0(d2−d1−d3)e−jkz2(d2−d1)
k3
ρ

kz0
(1 + ΓTE)

· τTE

1− Γ2
TEe

−jkz2·2(d2−d1)
· J0 (kρρ) dkρ.

(4.38)

Fig. 4.28 shows a plot of the theoretical magnetic field at the image plane of a NRI

lens with the material parameters obtained through full-wave simulation. As can be

seen from Eq. (4.38), the magnetic field is independent of ϕ, resulting in the circular

pattern at the image plane seen in Fig. 4.28.

The measured plots displayed in Fig. 4.25(b) are not quite as radially symmetric,

particularly around the edges of the lens. One explanation for this is the finite nature

of the lens. At the boundaries of the lens, the material parameters will abruptly

change from a negative refractive index to the index of air. Since the theoretical

plots assume infinite transverse extent, the effects of the these boundaries are not

accounted for in Fig. 4.28. A second explanation is the variation in the unit cell

geometries throughout the lens. As mentioned above, the SCRs were over-plated and

exhibited more loss than expected, but some SCRs were plated thicker than others.

In constructing the NRI lens, the optimal SCRs were selected to be in the center

of the lens, so the focus would be as consistent with simulation as possible. Those

SCRs that had less consistent properties were relegated to the fringes of the lens.

Particular evidence for this explanation can be seen in Fig. 4.25(b) by tracking the

anomalous fields as the polarization is varied. In the vertical polarization, a region of

higher-than-expected field magnitude can be seen at the bottom of the scan. For the

horizontal polarization, this region moved to the right side of the scan: corresponding

to the same rotation experienced by the lens. For the off-axis polarization, the same

region of high field amplitude can be seen in the lower-left corner, again aligning with

the rotation of the lens. Despite these anomalous fields at the edges of the lens, the
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fields at the focus of the lens are almost perfectly circular, as predicted by Eq. (4.38).

4.5 Comparison of Experiment with Theory

To provide a more quantitative comparison between theory and experiment, it

is useful to examine the half-power beamwidths, otherwise know as the full-widths

at half-maximum (FWHM). However, before comparing theory and experiment, the

measurements of the FWHM for different polarizations will also be compared. For

the horizontal, vertical and off-axis polarizations, the electric field magnitude at the

focal plane is plotted with respect to the horizontal distance from the source in Fig.

4.29. The half-power beamwidths were measured to be 0.238λ for the vertical polar-

ization, 0.241λ for the horizontal polarization and 0.241λ for the off-axis polarization:

all of which are significantly below the diffraction-limited half-power beamwidth of

0.40λ. These subwavelength focusing results demonstrate that the medium exhibits

a negative index of refraction independent of the polarization of the source. Further,

since the electric field patterns and the half-power beamwidths of all polarizations

are nearly identical (differing by 1.2%), the medium is fully isotropic at the operating

frequency.

To compare these experimental results with theoretical ones, Eq. (4.34) was eval-

uated along the same horizontal (ŷ-directed) line in the focal plane:

Ex|ϕ=90◦,z=−d3 =
−Ilωµ0

4π

∫ ∞

0

ejkz0(d2−d1−d3)e−jkz2(d2−d1)(
kz0η0
ρk2

0η2
· (1 + ΓTM) τTM

1− Γ2
TMe−jkz2·2(d2−d1)

· J1 (kρρ)

+
kρη2
2kz0η0

· (1 + ΓTE) τTE

1− Γ2
TEe

−jkz2·2(d2−d1)
· (J0 (kρρ)− J2 (kρρ))

)
dkρ.

(4.39)

The theoretically predicted electric field magnitudes given by Eq. (4.39) are over-

laid with the experimental curves in Fig. 4.29 and show close agreement. The the-

oretical half-power beamwidth for the electric field measurements is 0.238λ. This is
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Figure 4.29: Normalized focal patterns for three different orientations of the NRI lens.
These are compared with an analytical curve and a diffraction-limited
curve which are predicted by the integration of the Green’s functions of
a dipole above a slab.

less than a 0.9% difference from the average measured beamwidth. The diffraction-

limited curve can also be calculated theoretically. To do this, the integral in Eq.

(4.39) is used with a few differences. The first change is that the material parameters

are set to be those of an ideal NRI slab (µr = ϵr = −1) to ensure that the propagating

waves are being correctly focused. The second change is to alter how the evanescent

spatial frequencies are handled. All spatial frequencies greater than the free-space

wave number (k|| > k0) were integrated such that these evanescent waves decayed

exponentially away from the source, as in a conventional medium. The result of this

modified integral produces the diffraction-limited curve, which is shown as the dotted

line in Fig. 4.29. The wide beamwidth of this curve compared to the beamwidths of

the experimental curves demonstrates that the evanescent fields are indeed recovered

by the experimental NRI lens.

The same comparison was preformed using the magnetic dipole probes. The nor-

malized magnetic field magnitudes are plotted along a horizontal line 3cm away from

the lens (at the focal plane) in Fig. 4.30. The labels denoting the lens orienta-

tions are consistent with those used in Fig. 4.29. The half-power beamwidths of the

three orientations are nearly identical: 0.204λ for the vertical orientation, 0.207λ for
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the horizontal orientation and 0.204λ for the off-axis orientation. All of the mea-

sured beamwidths are significantly narrower than the diffraction-limited beamwidth

of 0.4λ. This result verifies that the super-resolving capabilities of the lens are not

only independent of polarization and direction but also the type of source.

To find the predicted magnetic field magnitudes, Eq. (4.38) could be used without

modification due to its ϕ independence. Using the same material parameters as

in the theoretical plots for the electric dipoles (µr = −0.994 − j0.027 and ϵr =

−0.179−j0.016), the expected magnetic field magnitude at the focal plane was plotted

in Fig. 4.30, and it exhibits close agreement with the measured curves. The theoretical

curve has a half-power beamwidth of 0.210λ and difference of 2.4% from the average

value of the experimental curves. Using the same modifications used in the electric

field case, the diffraction-limited curve for a magnetic dipole source perpendicular to

the lens interface is calculated and plotted in Fig. 4.30. The theoretical diffraction-

limited pattern for the magnetic field is 0.40λ, verifying that the lens provided super-

resolved focusing at the operating point.
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Figure 4.30: Solid lines show the normalized magnetic field magnitudes measured at
the focal plane. The dashed black line represents the theoretical curve
based on the integration of the Green’s functions for an appropriately
oriented magnetic dipole. The dotted black line indicates the diffraction-
limited pattern.
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4.5.1 The Optical Transfer Function of the Lens
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Figure 4.31: Optical transfer function of the NRI lens for the electric dipole source.
The blue line represents the original design; the red line more accurately
reflects the dimensions of the fabricated structure.
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Figure 4.32: Optical transfer function of the NRI lens for the magnetic dipole source.
The blue line represents the original design; the red line more accurately
reflects the dimensions of the fabricated structure.

The claim of super resolution is further supported by the optical transfer function

(OTF) of the NRI lens. To find the OTF, the spectrum at the focal plane is divided

by the original spectrum of the source. The analytical OTFs are calculated for both

the electric and magnetic dipole sources based on the simulated material parameters

and are plotted in Figs. 4.31 and 4.32, respectively. Each graph shows the original
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design in blue and as well as the fabricated design in red. The original design repre-

sents the optimal transfer function that could be realized using commercially-available

components and reliable fabrication procedures.

The resolution enhancement is defined as the highest transverse wavenumber (kρ)

recovered at the image, normalized by k0. The transverse wavenumber is said to be

recovered if its amplitude at the image is greater than half of its amplitude at the

source. According to the material parameters obtained in simulation, the resolution

enhancement of the fabricated NRI lens is 1.72 for the electric dipole source and 1.69

for the magnetic dipole source. However, as can be seen from Figs. 4.31 and 4.32,

the resolution enhancement could optimally be much larger if the SCRs had been

fabricated more accurately. The material parameters of the original design yield a

resolution enhancement of 2.86 for the electric dipole source and 2.66 for the magnetic

dipole.

Given that the OTF is calculated by dividing the spectrum at the focal plane by

the one at the source, one might expect the OTF to be source independent. However,

this is not the case. As shown in Eq. (4.34), the electric dipole excites both TE and

TM waves. Eq. (4.38) shows that the magnetic dipole excites only TE waves. TE and

TM waves have different reflection and transmission coefficients, the effects of which

are observed at the focal plane, but not at the source. As a result, the reflection and

transmission coefficients cause the differences observed between Figs. 4.31 and 4.32

as well as the variation in resolution enhancements for the different sources.
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CHAPTER V

Conclusion

5.1 Summary of Achievements

The aim of this thesis has been to address the three most significant limitations

of negative-refractive-index (NRI) metamaterials: narrow bandwidth, high loss and

polarization dependence. By alleviating these three restrictions, the remarkable elec-

trical properties of NRI media can be employed in practical applications.

This thesis places particular emphasis on improving the bandwidth of NRI meta-

materials. To that end, a topology for the first broadband NRI medium was intro-

duced. The design allowed for fractional NRI bandwidths up to 68%— nearly seven

times the bandwidth of typical split-ring resonator (SRR)/wire NRI media. Using

this topology, two NRI lenses were designed, fabricated and measured: one operating

at 2.45GHz and another at 10.435GHz. The NRI bandwidths of these lenses were

both over 40%, which were the widest NRI bandwidths exhibited by any structure

fabricated to date.

Both of the NRI lenses were capable of focusing beyond the diffraction limit.

This ability suggested that both lenses were low-loss, and this was directly verified

through both simulations and transmission measurements of the free-space lens. The

free-space lens, operating over X-band, exhibited the lowest loss (0.17dB/cell) and

the highest figure of merit (n′/n′′ = 31.4) of any NRI metamaterial measured to date.
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To aid in the design of these broadband metamaterials, analytical circuit models

were derived to accurately describe their behavior. The circuit models were based on

multiconductor transmission-line (MTL) theory. They predicted the dispersion dia-

gram of the infinite NRI medium and the S-parameters of finite slabs. By homogeniz-

ing the circuit model of the unit cell into a T-network, closed-form expressions were

derived for the dispersion equation in one and two dimensions, the Bloch impedance

along the principle axes, the permeability and permittivity, the low-frequency perme-

ability resonance, and the magnetic and electric plasma frequencies.

The polarization dependence of NRI metamaterials was addressed through the de-

velopment of a new magnetic element, the split-cube resonator, which exhibited full

octahedral symmetry. This design incorporated the principles from the broadband

NRI medium to achieve a NRI bandwidth of 24% when matched to free space. Still

more impressive was the negative permeability bandwidth, which reached 44%. Both

the NRI and negative permeability bandwidths are substantially wider than than

those achievable using SRR-based metamaterials. Using this design, the first fully

isotropic, polarization-independent NRI medium was fabricated using stereolithogra-

phy and electroplating. More than 400 unit cells were fabricated and incorporated

into a NRI lens. The lens experimentally demonstrated super-resolved focusing for

both electric and magnetic sources, independent of their polarization. Additionally,

the half-power beamwidths at the focal plane were nearly identical for all polariza-

tions, verifying the isotropy of the NRI lens.

5.2 Future Work

Research often uncovers more challenges during the process of resolving others.

Consequently, there are several issues pertaining to the research presented in the

previous chapters that deserve further attention.

The experimental realization of a fully isotropic NRI medium presented in Chapter
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IV represented an important step for NRI metamaterials, but there are several aspects

of the work which can be improved. Currently, no analytical model exists for the

split-cube resonator (SCR)/wire medium. Equations should be derived that predict

the performance of the metamaterial and aid in its design. Since the structure is

polarization independent, its analytical model should be as well. This precludes the

application of the MTL analysis employed in Chapter II because the use of image

theory requires a specific field orientation. Nevertheless, three-dimensional circuit

models, such as the one presented in [18], offer promising clues as to how the behavior

of SCR/wire arrays could be expressed analytically.

Figure 5.1: The alternative design for the SCR. The design eliminates the chip ca-
pacitors and the need for masks in the electroplating process.

Further attention should also be given to simplifying the fabrication process of

polarization-independent metamaterials. The SCRs could be produced in large quan-
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tities, but the overall process required a significant amount of manual labor. Most

of the labor was due to the 12 chip capacitors required for each unit cell. Not only

did the capacitors make the fabrication more complex, they also increased the cost

of the structure significantly and limited the frequency of operation. Fig. 5.1 shows

a design that completely eliminates the chip capacitors in favor of sheath capacitors.

The design consists of three parts which are shown in Fig. 5.2. Part A is the sheath

portion of the new SCR. Part B is one corner of the cubic frame. Part C is a spacer.

To assemble the complete SCR, the sheaths (Part A) should be slid onto the legs of

a cubic frame corner (Part B). Next, a spacer (Part C) should then be slid into each

sheath before inserting the leg of the adjacent corner. In this way, the spacers separate

the corners of the cubic frame, while the sheaths provide the capacitance to tune the

resonance of the SCR. The design in Fig. 5.1 also has the advantage of not requiring

any masks during the electroplating process. The corners of the cubic frame should be

completely plated, while only the exteriors of sheaths should be plated and the spac-

ers should remain unmetalized. Eliminating the need for masks and chip capacitors

greatly simplifies the fabrication process of the SCR, allowing for the construction of

larger slabs of the metamaterial and higher frequencies of operation.

Part A Part B Part C

Figure 5.2: The three unique pieces required to fabricate the new design of the po-
larization independent NRI metamaterial shown in Fig. 5.1. Part A is
the sheath used to capacitively load the SCR. Part B is one corner of the
cubic frame. Part C is a dielectric spacer.

133



The work described in this thesis focused on making NRI metamaterials more

practical by addressing their most significant challenges. To demonstrate that these

media can now be considered viable solutions to practical electromagnetic problems,

they should be used to improve current microwave devices. To this end, a leaky-wave

antenna could be developed that radiates at broadside. To achieve broadside radia-

tion, conventional leaky-wave antennas rely on resonant spacing of periodic elements,

and partially-reflective-surface antennas use dielectric layers of resonant thickness

[68]. Reliance on resonant spacing makes these antennas particularly susceptible to

beam squint. To alleviate this issue, a metamaterial substrate designed to exhibit an

effective refractive index of zero could be used to feed the radiating elements of the

leaky-wave antenna, as shown in Fig. 5.3. By designing the metamaterial to have

coincident electric and magnetic plasma frequencies, the substrate would exhibit a

non-zero group velocity and close the stopband that is typically present between the

NRI frequencies and the positive-refractive-index frequencies. Such a substrate would

allow waves to propagate through the medium with constant phase, exciting all of

the antenna elements in phase, producing a directive beam at broadside. Since the

radiating elements would be spaced electrically close to each other, the medium could

operate in the continuous limit. This would render the antenna less susceptible to

beam squint, as was demonstrated in [69].

Modeling the leaky-wave antenna using MTL analysis is also an important task for

future work. As can be seen in Fig. 5.3, the unit cell of the zero-index metamaterial

substrate is similar to the broadband NRI medium discussed in Chapter II, making

the design well suited for MTL modeling. The two differences that would need to be

accounted for are the asymmetry of the unit cell and the effect of the radiating slots.

In order to accurately model the asymmetrical unit cell, an arbitrary two-dimensional

analysis is needed. The effect of the slot antennas can be modeled with appropriate

radiation resistances, along with parallel capacitive and inductive elements to adjust
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Figure 5.3: A look inside the parallel plate waveguide filled with zero-index metama-
terial.

for current-flow perturbation on the top conductor.

Finally, improving the bandwidth of NRI metamaterials will always be a challenge

since they are necessarily dispersive. The techniques in this thesis focus on improving

the overall NRI bandwidth of the medium, but the most important metric is over

what frequency range these metamaterials can exhibit specific material parameters

with reasonable tolerances. Filter theory provides an excellent example for engineers

to begin this pursuit. The most basic filters are periodic structures that consist of

repeating component combinations. However, better performance can be achieved

by varying the components according to established parameters as are given by the

Chebyshev, Butterworth, elliptical or linear-phase coefficients [70]. By applying sim-

ilar aperiodic analysis to NRI metamaterials, the overall structure may achieve levels

of performance not possible using strictly periodic techniques. Further, by developing

NRI-specific mathematical prototypes, the component values for these metamaterials

could be known immediately from tables or simple formulae, reducing the amount of

time spent simulating such numerically intensive structures. With these techniques,

the performance of NRI metamaterials can be pushed to their true physical limits.
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APPENDIX A

Dispersion Diagrams

Dispersion Diagrams for One-Dimensional Propagation

The dispersion diagram (or Brillouin diagram) [71] is a common method of showing

how phase changes with frequency in a given medium. Fig. A.1(a) shows a dispersion

diagram for propagation along the x̂-axis of a region of free-space 1cm in length. The

independent variable (plotted on the horizontal axis) is the phase delay across this

region, kd, where k is the wavenumber in the medium and d is the length of the region

(in this case, d = 1cm). Since the length of the region is fixed, a change in phase delay

corresponds to a change in wavenumber within the medium. The dependent variable

is the frequency (plotted on the vertical axis), which is related to the wavenumber by

the following equation:

f =
vpk

2π
=

ck

2πneff

, (A.1)

where vp is the phase velocity, c is the speed of light in a vacuum and neff is the

effective index of refraction. In the example of propagation through free space, the

index of refraction and phase velocity of the medium are constant with frequency

(neff = 1 and vp = c), resulting in the linear dispersion curve shown in Fig. A.1(a).
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Figure A.1: Two dispersion diagrams for propagation through a 1cm region of free
space.

When kd reaches a value of π, the dispersion curve in Fig. A.1(a) changes direction

and becomes a backward-wave mode, decreasing in phase as the frequency increases.

The curve switches back to a forward wave when the backward-wave mode reaches

a phase delay of zero. The alternating directionality of the modes is a consequence

of the periodic nature of the phase delay. Fig. A.1(b) shows the same dispersion

curve over a wider range of phase delays. Consider the two solid curves that start

at the origin. The curve on the right represents propagation in the x̂ direction, and

the curve on the left represents propagation in the −x̂ direction. Adding 2π to the

phase delay of the backward-wave curve yields the dashed-line. Subtracting 2π from

the phase delay of the forward-wave curve yields the dotted line. In the region of the

dispersion diagram where 0 ≤ kd ≤ π, these lines correspond exactly to the high-

frequency modes shown in Fig. A.1(a), illustrating how the high-frequency modes

arise from the periodicity of the phase delay.

It should be noted that only for completely homogeneous media are transitions

between forward- and backward-wave modes continuous. Periodic media exhibit a

Bragg resonance when the phase delay across their unit cells reaches π, which causes

a stopband to form before the next highest mode begins [1].
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Multi-Dimensional Dispersion Diagrams

For isotropic continuous media, such as the free-space region in the previous ex-

ample, knowledge of the propagation characteristics along a single axis is sufficient to

completely describe the dispersion of the medium in any direction. Since the medium

appears the same regardless of orientation, the choice of a specific coordinate system

is arbitrary. However, for periodic media (particularly those with cubic or rectangular

prism lattices like the structures discussed in this thesis), spatial dispersion can cause

significant differences between on- and off-axis propagation. To view how propagation

within these periodic structures changes with direction, multi-dimensional dispersion

diagrams can be calculated.

Two-dimensional dispersion diagrams consider propagation in the x̂ and ŷ direc-

tions. An example of a two-dimensional dispersion diagram is Fig. 2.20 (included

for convenience in this appendix as Fig. A.2). The phase delay remains the inde-

pendent variable in these graphs, however, the horizontal axis is no longer a line of

linearly ascending values. Instead, the horizontal axis (and the dispersion diagram as

a whole) is split into three regions, each separated by the critical points Γ, X and M.

Each of these points corresponds to a specific phase delay enforced on the periodic

boundaries. Γ corresponds to the minimum phase delay: kxd = 0, kyd = 0, while the

M point refers to the maximum phase delay: kxd = π, kyd = π. X can refer to either

kxd = π, kyd = 0 or kxd = 0, kyd = π. All structures discussed in this thesis are

symmetric in with respect to their x̂- and ŷ-axes, so it is unnecessary to specify which

phase delay configuration is used. However, for asymmetric structures, this difference

would be significant and require the X point to be clearly defined.

The first region of the two-dimensional dispersion diagram (Γ to X) represents

propagation along the x̂-axis (assuming X corresponds to kxd = π, kyd = 0). There-

fore, it is the same as the dispersion diagram for one-dimensional propagation. The

second region (X to M) plots the change in frequency as the direction of propagation
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Figure A.2: Two-dimensional dispersion diagram for the broadband NRI medium dis-
cussed in Chapter II.

changes from on-axis at the X point to off-axis at the M point (where the propagation

vector is 45◦ away from both the x̂- and ŷ-axes). The third region (M to Γ) represents

a one-dimensional dispersion diagram for off-axis propagation. The propagation vec-

tor never changes directions in this region because the phase delays are varied such

that kxd = kyd. It should be noted that the one-dimensional dispersion diagram from

M to Γ is backward compared to the standard one-dimensional diagram presented in

the previous section.

Three-dimensional dispersion diagrams are similar to two-dimensional diagrams in

that they share the critical points of Γ, X and M. These points are defined exactly as

they are in the two-dimensional case, with the condition kzd = 0 now added explicitly.

The primary difference between the two- and three-dimensional dispersion diagrams

is the R point: defined as kxd = π, kyd = π, kzd = π. The addition of a third

dimension also adds a fourth region to the dispersion diagram, which can be seen

in Fig. 4.3 (reprinted in this appendix as Fig. A.3). The first two regions (Γ to X

and X to M) are defined in exactly the same way as they are in the two-dimensional

dispersion diagram. The third region (M to R) plots the change in frequency as the
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direction of propagation changes from 45◦ off of the x̂- and ŷ-axes in the x̂− ŷ plane

at the M point to 45◦ off of the x̂-, ŷ- and ẑ-axes at the R point. The fourth region

(R to Γ)is a one-dimensional dispersion diagram for off-axis propagation, where the

phase delays are varied such that kxd = kyd = kzd. Similar to the third region of the

two-dimensional dispersion diagram, the dispersion curve is backward compared to

the standard one-dimensional diagram.
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Figure A.3: Three-dimensional dispersion diagram for the isotropic NRI medium pre-
sented in Chapter IV.
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APPENDIX B

The Application of the Propagation Matrix in

MTL Analysis

The propagation in a multiconductor transmission-line (MTL) circuit is described

by Eq. (2.11):

V (x) = e−
√
ZYxV+ + e

√
ZYxV−. (B.1)

The similar forms of this equation and its single-conductor counterpart (Eq. (2.3))

help define the propagation constant matrix as Γ =
√
ZY. However, it is not intuitive

how the different elements of the propagation constant matrix relate the voltages

traveling along individual transmission lines to one another.

The reason for this is that Γ does not actually relate the conductor voltages to

each other, rather, this is done by the exponential propagation matrix e−Γx. It is

critical to observe that

e−Γx ̸=


e−Γ11x · · · e−Γ1nx

...
. . .

...

e−Γn1x · · · e−Γnnx

 . (B.2)

To actually find the matrix elements of e−Γx, the propagation constant matrix Γ must
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be diagonalized, such that

A−1ΓA =



γ1 0 · · · 0

0 γ2
. . .

...

...
. . . . . . 0

0 · · · 0 γn


. (B.3)

In Eq. (B.3), γi is a modal propagation constant. The modal propagation constants

do not describe the propagation on any specific conductor, rather they describe the

propagation of one mode which travels through the MTL circuit as a whole. For the

MTL structure discussed in section 2.4.1, these modal propagation constants are re-

ferred to as γc and γπ. A is the diagonalization matrix and consists of column vectors,

a⃗i, which are the eigenvectors associated with the modal propagation constants, γi.

Therefore, A is defined as

A =


| · · · |

a⃗1 · · · a⃗n

| · · · |

 . (B.4)

Once diagonalized, the modal propagation constants can be used to form a diag-

onal exponential propagation matrix:

e−γx =



e−γ1x 0 · · · 0

0 e−γ2x . . .
...

...
. . . . . . 0

0 · · · 0 e−γnx


. (B.5)

The diagonalization matrix A can then be used to transform the diagonal exponential

propagation matrix to the natural exponential propagation matrix as follows:

e−Γx = Ae−γxA−1. (B.6)
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This same procedure must followed to perform the hyperbolic cosine and hyper-

bolic sine operations used in Eq. (2.15). These operations can be written in the same

form as Eq. (B.6):

cosh (Γl) = A cosh (γl)A−1 (B.7)

sinh (Γl) = A sinh (γl)A−1. (B.8)
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