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ABSTRACT

ELECTROMAGNETIC SCATTERING FROM VEGETATION CANOPIES

by

Kamal Sarabandi

Chairpersons: F.T. Ulaby, T.B.A. Senior

Satellite-borne imaging radar has been proposed by the remote sensing commu-
nity as a potential sensor for the acquisition of quantitative information about
forested area on a global scale. To achieve this goal, it is necessary to develop
retrieved algorithms that can provide reasonable estimate of vegetation biomass,
leaf moisture content, and other physical parameters of tree canopies from multi-
frequency/multipolarization observations of their radar backscattering coefficients.
Ritrieval algorithms often are called ”inverse problem” because their input/output
parameters are the inverse of those associated with the direct problem, which in the
present case refers to the development of a radar scattering model that relates the
radar response to the canopy architecture and associated parameters.

This thesis provides electromagnetic solutions to several problems associated with
scattering from tree canopies. The forest canopy is modelled in the form of layers

comprised of randomly distributed particles with known statistical properties. In




Chapters 2-8 effective scattering models for different constituent particles of vege-
tation canopies are developed by employing appropriate asymptotic solutions and
approximations. The effects of various physical features of the particles, such as
curvature and variation in thickness for planar leaves and roughness for tree trunks,
on their scattering behavior are examined. In Chapter 9 the scattering problem of
inhomogeneous layered media is formulated via the vector radiative transfer equa-
tions and a first-order solution for the radar scattering coefficients is obtained. The
radiative transfer solution is formulated in terms of two sets of input functions: the
scattering matrices of the constituent particles, which are given in Chapters 2-8, and
the size and orientation distribution functions of the particles.

The radar scattering model and associated input functions can be used to conduct
sensitivity analyses to determine the response to individual canopy parameters or
combination of parameters. The results of such sensitivity studies often are the key

ingredients needed for the development of effective retrieval algorithms.
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CHAPTER I

INTRODUCTION

1.1 Motivations and Objectives

The ability of microwaves to penetrate through the atmosphere, clouds and to
some extent rain, has made the microwave spectrum particularly useful for remote
sensing applications. In addition to these advantages, microwave sensors can operate
independently of the sun as a source of illumination and microwaves can penetrate
more deeply into vegetation and ground than, for example, optical waves.

Understanding the interaction of electromagnetic waves with geophysical media
is necessary for the interpretation of remote sensing observations. To this end, radar
remote sensing investigations have been conducted for snowpacks, ice-covered land
[Waite and McDonald 1969; Hofer and Shanda 1978] and water surfaces, vegetation
media [Bush and Ulaby 1976; Engheta and Elachi 1982], and soil moisture applica-
tions. Geophysical media often are mixtures of different types of particles. Their
behavior at microwave frequencies can be characterized by the physical parameters
of the particles, such as size, concentrations or fractional volumes, shapes, orienta-
tions, and dielectric properties. These physical parameters usually are determined
by ground-truth measurements.

One of the research areas of interest in remote sensing is the development of theo-




retical models for vegetation—cow)ered terrain. At centimeter and shorter wavelengths,
a vegetation canopy may be considered as an inhomogeneous medium comprised of
discrete scatterers, such as leaves and stalks, distributed randomly in a free-space
background. The angular, spectral, and polarization behavior of canopy scattering is
determined by the sizes, shapes, and dielectric properties of the individual scatterers.

Several theoretical models have been constructed for interpreting remote sensing
measurements. Because of the complex nature of the scattering problem, it is very
difficult to find an exact solution. Therefore, various kinds of simplifications to the
physical parameters and approximations to the equations must be applied in order to
find a solution. The available models for vegetation-covered land may be categorized
into two groups, semi-empirical models, and approximate theoretical models.

Semi-empirical models consist of simple formulae that can be calculated readily
[Attema and Ulaby 1978]. They are often derived heuristically and contain matching
parameters that sometimes do not correspond to the physical parameters of the
target.

Existing theoretical models for electromagnetic backscattering from a collection
of discrete scatterers may in turn be categorized into two modeling techniques, con-
tinuous and discrete random medium techniques. In the continuous case, the random
medium is modeled by assuming that its permittivity e(z,y, z) is a random process
whose statistical behavior is known. The analysis of this problem can then proceed
in a number of ways. One method involves calculating the mean field using the Foldy
approximation [Lang 1981], from which an equivalent medium for the scattering re-
gion can be defined. The backscattered energy is found by viewing the scatterer as
being embedded in the equivalent medium, and then single scattering theory is used

to find the scattered field. This technique is referred to in tle literature [Rosenbaum




and Bowles 1974] as the distorted-Born approximation. To simplify the mathematics
involved in this technique, the particles usually are assumed to have simple shapes
such as dipoles or spheres. Another method used to obtain the scattered fields from
a continuous random medium is the radiative transport approach [Ishimaru 1978].
Here, it is assumed that there is no correlation between fields in different directions of
propagation and, therefore, the addition of powers rather than the addition of fields
holds. The transport equations are obtained in terms of the statistic of €(z,y, 2)
[Tsang and Kong 1978]. Study of radiative transfer equations has focused on single
and multiple scattering, and to keep the formulation tractable, the particles usually
are assumed to be spherical. This leads to the absence of depolarization, whereas for
natural particles the shape is conducive to the generation of significant depolarization
in the backscattering direction.

In the discrete case, it is assumed that the particles are sparse in the random
medium and single scattering theory is applied to evaluate the backscattered energy
[Engheta and Elachi 1982: Karam et al 1987].

To model a vegetation-covered medium accurately, complete knowledge of single
scattering behavior of the constituent particles is necessary. This allows us to inves-
tigate the significance of the associated physical parameters, and to determine the
range of validity of different approximations and simplifications.

In all of the above mentioned models for vegetation-covered ground the leaves
are assumed to be small dipoles, spheres, or planar dielectric discs, and the branches
and trunks are taken to be circular homogeneous dielectric cylinders. In nature,
leaves are not planar and tree trunks are not necessarily circular and homogeneous.
Furthermore, trunks usually have a rough surface. The objective of this thesis is

to develop more realistic single scattering models for the constituent particles of a




vegetation canopy and a more realistic model for forest covered land. The thesis 1s

composed of three major parts:

(1) The development of an effective model for vegetation leaves and examination
of the effects of surface curvature and the spatial variations in thickness and
moisture content across the planar leaves. Also the developement of a scattering

model for vegetation needles with different cross section geometries.

(2) The development of a scattering model for tree trunks and branches with arbi-
trary cross section, taking into account the effects of surface roughness of the

bark layer and the radial variations of moisture content.

(3) The development a scattering model for forest canopies using the radiative trans-

fer theory.

1.2 Dielectric Behavior of Vegetation Materials

The dielectric constant and shape of an object are the two major factors that
affect its electromagnetic scattering properties. Here, we shall briefly discuss the
primary parameters that control the dielectric constant of leaves and branches, and
then we shall follow up with a preliminary examination of their structures.

Characterization of the dielectric constant of vegetation materials has received
extensive attention because of its important role in scattering of electromagnetic
waves. Vegetation material is a heterogeneous mixture of water, minerals, bulk
vegetation material and air. An "effective”, or equivalent, dielectric constant for a
heterogeneous medium may easily be obtained if the size of the inclusions is much

smaller than the wavelength.

Expressions for the equivalent dielectric constant of a heterogeneous vegetation




material usually are functions of the microwave frequency, the gravimetric water
content, the salinity of the fluid contained in the vegetation, and the vegetation
density [El-Rayes and Ulaby 1987].

Because a large part of the vegetation material is water, its dielectric constant is
strongly governed by the dielectric constant of water and the water content . The
dielectric constant of pure water is relatively high at microwave frequencies because
the water molecule is polarized and behaves like a small free electric dipole whose
direction follows the applied electric field. A model for the dielectric constant of water
based on the interaction of charge displacement in nuclei and the dipole moment of
molecules was first derived by Debye. The complex dielectric constant e = € +2¢” is
given as a function of frequency by

€ — €
where ¢,, and ¢, are the dielectric constant of water at very high and very low
frequencies, respectively, T is the relaxation time-constant due to inertia of the dipole
moments. The quantities ¢, and T" are functions of temperature. Consequently, the
complex dielectric constant of water also depends on temperature [Stogryn 1971].

Dissolved impurities in water can change the dielectric constant of pure water by

introducing an ionic conductivity term:

where o; is the ionic conductivity. The salinity of a solution is defined as the total
mass of dissolved solid salt in grams in one kilogram of solution. Salinity exercises a
minor influence on the permittivity €' of a saline solution, but has a direct effect on

the loss factor €” (through o;), particularly at frequencies below 5 GHz.




Density of bulk vegetation material also affects its dielectric constant. This effect
is recognizable at low moisture levels or at high frequencies where the dielectric
constant of water is not the dominant factor. A general semi-empirical expression
for dielectric constant of vegetation material was developed by El-Rayes and Ulaby
[1987] which shows the influence of each physical parameter on the dielectric constant.
Accuracy of these models are within +20% and in order to obtained accurate values

of dielectric constant a measurement technique is proposed as explained in Appendix

A.

1.3 The Structure of a Tree

In order to characterize the electromagnetic scattering behavior of trees, we first
need to understand their biophysical structure. From an electromagnetic scattering
point of view, plants are comprised of two major constituents: leaves, and trunks
and stems. Here, we briefly discuss the pertinent biophysical structure and function

of leaves, trunks and stems in trees.

1.3.1 Leaf Structure

Leaves come in various shapes and sizes and in general are categorized into needle-
shaped and planar. Vegetation needles uaually have a very small cross section com-
pared to their length and come with semi-circular, triangular, or circular sector cross
section. Planar leaves range from broad fronds to tiny scales with a wide variety of
shapes. A leaf mainly consists of photosynthetic cells known as parenchyma. These
cells are many-sided with thin, flexible cell walls. Leaves contain two types of photo-
synthetic parenchyma cells: palisade parenchyma, consisting of column-shaped cells

in which most photosynthesis takes place, and spongy parenchyma, which consists of




irregularly shaped cells with large spaces between them Fig. 1.1. These spaces are
filled with gases, including water vapor, oxygen, and carbon dioxide.

Palisade and spongy parenchyma make up the mesophyll which is completely
enclosed in an almost airtight wrapping made up of epidermal cells. These cells
secrete a waxy substance that forms a coating, the cuticle, over the outer surface of
the epidermis. The ei)idermal cells and the cuticle are transparent, permitting light
to penetrate to the photosynthetic cells.

Substances move into and out of the leaf by two different ways. Water and
minerals are supplied to the leaf cells by the veins. The veins pass through the leaf
stalk and are connected to the vascular tissues of the stem and the root. The veins
branch and divide into finer and finer bundles, reaching within a short distance of

every photosynthetic cell.
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Figure 1.1: The structure of a leaf

Carbon dioxide, water vapor, and oxygen move into and out of the leaf by diffusion
through stomata. A stoma consists of a small opening, or pore; it is surrounded by

two specialized cells in the leaf epidermis, called guard cells, that open and close the




pore. Stomata are commonly most abundant on the undersurface of the leaves.
The water content and the density, and in turn the dielectric constant, are higher
in the upper surface (palisade region) of a leaf than in its undersurface (spongy re-
gion). Because the leaf thickness is much smaller than the wavelength of the incident
wave at centimeter wavelengths, a leaf can be considered a homogeneous dielectric
slab. At higher frequencies, a stack of dielectric slabs with different dielectric con-
stants is a more accurate representation. Most leaves are thin, curved sheets whose
thickness ranges from 0.1 mm to 0.5 mm. Both thickness and water content of a leaf

are slightly higher at its center than at the edges.

1.3.2 Trunk and Branch Structure

Trunks and branches are mainly composed of vascular tissues known as phloem
and zylem Fig. 1.2, which, in turn, consist of specialized conducting cells, supporting
fibers, and parenchyma cells (companion cells). Conducting cells of phloem transport
the product of photosynthesis , chiefly sucrose, from leaves to the nonphotosynthetic
cells of the plant. Specialized cells in the xylem conduct water and other minerals
from the roots to the other parts of the plant’s body. The conducting cells of the
xylem are tracheids and vessel members. These cells are dead at functional maturity.
Water passes from one tracheid to another through the pits. Vessel members form a
continuous vessel which is a more effective conduit than a series of tracheids.

The production of new cells by lateral meristem, which are known as vascular
cambium and cork cambium, increases the diameter of trunks and stems. This is
known as secondary growth. The vascular cambium is a thin cylindrical sheath of
tissue that exists in-between the xylem and phloem. During the growing season,

the cambium cells divide continually and add new xylem cells toward the inside of




the cambium and new phloem cells toward the outside. As the tree grows older,
the living cells of the xylem in the center of the trunk die and form a dense central
supporting column of the tree.

When the circumference of the stém increases by secondary growth, the outer skin
(epidermis)becomes stretched and torn. Cork , the rough outer layer, which is a dead
tissue at maturity, is produced from the cork cambium and functions as a protective
layer for inner tissues by keeping them from drying out and by safeguarding them

from mechanical injuries.
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Figure 1.2: A tree trunk showing the relationships of the successive layers.

From a scattering point of view, the tree trunk is an inhomogeneous dielectric
body. For waves with wavelengths much longer than the width of the annual rings,
the trunk structure may be simplified into a three-layer stratified cylinder. The outer
layer is rough and consists of dead cells; hence, its dielectric constant is low and only
slightly lossy. The central layer, sapwood, contains tracheids and vessel members
that carry high-dielectric fluids. Consequently, its dielectric constant is high and

very lossy. The inner layer, heartwood, is denser, relatively drier, and its dielectric
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constant is slightly smaller than that of the central layer. This characterization of
the dielectric-constant profile of a tree trunk is consistent with the dielectric mea-
surements of walnut trees at L-band [Dobson,1987].

The dielectric constant of each trunk layer for a given tree depends on the tem-
perature, the time of day, the season, and several environmental factors. The peak-
to-peak variation of the dielectric constant over a diurnal cycle is much larger for the
central layer than for the inner and outer layers. This is due to the variation of wa-
ter content in the xylem tissues which is directly proportional to the phc;tosynthetic
activities of the plant.

Shape is another important factor governing the scattering behavior of an object.
At microwave frequencies and higher, the height of almost any tree is much greater
than the wavelength of the incident wave. Hence, a tree trunk may be viewed as an
infinitely long cylinder. The cross-section of the trunk is approximately circular. At
frequencies in the lower part of the microwave spectrum the trunk cross-section may
be considered exactly circular, but the effects of surface roughness and deviations
from perfect circular geometry become significant as the electromagnetic wavelength
approaches the spatial wavelength of the roughness spectrum. The thickness of each
layer depends on the diameter of the trunk and on the specific tree type and age,
but usually the bark thickness is very small compared with the diameter of the trunk
cross-section. The thickness variation of the bark layer may be azimuthally periodic,

random, or both.

1.4 Basic Equations and Definitions

The fundamental equations relating the four electromagnetic vector quantities,

electric field (E), magnetic field (H), electric flux density (D), and magnetic flux
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density (B) are known as Maxwell’s equations. Physically, the sources of an elec-
tromagnetic field is a distribution of electric charge (p.) and current (Je), but it is
mathematically convenient to use magnetic charge (p,) and current (J,,) as well. If
an explicit time dependence of the form e~ is assumed for all of the field quantities,

the postulated Maxwell’s equations become

VxE= wB-1J,
VxH= —wD+J,

(1.1)
V-D= Pe

V-B= pn

with the following constitutive relations

For an impressed electric or magnetic source, a primary (or incident) field E¢, H*
is established in the medium. If an object (scatterer) is placed in the medium, the
original field will be perturbed and the perturbation is known as the scattered field

Es, H*. Therefore through all space
E°=E-E H°=H - H'

where E, H is the total field in the presence of the body. When the body is finite in
extent and the observation point is far from the body, the scattered field appears to
originate at a point and the scatterer is described as a point target, as opposed to
a distributed target like terrain. The scattering is attributable to electric currents
that are induced inside and on the surface of the scatterer. The scattered field at

any point r in space can then be determined from the electric and magnetic Hertz
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vectors
etko Ir—r’|

IL(r) = 2> f, J.(r')<2irtdV’

L (r) = 2 fy In(r) S dV”

T 4mko |r—r|

(1.2)

where J., J,, are the volume electric and magnetic current densities respectively, and
the integration is carried out over the volume V occupied by the body. In (1.2) ko
and Zy(= 1/Yp) are the propagation constant and intrinsic impedance, respectively,
of free space. In terms of the Hertz vectors Il., IL,,, the scattered field is expressed

as

E’(r) = V x V x IL(r) + tkoZoV X Il (r) (13)
H(r) =V x V x IL, (r) — tkoYoV x IL(r) .

At large distances from the body, V x () = tko7* x () and hence

E*(r) = —k2{F x 7 X II. + 7 x ZoIl,,} (1.4)

He(r) = —k2{F x 7 x I, + 7 x YoII,}

which implies the fact that E°, H® are perpendicular to #. Moreover,
1 ,,,12
|r—r’|mr—7‘-r’+§—{1—(7‘--7‘")2}, (1.5)
r
and if r is so large that over the entire volume occupied by the body the third term

on the right hand side of (1.5) is negligible even when in the phase factor,

/J (r')i'——l-dv'= fdc—or/ Jom(r')eFom T gy (1.6)
v em I r I r v em . .

The accepted requirement for the validity of (1.6) is

tko|r—r’
—r/

2D?
r> 2 (1.7)
Xo

where D is the maximum dimension (diameter) of the body, and this implies that

phase differences of up to 22.5 degrees between the contributions from individual

parts of the body are deemed negligible. Equation (1.7) defines the far zone of the
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body, and (1.4) and (1.6) then show that in the far zone the scattered field looks like
a spherically outgoing wave attributable to electric and magnetic sources located at
the origin.

To model a medium consisting of discrete randomly oriented particles, it is often
required to express the incident and scattered fields of a single particle with respect
to a fixed coordinate frame. Suppoée the particle is located at the origin of a general
Cartesian coordinate system (X, Y, Z) and the incident field is a plane wave. If the
plane wave is travelling in direction /::,-, its electric field vector may be written in
terms of vertical and horizontal polarization components, E! and E} , using the

A A

right-handed coordinate system (%;, k;, k;) shown in Fig. 1.3,

Az

| e

X

Figure 1.3: Geometry of scattering of a plane wave from a particle.

E' = (Ei¥; + Ejh; ek, (1.8)
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where
0; = cosb; cos ¢;T + cos b; sin ¢;§ — sin 6;2
iz.- = —sin @;Z + cos ¢;7 (1.9)
k; = siné;cos ¢;% + sin 6; sin ¢:7 + cos 0;z.

The scattered field in the far zone of the point target, in the direction lAc,, is a
spherical wave that can be expressed in terms of the scattered coordinate system
(b5, sy ks) s

E° = EX¥, + Ejh,,

where
vs = €080y cos ¢z + cos b, sin @, — sin b,z
iz, = —sin @,& + cos ¢,F (1.10)
lAc, = sinf, cos ¢sZ + sin b, sin ¢,5 + cos ,2.

a

For the backscattering case, 6; +0; = 7, ¢; + s = T, /Acs = —/Ac,', ¥, = 0;, and iza = —h;.
Apart from the spherical phase and amplitude factors, the scattered field is related

to the incident field by the scattering matrix S, i.e.

eikor .
E =5 _sE, (1.11)
T
where
va Svh
S =
Shu Shh

is defined in terms of the scattering amplitudes S,,, with m and n denoting the
polarizations (v or k) of the scattered and incident fields, respectively. The scattering
amplitude S,,, is, in general, a complex quantity in terms of which the radar cross

section (RCS) of the target, omy, is given by

Omn = AT | Spn | (1.12)
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Interest in measuring S stems from the fact that if the elements of S are known,
we can compute the RCS of the target that would be observed by a radar with
any specified combination of transmit and receive antenna configurations, including

elliptical and circular polarizations [Zebker et al, 1987].




CHAPTER II

SCATTERING MODEL FOR A FLAT LEAF

2.1 Introduction

Leaves are a significant feature of any vegetation canopy, and for remote sensing
purposes it is important to develop an effective model for predicting the scattering
from a leaf. Although most leaves are irregular in shape and are not flat, they
are often modeled as flat circular discs with known radius, thickness, and dielectric
constant [Levine et al, 1983, 1985]. This brings up the following set of fundamental

questions:

(1) What formulation might one use to characterize the backscattering and extinc-

tion cross sections of a regularly-shaped (elliptical or rectangular) flat leaf?
(2) How does one relate the radar cross section ¢ to the leaf moisture content Mg?

(3) Is it possible to approximate the scattering and extinction cross sections of a
flat irregularly-shaped leaf using the formulations for a rectangular leaf of equal

physical area?
(4) What is the effect of leaf curvature on its scattering behavior?

In this chapter we shall address the first two questions by proposing a resistive sheet

model in conjunction with physical optics and verifying the model with experimental

16
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measurements conducted for sections of leaves (all cut in the shape of a rectangle)
at various levels of moisture content. The scattering is determined by the (complex)
resistivity which is, in turn, entirely specified by the gravimetric moisture content
of the leaf. The result based on the physical optics approximation is compared
with the exact solution obtained using the method of moments for a resistive strip,
and with a uniform second order GTD solution for perfectly conducting strip. The
third question is partially examined by comparing the scattering pattern calculated
for a rectangular plate with measurements obtained for an irregularly-shaped leaf.

Exploration of the effects of leaf curvature will be the subject of Chapter 3.

2.2 Experimental Procedure

The radar cross section (RCS) measurements reported in this chapter were made
at 10 GHz using a small rectangular horn antenna connected to a HP 8510A network
analyzer, as illustrated by the sketch in Fig. 2.1. The network analyzer has a time
domain capability which enables us to separate the target return from other spu-
rious system environment responses. The horn antenna, whose aperture measured
6cm X 6¢m, was located at the throat of a small anechoic chamber, and the leaf was
supported by a set of parallel strings stretched between two synchronously rotating
stepper motors at the top and bottom of the chamber to facilitate the target posi-
tioning. The computer controlled stepper motors permit measurements in specified
increments in angle § between the backscattered direction and the normal to the
plane of the leaf. Also a tilt angle # between the horizontal plane and normal to
the plane of the leaf can be achieved by inserting a piece of styrofoam between the

strings.
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styrofoam

leaf
stepper

motor

horn antenna

stepper
motor

f ¢ string

ab
HP 8510 absorber
HP 9000
HP 8511 computer

Figure 2.1: Schematic of the RCS measurement system.
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2.2.1 System Sensitivity and Calibration

The HP 8510A is a vector network analyzer capable of measuring both the am-
plitude and phase of the reflected signal (channel b in Fig. 2.1) relative to a sample
of the transmitted signal (channel a in Fig. 2.1). To enhance the measurement sen-
sitivity of the system, two measurements are made: one for the background alone,
which includes the sfrings, and another with the target present. By subtracting the
complex signal recorded for the background alone from that measured in the presence
of the target, significant improvement is obtained in the target-to-background ratio.

Absolute calibration of the system was achieved by measuring the cross section
o of a metal sphere at the target range from the antenna. According to these mea-
surements, the noise-equivalent o of the system is about -80 dBsm. Consequently, in
most cases only data above -60 dBsm was recorded, which corresponds to a target-
to-background ratio of 20 dB or greater.

To test the linearity of the system and establish the extent of its dynamic range,
RCS measurements were performed for seven metal spheres with diameters from 0.79
cm to 3.8lecm. The largest sphere was used to calibrate the system and the other
six were used to evaluate the system accuracy by comparing the measured RCS with
theoretical values computed from the Mie series. The continuous curve in Fig. 2.2
is a plot of o/A} as a function of D/), for a perfectly conducting sphere of diameter
D, and the "0” represent the measured data. The rms error, computed for the six

test spheres, is 0.33 dB.

2.2.2 Leaf Moisture and Thickness

The leaf moisture content was determined by measuring its weight immediately

after measuring its RCS, and once again at the conclusion of the experiment. The
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Normalized RCS (dB)

-10 +

T T 7T

-15
0.0

2.0

Figure 2.2: The calibration accuracy and dynamic range of the measurement system

were evaluated by comparing the measured RCS of metal spheres (o)
with theory.
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latter measurement was made after drying the leaf in an oven at 70°C until equi-
librium was reached. The difference in weight represents the weight of liquid water
that was present in the leaf when its RCS was measured. The gravimetric moisture
content Mg is the weight fraction of water in the leaf to the total weight.

Using the data measured and the models developed by Ulaby and El-Rayes [1987]
for the dielectric constant of vegetation, the following simple expressions were gen-
erated to characterize the relative dielectric constant ¢ at 10 GHz fmd room temper-
ature (T = 22°C):

¢ = 3.95¢(279M9) — 225

, (2.1)
¢ = 2.69¢(2:15M9) _ 2 68

It should also be mentioned that a more accurate estimate for the dielectric constant

can be obtained if the volumetric moisture content M, instead of M, is known.
Leaf thickness, which was measured using a micrometer, was found to decrease

slowly with time after cutting as a result of shrinking due to loss of water. The

variation of leaf thickness 7 (mm) with Mg is given by the empirical expression
T =0.032Mg* + 0.091Mg + 0.075 (2.2)

In addition, it was observed that the drying took place from the outer edges of the
leaf inwards, so that the moisture content was no longer uniform across the leaf. In
reality, however, the thickness generally decreases from base to tip and from center
to sides and may vary by as much as 50% over the surface. Expression (2.2) provides

an average value for thickness.

2.2.3 Types of RCS Measurements

Two sets of RCS measurements were conducted. The first data set involved a

leaf that had been cut in the form of a rectangular plate 4cm x 6¢m in area. With
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the long dimension oriented vertically, the cross section of the leaf was measured as
a function of the angle of rotation § about a vertical axis, with § = 0 corresponding
to normal incidence. Each measurement scan consisted of o versus € in 5° steps
from —90° to +90°. Usually two scans were made, one with the antenna polarized
with the electric vector vertical (E polarization) and the other with the magnetic
vector vertical (H polarization). The first data set consisted of four pairs of scans
corresponding to the rectangular leaf at Mg = 85% (freshly cut), 62% (a day later),
and 0% (dry). The data comprising the second set are similar to those in the first
except that the leaf was measured in its natural state without altering its shape. A
profile is shown in the inset of Fig. 2.9.

Maintaining the leaf flat to within a fraction of a wavelength was a consistent
problem in this phase of the investigation, particularly for the "naturally” shaped

leaf after it had been allowed to dry for a few days.

2.3 Theoretical Model

2.3.1 A Resistive Sheet

A leaf can be viewed as a thin layer (of thickness 7) of a non-magnetic dielectric
material whose complex relative permittivity is ¢, and a widely-used model for such
a layer is an infinitesimally thin resistive sheet whose resistivity is

12

k= koT(C — 1)

(2.3)

ohms per square. When R = 0 the sheet appears perfectly conducting and when
R = oo it ceases to exist. The sheet is simply an electric current sheet whose
strength is proportional to the local tangential electric field [Harrington and Mautz,

1975] via the single measurable quantity R. If # is the unit vector normal drawn
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outwards to the upper (positive) side of the sheet and [ ]I denotes the discontinuity

across the sheet, the boundary conditions are
AxE]r=0 (2.4)

implying continuity of the tangential electric field (a consequence of the absence of

any magnetic current), and

nx (A xE)=-RJ (2.5)

where

J=[rxH (2.6)

is the total electric current supported. In recent years resistive sheets have been suc-
cessfully employed in simulating a variety of dielectric structures. Diffraction effects
have been studied analytically (see, for example, Senior {1979]) and, in addition,
computer programs have been written to determine the field scattered by resistive

strips and plates of arbitrary shape.

2.3.2 Scattering by an Infinite Planar Sheet

The scattering properties of a resistive sheet are most easily understood by con-
sidering the simple problem of a plane wave incident on an infinite sheet lying in the
plane y = 0 of a Cartesian coordinate system (z,y, z).

For the case of E polarization in which the incident electric vector is perpendicular

to the z — y plane of incidence, we assume
Ei — éeiko(zsino.-—ycose.-) (| 0{ IS- 7(‘/2) (27)
implying

Hi — —}/O(i' coS 0{ + ﬁsin 0i)eilco(zsin0.'—ycose.')
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The reflected and transmitted electric vectors can be written as

E = _21-\Eeiko(a: sin §;+y cos 6;)

and

Et — éTEeiko(xsinag—ycoseg)

respectively, where I'z and T are constants still to be determined, and by applying

the boundary conditions (2.4)-(2.6) we obtain

-1
I'p= (1 + 2R 9,—) , (2.8)
A
TE = 2—@ COS G,FE (29)
Zo

The current density J supported by the sheet is J = 2J, with
J, = 2Y, cos O;T ge'Fozsinti (2.10)

and recognizing that for a perfectly conducting sheet the resistivity is zero which

implies 'z = 1 and it follows that
J, =TgJr* (2.11)

where the superscript pc refers to the perfectly conducting case.
The analysis for H polarization in which the incident magnetic vector is perpen-
dicular to the plane of incidence is very similar. The reflection and transmission

coefficients are

2R -1
'y = (1 + — sec 9,-) (2.12)
Zy
and
2R
TH = —— 8¢eC Q;PH (213)
Zy
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respectively, and the current density J supported by the sheet has only an x compo-
nent (J = £J,) with

J, = 2T gethozembi (2.14)

Thus

J, =TgJre (2.15)

If R # 0, 'y decreases with increasing ; and vanishes at grazing incidence (6; =

+7/2).

2.3.3 Scattering by a Rectangular Resistive Plate

As a simple model of a leaf we consider a rectangular resistive plate occupying
the region |z| < a/2, |2z| < b/2 of the plane y = 0, and seek the physical optics
approximation to the bistatic scattered field. From the expressions (2.11) and (2.15)
for the currents on an infinite sheet it is evident that the analysis is very similar to
that for a perfectly conducting plate, and it is sufficient to summarize the derivation.

For E polarization in which the incident electric vector is (2.7), the physical optics
approximation to the current induced in the plate is given in (2.10). Since only an
electric current is supported, the scattered field can be attributed to the electric

Hertz vector

iZy [ol? etkolr—r’|
I(r) = iz [ / _dr'dy
o(r) = z47rk0 a/2 J-b/2 Ja( z) |r — r/| v

where

r =r(—&sinf, + g cosb,)
v =zx' + 27
and in the far field

etkor 4 sin X

abcosO,T' g X

Il (r) = 2

T 7Tk0
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with

X = -k;—a(sin 0, + sin 6;)

The scattered electric field is then

tkor
et"o
E° =

Se(0,,0;)

P

where the far field amplitude is

. -
Sp(8,,6;) = 2%7Fkoabcos 0,~I‘ESH)1(

In terms of the far field amplitude the bistatic scattering cross section is
o = 4r|S|?
implying

sin X
X

og(0s,0;) = 4~ | %‘- cos ;' |2
0

(2.16)

(2.17)

(2.18)

For H polarization in which the incident magnetic vector is in the z direction, the

analysis is similar. The physical optics approximation to the current is (2.14), and

in the far field the resulting electric Hertz vector is

eikor
H = Su(6s,6;)
with
=1 sin X
Su(0s,0;) = ngoabcos 0,y e
and the bistatic scattering cross section is
in X
O'H(os,o,‘) =47 | ‘;—l:cos osFHSH)l( |2

(2.19)

(2.20)
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In the backscattering direction (6; = 6,) the only polarization dependence is

provided by the parameter I" and
o5, (0:,0;) =| Teu |* op (2.21)

where o, is the backscattering cross section of the perfectly conducting plate:

Ope = 4w {1—4- cos 0{_____sin(koa sin 6:) }2

. (2.22)
Ao koa sin 6;

in which A = ab is the plate area. In terms of the far field amplitude S(6,,6;) the

extinction cross section is

oot — iikzlm[S(O,' +,6)] (2.23)
0
and thus
O'EZ}.I = 2Acos G,RB[I‘E,H] (224)

We recognize 2A cos ; as the extinction cross section of a perfectly conducting plate

of area A, and at normal incidence

o.gct — O';ft

2.4 Comparison with Measured Data
In addition to the RCS of an actual leaf and a rectangular cutout, measurements
were also made using a rectangular plate to gain confidence in the accuracy of the

experimental procedures and the theoretical approximations. It is convenient to

discuss them in the reverse order.

2.4.1 Rectangular Metal Plate

When a rectangular plate is illuminated with the direction of incidence in a prin-

cipal plane, an approximate expression for the backscattered field can be obtained
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by treating the plate as a length b of an infinite strip or ribbon of width a. For a
perfectly conducting strip, a uniform second order GTD expression for the bistatic
scattered field has been developed by Senior [1979]. If the incident field is H polar-
ized, the formula is equivalent to an asymptotic expansion of the uniform results of
Khaskind and Vainshteyn [1964], and when specialized to the case of backscattering,

the far field amplitude of the plate is

SH(as,as) = —mb;g—’{(l + sin 03)[1 - —\}—7_‘_6_""/4 COS(% — %.1.)
F(\V2koasin(§ — &))]2eikosinb — (1 —sin4,) (2.25)

{1 - 72;6""'/4 sin(F — &) F(v2koa cos(Z — &))|2ethoasinds}
for |0,| < /2, where the phase origin has been chosen at the center of the plate and

F(z) is the Fresnel integral
F(z) = /:o e dy (2.26)
We remark that Sy is finite and continuous for all 8, including 8, = 0 corresponding
to normal incidence, and in terms of Sy the backscattering cross section is given in
(2.17).
In the case of E polarization, a similar approach applied to the uniform results

of Fialkovskiy [1966] gives

SE(GS) 03) == Zr_s?_n—e—,{(]‘ d Sin 03)[1 — '\/L;e_iw/4 COSS(f _ %.1.)
G(V2koasin(E — &))]2etkoasing: _ (] 4 sin g,)

[1 _ %e—ir/tl Sin3(§ _ %)Q(MCOS(f _ %))]Ze—ikoasine,}
(2.27)
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[Senior, 1979] where

G(z) = F(a) - 5 (2.28)

In Figs. 2.3 and 2.4 the theoretical expressions are compared with measured data
for a plate having b = 2o and a = 1.33)¢. Overall the agreement is excellent. With
(2.25) used to compute oy, the strip model accurately reproduces the main features
of the scattering pattern of a plate for H polarization, including the traveling wave
lobes whose maxima occur at #; = +54 degrees and which override the outer side
lobes of the specular flash. A similar agreement is found for E polarization, and the
failure of (2.27) to reproduce the observed oscillation at angles close to grazing can
be attributed to the effect of the currents borne by the side edges of the plate that
are not accounted for by the strip model. The physical optics approximation (2.22)
is included in Fig. 2.3, and the improved accuracy provided by (2.25) and (2.27) is

most evident at angles within (about) 45 degrees from grazing.
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Figure 2.3: Normalized RCS (o/A2) of a thin metal plate with @ = 4cm and b = 6cm
for H polarization: ( ) theoretical expressions (2.25), (- - - ) physical
optics, and (o o 0) measurements.
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Figure 2.4: Normalized RCS (o/)2) of a thin metal plate with a = 4¢m and b = 6em
for E polarization: ( ) theoretical expressions (2.27) , (- - - ) physical
optics, and (o 0 0) measurements.
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2.4.2 Rectangular Resistive Plate

For a rectangular plate of uniform resistivity R, the scattering mechanism is
similar to the perfectly conducting plate and formulas analogous to (2.25) and (2.27)
can be derived from the GTD expression for the bistatic scattered field of a resistive
strip [Senior 1979; Herman and Volakis, 1987]. As the resistivity increases, the
improvement over thé physical optics formula for a resistive plate diminishes. Even
a resistivity as low as 20 ohms per square effectively eliminates the traveling wave
lobe for H polarization [Senior, 1985] and exposes the underlying side lobes of the
specular flash. Similarly, for E polarization, the resistivity reduces the strong edge
effects, including the influence of the side edges of the plate.

The net result is to improve the accuracy of the physical optics approximation
(2.21), and this is illustrated in Figs. 2.5 and 2.6 where the measured data for a
rectangular leaf are compared with 1’!he results of the physical optics and a moment
method code. The moment method code is for two-dimensional resistive strip which
is extended to the three-dimensional case (see Appendix B). The rectangle was cut
from a fresh coleus leaf having Mg = 0.85, and the resistivity was computed from
(2.3) using (2.1) and (2.2). The only significant differences between the strip and
physical optics formulas occur for incidence angles within a few degrees of grazing,
and the physical optics approximation is in good agreement with the measured data
over most of the angular range. Similar agreement was found for other moisture
contents, and Fig. 2.7 shows the results for a dried leaf having Mg = 0. The
measured data shown in this figure all correspond to RCS> —60 dBsm. Even at this
low level of reflectivity the physical optics approximation (2.21) retains its accuracy.
In Fig. 2.8 the measured and computed normalized RCS (0/)2) at normal incidence

for various moisture contents are compared.
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Figure 2.5: Normalized RCS (g/\2) of a rectangular section (a = 4cm, b = 6¢cm) of
a freshly cut coleus leaf (Mg = 0.85) for H polarization: ( ) moment
method solution, (- - - ) physical optics approximation (2.21), and (o o
0) measurernents.
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Figure 2.6: Normalized RCS (0/A3) of a rectangular section (a = 4cm, b = 6¢m) of
a freshly cut coleus leaf (Mg = 0.85) for E polarization: ( ) moment

method solution, (- - - ) physical optics approximation (2.21), and (o o
0) measurements.
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Figure 2.7: Normalized RCS (0/A2) of a rectangular section (a = 4cm, b = 6cm) of
a dried leaf (Mg = 0) for H polarization: ( ) physical optics approx-
imation (2 21) and (o o 0) measurements.
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moisture contents at normal incidence are in excellent agreement with
the physical optics values. The 1:1 line is shown.
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2.4.83 Natural Leaf

In light of the above results it was anticipated that the physical optics approxima-
tion applied to the resistive sheet model would provide a good approximation to the
RCS of an actual leaf at most angles of incidence. To test this, measurements were
made using a coleus leaf whose area was A = 39.5¢cm?. The width of the equivalent
rectangle was chosen as 5.6cm, implying b = 7.1¢m, and the measured normalized
RCS of the freshly cut leaf (Mg = 0.77) is compared with the physical optics ap-
proximation (2.21) in Figs. 2.9 and 2.10. In view of the obvious uncertainty in the
specification of a (or b), the agreement is good down to at least 20 dB below the
broadside peak. Similar agreement was found for the same leaf with Mg = 0.85 and
0.04.

The theoretical extinction and backscattering cross sections (2.24) and (2.21)
respectively, normalized to their perfectly conducting values, are plotted as functions
of the moisture content Mg for normal incidence (8 = 0) in Fig. 2.11. The measured
values of o/o?° for the rectangular and natural leaves are included, and the agreement

1s excellent.
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Figure 2.9: Normalized RCS (o/)2) of a natural coleus leaf having A = 39.5cm?
and Mg = 0.77 for H polarization assuming a = 5.6cm: (——) physical
optics and (o o 0) measurements.
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Figure 2.10: Normalized RCS (0/)3) of a natural coleus leaf having A = 39.5cm?
and Mg = 0.77 for E polarization assuming a = 5.6¢m: (——) physical
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of rectangular leaves as functions of Mg at normal incidence: (
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2.5 Leaf in a General Coordinate System

As explained in Chapter 1 for purposes of modeling the scattering from a medium
containing sparsely distributed randomly distributed leaves, the bistatic scattering
formula for a single leaf with arbitrary orientation in a (X,Y, Z) coordinate system is
required. For a circular leaf the orientation is completely specified by the normal to
the plane of the leaf (7’) which in turn can be specified by two spherical coordinate

angles 6; and ¢,, i.e.
it = sinf; cos ;& + sin §; sin ;3 + cos ;2 (2.29)

For leaves with other geometries, such as rectangular leaves, another angle is needed
to specify the orientation.

Suppose a thin flat plate is illuminated by a plane wave whose amplitude and
polarization is denoted by Eq (Hy). If the plate is perfectly conducting, the physical

optics approximation in the far zone gives

thor : I
I (r) = er A x Hogﬁ / eiko(ki=ka)T' 4 of (2.30)

7I'k0 s

where 7’ is the normal to the illuminated face and the phase origin is at the center

of the plate. Hence

S = (' Bo) {(k: - k.)k, — ki) — (" ki) {(k. - o)k, — Eo}| K (2.31)
where
K = —— [ ¢iholki=k)T' gy (2.32)
Ao 3

In the case of a circular disk of radius a,

K =—; J(|(k; — k) - §|koa)

¢
I(k, - ka) ' ﬁ,l
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where p’ is an arbitrary unit vector in the plane of the disk and Jj is the Bessel
function of the first order. For a rectangular plate with —% < 2’ < % and —-% <y' < %

where z’ and y’ are Cartesian coordinates in its plane,

tabsinU sin V
K = _/\_o UV
with ‘
1 - - ¥ 1 - - "
U= -2-k0a(k; - k,) T, V = Ekob(k‘ e k,) Yy, (233)

and for other geometries the integral expression (2.32) can be evaluated numerically.

As evident from (2.32) if (k; — k,) - ¥/ =0

independent of geometry, where A is the plate area.
If the plate is not perfectly conducting, the resistive sheet simulation is employed,
and it is then necessary to resolve Hy into components perpendicular and parallel to

the plane of incidence. Let

. Y i:.’ . k,‘ ay i:"
foo Xk kX (A X k) (234)
|7’ X ki |7 x ki
in terms of which
ﬁ‘, X HO = C:ltAl + Cgig (2.35)
where
c1 = —(ﬁ, i HO)(ﬁ, ) I::') Co = _)/O(ﬁ', ' EO)('FZ’ . ]::,)
Ifl' X kll ’ 2 In’ < k'| .

The physical optics approximation for current is
J= 2(61].—‘}1{] + CgFEig)Cikoiq.r, f

Here I'g and Iy are the reflection coefficients as given in (2.8) and (2.12) respectively

in which 6; is replaced with

¢ = — a.rccos(/;,- 7).
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In the far zone

tkr

K7 - k)
k2|7’ x k; k ’
(2.36)

I (r) = {(fz' “Eo)Tpk: x (' x ki) + (7' - Ho)Tg (7' x ki) } ———

The scattering amplitude is therefore

{(# - Bo)T gk, x ky x [(#' « k:)ki — #'] + (#'- Ho) ZoT'w

o (2.37)
(R - B x k) + (A ky)(ky x R)] } 2 K
where K is given in (2.32), and the elements of the scattering matrix are
Syv = {(ﬁ’-f):-) (37 - 6,) — (7 - ki) (ks - 8,)] T 2.98)
(- i) (B - k)37 B) = (i~ ho) (8- )] T} K
Sve = {(#- h)[(fi'-f;,)—(ﬁ'-k,')(kj-oj)] Tk 2.39)
— (A" - ;) (ki - k) (3 - ) — (ki - Bo) (! - k)] PH}J%)FK
(@' i) (ks - B) (A - 0,) — (i 0,)(3" - k)] Do} o K
Syn = {(ﬁ' h,) [(7":1,\’-}3,3)—(7’1,' ]::,)(]:A:, ils)] I'g (2.41)
(' 63) (ki ko) (- 0) = (ks - 6,)(7' - k)] Tur bbb K

PYIPRE

To check the above expressions a comparison with measured data is shown in
Fig. 2.12 for a rectangular plate having a = 1.33)\¢ and b = 2)o with its larger
principle (y’) axis tilted back 8 degrees. The angle with the plane of incidence is
therefore 82 degrees, and once again there is good agreement over the main lobe
where most of the energy is concentrated. The discrepancies at wider angles are

attributable to travelling wave and edge effects which are not accurately simulated
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by physical optics. When the tilted plate is lossy having R = 0.163 + i0.442 ! | a
similar comparison with measured data for E polarization is given in Fig. 2.13, and
for completeness we have included here the cross-polarized cross section computed
using physical optics. The agreement now extends to wider angles. It should be
noted that since physical optics is a high frequency technique, its accuracy generally

improves as the frequency and/or plate dimensions increase.

2.6 Conclusions

Using measurements of the backscattered field of coleus leaves in varying stages
of dryness, it has been shown that a resistive sheet constitutes an effective model of
a leaf. The resistivity is entirely specified by the moisture content, and for a rect-
angular section of a leaf, the predicted backscattering cross sections are in excellent
agreement with the measured data for both principal polarizations, including the
special case of a rectangular metal plate whose resistivity is zero. As the resistivity
increases, the effect of the currents borne by the edges of the plate diminishes, and
the accuracy of the physical optics approximation improves. Indeed, for a natural
leaf, the physical optics approximation in conjunction with the resistive sheet model
faithfully reproduces the dominant features of the scattering patterns for all of the
moisture conditions investigated, representing a dynamic range of more than 50 dB.
The simplicity of the formulation is such that the bistatic and extinction cross sec-
tions can also be computed, and the aspect angle averaging that may be necessary

in a practical situation is easily performed.

Lossy plate is a rectangular cut of a leaf whose resistivity is measured in a waveguide (see

Appendix A.)
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Normalilzed RCS (dB)

Incidence Angle (Degrees)

Figure 2.12: Normalized RCS (o/)2) of a rectangular perfectly conducting plate for
E polarization with a = 1.33),, b = 2)¢, and tilt angle § = 8°: ( )
physical optics, (0 0 0) measurements.
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B =8 ( ) physical optics, (0 0 0) measurements.




CHAPTER III

EFFECT OF CURVATURE ON THE
BACKSCATTERING FROM A LEAF

3.1 Imntroduction

In the previous chapter it was shown that for a typical planar leaf at X-band
frequencies and above !, a resistive sheet model in conjunction with the physical op-
tics approximation accurately predicts the backscattering cross section at almost all
angles of incidence. The (complex) resistivity of the sheet is a function of the gravi-
metric moisture content Mg of the leaf, and for all moisture contents, the accuracy
of the resulting prediction is adequate for most practical purposes.

In their natural state leaves are not generally flat, and any curvature may reduce
their backscattering cross sections. For remote sensing purposes we seek a simple ex-
pression that accounts for the effect of curvature. Using the resistive sheet model and
the physical optics approximation, for a rectangular section of a leaf curved in one
and two dimensions, an integral expression for the backscattered field is obtained.
The integral is evaluated numerically and by a stationary phase approximation, lead-
ing to a simple analytical expression for the cross section reduction produced by the

curvature. To explore the range of validity of these expressions, measurements have

!Lateral dimensions of the leaf must be larger than the wavelength and the thickness of the leaf
must be much smaller than the wavelength.
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been carried out using a rectangular portion of a coleus leaf attached to the surfaces
of styrofoam cylinders and spheres of different radii. For a wide range of curvatures,
the reduction in the normal incidence backscattering cross section at X-band is accu-
rately predicted by the physical optics approximation, and the results of a numerical
evaluation of the physical optics integral are almost identical to a Fresnel integral

expression derived from a stationary phase evaluation.

3.2 Leaf Model

Here again it is convenient to regard a leaf as part of a thin, non-magnetic lossy
dielectric layer, and an effective model for such a layer is an infinitesimally thin
resistive sheet. The complex resistivity of the sheet given by (2.3) is a function of
leaf thickness and dielectric constant which in turn is primarily determined by the
gravimetric moisture content (Mg) of the leaf.

For the geometries of curved leaves that we will consider in this chapter it is
required to obtain the far field amplitude expression for a flat leaf in a special coor-
dinate system. Consider a sheet lying in the plane ( = 0 of a Cartesian coordinate

system (¢,7,() and illuminated by a plane electromagnetic wave having
E' = ({sinasin ¢ + fsinacos ¢ + ( cos o) e k(¢ cos p—nsing) (3.1)
(see Figure 1), the induced electric current is
J = 2Yo{fsin aTy(¢) + ¢ cos a cos ¢ ($)}ekonsind (3.2)

where I'z(¢) and I'y(¢) respectively are the plane wave reflection coefficients for E
polarization (o« = 0) and for H polarization (a = n/2) given by (2.8) and (2.12).

Since R = 0 corresponds to perfect conductivity, 'y and I'y show how the current
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differs from the current J,. supported by a perfectly conducting surface. Indeed,
3 =3, iTu(4) + I - (Tu($) (3.3)

where 7 and ¢ are unit tangent vectors in and perpendicular to the plane of incidence
respectively.

Consider a rectangular section of resistive sheet occupying the region —2 <7 < 2,
—% < (< % of the plane £ = 0 as shown in Fig. 3.1. Since there is only an electric
current induced in the plate, the scattered field can be attributed to an electric Hertz

vector II.. In the backscattering direction the far field expression for II, is

II, = %5'; fi; fé {#sinal'g(¢) + € cos a cos ¢T g ($) }e2konsinddpnd(

; (3.4)
= %%{ﬁ sinal'y () +  cos acos gL' () }BY
where
U = kgasin ¢, (3.5)
and the backscattered far field amplitude is
 koab [, R .
§="1 20: {({ sin ¢ + 7 cos ¢) sin al' () + ( cos aI‘E(dJ)} cos ¢s1r(1}U (3.6)

The above example corresponds to the rotation of the direction of incidence in
the £ —7 plane and is equivalent to the rotation of the plate through an angle ¢ about
the ¢ axis with the illumination fixed in space. A more general situation is that in
which the plate is first tilted back through an angle 3 (see Fig. 3.2) prior to rotation.
In terms of a rotated coordinate system (¢',7', (") where é' = €cos B+ sin B, B =1,
&= —ésinﬂ+ g:cosﬂ, the plate now occupies —% < 7’ < £, —:S <({' < %, and the

electric field is

E' = (€sinasing + 7 sin acos ¢ + ¢ cos a)e o (€’ cosfcos ¢=n'sing—('sin f cos §)
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AC

Figure 3.1: Geometry for the scattering of a plane wave from a resistive sheet lying
in the plane { = 0.

Figure 3.2: Geometry for the scattering of a plane wave by a tilted resistive sheet.
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Since the unit vector normal to the plate is ¢ , the physical optics expression for

the current that would be induced if the plate were perfectly conducting is
J.= 2Y5 {—é cos asin 3 cos ¢ + H(sin a cos 8 + cos a sin B sin ¢)
+¢ cos a cos B cos ¢} eiko(n'sin ¢=+(' sin f cos )

which can be written as

J,c = 2Yo{(sinacos Asin¢ + cos asin f)f; — (sin asin § — cos a cos Bsin ¢)

- cos 3 cos ¢y } Peiko(n’ siné+(’ sin feos ¢)
where
P = (1 — cos? B cos? ¢)_%
and
h = P(—fsinzﬂcosqs—}-ﬁsinqﬁ—{- fsinﬂcosﬂcos¢)

fl =P(—Esinﬂsinda—ﬁsinﬂcos¢+fcosﬂsin¢)

are, respectively, unit vectors in and perpendicular to the plane of incidence, lying
in the plane of the plate. The current induced in the resistive plate is therefore
J = 2Y, {(sinacosfsin ¢ + cos asin f)I'g($;)h — (sinasin § — cos a cos B sin @)

- cos 3 cos ¢I' E(¢1)€21} Peiko(n' sin ¢+¢ sin G cos ¢)
(3.7)

where ¢, is the angle between the negative of the incident field direction and the
normal to the plate, i.e. arccos(cos S cos ¢). Now it is a trivial task to obtain the far
field amplitude which has the following form
S = %“:—b{(é sin ¢ + 7 cos ¢)[sin (cos2 Bsin? ¢T g(41) + sin? ﬂI‘E(qSl))
+ cos asin f cos Bsin ¢ (P (1) — Te(¢1))]
+¢[cos a (sin2 BTy (1) + cos? Bsin? ¢FE(¢1))

+ sin arsin B cos Bsin ¢ (T (é1) — Tr(é1))]} P2 cos B cos ¢sixl\}U %z

where U is given by (3.5) and

(3.8)

V = kobsin Bcos ¢ .
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3.3 One Dimensional Curvature

We now concentrate on the case of the curved leaves and first examine the effect
on the backscattering cross section when the plate is given a constant radius of
curvature p in a principal plane. As a result of the bending, the plate conforms to a

portion of the surface of a right circular cylinder of radius p as shown in Fig. 3.3.

Ay

Figure 3.3: Geometry for the scattering of a plane wave from a resistive sheet which
conforms to a portion of the surface of a right circular cylinder of radius
p-

If the flat plate has length « in the 2’ direction and width b in the y’ direction,

then b = 2p¢o. The illuminating field is a plane wave propagating in the negative z’

direction with
E' = (§'sin a + ' cos o) e~ 0(='=0) (3.9)

and in the backscattering direction the far field expression for the Hertz vector I, is

thoz! ;7 0+do :
He N — € 4o / J [} akop(l—cos¢’)d ’
) = Tk Jyy, T(P)e ¢
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where the phase origin has been chosen at the front of the cylinder. Since resistive
sheets are penetrable, obtaining the physical optics current becomes very complicated
if a portion of the leaf surface is shadowed. To ensure that no portion of the outer
surface of the plate is shadowed, it is necessary that |f] < 7 — #o. If the radius of
curvature is much larger than the width of the plate (p > b), shadowing happens

only at near grazing angles. The resistive sheet current J is given by (3.2) with the

identification
¢= ¢,
(= #,
7= —&'sing’+ ¢ cosg’ .

Recognizing that the exponent in (3.4) is simply the incident field phase at the

surface,
J(¢') = 2Yo{(—2&'sin ¢’ + §’cos ¢') sin aTy(4') + 2’ cos a cos ¢'Tg(¢')}ekor(I—cos#)
and therefore the Hertz vector potential becomes

He(x’) — ekoz’  igp fﬁﬁ {(—:i' sin ¢’ + §’ cos ¢/) sin aFH(¢')

z! 21 ko

+2’ cos a cos ¢IFE(¢I)} eiko(l—cos é') e2ikop(1—cos ¢’)d¢/
The scattered electric field and the far field amplitude in terms of the hertz vector

can be evaluated from (1.4) and (1.11) respectively. The resulting expression for the

far field amplitude is

S - tkoap

84+¢ . '
o "{§ sin ol g (¢) + #' cos alg(#')} cos ¢ePkosli=cosd)dg’ (3 10)

in terms of which the like- and cross-polarized backscattering cross sections are

o= 4r|(§sina+ #cosa)-S|?, (3.11)

Ocross = 47 | (§cosa— #'sina)-S | . (3.12)
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Two methods were employed to evaluate the integral expression (3.10) for S. In
the first, the arc 8§ — ¢p < ¢’ < 0 + ¢o was subdivided into 2M segments and each
replaced by a planar strip of width A = p¢y/M centered at ¢' = ¢/, m =1,2,---, M,
and tangential to the cylinder. From the formula (3.6) for the backscattered far field

amplitude of an inclined plate, we then have

: aM in U’
S = Zk;:A > {§'sinalu(¢),,) + 2 cos al'r(4,,)} cos ¢;te2ik°p(1_cos¢‘")81?]€] (3.13)
m=1

with U’ = koA ssin ¢),. The summation was carried out numerically, and a comparison
. with data obtained from a moment method solution of the integral equation for a
curved resistive strip is given in Section 3.5.

The second method is entirely analytical and is based on the stationary phase
(SP) approximation. The SP point of the integral in (3.10) is ¢’ = 0 and on the

assumption that kop >> 1, with < ¢o so that the SP point lies within the range of

integration,
S = 2£./Fkop{§sinal'y(0) + # cos aT'g(0)}
{FIVEop (o + 8)] + F\Fop(do — 6)]}
where

Fr) = /0 " e du (3.14)
is the finite range Fresnel integral. We remark that for |7| < 1
F(r)=1+0(?), (3.15)

whereas for [7| > 1
1 :
F(r) =~ 5\/7—1'e"'/‘1 (3.16)

Since I'g(0) = T'y(0) it now follows that

S = %M{ﬁ' sin « + 2’ cos a}I‘H(O){f[\/E(% +0)] + f[\/]i_?c;(% —-0)]} (3.17)
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showing that to this approximation there is no depolarization in the backscattering
direction.

It is instructive to examine separately the special case of symmetric (normal)
incidence when 6 = 0. The argument of the Fresnel integrals in (3.17) is then
b/ 2\/1;/_ , and if p > kob?/4, the approximation (3.15) implies

ikoab ,

S = (9 sina + £ cos )Ty (0) (3.18)
T

in agreement with the known expression for the backscattered far field amplitude of
a planar resistive plate at normal incidence. On the other hand, if p < kob?/4, (3.16)

gives

k ¥y
S = —%\/%p (§sina + Zcos @) Ty (0)e™"4

which is the result for a resistive circular cylinder of radius p and length a. For
intermediate values of p the Fresnel integral must be retained, and when the far field

amplitude is normalized to the flat plate expression (3.18), denoted by the affix fp,

S

- %.7—'(7) (3.19)

independent of the resistivity, where

_b |k
v = 2\/: (3.20)

The above results are also valid for a concave surface if F(v) is replaced by its
complex conjugate. Calculations based on the formulas (3.13), (3.17) and (3.19)
are compared with numerical results obtained using the moment method and with
measured data in Section 3.5.

A similar result for the bistatic far field amplitude of a cylindrically curved leaf in

the general coordinate system (X, Y, Z) can be obtained (see Fig. 3.4). If the curved

—
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plate is perfectly conducting, the associated Hertz potential can be found from (2.30)

with
r' = p{(cos¢’ — 1)z’ +sin¢'y’} + 2'% (3.21)

and we have

I (r) = <2neitorthek0 ¥ 22 (3, (%0 4/(¢7) x Hoe~ikoBocon(®'~d

ko (3.22)

e—iko(ﬁ,—ﬁg)-i’z’d¢ldzl

where

and
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Figure 3.4: Geometry of a curved plate and coordinate system.

To ensure that the outer surface of the plate is completely illuminated, it is
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necessary that

ki-3 < —singqg .

The 2’ integration can be carried out immediately and yields a,EiLV‘i where

V= %koa(ic,- — k)2 .

The ¢ integral can be evaluated using the stationary phase approximation as before.
The SP point is ¢’ = ¢, and on the assumption that koBp > 1 with —¢o < é < ¢o (so
that the SP point lies within the range of integration), the non-exponential portion
of the integrand can be evaluated at its value at the SP point. In view of (2.31) the

expression for the scattering amplitude is then

A

S = eiborllka=k)#'-B} [(3' . By) [(ks - ko)ko — k] — (3" - ki) (ke - Bo)k, — Bo| } K
(3.23)

with

K = —ia M’(’)B {J—' [\/k°zB”(¢o+$)} +f[ k"QB”(q&o— 55)] } Sh‘l,v (3.24)

The bracketed terms in (3.23) are evaluated at the SP point ¢’ = & which is located at

the point where the bisector of the angle between k, and —Fk; intersects the surface.
This is the "specular” point of geometrical (ray) optics, and shows up at visible
wavelengths as a bright streak parallel to the 2’ axis on the surface. Close to the
forward scattering direction k, = k;, koBp is no longer large, and a method of
evaluation appropriate to this range is discussed in Chapter 7.

For a curved resistive plate the analysis is similar, and the result is (see (2.37))

S = ehorllk=k)&'~BY [(p1 . B\Tgh, x ky x (A - k;)b; — &/
{(A A ) A [ e ) . (3.25)
+(i' - Ho) ZoTpr [(ks - ki) (A' X k) + (7' - ) (ks x k)| } 2hc K

A x k; |2

where the terms in brackets are evaluated at the SP point and K is as shown in

(3.24).
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3.4 Two Dimensional Curvature

We now examine the effect of giving the plate the same curvature in both principal
planes, so that the plate conforms to a portion of a spherical surface of radius r. The

geometry is shown in Fig. 3.5.

>

Y

Figure 3.5: Geometry for the scattering of a plane wave from a resistive sheet which

occupies a portion of the surface of a sphere of radius r at normal inci-
dence.

In terms of the spherical polar coordinates (r,6', ¢’) such that ' = rsin 8’ cos ¢/,
y' = rsin @' sin ¢’ and 2’ = r cos 0, the plate occupies the surface region 5 -0, < ¢’ <
2460, —f(0) < ¢' < f(0') where Oy = b/(2r) and f(0') = a/(2rsin§’). The incident
electric field is the same as that in Section 3.3, and for a perfectly conducting plate

the physical optics expression for the induced electric current at a point €', ¢’ on the

T 1
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surface is
Jpe = 2Y, {sinasin 6'(—&sin ¢' + § cos ¢')
+ cos a(—2 cos @' + sin @' cos ¢')} ePFor(1-siné’cos¢’)
Unit vectors tangential to the surface and parallel and perpendicular respectively to

the plane of incidence are
h = Q{—%(1 — sin® @' cos® ¢') + (§sin @' sin ¢’ + % cos §’) sin ¢’ cos ¢'}

= Q(—jcos @ + zsin ' sin ¢')
where
Q = (1 —sin® 6’ cos? ¢') "%
and in terms of %, and ¢; the perfectly conducting plate current is

Joe = 2Yo{(sinasin §'sin ¢’ + cos a cos §')7j; — sin @' cos ¢’
«(sin & cos @' — cos arsin @ sin ¢'); } Qeikor(1-sint’ cos ¢')

From (3.3) it now follows that for a resistive plate the current is

J = 2Y,{(sinasin@ sin ¢ + cos acos §''y()H — sin b’ cos ¢’ (3.26)
-(sin c cos @' — cos a sin @' sin ¢')PE(¢)€1}Qeikor(l—sin 9’ cos ¢')

where the angle ¢ is such that
cos ¢ =sin ' cos ¢’ .

In the backscattering direction the far field expression for the Hertz vector I1. is

1ko1: ZZOT

He(x) B Z 47['](?0

/2 3100 /!(: ) 9! ¢I)eikor(1—sm0' cos ¢') sin 0'd0,d¢
= gy J—f(0
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and when the formula (3.26) for physical optics current is inserted, the backscattering

far field amplitude for the curved resistive plate is found to be

= —"0’— f’j% 1) {sin afsin? @' sin? ¢'T'y @) + cos? 0T g(4))y
90 -f(¢')
+ cos afsin? ¢ sin® $'Tg(¢) + cos? §'Tx(¢))2
+(cos ay — sin az) sin @’ cos ¢’ sin ¢'[Te(¢) — T'u(4)]}

’Q2 sin2 @’ cos ¢Ie2ikor(1—sin 6' cos ¢') sin 0Idold¢l

(3.27)

The like- and cross-polarized backscattering cross sections can be computed by sub-
stituting (3.27) in (3.11) and (3.12), and depolarization occurs to the extent that I'y
and I'g differ over those portions of the plate that contribute to the integral.

The expression for S was evaluated using methods similar to those employed for
one dimensional curvature. The first method is numerical. By subdividing the ¢’
and ¢’ ranges into 2L and 2M increments respectively and treating each elementary
patch as a rectangular flat plate centered at ¢/ = 6, ¢/ = ¢, (£ =1,2,---,Lym =

2,--+, M) with dimensions A, = rA#, A; = rsin@,A¢’ where A9’ = 6y/L and
A¢ = f(6')/M and using (3.8) the result is

2L 2M

Z Y { }A18,Q?sin 6] cos g, e2ikor(i=cosdycos ) 22 U, sin V;

3.28
2 m=1 Ul ‘/1 ( )

Here
Uy = koA cosbycos ¢!

Vi = koA;zsing],
and { } denotes the terms in curly brackets in (3.27).
The second method is based on the stationary phase approximation. The (double)
SP point of the integrand in (3.27) is ¢ = 7/2, ¢’ = 0, and when all the non-

exponential terms are removed from the integrand at this point, we have

 kar? S+60 pf(6') . < )
§ = 5of (gsina + 2 cos a)l'y(0) 0/ g2kor(1-sin8’cos ') 9/ q ¢/
2 £-6o f(6")
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where we have used the fact that I'g(0) = I'y(0). By expanding the exponent about

the SP point and retaining only the quadratic terms, we then obtain

S = &E(ﬁsina+écosa)ry(0)-7: (EVE ' F (é\/ﬁ ' (3.29)
. 2V r 2¥r

showing that to this approximation there is no depolarization. The amplitude nor-

malized to its flat plate value (3.18) is

55 = 2 F(n) - F () (3.30)

n=/E (3.31)
T2 = 3/ %
and the reduction in S/ is simply the product of the factors appropriate to a one-
dimensional curvature in each of the principal planes of the plate.
The extension to the case of a plane wave which is not incident symmetrically
is trivial. If the plate is rotated through an angle 6 about the y axis (see Fig. 3.3)
with || < Z — 6, so that no part of the plate is shadowed, the far field amplitude

corresponding to (3.29) is

S = -‘1—:-(37 sina + 2 cos )Ty (0)F (%@
A7 /B + )] +F /R0 - 2]}

Here also the expression is a natural extension of the formula for a one-dimensional

(3.32)

curvature.
3.5 Comparison with Experimental Data

To test the validity of the physical optics model and to explore the effect of leaf

curvature, a series of measurements was carried out using rectangular leaf sections.
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Here again coleus leaves were chosen because they retain their moisture after being
cut: at room temperature (23°C) the change in moisture content after 20 minutes
was less than one percent. The scattering measurements were made at X-band in a
small tapered anechoic chamber using an HP 8510A network analyzer. A schematic
of the equipment is shown in Fig. 2.1, and the general procedures employed are
described in Section 2.2. Since a single linearly-polarized horn antenna was used to
radiate and receive the signals, only the like-polarized backscattering cross section
could be measured. A small metal sphere was employed for calibration.

With the confidence that physical optics in conjunction with the resistive sheet
model is adequate for planar leaves, we now compare the predictions for curved leaves
with moment method data and with experimental results. To check the accuracy
of (3.8), the backscattering was computed using a two-dimensional moment method
code [Liepa et al, 1974] for resistive strip extended to the three dimensional case by
assuming that the current on the curved plate is independent of z’. In Figs. 3.6
and 3.7 the normalized backscattering ;:ross section (o/A2) computed using 3.13 is
compared with the moment method data for a flat leaf (p = co) and for a curved leaf
having radius of curvature p = 2)¢ respectively. Other pertinent parameters of the
leaf are a = 1.33)Ag, b = 2Ap, 7 = 0.0107)p, and € = 20 + 7. The overall agreement
is good out to 70 and 50 degrees respectively, where the lower limit for the curved
leaf corresponds to the onset of shadowing. As it is evident from Figs. 3.6 and
3.7 curvature causes a significant drop in backscattering around normal incidence
and broadens the backscattering pattern. In Figs. 3.8 and 3.9 the Fresnel integral
approximation (3.17) is compared with (3.13) for curved leaves having p = 2} and
p= 3o respectively. The agreement is excellent as long as the stationary point is on

the leaf, i.e., for |§] < 28 and 19 degrees respectively, but remains good for incidence
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angles out to about 45 degrees.

Experimental measurement were also performed. In the first experiment a rect-
angular leaf section of the same size as before was attached to the surface of a right
circular cylinder of styrofoam and the normal incidence backscattering cross section
was measured. Cylinders of six different radii were used and the cross sections were
normalized to that of the planar leaf. The measured cross section reductions for E
polarization are plotted as a function of p in Fig. 3.9 and compared with the curves
computed using the numerical summation (3.13) and the stationary phase approxi-
mation (3.19). The agreement is excellent. As p decreases from 33 to 3, v increases
from 0.76 to 3.14. Over the entire range, (3.13) and (3.19) yield virtually identical
results, and (3.19) provides a simple and accurate expression for the cross section
reduction.

For the case of a two dimensional curvature a similar experiment was performed
in which a leaf section was mounted on the surface of a styrofoam sphere. Spheres of
six different radii were used. To facilitate the mounting a naturally-curved leaf was
chosen and cut to conform to the spherical region 5 —0y < 6’ < 400, —¢o < ¢’ < o
where 0y = b/(2r), ¢o = a(2rsinby), with @ = 1.33)¢ and b = 2),. The region is
slightly different from that specified in Section 3.4, and the leaf sections are no
longer rectangular when flattened out, but calculations based on the summation
(3.28) showed that the cross section reduction is the same for both. The measured
data are compared with the numerical and analytical results (3.28) and (3.30) in
Fig. 3.11. The agreement is again excellent and confirms the validity of the simple
formula (3.30) for curvature in two dimensions.

As evident from the preceding figures, curvature can have a significant effect on

the backscattering cross section, and in a practical situation, it is important to know
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the frequency range where any curvature of a leaf must be taken into account. To
this end, Fig. 3.12 shows the cross section reductions versus frequency for three
leaf sections 6¢cm on a side, curved in one dimension with radii 3, 6 and 12c¢m. In
all three cases Mg = 0.7, 7 = 0.5mm and the frequency dependence implied by
the resistivity R and the Debye-Cole dielectric model [Ulaby and El-Rayes, 1987]
was included. Once again (3.13) and (3.19) yield virtually identical results and if,
for example, p = 12cm, the curvature produces a significant effect only at C-band

frequencies and above.

3.6 Conclusions

The resistive sheet model in conjunction with the physical optics approximation
which was previously shown to accurately predict the backscattering cross section
of a planar leaf has been extended to the case of a curved leaf. For a rectangular
section of a leaf curved in one and two dimensions, the physical optics expression
for the backscattered field was evaluated numerically and by a stationary phase
approximation. The latter leads to simple analytical expressions for the cross section
reduction produced by the curvature. Numerical results based on the two methods
are virtually identical and in excellent agreement with measured X-band data for
rectangular sections of coleus leaves applied to surfaces of styrofoam cylinders and
spheres of different radii. As a result of these comparisons, it is concluded that the
curvature effect is accurately simulated by a multiplicative factor involving a Fresnel
integral whose argument is a function of the relevant leaf dimension, the radius of

curvature and the frequency, but independent of the material properties of the leaf.
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Figure 3.6: Normalized RCS (g/A2%) for a flat (p = oco) rectangular section of a
leaf with @ = 1.33Ag, d = 2Xg, 7 = 0.0107Xg, and € = 20 + 7 for
E polarization: ( ) numerical summation (3.13), (0 o o) moment
method.
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Figure 3.7: Normalized RCS (¢/)3) for a one dimensionally curved rectangular sec-

tion of a leaf with a = 1.33Xg, d = 2Xg, 7 = 0.0107 g, € = 20 + 27, and

p = 2)X¢ for E polarization: ( ) numerical summation (3.13), (0 0 0)
moment method.
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Figure 3.8: Normalized RCS (o/)\2) for a one dimensionally curved rectangular sec-
tion of a leaf with a = 1.33Xg, d = 2)q, 7 = 0.0107)¢, € = 20 4 27, and
p = 2) for E polarization: ( ) numerical summation (3.13), (o o o)
Fresnel integral approximation (3.17).
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Figure 3.9: Normalized RCS (o/)2) for a one dimensionally curved rectangular sec-
tion of a leaf with a = 1.33Xg, d = 2Xo, 7 = 0.0107A¢, € = 20 + 27, and
p = 3¢ for E polarization: ( ) numerical summation (3.13), (o o o)
Fresnel integral approximation (3.17).
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dence with the numerical summation (3.13) ( ) and Fresnel integral

approximation (3.19) (- - - ) for a one dimensionally curved rectangu-
lar section of a coleus leaf versus radius of curvature (1 = 0.32mm,
Ao = 3em).
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with the numerical summation (3.28) ( ) and Fresnel integral ap-
proximation (3.30) (- - - ) for a spherically curved section of a coleus
leaf versus radius of curvature (7 = 0.32mm, Ao = 3cm).
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CHAPTER IV

SCATTERING MODEL FOR A LEAF AT
MILLIMETER WAVELENGTHS

4.1 Introduction

At millimeter wave frequencies a typical leaf is a significant fraction of a wave-
length in thickness, and its nonuniform dielectric profile now affects the scattering.
At microwave frequencies where a typical leaf is electrically thin with lateral dimen-
sions at least comparable to the free space wavelength Ao, several methods have been
proposed [e.g. Le Vine et al 1985, Willis et al, 1988] all based on the physical optics
approximation applied to a uniform dielectric slab. In particular, if the leaf thickness
is no more than about A¢/50, physical optics in conjunction with a resistive sheet
model predicts the scattering at most angles of incidence (see Chapter 2) and can
also handle curved leaves (see Chapter 3).

On the other hand, at millimeter wavelengths the thickness can be a significant
fraction of a wavelength, and it is also necessary to take into account the internal
structure of a leaf. At least two different types of cell can be distinguished, and
their differing water content affects the dielectric constant, leading to a nonuniform
dielectric profile. To compute the scattering at these higher frequencies, two dif-

ferent physical optics approximations are examined. The first of these employs the
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polarization current which would exist in an infinite slab consisting of one, two or
more layers simulating the dielectric profile of the leaf, and this is referred to as the
volume integral physical optics (VIPO) approximation. When there are many layers,
a convenient method of implementation is described in Section 4.4. The second (and
simpler) approach postulates a surface current which, for an infinite slab, produces
a plane wave identical to the reflected field, and this is the surface current physical
optics (SCPO) approximation.

For an electrically thin leaf or plate, the two approximations are indistinguishable,
but as the thickness (or frequency) increases, the predicted scattering differs in most
directions, and by comparison with the results of a moment method solution of the
volume integral equation, it is shown that VIPO is superior. In addition, for a
two layer material, it is no longer adequate to treat the plate as homogeneous one
having an average dielectric constant. Provided the actual dielectric profile of a leaf
is simulated, it appears that VIPO can predict the scattering behavior of a leaf to

an accuracy that is sufficient for most practical purposes at millimeter wavelengths.

4.2 Structure of a Leaf

The simplified structure of a typical vegetation leaf is shown in Fig. 4.1. The
type and number density of cells may vary as a function of depth into the leaf which,
in turn, results in a nonuniform dielectric profile. The effect of this nonuniformity
becomes observable at higher frequencies where the thickness of the leaf is comparable
to the wavelength.

As was explained in Section 1.3.1 leaves mainly consist of two types of photosyn-
thetic cells: palisade parenchyma, consisting of column-shaped cells in which most

photosynthesis takes place, and spongy parenchyma, which consist of irregularly
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shaped cells with large spaces between them. Because a large part of the vegetation
material is water, its dielectric constant is strongly influenced by the dielectric con-
stant of water and the water content. For most leaves, the water content is higher

in its upper layer (palisade region) than in the under surface (spongy region).

Upper Cuticle

| TR |

Spongy 0 o0
Layer O O O Q O o O

vy OGooocoocpc::
Lower Cuticle

Figure 4.1: The structure of a typical vegetation leaf.

The sensitivity of the dielectric constant to water content is much greater in the
lower part of the millimeter wave spectrum than in the upper, but this is more than
counterbalanced by the thickness to wavelength ratio. The net result is that the
sensitivity to dielectric variations is greater at the higher frequencies.

To examine the effect of the nonuniform dielectric profile on the scattering prop-
erties of the leaf at millimeter wavelengths, we computed the normal incidence reflec-
tion coeflicient T'y of a two-layer dielectric slab and compared it with the reflection
coeflicient of a uniform dielectric slab whose dielectric constant is the average. The
computation was performed for a leaf thickness of 0.5mm, and the water content ra-

tio of the two layer was chosen to be 4 to 1, representing a marked variation between
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the upper and lower surfaces of the leaf. From the data in Table 4.1, it is seen that

when the two-layer slab is approximated by a uniform slab the error in the reflection

f (GHZ) €1 €2 €(avg) = Q%z FO FO(‘“’Q)

35 204121 | 6413 134112 0.7446 | 0.78£ — 0.16

94 6415 | 241l 4+i3 0.59212 0.48£27

140 54+i4 | 24il 3.54i2.5 0.50£20 | 0.34/26.1

Table 4.1: Voltage reflection coefficient for a two-layer and average dielectric slab

coefficient increases with increasing frequency, and is as large as 4 dB at 140 GHz.
4.3 Physical Optics Approximations

At microwave frequencies where a typical leaf is no more than about Ay/50 in
thickness with lateral dimensions comparable to or larger than the wavelength, the
scattering properties can be accurately predicted using the physical optics approxi-
mation applied to a resistive sheet model of a leaf. In effect, the leaf is modeled as
an infinitesimally thin layer, but as the frequency increases the sheet model fails and
it 1s necessary to take the leaf thickness in to account. There are now two types of
physical optics approximation that can be employed. The standard one is the sur-
face current (SCPO) approach in which an infinite dielectric slab is replaced by an
equivalent sheet current that produces a plane wave identical to the reflected wave
of the slab. This current is then used as an approximation to the equivalent surface
current over the upper surface of a finite dielectric plate. Alternatively, the induced
(volume) polarization current in the plate can be approximated by the current in

the infinite dielectric slab, and we shall refer to this as the volume integral physical
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optics (VIPO) method. It is more accurate than the SCPO method, although the
latter is more convenient to use for evaluating the scattered field.

To illustrate the two procedures, consider a dielectric plate consisting of a homo-
geneous dielectric of thickness d; and relative permittivity €; atop a second material
of thickness d; — d; and relative permittivity e¢;. The plate occupies the region
—-2<z<$, —% < y < %, and —d; < z < 0 as shown in Fig. 4.2, and is illuminated

by an E-polarized plane wave whose electric vector is

Ei — geiko(xsinﬁi—zcosﬁ.') (41)

6
0
0
Region 0 ‘% % X
Region TR NN E, ’_ d
Region 2 €, \/, 3%
A2y A Z=- 2

Region 3

Figure 4.2: The geometry of the scattering of a plane wave from a two-layer dielectric
slab.

When the plate is treated as an infinitely extended slab, the electric field can be
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written as
E, = (e~*or* 4 Deihosz)eibosinbic (0 < 2)
E,= (Bye~17 4 Ajeitisz)eihosintic (_g, < 7 < () s
E, = (Bye~i*a7 4 Ageihusz)eihosindic (_d, < z < —dy)
E, = Byetkoszikosinbiz (z < —dy)
where

ko, = ko cos b;, ki, = koy/ej — sin? 6;

for j = 1,2. If R, and R, are the reflection coefficients at the upper and lower

surfaces where

ka - klz ka - k22

R =221z L — T
! ka + klz ka + k?z

and
k. 2ikz2(d2—d1)] [ 2ika. (d2—dy) | 7!
Ci:liE{I+Rze 22{G2 1}{1—R26 2z{a2 1} ,

application of the boundary condition at the three interfaces gives

C4(14+R;1) C- 2ik; . d
Bl —_— = A —_ e 1z “B
Ci+C_Rye?tk1:d1 ) 1 1
+ 191712 C,
i(kyz—koz)d ;
Bz = ez 2: 0 2 Bl ; Ag = -—Rzemkhdng

1-Rpe?ik2z(d2~d1) ~ Oy

Bs = ei(kzz—kOI)d2(1 - RQ)B2

and

_ C+R1 + C_ e2ik1,d1
B C+ + C- RleZ‘klzdl ’

The corresponding results for a single layer of thickness d; and relative dielectric
constant € can be obtained by putting d; = d; and k,, = ki1,, implying B; = B;

and Ag = Al.
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Given a volume distribution of electric (J.) and magnetic (J,) current in free
space, the corresponding Hertz vector and scattered field can be obtained from (1.2)
and (1.4) respectively. In the dielectric slab the volume current J, is the polarization

current

Je = —ikoYo(Cj - 1)Ey'g . (43)

where E, has the value appropriate to each layer (j = 1,2), and when this is inserted
into (1.2) and the integration carried out over the volume occupied by the plate, we
obtain the VIPO approximation. For scattering in the direction 6, indicated in Fig.

4.2 the expression for the Hertz vector is

I_IVIPO N eik°r ab Sin X
M — A —_——

T (4.4)

where

_ 1—e—i(k1z—kq cos 85)d; 1 —e—¥(k1z+kg cos 8,)d;y
F= (51_1){ i(k1z—ko cosf,) Ay - i(k1z+ko cos8,) Bl}

e—Wkaz—kgcos 85)dy _ o—i(ky,—kq cos 8s)d;
(e~ 1){ i(k2z—ko cos 0,) Az

_ eV(k2z+ko cos 85)d) _ o—i(k2y+kg cos 0,5)d2 }
t(k2z+ko cos8,) B, (4'5)

and

k
X = %a(sint‘)s +sind;) .

The far zone scattered field can then be obtained from (1.4) and written as

eikor
E® =

Sk(0s,0:)

r

where Sg(0,,6;) is the far field amplitude, and for the VIPO approximation the result

is

k2absin X
SVIPO 05 0!_ - 4 0

e (0:0) =4 47 X

F. (4.6)
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The more conventional SCPO approximation can be obtained by noting that the

electric current sheet!
J. = —2Y, cos§;Te're ’i“e"'é(z)g (4.7)

produces a plane wave identical to the field reflected from the dielectric slab. As
evident from the impulse function §(z) in (4.7), the current is located at the upper

surface of the slab, and when (4.7) is inserted into (1.2) we find

etk 5 sin X
II56F0 ~ " -27rk0c050,-f‘ab X

and the far field amplitude is then

y -
SSCPO(9. 6,) = § 2’7’:" cos BT ab 2 (4.8)

In the specular (6, = —6;) and backscattering (8, = 6;) directions it can be verified
that (4.6) and (4.8) are identical, but in the other directions the two approximations

differ.

In the case of H polarization for which

E = — Zo(cos 0;z + sin gié)eiko(zsine.'—zcosei),
(4.9)

Hi — geiko(zsin 0;—zcos 8;)

the analysis is similar. With H, represented as shown in (4.2), the various coefficients
(now indicated by primes) differ from those for E polarization in having k., replaced
by ky./€e; and ks, replaced by k,, /€, everywhere except in the exponents. The induced

polarization current then has two components and is given by

Je = "ikoYo(ﬁj - 1)(E,;(i + Ezé) . (410)

1This new equivalent physical optics surface current is different from the traditional physical
optics surface current (see Chapter 8.)
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where E, = (ikoe;) ' ZoOH,/0z and E, = —(ikoe;)™'ZoOH,/0z have the values
appropriate to each layer (j = 1,2). The Hertz vector can be computed using (1.2),

and for the scattered field H?, the far field amplitude is found to be

kZabsin X
S}-,IIPO(o.”ai) =Y Zﬂ' X

(cos8,F] —sin 8, F,). (4.11)

where

' _ ki,(e1—1) [1—3“("1:‘"0 cosby)dy ,, 1--e'(k12+kg cos 05)dy ,]
Fl - { koey i(kyz—ko cosb,) A1 + i(k1z+ko cos ) B1

+ ka:(e2-1) [e—"("2z—"o c08 05)dy _g—i(ky ;—ko cos 0,)d; Al
koe2 t(k2z—ko cosb,) 2

ei(k22+kocos 85)dy _ o—i(kas+kocos0s)dy 1,
+ hazt o cosl,) B}, (4.12)

and

' . i (51_1) [l_e—i(k“—kocoso,)dl r_ 1—ei(k1z+kg cas 84)dy ,]
By = sin6,{=; (F1iz—Fkocos8,) ‘1 i(k1z+kocosfs) D1

+ (ez_ll [e—i(kgl—ko cos 05)dy _ o —i(ky;—kq cos 05)dg A,
€2 t(k2z—ko cos8,) 2

eV(k2x+ko cos 04)dy —e—(k2:+kg cosBs)dy 1,
B i(k2:+ko cos 6,) Byl} . (4.13)

The SCPO approximation can also be obtained by noting that a magnetic current
sheet of the form

3. = —2Z; cos 4, e*kosinbizg( 2} (4.14)

generates a plane wave identical to the reflected wave. Using this as the equivalent

surface current on the dielectric plate, the magnetic far field amplitude becomes

— , sinX
SSCPO(9. ;) = § 2”“%030,-1‘ abs‘“X . (4.15)

s

As in the case of E polarization, the two approximations are identical in the specular
direction, but (4.11) and (4.15) differ in all other directions, including backscattering

(05 = 6;) unless 6; = 0.
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4.4 Combined Sheets Model

When using the VIPO approximation, an efficient way to take into account the
effect of any non-uniformity in the dielectric profile is to model the leaf as a stack of
N combined current sheets. Each sheet simulates a very thin dielectric layer whose
thickness is less than A/15 where A is the wavelength in the material. A combined
sheet consists of coincident resistive and modified conductive sheets that support
electric and magnetic currents respectively, with the conductive sheet accounting for
the electric currents flowing perpendicular to the dielectric layer. The n** layer sheets

are characterized by a complex resistivity and conductivity R, and R}, respectively,

where
R, = —tZo ___
" kofn(en=) (4.16)
R* = 1Ypen .
n koAn(cn--l)

Here €, and A,, are the relative dielectric constant and thickness of the nt* layer,
and 7 = I A, is the total thickness of the dielectric slab.
The boundary conditions at the n'* combined sheet are as follows [Senior and

Volakis, 1987]:

i’ x {#’ x [E* + E7]} = —2R,J.n (4.17)

Jow = 7' x [H* — H™] (4.18)

where J., is the total electric current supported by the resistive sheet, and

NIV PYRUReeSHppRn) G CPVIURL S 1= .
A’ x {# x [H* + H]} - roH X G BT+ BT = 2R, (4.19)
J.. = —#' x [Et —E] (4.20)

where J,,,, is the total magnetic current supported by the conductive sheet. The
superscripts ¥~ refer to the upper (+) and lower (—) sides of the sheet, and #' is

the unit vector outward normal to the upper side.
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4.5 Scattering by a Stack of N Planar Sheets

Consider a stack of N infinite planar combined sheets that are all parallel to the

z — y plane of a Cartesian coordinate system (z,y, z) as depicted in Fig. 4.3.

47
0
Region 0 0 dl=
. » X

Region 1 d
Region 2 2
T m -d3

R, K]

'dN

Region N

Figure 4.3: N layer of combined-sheets simulating infinite dielectric slab.

The top sheet is in the z = 0 plane and the n** sheet is located at z = —d,,, where
dy = 0. The space between the n** and (n + 1)** sheets is denoted by region n, and
we note that region 0 (z > 0) and region N (z < —dp) are semi-infinite free space.
A plane wave whose plane of incidence is parallel to the z — z plane impinges on the
stack of sheets from above. From the symmetry of the problem, all the field vectors
are independent of y (i.e., a% = 0), as a result of which the field components in each
region can be separated into F— and H —polarized waves which are the dual of each
other. From Maxwell’s equation the field components in region n for an E-polarized

wave must satisfy

1 0

wpe 8z

H,, = (4.21)
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1 0
nz — iwﬂanny ) (422)
o? 9?
('@ + 2 + k)E,, =0, (4.23)
and for a H-polarized wave
1 0
En.‘l: = Z'WCOEZHny 9 (4.24)
1 0
E,, = —mgf[ny , (4.25)
0? 0?
(-a? + £ + kS)Hny =0. (4.26)

Equations (4.24)-(4.26) are the dual of (4.21)-(4.23) and each can be obtained from

the other on replacing E, by H,, H, by —E,, and €y(t0) by po(e€o)-

4.5.1 E Polarization

For the case of E polarization in which the electric field vector of the incident
wave is perpendicular to the plane of incidence, the incident field is given by (4.1).

From (4.23), (4.21) and (4.22) the field vector in region n can be expressed as

Eny = [C:;e—iko cosb;z + C;eiko cosﬁiz]eiko sin 6z (427)
an — YOCOS 0{[0:;6_*0 cosbiZ _ C;;eiko cos@,'z]eiko sin 6;x (428)
an — YoSin 0,’[0:;6_“‘0 cos 0z + C;eiko cosﬁ;z]eiko sin 0,z (429)

The coefficients C: and CI, are the amplitudes of the waves travelling in the —z and

+z directions, respectively, in region n. In region 0, Ci = 1 and Cj = I'r (the
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total reflection coefficient) and in region N, C%y = 0, Ci = Tg (the total transmis-
sion coefficient). Hence, using the boundary conditions (4.17)-(4.20), there are 2N
unknowns and 2N equations that can be solved simultaneously. The quantities of
primary interest are the total reflection and transmission coefficients which can be

obtained directly as follows. From boundary condition (4.19) we have

| Y,
2 x {2 % 8[H(no1)s + Hnsl} — ’—°2 x 5 [E'(n_l)y + E] = 2R3, (4.30)

Upon substitution of (4.27) and (4.28) into (4.30) the left hand side of (4.30) vanishes
resulting in J,,, = 0. Thus, the conductive sheet is not excited in this polarization,
as expected since there is no current in the z direction in the dielectric slab. In the
absence of a magnetic source the tangential component of the electric field must be

continuous as given by (4.20)

(E('m—l)y - Emy) |2=—d,,= 0 (4.31)

Upon inserting the expressions (4.27) and (4.28) into (4.31), (4.17), and (4.18) the

following set of equations is obtained
C(n " etko cos O;dn 4 C(n 3 e—lko cosfidn _ C’ileikocose.'dn + C;e'ik° cosf;dy,, (432)
Ci tko cos8;dy + Cr —1ko cos 6;dy, — }/00080 R-,,,[C (o) elko cosfid __ C(rn_l)e—iko cos 8;d,,

__ {7t ptko cos 6;d r ,—tko cos 0;d
Cne idn | Cne 0 i n]

By defining the reflection coefficient in region n as

FE A Cn e—Ztko cos fidp 41

Ci ’
the following relations can be obtained:

e _ 1+ (2Y5 cos O; R,,_, ) e%ko cosbildny1—dn) ' E
n—-1 — (1 + 2Y0 COS 0,R,l) + ezikocoso.'(dn“—dn)l‘f

(4.33)
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i 14+TE ;
C, = 1 + e2iko cosGi(dns1—dn) T E n—1 (4.34)

The induced electric current in the n** sheet can also be obtained from (4.18) and

tko sin 0.'::)

by application of (4.32) it can be expressed as (excluding the phase factor e
IE = §2¥,cos8; [C — CF_,| eihocosbidn | (4.35)

This induced current may be expressed in terms of the reflection coefficients of dif-

ferent layers:

IE = §2¥scos6[Ci_, — Ci]eikocosbidn

= §2Yo cos fethacostidn[] — g (4.36)

e2|‘ko cos 6;(dpn g1 —dn)r‘ﬁ ]

. ﬂ—l( 1+Ff_l )
=1 l+e2iko cos 6;(dgq1 —dl)r\lE

Now, the total reflection coefficient in region 0 (I'g(6;) = T'¥) can be evaluated
from the recursive relation (4.33) by noting that T'¥, = 0 (the region N is semi-

infinite). The total transmission coefficient can also be obtained from (4.34) and

(4.33) as follows:

a N _ n—1
TE(og - 06 - nl;Il 1+ e2ikocosoi(dn+l_dn)rf (4.37)

4.5.2 H Polarization

Unlike the E-polarized case where the magnetic current is zero, an H-polarized in-
cident wave excites a magnetic current in the y direction and neither of the tangential
electric or magnetic field is continuous across the combined sheets. The tangential
field vectors in region n can be obtained by applying the duality relationships to

equation (4.27) and (4.28). Therefore,

Hny — [B:;e—ikocosﬁgz + B;eikocosﬁ.'z] eiko sinf;z (438)
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and
-En::: — _ZO cos 0': [B;;e—l'kocosa,-z _ B;eikocosa.'z] el'ko sinf;x (439)

where as before B! and B, are the amplitudes of the waves travelling in the —z and
+2 directions respectively. By applying the boundary conditions (4.17)-(4.20) at the
n** sheet and resorfing to equations (4.38) and (4.39) the following relations between

the field amplitudes in region (n — 1) and region n are obtained:

Bl' leikocose.-d,, +Br le—ikocose.'dn +B| el'kocose.'d,. +Bre—l'kocose.'d,, —
n— n— n n

ZB‘Z% cos B . [B' _leikocose,-d,, _ B;_le—iko cosb;d, __ B:'lel'ko cos 8;dy,, + B;e—iko cose.-d,,]

sin“ 8,
(4.40)
B:'l_lel'ko cosfidn __ B:z—le_iko cosf;dn + Bi el'ko cosfidn __ B;e—iko cos f;dn —
2anzec9' [B:'l_leiko cosb;dn + B:;_le—iko cosfidn __ B’ileiko cos Oidpn __ B;C_iko cos O;dn]
(4.41)
By denoting the reflection coefficient in region n by
Br . .
P,,I;I é _';Ze—hko cos fidny1
after some algebraic manipulation of (4.40) and (4.41) we obtain
I'\H — (Q'nPn - 1) - (1 - P'n)(Qn - 1)111}1162*0‘:089"(‘{"“_‘1") (4 42)
S S0 B0 @)+ (1 = QP e '
. n— 1 1 . TH .
Bt — (Q )+( +Q ) n—1 t (443)

"= T Q) + (1 - QT ety 7

where the parameters @J,, and P, are

Q _ 3in26;

n ™  2R%Z¢cosb;

P. = 2Ry sec B
n Zo .

Recursive relation (4.42) gives the total reflection coefficient in region 0 (I'y(6;) =

T'{’) noting that TH = 0 and the total transmission coefficient using (4.43) is given
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Al n= 1)+ (1+Qu)TH
0= 11 | g s ekt 049

n=1L""
The induced electric and magnetic currents in the n™ sheet can be obtained by
inserting equations (4.38) and (4.39) into equations (4.18) and (4.20). Excluding the

phase factor e'*o*n%= they are given by
ng — __(B:;_leiko cos fidn + B;_le—iko cos fidn __ B:;eiko cosfidn __ B;r;e—-iko cosfidn )fi (445)

Jgn = ZO CoS 0,'(B,:;_1€ik° cosbidn B;_le—iko cosbidn __ Bieiko cosb;d, + B;r;e—iko cosa.'dn)g
(4.46)
after using (4.43) the induced currents may be expressed in terms of the reflection

coefficients as follows

ng — _ieiko cos f;dn._y [(1 + FnH—l) + (1 + I‘\nHe2iko cosai(dn+1—dn))
. (Qn—1)+(1+Qﬂ)Ff—l ] . Hn-—-l (Q‘_1)+(1+Ql)r‘{l—1 ]
(14+Qn)+(1-QmrHer o oilanyi=dm | " Le=1 L1301 (1@ )T F ™o = fldet1= 20
(4.47)

and

J.’I-’{n —_ @Zocoso‘_ . eiko cos 0;dy 4 [(1 _ Ffl;l_l) + (1 _ I‘\’I;IeZikocosa.'(d,,.{.]—dn))

_ (Qn—1)+(14+Qn)TH_| -T2 (Qe-1)+(14Q)T7, ]
(14Qn) +(1-Qn)TH e <o oildngi=am | " Lle=1 L(g )\ (170, )T F eFo ot (a1 =42)
(4.48)

Note that here ng(:z;) = nge"kosmail' and Jgn(x) = Jgneiko sinfiz
4.6 Scattering by a Rectangular Stack

Consider a portion of an N-layered stack of combined sheets in the form of a

rectangle occupying the region —% < z < %, —-3- <y< % as depicted in Fig. 4.4.

The illumination and observation directions are such that the planes of incidence

and observation are parallel to the = axis.

T
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a a
2, 2 : d,=0 > X
-d2
It ?l';
-dp,
-dN

Figure 4.4: The geometry of scattering of a plane wave from a finite N-layer
combined-sheet.

If the induced electric and magnetic currents in the n** sheet are denoted by J.,

and J,,, then the scattered field can be attributed to the electric and magnetic Hertz

vector potentials and have the following form:

7 etholr—ry|
IL(r) = —=2 / ds’
~ 4rko = Ir=r |
ZYE) 1lco|r—r£,|
IL.(r) = / mn( -—d ,
47l'k0 E — I‘.,n I *n

where

r =r(—sin 0, + cos §,2) ,

In the far zone the approximation

|r—r! |~ r+sinf,z’ + cosb,d,
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leads to

e!kor 2236

I (r) ~ r 4mwkg

a/2 rb/2
/ / / / (Z Jcn(r tkocoso d,,) tko sinf,z’ dx'dy ’ (4.49)
a/2 b/2

:kor b/2
m(l‘ - 427:;(::0 ./;a/z/b/z(z Jmn(r gkocosﬂ d,.) ikg sin 8,2’ d.’L"dy (450)

Using the physical optics approximation, the currents obtained for the infinite
layered sheets will be substituted in expressions (4.49) and (4.50) in order to find

the scattered fields.

4.6.1 E polarization

For E polarization the induced magnetic current JZ_ is zero which renders I1,,, =

0, and upon inserting expression (4.36) for Je,(z) in (4.49) we have

(ZJ :kocosO,dn) bSlnXX (451)

!kor
He(r) _ ZZ()

where, as before, X = kgi(sin 0, + sin6;) . In this case the far-field amplitude has

the following form:

sin X

S (esa 6; ) = y—koabZo(Z J 'kO cbso,d,,) <

n=1

(4.52)

from which the bistatic scattering cross section can be obtained. For backscattering
(8; = 6;) and in the specular direction (6, = —6;) the summation term in (4.52)

reduces to a telescopic series using equation (4.35) for JE

on» Tesulting in

N
ZJie"‘““a‘d" = 2Y5 cos §;C = 2Y, cos 6, g(6;),

and

sin%(kqa sin 6;
|2

og(0:,6;) = 4r ( ) Tz 0 0 1 Tu(8) [ = s
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The extinction cross section can also be simplified using (4.36) as follows:
Z JE e=tkocosbidn — Y, cos 0;(1 — Tr(6:)),
and
ot = 2abcos 0;Re[l — Tx(6)).
4.6.2 H polariza;tion

For H polarization the Hertz vector potentials are of the form

ek 37, ko cos B,d sinX
— 1 cos n b
TL(r) =2 r 4wk ZJ X’

ekor ZYO tkocose dn SinX
m(r) y r 47!'](3 (ZJ )Clb X I

and the scattered magnetic field is given by

ikor

e
- Sy(9,,9:),

H =

where

(9,,9)_y—k0ab Z(cosOJ +YaH et ostnin | ST (4.53)

The bistatic cross section can be obtained from (1.12) and the backscattering

cross section can be simplified using expressions (4.45) and (4.46) for JZ and JZ :

S (cosb:JH + YoJ B, etko cosdn —
1 o) (4.54)

~2cos 0; YN (B:_, — BY) = —2cos0;B; = —2cos 0,y (6;),
which leads to

(k‘oa sin 0,)
(koasin 6;)?

(@O o520, | Tar(r) 12 22

I
GH(0,,0)—471' /\

The extinction cross section also can be simplified by noting that

N
Y (= cos §;JE + Yo JEH Yemtkocosbidn = 205 6;(1 — Ty(9;))




91

from which we obtain

o5ft = 2abcos 0; Re[l — Ty (6;)).

It is worth noting that the expressions obtained in Chapter 2 and Chapter 3
for the far field amplitude of leaves in the general coordinate system can be easily

extended for a thick leaf upon replacing I'r and I'y by

FE — Zo al JE eiko cos 8,dn
2 cos 9,‘ n=1 e
1 il H H ik 8.d
Ty =-— 0,37 4 YoJH Yeiko cosdedn
H 2 COS 03 'rl.=1((:0S - + ° mn)e

4.7 Numerical Results

To illustrate the difference between the VIPO and SCPO approximations we con-
sider a homogeneous (single layer) plate of thickness d; = Ao/4 with €; = ¢, = 3+:0.1.
For an E-polarized plane wave incident at 30 degrees, the amplitude and phase of
SVIPO /SSCPO are given in Figs. 4.5 and 4.6, and these show that the difference
increases away from the specular and backscattering directions. At a fixed scattering
angle, the difference increases with the electrical thickness of the plate up to the first
resonance and then decreases. To test their accuracy the two approximations have
been compared with the results of a moment method solution of the volume integral
equation as given in Appendix B. The numerical code is a two-dimensional one which
was extended to three dimensions by assuming that the induced currents are indepen-
dent of the y coordinate. Since the dielectric constant of most vegetation materials
is high, it is necessary to have the cell sizes very small, and one consequence of this
is the need to compute the matrix elements extremely accurately, especially for H

polarization. For a 2) square plate formed from the above-mentioned layer and illu-

minated by an E-polarized plane wave at normal incidence, the two approximations




92

are compared with the moment method solution in Fig. 4.7, and the superiority of
VIPO is clear.

In the case of a thin plate the two approximations are indistinguishable. This is
illustrated in Fig. 4.8 showing the VIPO expression (4.6) and the moment method
solution for a 2\ square plate of thickness d; = A¢/50 for E polarization. The plate
is a homogeneous one having € = 13 4 12 corresponding to the average permittivity
at 35 GHz in Table 4.1. The SCPO expression (4.8) yields the same results, as does
a two-layer model having the permittivities listed in Table 4.1. The analogous data
for H polarization are given in Fig. 4.9, and over a wide range of scattering angles,
the approximate and moment method solutions are in excellent agreement.

As the frequency and, hence, the electrical thickness of the plate increase, the
superiority of the VIPO approximation becomes apparent and, in addition, it be-
comes necessary to take the layering of the plate into account. In Figs. 4.10 and 4.11
the simulated frequency is 140 GHz, but to keep the moment method calculations
tractable, the plate has been reduced in size to 1.4\ by 2As. The curves shown are
for a two-layer plate having d; = 2d; = 0.5mm with ¢ = 54144 and €¢; = 2 + 141, and
for a single layer having the average permittivity €,,, = 3.5 + 2.5 (see Table 4.1).
Since the accuracy of the physical optics approximation increases with the plate size,
the agreement between the two-layer VIPO approximation and the moment method
solution is remarkably good, and significantly better than if a single layer had been
used.

To test the validity of the combined-sheet multilayer model, the reflection coef-
ficient I' was computed using (4.33) for a dielectric slab with a uniform dielectric
profile and then compared with the exact solution for the reflection coefficient of a

uniform dielectric slab. Figure 4.12, which depicts the amplitude of the reflection
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coefficient as a function of slab thickness, contains three plots: (a)| I' | for the uni-
form slab (exact solution), (b)| I' | for a multilayer slab (combined sheet model)
composed of identical layers each Ag/100-thick, and (c) | ' | of a single-sheet slab,
included here for comparison. Figure 4.13 shows similar plots for the phase of the
reflection coeflicient. The results indicate that the overall agreement between (a)
and (b) is excellent, and that the single sheet model can successfully predict the
reflection coefficient if the layer thickness is less than Aq/50(~ -w—)“’l—cl) .

Now the combined-sheet multilayer model when used in conjunction with physical
optics will be checked against the method of moments. Figure 4.14 shows a plot of
the bistatic scattering cross section of a 2Ag x 2)¢ dielectric slab with thickness Ag/100
computed using the physical optics expression (4.52) and a second plot computed
according to the moment method, both for E éolarization at 35 GHz. Similar plots
are shown in Fig. 4.15 using expression (4.53) for H polarization. The result of
combined-sheet model are in very good agreement with the numerical data (moment
method) over a wide range of the scattering angle 6,.

To examine the formulation for thick dielectric slabs while keeping the numerical
code tractable, our next example is a 1Xg X 2\ dielectric slab whose thickness is
Ao/10. Figures 4.16 and 4.17 compare the bistatic radar cross section of the thick
slab at 35 GHz computed using a 5-layer and a 1-layer combined-sheet model with
the physical optics approximation with the numerical data for E and H polarizations,
respectively. Keeping in mind that the accuracy of the physical optics approximation
improves as the width of the slab increases, the good agreement of the 5-layer sheet
with the numerical data around the specular region (| 4, |< 7/4 in this case) provides

good support for the model proposed in this paper.
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Figure 4.5: Amplitude of the ratio of the bistatic far field amplitude of VIPO to
SCPO for E polarization of a dielectric plate with d; = X\o/4 and €; =
€2 =3 +1:0.1 at 6; = 30 degrees.
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Figure 4.6: Phase of the ratio of the bistatic far field amplitude of VIPO to SCPO for
E polarization of a dielectric plate with d, = Ao/4 and € = €; = 3 +1:0.1
at 0; = 30 degrees.
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Figure 4.8: The bistatic cross section area of a 2Ag X 2\ plate for E polarization
with d3 = Ao/50 and €,,y = 13 +¢12 at normal incidence: (—) moment

method solution, (- - -) VIPQ or SCPO.
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Figure 4.9: The bistatic cross section of a 2X¢ X 2)q plate for H polarization with

ds = Ao/50 and €5,y = 13 4 412 at normal incidence: (—) moment
method solution, (- - -) VIPO or SCPO.
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Figure 4.10: The bistatic cross section of a 1.4\¢ x 2o plate for E polarization with
dy = 2d; = 0.5mm and f =140 GHz at normal incidence: (—) moment
method solution with €; = 5414, e = 2+11, (- - -) VIPO with ¢; = 5+144,
€2 = 2+ 11, (- -) VIPO with € = ¢; = 3.5 + 12.5.
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Figure 4.11: The bistatic cross section area of a 1.4\g X 2)¢ plate for H polarization
with d; = 2d; = 0.5mm and f =140 GHz at normal incidence: (—)
moment method solution with €, = 5§ + 4, e = 2+ ¢1, (- - -) VIPO
with ¢ =54 14 € =2 4141, (- =) VIPO with ¢, = ¢, = 3.5 +142.5.
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Figure 4.12: Amplitude of the reflection coefficient at f=35GHz, §; = 0 ,and € =
13 + 712 as a function of thickness: (——) exact solution, (- - -) N-
layered combined-sheet model A = X\o/100, (- -) single-sheet A = 7.
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Figure 4.14: Bistatic scattering cross section of a 2Ag X 2)o dielectric plate with
7 = Xo/100 for E polarization at f==35GHz, §; = 0, and ¢ = 13 +:12 as
function of scattering angle: (—) moment method, (- - -) single-layered
combined-sheet model.
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Figure 4.15: Bistatic scattering cross section of a 2)g x 2o dielectric plate with
7 = Ao/100 for H polarization at f=35GHz, §; =0, and € = 13+112 as
function of scattering angle: (—) moment method, (- - -) single-layered
combined-sheet model.
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Figure 4.16: Bistatic scattering cross section of a 1)y X 2) dielectric plate with
T = Ao/10 for E polarization at f=35GHz, §; = 0, and € = 13 4 712
as function of scattering angle: (—-) moment method, (- - -) 5-layered
combined-sheet model, (- -) single-sheet.
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Figure 4.17: Bistatic scattering cross section of a 1Ay x 2)o dielectric plate with
7 = Xo/10 for H polarization at f=35GHz, §; = 0, and € = 13 + 712
as function of scattering angle: (—-) moment method, (- - -) 5-layered
combined-sheet model, (- -) single-sheet.
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4.8 Conclusions

A typical leaf has at least two dielectric layers whose cells have differing water
content, and this produces a nonuniform dielectric profile which can now affect the
scattering. At microwave frequencies where the leaf is no more than (about) Xo/50
in thickness, the nonuniformity is not important, and the leaf can be modelled as
a resistive sheet using an average value for the permittivity. If the physical optics
approximation is then applied, the resulting scattering is attributed to a surface
current, and this method is equivalent to the SCPO approximation. At higher fre-
quencies, however, the thickness and structure of a leaf are more significant. At 100
GHz and above a leaf is a considerable fraction of a wavelength in thickness, and
in spite of the reduced sensitivity to water content, the nonuniformity affects the
scattering.

For a two-layer model of a leaf, the SCPO approximation has been compared
with the volume integral (VIPO) approximation. When the leaf is thin the two ap-
proximations are identical and in good agreement with data obtained from a moment
method solution of the integral equation, but as the electrical thickness increases, the
two approximations diverge in all directions except the specular and (for E polariza-
tion) backscattering ones. Although the VIPO approximation is more complicated,
its accuracy is greater, and the agreement with the moment method data is better
using a two-layer model than when a single layer of average permittivity is employed.

For most practical purposes it would appear that VIPO in conjunction with
an accurate dielectric profile of a leaf provides an adequate approximation to the
scattering at millimeter wavelengths. As our knowledge of the profile increases, it

may be desirable to use a multi-layer model which could even simulate a continuous,
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nonuniform profile. We also note that at frequencies for which the leaf thickness is
comparable to A,,/2 where ), is the (average) wavelength in the leaf, the scattering is
greatly reduced at some angle of incidence, and because the permittivity is complex,
there is actually a range of angles for which this is true. Since the reduction is
accompanied by an increase in the field transmitted through the leaf, this could

provide a means for penetration through a vegetation canopy.




CHAPTER V

SCATTERING FROM VARIABLE RESISTIVE
AND IMPEDANCE SHEETS

5.1 Introduction

Another feature of planar leaves that needs to be investigated is the effect of
variation (across their surface) in thickness and dielectric constant on scattering.
The thickness and moisture content of a leaf, generally, decrease from center to sides
and can be modelled by a variable resistive sheet. The variable resistivity R(z) is
an explicit function of the thickness and material properties of the leaf (see (2.3)).
Since the mathematics involved in obtaining the solution for a resistive sheet is
closely related to that of the impedance sheet, we generalize the solution to include
the impedance sheet problem also.

In view of the difficulties associated with obtaining exact solutions of Maxwell’s
equations under given initial and boundary conditions, approximate solutions are
often sought instead. A common approximation technique is perturbation theory
which is useful primarily when the problem under consideration closely resembles
one whose exact solution is known. Perturbational methods have been successfully
used for many problems such as cavity and waveguide problems [e.g. Stephen et

al 1967, Eftimiu and Huddleston 1983], scattering from stratified media [Bates and

109
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Wall 1976], and scattering from rough metallic surfaces [Rice 1951].

In this chapter we will employ a perturbation method to solve the scattering
problem of variable resistive and impedance sheets. A solution to this problem has
number of important applications other than modelling a variable thickness dielectric
slab. For example, a periodic resistive sheet has application to spatial filters and
polarizers. Chara.ctérization of the scattering behavior of a variable impedance sheet
is also a matter of increasing concern since dielectric coated perfect conductors can
be modelled by a surface impedance, and a variation of the material property of a
terrain surface can be represented by a variable impedance surface.

An approximate solution is obtained using a perturbation technique in the Fourier
domain. The solution for the induced current on the sheet in terms of the resistivity
function is given in a recursive form. The closed form nature of the solution enables us
to study the statistical behavior of the scattered field when the resistivity function is a
random process. The solution for the current on an impedance sheet with impedance
n(z) is identical with that of the resistive sheet and can be obtained by replacing
R(z) with n(z)/2.

The solution to any desired order for a periodic perturbation is obtained analyt-
ically and the results are compared with an exact solution obtained using a moment
method. To demonstrate the ability of this perturbation technique to handle sharp
variations in the spatial domain, the problem of scattering from an impedance in-
sert is considered and compared with a uniform GTD solution [Herman and Volakis
1988]. The technique is also used to characterize the scattering behavior of a thin
dielectric slab with a hump and the solution is compared to that obtained using the

moment method in conjunction with the exact image theory for resistive sheets.
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5.2 Derivation of Integral Equation

5.2.1 Resistive Sheet

The resistive sheet is simply an electric current sheet modelling a thin dielectric
layer capable of supporting electric currents. The electric current on the sheet is pro-
portional to the tangential electric field and the proportionality constant is denoted
by a complex resistivity R given by (2.3). The electromagnetic boundary conditions
that govern the fields on the resistive sheet are also given by (2.4)-(2.6)

Consider a planar resistive sheet occupying the z —y plane and having a resistivity
which is only a function of z. Suppose a plane wave is incident on the sheet at an
angle ¢y measured from the normal. The geometry of the problem is depicted in Fig.

9.1. For the E polarization case we assume

Ei — geiko(sm(box—cos%z) (51)
H = Yo(cos ¢oZ + sin ¢02)eik°(5i“‘b°’”'°°s $oz) (5.2)
A Z
¢0
X
>

Variable Resistive Sheet  R(x)

Figure 5.1: Geometry of the scattering problem for a variable resistive sheet.

The scattered field due to the induced current is

E*(p) = —iwo [ I(bary)-T(7, 7)ds (5.3)
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where f(ﬁ, p') is the two-dimensional dyadic Green’s function and is given by
=, _ _ i = VV — —
T(p, ) = ~g I + 7 1H (ko | 5 = 7' ) (54)
0

Here, H((,l) is the Hankel function of first kind and zeroth-order. The induced current

in this case has only a y component, and from (5.3) the scattered field is found to be

koZo [t
E'(p) = —j——

| (&E (ko | =7 )’ (5.5)

The induced current and the total electric field given by
E'=E 4+ E° (5.6)

- must satisfy the boundary condition given by (2.5). Noting that # = % and sub-
stituting for E' and E? from (5.1) and (5.5) the following integral equation for the

induced current can be obtained:

!

k Z +°° ! ’
=22 [ T @V H (ko | & — & [)dz

R(:z:)Jy(a:) — eikosintbor _ n

(5.7)

For the H polarization case in which the magnetic field vector is perpendicular

to the plane of incidence, we have
E = —(cos ¢o& + sin ¢hp#)eiko(ein doz—cos doz) (5.8)

Hi — :‘}Yoeiko(sinqboz—coséoz). (59)

In this case the induced current has only a £ component and from (5.3) the scattered

electric field components are

+o0 ’ 2 ’
/ J(z)(1 + %%)H&l)(ko\/(x — )2+ 22)ds’ (5.10)
oo 2

Zy [+ 2
E}(z,2z) = —Z,% / Jz(x')%ﬂg”(km/(x —2")? 4 z2)dz’ (5.11)

—00

Bi(s,2) = -0
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The scattered magnetic field is in the y direction and can be obtained from

+o0
Hj(z,2) = 41z/ Jz( HY ko\/ —z')2 4 22)dz’ (5.12)

By obtaining the total field at the surface of the sheet and applying the bound-
ary condition (2.5) the following integral equation for the induced current in the H

polarization case can be derived:

koZo [ 5 )14 L LN HO (ko |2~ o )’ .

- iko sin oz
R(z)J,(z) = — cos goe'kosindor _ 7 ) 12 027

(5.13)

5.2.2 Impedance Sheet

Consider an impedance surface occupying the z—y plane. Suppose the impedance
is a function only of the variable z and is denoted by #(z). Further assume that this
surface is illuminated by a plane wave at an angle ¢o as depicted in Fig. 5.1. The

boundary condition on the surface is
i X (7 x E) = —n(z)h x H (5.14)

The field scattered from this surface can be obtained by replacing the total tangential
magnetic field on the surface by an electric current over a perfect magnetic conduc-
tor using the field equivalence principle [Harrington, 1961]. The equivalent electric
current is

J=haxH. (5.15)

and by invoking image theory, the magnetic wall can be removed by doubling the
electric current.
The incident electric and magnetic field in the E polarization case are given by

(5.1) and (5.2) respectively. In this case the total tangential magnetic field on the
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surface is in the z direction which implies that the electric current is in the y direction.

The scattered electric field can be obtained from expression (5.5) and is

koZo
2

Ej(z,z) = — Jy(z ) H HO (k \/(a: —z')? 4 2?)dz . (5.16)

The total electric field on the surface is composed of the incident field, the field
reflected from the magnetic wall, and the scattered field. From (5.14) and (5.15) we
have

[E} + E] + E2).=0 = n(z)J,(z) (5.17)

which leads to the following integral equation for the electric current:

. k 400 ,
1E) 5 (2) = eitosindns _ °TZ° AP (ko | 2 - ' e’ (5.18)

When the incident field is H-polarized the total tangential magnetic field is in the
y direction which implies that the equivalent electric current flows in the z direction.
The scattered electric field can be obtained from (5.10) and (5.11) by doubling the

electric current. Also, from the boundary condition (5.13), we have
[EL + ET + E2],—0 = n(z)J(z). (5.19)

Upon substituting the appropriate quantities from equations (5.8) and (5.10) into

the above equation the following integral equation for the electric current can be

obtained:
e 4 k Z +m ! 1 6 ’ !
@Jr(:p) = — cos ¢oe'RosindoT _ % Je(z)(1 + —76—)H31)(k0 |z —z |)dz.
(5.20)
The scattered magnetic field in this case is
1
Hi(z,2) = J (z )—H‘ Ykoy/(z — 2')? + 2?)da’ . (5.21)

T
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Note that the integral equations obtained for the impedance sheet are identical to
those obtained for the resistive sheet if R(z) is replaced by n(z)/2. Therefore all
the analysis that will be carried out for the resistive sheet can be applied to the

corresponding impedance sheet.

5.3 Perturbation Solution

The integral equations for the induced current on the resistive sheet are Fred-
holm integral equations of the second type, and for an arbitrary resistivity function
R(z) there is no known technique for finding their exact solution. Here we obtain an
approximate iterative solution to these integral equations using a perturbation tech-
nique and Fourier transform. For the sake of simplicity let us represent the integral

equations (5.7) and (5.13) by the following equation:

R(:L‘)J(;z;) — qetkosindor _ k04Z0

(J * g)(z) (5.22)

where g(z) is the kernel of the integral equation and (J#*g)(z) denotes the convolution

integral. The kernel function g{z) and constant a are

H((,l)(ko | z ) E-polarization
9(z) = i (5.23)
1+ fg%)H((,l)(ko | 1) H-polarization
1 E-polarization
" (5.24)

—cos ¢o H-polarization

By taking the Fourier transform of (5.22), the integral equation in the Fourier domain

becomes

2—17;(1} * J)(a) = 2rad(a — kosin ¢o) —

k"f"j(a)g(a) (5.25)

where the Fourier transform of functions are denoted by a tilda and & is the Dirac

delta function. The Fourier transform of the kernel function for E and H polarization
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cases respectively are given by

i(e) = ——— (5.26)

. 2
i(e) = 7 /kE -~ ? (5.27)
where the branch of square root is defined such that +/—1 = 7. When the resistivity

of the sheet is constant, an exact solution to the integral equation (5.24) can be

obtained, and if R(z) = Ry, then
R(e) = 27 Ry6(«). (5.28)

The transform of the current can be obtained from (5.25) and is given by

a[2mé(a — kosin ¢p)]

o) = T Bl

(5.29)

and the induced current in the spatial domain for E and H polarization respectively

are

3Ee) = § 2Y, cos ¢

N = YT 2R, Y, cos o
—2Y5 cos ¢o giko sin doz

2RoYo + cos do |

gthosindor (5.30)

INz) =12

(5.31)

which are identical to the result obtained from a plane wave reflection coefficient
calculation (see (2.11)).

If the resistivity has a small variation as a function of position, let
R(z) = Ro(1 + Ar(z)) (5.32)

where r(z) is the perturbation function assuming | r(z) |< 1 and A is a complex

constant (| A |< 1). The induced current on the sheet is assumed to be

J(z) = +f Jn(z)A" (5.33)

n=0
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where J,(z) denotes the n'* component of the induced current. Obviously, if A =0

then J(z) = Jo(z). From (5.32) and (5.33)

R(a) = 2w Rpé(a) + RoF(a)A (5.34)
J(a) = zjo J(@)A", (5.35)

and when substituted into (5.25), the terms given by (5.29) can be cancelled, and

the remaining terms can be written as

I . 1 . koZo., \ =
;{Ro[Jn(a) + 5 (a) * Joos(a)] + 4 9(@)Jn(a)}A" =0 (5.36)

Since this must hold for any value of A, all of the coefficients must be zero. Thus

for E polarization

o2
1-52

. 3 |
Fi(a) = ~2¥oRo - L@ e
1+ 2Y0Ro\/T-- :—g T

and for H polarization we have

! (T ) ). (5.38)

Jr(a) = —2YoRo - =5
2Y0R0+\/1 —g 2

The above recursive relations along with the expressions for Jy(a) given in (5.29)
can be used to derive the induced currents to any desired order of approximation.
The first-order solution can be obtained very easily and the transforms of the first

component of the induced current for E and H polarizations are

o2
je(a) _ _4}/02}?0 COs ¢0 - -’;3-
1 = .
1 + 2YORo COs ¢o _ o2
1+ 2YoRe, /1 &

7(a — ko sin ¢o) (5.39)

jlh(a) _ 4Y2 Ry cos ¢o - 1
cos ¢o + 2Yo Ry 2Y0R0+\/1—:—:
0

The complexity of obtaining high-order solutions depends on the perturbation func-

(o — ko sin ¢o) (5.40)

tion r(z).
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5.4 Periodic Resistivity

5.4.1 Perturbation solution

A simple case where it is possible to determine the n** components of the induced
currents is a periodic resistivity with period L. In this case we can write
+o0 2xm
r(z)= ) cne'l 7, (5.41)
m=—o0

and the Fourier transform of the perturbation function is

#(a) = 2 m:i; el — 2—722). (5.42)

For the E polarization case the transform of the n** component of the induced current
can be obtained from (5.37) and (5.42) and is

+0oo .
1 - Y ety (a— 2rm (5.43)

Je(a) = ~2¥oRo- : )
2}/0}20 + \/1 —_ %3- m=—00

By employing the expression (5.29) for jo(a) and after some algebraic manipulation,

a closed form for J,(a) can be obtained:

je(a) = "2Y°R°°;jsgz(—2zoﬂgﬂ
n 14+2Yp Rp cos ¢g
+oo oo . \/1-(sinqso+i,fl iy mi)?
' mp=—00 e m]=—00 [ni: ] (5.44)

! (1+2Y0R0\/17—(sin¢o+ib°' S mi P

Cmp " Cmy 27!'6[(1 - kO sin ¢0 - 2[:,71(2?:1 ml)]

and in the spatial domain

— 2YoRg cos¢o(—2YoRo)"
Js(.’t) - 142Yp Ry cos ¢

)/l—(sin¢o+éf'- E_';:l m;)?
1 .
(1+2YoRo / 1-(Sin¢o+il,°- Z;‘=1 m;)?

. . 2% n
s v o c7n1 ei(ko SID¢O+T Zl:l ml)z

Mn

: 27-1-1?:—00 e 7-’7-:0=—oo[n?= ] (545)
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For H polarization the analysis is similar and the expression for the n** component

of the induced current in the Fourier and spatial domains respectively are given by:

Th __ —2YoRg cos $o{—2YoRo)"
Jn (a) - 2Yo Ro+cos ¢p

LYk Ly TR : : 5.46
Mmp,=—00 my=—o0 1li=1 (2YoRo+ ]—(n¢o+%z_‘,’=1mj)2 ( )

Cmyp *** Cmy 28 — kg sin ¢p — '%”(Z?.—.] mg)]

h __ —=2YoRo cos ¢o(—2Yo Ro)"
I (m) - 2Yo Ro+cos ¢o

400 + o0 n 1
. PR > " . 5.47
My [o) miy oo 11li=1 (2¥oRo+ 1—(sin do-+ ,\Lu Z. j)2 ( )

3=1

'C'mn . c‘m'1 e’(ko sind>o+gf' Z::l m[):c-

The closed form expression for the induced current enables us to study the case
when the perturbation is a periodic random process. In this case the perturbation
function may still be represented as a Fourier series but with the Fourier coefficients
(¢}, s) as random variables. It can be shown from (5.59) that the average value of the
diffracted field is directly proportional to the average value of the induced current.
To obtain the average value of the current, assume that the periodic process has
zero mean, which implies that the Fourier coefficients have zero mean ({c) = 0),
and further assume that the Fourier coefficients are mutually independent. These
assumptions imply that the process is wide sense stationary, and from (5.45) and
(5.47) the following expressions for the mean value of the components of the induced

current can be obtained:

2YoRo —2YoRo)™
<J§(x)) = ° 1+c2°;o%oLcos¢zo o)

- —— 5.48
oo n y/ 1—(sin go+=0-=)2 n )ei(ko sin ¢o+ 520 ) ( )

m=—oco 11li=] i ](Cm
(14+2Yo Roy/ 1—(sin go+~==)2

—2Y, —2Yy Ro)™
(h(e)) = Bgetnen
400 n 1 n \ i(ko sin o+ 2E2m) (549)
m=-—o0 i=1[ Cml€ 0 0 L,

(2)’0Ro+\/1—(sin $o+207)2
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A problem associated with the perturbation techniques is that when there is a
sharp variation in the perturbation function there could be a sharp variation in the

h _ order solu-

solution which is not to the order of perturbation. Therefore in an n*
tion it is not guaranteed that the solution is of O(A™*1) for all values of the variable
in the domain of the integral equation. To check the validity of our assumption we
consider two limitiﬁg cases: 1) when the perturbation function has sharp variations
in the spatial domain and 2) when the perturbation function has sharp variations in
the Fourier domain. The first case will be studied in Section 5.5 and to study the
latter case we consider a constant function (r(z) = 1) for the perturbation function.
Note that the perturbation technique was applied to the integral equation (5.25),
and in this case the perturbation function #(a) = 276(a) has the sharpest varia-

tion possible. When r(z) = 1 the resistivity is constant and from equation (5.30) it

follows directly that

2Y) cos ¢o

— tko sind:o::. .
1+ 2YoRo(1 + A) cos ¢oe (5-50)

Jo(2)

The solution based on the perturbation technique can be obtained from equation

(5.45) with L = oo and
1 m=20

Cm = )
0 otherwise

thus

2Y4 cos ¢o(—2Yo Ro)™ ¢iko sin oz

=) = A 2V Ry cos goy !

and

2 2Y5cos do(~2YoRo)™ ir i
Je — tko sin ¢017An.
(2) ,;) (1 + 2Y, Ry cos ¢hp)H1 ¢

This series is absolutely convergent and represents the Taylor series expansion of
equation (5.50), implying that the perturbation solution can be made as close as we

wish to the exact solution.
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5.4.2 Moment Method Solution for Periodic Resistive Sheet

For a resistive sheet which is periodic in one dimension with period L, we have
R(z + L) = R(z)

If the resistive sheet is illuminated by the plane wave (5.1) or (5.8) , the induced
current on the sheet must satisfy the periodicity requirements imposed by Floquet’s

theorem, i.e.
J(z 4 nL) = J(z)e*osintonl (5.51)
Let us first consider E polarization case . The scattered electric field can derived

from (5.5). By subdividing the integral into multiples of a period, the equation can

be written as

koZo 2 [t , ,
g=-—==% [ 3@ HS (ko[ — ) + 2)d

n=—o0o0 o +nL

If the variable z' is now changed to ' + nL and the property (5.51) is employed, we

get
E; = —k04ZO .[:+L J(2)Ge(z,z', z)d,
where
Ge(z,z',2) = +2°:o HP (kor/(z — &' — nL)? + 22)ekosindonL (5.52)

is the Green’s function of the problem. The series is very slowly converging, specially
when L is small compared to the wavelength. To make the problem computationally
tractable a better form for the Green’s function is needed. If the Fourier integral rep-
resentation of the Hankel function is inserted into (5.52) and the order of summation,
integration reversed, we have

Gula,z z) = /+oo VK -a?lzhtatz—o")] +§
e\T, T ,2)=—
T J-co \/kg ot 02 n=—00

e_in(a—ko sin ¢O)Lda R (553)




But
too . iy
Z e~ inlo—kosingo)L _ o 2 8[(a — ko sin ¢o) L — 27n].

Applying the above identity to (5.53) and changing the order of summation and

integration one more time provides the following expression for the Green’s function:

2 +c0 a\/kz (2""+ko sin ¢o )2 |z|

Ge(z,z,2) = = ei(3F +ho sindo)(a=2 ) (5.54)
( n——oo \/i,2 2“" + ko sm ¢0)2

This series converges very fast specially when z is relatively large, and with the aid
of this Green’s function, the integral equation for the induced current given in (5.7)

becomes

koZo

°+L 7 ! + ’
T )G a,0%)dz (5.55)

R(2)J(z) = cilodindos

By a similar technique the Green’s function for a periodic resistive sheet in the

H polarization case can be derived and is given by

1 82 +o0 t\/kz—(Ln-Hco sin ¢9)?|z|

Gh(z,z', 1+
w(@e,2) = L( k2ax2)n;°o\f (%2 + kosin ¢o)?

¢ (32 +ko sindo)(e=2')

(5.56)
and the resulting integral equation for the induced current is
: : zo+L ’ ’ ’
R(z)J,(z) = — cos pgerosindo _ %/ ’ Jz(z )Gr(z,z ,0%)dz . (5.57)

The form of the Green’s functions shows that the scattered field is composed of
two types of waves: 1) propagating waves and 2) surface waves. The latter decay
exponentially away from the surface and there are an infinite number of them. In
contrast, the number of propagating waves is finite, depending upon the period L
and the angle of incidence. The n'® mode is a propagating mode if n belongs to set
N defined by

N = {n; —-fl—(l +singg) < n < E\IL(I — sin ¢o) } (5.58)
0 0
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Note that even for L < A\g we get two propagating modes corresponding to n = 0

and n = —1. In the far zone only the propagating modes are observable and the

electric field of the n*® mode for E polarization is, for example, given by (n € N)
]e;\/kg-(zg—uko sin $0)?22| ,i( 4+ ko sin do)z
(5.59)

kOZO f;‘)o+L Jy(xl)e_i(hT"+ko si.nq&o);-'dml

\/kg — (2L.L" + ko sin (]50)2

=15z
For H polarization the scattered magnetic field corresponding to the n'* propagating

I(m')e_i(z?-Ho sin ¢o)z da:’]e"\/kg—(z% +ko sin ¢0)2|z|e;(2—’i'l+ko sin ¢o)1:,
(5.60)

mode can be obtained from
zo+L
J

v
where the upper and lower signs apply for an observation point in the upper or lower

half-spaces respectively.
Az
X n=- n=-
n=-3 ‘ ‘ n=l
Y /S
n=-4 “Nove -
"-. ',.¢ \ ] "o v n=1
QQ.. \8)\" " "o ..oo'
s 22 X
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n=-4 ‘.. o" l’ ‘\ ‘.\ a n=1
'o' ’ 1 '..
’ \ .
, 4 n=0

Figure 5.2: Scattering directions of propagating waves for a periodic resistive sheet

with L = 3X¢ and ¢ = %.

The direction of propagation of each mode is defined by the angle ¢: measured
(5.61)

A
225 + sin ¢

from the normal to the surface and can be obtained from
sin ¢, = 7
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Figure 5.2 depicts the scattering directions of the propagating waves as indicated by
(5.61).

Numerical solutions of the integral equations (5.55) and (5.57) can be obtained
by the method of moments. The unknown current is represented approximately by

an expansion of pulse basis functions as

M
=) JnP(z—zn) (5.62)

m=1
where J,, are the unknown coefficients to be found, M is the total number of seg-

ments, and P(z) is the pulse function defined by

1 |z|< &=
P(z) = Iz 1<%

0 otherwise

In the case of E polarization, by substituting (5.62) into integral equation (5.55) and

setting zo = —% we get

R(z)J(z) = ehosindos _

M Zm AT [ '
g /m _as Ge(z,z ,0%)dz
After evaluating the integral and setting the observation point at z = zi, the follow-

ing expression results:

R(zk)J(a:k) = gthosindozk _bnrzo. 2%=1 J,

' Z+°° (2B +kg sin ¢o)(=k-1m)sin((2§ﬂ+ko sin ¢9) A% )
METOO (B2 ko sin ¢o)y/ K3 — (252 +ko sin o )?

This can be cast in matrix form as
(Z]lJ] = V] (5.63)

where [Z] is the impedance matrix and its entries are

kOZO +oo e“?*-ko sin ¢0)(1'k"-7-'m) Sin((% + kO sin ¢0)é2£)

L n=-—-00 (%Tn + ko sin (}50)\/%78 — ('2”—; + ko sin ¢0)2

k#m

Zkm =
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koZo I Sln((ern + ko sin ¢0)_A2_z)
nEeo (22 + kosin ¢o)y/kE — (22 + kossin ¢o)?

[J] is a column vector whose components are the unknown J,,’s and [V] is the

+ R(zx) k=m

excitation vector whose components are given by

v = eiko sin dozy .

Derivation of the impedance matrix for H polarization is rather difficult because
of the higher order singularity of the Green’s function. Using the same expansion of

the induced current as before and inserting it into the integral equation (5.57) we

obtain
. . kOZO M Im‘*‘%
R(z)J(z) = — cos gpekosindor _ e > Jm/ a 1+ —)Gh(:v z,0%)dz’
m=1 Im—73

(5.64)

To find the impedance matrix consider the following integral:

2
%Gh(x, z, z)d:c' = —G;(:c, T, z)

where G} (z,z’, z) is the derivative of Gi(z, ', z) with respect to z and is given by

2 +°° \/kz_(h_ﬂ.*.ko sindo)’lz]  9nn

1
n——oo \/kO 21"1 + ko SlIl ¢0)2 L

G, (2,2, 2) = + ko sin g)ei(3E* +Fosindo) (=~ =),

(5.65)
The convergence of the series is very poor when z — 0, but the limit does exist. To
achieve a better convergence rate, consider the following geometric series based on

the asymptotic behavior of the individual terms in (5.65) for large n, positive and

negative:
’ B 2% (|z|+4 :c'—:c
Z e 21rn Iz (21rn+ko Sind)o)(:l:—:l:) _ ge—iko sind)o(:z:—:c ) (I I ( ))
L~ L | — B+ —2)
— 28 (|2|-4 :z:'-—:z:
2 Z 2T z zL—-I-ko smd)o)(:c-—:c ) _?_c—iko sind)o(:z:—:c') L (J=l—i( )
L~ L 1 — o Z (el —2)
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By adding and subtracting the above series from G} (z,« ,2) and then letting z — 0
it follows that

Gi(z,z',0%) =lim,_o[G}(z,z,2z) — S — S

) ’ . ’
+leiko sin (bo(:c—:c')[ e A il _ A 7’) ]
L l_e—izlf-(:'—:) l—eizl-l(: —-z)?

which can be rearranged to give

i(z%e-f-kosianao) _ —im(:z:'—:z:)
(\/kﬁ—(‘—’iﬂ+kosin¢o)2 1)er

i(— 222 4 ko sin ¢o) {228 (' 1)
H ey T

. —izf(.t,-.t) izf(:,—:)
€ €
Hitan go + ——rs — 1_86213‘(:'—1)]}

G;((II, (II,, 0+) — %e—iko singo(z—z ){E:-:i

(5.66)
The above series is absolutely convergent and its rate of convergence is relatively fast

(like J;). By defining the following parameters:

m+4E .
Az, zm) = F [7702 £ZGa(e,a,0%)de’ = figeitosimdolz=sm)

'(m+k sin ¢o) $208 (p—gz ) * 27n : Az
{1 \ﬁcg_?g%:_ko si:%)z — 1)z ( )sm((T + ko sin ¢o) S7)

i(— 222 4 ko sin ¢o) Y Y PR 21m Az
+(\/’;2—(—2"—"+kosin(bo)2 +1)e™L sin((—2%2 + ko sin ¢p)4Z)]

+i tan ¢o sin(ko sin $o5Z) + 1 cot(F(z — z + Azz))ei(kosinéo%)

_% Cot( (.’L‘ — Ty — __.))e—t(ko su:ubo )}’

& 1 ’
B(x’ xm) = j:mjé Gh(x’x ’0+)d$
'an(: IM)s,n((-"’—”ﬂ+kosin¢o)%)
n=—oo (21rn+ko 8]ﬂ¢o)\/’§ -2"—"+ko sin ¢g)2
and setting the observation point & = zy, (5.64) can be written as

tko sin ¢o(x—zm) E

4
L¢

koZo &

R(zk)J(zx) = — cos goe’oindor —=

> InlA(zk, Tm) + B(zk, Tm)]

m=1

This can be cast as a matrix equation similar to (5.63) with the impedance matrix
and excitation vector having entries
Zkm = hf“[A(a:k,a:m) + B(zk,2m)] k#£m

Zrk = h%“[A(zk,zk) + B(zk,zk)] k=m
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Vg = — cOs doe’rosinPoTk,

5.4.3 Numerical Comparison

We are now in a position to compare the solution based on the perturbation
technique with the solution based on the moment method for periodic resistive sheets.
Figures 5.3 and 5.4 show the amplitude and phase of the induced current on a resistive
sheet with sinusoidal variation of period L = 2y and A = 0.7 for E polarization. In
these plots the first through fourth order solutions are presented using the expression
(5.45), and compared with the data obtained by the moment method (solution to
(5.63)). It is seen that by increasing the order of solution we can get as close as
we wish to the exact solution, and that the fourth order solution provides excellent
agreement with the moment method data. We note here that the required order is
directly proportional to A and L/)o. Similar results are shown in Figs. 5.5 and
5.6 for H polarization. The normalized field amplitudes of the propagating modes
(Bragg modes) defined in (5.59) and (5.60) are given in Table 5.1 for a sinusoidal
resistivity with L = 3Xg, A = 0.7, and Ry = 0+¢100 at angle ¢y = 30 degrees. Since
the resistivity is pure imaginary, there is no power loss and the total power carried
by all of the modes is equal to the incident power. Table 5.2 gives the normalized
field amplitude for a lossy resistive sheet Ry = 180+ ¢270. In this case 31% and 29%
of the incident power is dissipated in the resistive sheet for E and H polarization
respectively. Note that apart from the case n = 0, E; = E} and H; = —H,+,
where EX and H* are the field amplitudes of n'* mode in the upper (4) and lower
(-) half-spaces for E and H polarizations respectively. When n = 0 the incident field
should be added to the zeroth mode in the lower half-space, i.e. E; = Ef 4+ E* and

Hy = —H} + H'.
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Figure 5.3: The amplitude of the induced current on a periodic resistive sheet with
resistivity R(z) = (180 4 :270)(1 + 0.7 cos &%), L = 2, at normal inci-
dence for E polarization: ( ) moment method, (- - - - - ) fourth order
solution, (— —) third order solution, (— - —) second order solution,
(— - - - —) first order solution.
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Figure 5.4: The phase of the induced current on a periodic resistive sheet with resis-
tivity R(x) = (180 4 i270)(1 + 0.7 cos 2%), L = 2X, at normal incidence
for E polarization: ( ) moment method, (- - - - - ) fourth order solu-
tion, (— —) third order solution, (— — —) second order solution, (— -

- - —) first order solution.
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Figure 5.5: The amplitude of the induced current on a periodic resistive sheet with

resistivity R(z) = (180 + ¢270)(1 + 0.7 cos %), L = 2)¢ at normal inci-
dence for H polarization: ( ) moment method, ( ) fourth order
solution, (— —) third order solution, (— - —) second order solution,
(— - - - —) first order solution.
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Figure 5.6: The phase of the induced current on a periodic resistive sheet with resis-
tivity R(z) = (180 + ¢270)(1 + 0.7 cos 22£), L = 2X, at normal incidence
for H polarization: (——) moment method, (- - - - - ) fourth order solu-
tion, (— —) third order solution, (—— — —) second order solution, (— -

- - —) first order solution.
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E-polarization H-polarization

n E|E E;/E HY/H' H:/H'

-4 || 0.001£62.37 | 0.001£62.37 || 0.001£-150.10 [ 0.001£29.90

-3 {1 0.0032£169.70 | 0.003£169.70 || 0.004,-18.57 | 0.004£161.43

-2 (| 0.020£-76.15 | 0.020£-76.15 || 0.02299.93 | 0.022/-80.07

-1 0.124/40.43 | 0.124/40.43 || 0.136/-143.68 | 0.136£36.32

0 |f 0.887£156.86 | 0.394/62.13 || 0.831/-27.13 | 0.460£55.50

1§ 0.136/49.53 | 0.136£49.53 | 0.210£-158.67 | 0.210/21.33

Table 5.1: Normalized field amplitude of the propagating modes in the upper (+)
and lower (-) half-spaces for a periodic resistive sheet R(z) = Ro(1 +
0.7 cos #22) with Ry = 0 4 100 and L = 3, at ¢o = 30 degree.
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E-polarization H-polarization

n Ef/E E;/E HY/H H7/H

-4 || 0.002£-105.65 | 0.002-105.65 || 0.003£47.66 | 0.003£-132.34
-3 || 0.008£40.63 | 0.008£40.63 || 0.008£-145.58 | 0.008/34.42

-2 || 0.028£-163.62 | 0.026/-163.62 || 0.030£13.43 | 0.030£-166.57
-1 0.110£-6.41 0.110£-6.41 0.112£170.56 | 0.112/-9.44

0 || 0.484£150.69 | 0.625/22.29 | 0.425/-32.24 | 0.679£19.49

1 0.141/4.41 0.141/4.41 0.135£161.00 | 0.135£-19.00

Table 5.2: Normalized field amplitude of the propagating modes in the upper

(
1

+)

and lower (-) half-spaces for a periodic resistive sheet R(z) = Ro(l +

0.7 cos 222) with Ry = 180 + 270 and L = 3X, at ¢o = 30 degree.
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5.5 Scattering from Impedance Insert

Another example that illustrates the ability of the perturbation technique in
handling sharp variations in spatial domain is the scattering of a plane wave from

an impedance insert whose geometry is shown in Fig. 5.7.

W w
2 2 X

Ty n, Mo

Figure 5.7: Geometry of an impedance insert.

The impedance of this surface can be represented as

z
(@) = (1 + ATIE))
where [](z) is the gate function defined by

1 |zl
[1(=) = :

0 otherwise

N =

w is the width of the insert, and as before, A is a constant with | A |< 1. The
transform of the first components of the induced current for E and H polarization

respectively can be obtained from (5.39) and (5.40) by replacing Ry by 10/2 as follows:

o2

Je(a) = —2Y¢'no cos go 1-% wsin(w(a — ko sin ¢g)/2)
! 1 + Yono cos o _ a? w(a — ko sin ¢o)/2
1 + Yo’l]o 1 Ig

(5.67)
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2Ygno cos do 1 sin(w(a — ko sin ¢)/2)

JHa) = w ,
1 (@) cos ¢o + Yono Y07)0+\/1_%§' w(a — kosin ¢g)/2
0

(5.68)

Unfortunately, analytical expressions for the higher order components of the induced
current cannot be obtained for this case but they can be found numerically. To
observe the behavior of the current in the spatial domain, expressions (5.67) and
(5.68) were transformed numerically and the results are shown in Figs. 5.8 and 5.9.
They show the expected behavior of the currents at the edges.

The scattered field due to the zeroth-order induced current consists of reflected
and transmitted plane waves in the specular and forward directions, while the first
component of the induced current gives rise to a cylindrical wave which will be

denoted by the superscript s. In the far zone

Vi(z—2z')2+ 22 zp—x'sin¢,

where p and ¢, denote the distance and direction of observation point, and

HO (ko[ — o) + 22) = ,/——e'<’°°"-’f’e-"°° sinds’, (5.69)
1 8 ko sin s’
PrEYil (koy/(z — 2')2 + 27) ,/—— (ko= cos? ge~hacindz  (5.70)

1 0? 2 . . o
H(l) k _e\2 )~ — [ 2 i(kop—L) : —tko singsx . i
12 5207 (koy/(z —2')? + 22) 7rkope 1) cos ¢, sin ¢,e (5.71)

It is now easy to obtain the far field amplitude P(¢o, ¢,) defined by

2
s ~ t(kop—'m)
E pr P (o, ¢5). (5.72)

in terms of which the bistatic echo width is

2/\0

o(¢o, $5) = — | P(d0, ¢5) | - (5.73)
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Figure 5.8: Distribution of the first component of induced current on an impedance
insert for E polarization.
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Figure 5.9: Distribution of the first component of induced current on an impedance
insert for H polarization.
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In the E polarization case the scattered field is in the y direction and

—koZ +o0 ' L ' A—k Z =0 .
Pe(do, bs) = § ;" / Ji(z)e~kosindeT (g’ = ZOJ,(kosmqb,). (5.74)

For H polarization substitution of (5.70) and (5.71) into (5.10) and (5.11) shows that

the scattered field has only a é component, and the far field amplitude is

koZo [+ ~koZg

Ph(¢0) ¢3) = &COS ¢’ 5 th(.’lll)e_iko !in¢°"d:c' = ¢ CcOS ¢_,j1h(k0 sin ¢_,).
(5.75)
Thus
. —koYono cos ¢o oS P sin(wko(sin ¢, — sin ¢o)/2)
P = . .
(4o, ¢5) Y1 + Yonocos dg 1 + Yono cos P, wA wko(sin ¢, — sindg)/2 ’
P (do, bs) = (z—koYono cosgg _ cosg, sin(wko(sin ¢, — sin ¢g)/2)

-w " "
cos o + Yono  Yomo + cos @, wko(sin ¢, — sin ¢g)/2

The results of this technique are now compared with a uniform GTD solution [Her-
man and Volakis, 1988] that accounts for up to third order diffracted fields. Figures
5.10-5.15 compare the results of the perturbation method and the GTD technique
for the impedance insert problem where there are sharp variations in perturbation
function in the spatial domain. The figures show the normalized bistatic echo width
(¢/Xo) of an impedance insert having w = 2)\¢ and 7y = 40 — 740 using the two
methods. The agreement is excellent (for A = 0.5 the error is only 0.3 dB) in spite

of the sharp changes in the perturbation function in the spatial domain.




139
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Figure 5.10: Normalized bistatic echo width (¢/\o) of an impedance insert with w =
2Xho, m = 44 — 144, 9o = 40 — 740 (A = 0.1) at ¢o = 0 degrees for E
polarization: ( ) perturbation technique, (- - - - - ) GTD technique.
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Figure 5.11: Normalized bistatic echo width (¢/)o) of an impedance insert with w =
240, m = 44 — i44, 7o = 40 — 40 (A = 0.1) at ¢o = 45 degrees for E
polarization: ( ) perturbation technique, (- - - - - ) GTD technique.
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Figure 5.12: Normalizcd bistatic echo width (o/Ao) of an impedance insert with w =
2X0, m = 60 — 260, no = 40 — 740 (A = 0.5) at ¢o = 0 degrees for E
polarization: ( ) perturbation technique, (- - - - - ) GTD technique.
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Figure 5.13: Normalized bistatic echo width (o/Xo) of an impedance insert with w =
2X0, M = 44 — 144, no = 40 — 740 (A = 0.1) at ¢o = 0 degrees for H
polarization: ( ) perturbation technique, (- - - - - ) GTD technique.
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Figure 5.14: Normalized bistatic echo width (o/Ao) of an impedance insert with w =
2X0, m = 44 — 144, no = 40 — 240 (A = 0.1) at ¢o = 45 degrees for H
polarization: ( ) perturbation technique, (- - - - - ) GTD technique.
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Figure 5.15: Normalized bistatic echo width (¢/Xo) of an impedance insert with w =
2X0, m = 60 — 160, no = 40 — 740 (A = 0.5) at ¢ = 0 degrees for H
polarization: (——) perturbation technique, (- - - - - ) GTD technique.
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5.6 Scattering Model for a Variable Thickness Dielectric
Slab

Consider a dielectric slab whose thickness is a function of z (see Fig. 5.16). Let

the thickness be

w2

T(e) =+

A)
where w is a measure of the width and A is the height of the dielectric hump. the
hump may have a different dielectric constant from that of the underlying slab. This

thickness function resembles the variation in thickness of a vegetation leaf and in

this case w and A are random variables.

Figure 5.16: Geometry of a dielectric slab with a hump.

If the dielectric slab is electrically thin, it can be represented by two parallel
resistive sheets one with a constant thickness 7, and the other one with a variable

thickness
2

w
’T(:l:) = mATo

where we assume here that A < 1. Resistivity of the underlying and the top sheets
are respectively denoted by R, and R, which can be obtained from equation (2.3).

These parallel sheets can be replaced by an equivalent sheet whose resistivity is equal



146

to that of the two parallel resistors Ry and R,, i.e.

RoR,

Re) = mvmy

By substituting the expressions for Ry and R, in the above equation and then ap-

proximating the resultant expression to the first order of A it can be shown that

R(e) = R = Ror—t o Ruf1 = %
To+7(z) 1+;2w_—:f\v—z— z? + w?

A)

The perturbation function then takes the form

2

—w
r(z) = o wt
and the transform of this is
#a) = —rwe el

The Fourier transforms of the first components of the induced current for E and H

polarization can be obtained from (5.39) and (5.40) respectively, and are

2
2 1 -3
Jé(a) = o flocosdo e (ruwevlekosngsl)  (5.76)
0
o —4Y2 .
th.(a) — 0 R cos ¢g . 1 . (Wwe—wla—kosmtbol). (5_77)

cos ¢o + 2Yo Ry 2YyRo + \/1 _ %g,
The far field amplitude associated with the first component of the induced current

can be obtained from expressions similar to (5.74 and (5.75). Hence,

—hoYoRocosgo _ cosg,
Y ¥ 2YoRocos do 1+ 2Ye Ry cos 6,

P.(do, ¢5) = ,(,rwAe—kow;sms,-siwol), (5.78)

~—koYo Rg cos ¢ Cos ¢, —kow|sin ¢, —si
P vy . . wisin ¢, —sin ¢o| ) .
h(¢0 ¢ ) ¢COS ¢0 + 2YOR() 2YOR() + COS ¢3 (WwAe ) (5 79)

If w and A are independent random variables such that w is Gaussian with mean

and standard deviation wy and s respectively, its probability density function is

1 _(w=wg 2
fw(w)=——,2—7rs€( =)
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Assume also that the second moment of the random variable A is known. The mean
value of the bistatic scattering width may now be calculated from (5.73), and by

noting that

26—2kow|sin¢,—sin¢o|) — (32 + wg)e(kgaﬂsin¢,—sin¢o|2—2kowo|sin¢,—sin¢o|),

(w

we obtain the resulté

_ —koYoRo cos ¢o cos ¢, 2 [ A2\ (42, —2kowlsin $s—sin dol
(ae(¢0a ¢a)) - 27"/\0 I 1+2YOR()OOS¢0 1+2Y0}ZOOOS¢, l (A )(w € )a

—koYoRo cos ¢o cos @, 2 7 A2\ /. 2 —2kowl|sin$,—sin do|
= /\ . 0 n ¢, —sin ¢o .
(O'h(¢0, ¢3)) 27!' 0 | cos ¢0 + 2)/0}?0 2)/0R0 +_ COoS ¢s , (A )(w € )

The above is a first-order solution, and for a higher order solution, analytical
results may not be achievable. When the height of the dielectric hump above the
resistive sheet is not much smaller than the wavelength, the above solution fails to
work for two reasons: 1) the solution is a first-order one in A, and 2) the dielectric
hump cannot be modelled as a single resistive sheet. In such cases we have to resort
to numerical techniques to get the solution. In the next section, the Green’s function
for a planar resistive sheet is obtained and used to derive an integral equation for
the induced polarization current. A numerical technique is then employed to obtain
the solution for a dielectric structure of arbitrary cross section above the resistive
sheet. Results based on the perturbation technique and the moment method are

then compared in Section 5.11.

5.7 Scattering from Dielectric Structures above Resistive
and Impedance Sheets

In this section we seek the scattered field of a two dimensional dielectric object
with arbitrary cross section above a uniform resistive or impedance sheet when the

object is illuminated by a plane wave. The geometry of the problem is depicted in
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Fig. 5.17. First, the Green’s function is derived by obtaining the exact image of a
line source and then the problem is expressed as an integral equation that can be

solved numerically by the method of moments.

%Z

Dielectric Cylinder

n J

| B

Resistive (Impedance) Sheet RM2)

Figure 5.17: Geometry for the scattering problem of a dielectric cylinder above a
uniform resistive or impedance sheet.

5.7.1 [Exact Image of a Current Filament above Resistive Sheets

An integral representation for the image of a line source above a resistive sheet
is derived. This representation has an excellent rate of convergence for most prac-
tical purposes and can be computed very easily. First, by using the electric Hertz
potential, the exact image is derived for an electric current line source in the y direc-
tion. Following the same procedure, the image representation for a line source whose

direction is parallel with the transverse plane (z — z plane) is obtained next.
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5.7.2 Line Current in Longitudinal Direction

Consider a uniform resistive sheet lying in the z — y plane of a coordinate system
(z,y,2). Assume a constant current is placed above the sheet at p = (z',2') and the
current density is given by

J=g6(x —2',2—7)

The electric Hertz potential in this case has only a longitudinal (y) component and

must satisfy the wave equation, i.e.

(V2 + kD)L, = —’kﬁs(x _ )8(z — ) (5.80)
0
By taking the Fourier transform of both sides of the above equation with respect to
z we obtain
52

2 1 Zo
022

+ (kg = KDL (ks 2) = =2 =8(z — 2)e™ (5.81)

where

~ +o0 .
1, (ks, 2) = / 11, (z, 2)e™*="dz

is the Fourier transform of the electric Hertz potential. By dividing the space into

three regions as shown in Fig. 5.18 and then imposing the radiation condition, the

solution to the differential equation (5.81) in each region can be expressed by

Ml (k,, 2) = cyebsrthas) |
T2(ks, 2) = cpeilberthes’) 4 goemilhes—hos’) | (5.82)

5k, 2) = cyeihhe)

where k, = /k% — k2 and branch of the square root is chosen such that /-1 = 1.

The field quantities in terms of the Hertz potential are given by

By(z,2) = K1, (z,2) (5.83)
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Hy(z,2) = z'koYo-%Hy(:c, z) (5.84)

region 1
2 Filament Current
Tregion2 T[T py T
' X
. . 4’
region 3 x'

Figure 5.18: A constant line source above a uniform resistive sheet.

Continuity of the tangential electric field at z = 2’ and the resistive sheet boundary
conditions as given by (2.4)-(2.6) at z = 0 together with the equations (5.83) and

(5.84) impose the following conditions on the Fourier transform of the Hertz potential

Il (k,, 2") — M2(ky,2") = 0,
112 (ks, 0) — T13(k,,0) = 0, (5.85)
iRkoYo[ £ 11} (s, 0) = Z1L(ks,0)] = k3IL} (K5, 0)

and from the jump condition we have
—I(k,, 2") — —112(k,, 2') = —— . (5.86)

Upon substitution of (5.82) into (5.85) and (5.86), and then solving the resultant set

of equations simultaneously, the unknown coefficients ¢;,-- -, ¢4 can be obtained and
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are given by

_ -1 -1 tkzz' —tky2'
a = 2koYok, L4 2RYnks € te ]
ko
cy = 1 1 eik,z’
2koYpk: 1 2_0_1“ L7
+ % (5.87)
_ -1 thy 2’
€3 = 2koYoik,
2RYnk; .
C4 = =1 kq tkyz’

2ko Yok, 1+2_RTYgﬁ €

The electric Hertz potential in each region can be obtained by taking the inverse
Fourier transform. Let us represent the electric Hertz potential in the upper and
lower half-spaces by II (z, z) and II; (z, z) respectively, and then using the following

identity

+oo pilkelz—2'|—kz(z—2")]
/ c dk, = nH{ (koy/(z — 2)2 + (2 — 2')?2) (5.88)

—c0 k.

we obtain

I} (2,2) = 3k HS) (koy/(z — 2/)2 + (z — 2/)?)

) (5.89)
1 +oo —1 thy(z42')~tkz(z—2'

4k°Y°1|- —00 (1+2__0_ﬁk0)7;,_)kze ) ( dk‘g_-

I, (z,2) = — 25 H (koy[(z — 2)2 + (=2 + 2')?) (5.0

_4k01Yo1r fj-o? (1+ 25—%’0-1kz.)kz eik'(_z+2')—fk=(x—:c )dkz
0
The first term in the (5.89) and (5.90) represents the effect of the current filament in
absence of the resistive sheet while the second term is due to the image of the current
filament. Unfortunately the integral representing the contribution of the image does

not have a closed form and its convergence rate is very poor. To achieve the image

contribution in an efficient way consider the following transformation

+oo —ov  —kzv _ 1 3 _
/0 e e Fdy = Y provided Re[a] > —Relk,] . (5.91)

The choice of the branch cut for k, guarantees that Re[k,] is nonnegative as k, takes

any real number, therefore the sufficient condition for (5.91) is

Rela] > 0.
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21- ”
By defining o = ﬁ’?’% we note that the above condition is satisfied (Re[a] = 592; > 0)

and the integral representing the image contribution in the upper half-space can be

written as

oo -1 ik (242")—iks (c—2) +00 B 400 eik,(z+z'+iu)—ik,(z-—z')
= ikz(z42)—ikz(z-2 k,_.:/ _ a,,/ dk,]dv.
/_oo (1+5=)k,° dks = | —oe™[] i Jdv

Employing the identity given by (5.88), the electric Hertz potential in the upper

half-space is given by

M} (v,2) = ek [HS) (koy/(z — 2/)2 + (2 — 2/)2)

(5.92)
— I aem H (koy/(z — 2')2 + (2 + 2’ + iv)2dy].

In the same manner the electric Hertz potential for the lower half-space is found to

be

I (z,2) = 2k [HS) (koy/(z — 2')? + (—2 + 2)?)

(5.93)
— I aem H{D (koy /(2 — /)2 + (=2 + 2/ + iv)2d].

V'Y
Im[Z]
v f
Z Plane
Current distribution e'“"|
)

— >

Re[Z]

Figure 5.19: The location of the image of the line source in the complex z plane.

This integral representation converges very fast because both functions in the inte-

grand are exponentially decaying. Also from this representation it can be deduced
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that the image of a line current above a resistive sheet is a half plane current with
exponential distribution and is located in the complex z plane occupying the region
—2z' —100 < z < —2' (see Fig. 5.19). The validity of the image representation can be
checked by considering some special limiting cases. Suppose the resistivity is very
small (approaching the perfect conductor) which implies that | & [> 1. In this case

the integral in (5.92) can be approximated by

e ae"""Hél)(ko\/(a: —2')2 4+ (2 + 2 + iv)?)dv
H{Y (kor/(z — 2')2 + (2 + 2')?) [ ae™"dv = H) (koy[(z — 2')? + (2 + 2')?)

(contribution to the integral comes mostly from point » = 0) which is the image for
the perfectly conducting case. An asymptotic behavior of the integral in terms of a
convergent series of inverse power of & can be obtained by performing integration by

parts repeatedly, thus

/0+°° ae—""’Hél)(ko\/(m -2+ (242 +w))dv = So:(:al)"h(")(O) (5.94)

n=0

where h((0) is the n™ derivative of H )(ko\/(a: —2')2 + (2 + 2’ + iv)?) with respect

to v evaluated at zero. The first order of approximation is

= —1 1 -1 ?
- h(") ~ h(0) = H' "Nh—=H(l)k\/ — )2 ' )2
ga (0) = K (0)= = h(—) = Hy (ko (z = 2')* + (2 + 2’ = —)?)
which is a line image located in the complex plane at z = —2' + i The other

asymptotic behavior of interest is the far field approximation where the point of

observation is far from the image point, i.e. p; = \/(a: —z')2 4 (2 + 2)2 > Ao (see

Fig. 5.20). In this condition

1V COS ¢y

. ), (5.95)

\/(m —z) 4 (242 +iv)? = pa(1 +

where we have assumed that p, > v. The validity of this assumption comes from

the fact that the integrand of (5.92) is approximately zero if v > V4, for some finite
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Vmaz- Now by using the large argument expansion of the Hankel function and then

substituting for o we get

lim,, o0 fgF° —ae“’“’H(()l)(ko\/(a: —z'V2+(z+2+w))dv=

/2 gilkor2—T) =1
wp2 142YpRcos ¢

Note that the last term in the above equation is the plane wave reflection coefficient

for the E polarization case. This result is identical to the asymptotic value of the

integral given in (5.89) evaluated by the saddle point technique.

AZ (x,2)
p
0, 2
o0 X
A =

Resistive (Impedance) Sheet /'
(x',-z")

Figure 5.20: Geometry of image point for far field approximation.

5.7.3 Line Current in the Transverse Plane

Here we separate the problem into two problems: 1) when the current is in z
direction and 2) when the current is in the z direction. First consider the situation
where the current filament above the resistive sheet is in the z direction and its

current density is given by
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The electric Hertz potential has only an x component and must satisfy the wave
equation as given in (5.80). The analysis of obtaining the electric Hertz potential
(I1z(z, 2)) is similar to the previous case. The Fourier transform of the Hertz potential
must satisfy an equation similar to (5.81), and the solution is identical to those given

n (5.82). The field quantities in terms of the electric Hertz potential are given by

= k2 1 9 o ., 0 ,
E = ki |lI.(z,2) + 92t O (z,2)| ¢+ a:‘eazl'l,,.(ar:,z)z (5.96)
H = —k YQH (z,2)y (5.97)
- 0 Oaz z\Z,2)Y :

The following relations for the Fourier transform of the Hertz potential can be ob-
tained by using equations (5.96) and (5.97) and applying the continuity of the tan-

gential electric field at z = 2’ and the resistive sheet boundary conditions at z =0

e, ) - Liipr,, ) =0

022 0z?
2 0 =5
[ n 2 (key 0) = 55 112(ke, 0)] = 0,
. 9 -, o -,
ZRkOYO[a (kr’ 0) - a_n (kr,o)] 622 H:(krao) ’
Qi L ;
azl'[ (kg 2') — % 12 (kzy 2') = Yo’

where the last equation comes from the jump condition. The unknown coefficients

cl,---,c4 in this case are given by
a = 2ko-;’:>k. [1+_n_n’*‘_731775 et 4 e_iki]
2= Vi 1+ﬁ’nﬁn eiks?
= FaEe
a= sy (l+ H%)eu,z,

The electric Hertz potential in the upper and lower half-spaces can be obtained by

taking the inverse Fourier transform and then using the identity (5.88). Thus in the
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upper and lower half-spaces we have

_ __1 1) 2 2 — 2')2) — 1) z —z')2 2 4 2')2
M (2,2) = gy B (boy/(e = 2) + (2 = 2)7) = H (ko (2 = 2')" + (2 + 2)7)]

I
— S S—— O B C SR T 5.98
4koYor J-co (14 77k (5.98)
1 +o0 1 . o ,
o(z,2) = — / ksl ike(ema) g 5.99
=(:7) 1koYor J-co (14 pritp ks (5.99)

The integral in (5.98) represents the contribution of the difference between resistive
sheet and perfect conductor images.

Now suppose the current filament is in the z direction and as a result the electric
Hertz potential has only a z component. The analysis in this case is very similar to the
previous cases. The only difference is that we should use the continuity of the normal
component of the electric field at z = 2’ rather than the tangential component. Also

note that the field components in terms of the electric Hertz potential are given by

62 1 62
— 2 A 2 - v n
E= ko 6$aznz($’z)x + kO HZ(II?,Z) + kg F) Hz(xa z)] z (5100)

: 0 .
H= zkoYOEZHZ(x, 2)y

Following an identical procedure as in the previous case the Hertz potential can be

obtained as

I} (z,2) = Z;()—;,()[Hé”(ko\/(:c — 22 4 (2 — 2)2) + H (koy[(z — 2')2 + (2 4+ 2/)2)]

1 oo 1 (b i (s
+ / ikslta)=ika(a=s) g 5.101
inkoYs oo (14 770 )E (5.101)

1 e 1 (o) ik (o
07 (c,2) = — / ihe(re!)~ike(o=2) g 5.102
(2:2) inkoYo -0 (14 srim ke (5.102)

The integral in expressions (5.98) and (5.101) does not have a closed form and is
not appropriate for numerical calculation. A better representation for this integral

can be obtained by employing a transformation similar to (5.91). By defining § =
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(2RYoko) and noting that Re[] = ‘rlt_'llz > 0, we have

f+oo 1 eak,(z+z')—ik,(z—z')dkz —
(14 7rvirg k=

L ﬂe_ﬂ"H(()l)(kO\/(x —a')? + (2 + 2" +1w)?dw.

This representation has a much better rate of convergence when compared to the
original form. The rate of convergence depends upon the real part of 8 and the
wavenumber. The asymptotic value of this representation for large values of # can

be obtained by the same technique as in (5.94) and we have

e ,Be'ﬁ"Hél)(ko\/(x —2) 4 (242 +w)?)dv =
2 o(F)hM(0) ~ HED (koy[(z — 2)2 + (2 + 2/ — i/ B)?)

Another asymptotic value of interest is the far field which can be obtained by using

the large argument approximation of the Hankel functions and the expression given in
(5.95). Therefore the contribution of the image in the far zone can be approximated

by

limp_,oo[Hél)(ko\/(x ~2')2 4+ (2 + 2')?)

e ,Be‘ﬁ"Hél)(ko\/(x — )+ (242 +w))dv] ~ \/_ o Ry

Employing the new representation in equations (5.98)-(5.99) and (5.101)-(5.102) the

electric Hertz potential for z- and z-directed currents are given by

I} (z,z) = T [H(l)(ko\/(a: —2")2 + (2 — 2/)2) — H{ (ko\/(z — 2/)? + (2 + 2')?)
+ / Be HY (kor/(z — 2)? + (2 + 2/ + iw)?)dv], (5.103)
I (z,2) = 4kOYO / B HO (kor[(z — /)2 + (—2 + 2/ + iv)2dv,  (5.104)
1} (z,2) = 1% Y (l) ko\/;: —z') —-2)%) + Hél)(ko\/(:v — )2+ (2 +2')?)
—/ Be=P gV ko\/(:zz 24 (242 +1iv)?)dy], (5.105)

17 (z, 2) / Be 'ﬁ"H(l)(ko\/(:v — 2+ (—2z+ 2 +w)?)dv. (5.106)

4koYo
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5.8 Exact Image of a Current Filament above Impedance
Sheets

In Section 5.2 it was demonstrated that an impedance surface characterized by
surface impedance 7 can be replaced by a perfect magnetic conductor plus an electric
current sheet. This fictitious current is identical to the current on the equivalent re-
sistive sheet (R = /2). Further it was shown that the scattered field for impedance
sheet is twice of the scattered field for the equivalent resistive sheet. Therefore the
image of a current filament over an impedance sheet can be obtained from the expres-
sions derived for resistive sheet by replacing R with /2, doubling the expressions,
and adding the contribution of the image of the current filament above the magnetic
wall. By following the above procedure and employing equation (5.92), the electric
Hertz potential for a y-directed current filament above the impedance sheet can be

obtained from

My(z,2) = ¥ [HS" (koy/(z — @) + (z — 2)2) + H (ko /(2 — @')2 + (2 + 2/)2)
—2 fgre° a'e“""’H((,l)(ko\/(x —z')? + (—z + 2’ +iv)2dv].

(5.107)
where o’ = n—k)‘}; By defining 8’ = Yok and from equations (5.101) and (5.102) the

electric Hertz potential for z- and z-directed current are respectively given by

I (z,2) = z2be[HS (koo — &) + (2 — 2)2) — H{" (koy/(z = /)2 + (2 + 2/)?)
+2 fof° ,H'e‘ﬁ"’H((,l)(ko\/(a: —2')? + (2 + 2 +w)?)dv],

(5.108)
i (z,2) = 323 [H (koy/(z — )2 + (2 — 2/)2) + HED (ko /(z — 2')2 + (2 + 2)?)
=2 [§ e P HEY (ko/(@ — @) + (2 + 2/ + iv)?)dv],

(5.109)
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5.9 Derivation of Integral Equations

Suppose the dielectric object above the resistive sheet is illuminated by a plane
wave whose direction of propagation is denoted by angle ¢o measured from normal to
the resistive sheet. The incident field induces conduction and displacement currents

in the dielectric object which together are known as a polarization current given by
J. = —ikoYo(e(z, 2) — 1)E (5.110)

where €(z,z) is the relative dielectric constant of the object and E! is the total
electric field inside the dielectric body. If the incident, reflected, and scattered field

respectively are denoted by E*, E™, and E?, then
Et=Ei+Er+_Es

Let us first consider the E polarization case where the electric field is perpendicular
to the plane of incidence. The incident field is given by (5.1) and the reflected field

in this polarization is found to be

A -1 ¢k (sin oz —cos doz) (5.111)

_y1+2RYocos¢o

In this case the incident field excites y-directed polarization current, which leads to
a scattered field in the y direction that can be obtained using equations (5.83) and

(5.92) as follows

—koZ
By = =20 / / J, (2, )G, (z, 2 ¢, 2')dz'd7’ (5.112)

where

Gy(z,2;7,2') = HP (koy/(z — 2')2 + (2 — 2')?)
— foFee ae=vH{Y ko\/ )2+ (z + 2’ + w)?)dv.
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Now an integral equation for the polarization current can be obtained by substituting

(5.1),(5.111), and (5.112) into (5.110) which yeilds

Jy(a:,z) — —Z.k()Yo(ﬁ(.’L',Z) _ l)eilco sin¢o:c(e—1'lco cos oz __ me% coa¢oz)

+%&(€(x’ Z) - 1) ffa Jy(.’l,", Z')Gy(.’l,', zZ; .’L", Z')dx'dz'.
(5.113)

In the H polarization case the incidence field is given by (5.8) and the reflected

field in the absence of the dielectric structure above the sheet is of the form

E"= . (cos @& — sin po2)ekoleindomteondoz) (5.114)

1+ 2RYysec ¢o

The induced polarization current has both z and z components which are denoted
by Jz(z,2) and J.(z, z) respectively. The scattered field can be evaluated using the
expressions for the electric Hertz potential as given in (5.96) and (5.100) and are of

the following form

Ey= 8214+ 32 [, J.(',2)Gu(z, 2, 2')dz'd2’

? (5.115)
~ 25 3% 1, 7:(a, 2)Gu(a, 0/, #)da'de,
E: = :i sz Jo (2, 2)Go(z, 2, 2, 2')dz'd 2’ (5.116)
—hfo(y 4 g:,)ff J (&', 2")G (7, z; 7', 2")d’'d 2,
where
Gz, z;2,2") = H((,l)(k \/(a: — )2+ (2 —2")%) — Hél)(ko\/(a: 24 (24 2')?)
+ fe ﬂe“"’H(l)(ko\/(x — )2 + (2 4 2’ + iv)?)dy,
Gi(z,zia',2) = HE(ho/(w — 2)2+ (2 — 2)2) + H (koy[(z — 2)2 + (2 + 2')?)

— Joee ﬂe‘ﬂ”H((,l)(ko\/(x —z')2 4+ (24 2’ +iwv)?)dv.
Upon substitution of the incident, reflected, and scattered field as given in equations

(5.8), (5.114), and (5.115), (5.116) respectively into (5.110) the following coupled
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integral equations for the induced current can be derived

J:((II, Z) — —iko}/()(é(m, Z) _ l)COS ¢oeiko si.nd’o:(_e—iko cos ¢oz + eiko cos¢oz)

SETy ey
+i(e(z,z) — 1) (k3 + aa_:z) I, Jo(2!, 2')G (2, 2; 7', 2')da’d 2’
+i.'(€(.‘1:, Z) - 1)% ffa Jz(m,7 z,)GZ(m') 25 1:,7 z,)dz,dz,7

(5.117)

J.(z,2) = ikoYo(e(z,z) — 1) sin ggetkosindor(e—ikocosdoz | me"mm%’)

+i(e(z,2) — 1) az:)z I, Je(2), 2')Go(z, 252, 2")d2'd2’

+i(e(z, 2) = 1)(kE + &) [1, I (', 2)G(a, z; 2/, ) da'd'.
(5.118)

5.10 The Method of Moment Solution

There is no known exact solution for the integral equations that were developed
in the previous section. In this section an approximate numerical solution of these
equations is obtained by employing the moment method.

Let us divide the cross section of the dielectric structure into N sufficiently small
rectangular cells such that the dielectric constant and the polarization current can

be approximated by constant values over each cell.

5.10.1 E Polarization

First consider the integral equation (5.113) which correspond to the E polarization
case. Using the point matching technique the integral equation can be cast into a

matrix equation of the following form
[2]1T] = [V] (5.119)

where [Z] is the impedance matrix, [J] is the unknown vector whose entries are the

value of polarization current at the center of each cell, i.e. (zx,z,), and finally [V] is
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the excitation vector whose entries are given by

1
1+ 2RY, cos ¢o

vy = ikoyo(f(-'ln,zn) _ l)eiko sin¢oa:,.(e—ikocos¢oz,. _ ikocos.j;oz,.)

The off-diagonal elements of the impedance matrix can be obtained by approximating
the Green’s function via its Taylor series expansion around the midpoint of each cell
and then performing the integration analytically (see Appendix B). This technique
allows us to choose very small cell sizes without incurring too much error because
of the adjacent cells . For diagonal elements the free space Green’s function is
approximated by its small argument expansion and then integration is performed
analytically over the cell area. This allows us to choose rectangular shape cells instead
of squares that are approximated by circles of equal areas in the traditional method
[Richmond 1965]. In order to give the expressions for elements of the impedance

matrix, let us define the following functions

W (1. ra
U(rd,,,05.) = —H" (kors,) cos® 62, + H‘—k(kf,ﬁ"—)(cos2 92, —sin26%,) (5.120)
0T'mn
q (1) ‘2 Hl(l)(korgnn) ‘2 2
V(i Omn) = —Ho'' (Kor,) sin® 07, + =22 (sin” 07, — cos07,,)  (5.121)
0/'mn
where 7. and 67, are defined as
( -
\/(zm - IL'.,,)2 + (Zm - Zn)2 if qg=3
i =1 (@m — 0)2 + (27m + 2)? ifq=1i (5.122)
\/(zm —2,)2 4 (2m + 2n +w)? fg=c

arctan(fm=fn)  ifg=s
0in = { arctan(Zmtin)  jfg=; (5.123)

Z; Zntiv . _
k arctan(#mtinti) jf g =c
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The diagonal entries are given by

Zyn = —1-— %(e(:z:,,,z,,) - 1){533’”24%.[1n(152a /Aa:?, FAZ2) 4y — _,%.-_ _%
+( %I' )ZMCtan(ﬁ:) + (k“-%—z“)z(% - arctan(ﬁf:))} (5.124)
k2 Azn Azn

—Hbembn (¢(g,, 2,) — 1)a J§° e~ HY (korS,,)dv,

and the non-diagonal entries are expressed by

o = BBATOI (VD (kgrs, ) + bl Y (s ge ) (5.125)

plenly(re 02, — o f5° e HE (kor, ) dv},

mn)
Here, Az, and Az, are the dimension of the n'® rectangular cell and v = 0.57721 is
Euler’s constant.

The integrals in the (5.124) and (5.125) are evaluated numerically using the
Gauss-legendre quadrature technique. It should be mentioned here that when the

observation and source points are both close to the surface (ko(zm + 2,) < 1) for

some value of v = vy, the distance function ry = \/(:1:,,, — Zn)? + (Zm + 2n + t10)?
becomes very small. Consequently the integrand of the integral representing the
image contribution varies very sharply around this point. In order to evaluate the
integral accurately, the contribution of the integrand around v should be evaluated
analytically. The integrand achieves its maximum when the absolute value of the

distance function is minimum. This minimum occurs at

Vo = \ﬂ:z:m —zn)% — (20 + 2)? (5.126)

If the argument of the square root in (5.126) is negative, then the distance function
takes its minimum at v = 0. Figure 5.21 shows the integrand function in (5.125)
when both observation and source points are very close to the surface. The analytical

evaluation of the integral around the point vy can be performed by using the small
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T IS ———————————

Figure 5.21: The absolute value of the integrand function in (5.125) for o = 112—¢230
at 10 GHz, z,, + z, = 6 X 107%)\, and five values of z,, — z,: (——) 0,

(----- ) Ao/8, (— —) Ao/4, (— = =) BAo/8, (—- - - —) Xo/2.
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argument expansion of the Hankel function, i.e.

21
e~ H (kors, ) ms e™[1 + =L 4 —1n( Tl yo— Av < v < vo+ Av

and
/VOZAV e~ H{ (kore, )dv = e [2A0(1 + 127) + 2 Il]
vo—Av
where
L= §(zm+ zn +ivo) In BER500semtonind | sucsa |y Qe oo

—Av[2 —In —4‘1\/(7‘3 — Av?)?2 + 4AV? (20 + 24 + i10)?).
For self-image calculation we note that z,, = x, which renders v9 = 0 and

Av 19 2
| e B kot )dv = [Av(1 + =) + 1]

where

—1]

Zm + 2p + 1AV +iAv]n ko(zm + 2z, + 1Av)

' _
Il = (zm + 2,) In P 5

5.10.2 H Polarization

In the H polarization case, using the same partitioning of the cross section of the
dielectric body the coupled integral equations (5.117) and (5.118) can be cast into

the following coupled matrix equation

lez + 32\72 = v.‘c
(5.127)

Z3Jz + Z4Jz = vz

where as before Z,,---,Z, are N x N impedance matrices and V, and V, are the
excitation vectors. The above coupled matrix equations can be represented by a

2N x 2N matrix equation similar to (5.119) with

Tz zZ Z
7] = Clzl= T 7 | Land )=
Jz Z3 Z4 vz
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The elements of the excitation vector are given by (m = 1,---, N)

Um = iko]/o(e(:z:m, zm) - 1) Cos ¢06ik° sin ¢ozm (—e_'.k° cos ¢ozZm + _1+2R}}0 —m eiko cos ¢ozm)
VN = —tkoYo(€(Tymy 2m) — 1) sin goe'ko sindozm
.(e_iko cos bozm + 1+-2RY10 pm eiko cos ¢ozm)

Here again the entries of the impedance matrix are obtained by expansion of the
Green’s function over each cell as explained in the E polarization case. Because of the
higher degree of singularity of the Green’s function in this case using these expansions
is even more important to avoid anomalous errors. The following derivative of the
functions defined by (5.120) and (5.121) are needed to obtain the entries of the

impedance matrix

wU(rmn, 09 )= k2{H (kore)[cos? 62 2 (2 cos? 02, + §sin®62,)
+2s%;ﬁ'“(3 cos? 02  —sin? 62 )]
+H1(1)(korfnn)[m cos? 02 sin?02 — ‘:Z—':‘:qn%g
(3 cos? 02, —sin® 62 )]
+H§1)(kor$nn)[—% cos* 02 + m_n_gmn_( 9cos? 02, +sin? 62 )]
+H,§1)(kor;’nn)[% cos? 09 (cos? 62, —sin®6? )]}
(5.128)
2 U(re,,,02.,) = k2{H (kor2,)[sin? 09,,.(2 cos? 02, + Lsin®67,,)
+%r0"m(cos 62— 3sin? 09 )]
+H1(1)(k07'3nn)[—5743; cos? 09, sin® 02 + ﬁ%{
-(3sin? 02, — cos262,)]
Hél)(korfnn)[—% sin? 02 cos?02  + &qg"m(g sin? @2 — cos? 62, )]

+H{ (kord,n)[§ sin® 0, (cos? 0%, — sin® 62,,)]}
(5.129)
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35U (1, 0) = K sin 0%, cos 02, {H§" (kort,,) 2 cos? 0%, + 4 sin® 0%,
+——,—(kor 7 (sin® 62, — cos? 02, )]
+H1(1)(k07‘q )[—,—(2 sin? 02— 3cos?0?,) + (',;,T%m

-(cos? 02, —sin? 602 )]

+H§1)(k0rfnn)[—% cos? 07 . + (—ﬂ(OOS 0%, — sin® 63,,)]

+H (kor,y [ (cos? 0%, = sin 05,,)]}

(5.130)
LV(re,,00,) = k{H" (kort,)[cos? 02, (2sin® 02, + 5 cos?602,,)

31‘ mn, mn
it (sin” 0, ~ 3cos? 03,
+HD (ko) [Sdfmn (4 cos? 03, + sin® 03,,) + 405
-(8cos? 62, —sin? 62 )]
+H{V (kord,,,)[— sin? 02, cos? 02, , + 2Jha (9 cos? 02,,, — sin® 07,)]
+H{ (kort,,)[§ cos? 0, (sin® 0, — cos 63,,)]}
(5.131)

_59’_1/(

2 00) = K2{HS (kor,,)[sin? 02, (2 sin® 6%,,, + L cos?62,.,)

+"E:—:fq—9%*g(3 sin? 02, — cos? 02,.)]
+ H(l)( kor? n)[ﬂ— sin 07 . COs209  — ——r‘“““(z;:iq)a
-(3sin®09  — cos? 02 )]
+H3 (kortyn) (=4 sin 07, — Ef5 (9sin’ 0, — cos? 07,)]
+Hy (kors,, )3 sin? 03, (sin? 0%,,, — cos? 0%,..)]}
(5.132)
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= k2sin 6%, cos 82, {HS"(kors,,)[2 sin? 62, + 1 cos? 63,

mn? mn)
+——,,—(cos 02, — sin’ 62 )]
+H{ (kardy ) [ (2 cos? 68, — 3sin 02,,) + gds
-(sin® 62 — cos® 02, )]
+H{! )(kor D—1sin®67, + W—(sm 05n — cos 07,)]

+HP (kort, ) (L (sin? 0%, — cos? 6,.)]}
(5.133)

The non-diagonal elements of the impedance matrix are given by

Zimn = i15‘2’A—a;“éﬂ(<5(:1:m, Zm) — 1){Hél)(kor,’n )sin? 02, + E(%-kf—r;')m—)(cos2 2.
—sin®6;,,) + '(A_;f)‘(azz + kU (Tans Oan) + M(812 + k)V (rons Omn)
—Hél)(korfnn) sin 6! = — —1——H(( k(ff’r:')"‘) (cos? @i, —sin? @i )

(Bl (2 + KRV (i Onn)

+6 [5° P B (kors, ) sin? 05,,, + a7 Ern) (cos? g — sin? 6c,,)ldv},

—-(ATI:L(&':Q + kg)U(T

mn? mn)

(Forun
(5.134)
Zomn = t._IC?’EC‘;"L'AE(6(-’l?m, Zm) — 1){[—Hé])(ko7" 2+ —H((‘;irl?r—’)'"‘l] cos 02 sin6?
!A:L‘n! 92 Azn 2
24 BrazU( mn? 'n) + 1_2-4_)_823‘. ( Tmno n)
H[—HM (ki) + %f;)—z] cos @} sin 6
Al'n 2 Azn 2
+'(T)_ agaz U( mn’ mn) .(_27)—6?8; V(rmn’ mn)
( T .
~B J&° e P [(—H (kors,,) + H(k (l?n’)’"‘)) cos 65, sin 6, ]dv},
(5.135)
1 TnlAzy ) e .
Z3mn = ﬁA"—A(c(:cm, Zm) — 1){[—H3])(k0rf,m) + —H(-(‘;{M] cos 0, sin 63,
!AIn! 82 Azn 2
+ 24 axazU(rmm mn) + '(_27)_ azazv(r'mm mn)
2H( kory,

—[~H (ko) + —%k—g;—uz] cos 6%, sin 6%
_(Azn)? 52 U('I‘ o ) — (Azn)? 82 V('I‘

24 9Ozxldz mn) mn 24 9oz mn? mﬂ)

(1)
48 50 e P [(—HM (kore,,,) + 2H(ko(rt°-mn)) cos 8¢, sin6g,, 1dv},

(5.136)




169

: (D)o p2 . R
v = B0 (g ) — 1) {HED (ko) 008? O, + Hip el (sin® 07,
1 zn!Z s 8
)U( m‘n.? m‘n.) + A24 (56:—2 + kg)V(rmn’omn)

. . ) (ori . : i
+H (ko) c05® By + PigirtZiel sin? 0, — cos? 07,)

2 Qs (Al'nlz 82
—cos®6;,) +

24 ( 622

+ A;: (6z2 )U( mn) n) + '(A_;‘%L(aa; + kO)V( mm mn)

1)
—B J5° e P [HP (kors,,) cos? 05, + Figeaal (sin® 6;,,, — cos® 67,,)]dv}.
(5.137)

Noting that cos @, = cos6:, = 0 and sin6%, = sinfg, = 1, the diagonal elements

are of the following form

Zinn = —"1——( (mn)zn)_l){w[ln VAQ}%-*-AZ%)-*-’Y— :
+2arctan(£22) 4 (B52a)2 (2 — arctan($2))}

1:2 InlZn )k T'
HROEA (¢( 3,1, 2m) — 1)~ H (Korin) + Dipirise

S

=

o}

8zl (& (i 6L — Bl (E 4 RV (r,, 05,)

24 nn)’'nn nnd)’nn

oo =0 [ H( ) k Tnn
B J5° P HS (ars,) — Bplerialia,},

(5.138)

Zoann = Z3nn = 0 (5139)

Zann = —1 = 2(&(Zn,20) — 1){488znlmn 1 (ko [Ag2 4 Az2) 4 4 — i — 3]

+2(5 — a.rcta.n(éﬁ)) + (—“—A—Iﬂ)2 arc ta.n(Az-“))}

i Tndzn H® (kor n
B (3, 2m) — 1){ HhEikal)
Bz (25 4 kU (r,, 05,) + LEE(ES + RV (5, 05,)

°°—-ll( Tnn
=B f5° P preialdu}.

(5.140)
The distance function in the integrand of all the integrals in (5.134)-(5.137) assumes
a very small number when the observation and source points are both close to the
surface of the resistive sheet. Since the singularity of the integrands in this case

are much higher than the E polarization case, analytical evaluation of the integrals
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around the point v is even more important. For example the integrand in equation

(5.134) can be approximated by

(1)
e"ﬁ”[Hél)(korfnn) sin? ¢ ,, + M(cosz 6c.,. —sin? 8, )] ~ e~Pro {H((,l)(koro)

(korfan)
m+2zn+iv 2 3 i 1 i k Im—ZTn 2— Zm+2zn +iv 2
= (r%n)? ik | 2(1«,r1 e (37 — 73 -3~z ‘fon]L )(rf(,m)"’ o) }

where the small argument expansion of Hl(l)(kor,"nn) is used and v is set to v, every-
where except in the denominators. Figure 5.22 shows the variation of the integrand
as a function of v for some typical values of source and observation points, and Fig.
5.23 compares the integrand with its approximation. It should be noted here that
the phase of integrand varies very rapidly around v resulting in a faster variation
of the integrand than what is shown in Fig. 5.22. If the integrand in (5.134) around

the Av neighborhood of v, is denoted by S; then

S = ‘ﬁ"‘N{H(1 (koro)(2m + zn +110)* — [( — '—} — 1) — i]p Kar)

[(2m — 2n)? = (2m + 20 + iv0)?]} 2

e_ﬁ”° 2 [(a:m —2n)% — (2m + 20 + 1)) I3

where
I, = 1 ] 724+ AV242(Tm—zn)Av
2 = 2(zm—zn) r§+Au2—2(zm—zn)Au’
I = Av 72—AVE—2(2m+2n+ivg)? + 24+ A2 42(zm—2z,)Av
3 (#m—2n)? (18 —Av2)2+4A0% (zm +2n+ib10)? 4(zm—zn) e +AV2—2(zm—zn)Av’

In evaluation of the diagonal elements, we set z,, = z,, which leads to vy = 0 and

the integral in (5.138) is approximated by

Integra,nd ~ (..1_ - ﬁ _ l) + l In kO(Zm + zn + w) 2 1 .
2w ™ 2 T k2(2m + 2 + 10)?

If S} is the integral between 0 and Av, then

12 1y 1
— I+ = I' + ('— —-— = E)AI/,

5 = wk§ T
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Figure 5.22: The absolute value of the integrand function in (5.134) for 8 = 75+1154
at 10 GHz, z,, + 2z, = 6 X 107°), and five values of z,, — x,: ( ) 0,
(----- ) Ao/8; (— =) Ao/4, (— —) BXo/8, (— - - - —) Xo/2.
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where
. . 0 m n i .
I = —i[(2m + 2,,) In Zmtzadiar z,:+z:,AU + iAy In Folzmtzntidy) +; H8Y) _ Ay
II _ Ay
37 (zm+2zn)(zm+zn+ilAv)

To extract the contribution of the integrand in (5.135) around vo we use similar

approximations as in (5.134). If this integral is denoted by S3, then

Sy = €P(20 — 2)(2m + 2n + ivo) {[HE (koro) + (£ -
2 _ 1) — 2]n E"f“]fzﬁéfa}-

™

The integral in (5.136) around the point v is approximated by S3 where
S3 = Sg

and similarly for the integral in (5.137) if S, represents the integral around vy then

Sa= P {HG (koro)(m ~ 22) + (55 = ¥ — }) — £ 1n 4]
{(@m = 2n)? = (2 + 20 + 100)*]}
~e™P 25 ((2m — 20)* — (2m + 20 + iv0)*] L5

When z,, = z,, then vop = 0 and this integral is represented by

R S R
L tpa -
54 1rk(2,13 v 2+(27r w 2)AV’

5.10.3 Far Field Evaluation

Once the system of linear equation (5.119) for the polarization current has been
solved the scattered field due to the dielectric structure at any point in the upper
half-space can be obtained by means of (5.112) and (5.115) and (5.116) for E and
H polarization respectively. Here again it is convenient to approximate the integral

representing the scattered field by a summatior. of integrals over each cell. For E
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polarization we get

E}(z,2) = ;k-gl“ SN Ty (2, 2,) Az, Az,
{HP (kor2) + Lolznl (s g2 4 olznl i/ (o o) (5.141)
—a f° e H{D (korg)dv},
where 7¢ and 62 (¢ = s or ¢) are similar to those defined in equations (5.122) and
(5.123) with z,, and zm replaced with z and z respectively. The far zone radiation
pattern may be obtained by employing expression (5.141) and the large argument
expansion of the Hankel function (keeping the terms up to the order p%). If the

angle between the direction of observation and normal to the sheet is denoted by ¢,

as shown in Fig. 5.20, then

Ty R p — Tpsin 5 — 2, COS Py
Finally employing the definition of far field amplitude as given by (5.72) in the upper
half-space (| ¢, |< %) we have

Pt (go,bs) = §=RBE TN | J (2, 2:) Az, Az, {[1 — LolEn) gin2 ¢ (obam)® o562 4 )

n=1

'C_iko sin¢,zn(e—iko cos Pszn eiko cos ¢,zn)}.

1
14+ 2RYy cos ¢,

(5.142)
The far field amplitude in the lower half-space also can be found if we use the Green’s
function for the lower half-space as given by equation (5.93). Again employing the
distant approximations, the far field amplitude in the lower half-space (| ¢, [> Z)

can be obtained from

P;(fo,¢s) = §7E2 TN | Jy (2, 20) Aznzy[l — E0020L gin2 g (holam)® o2 4 )

n=1

'e—iko(sin $szn+cos ¢,zn) R —QRYQ cos ¢
1-2RYpcos¢, "

(5.143)
The scattered field in the H polarization case can be obtained from equations

(5.115) and (5.116) which can basically be expressed in a form similar to (5.141). In
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far zone such expression can be simplified by noting that

H&HP(r3,08) ~  —H{(rg, 03) cos? 03
H&HN (1,00~ —HY(r3,08) sin® 02
Zlf (1)(,.;1” 01) ~ —H{ (rd,62) cos 69 sin 62

and further as distance from origin to the observation point (p) approaches to infinity
then 2 — 7 /2—¢,. Under the mentioned conditions we notice that the scattered field
in the polar coordinate system has only a é component. Using the large argument
expansion of the Hankel functions and contribution of the image in the far zone, the

far field amplitude in the upper half-space is of the following form

- 2, n
P;'L-(¢0’ ¢s) = ¢-’SD42Q Zgzl Aanzn[l _ jko/;:n)— sin? ¢s !koAz )2 cos ¢ ]
e~ ko sin¢sxn{Jz(xn, zn) sin ¢s(e_iko cosdazn 4 1_:_';_0”;:_:__::’;’) (5144)
. 1kg cos ¢pszn
—Jo(Zn, 2n) COS (e~ KoCOSPozn 1+z§zy0 :ec 5

and in the lower half-space (| ¢, [> %) we get

P; (¢o, ¢s) = ¢A5!‘-°4£‘1 27]:1:1 Az Azy[l — k°‘;f""3 sin? ¢ — -(]“’—Aﬁ‘-)— cos? @]
._1ko(5m ¢sl‘n+C08 ¢szn) [J (xn, zn) Sln ¢s _ (xn, zn) COS ¢ ] (514:5)

( —2RYp sec ¢y )
1-2RYpsece¢s/*

5.11 Numerical Results

In this section the results of the perturbation solution for variable thickness di-
electric slabs are compared with the numerical solution based on the exact image
theory for a resistive sheet in conjunction with the moment method. In the nu-
merical solution the hump of the slab is considered as the dielectric object and
the constant-thickness portion of the slab is modelled by a resistive sheet (see Fig.

5.16). In all of the test cases the dielectric slab is assumed to be homogeneous with
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€ =36 + 117, 7o = XAo/100, A = 0.3, and Ao = 3 cm. These parameters correspond
to Ry = 180 + 1270, a = 112 — 230 and f = 75 4 ¢154. Figures 5.24-5.31 show
the bistatic echo width and the phase of the far field amplitude of a dielectric hump
over the resistive sheet for w = \g/15 and w = X¢/25 at incidence angle ¢o = 0
and ¢o = 45 for both polarizations. In each figure the results based on the pertur-
bation technique are compared with the numerical results. The agreement is very
good in spite of the fact that the perturbation solution is only a first order one. For
larger dielectric structures the perturbation technique cannot be used and the mo-
ment method is the only available method of solution. For example, the central vein
of a vegetation leaf can be modelled as a square dielectric cylinder above a resistive
sheet. Figure 5.32 shows the bistatic echo width of a square cylinder with dimensions
Ao/10 X Ag/10 in free space, above a perfect conductor and above a resistive sheet,
at normal incidence with f = 10 GHz, ¢ = 36 + 717, and Ry = 180 + 270 for E
polarization. Similar plots for H polarization are presented in Fig. 5.33. Figure
5.34 show the backscattered echo width of the same structure with the same param-
eters for E and H polarizations. It can be deduced that the dielectric hump has a
broad radiation pattern and if the resistive sheet were finite this would be the main

contributor to the scattered field away from the specular direction.
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Figure 5.24: Bistatic echo width of a dielectric hump with e = 36 +:17, A = 0.3, and
w = Ag/15 over a resistive sheet with Ry = 18041270 (a = 112 — ¢230)
at f = 10 GHz and ¢o = 0 degrees for E polarization: ( ) numerical
technique, (- - - - - ) perturbation technique.
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Figure 5.25: Phase of the far field amplitude of a dielectric hump with ¢ = 36 +¢17,
A = 0.3, and w = Ao/15 over a resistive sheet with Ry = 180 + 270
(@ =112 --i230) at f = 10 GHz and ¢, = 0 degrees for E polarization:
( ) numerical technique, (- - - - - ) perturbation technique.
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Figure 5.26: Bistatic echo width of a dielectric hump with ¢ = 36+1:17, A = 0.3, and
w = Ag/15 over a resistive sheet with Ry = 180 +14270 (o = 112 —4230)
at f = 10 GHz and ¢, = 45 degrees for E polarization: ( ) numerical
technique, (- - - - - ) perturbation technique.
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Figure 5.27: Bistatic echo width of a dielectric hump with e = 36 4+:17, A = 0.3, and
w = Ao/25 over a resistive sheet with Ry = 180 +i270 (o = 112 —¢230)
at f = 10 GHz and ¢o = 0 degrees for E polarization: (——) numerical
technique, (- - - - - ) perturbation technique.
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Figure 5.28: Bistatic echo width of a dielectric hump with e = 36 +¢17, A = 0.3, and
w = Ag/15 over a resistive sheet with Ry = 180 4 2270 (8 = 75 + ¢154)
at f = 10 GHz and ¢o = 0 degrees for H polarization: (——) numerical
technique, (- - - - - ) perturbation tecinique.
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Figure 5.29: Phase of the far field amplitude of a dielectric hump with € = 36 + 17,
A = 0.3, and w = Ao/15 over a resistive sheet with Ry = 180 + 270
(B="75+1:154) at f = 10 GHz and ¢o = 0 degrees for H polarization:
(——) numerical technique, (- - - - - ) perturbation technique.
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Figure 5.30: Bistatic echo width of a dielectric hump with e = 36 +:17, A = 0.3, and
w = Ag/15 over a resistive sheet with Ry = 1804270 (f = 75+:154) at
f =10 GHz and ¢¢ = 45 degrees for H polarization: ( ) numerical
technique, (- - - - - ) perturbation technique.
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Figure 5.31: Bistatic echo width of a dielectric hump with € = 36 +:17, A = 0.3, and
w = Ao/25 over a resistive sheet with Ry = 180 + 2270 (8 = 75 + 1154)
at f =10 GHz and ¢¢ = 0 degrees for H polarization: (——) numerical
technique, (- - - - - ) perturbation technique.
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Figure 5.32: Bistatic echo width of a Ag/10 x X\o/10 square dielectric cylinder with

€ = 36 4 :17, at f = 10 GHz and ¢y = 0 degrees for E polarization:
( ) cylinder over resistive sheet Ry = 180 + 2270, (- - - - - ) cylinder
over perfect conductor, (— —) cylinder in free space.
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Figure 5.33: Bistatic echo width of a Ag/10 X A¢/10 square dielectric cylinder with

€ = 36 +1:17, at f = 10 GHz and ¢, = 0 degrees for H polarization:
( ) cylinder over resistive sheet Ry = 180 4 ¢270, (- - - - - ) cylinder
over perfect conductor, (— —) cylinder in free space.
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Figure 5.34: Backscattering echo width of a Ag/10 X Ao/10 square dielectric cylinder
over resistive sheet Ry = 180 + i270 with € = 36 4 17 at f = 10 GHz:
( ) E polarization, (- - - - - ) H polarization.
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5.12 Conclusions

Problems of scattering from variable resistive and impedance sheets have been
studied using a perturbation technique in the Fourier domain. A recursive form for
the n*® component of the induced current on the resistive sheet was derived which,
in principle, allows évaluation of the current to the desired order of perturbation.
Having analytical expression for the induced current in the Fourier domain culmi-
nates in having an analytical form for the far field amplitude. The solution for the
induced current on an impedance sheet is identical to that of a resistive sheet whose
resistivity is twice the impedance of the surface impedance.

The validity of the technique was checked in two limiting cases where the variation
in the perturbation function is sharp in either the spatial or the Fourier domain. It
was shown that the perturbation method is capable of handling both. The first order
expression for the induced current was obtained analytically for an arbitrary pertur-
bation, but the ability to obtain analytical expressions for the higher orders depends
on the perturbation function. For a periodic resistivity, a closed form solution for any
arbitrary order of perturbation was obtained. The results based on the perturbation
method were compared with an exact solution based on the moment method. The
analytical results were also checked against a GTD solution for the impedance insert
problem and excellent agreement was observed. The moment method results for the
problem of a dielectric hump over a resistive sheet using an exact image represen-
tation were also compared with the perturbation solution . Agreement between the
analytical and numerical solutions is excellent. It was found that the required order
of perturbation is proportional to the perturbation constant A and the width of the

perturbation in the spatial domain, i.e. L for a periodic perturbation and w for the




189

impedance insert and dielectric hump problems. It was concluded that a vein and a
variation in the thickness of a leaf do not have a significant effect near the specular

direction, but in other directions they are substantial contributors to the scattered

field.




CHAPTER VI

LOW FREQUENCY SCATTERING FROM
CYLINDRICAL STRUCTURES AT OBLIQUE
INCIDENCE

6.1 Introduction

Electromagnetic scattering properties of vegetation needles and very thin twigs
are studied in this chapter. In previous chapters high frequency techniques were
employed for planar leaves whose lateral dimensions are large compared with the
incident wave length Ao. At much lower frequencies and/or for smaller leaves whose
dimensions are all small compared with )y, Rayleigh scattering theory is applicable.
The far zone scattered field is then attributable to induced electric and magnetic
dipoles, and for plane wave incidence, the dependence on the direction and polar-
ization of the incident field can be made explicit by introducing the electric and
magnetic polarizability tensors [Kleinman and Senior, 1986]. The tensor elements
are functions only of the geometry and material of the scatterer and are expressible
as weighted surface integrals of certain potentials which can be obtained from the
solutions of elementary integral equations.

Classical Rayleigh scattering theory is extended to the case of a homogeneous

dielectric cylinder of arbitrary cross section whose transverse dimensions are much
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smaller than )g. This intermediate situation is provided by a pine needle whose
transverse dimensions are small compared with the wavelength but whose length is
much greater than Ag. Vegetation needles ustially come with circular, semi-circular,
triangular, or circular sector cross section.

For a plane wave incident obliquely on a homogeneous dielectric cylinder of in-
finite length, the field at any point outside the cylinder can be written as the sum
of contributions from line dipoles whose moments per unit length are expressible in
terms of polarizability tensors. Integral equations are derived from which to deter-
mine the tensor elements and results are presented for a variety of cylinders and
material constants. The generalization to a cylinder of finite length is now trivial.
In accordance with the physical optics approximation, it is assumed that the surface
field is the same as that on the infinite cylinder, leading immediately to an expression

for the far field in terms of the same polarizability tensors.

6.2 Infinite Cylinders

A homogeneous dielectric cylinder of arbitrary cross section is oriented with its
generators parallel to the z axis of a Cartesian coordinate system (z,y, z) (see Fig.
6.1). The relative permittivity and permeability of the dielectric are € and yx respec-

tively, and the cylinder is illuminated by the linearly polarized plane wave
Ei — &eikoki-F, Hi — }/oi)eikol;"-'F (61)
propagating in the direction

A

ki = & sin 3 cos ¢g + ¢ sin Bsin ¢ + Z cos 5 . (6.2)
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Figure 6.1: Infinite cylinder geometry.
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The unit vectors & and b specifying the directions of the incident electric and magnetic

fields are such that

A

BF.a=k-b=0.

fpd
X
oo
It
bl
f=33

Since the cylinder is uniform in the z direction, the scattered field must have the
same z dependence as the incident field, namely e?*°#<°#, If, for brevity, this factor
is omitted, the electric and magnetic Hertz vectors defining the scattered field can

be written as

IL(z,y) = 32 [s3.(2',y')HY (kosin By/(z — a')? + (y —y')?)da'dy’ , (6.3)

n(z,9) = 32 fsIm(e,y)HS (kosin By/(z — 2)2 + (y — v/)?)da’dy’  (6.4)

where J. and J,, are the induced electric and magnetic currents, Hg () is the Hankel
function of the first kind of zeroth order, and the integration is over the cross section

S of the cylinder. In terms of the Hertz vectors the scattered fields are

E* = VV. I, + k211, + tkoZoV x I, (6.5)
6.5
H’ = VV.II, + K11, - 1k YoV x I,

and we note that
V =V, + itkocos B2 (6.6)

where V, is the transverse operator which, in Cartesian coordinates, is

L0 .0
Vt_a:%—i—ya—y.

From (6.5) and (6.6) the field components become
E: = KMI,, + 81‘2 S, + azayHey + ikg cos ﬂaz 1., + zk'oZo( Hmz — tko cos fll,,,)

ES = azawa + k211, + Hey kg cos ,Ba—yIIez + ikoZo(a—yI'Imz — ko cos B1l,,5)

E; = ikocos 211, + iko cos ﬂaiyney + k2 sin® BIL,, + ikoZo(Zmy — %Hm)
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H:= —ikoYo(Z1L., — ikocos Alley) + killme + 5 llna + 3055 lmy + ko c0s B L,
HS = —ikoYo(Z1L,, ~ ikocos All..) + 325 Mms + k3lmy + ZzTlmy + iko cos BT,

H = —ikoYo(& ey — Sllez) + ko cos B lms + iko cos B2 lmy + k3 sin’ Bllm,
If d is a typical transverse dimension of the cylinder and kod, ko | N | d € 1
where N = (ep)% is the refractive index, the currents and the Hertz vectors can be
1
expanded in power of ko with only the lowest order terms retained. This is also true

in the expressions (6.5) for the scattered field, and shows that in the near field of the

cylinder
Ea = VtVt . He, Hs = VtVt . Hm (67)

implying

Thus, at low frequencies the electric and magnetic fields decouple, with the scattered
electric field determined by the electric current (and, hence, permittivity) alone, and
the magnetic field by the magnetic current (and permeability). Since the solution for
the magnetic field can be deduced from that for the electric field by replacing € and
é by p and Yob, it is now sufficient to take p = 1 corresponding to a non-magnetic
dielectric.

To determine the static field, the Hankel function in (6.3) is replaced by its small
argument expansion:

12 12
HEY (kosin B | 5 — Pm1l+—v+—ln(kosinf|p—7'l).

where p is the two-dimensional position vector and v = 0.5772157--- is Euler’s

constant. On inserting this into (6.7) and noting that

Viln(kosinB | p— 5" |) =Viln | p— 7’|,
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the lowest order scattered field becomes

E'(5) = —Vi{iZ [s3u(F)- Veln | 5 — 7 | ds'},

with
3elp) = Jeal )2 + TP
Since -:;J et = P is simply the dipole moment per unit area, it follows that
E° = -V,9°(p) (6.8)

where

*(5) = zZ°/Je, Viln|j— 7 | ds, (6.9)
27!']90

is the two-dimensional electrostatic potential.

To the zeroth order in ko the incident electric field is
E=d=aqa,3+ ayy -+ a2
which can be written as
E' = —V,0' +q,3 (6.10)
with
®' = —az(z +c1) — ay(y + c2) (6.11)
where ¢, ¢z are arbitrary constants. The total potential is then

o =9 + o°
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and the dependence on & can be made explicit by writing
®=a,® +a,®; (6.12)

with a similar decomposition for ®* and ®°.

In terms of the total field the polarization current is
J.(p) = —ikoYo(e — 1)(E' + E) (6.13)
and since F =0,
Jez(p) = —ikoYo(e — 1)a, (6.14)
in agreement with the result of Van Bladel [1963]. Also
Jo(P) = —ikoYo(e — 1)(asd + a,§ — V,3%),
that is
Jet(P) = ikoYo(e — 1)Vi(azP1 + ayP2), (6.15)

and the derivation and solution of integral equations for ®, and @, are discussed in

Section 6.4.

6.3 Polarizability Tensors

At large distances p > kyd? from the cylinder, the Hankel function in the ex-

pressions (6.3), (6.4) for Il., II,, can be replaced by its large argument expansion.

Thus

oz N . ~
IL N~k rkopzsinﬁel o(psin bt cos f)—i} fs Je(p)ds’

T

= % rkopzsmpeiko(psmﬁ“cosﬂ)_i?(5 —1) 5 {-Vi(a;®: + a,®2) + a2} ds’
(6.16)
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in which the z dependence has been restored, ahd since
[S V! 8(5)ds' = /C & ()'de

where # is the outward unit vector normal to the boundary C of §,

i 1 sin B+zcosB)—i L
He I V rkopzsinﬁe Folpsinf+ A= (6 - 1) (6 17)
: {_ fC(a:z:@l + ayq)z)’fl'dcl + Aazﬁ}

where A is the cross-sectional area of the cylinder.

Similarly, if ¥ is the total magnetostatic potential such that
H=-YV,V + Y5b,2
with
U = b,y + b, ¥,

we have

Hm = iv wkopzsinﬁeikO(pSinﬁ+zc°8ﬁ)—i% ('u - 1) (6 18)
{= Jo (001 + b, W) + Ab, 2}

and from the z dependence in (6.16) and (6.17) it is evident that the scattering is

confined to the forward cone k°- 2 = cos 8. In the far zone, V & z'koic’, and hence

E° = ———Q—eikO(PSinﬁ-i-zcosﬁ)—i%S
wkop sin

S= —Hi{ks % ke x (e — 1)[— Ju(ax®y + ay®2)R'dc + Ab, 3]

with

A (6.19)
k0 x (= )= fo(ba¥y + b,Wy)R'de’ + Ab,3]}.

The scattering is attributable to electric and magnetic line dipoles along the z

axis. The electric dipole moment per unit length is

p=ele—1) {— /C (as®; + a,®;)A'dc + Abzﬁ} (6.20)
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and if
p=eP-a, (6.21)

the elements of the polarizability tensor P are

P = —'(C - ]-) fC Qlﬁ, : édc’) P:C!I = —-(C - 1) fC (P?ﬁl - &dd

Pyp = —(c — 1) fp ®17' - §d¢, Py = —(e— 1) [ @' - §de

v (e=1)Jo @17t - § w=—(c=1)Jo® (6.22)
P,,=(e- 1)A,

P:cz=Pz:c=Pyz :sz=0-
The elements are functions only of the geometry and permittivity of the cylinder and

are real if € is. Using reciprocity it can be shown that the tensor is symmetric, i.e.

P, = P,,, and if the cylinder is symmetric about either the z or y axis, the tensor

()

is diagonal (P, = P,, = 0) in the given coordinate system.

Similarly, the magnetic dipole moment per unit length is
m = Yo(u — 1) {_ /C(beI:l + b, W)R'dc + Abzé}
and if!
m = YoM - b,

the magnetic polarizability tensor M differs from P only in having x and ¥ in place

of € and ®. Clearly, for a non-magnetic dielectric, m = 0. In terms of the tensors
zk(2) 7.8 7.8 7.8
S=—T{k x k* x [P-a]+k* x [M-b]}. (6.23)

and the dependence on the incident and scattered field directions is now explicit.

M differs in sign from the magnetic polarizability tensor usually defined (see, for example,
Keller et at, 1972).
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6.4 Tensor Elements

To compute the tensor elements it is necessary to determine the potential on the
boundary C, and one way to do this is using integral equations. For brevity, we shall
confine attention to the electrostatic potential ®,.

From (6.9) and (6.15) the scattered field potential is

€

_ -1 _ _
®1(p) = —- /SVQQI(p’)'Vilnlp—p’ | ds’.

and since
Vi1 (p) - Viln | p—p' |= Vi (21(8)Viln | p— 7' |) — @1(p)VEIn | 5— 7' |,
we have

—1
€ A,
T

$f = e—1 1] -1 a - — /
®'(p) = —— /C,V@l(p)-%;lnlp—ﬂ'ldc—

where
A= [ &(F)Vem|5-7 | ds
When the observation point is on the boundary, the boundary condition gives
Ol =0,+z+¢

and for a piecewise smooth surface, A = a®,(p) where « is equal to the angle
subtended by the surface at the point p. Thus, for a smooth surface, & = 7, and an
integral equation for ®; on C is then

e+1 e—1 cos 0’
(D =\ __ =1\ _ I=__ _
( 2 ) 1(P) ( o )/cq)l(p)lp—pwdc rTa (6:24)

where 6’ is shown in Fig. 6.2.
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Figure 6.2: Transverse plane geometry.

One of the few geometries for which an analytical solution of (6.24) is possible is

a circular cylinder. If the radius is r,

cos ¢’ 1
|p—p"| 2r
independent of position on C. The integral on the left hand side of (6.24) is therefore

independent of p, which forces ®,(p) to be a linear function of z independent of y.

By simple substitution it is found that

_ 2z
and hence
P, P, e—1
- =9 25
A A ce+1 (6.25)
with
P,
1 =€ 1. (6.26)

These are consistent with the eigenfunction expansion for a homogeneous cylinder at

oblique incidence [Ruck et al, 1970] when only two terms in the series are retained,




201

and are identical to the tensor elements for a long thin spheroid when normalized to
the volume. For € = € + i¢” the real and imaginary parts of P,;/A (see (6.25)) are
plotted as functions of ¢ for a variety of ¢ in Figs. 6.3 and 6.4 respectively.

With other geometries it is a trivial matter to solve the integral equation numeri-
cally, and a moment method code has been developed for this purpose. The contour
is divided into N segments small enough to treat the potential as constant over each,
and point matching is then employed to convert the equation into a set of NV linear

equations of the form
ZX =Y (6.27)

where Z is the impedance matrix, X is the potential (unknown) vector and Y is the

excitation (known) vector. The elements of the impedance matrix are

=1 A, cos b
Zm-n, = 27 ;; (€m=2n)2+(ym=—yn)? m ;é " (628)

c;tzl m=n

where A, is the length of the n** segment.

The tensor elements have been computed for cylinders whose cross section are
the semicircle, equilateral triangle and square shown in Fig. 6.5, and in each case
symmetry about the y axis diagonalizes the tensor. In Figs. 6.6 through 6.9 the real
and imaginary parts of P,;/A and P,,/A for the semicircular cylinder are plotted as
functions of €. Qualitatively, the curves are similar to those for the circular cylinder,
and this prompted a search for simple analytical formulas. Since the scattering
vanishes if € = 1 and the integral equation (6.24) shows that the potential is infinite

if e = —1, it was assumed that (for example)

Pm__ e—1 e+¢
A _coe+1 €+ ¢y
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where cg, ¢1, and ¢, are constants, and after a few trials an excellent fit to the data

was obtained with the empirical formulas

1 €4 1.05

6 f—
=3. . 6.2
A 300<s+1 €+ 2.20 (6.29)
P, e—1 e+ 2.60
A "156e+-1 €+ 2.00 (6.30)

The error is less than two percent. The analogous results for the triangular and

square cylinders are

P, P, e—1 e+4.17
= —== =2 . .
A A 64:<s+1 €+ 5.95 (6.31)
and
Pee Py e—1 €+3.38
A A 2'16<s+1 €+ 3.76 (6.32)

respectively, and the latter agree with the values reported by Mei and Van Bladel

[1963].
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Figure 6.3: Real part cf the normalized polarizability tensor element P../A for a
circular cylinder with the ¢” indicated.
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Figure 6.4: Imaginary part of the normalized polarizability tensor element P,,/A for
a circular cylinder with the ¢” indicated.
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Figure 6.5: Circular, semicircular, triangular and square cylinders
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Figure 6.6: Real part of the normalized polarizability tensor element P../A for a
semicircular cylinder with the ¢” indicated.
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Figure 6.7: Imaginary part of the normalized polarizability tensor element P,,/A for
a semicircular cylinder with the €’ indicated.
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Figure 6.8: Real part of the normalized polarizability tensor element P,,/A for a
semicircular cylinder with the €” indicated.
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Figure 6.9: Imaginary part of the normalized polarizability tensor element P,, /A for
a semicircular cylinder with the ¢” indicated.
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6.5 Finite Cylinder

In accordance with the physical optics approximation, it is assumed that for a
cylinder of finite length [ >> )Xo the surface fields are the same as those for the
infinite cylinder. To determine the far field the three dimensional Green’s function
is employed in place of the Hankel function. The scattering is no longer confined to
the forward cone and if, as before, the scattering direction is I:J_,, the integration with

respect to z can be carried out immediately and gives (¢sin U)/U where
kol 17 .
U= > (ks - Z — cos ,3) . (6.33)

The far field amplitude, defined as the coefficient of re~*o"E?® in the far zone, is then

sin U
T

S = kgic Eox [P &l +k, x[(M.-b
—_E{sx o X [{P -a] + K, x| ]}

where P and M are the tensors previously defined. As expected, for large kof the

scattering decreases rapidly away from the forward cone ky - 3 = cos B.

6.6 Conclusions

The preceding analysis provides an extension of Rayleigh scattering theory to
cylindrical dielectric bodies whose transverse dimensions are small compared with
the wavelength but whose length is much greater than Ag. The results are strikingly
similar to those for bodies all of whose dimensions are much less than Ay [Kleinman
and Senior, 1986], and for a circular cylinder of infinite length the polarization tensor
elements normalized to the cross section area A are identical to the elements for a
thin prolate spheroid (or “rod”) when normalized to the volume V. Of course, for
a cylinder of finite length, V = ¢A, and apart from the factor sin U/U, the same

formulas are applicable for £>> Ay and £ < A,
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Qualitatively, the variation of P;;/A and P,,/A as functions of ¢ for fixed €"
is similar for all four cylinder cross sections considered, but there are significant
quantitative differences. For a semicircle, for example, the normalized elements differ
by almost a factor 2 from those for a circle, and such shape dependence is greater
than that typical of a small body in the Rayleigh region. It would appear that
accurate modelling of the cross section is more important when £ > Ao, and for

remote sensing applications we note that many pine needles are almost semicircular.



CHAPTER VII

SCATTERING FROM CYLINDRICAL
BODIES

7.1 Introduction

Trunk and branches are the significant parts of a tree canopy. For remote sensing
study of a forested area, electromagnetic scattering of tree trunk and branches are of
concern. At microwave frequencies and higher the trunk and branches of almost any
tree is much larger than the wavelength A¢ and depending on frequency their diameter
varies from fraction of a wavelength to many wavelengths. A simple geometry that
best describes branches is a cylinder. As explained in Section 1.3 the dielectric
constant of a branch is high and lossy. Thus a branch may be modelled by a non-
magnetic lossy dielectric cylinder with arbitrary cross section.

Study of circular cylinder is of great importance for two reasons: 1) an exact
analytical solution exists which can be used for comparison purposes 2) branches and
trunk of many tree spicies are almost circular. The analytical solution for infinite
circular cylinder has been known for a long time [van de Hults, 1957]. Approximate
solution for a cylinder of finite length are also given by Ruck et al [1970]. In this
chapter we derive an approximate solution (semi-exact) for a finite cylinder with

arbitrary orientation which is superior to that given in Ruck et al. This solution is

212
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exact as regards to the transverse resonances and assumes the currents on the surface
are the same as if the cylinder were infinite in length.

Approximate physical optics expressions for scattered field are also derived for
a finite cylinder with arbitrary cross section and orientation. These results can
easily be extended to include stratified dielectric cylinders. It is shown that for lossy
dielectric cylinders the physical optics results are in a very good agreement with the

exact solution at high frequencies.

7.2 Exact Solution for a Circular Cylinder

Suppose a homogeneous non-magnetic infinite circular cylinder of radius p, is
illuminated by a plane wave of arbitrary polarization. The cylinder is oriented so
that its axis is coincident with the 2z’ axis of a local Cartesian coordinate system
(z',y', 2'). Further assume that the incident propagation vector k; lies in the z’ — 2’

plane with

k-3 =—sinf, k;- 3 = cosf3 (7.1)

and
E.: . 3 = e etko(—z'sin f+2 cos B)
i z

(7.2)

H; - 3 = Y,h, eiko(~2'sinB+' cos )
from which the other field components can be found. Since the cylinder is infi-
nite in the z direction, it follows that all the field components must have the same
z-dependency as the incident field namely e**9<°¢# implying % = ko cos 3. Circu-
lar cylinder is one of the few geometries for which an exact scattering solution exist.

From Maxwell’s equation it can be shown that the z components of electric and mag-

netic fields must satisfy the wave equation in terms of which other field components
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can be obtained. For a medium with relative dielectric constant ¢ we have

E, = 2 2.H, — cos BEE,} ,

iko(e— 608213){ » 3¢

Ey = m{ GZOH = a¢E}

ZoH, = smrisasy { $5 B — cos BLZoH., )
ZoHd, = WoTc—lTs"‘ﬂ)_ {—E-a%Ez - %ga—a&Zon} .

In this case the wave equation is separable and the incident and scattered fields can
be expanded in terms of cylindrical eigen functions. By noting that
I3 . +w »
ko8 = SN(i)™ (kopsin B)e™

—00

it can be shown that at the surface p = p, the tangential components of the total

field are
E, = Th2_o(=i)™ {esdm(®0) + AmH (o) } ime +ikox'cond s
H )/0 m—'—oo z)m {thm(xO) + BmH,(J)(xo)} eim¢'+ikoz' cos B
By = Yo Sinon(—i)™ {osin B [heJip(20) + B ' (20)]
—imosd [ J,(z0) + AmHD(2o)] } €imé'+ikos! coss

tko 8in? § —m=—c0

Hy = 5202 55 (=i)™ {—kosin B [e;J,(z0) + AnHED '(z0)]
— imees8 [} J(20) + BrH D (z0)| } 8 +ikos' cos
where J,, and H,(;) are the Bessel and Hankel functions respectively of order m, a
prime attached to a function denotes the derivative, and zo = kop1sin . When the

boundary conditions at p = p, are imposed, we obtain [Ruck et al, 1970, pp. 273-274]:

A = CTMe, 4 iCoh,
(7.5)
By = CTEh, —iCpe,
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where
CTM — _Vum"gfn"m(zo)H(l) Zo J2 L2
M —
P Nm— [qu,(vf)(Eo)Jm(fl)]

(1) 2
— m_m—‘l%n_M(_.)_F_Im_(_)lm_(rl
C,I,‘LE — _M N, J, 1'(; Zo Z1 (7.6)
P Np— [QmHSn)(xO)Jm(xl )]

G, =i—2 Snffo1)
mzg 8in B Py N — [qm}ﬂ ) (o) m (21 )]

with
Ty = kopyv/€ — cos?
-4
gm = mkop, cos 3 (—5 %)
Vm = kopl {iJm .’l:o)Jm(.’Bl) -— ;;Jm(.’lfo)Jm(.’Bl)} (7 7)
Pry = kop1 { £ HP (20) J(21) = HHRD ' (20)Jm(21)
N = kops {£ B (20) (1) = SHY ' (@0) (2}
My = kopy { £ Jm(20)Jin (1) = £ I (20)Im(21) } -
By invoking the field equivalence principle, the scattered field outside the cylinder
region can be attributed to fictitious electric J. and magnetic J,, surface currents
given by
Je=7"xH, Jn=—0'xE (7.8)
where E and H are the total electric and magnetic field over the surface of the cylinder
and 7' is the unit vector outward normal to the surface. The surface currents are
therefore
J. = Yo(sin ¢'3' — cos ¢'9") =42 (=1)™ {hydm(T0) + B HY) (o) }eime'+ikoz" cos 8
— i 2 Tk (—i)™ {kosin B [eer’n(xo) + AnHY) ’(7«‘0)]

i [h,J,(z0) + B H{D(z0)] } eimé'Hikos'cos8
(7.9)
T = =(5in ¢'8" = 008 §'5") A2 oo (—i)™{exm(0) + A HD (z0)} e Hikoe

___)_’n_g’ +00 —i m {ko sin B [th:n :130) + BmH(l) '(1:0)]

tko sin? 8 m=—oo
_tm:losg [ez xO +A H(l) (xO ]} ime'+ikoz’ cosﬁ
(7.10)
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In order to find the scattered fields for a cylinder of finite length b(3> Xo), —% <
' < %, we may assumed that the currents on the curved sides are the same as those
on the infinite cylinder. If the effect of the end caps is ignored, the Hertz vectors

describing the scattered field are

ikoT N -3 . 3 . bk 3
ILL (1) = 225 () [, f3r 3 etom et =) ilmioh ¥, d 10

(7.11)

tkor /o 13 ) , - TR
Hm(l‘) = .‘%— (-Z%,lg;) fjg f021r Jme—tkopchos(d”_(b)ezko(k. k)32 p1d¢'dz'

where ¢ and B are given by

B={fk, -7 + [k, - 917}

1

1 1
B

7 Yy
B ks-y" .

cos = =k, -3, sin ¢ =

The integrations in (7.11) can be carried out exactly. The 2’ integration produces
b88Y with V = lkob(k; — k,) - 5 and
f021r e—ikopchos(¢’—$)eim¢'d¢I = QW(_i)me(yo)eimci;
f021r cos ¢/e—ikop1Bcos(¢'_$)eim¢'d¢/ = 2m(—i)™ {’i cos <z~5J,’,,(yo) +sin 4~3§Jm(yo)} eimé

J27 sin @le~ihom B eos(#'=@)gimd’ 4t = O (—;)m {z sin ¢J!(yo) — cos $yﬂoJm(yo)} eimé

(7.12)
where yo = kop1B. Hence, the scattering amplitude is
_ Foprd {(De. +iD*h)k, x (ks x 2') + (D*h, — iD"e,)k, x '} sin V7 (7.13)
2Sin‘B z K4 $ s z z 8 V .
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with
D*= T2 o (~1)™ {Jn(20)Im(¥0) — T52Jm(20)T1n(y) + CEM [H '(20)Tm(v0)
_ﬁ_géH(l)(zo)J' yo)] + mﬁ( wsp=y§1}g )C HO (20)Jm yo)} imd

D* = e o (—1)™ {J(20)Im(¥0) — 52 Jm(20)T1u(yo) + CHE [HD ' () Jom (o)
MH(I)(:EO)J' '!/0)] +ﬂﬁ(1_;s_ﬁa:y:m )C H(l)(zo)J '!/0)} im¢
D= 52 o (-1)™{Co [HP ' (20)Im(vo) — Z52HD(20)I1m(yo)]
+222l (1 - B zdl) [ (z0) + CREHD (20)] In(v0) €

D= T} (—1)™{Con [HD (20)Im(y0) — SHEHD (w0) I} (o)

4 meosf (1 _ &L’M@) [J o) + CIM D) 270)] yo)} imé

zo cosf8 yoB

(7.14)
The elements of the scattering matrix in the global coordinate system as defined in

Section 1.4 are

Syy = {[De(v, 2+ zDe 2 )] (05-2") + [Dh(h - 2"

: (7.15)
—iDh(5 - )] (b, - 2’)} ey

Svy = — {[De(h; - 3" — 4 D*(; - 2')] (s - 2") — [Dn(0i - 2') (7.16)
VDM )] (he- )} B g

Spy = — {[De(;)‘._. ") + iDe(h; - 5')] (hy-2") - [Dh(iz,- ) (7.17)
—iDM(®; - )| (5, - )} Jomabsiny

Sy = {[De( I) _ zl)e( . 2')] (il'a : ZA") + [Dh(bi ' 2’) (718)

+ZDh ’)] A’)} é:hg%
where 9;, h;, 9,, and h, are given by (1.9) and (1.10). The orientation of the cylinder

in the global coordinate system can be specified completely by specifying the axis of

the cylinder. If the 2’ axis is defined by polar angles 6, and ¢., then

2" = sin 0, cos ¢z + sin b, sin ¢, + cos .3 . (7.19)
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In terms of polar coordinates of incidence, scattered, and the cylinder axis vectors

we have
ki 2 = —sinf =-C
(7.20)
ki-# = cosb,cos; + sin0,sin §; cos(p; — ¢.)
where
214
C = {1 — [cos 8. cos 0; + sinb, sin b; cos(¢; — ¢.)] }2 (7.21)
Also
0;-2' = —cosf,.sinf; + sin§, cos b; cos(d; — P,
A ( ) (7.22)
hi-3 = —sind,sin(¢; — ¢.) .
and for the scattered field
k, -2 = ol {sin2 6. sin 6; sin 8, cos(d; — @) cos(¢s — ¢.) + sin b, cos 0,
[sin 6; cos 8, cos(p; — @) + cos b; sin b, cos(ps — ¢.)]
—sin? 0, cos §; cos §, — sin 6; sin 8, cos(¢; — ¢,
) ( )} (7.23)
ks-§' = £ {cos8,.sin ;sinb,sin(¢; — ¢,) + sin b. cos b; sin b, sin($, — ;)
— sin @, sin ; cos 0, sin(¢; — ¢.)}
ky-% = cosf,cosf, + sin b, sinb, cos(¢, — b.)
with
Uy-2' = —cosf,sinf, + sinf, cos b, cos(p, — ¢,
( ) (7.24)

h,-3 = —sin 0.sin(¢; — ¢.) .
The expressions given by (7.15)-(7.18) differ from, and are potentially more ac-
curate than, those given by Ruck et al (1970). In effect, the far field amplitude for

the cylinder of finite length b is given in terms of the far field of the infinite cylinder

by simply multiplying a factor proportional to b”i"‘,v. Since the field of the infinite

cylinder exists only on the forward scattering cone having fey -3 = ki 3 = cos B,

the polarization characteristics are those appropriate to these aspects alone. On the
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cone B = sin 3, so that yo = zo. Equation (7.13) then reduces to

) 1 400 R R A |
_’R'Sizlll)zﬂsn‘lfv Z (_l)m {Amkg X (k, X 2,) + Bk, % 2/} ezmd; ,

m=—0o0

S =

that is

b sinV IR ~ R . i
S——‘vrsinzﬁ 1% Z (-1) {_COSﬁAmP+BM¢+SlnﬂAmZ}6 ,  (7.25)

m=_o0
and the sum is proportional to the far zone scattered electric field in the two-
dimensional case.

The improved accuracy which (7.13) provides is, however, limited. Because the
effect of the cylinder caps is ignored and the termination of the curved sides is not
correctly modelled by simply truncating the current, the accuracy of (7.13) and,
hence, the scattering matrix elements, deteriorates with increasing ky - 3 and/or
IAcs - ', but for aspects which are not too oblique, the transverse resonances of the

cylinder should be accurately simulated.

7.3 Physical Optics Approximation

The semi-exact solution for circular cylinder given in the previous section is rather
complicated and becomes very inefficient when radius of the cylinder is large com-
pared with the wavelength. In fact the convergence rate of the series given by (7.14)
is very poor when zg and/or yo are large. To treat stratified cylinders we have to deal
with even a more complicated form and when the cylinder cross section is not circu-
lar there is no exact solution available. Under such conditions approximate solutions
must be considered. An approximate solution at low frequencies was discussed in
Chapter 6 and a high frequency approximation (physical optics) will be given here

for lossy dielectric cylinders with large radius of curvature.




220
7.3.1 Cylinder of Arbitrary Cross Section

Suppose the surface of the cylinder is such that the radius of curvature is much
larger than the wave length and there is a unique normal #' at each point on the
cylinder. Thus, at high frequencies, each portion of the surface appears locally flat,
and if it is regarded as part of an infinite plane, the local boundary value problem is
that of a plane wave incident on a dielectric half space.

For the incident plane wave
E' = EgetokiT H' = Hpe'koki T (7.26)

let £ be a unit vector perpendicular to the plane of incidence. Then by decomposing
the incident field into vectors parallel and perpendicular to the plane of incidence we
get

E' = {A(k; x §) + Bi}ettokir

implying
H' = Yo{B(k; x 1) — Af}e™okT .

The reflected plane wave is
E" = {ARy(k, x {) + BRgi}e ot |

H' = {BRg(k, x {) — ARyi}ei*okrT

where

k, = k; — 2(k; - )3/ (7.27)

and Rg, Ry are the Fresnel reflection coefficients. Clearly

A=—-ZH,-1, B=Ey-t,
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and in the lit region the standard physical optics approximations to the equivalent

surface currents are
J,=#'x(H'+H), J,=—7"x(E'+E")
and therefore
3. = — {Yo(1 = Rg)(Bo - D)(#"- k)i — (1 + Ru)(Ho - D’ x i} %FT (7.28)
I =—{Zo(1 — Ru)(Ho- £)(#' - k) + (1 + Rp)(Eo - )i’ x £} e®F'T . (7.29)
On the assumption that the loss is sufficient to prevent any penetration through,
the electric and magnetic surface currents are zero on the shadowed region of the
surface. Expressions (7.28) and (7.29) are equivalent to, but simpler than, those
given by Beckmann {1965, p.85], and their symmetry is noteworthy.
Now the physical optics approximations to the electric and magnetic Hertz vectors
in the far zone can be obtained and are of the following form

IL(r) = €2 (— =) fi, {(1 = Re)(Bo - (7' - k)i — Zo(1 + Rig)(Ho - £)a’ x £ }

eikg(l@;—l},)-r’(ls/
T (r) = 2 (25 fi {(1 = Ru)(Ho - (' - k)i + Yo(1 + Rg)(Eo - )i’ x i}
eiko(l‘é.' —E.)-r’ds/
and the scattering amplitude is
S = [ {(1 = Rg)(Eo- )(#' - ki)k, x (k, x £) + (1 + Rg)(Bo - Dk, x (7' x )
+Zo(1 — Ry)(Ho - )(' - k:)ky x £ — Zo(1 + Ry)(Ho - £k, x k,

X(ﬁ' x i)} eiko(l‘c;--l‘c,).r'ds/
(7.30)

where the integration is confined to the illuminated portion of the surface.
With any cylinder whose local reflection coefficients Rg and Ry can be deter-

mined, the integral can be evaluated, and a convenient method to employ is the
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stationary phase approximation which leads to an analytical expression for S. If, for
simplicity, it is assumed that the cylinder is convex, there is a single SP point which
is also the specular reflection point of geometrical optics. When the non-exponential
portion of the integrand is evaluated at the SP point, the elements of the scattering

matrix are found to be

Syy = — {RH(ﬁ' ’ i}i)(ﬁ’ - 9,) + Rg(# - izi)(ﬁ’ ) }33)} -I#"Z—P'Q (7.31)
. X A ks

SVH = — {RH(fL' . h‘)(ﬁ' ‘ i)_,) - RE(ﬁ' * 6|)(ﬁ' * hs)} -|7‘A],n)(_];|2-Q (732)
N Al 1 Al 1 al ]::

Suv == {Rui - 8)( - h) = Re(W - R - 00} g (139)
At 1 Ay 1 Al ANIAL A a2 k,‘

She = — {RH(n ~hi)(?' - hy) + RE(R' - 0:) (R -v,)} —_—Vlr'lx ’A€'|2Q (7.34)

where we have used (7.27) with k, replaced by k, to simplify the expressions, and

2.ko ko (Ei—ks)-r' 3.
= —— Holki=ke) T dg’ | .
Q=-52 ¢ s (7.35)
The boundary of the lit region is the curve 7’ - k; = 0 on the surface, and as

ky approaches lAc,-, the specular point approaches the boundary. More importantly,
the parameter which is assumed large in the SP approximation tends to zero as
k, — k; and the method fails, but an alternative evaluation is now possible. For

k, = ki, Rg = Ry = —1 and the terms in braces in the integrand of (7.30) reduce to

—2(#' - k;)Eo, giving

. A ”
S=—1Eo [ # kds' = Z2E, (7.36)

where A, is the planar area enclosed by the boundary of the illuminated and shad-
owed regions on the surface. There is no depolarization and we observe that (7.36)

is identical to the result for a flat plate whose projected area perpendicular to k; is

A

pe
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The above results are valid for any impenetrable convex body of large dimensions
whose local reflection coefficients Rg and Ry are known, and can be generalized to a
non-convex body which may possess more than one SP point. We shall now examine
the special cases of a circular cylinder for which the integral expression for ¢ can be

evaluated analytically.

7.3.2 Circular Cylinder

Consider the right circular cylinder as specified in Section 7.2. The unit normal

vector to the surface and position vector on the surface are respectively given by

' = cos @&’ + sin ¢’y

' = pi(cos ¢'d’ + sin¢'y’) + 2’3’
and if ¢’ is measured from the plane defined by k; and %’ , the illuminated region is
|¢'| < 2 with —2 < 2’ < 4. Then

_ Zkopl / / —:koBm cos(¢’ ¢) —iko(ks—k)2'z d¢'dz' (737)

where ¢ and B are defined as before. The 2’ integration can be carried out immedi-

ately, giving b%2¥ and provided koBp; >> 1, the ¢’ integral can be evaluated using

the SP method. The SP point is ¢' = ¢ giving

o= Hlsgemn {712 G o9 o2 G -9)

and at aspects for which ,/-’5"%3’-(3 + q~5) > 1, the expression can be simplified using

sinV
V b

(7.38)

(3.16)
kOBpl —1——tkon1 S]n V

>Br Vv (7.39)

Q=
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The above results fail in the forward scattering direction for which B = 0, but in
directions close to forward, an alternative approximation is possible. In near forward
directions (k, — k;) -2’ ~ 0 and k, - §' < 1, thus

- . I A ~ _- * -_" .A, 7 3 ..’ » !’
S ~ _d;eol Eosu‘llV f_zz nl . k,-e tkopl{(k, ki)-2' cos ¢’ +kg-3’ sin § }d¢,
2

~ _%(k{ . :ﬁ,)Sil‘l,VEo f—%-’zi cos ¢Ieikopl(l;rﬁ') sin¢'d¢/ (740)

__2ibpy (ki . 5:/) six‘xlv Sil;VW EO

with
W = kopr(k, - §') -
When k, = k; implying k, - § = 0 and, hence, W = V = 0, (7.40) reduces to (7.36).
Because of the importance of the solution for a circular cylinder, it is desirable
to express the results in a global coordinate system (X,Y, Z). In (7.31) - (7.34) all
quantities with the possible exception of () are evaluated at the stationary phase

point such that
ky = ki — 2(ki - AR (7.41)

At the SP point

' = cos ¢&’ + sin 7’

using (7.41) we have

and it can be shown that in scattering directions other than forward
B=-2""k; .
Then

A b= ge { (ks — k) - 2] (ki

s 3

5>

>
8>
~

[ S — )
—~~

s i)'
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which can be evaluated using (7.20) - (7.23), and

b, = % {cos 6; sin 8, — sin 0; cos 8, cos(¢; — ¢5)}

) (7.43)
nhy = —% sin 6; sin(¢; — ¢,)

7.4 Numerical Results

From a physical point of view, the scattering from a dielectric cylinder of ra-
dius comparable to or greater than the wavelength can be attributed to two types
of mechanism: ray reflections from the surface and from multiple internal bounces,
for example, the glory ray; and surface waves which propagate around the cylinder,
shedding energy as they go. The latter are the main source of the field in the geomet-
ric shadow of perfectly conducting and very lossy cylinders. For a lossless cylinder,
the internally-reflected rays produce a backscattered field which is an extremely com-
plicated function of frequency and is almost noise-like even for the largest values of
kop1. If the cylinder is lossy, however, these resonances diminish as kgp; and/or the
loss tangent increases. This is illustrated in Figs. 7.1 and 7.2 where the normalized
backscattering cross section TV;bT) is plotted as a function of kgpy for E (or TM) or
H (or TFE) polarizations respectively for € = 10 + 7¢” with ¢ = 1,2 and 5.

Principal plane bistatic scattering patterns for a homogeneous cylinder having
p1 = 2Xo and € = 10 + 5 computed using the physical optics approximations are
shown in Figs. 7.3 and 7.4 for TM and TE polarizations respectively. The quantity
plotted is the normalized scattering cross section aio where o¢ = kopyb? is the physical
optics value for the backscattering cross section of a perfectly conducting cylinder,
and the ratio is therefore independent of the length & of the cylinder. The solid

curves were computed using (7.31) and (7.34) with @ given by (7.39), and we note

that the angular dependence (including the Brewster angle effect for H-polarization)
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is attributable to the reflection coefficients Rg and Ry. The (common) dashed curves
are based on (7.40).

In Figs. 7.5 and 7.6 the exact solution for a cylinder with € = 10+4¢5 are compared
with the physical optics prediction, and the agreement is excellent for kop; > 3. For
this same material, the bistatic scattering patterns for a cylinder of radius p; = 2X¢
are compared in Figs. 7.7 and 7.8. The physical optics results provide a good
approximation to the exact data at most angles of scatter. Comparison with the
exact solution (see Figs. 7.7 and 7.8) shows that the best approximation is obtained
by using the near-forward scattering expression (7.40) for the main and (perhaps)

the first one or two side lobes, and (7.31), (7.34) and (7.39) at other angles.

7.5 Conclusions

Expressions for the scattering matrix elements of cylindrical structures of finite
length in the global coordinate system are given. For cylinder with circular cross
section the expressions are semi-exact in the sense that the equivalent surface currents
on the surface of the cylinder is approximated by the surface currents that would
exist if the cylinder were infinite in length. These expressions are potentially more
accurate than those given by Ruck et al [1970]. At high frequencies physical optics
approximation is used. The standard physical optics currents in conjunction with
the stationary phase approximation provide a simple expression for the far field
amplitude of finite length cylinders with arbitrary cross section. For lossy cylinders
with p; > A the physical optics results are in a very good agreement with the

semi-exact solution.
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Figure 7.1: Normalized backscattering cross section o/(kop1b?) of a circular cylinder
versus kop, for E polarization and different loss tangents: ( ) € =
10421, (---) e=10+12, (- -) € =10 + 35.
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Figure 7.2: Normalized backscattering cross section o/(kop;b?) of a circular cylinder

versus kop; for H polarization and different loss tangents: ( ) e =
10441, (--- ) e=10412, (- -) e =10 4 5.
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Figure 7.3: Normalized bistatic scattering cross section el of a finite cylinder with
radius p; = 2o and € = 10 + 25 for IE polarization using physical optics:
( ) stationary phase expression, (- - - ) forward scattering expression.
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Figure 7.4: Normalized bistatic scattering cross section Toaw of a finite cylinder with
radius p; = 2Xg and € = 10 + ¢5 for H polarization using physical optics:
( ) stationary phase expression, (- - - ) forward scattering expression.
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Figure 7.5: Normalized backscattering cross section o/(kop1b?) of a circular cylinder
with € = 10 +¢5 versus kop; for E polarization: (
o0 o) physical optics.
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o o) physical optics.
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Figure 7.7: Normalized bistatic scattering cross section o /(kop1b?) of a circular cylin-

der with p; = 2)o and € = 10 + 15 for E polarization: (
solution, (o 0 0) physical optics.

) exact
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Figure 7.8: Normalized bistatic scattering cross section o /(kop;b?%) of a circular cylin-
der with p; = 2\ and € = 10 + ¢5 for H polarization: (
solution, (o o o) physical optics.

) exact




CHAPTER VIII

HIGH FREQUENCY SCATTERING FROM
CORRUGATED STRATIFIED CYLINDERS

8.1 Imntroduction

From a scattering point of view, a tree trunk can be viewed as a multi-layer
dielectric cylinder. The outer layer is rough with almost a periodic pattern and the
roughness height is proportional to the diameter of the cylinder. This layer consists
of dead cells with almost no water content; hence, its dielectric constant is low and
slightly lossy. The inner layers that carry high dielectric fluids have very high and
lossy dielectric constants. In modeling a tree, the branches and trunk usually are
considered to be homogeneous smooth cylinders [Durden et al, 1988; Karam and
Fung,1988]. In this chapter the effect of bark and its roughness on scattering is
studied.

The literature concerning the problem of scattering from cylinders with rough
surfaces is relatively scarce. To our knowledge the first treatment of a problem of this
sort was given by Clemmow [1959] where a perturbation solution to an eigen function-
expansion was obtained for a perfectly conducting cylinder with almost circular cross
section, and only the E polarization case was considered. This technique is restricted

to very smooth and small roughness functions. Other perturbation techniques for
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perfectly conducting cylinders with very small roughness have also been developed
[Cabayan and Murphy, 1973; Tong 1974]. None of the existing techniques can handle
dielectric rough cylinders, particularly when the roughness height is on the order of
the wavelength.

Under the assumption that the bark roughness is a regular corrugation in only
the angular direction (i.e., ignoring variations in the axial direction) and the radius
of curvature of the cylinder is much larger than the wavelength and the period of
corrugation, an approximate solution to the scattering problem is obtained. In this
solution, each point on the surface of the cylinder is approximated by its tangential
plane. Then the polarization current in the periodic tangential surface is obtained
numerically. Once the polarization current in the corrugations is found, the scat-
tered field due to the corrugations together with the scattered field from the smooth
cylinder (when the corrugation is removed) give rise to the total scattered field. The
scattered field for a smooth cylinder is obtained using new physical optics surface
currents that are more convenient than the traditional ones.

8.2 Scattering from Periodic Corrugated Planar Dielectric
Surface

In this section we seek a numerical solution for the total field (or polarization
current) inside a periodic inhomogeneous layer lying over a stratified dielectric half-
space illuminated by a plane wave. The geometry of the scattering problem is shown
in Fig. 8.1. First the two-dimensional Green’s function for a stratified dielectric
medium is found. Using Floquet’s theorem these results are extended to the periodic
case. Then the problem will be formulated as an integral equation that can be solved

numerically by the method of moments.
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Figure 8.1: Geometry of a periodic inhomogeneous dielectric layer over a stratified
dielectric half-space.

8.2.1 Two-dimensional Green’s Function for a Stratified Dielectric Half

Space

For a volume distribution of electric current (J.) occupying region V in free space,
the corresponding Hertz vector is given by (1.2) and the resulting fields are given by
(1.3) with IL, = 0. Since in the two-dimensional problems & = 0, from equation

(1.3) the field components in terms of the Hertz vector potential can be expanded

as:

2 2
E, = kg (1 + klgz%?) I, + %Byny

E,= 52 +k(1+52:) 0, (8.1)
E,= kI,

The Hertz vector potential associated with ar. infinite current filament located at

point (z’,y’) in free space with amplitude I, and orientation p is of the form

—Zs
dko

Mo(e,9) = AP (ke/(e 22+ (y—y)),  p=s,yorz.  (82)

The corresponding field components can be obtained by inserting (8.2) into (8.1) and
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then by employing the identity

+oo gtkyly—y'|-ika(c—2')

B (ko =2V + =0 = 7 [

dk, (8.3)

the resulting fields can be expressed in terms of continuous spectrum of plane waves.
In (8.4) k, = \/m and the branch of the square root is chosen such that /—1 = .

In the presence of the dielectric half-space, when the current filament is in the
upper half-space, each plane wave, is reflected at the air-dielectric interface according
to Fresnel’s law. It should be noted that the incidence angle of each plane wave, in

general, is complex and is given by

o

= arctan(-—).

v = arctan( ky)

The net effect of the dielectric half-space on the radiated field can be obtained by
superimposing all of the reflected plane waves that are of the following form

R,(y)esv)=ikse==) g por H.

where R, () is the Fresnel reflection coefficient. The total reflected field can now be

obtained by noting that

E; = Rg(v)E:

and since the direction of propagation along the y axis is reversed for the reflected
waves, the operator a% for the z and y components of the reflected field must be

replaced by _a%‘ Thus,

" 2 2 iky(y+y')—ikz(z—z")

E;z: = _k4f [_I:z:(]- + z}g%) + ka%o- 3231/] fj-;? RH(’Y)e L ky dk:z:’
- ko2 2 2 iky(y+y')—ikz(z—z")

By = —BB[- Ll + 1,0+ & 42)] /73 Ru(n) " dks,  (84)
, ky( Neikg(z—z'

E} = —8AJ [*® Ry(y) 2 dk,.
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In matrix notation the total field in the upper half-space can be represented by

- . - .

G:L':L' G:!:‘y 0 II
E=iG, G, 0 I, |» (8.5)

0 0 Gzz IZ

where

Goo = —B(1+ EZ)H (koy/(z — 2 + (v — ¥)?)

1 +ooR ( )e"‘y(y+y l;—-kz(z—f)dkz]’

Goy = — 252 [HP (ko[(z — 2)2 + (y — ¥')?)
+_ fj—ot? RH(,y)e""y(Hyl;ikz(z—r)dkz]’

Gy:c = 4k0 3yaz [H(l)( \/( ,)2 (y - y,)z)

)=ika(a=a’) (8.6)
o) eiky(y+y —~tkg(z—z
~ fj-oo Ry(v) %y dk.],
Q.. = —kzay 1 (l)k n2 _12)
vy 2 ( +Tay2 (koy/(z — 2')? + (y — ')
P Ry it gy,
G,, = (1) (k \/ (z — o')? + (y — ¢')?)
+; fj—oo: RE(,y)e"‘y(Hy;;-k:(I—I )dkz]

are the elements of the dyadic Green’s function for two-dimensional layered dielectric
half-space problems. If an electric current distribution Je occupies region S in the
upper half-space, the radiated electric field at any point in the upper half-space can
be obtained from:
Ey(2,y) = [5|Gee(z,y;52',y") (2’ y) + Goy(z,y; 2", y') (2, ') ]dx'dy’
Bi(z,y) = [s[Gya(z, 452", ¢') (2" ¥') + Gy (, 552", ')y (2", y)]dxdy’  (8.7)
EXz,y) = [sGu(z,y;2,y)]a(a', y')dx'dy’

8.2.2 Far Field Evaluation

In scattering problems the quantity of interest usually is the far field expression.

Here we derive the approximate form of the Green’s function in the far zone using




240

the saddle-point technique. All the elements of the dyadic Green’s function have an

integral of the form

1 +co e‘.ky (y+v')—iks (z—2')
I=— ["" Ry - dk, (8.8)

y

Using the standard change of variable
kr = kosin~y

the integration contour is changed from the real axis in the complex kz-plane to

contour I in v-plane as shown in Fig. 8.2. Also by defining

Nllr-l

|
~°\
(TR
=<

SDP

Figure 8.2: Contour of integration and steepest descent path in y-plane.

z — @' = pysin ¢y, y+y = pacos é2
integral (8.8) in v-plane becomes:
1 .
- = tko p2 cos(v+¢2)
~ [ R()e dy
The saddle point is the solution of

d (v+¢2) =0
d’Ycos')'+ 2) =
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implies v = —¢3. When kpp, > 1 the approximate value of I can be obtained by
deforming the contour of integration from I' to the steepest descent path (S.D.P.)

given by
Im[i cos(y + ¢2)] = 1.

There are some poles associated with the reflection coefficient function (R4(7y)) of
a layered dielectric medium that are captured when the contour is deformed. The
contribution of these poles gives rise to surface waves, but their effect can be ignored
if the dielectric materials are lossy and observation point is away from the interface.

Under these conditions we get
I = LR(=¢2) [sp.p o o=trttldy
~ ﬁp_ze';(koh—‘"/‘l)Rq(¢2),
where we have used the fact that R, is an even function. Also the large argument

expansion of the Hankel function can be used for distant approximations, i.e.

5 .
A (e = 2+ (g = 9)7) % [ meilon eI,

where p; = \ﬂm —z')? 4 (y — y’)%. From Fig. 8.3 it is seen that in the far zone the

following approximations can be used also

$1 = ¢2 = ¢,

p1=p—z'sing —y'cos ¢,

p2 = p— z'sin ¢ + y’ cos ¢.
These approximations can be inserted into expressions for the dyadic Green’s function
given by (8.6). The far field approximation of derivatives of the Hankel function
and integral I can be obtained by retaining the terms up to the order p~1/2 and

discarding the rest. Thus the expressions for the Green’s function elements in the
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far zone become:

Ga:a: — _E%n, 1rk0p z(kop—r/‘i) CoS ¢e-—|kosm¢:c[ ~tko cos ¢y’ ( ) zkocos¢y]
ny — knfg ﬂ-kop i(kop—'lr/‘i) Sll’l¢COS ¢e—tko sin ¢z’ [e—zko cos ¢y’ + RH(¢) tko cos¢y]
Gy = Bifa [T ilor=/9 sin g os gehasinde [cikomts' _ Ry ()eihon V]
. _koZo I(kop -7 /4) —ikg sin ¢z’ [ ,—1ko cos ¢y’ +R (¢) zkocos¢y]
Gyy = y ﬂ'kop sin? ge [e H
G, = __knfg 1rk0p et (kop— 1r/4)e—zkosm¢:c [e—zko«os¢y + Rg (¢)eik0 cos¢y']-
(8.9)
Y
* (x,y)
(x',y')= Source Point
(x',-y')=Image Point
(x,y)=Observation Point
¢
X
>
(x',-y")

Iigure 8.3: Geometry of the line source and its image.

It can easily be shown that for an electric current distribution J, the radiated far

field does not have a § component and the far field amplitude defined by

E= 2 i(kop—'lr/i)s

7l'k0
has components
S¢ — gn%n{fs COS ¢Jx(zl’ yl)e—iko sin¢:c’[e-iko cosdby’ __ RH(QS)CHCO cos ¢y']dzldyl
_ fS sin ¢Jy($,, yl)e—iko sin ¢z’ [e—iko cos ¢y’ + RH(Q&)C“CO cos ¢y,]dl"dy,}, (810)

Sz — _EQ%Q fS Jz(x/,yl)e—ikosin¢:c’[e—-ikocos¢y’ + RE(¢)eikocos¢y’]dx/dyl’
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8.2.3 Reflection Coefficient of a Layered Dielectric Half-Space

Consider a multilayer dielectric half-space as shown in Fig. 8.4. Interface of the
m* and (m+1)* layers is located at y = —d,, with dy = 0. The relative permittivity
and permeability of each region is represented by ¢,, and g, respectively. Suppose a
plane wave whose plane of incidence is parallel with z — y plane is illuminating the
stratified medium from above. From symmetry considerations, 3% = 0, which implies
that the field components in each region can be separated into E- and H-polarized
waves. It can be shown from Maxwell’s equation that the E- and H-polarized waves
are dual of each other, i.e. one can be obtained from the other upon replacing E,,

with H,,, H, with —FE,,, and €, () with g,(€,). For E polarization the field

4y

0
Region 0 d0=
Region 1 d » X
Region 2 1
-d2
-dN
Region N +1

Figure 8.4: Plane wave reflection from a multi-layer dielectric half-space.

components in region m can be represented by

Emy — [c:ne—zkmyy + c:'netkmyy]ezko sin ¢ox
— my [ .t ® Y _ AT ot Y] otko sin ¢ox
Hpg = T0m2[cl, e ¥ — ¢ etfmid]e

where ¢ is the incidence angle and k,,, = ko\/em,um — sin? ¢o. The coefficient ¢!, and
c;, are the amplitude of the wave travelling in the —z and +2 direction, respectively,

in region m. In region 0, ¢ = 1, and ¢}, = R is the total reflection coefficient and in
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region N + 1, which is semi-infinite, ¢jy,, = 0. Imposing the boundary conditions,
which requires continuity tangential electric and magnetic fields at each dielectric
interface, we can relate the field amplitudes in the m* to those of (m + 1)* region.

After some simple algebraic manipulation, the following recursive relationship

can be obtained

m _ (c:n+1/c::n+1) + Fﬁe':”‘(ml)zdm 2k -
Cm (C§n+1/c:n+1)l‘ﬁ + e'2k(m+1)zdm

where

B . Hma1kmy = fmKonin)y
" l‘m+1kmy + l-‘mk(m+1)y

Starting from ¢}y, /cly;1 = 0 and using (8.11) repeatedly Rg = c}/c} can be found.
To find Ry the reflection coefficient for H polarization, the duality relationship can
be applied and an identical recursive formulation as given in (8.11) can be obtained.

The only difference is that I'Z becomes I' which is given by

FH — 6"77:+1k‘my — e‘mk('m+1)y
Em+1kmy + 6'mk(-m+1)y

8.2.4 Scattering from Inhomogeneous Periodic Dielectric Layer above a

Half-Space Layered Medium

Consider an inhomogeneous dielectric layer of thickness ¢ ontop of a stratified half-
space dielectric medium as shown in Fig. 8.1. The permittivity of the inhomogeneous
layer is represented by ¢(z,y) which is a periodic function of z with period L. Suppose
this structure is illuminated by a plane wave whose angle of incidence and polarization
respectively are ¢o and p. For an E-polarized wave p = z and for an H-polarized

wave p = — cos ¢oZ — sin ¢y, thus the incident wave may be represented by

Ei — ﬁeiko(sind:oz—cos ¢0y). (812)
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A polarization current distribution is induced in the inhomogeneous layer. This cur-
rent gives rise to a scattered field that can be obtained from (8.7). The polarization
current is proportional to the total field within the inhomogeneous layer. The total
field is comprised of the incident field, the reflected field which would have existed

in the absence of the inhomogeneous layer, and the scattered field, i.e.
E'=E +E +E°.
The polarization current in terms of the total field is given by
J.(z,y) = —ikYo(e(z,y) — 1)EL. (8.13)

Upon substitution of expression (8.7) for E° into (8.13) a set of integral equations

for polarization current can be obtained; for E polarization we have

Jo(z,y) = —ikoYo(e(z,y) — 1){eosindor[emthocosdoy 4 Rp(hg)etko cosdoy] (5.14)
+ 8 S22 Jo(, ) Gaa(z, 33 2,y )da'dy 'Y,
and for H polarization

J,_.(CL', y) — —ZkO}/O(C(:L',y) _ 1){008 ¢Oeiko sin¢oz[_e—iko cos oy + RH(¢0)eiko cos ¢oy]
+ o 23 [J=(2, ¥)Gaal2, 95 2, y') + (¢, y') Gy (2, y5 2/, y')|da’dy',
Jy(z,y) = —ikoYo(e(z,y) — 1){—sin goetrosindoz[gmhocosdov L Ry (g )etho o bov]
+ o S22 T2, y) G2,y 2,y + Ty (2, ¥ )Gy (2, y5 27, y")|da'dy'}

(8.15)

Since there is no closed-form representation for the kernel of these integral equations,
finding the solution, even numerically, seems impossible. But by employing Floquet’s
theorem the integral equations can be reduced to a form which is amenable to numer-
ical solution. The fact that the permittivity of the inhomogeneous layer is periodic

in z,excluding a phase factor, all the field quantities are required to be periodic in z
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. Therefore the polarization current must satisfy
J(z +nL,y) =T (z,y)eosmsonl (8.16)

Now by using (8.16) the integration with respect to  can be simplified significantly
by breaking the integral into multiples of a period, that is
I, = fj:: Geo(z,y;2',y') (7', y')da'dy’

zo+ L
=y [l g e,y 2 y) (e, y')de'dy!

(8.17)

At this stage, if the variable z’ is changed to z’ + nL and property (8.16) is used, I,

becomes
L, = / G?.(z,y;2',y") (2, y'")dz'dy’
where

+ o0
GZZ(x’ Y :1:', y’) = Z Gzz(m’y; :1:' - nL,y’)etko singonL
n=-—00

If the expression for G, as given by (8.6) is inserted in the above equation and the

order of summation and integration is interchanged, and then the identity

teo : =
Z ernL(ko sin ¢o+kz) =2 Z 5[(]‘;2 -+ kO sin ¢0)L — 27rn]

n=—0co n=—0oo

is employed, the periodic Green’s function simplifies to

D 1o kOZO ¥eo iknyly—7'| ik ’ e—ikn,(x-—z’)
G? (z,y;2',y') = — Z [eFnlv=v'l & Rp(v,)e! ny(y+y )]_____ (8.18)
2L n=-00 kny
where
2rn .
kne = 5 - ko sin ¢y, kny = \/ k3 — k2,
and

k
¥, = arctan(—=).

ny
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Other elements of the periodic Green’s function can also be obtained in the same

manner
G2 (z,y;2',y) = - BB (1 + -ra—;) TA ety — RH(’Yn)eik"y(y-'.yl)]ﬂE,(—:__xl)
Gz, (z,y;2,y) = —%‘}; 2 Tk [y g Ry, Jetkes(yty )] et
Gr (2, 932",y ) = E‘,’c;as;, T lenlv=y| — Ry (s, etk v+ i)
o, (2, y;2',y) = BB (14 L) Th oo™~V + Ry (v )eiknaluty)]Zneznt),
(8.19)
The integral equations (8.14) and (8.15) now take the following form
To(z,y) = —ikoYo(e(z,y) — 1){eikosindos|e=ikocosboy | R (g,)eiko cosdoy]
+ s S T2 )G (2,93 2, ) da'dy'),
Juo,9) = —ikoYo(e(z,y) — 1){cos guetosintus—e=ikncoston . Ry ((o)ehoessov]
+ R IR )G (2,55 2", y) + Ty (2, 9)GE (2, y; 2, y)|da'dy'},
Jy(z,y) = —ikoYo(e(z,y) — 1){— sin ¢petko sin doz[g—thocosdoy 1. RH(¢0)6“°° cos oy
A HEACRY I MERERDEI ARSI ACRTERDILEL S
(8.20)

Far away from the surface (y > Ao), contribution of only a few terms of the summa-
tions in (8.19) are observable. These terms correspond to values of n such that k,
is real and they are known as the Bragg modes (see (5.61)). Among all the Bragg
modes the mode corresponding to n = 0 carries most of the scattered energy and
this is specifically true when L < A. The scattered field due to this mode is a plane

wave and for E and H Polarization, respectively, we have

Bo= g s [/ T ylehoms oo 4 Rpelhocmtudje-ihodnine'd/dy')

. eiko (cos poy+sin ¢o:z:)2

(8.21)
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+L 2 2 ’ ik ’ —iko si 1
Br= —gplig{cos o [ L1 (el emcortoy = Rygeihocostud Jomikosindor' a dy

—sin ¢0 jg f+[l,l//22 Jy(:tl, yl)[e—iko cos oy’ + RHeiko cos ¢oy']e—iko sin oz’ dx’dy’}

(cos ¢o& — sin oi) ) etkolcosdoytsingoz)
(8.22)

8.2.5 Numerical Implementation

It is very unlikely to find an analytical solution to the equations as given by (8.20)
even for the simplest form of €(z,y). However an approximate numerical solution can
be obtained using the standard moment method with point matching technique. In
this method the cross section of the inhornogeneous layer over one period is discretized
into small rectangular segments over which the dielectric constant and polarization
current can be assumed to be constant. Now in equation (8.20) the integrals over
one period of the inhomogeneous layer can be broken up into summation of integrals
over each segment where the polarization current is constant.

Let pq designate a cell whose center coordinate is (z,,y,) = (pAz, qAy), where p
and ¢ are some integers and Az and Ay are dimensions of the rectangular segments.
If the polarization currents as given by (8.20) are evaluated at the center of uv-cell
(point matching) the integral equations can be cast into matrix equations. The ma-
trices formed by this technique are known as the impedance matrices. The solution
to this matrix equation gives the polarization current at the center of each segment.

After a simple integration of the periodic Green’s functions over the area of pq-

cell, it can be shown that the entries of the impedance matrix for E polarization (TM
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case) are of the form

(o . . :
B8 (e, v) — 1) T2 coleirslio—tal 4 Rip(ry, )ik (vuton) | sntiosols)

 $in(kng Az /2 )€~ Fna(@u=2p) _y

Zl.f‘zl(ts(u,v) — 1)2::_w[_ieikngL\y/2 + i+ Rg(yn)eitknve
Z(u,v;p,q) = <
. Sin(knyAy/2)]# Sin(knzAm/2)e"ikn:(.'L‘u—:L‘P) v = q u _—7é p
; nzfny

-1+ %&(e(u, v) — 1) TFe  [—iethnA¥/2 4§ + Rp(q,)ei2knuvy

-sin(kny Ay/2) 5= - sin(knzA2/2) v=qu=p.
(8.23)

For H polarization (TE case) the integral equations for J, and J, are coupled, which
result in coupled matrix equations that can be combined into a single matrix equa-

tion. The resultant impedance matrix consists of four sub-matrices of the following

form
| 21 2
2= ,
Z3 24
whose entries are given by
B8 (e(u,v) — 1) T o el snl — Ry ()bt a0 (Kagl D)
- 8in(kny Ay/2) sin(k,y Az [2)e ™ nz(zu=2p) v#q
'2%&(6(“’ v) —1) E::o—oo[_ieik"yAy/z +1 — Ry (y,)e v
Z1(u,v;p,9) = 3 -sin(knyAy/2)]%/—ka sin(kpp Az /2)e~n=(zu=25)
nxzkny
v=qu#p
1 B () — 1) T i W 4§ — Ry ()it
-sin(knyAy/2)]%m - sin(kn Az /2) v=gqu=p,
nzfny

(8.24)




ZZ(ua wp, q) =

Z3(u,v;p,q) =

Z‘l(u’ v, D, q) =

)

\
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B(e(uy0) = 1) TE2 olsgn(yy — yp)e el + Rig(a)eionte#40)
k—l- sin(kny Ay /2) sin(kng Az [2)e~Fne(zu=zr) v#£g
% (e(u,v) = 1) TFZ oo B ()€ sin(hny Ay/2) 7k

. Sin(k,wA:l}/Q)e_ik"’("“‘-IP) v=gq,
(8.25)

Z(e(u,v) — 1) TE o [sen(yy — yq)e™nsvo—val — Ry(rn)eftnslvotva)]
k—l- sin(kny Ay /2) sin(knz Az /2)e ™ Fne(Fu=2p) v#q
2 (e(uyv) = 1) T o — Rer(n)€%msve sin(kny Ay /2) 72

- sin(kp Az [2)e™Hnz (zu=2p) v=q,
(8.26)

28 (e(u,0) — 1) T2 o {(1 = )b sel 4 Ry () o030

E_lkT - sin(kn, Ay/2) sm(anA:v/2)e“'k"’(”“"’P)} v#q

2

2 (e(,0) — 1) S oo [—i(1 ~ Ha)e*d9/2 45 + Ry(m)(1 — 53)

- sin(kny Ay /2) e 2knve] 2 Sm(kmAx/z)e—:kn,(a:u-a,-,,)
nzkay
v=qu#p
-1+ M(e(u ’U) —_ 1) Z+ [-—z(l _ ) thnyAy/2 + 14 RH(’)’n)

(1- %) sin(knyAy/2)e’ ] iy sin(kns Az /2)

v=qu=np.
(8.27)
In (8.25 ) and (8.26) sgn(z) is the sign function defined by
+1 ifxz>0
sgn(z) = (8.28)
-1 ifz<0.

All series in (8.25), (8.26), and (8.27) are exponentially convergent and thus the series

can be truncated for relatively small n. This is also the case for (8.24) except for one

term in the summand of the expressions corresponding to v = ¢. The convergence
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rate of

Z Lﬂ s1n(k,,,Am/2)e tknz{Tu—2p) (829)

n=—oo
is very poor and in order to improve the convergence rate the standard trick is to
add and subtract a series whose summand is asymptotic to the original series. For

large n

and the summand is approximated by

:

7 2L sin(k — nzAg[2)e” Fn=(@u=2r)

where the asymptotic forms for k., and k,, are only used in the amplitude factor.
It can be shown that
400 ina

> =

n=-—o0,n#0

= isgn(a)(r— | a|) (8.30)

where « is a real number. By employing (8.30), a closed form for the asymptotic

series (S,p;) can be obtained and is given by

( :
oy e~ hna(Tu=2p) [sgn(z, — z,)(1 — Zliz;ﬂl) sin(ko sin ¢oAz/2)

0

Sap =4 —%82 cos(kqsin goAz/2)] z, 7 Ty

31 (1 — 4%) cos(kosin ¢oAz/2) e =z,

Now (8.29) can be written as

1 ® k22 L : i sin(ko sin ¢oAz/2)
S = 0 ng . v—1kn:(zu_$p) 0 0
7.2 e, ) S/ T Ksindo
+Sapp

in which case the series converges very fast.
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The right-hand-side of the matrix equations may be represented by an excitation

vector whose elements, for E polarization, are
b(u, v) — ikoYo(C(IEu,yu) _ 1)e“°° sin ¢oxy [e—iko cos doyy + RE(¢0)6“°° 605¢oyu]
The excitation vector for H polarization is made up of two sub-vectors with entries

bi(u,v) = tkoYo(€(Zy,yy) — 1) cos Boekosindozu[__gikocosboys 4 R (gh)etko cosbove]

bo(u,v) = —1koYo(€(y,yu) — 1) sin Poe'ko sin boTu[g=iko cosboyy RH(¢o)e”°° cos bovs],

We point out that the inhomogeneous layer may have an arbitrary thickness
profile with a maximum height ¢. In such cases we may assume that the layer has a

constant thickness ¢ and the permittivity corresponding to air-filled points is 1.

8.3 High Frequency Scattering from Stratified Cylinders

For dielectric cylinders with large radii of curvature, physical optics may be used
to obtain the scattered field provided the dielectric has sufficient loss to prevent
significant penetration through the cylinder (see Section 7.3). The dielectric loss also
suppresses the effects of creeping waves which enhances the physical optics results.
If the dielectric cylinder is stratified, the physical optics approximation could still be
used if the radius of curvature of all the interface contours are much larger than the
wavelength.

Two types of physical optics approximations can be applied: 1) surface integral
and 2) volume integral approximation . In surface integral physical optics the equiv-
alent surface currents are approximated by electric and magnetic surface currents
of the infinite tangential plane. In the latter method the volumetric polarization
current is estimated by finding the internal field using geometrical optics ray tracing.

Of the two techniques, the surface integral physical optics is much easier to employ.
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The standard physical optics surface currents are given by (7.28) and (7.29). New
physical optics surface currents that are more convenient to work with are examined.
These currents can be obtained by noting that the reflected plane wave from a dielec-
tric interface can be generated by equivalelllt electric and magnetic current sheets.
These currents are normal to the plane of incidence and their density is proportional
to the incident field amplitude, polarization, and associated Fresnel reflection coef-
ficient. Suppose the incident field is given by (7.26) and the normal to the cylinder
surface is represented by the unit vector fi. The unit vector normal to the plane of

incidence is

S

>

f= DX
| A x ki |’

in terms of which the new physical optics electric and magnetic currents are given

S

by

J. = —2Y,(Eyo - £) cos ¢; Rg(¢;)eom (8.31)

Jpn = —2Z0(Ho - £) cos ¢; Ryr(¢;)e*oki™i (8.32)

Here, Rg and Ry are Fresnel reflection coefficients and ¢; is the local angle of inci-

dence given by
¢; = arccos(—n - ic,)

In shadow regions on the surface (¢; > 7/2) the currents are zero.

Suppose a stratified cylinder with arbitrary cross section is illuminated by a plane
wave travelling in —z direction (1;:, = —2) as shown in Fig. 8.5. The outer surface of
the cylinder is described by a smooth function p(¢). For E-polarized wave (Eq = z)

only electric current and for H-polarized wave (Ho = Y5%) only magnetic current
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is induced on the cylinder surface as given by (8.31) and (8.32). It can easily be
shown that in the far zone of the cylinder in a direction denoted by ¢,, the far field

amplitudes for E and H polarization respectively are given by

,.kO —1kop(¢’)(cos ¢'+cos{d'— s / / /
Sp =7 /h cos iRg(gr)e Ror#)cosdeon®=80), a(g7) 4 p2(¢)dg’ (8.33)

1 k 3 / ’ 1
SH ¢?0 /l;t cOoSs ¢iRH(¢i)e—ikoP(¢ )(Cos¢ '}'COS(‘?S ¢s)) \/p2(¢') + p’2(¢’)d¢, (834)

where the integral is taken over the lit region and p’ is the derivative of p with respect

to ¢. If the surface of the cylinder is convex the integral in (8.33) and (8.34) can be

Figure 8.5: Geometry of scattering problem of a stratified cylinder.

evaluated using the stationary phase technique. The stationary point (¢sp) is the

root of the equation

d
wp((ﬁ’) (cos @' + cos(¢’ — ¢,)) = 0.

By noting that at the stationary point ¢; = ¢,/2 and

2( At 2( A — P(¢SP)
Vo) +02(8) = S

and also by defining

d2
g= W[PW) (cos ¢’ + cos(¢' — ¢;))]gr=4sp
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equations (8.33) and (8.34) become

—_ 3 $s ¢s P(¢SP) ko;_ —tkop(ésp)(cos psptcos(dsp—ds))
SE = 2 cos( 5 YRE( 5 )cos(¢sp— 70\ 219 |e

e~=m0F | (8.35)

b ¢s p(¢sp) KoM _ikop(dse)(cos dsp-+eos(bsp—b)
S = ol RS ostbsr — T2V 21 91°

e~0)T  (8.36)

For a circular cylinder of radius a these expressions simplify to

Sg = 2-;-\/k07ra cos(<;$,/2)RE(%'F)e"mw“°°“("S’/2)e""/4 (8.37)
Sy = as%\/kom cos(qs,/z)aRH(%-)e-"?koaws('*‘a/?)e"”/“ (8.38)

To verify the validity of the physical optics expressions with new set of physi-
cal optics currents we compare expressions (8.37) and (8.38) for a layered circular
cylinder with the exact series solution [Ruck et al, 1970, pp. 259]. Let us con-
sider a two-layer cylinder with inner and outer radii of a; = 10cm and a = 10.5¢cm
respectively. The dielectric constant of the inner and outer layers respectively are
15 + 47 and 4 + ¢1. These values are so chosen to simulate a tree with smooth bark.
Figures 8.6 and 8.7 compare the normalized backscattering cross section (o/7a) of
the cylinder for E and H polarizations using physical optics expressions and exact
series solution. In these figures the cross section of the cylinder in absence of the
outer layer (bark) is also plotted to demonstrate the effect of the bark on reduc-
ing the cross section of the cylinder. For frequencies above 2 GHz (koa = 4.2) the
agreement between the two solution is excellent. The bark layer plays the role of
an impedance transformer which reduces the cross section of the cylinder by 14 dB

around koa = 16.
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=10

Normalized Cross Sectlon

=15 -

Figure 8.6: Normalized backscattering cross section (=) of a two-layer dielectric
cylinder with a = 10.5¢m , a; = 10em, ¢; = 15417, € = 4+11 versus koa
for TM case: (—) physical optics solution, (o o o) exact solution, (- - -)
physical optics solution for homogeneous cylinder a = 10.5¢m € = 15+17.
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Figure 8.7: Normalized backscattering cross section (%) of a two-layer dielectric
cylinder with @ = 10.5¢m , a; = 10cm, €; = 15+ 17, €, = 4 + i1 versus
koa for TE case: (——) physical optics solution, (o o o) exact solution,

(- - - ) physical optics solution for homogeneous cylinder a = 10.5¢cm
€=15+417.
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8.4 Scattering from Corrugated Cylinder

Consider a corrugated dielectric cylinder with arbitrary cross section as shown
in Fig. 8.8. Assume the corrugation geometry is such that the humps are identical
and of equal distance L from each other. Further assume that if the corrugation
is removed the surface of the cylinder would be denoted as before by p(¢) and the

radius of curvature at each point is much larger than the wavelength and L. Under

Y
T +  m o,

om

v X

L

Figure 8.8: A corrugated cylinder geometry.

these conditions each point on the cylinder surface can be replaced, approximately,
by a periodic corrugated surface. The accuracy of this approximation is in the order
of physical optics approximation for smooth cylinders.

Suppose the cylinder is illuminated by a plane‘ wave travelling in —z direction
and let us denote the tangential coordinate at the center of each hump by (z',y’)
where 3’ coincides with the outward normal unit vector (7(¢)). If the origin of the

th

prime coordinate system corresponding to the m!* hump is located at (p,,, ¢m) we
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have
bm = iA@ — % (8.39)
=1
L
Adpyq = , (8.40)
T (8 + 2 (80)

where A¢; is a known quantity. The local incidence angle at the m* hump can be

obtained from
¢! = arccos(f(dn) - 2)

and the induced current in the m!* hump can be approximated by that of the peri-
odic corrugated surface when the incidence angle is ¢! . The scattering direction is
denoted by ¢, as before and the scattering direction for the m* local coordinate is

given by
P = b5 — ¢:n

The far ﬁeld due to the m™ hump (S,,), depending on the polarization, can be ob-
tained from (8.10) and we note that those humps with | ¢2, |> 7 /2 do not contribute
to the far field. The total contribution of the cylinder corrugation to the far field is
the vector sum of the fields due to each hump modified by a phase factor to correct

for the relative positions of the humps. Therefore
Sc — Zsme—ikozme—iko(zm cos ¢s+ym sindu), (841)
where

Tn = Pm COS Py,

Ym = Pm SIN Pr.
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The total scattered field may now be obtained from
S=S.+8,,
where S, is the far field amplitude of the smooth cylinder.

8.5 Numerical Results

To examine the effect of surface corrugation on scattering from corrugated cylin-
ders, we consider a two-layer circular cylinder with uniform corrugation. The per-
tinent parameters are chosen as follows: each hump is a A\/8 x A/8 square with
dielectric constant ¢; = 4411, the distance between humps is L = A/4, the thickness
and dielectric constant of outer layer are A/2 and 4 + i1 respectively, and the radius
and the dielectric constant of inner layer are 10\ and 15 + :7 respectively. For the
corresponding periodic surface all the components of the induced current in each
hump are obtained by the moment method and the amplitude and phase of the total
current (f, J(',y")dz'dy’) are plotted in Figs. 8.9 and 8.10. Figures 8.11-8.14 show
the amplitude and the phase of the zeroth Bragg mode as given in (8.21) and (8.22),
the reflected wave in the absence of the corrugations, and the sum of the two waves
(total reflected wave) as a function of incidence angle. For E polarization (Fig. 8.11)
the total reflected wave is less than the reflected wave in the absence of corrugation
(reduction in the scattered field). In this case, as far as the total reflected field is
concerned, the corrugation can be replaced by a homogeneous dielectric layer with
thickness A/8 and € = 2.6 + 70.58. For H polarization (Fig. 8.13) the total reflected
wave is weaker than the reflected wave in the absence of the corrugation for angles
less than the Brewster angle and vice versa for angles greater than the Brewster
angle.

Once the induced current versus angle is obtained the bistatic scattered field can
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be computed from (8.41). Figures 8.15 and 8.15 show the far field amplitude due
to the corrugation (S.) and smooth cylinder (S5,) and the total far field amplitude
(S: + S5). To examine the role of the outer layer, the far field amplitude of the
cylinder when the outer layer is removed is also plotted. It is seen that the smooth
bark reduces the scattered field by 3 dB and the corrugation on the bark further
reduces the scattered field by another 8 dB. In Fig. 8.16 the total far field amplitude
, for TM case, of the corrugated cylinder is compared with a smooth cylinder when
corrugation is replaced by an equivalent layer (thickness=A/8, ¢ = 2.6 + 10.58).

Excellent agreement is obtained.

8.6 Conclusions

A hybrid solution based on the moment method and physical optics approxima-
tion is obtained for corrugated layered cylinders. The only restriction on the physical
dimensions. is the radius of curvature (r) of the cylinder where we require r 3> X. Also
new physical optics expressions for the equivalent surface current on the dielectric
structure is introduced. This method is employed to investigate the effect of bark
and its roughness on the scattering from tree trunks and branches. It is shown that
the bark and its roughness both reduce the radar cross section. The low contrast
dielectric bark layer manifest its effect more significantly at higher frequencies where
the bark thickness and its roughness are a considerable fraction of the wavelength. It
is also demonstrated that the roughness of the bark can be replaced with a homoge-
neous layer for the TM case. This suggests the possibility of replacing the roughness

with an anisotropic layer for the case of an arbitrary polarization.
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surface versus incidence angle for H polarization: (- - - ) zeroth order
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Figure 8.16: Far field amplitude of a corrugated cylinder for TE case with a = 10.5),,
a; = 10X, L = Ao/4, €1 =4 +11, and € = 15+ 47; (- - - ) contribution
of corrugation (S.), (-~ —) contribution of smooth cylinder (S;), (—)
total far field amplitude (S, + S.), and (- - -) far field amplitude for
smooth cylinder in absence of corrugation and outer layer.
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CHAPTER IX

SCATTERING FROM A FOREST CANOPY

9.1 Introduction

A forest canopy is considered to be an inhomogeneous medium which consists of
randomly oriented discrete scatterers, namely leaves or needles and branches, above
a ground layer. As discussed in Chapter 1, depending on the frequency range desired,
there are two approaches to obtain a scattering model for a forest canopy, contiﬁuous
and discrete random medium techniques. In the continuous case the random medium
is modelled by assuming that its permittivity e(z,y,z) is a random process whose
statistical behavior is known [T'sang et al pp.319, 1985; Lang, 1981; Tsang and Kong
1978]. In the discrete case it is assumed that the particles are sparse in the medium
and the single scattering theory is applied [Ulaby et al, Chapter 13, 1986; Tsang et
al, Chapter 3, 1985; Karam et al, 1987].

At microwave frequencies and above, the vector radiative transfer approach is ap-
propriate to model forested areas. The single scattering models that were developed
in previous chapters can be used directly in this model and the effect of different
physical parameters of the constituent particles on scattering can be investigated.

The forest canopy is modelled as two horizontal layers (Fig. 9.1), a crown layer

of height d above a trunk layer of height H;. The crown layer, comprised of leaves
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and branches, is assumed to be continuous in the horizontal direction and statistically
homogeneous over the crown volume. The trunk layer is assumed to consist of verti-
cal, homogeneous, dielectric cylinders. The air-crown interface and the crown-trunk
interface are treated as diffuse boundaries, and the interface between the trunk layer
and the ground layer is considered a specular surface. The problem is formulated
using the radiative transfer equation and the scattering intensity I* (Stokes vector)

in the form of a first-order solution is given.

9.2 Basic definitions

The simplified geometry of the problem is depicted in Fig. 9.2. The boundaries
at 2z = 0 and z = —d are assumed to be diffuse, and the bottom boundary at
z = —d' = —(d + H,) is treated as a specular surface with a dielectric constant ¢,.

The vector radiative transfer problem is formulated in terms of the vector specific
intensity I [Ulaby et al, 1986, pp. 1085-1092]. For an elliptically polarized monochro-
matic plane wave given by (1.8) I is defined through the modified Stokes parameters

L, I,,U, and V as follows:

(I'u ( |Eu I2
I | Ej |2
o L RS R (9.1)
U | 7| 2Re(E,E})
v 2Im(E,E})

The standard approach used for defining the bistatic scattering coefficient of a dis-
tributed target of area A is to compute the field scattered by the target in the
direction of interest as a result of illumination by a plane wave. Thus, the incident
illumination is a plane wave, whereas the scattered field is a spherical wave. For a

spherical wave, the vector specific intensity also is defined in terms of Stokes parame-
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ters, but the definition includes normalization by the solid angle A cos 6,/r?, where r
is the distance between the distributed target and the observation point and 6, is the
angle between the outward normal to A and the vector defining the direction from
the target to the observation point. Hence, the scattered intensity from a random

medium is defined as:

[ ] ] [ s |2 -]
I (| E51*)
Is 2 Es 2
T L L 02)
U 0A1CO8%s | oRe((E2EL))
Ve 2Im((E, E}*))

where () denotes ensemble average.
The bistatic scattering coefficient o3, corresponding to a B-polarized incident
plane wave giving rise to a-polarized spherical wave is defined as:

drr? (| E2 |?)
0= . < 9.3
Te8 = 7Y |Ej |?° (9:3)

where «, 8 = v or h polarization. Using (1.8) for | E} |? and (9.2) for (| EZ |?), (9.3)
can be written as:

4 cos 6,1%(6,, &)
J; T — 0 ) ;0.9, s) = : = :
a( b, $0; 05+ bs) T5(r — Bo, o)

where (7 —6,, ¢o) denotes the direction of the downward-going incident intensity and

(9.4)

(05, ¢s) denotes the direction of the upward-going scattered intensity. We note that

0; = 6y and ¢, = 7 + @ corresponds to scattering in the backward direction.

9.3 Phase and Extinction Matrices

9.3.1 Phase Matrix

For a single particle in the global coordinate system (X,Y, Z) with some orien-

tation angles (6;, ¢;) the scattering matrix S(,, ¢,;6;, ¢:;0;, ¢;) is defined in (1.11)
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where (0;, ¢;) and (0,, ¢;) denote directions of incidence and scattering respectively.
In fact the scattering matrix relates the incident field components to the components
of the scattered field in the desired directions. Counterpart of the scattering matrix
for modified Stokes vector is the Stokes matrix L(0,, ¢,; 0;, ¢:;0;, ¢;) which relates
the scattered modified Stokes vector I* to the incident modified Stokes vector I' by

[Ulaby et al.,1986,p.1088]

8 1 i
I'= r_g'L(oaa¢s;0ia¢i; 0.7', ¢J) T (95)

where L(0,, ¢,;0;, ¢:;0;, ¢;) is the Stokes matrix and is given by

| Sy |2 | Son |2 Re(S;thv) _Im(S;thv)
| Sho |? | Sk I? Re(S3nShv) —Im(S3, Shy)
2Re(SyuSi,) 2Re(SunSin) Re(SwuSin + SunSiy) —Im(SwuSin — SunShy)

| 2Im(S,,Sy,) 2Im(S,Si) Im(SuSiy + SunSi,)  Re(SuuSin — SunShy) |
(9.6)

If the particles in the medium are positioned and oriented randomly, we may add
the scattered Stokes vectors of the particles incoherently. This can be justified by
noting that the phase of the scattered wave from a particle depends on its position
and if the distribution of the scatterers is sufficiently random, the phase distribution
of the scattered field becomes uniform. Suppose the medium is comprised of particles
with known size and orientation distribution functions and the number of particles

per unit volume is denote by N, then the phase matrix of this medium is defined by
P(03’¢s;0i,¢i) = N<L) (97)

where ( ) is ensemble average over the size and orientation of the particles. The

phase matrix P(0,, ¢,; 0;, ¢;) relates the average intensity scattered by a unit volume
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of the crown layer into the direction (6,,4,) to the intensity incident upon the unit
volume from the direction (6;, ¢;). It should be pointed out that in the trunk layer
the trunks are assumed to be vertical and usually the density is given by the number

per unit area (N;). Thus the phase matrix in trunk layer is defined by

P.(0,, bv; 0:, 6:) = %(L) (9.8)

where () is the ensemble average over the size of the trunks.

9.3.2 Extinction Matrix

The extinction matrix characterizes the attenuation of the Stokes parameters due
to absorption and scattering. For a medium with low concentration of particles, the
attenuation rate can be obtained from the extinction cross section of the individual
scatterers. By applying the optical theorem, the extinction cross section, o2, (p = v
or h), is given by

dr
0'5,, = _A;Im[spp(osa ¢a; 0:‘7 ¢i; oj, ¢j)]7

from which the extinction coefficient can be obtained through
Ky = N{0Cs) (9.9

To find a better estimate of the coherent field along the propagation direction
(6;, #:), Foldy’s approximation can be employed. The coupled equations for ver-
tical and horizontal mean field in this approximation is of the following form [Tsang

et al.,1985,p.139]
dE,
ds
dE;,

—% = My B, + (iko + M) Ey (9.11)

= (Zko + Mvv)Ev + Mthh (910)
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where s is the distance along the direction of propagation and

an = E’:’L‘IX<Sm'n(0u ¢s;0i, ¢i;0j7 ¢])) m,n = vah (912)
0

Using the definition of the modified Stokes parameters and (9.10) and (9.11) the

following coupled differential equation is found

d
—I = —k! 9.1
dsI xl (9.13)

where & is the extinction matrix and is given by

-

—2Re(M,) 0 —Re(M,1) ~Im(M.)
0 —2Re(Mhh) —Re(M}w) Im(th)

—2Re(My,) —2Re(M,) —[Re(M,,)+ Re(Myz)] [Im(M,,) — Im(Mp,)]

i 2Im(My,) —2Im(Myp) —[Im(M,,) — Im(Mpr)] —[Re(M,.) + Re(Mas)] ]
(9.14)
The effective propagation constant of the mean field can be obtained from the

eigenvalues of the matrix formed by the right hand side coefficients of equations

(9.10) and (9.11). The two eigenvalues are given by

K = ko = 5[My, + My +1] (9.15)

Ky = ko = 5[Myy + My — 1] (9.16)
where

r = [(Myy — Mha)? + 4Mp, M) (9.17)

The eigenvectors corresponding to Ky and K, are denoted by [1,4;] and [by, 1] re-

spectively, and b; and b, are given by

_ 2th
My, — My +r

by
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2M,,,

_Mvv + Mhh -T

The corresponding effective propagation constant of the coherent Stokes parameters

can be obtained from eigenvalue solution of equation (9.13). The eigenvalues of

extinction matrix are given by [Tsang et al.,1985]

A(0,4) =

A1
Az
As
A4

.

iK; —iK,

iKr — ik,

2Im[K2] ]

(9.18)

The eigenmatrix Q(6, ¢) is also defined in such a way that the columns of Q(6, ¢)

are the eigenvectors of the extinction matrix and is given by

1

| by |?

Q(6, ¢)
2Re[bl]

b
b

14 b b;

bo
b

1+ byb?

;
| b, [

1

2Re[b,]

| —2Im{by] —i(1 ~bib;) (1 —beb]) 2Imby] |

(9.19)

It is worth noting that at high frequencies or generally for particles with no depo-

larization where M,, = M}, = 0 the eigenmatrix Q is independent of the particles

shape and orientation. In this case the eigenmatrix and its inverse are given by

Fl 0 00

0 0 01
Q:

0 1 10

LO - 1 0

9.4 Radiative Transfer Equations

=

L]

W=

W .

When formulating the radiative transfer problem for bounded media, the standard

practice is to split the intensity vector into upward-going (I*(4, ¢, z)) and downward-
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going (I7(8, ¢, z)) components, noting that § varies between 0 and 7 /2 [Ulaby et al.,
1987, pp.1090-1092]. In the crown layer , the intensity (I} (0, ¢, z)) travelling in the
upward direction (6, ¢) and the intensity (I7 (7 — 6, ¢, z)) travelling in the downward

direction (7 — 8, ¢) must satisfy the coupled radiative transfer equations

L1 (1, 8,2) = ~ELTH (p, ¢, 2) + FE (1,6, 2) —dSES0 o
-2 (-, ¢,2) = =BT (—p, 6,2) + Fo (—p,4,2), —d<250

where & is the extinction matrix of the crown layer, p = cos 0, and —u = cos(w —8).
The source functions F}(u, ¢, 2) and F_(—g, ¢, 2) account for directing the energy
incident upon an elemental volume from all directions into the direction (6, ¢) and

(r — 0, ), respectively and are given by

Ft(u,¢,2) = [ Po(p, ¢ 1, ¢ VI (', &', 2)dQY

{ NI "¢, 2)dsY

Po(p, é;—p', ¢ (=4, ¢', 2)d (Y] (0.21)
F (~p,¢,2) = [ Po(—p, 0/, 8" (1, ¢', 2)d Y

( —H ¢a —/J", ¢')Ic_(—[t', ¢’, z)dQ’]

where dQV = dp'd¢’ = sin@'d0'd¢’, and P (u,d;u',¢') is the phase matrix of the
crown layer. Equations identical with (9.20) and (9.21) may be written for the trunk
layer (—d' < 2 < —d) upon replacing the subscript c with the subscript t. In equation
(7.13) it was shown that the far field amplitude of a long cylinder is proportional to

sin V/V and thus the phase matrix of the trunk layer has a similar dependency, i.e.

sin[koHy(cos 8; — cos 6,)/2] 2
(05, 53 61, 6:) { koH;(cos 0; — cos ,)/2

For the forest canopy the height of the trunk layer is assumed to be much larger than

the wavelength (H; > A). Thus the following approximation can be employed

sin[koH(cos 0; — cosb,)/2]
koH,(cos 8; — cosb,)/2

~ br(ps — l‘i)
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where 6; is the Kronecker delta function and is defined by

L e =g
Sk(ps — i) =
0; otherwise
As a result of this approximation the cylinders in the trunk layer can only generate
upward-going (downward-going) intensity when they are illuminated by an upward-

going (downward-going) intensity. Therefore the source functions in the trunk layer

are given by
F/ (1, ¢,2) = % 5" P, 65 1, 8o T (', ¢, 2) 8 (1 — ') dp']d g’

Ft-(_ﬂa ¢7 Z) = 71; f021r Pt(—ﬂa ¢7 —H ¢I)[jg It_(—/"a ¢Ia Z)(Sk(ﬂ - :u’)d#’]d¢l

where the quantity in the bracket is the representation of the specific intensity for a

(9.22)

two dimensional problem.

The solution to differential equations (9.20) and (9.21) can formally be expressed

as
I (1, 6,2) = e ROt (g, —d) + [ ’d e REE=uFE (4, 6,2) 2’ (9.23)
- o _ ]
I7 (—p, ¢, 2) = e® /P17 (—p, 6,0) + / e E=F - (—p, 4, 2')d2’ (9.24)
where
kI =k.(0,9),
(6.9) (9.25)
K] = k(7 — 0, ¢),

and the following notation has been adopted

e Rl = Qu(u, $)Delp, &5 —2/ 1)QZ (1, 6) (9-26)

where Q.(¢,¢) is a matrix whose columns are eigen vectors of the extinction matrix
K.(p, $), and D (g, ¢; —z/p) is a diagonal matrix whose diagonal elements are of the

following form

[De(p, 5 —2/ )]s = e~ Nilmd)z/u
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with A;(u, #) being the i** eigen value of Kk.(u, ¢).

Similarly the vector specific intensities If and I; in the trunk layer are given by

If (i, ¢, 2) = e CHOVBTH (4 6 —d') + _zd' e RV ey 4, 2)d2 (9.27)

I (—pyd,2) = €T (6, ~d) + [ T R (— s, 9,2)d7 (9.28)
where the subscript ¢ denotes that the propagation and scattering processes are
taking place in the trunk layer. If we limit our solution to first-order scattering, the

first-order contribution of the trunk layer is observable only on the surface of a cone

with generating angle 6, which includes the backscattering direction.

9.5 First-Order Solution for Bistatic Scattering

Because there is no reflection at the (diffuse) air-crown boundary (z = 0) and

the crown-trunk boundary (z = —d), the following boundary conditions must be
satisfied:

I (=11, 6,0) = Lod( — w)8(# — o) , (9.29)

(p, ¢,—d) =1 (p, ¢, —d) , (9.30)

L (~p ¢, —d) =I7(—p, ¢, —d) . (9.31)

At the bottom boundary (z = —d’), the boundary condition is
I (n, ¢, —d) = R(WI; (—p, ¢, ~d) , (9.32)

where R(g) is the reflectivity matrix of the specular surface and is given by [Tsang

and Kong, 1978; Ulaby et al.,1986, pp. 1183]

R 0 0 o
0 |Ril? 0 0
R(p) = '
0 0 Re(R,R;) —Im(R,R})
| 0 0 Im(R.,R,‘;) RC(RvR}:) J
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where R, and R; are the v-polarized and h-polarized Fresnel reflection coefficients
of the specular surface at incidence angle 6.

In order to obtain scattering behavior of the layered media, we need to solve for
I (u, ¢, 2z) and then evaluate it at z = 0. Upon setting z = —d in (9.24), insert-
ing the result in (9.28), and then evaluating the resultant expression at z = —d’,
the downward-goiné intensity at the bottom surface can be obtained. Now the
upward-going intensity at the bottom surface (If (u, ¢, —d’)) can be found by using
the boundary condition (9.32). The expression for If (¢, ¢, —d') can be inserted into
equation (9.27) and then the latter can be evaluated at z = —d to obtain an expres-
sion for If (1, ¢, —d). Finally by inserting the resultant expression for If (i, 4, —d)

into equation (9.23), we end up with the expression

K}z K- -
IH(ub,2) = e ®CHR (4, ¢) - [T (—p, 4,0)
+ [ IR (g, + [ R (s, 4,24
e—ni(z+d)/u[e—n,+Hz/pR/"d e_n,‘(zl+d')/uFt—(_#, ¢, zl)dzl
—d’

—d ’ .
[ e E (4, 4,22 (9.33)

where

R'(u,¢) = e Ht/v  Rn) - e~ i/,

The matrix R’(x, ¢) accounts for extinction in the trunk layer and reflection at the
specular surface. The above expression is given in terms of the source functions F*
and F§ which in turn are given by (9.21) and (9.22) in terms of I¥ and If. Thus
we need to solve the coupled integral equations (9.22),(9.27),(9.28), and (9.33) to
obtain If(y,¢,0). If the scattering albedo of the medium is small, we can solve
the integral equations using an iterative approach. We shall start with the zeroth-

order solutions, which are obtained by setting P.(p, #; 1', ¢') = P¢(p, ¢;4',¢') = 0 in
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(9.21) and (9.22) which renders F£(u, ¢, z) = F£(—u, ¢, z2) = 0. Using the boundary

conditions given by (9.29)-(9.33) the zeroth-order specific intensities are given by

Io(—p, ¢, 2) = e 2/¥ g6 (1 — po)é(4 — o)
Lo(—p, ¢, 2) = efoe A/ ue=R BT 6y — 1o)é(d — o)

Lo, 6, 2) = e~ R CHVuR e R Helue=REd/nTo6 (1 — 1o)6(¢ — o)

(9.34)

Th(p, ¢, 2) = e R+ ne=KT HfuR =K Helke=KIdIuTo8(1 — 1o)6(¢ — o)
where the symbols IZ and I are used to denote the zeroth-order solutions of I¥ and
I, respectively.

The zeroth-order solution corresponds to propagation of the coherent wave through
the medium with the scattering ignored, except for its contribution to extinction. To
obtain the first-order solution, we first need to use (9.34) in (9.21) and (9.22) to
compute the first-order source functions F% and Fi, and then insert the result in
(9.33). This process leads to:

Il+(/" , z) — e-Kfi(z+d)/#R'(#, ¢)e—'9c'd/#
B0 = 1o)&( = do)lo + e IR ()
'{/;(:[e_n:(zl+d)/“Pc(*l‘, é; Ko ¢0)e_nt "+l wa R/ (0, $0)
e 4 ~RECHDINP (1, g5 —po, do)e’SE  0JdZ )T,
+i{ J L P (4, 5 i, e IR g, o) 4
+e~ NP (1, ¢ — o, do)e™ 1]}
1

+;e—Ri(zH)/#e—Rch/#R[/;dl e_K"_(’l’Ldl)/“P,(—y, é; — i, do)

e gyl e dlmog, (u — po)lo

+le—nt(z+d)/p /_d eK;f(z’-{-d')/;APt(#, ¢, Iy ¢0)e—nf(z’+dl)/#odzl
@ —a

Re™ S0 Hilmog=KZd/bag, (1 _ 140\ (9.35)
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where it is understood that k,/p = sZ,(i, ¢)/p and kE,/ 1o = &, (1o, $0)/po. To
find an expression for the intensity emerging from the crown layer at z = 0, we
shall first define the integrals in (9.35) in terms of equivalent matrices. Using the

definition given by (9.25)

Al(iua ¢a Ho, ¢0) ; = /Od Dc(_ﬂa ¢; —(Z, + d)/ﬂ)Q:l(—,u, ¢)Pc(_ﬂa ¢a Ho, ¢0)

Q< (pos $0)De(pios do; —(2' + d)/po)d2’, (9.36)

whose (i5)** element is given by

1 — exp[—(Ai(=p, 8)/ 1 + Aj(po, do)/ po)d]
/\i(_ﬂ’ ¢)/# + ’\.‘i(#Oa ¢0)/#0

'[QC_I(_#» ¢)Pc(—ﬂs ¢a Hos ¢0)Qc(/"0s ¢0)]|’j-

[Al(ﬂ’ #; to, ¢0)]t’.‘i =

In a similar manner,

0
Aa(p, &5 pro, o) = /_ch(—ﬂ,¢;—(Z'+d)/#)Qc—l(—#,¢)Pc(—#,¢;—#o,¢0)

Qc(_l—to’ ¢0)Dc(_#0’ ¢0, Z,/[.to)dzl | (937)

exp[—Xi(—=#, ¢)d/ 1) — exp[—A;(—pto, do)d/ o]
—’\i(_ﬂ’ 45)/# + ’\J'(_ﬂO’ ¢0)/#0

'[le(—#, ¢)Pc(—#, é; — Ko, ¢0)Qc(—#o, ¢0)]ij,

[A2(, &5 po, d0)}i; =

0
Aa(, dip0,d0) = [ Deliy 652 /1)Q7 (s )Pk, 8 o, o)

Qc(#0, $0)De(po, go; —(2' + d) [ po)d2’ (9.38)

exp[—A; (1o, $o)d/ o] — exp[—A;(p, ¢)d/ ]
/\i(p’ ¢)/P’ - /\.‘i(/’tO’ ¢0)//’t0

Q5 (1, $)Po( 1, 65 oy $0)Qe(k0, $0))iss

[A3(ﬂ, ¢; Ho, ¢0)]ij =

and

A4(ﬂ, ¢; Ho, ¢0) = /c:i Dc(ﬂ’ ¢a z,/#)Qc_l(ﬂ’ ¢)Pc(ﬂa ¢; —Ho, ¢0)

Qc(—t0; $0)De(— pto, $o; 2’/ po)d2’ (9.39)
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: Y —exp[—(Xi(, )/ + Ai(—po, $0)/ 1o)d]
[A4(l‘a ¢a Ko, ¢0)]'J - /\‘([I,(ﬁ)/ﬂ-l- /\j(_ﬂo,ﬁso)/llo

'[Qc_l(/‘a ¢)Pc(l‘a ¢; = lo, ¢0)QC(_/‘0’ ¢0)]ij

—d
As(p, 85 1o, $0) = /_d, Dy(—p, ¢ ~(2' + d)/1)Q; (— 1, §)Po(—1, 65 ~1, bo)

Qz(—lto, ¢0)Dz(—llo, do; (2' + d)/llo)dz' (9-40)

. - exp[=Xi(—p, ¢)H,/p] — exp[—X;(—to, $o) Hi/ o)
[As(re 95 o dollis = =Xi(—1: )/ 1+ Aj(—po, do)/ o

Q7 (=1 $)Pe(-p, 65 — p, $0) Qe(— po, $0))is

—d
As(p, ¢; po, $o) = /_d, Dy(u, ¢; (2" + d)/1)Qy (1, §)Pe(1, 65 1, bo)

Q: (10, $0)D:(po, Po; —(2' + d')/po)d2’ (9.41)

. —_exp[=X;(po, o) H:/po) — exp[=Ai(p, $)Hi/ 1]
[AG(l"QS) Ho, ¢0)]1J - /\,([I,(ﬁ)/ﬂ —_ ’\j(l‘0a¢0)/ﬂ0

1Q7 (1, $)Pe(1y b5 1, $0) Qe (K0, 0)]i-

In view of these matrices, (9.35) can be evaluated at z = 0 and written in the form

I(p,¢) = If(p,¢,0)
= e—nid/“R'(llo, ¢o)6_nc_d/“05(ﬂ — 10)6(¢ — ¢0)Io
+ e_n:d/#R’(/‘a ¢)Qc(_#a ¢)A1 Qc_l (/‘0a ¢0)R’(l‘0a ¢0)e_nc—d/#010

+

TR

e—K,zd/#R’(#, ¢)Qc(_#’ ¢)A2Qc_1(_ﬂ0’ ¢0)IO

Qo1 6)AsQ3 (o, )R (o, o)1,

U
1
+; Q.(#, $)AaQ- (—po, $0)Lo
1 -
+;e"°°+"'"‘e"'°'+""“RQz(—u, $)AsQ; (—po, Po)e™ e M8 — po)To
1 ) _
+;e“'°°+d"‘Q:(u, $)AsQ; ! (1o, fo)Re e He/mog=Kedmg, (1 _ VI

(9.42)
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The seven terms contained in (9.42), which are diagrammed in Fig. 9.3, represent:

Term ds This is a coherent reflection term resulting from direct propagation of the
incident intensity through the layers down to the bottom boundary, followed
by specular reflection by the specular boundary, and then followed with direct
propagation through the layers to the upper boundary. This term exist only in
the specular direction (8, ¢) = (6o, ¢o), and in that case, its magnitude is equal
to Iy, reduced by the product of the two-way attenuation and the reflection

coefficient.

Term 1 This term represents propagation of the incident intensity through the two
layers to the bottom boundary, followed with specular reflection at 6y, then
bistatic scattering by the vegetation material in the crown layer downward in
a direction (m — 6, ¢) such that after specular reflection by the lower surface
a second time at 6, the reflected intensity propagates upward through the two

layers along the direction (6, ¢).

Term 2a This term represents propagation of the incident intensity Ip into the
crown layer along the direction (6o, ¢o), followed with bistatic scattering by the
vegetation material downward along the direction (7 — 6, ¢), and then followed

with specular reflection by the lower boundary upward through the layers along

the direction (6, 4).

Term 2b This is the complement of term 2. It represents propagation of the in-
cident intensity Iy through the layers down to the bottom boundary, specular
reflection at 6, upward propagation at 6y, then bistatic scattering by the veg-

etation in the direction (6, ¢).

Term 3 This term does not involve reflection by the bottom boundary. It repre-
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sents incidence at (7 — o, o) followed by bistatic scattering upward along the
direction (6, ¢). For a semi-infinite layer, the other four term vanish and only

this term remains.

Term 4a This term represents the propagation of the incident intensity in the
crown layer (i.e. attenuation only but no change in direction), followed by
bistatic scattering by the trunks down to the ground surface, followed by
bistatic reflection by the surface boundary, and then direct propagation through

the trunk and crown layers.

Term 4b This term is the complement of term 5 (same path, but in reverse direc-
tion). This term and term 5 will be referred to as ground-trunk term. Contribu-
tion of these terms is observable only on the surface of a cone with generating

angle 6,.

With I°(u, ) given by (9.42), the expression for the bistatic scattering coefficient
may now be readily found by inserting (9.42) into (9.4). For the backscattering
case, we set 6 = 0y and ¢ = ¢o + 7 in (9.36)-(9.42). For an azimuthally symmetric
medium, this condition causes the diagonal components of A; A; As, and Ag to

become indeterminate. Application of L’Hopital’s rule, however, leads to

lim [Ag(, §; o, Go)]is = de™ ¥4k [QTY (—pu, $)P o (~ 1, ¢35 — o, o) Qe —po, o) i

H— 0

The same result applies to Az,As, and Ag. The backscattered intensity can be

related to the incident intensity through a matrix T(6o, ¢o),

Ia = T(GO’ ¢0)IO
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ds 1 a b 4a 4b

2b 2a ¢b
0
z=0 0
Z=-d \\\

3 4a
ds ‘ 3
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o\

z=-d' =-(d+H,) 0 7 ‘ 0, ' 9, \

Figure 9.3: Scattering terms for the bistatic case.

2a 2a

1 26 2b 3 4a 4b

9,
z=0
m \‘ Crown Layer
V/i
‘ Trunk Layer
z=-d' =-(d+H,) 7 9,

i

Figure 9.4: Scattering terms for the backscattering case.
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where

1
T(ao, ¢0) — Ee—ni'd/uo

'R,(/-‘O, ¢0 + 7")Qc(_/"m ¢0 + 7!')

A1 Q" (sos $o)R (o, po)e~ e /o
1

+#_e_ntd/u°R'(#o, do + )Q.(—to, o + 7)A2Q; " (—Ho, $o)
0

1 -
+:QC(#07 ¢0 + 7'.)‘AZBQJI(I—‘O, ¢0)R’(Ij0, ¢0)e—nc d/uo
0

+ch(#o, ¢o + 7)A4Q " (—Ho, bo)

1 o
+;-€—n:d/"°e_ntH'/MR(#o)Qz("#o, o + T)AsQy " (—po, po)e™ e /e
0
1 L
+'; e_ntd/MQt(,Uo, $o + 1) A6 Q7 (0, do)R(po)e™ " Hefuo g=t0c dfuo
0
(9.43)
The backscattering coefficients thus become
Uzv = 47r[T(00, ¢0)]11 Cos 00 (9.44)
ohn = 4n[T(8o, $o)]22 cos o (9.45)
Thy = 47[T (0o, 0)]21 cos bo (9.46)
U:h = 47F[T(00, ¢0)]1-2 Cos 00. (947)

Figure 9.4 depicts the scattering mechanisms for the backscattering case.

9.6 Numerical Results

We are now in a position to investigate the effect of different physical parameters
of constituents of a forest canopy on its backscattering cross section coefficient (o°)
using single scattering models developed in the previous chapters. Considering dif-

ferent canopy cases and performing sensitivity analysis on each cases is beyond the
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scope of this thesis, but examining a simple canopy stand demonstrates the ability
and performance of the radiative transfer first-order solution.

We consider a canopy with a leaf-dominated crown layer ! whose thickness is 2m
and a trunk layer consisting of homogeneous vertical cylinder with H; = 8m. The
leaves in the crown layer are flat and square having thickness 7 = 0.3mm, lateral
dimensions 5.5¢m >< 5.5¢m, and gravimetric moisture content 0.8. To obtain the
phase matrix of the crown layer expressions (2.38)-(2.41) were used in which the 2’
axis of the leaf coordinate is assumed to be parallel to the X —Y plane. Further it is
assumed that the normal to the leaf surface has a uniform distribution and number
density of the leaves is 833/m?®. The cylinder in the trunk layer are circular with
diameter 24cm and height 8m. The gravimetric moisture content of the trunks is 0.5
and their number density is N; = 0.11/m?2. The ground surface is smooth and made
up of 10% sand, 30% slit, and 60% clay with volumetric moisture content 0.15.

Table 9.1 gives dielectric constant of leaves and trunks [Ulaby and El-Rayes,
1987] and dielectric constant of ground surface [Hallikainen et al, 1985] for L-, C-,

and X-band frequencies. Figures 9.5-9.8 show transmissivity (power transmission

Frequency Leaf Trunk Soil

1.62 GHz || 34.6 +:17.0 | 15.9 4+ ¢10.7 | 16.1 + 1.5

4.75 GHz | 30.3 +¢13.8 | 13.04:8.0 | 6.9+ :0.7

1.62 GHz || 25.7 +414.0 | 11.04-47.4 | 5.8 4 ¢1.4

Table 9.1: Dielectric constant of leaves, trunks, and soil at L-, C-, and X-band fre-
quencies.

coefficient) in the crown layer as a function of incidence angle and leaf density for L-

1Branches are neglected.
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,C-, and X-band frequencies and for both v and h polarizations. The loss in the crown
layer increases with increasing frequency, angle of incidence, and number density. In
Figs. 9.9-9.12 the backscattering cross section coefficient of the canopy at C-band
is plotted versus incidence angle for four transmit and receive antenna polarization
configurations. In these figures contribution of different terms in (9.43) as depicted
in Fig. 9.4 are shown. Similar plots are shown in Figs. 9.13-9.16 for X-band. Since
reciprocity is not preserved in the physical optics approximation, o3, and oy, are not

exactly identical as shown in Figs. 9.10-9.11 and 9.14-9.15.

9.7 Conclusions

A forest canopy is modelled as a statistically homogeneous three-layer medium.
The crown layer may be comprised of distributions of leaves or vegetation needles
and branches. The trunk layer consists of vertical dielectric cylinders which may
be radially inhomogeneous. The third layer is a homogeneous dielectric half space
with a smooth surface. The problem is formulated using the vector radiative transfer
equations and a first-order solution is obtained. The analytical nature of this solution
enables us to study the effect of different scattering mechanism in the medium. This
solution, however, is not appropriate when the density of the constituent particles is
high and a higher order solution is needed for such cases. The appropriate frequency
range for this model is determined by the frequency range over which single scattering

models are valid.
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CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary

This thesis provides models for several problems associated with scattering from
vegetation-covered land. A major part of the thesis is devoted to developments of
single scattering models for elements of the vegetation canopy and examination of
their scattering behavior. These models serve as input functions in a first-order
solution of the vector radiative transfer equations for scattering from a three-layer
forest canopy. In this section we summarize the important results of each chapter.

In Chapter 2 it is shown that the resistive sheet model, in conjunction with the
physical optics approximation, faithfully reproduces the dominant features of the
scattering patterns of flat leaves. This high frequency model provides satisfactory
results when the dimensions of the leaf are larger than a wavelength. The resistivity
of the sheet is entirely specified by the moisture content and thickness of the leaf. By
comparison of the numerical results with experimental measurements, it is concluded
that the model retains its accuracy over a wide range of moisture contents and aspect
angles.

Using resistive sheet and physical optics approximations, the model is extended to

the case of a curved leaf in Chapter 3. A simple analytical expression for radar cross
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section reduction produced by the curvature is obtained by applying a stationary
phase approximation. It is concluded that the curvature has a significant effect in
reducing the scattering cross section around the specular direction and broadens the
scattering pattern.

In Chapter 4 the results obtained in Chapter 2 and 3 are extended to higher
frequencies by modelling a leaf using a stack of combined sheets. This model accounts
for the effect of inhomogeneity in the cross section of the leaves which has a significant
effect on scattering at millimeter wavelengths. In this chapter two types of physical
optics approximations are compared and superiority of the VIPO technique over
the SCPO technique is shown by comparing their results with the moment method
solution.

Chapter 5 is devoted to examination of the effect of nonuniform thickness profile
and variation of the moisture content on the scattering behavior of a leaf. A new
perturbation technique in the Fourier domain is introduced. Solution of the induced
current on a variable resistive or impedance sheet can be obtained, in principle, to any
desired order of perturbation. An analytical solution for the induced current when
the perturbation function is periodic is given. The results based on the perturba-
tion technique are compared with the moment method solution for periodic resistive
sheets, a third order GTD solution for impedance insert, and a moment method
solution for scattering by dielectric structures above resistive and impedance sheets.
Excellent agreement is obtained in all cases. For the numerical solution of scattering
from dielectric objects above resistive and impedance sheets a new representation for
Green’s function of the problem is obtained. In this representation exact expressions
for the image of a line source above resistive and impedance sheets are given which

are very efficient for numerical calculation.
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By calculating the scattered field for different cases of a typical dielectric hump it
is concluded that a vein and a variation in the thickness of a leaf do not have a signif-
icant effect near the specular direction, but in other directions they are substantial
contributors to the scattered field.

Rayleigh scattering theory is extended to the two-dimensional problems in Chap-
ter 6. For cylindrical structures of infinite length and arbitrary cross section whose
transverse dimensions are much smaller than the wavelength, the field at any point
outside the cylinder is written as the sum of contributions from line dipoles whose
moments per unit length are expressible in terms of polarizability tensors. The tensor
elements are derived from solution of an integral equation for the static potential.
Empirical formulations for tensor elements of variety of cylinder cross sections are
given and it is shown that there exists a significant shape dependence. Extension of
the results to a cylinder of finite length is accomplished by using physical optics ap-
proximation. These results are applicable to vegetation needles whose cross sections
have dimensions that are much smaller than a wavelength but whose length is larger
than the wavelength.

Scattering models for branches and tree trunk are given in Chapter 7. A new
expression for the far field amplitude of a circular cylinder of finite length b with
b > A¢ is obtained. These expressions are more accurate than existing results [Ruck
et al, 1970] away from the specular cone. Simple expressions using physical optics
approximation are also provided for a cylinder with arbitrary cross section.

The effect of the bark layer and its roughness on scattering are considered in
Chapter 8. A hybrid solution based on the moment method and Physical optics
approximation is obtained for corrugated layered cylinders. The only restriction

on the physical dimensions is the radius of curvature (r) of the cylinder where we
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require T 3> ). Also a new physical optics expressions for equivalent surface current
on dielectric structure is introduced. It is shown that the bark and its roughness both
reduce the radar cross section. The low contrast dielectric bark layer has most effect
at higher frequencies where the bark thickness and its roughness are a considerable
fraction of wavelength. It is also demonstrated that the roughness of the bark can
be replaced by a homogeneous layer for the TM case.

In Chapter 9 a first-order solution for the radiative transfer equations of a three-
layer random medium is given. Inputs to this model are the scattering matrices of
the canopy constituents and their orientation and size distribution functions. the
analytical nature of this solution enables us to study the effect of different scattering
mechanism in the medium. This solution is particularly suitable for media of sparsely
distributed particles; a higher order solution is needed when the number density of
particles is high. The appropriate frequency range for this model is determined by

the frequency range over which single scattering models are valid.

10.2 Future Work and Recommendations

The single scattering models provided in this thesis or those avaliable in the
literature are mostly valid in either high or low frequency regimes. Obtaining effective
analytical or empirical models in the resonance regime is an obvious extension of this
work.

In Chapter 8 it is shown that the regular roughness of dielectric cylinders could
be modelled by an anisotropic layer which simplifies calculation of the scattered
field. Establishing a connection between physical dimensions, geometry, and dielec-
tric constant of the roughness to the thickness and equivalent dielectric constant of

the equivalent layer is the next step to complete the problem.
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Numerous modifications and improvements may be suggested for the radiative
transfer model of the forest canopy. To make the model more realistic the ground
layer may be considered rough, the cylinders in the trunk region may be considered
to have an angular distribution, and the .crown layer may be considered to be sta-
tistically inhomogeneous. In principle, obtaining solutions to all these modifications
is possible, but the added complexity also increases computation time. It will be
necessary to evaluate the significance of each modification before integrating it in

the model.
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APPENDIX A

TECHNIQUE FOR MEASURING THE
DIELECTRIC CONSTANT OF THIN
MATERIALS

A.1 Introduction

Prompted by the need for a practical technique for measuring the microwave di-
electric constant of vegetation leaves, solutions were sought for the voltage reflection
coefficient measured at the input of a rectangular waveguide containing a thin slab
placed in a plane orthogonal to the propagation direction (see Fig. A.1l). The slab
is modelled as a resistive sheet, which was shown (Chapter 2) to be an excellent ap-
proach for characterizing the radar cross section of a vegetation leaf over a wide range
of moisture conditions (and a correspondingly wide range of the relative dielectric
constant € ).

To evaluate the accuracy of the technique for measuring the real and imaginary
parts of € from measurements of the complex reflection coefficient I', an exact solution
for I' of the slab will be obtained in Section A.3 and then used to simulate the
measurement process for given values of €. The evaluation is performed in Section
A.4 by comparing the true value of ¢ with that predicted by the resistive sheet

expression. It turns out that the resistive sheet solution is identical with the zeroth-
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order approximation of the exact solution for I' . One of the attractive features of
the zeroth-order solution is that it provides an explicit expression for € in terms of
I.

The evaluation shows that the zeroth-order solution provides an excellent estimate
for the real part of the dielectric constant, ¢ , if the slab thickness 7 is sufficiently
small to satisfy the condition 7 < 0.05)¢/|€|, where A is the free space wavelength.
For a typical leaf-thickness of 0.3 mm, this condition is satisfied for any moisture
condition if the frequency f < 15 GHz. A much more stringent condition on 7
is required in order for the zeroth-order solution to give accurate values for €” ;
namely 7 < 0.01)o+/|e| and €’/€’ > 0.1 , or equivalently, f < 1.5 GHz for vegetation
leaves. To relax this limitation, alternate solutions for I' are obtained in Section
A.3 by invoking approximations that lead to first-order and second-order solutions
whose forms are invertible to give explicit expressions for € . Use of the second-order
solution is found to extend the frequency range from 1.5-12 GHz for a leaf with a
high moisture content and to higher frequencies for drier leaves.

Section A.5 presents 8-12 GHz spectra of the dielectric constant ¢ for vegetation
leaves, teflon and rock slices, all measured using the technique developed in this
appendix. Where possible, the results are compared with measurements made by

other techniques.

A.2 Model for a Thin Resistive Sheet

Consider the rectangular waveguide diagrammed in Fig. A.1. The guide is ter-
minated with a matched load, has dimensions a X b, and contains a thin resistive
sheet of thickness 7 at z = 0 . The waveguide dimensions are such that only the

T E;o mode can propagate in the guide.
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matched load

resistive sheet of
thickness T

Figure A.1: Rectangular waveguide with thin resistive sheet of thickness t at z = 0.

We seek a relationship between the input voltage reflection coefficient I' and the
relative complex dielectric constant of the sheet material € . To this end, we shall
develop expressions for the electric and magnetic fields in Regions I and II and then
apply the appropriate boundary conditions. If 4y and ¥ are the electric potentials

in regions I and 11, respectively, solutions of the scalar Helmholtz equation
(V2+k(2))\1’1,11 =0 (A.l)
for the T Fyp mode leads to [Harrington, pp. 148-149, 1961]:

Uy = cos(ZE)[Cre =7 4 Coetre?] | z>0 (A.2)
Up = cos(Z2)Cze*+= | 2<0 (A.3)
The constants C7 and C; represent the magnitudes of the incident and reflected

waves in Region I, C3 represents the magnitude of the wave traveling towards the

matched load in Region II, and
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The components of E and H may be obtained from (A.2) and (A.3) by applying the

relations [Harrington, pp. 130, 1961].

E=-Vx($3), H = iwe(?) + %vv L ($3) . (A5)

The field quantities, in the plane z = 0, must satisfy the resistive sheet boundary
conditions as given by (2.4)-(2.6). The resistivity of the sheet in terms of it dielectric
constant and thickness is also given by (2.3). The condition for continuity of the
tangential electric field from Region I to Region II and the boundary condition for

the magnetic field requires that
2x (Er—En)=0 ¢x (H—Hpy) =1 (A.6)

The unknown coefficients C1, C2, C3 can be obtained by applying the boundary

conditions. The complex voltage reflection coefficient is then found to be

- Cy kir(e—1)
TG kRr(e—1) + 2k,

(A7)

from which an explicit expression for € is obtained,

_2kL (38) Ve X (A.8)

CkKr(1+1) 7(1+1/T)

€ =

Thus, by measuring the complex reflection coefficient I' and the sheet thickness 7
we can compute € directly. This technique can be very useful for measuring the
dielectric constant of vegetation leaves and other similarly thin slabs. Its success,
however, depends on two factors: 1) the ability to measure both the magnitude
and phase of I' accurately, which now is possible with the HP-8510 vector network
analyzer, and 2) the validity of the thin-sheet assumption underlying the derivation
that led to (A.8). To examine the range of validity of this assumption and to quantify

it in the form of specific limits, we shall first derive the expression for the reflection
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coefficient when a dielectric slab of arbitrary thickness is placed in the waveguide,

and then compare the exact solution with the solution given by (A.7) and (A.8).

A.3 Model for a Slab of Arbitrary Thickness

The waveguide section shown in Fig. A.2 is terminated in a matched load and

contains a dielectric slab extending from z = 0 to 2 = —7. The electric potentials in

matched load

Figure A.2: Rectangular waveguide with a dielectric slab occupying region II (be-
tween z =0 and z = —7).

regions I, II, and III are
Yy = COS(W—:')[Cle_ik'z + Czeik‘z] , z20
Uyr = cos(ZE)[Cae™ 2% 4 Cyet*=2%] | 0> 2> —7

Uy = cos(?)Cg,e"'k’z , —T 2>z

where £k, is given by (A.4) and k,, is given by

ko = % dea? — M2, (A.9)

Upon using the relationship given by (A.5) to obtain E and H in each of the three

regions, and then applying the continuity conditions of tangential E and H fields
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at the boundaries z = 0 and z = —7, we obtain the following expression for the

reflection coefficient

_ Gy _ i[(kz2/k2)? — 1] sin(kzo7) (A.10)
Ci 2(%“3) cos(k,aT) — i[(ks2/k,)? + 1] sin(k,o7)" '
We shall refer to (A.10) as the exact solution for I .
A.3.1 Second-Order Solution
If k,,7 is small and we use the approximations
sin ko7 & k,oT (A.11)
cos kom &1 — %(kﬂ'r)z. (A.12)

The expressions given by (A.10) can be simplified to give the second-order solution

I'~ Gt (A13)
(1 ~ 3(%)2 4 irk,(2)2 + 22;";;7) + (1 —itk,)e

from which we obtain the following explicit expression for the second-order solution

of the relative dielectric constant:

1- [1 - 4(2)2 +irk,(2)? + 2i5| T

(A.14)

A.3.2 First-Order Solution

If, instead of the approximation given by (A.12), we were to set cos(ko,7) ~ 1 in
(A.10) (i.e., ignoring second and higher order powers of (k,27)), we would obtain the

result

—(e-1)
NS A.15
e+ (1-23(2)) + 20k (A.15)

which can then be solved to obtain the expression

1-[1-1(%) +2id5]T

(A.16)

for the first-order estimate of € .
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A.3.3 Zeroth-Order Solution

If e > 1, we may use the approximation

e+ (1-3(2))
e—1

1 (A1T)
since -1 <1 — %(%})2 < 1. Equation (A.15) then leads to

_ 1 _ _ 2ik D
eE=¢ =1 _kg_(-If-i-_ls

T

-1 i(Ao/2ma)~/4a2 -2

7(1+1/T)

(A.18)

which is identical with the resistive-sheet approximation given by (A.8).

A.4 Sensitivity Analysis

The second order solution for T , given by (A.13), was based on assuming that
k.7 < 1 and on retaining terms up to and including the second power in the series
expressions for sin k.27 and cos k,o7. In the first-order solution, only the zeroth- and
first-order terms were retained. The purpose of these derivations is to use them for
computing € from measured values of the complex reflection coefficient I' . The accu-
racies of the approximate expressions given by (A.14) and (A.16), corresponding to
the second-order and first-order solutions for € , respectively, depends on the magni-
tude of k,,7. For a standard waveguide operated in the T'F;, mode, the dimension

a is on the order of 3)¢/4. Hence,

kz2 = koT\/C - (/\0/2(1)2 ~ koT'\/C - 4/9 .

If we require that ko74/€ be small, then k,; will be smaller still.
The zeroth-order solution (A.18) is only applicable if € is sufficiently large to
allow the approximation given by (A.17) to be used in (A.15). Hence for € large, the

first-order and zeroth-order solutions should yield comparable results.
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To evaluate these approximate expressions for ¢ , we conducted the following
sensitivity analysis. We selected specific values of the waveguide width a, the wave-
length A , and the relative complex dielectric constant of the slab, € . We then
computed I' using the exact solution (A.10). The computed value of I' was then
used in (A.18), (A.16), and (A.14) to compute the zeroth-order, first-order, and
second-order estimates of ¢ . We denote these ¢y, €;, and €;.

Our first example of this procedure is Figs. A.3 and A.4 where we show plots of
€0, €1, and € at 10 GHz as a function of 7 for a slab with true dielectric constant

= 2+110.01. We observe that €, €], and €, in Fig. A.3 each provide values that are
within 1 percent of ¢ for 7 < 1mm. Among the three approximations, €; is the most
accurate, in spite of the fact that the left-hand side of (A.17) is equal to 2, rather
than approximately equal to 1 as required by (A.17). This insensitivity of I to the
first term in the denominator of (A.15) is because this term is much smaller than
the second term in the denominator of (A.15), thereby exercising a minor influence
on the final expression for € .

Measuring € of a material usually is not a difficult problem, but measuring €”
of a low-loss material can be. The errors associated with using the approximations
leading to €, €7, and €, are shown in Fig. A.4 in the form of deviations from the
true value €’ = 0.01. For 7 < 1mm, the relative error is 20 percent for €}, 50 percent
for €], and the estimate provided by € is grossly inaccurate. Hence, in spite of the
fact that €, provides a good estimate of €, the zeroth order solution is inadequate
for estimating €”.

Figs. A.5 and A.6 shows results for a material with ¢ = 20+:10. again €, provides
an adequate estimate of ¢’ over a wide range of thickness 7. For the imaginary part,

however, €; consistently provides more accurate estimates of €” than those provided
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Figure A.3: Relative permittivities (real part of €) obtained from A.14, A.16, and

A.18 versus thickness for a slab with « = 2 +40.01.
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Figure A.4: Dielectric loss factors (imaginary part of €) obtained from A.14, A.16,
and A.18 versus thickness for a slab with € = 2 + :0.01.
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Figure A.5: Relative permittivities (real part of €) obtained from A.14, A.16, and
A.18 versus thickness for a slab with € = 20 + ¢10.
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Figure A.6: Dielectric loss factors (imaginary part of €) obtained from A.14, A.16,
and A.18 versus thickness for a slab with ¢ = 20 + ¢10.
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by either € or €.

A summary of the relative accuracies of the three approximations €, €1, and ¢5,
is presented in Table A.1 for slab thicknesses 7 equal to 1 percent and 5 percent of
Ao/ \/m The entries in the table are the maximum relative errors in percent. For ¢,

for example, the maximum relative error is defined as

7
o

o
% | x 100

eg = max| -

where ¢; is provided by (A.18) and € is the true value of the slab permittivity.

Maximum | 7/]el/ Ao = 0.01 7\/lel/ 2o = 0.05
Error % e'/€ e'/e
102 100 1 1072 107 1
A 0.114 0.341 2.920 | 3107 2.672 17.05
e 182.8 18.35 1.445 [ 934.0 96.70 10.11
¢ 0.127 0.124 0.060 || 3.293 3.216 1.916
¢ 0.434 0.267 0.018 || 33.06 8.629 2.727
¢ 0.063 0.062 0.029 || 1.538 1.506 0.866
¢ 0.215 0.132 0.091 || 15.11 3.926 2.238

Table A.1: Maximum relative errors associated with the expressions for ¢, €¢; and
€a.

A.5 DIELECTRIC MEASUREMENTS

A.5.1 Measurement System

A HP-8510A vector network analyzer was used in conjunction with a HP-8511

parameter test set and a HP-9000 computer (Fig. A.7) to measure the amplitude and
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phase of the reflection coefficient T' of dielectric slabs placed in a waveguide sample-
holder. The arrangement shown in Fig. A.7 consists of a waveguide section connected
to the HP-8511 through a coax-to-waveguide adapter on one end and to a waveguide
section terminated in a matched load on the other end. A thin piece of styrofoam
is placed in the sample-holder section at a distance 7 from the waveguide opening
(junction between the two waveguide sections) where 7 is equal to the thickness of
the dielectric sample. Another thin piece of styrofoam is placed on the other side of
the sample (in the empty waveguide section) to keep the sample in place.

After placing the sample in the waveguide, the network analyzer is used to mea-
sure the complex reflection coefficient over the frequency range of interest. In the

present setup, the frequency coverage is from 8 GHz to 12 GHz.

HP 8510

computer “

HP 8511

HP 9000
dielectric material
empty
wavegulde section sample holder '
coaxlal to wavegulde matched
adaptor / oad
styrafoam styrofoam

Figure A.7: Measurement system.

A.5.2 Measurement Accuracy

The accuracy of the dielectric constant measurement is critically based upon the

accuracy with which the reflection coefficient T' can be measured. The measurement
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of I' may contain some random, nonrepeatable errors caused by system noise and
environmental variations as well as certain systematic errors that are repeatable and,
therefore, correctable. To correct the systematic errors, the measurement system is
calibrated using three independent standards whose reflection coefficients are known
over the frequency range under consideration. These include a short-circuited load,

a matched load, and an offset short.

A.5.3 Sample Measurements

The technique described in the previous sections was used to measure the 8-12
GHz dielectric spectra of three types of rock materials (each cut in the shape of a
thin slab with a cross-section equal to that of the waveguide’s) and a thin leaf of
vegetation material with a gravimetric moisture content of 90 percent. In addition,
a thin slab of teflon with e = 2.0+1:0.005 was measured also. The results are given in
Figs. A.8-A.10. The results for teflon were found to be in excellent agreement with
those measured for a thick sample for both ¢’ and ¢’ . The measured permittivities of
the rock samples are essentially constant over the 8-12 GHz band (Fig. A.8), and for
two of the samples (rhyolite and rhyodlacite) the measured permittivity compares
very well with values measured by a coaxial probe using an approximate reflection
technique [El-Rayes and Ulaby].

The plots in Fig. A.9 display ¢”, the relative dielectric loss factor, for teflon
and the three rock samples. We have no reason to expect € of rocks to exhibit
a dispersive behavior in the 8-12 GHz frequency region, and therefore, we suspect
that the observed variability, particularly in the 8-9 GHz range, is an artifact of the

measurement system.

The example shown in Fig. A.10 is for a leaf of vegetation. Its gravimetric mois-
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ture was 0.9 and its thickness 0.23mm. The continuous curves represent the values
of € and €’ measured with the waveguide technique and the circles represent values
calculated using a model [Ulaby and El-Rayes| with an accuracy of +20 percent.

Within this range of accuracy, the data and the model are in good agreement.
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Figure A.8: Measured relative permittivity of teflon and three rock samples.
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APPENDIX B

TWO DIMENSIONAL SCATTERING BY
CYLINDRICAL STRUCTURES WITH HIGH
REFRACTIVE INDEX

B.1 Introduction

A numerical solution for the problem of electromagnetic scattering by a lossy in-
homogeneous cylinder of arbitrary cross section is discussed. An integro-differential
equation is employed to obtain the moment method solution using a pulse expansion
function and the point matching technique. In this method the cross section of the
scatterer is partitioned into small cells over which the dielectric constant and the un-
known field quantities can be assumed constant. Then the integral equation is cast
into a linear system of equations that can be solved by various numerical methods.
This technique was developed many years ago [Richmond 1965 & 1966; Harrington
1968] and has been applied successfully for cylinders with relatively small refractive
indices. The integral equation operator given by Harrington is such that in the TE
case (the electric field vector perpendicular to the axis of the cylinder), when using
pulse expansion functions, numerical computation does not converge to the exact so-
lution. To obtain accurate results in this case more complicated expansion functions

such as the linear expansion function [Hill et al. 1983] or the rooftop expansion func-
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tion [Langan & Willton 1986], must be used. To avoid using complicated expansion
functions and to reduce computation time, we use an integral equation where the
pulse functions are in the domain of the integro-differential operator for both TE
and TM (the magnetic field vector perpendicular to the axis of the cylinder) cases.

It is known, in principle, that the accuracy of the solution is proportional to
the dimension of the cells relative to the wavelength, which in turn is governed by
the dielectric constant of the cylinder material. The accepted criterion for the cell
dimension is d < 0.1)\0/\/|—e,—| where Ag is the wavelength in free space and ¢, is the
relative permittivity of the dielectric material.

Biological tissues usually have high water content, as a result of which their
dielectric constant is very high and lossy. In application of the moment method to
biological scatterers, the cell size must be chosen very small compared to the free-
space wavelength. Since the argument of the Green’s function becomes very small,
contribution of self-cell and adjacent cells must be evaluated very carefully to avoid
anomalous errors.

Unlike the TE case in which approximations on deforming the cell shape can
culminate in substantial error, the solution for the TM case is not very sensitive the
the shape of the cells. When using the moment method with traditional impedance
matrix elements [Richmond 1965 & 1966], as the dimension of the cells gets very
small, the technique becomes vulnerable to two sources of error: 1) error due to
deformation of cell shapes to circles of equivalent area, and 2) errors associated with
the evaluation of the mutual impedance of adjacent cells. The effect of the latter
again is much more significant in the TE case than the TM case because of higher
degree of singularity in the kernel of the integral equation.

For a scatterer with fixed dimensions, as the dielectric constant increases the
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impedance matrix becomes larger and so does the error due to matrix inversion.
This problem is unavoidable in general but the error can be reduced by using double-

precision variables in the numerical code.

B.2 Formulation

Let us consider an inhomogeneous infinite cylinder with arbitrary cross section
S as illustrated in Fig. 1. The axis of the cylinder is parallel to the z axis and the
surrounding medium is assumed to be free space. Let the relative permittivity of
the cylinder be €.(z,y) and its relative permeability be unity (4, = 1). Suppose the
electric field in the absence of the cylinder (the incident field) is not dependent upon
z and is represented by Ei(z,y). The cylinder perturbs the incident field and the
difference between the perturbed (total) and incident field is known as the scattered

field; thus,
E{(5) = E(5) + E*(p), (B.1)
where p is the position vector in cylindrical coordinates. From Maxwell’s equations

it can be shown that a volumetric current density of the form
Je(p) = —ikoYole-(p) — 1|E'(p), pES, (B.2)

known as the polarization current, in free space, can replace the cylinder to reproduce

the scattered field. Therefore the scattered field, can be obtained from:
E*(p) = —ikeZo / 3.7 -T(5,p')ds (B.3)
where ?(f), p') is the two-dimensional dyadic Green’s function given by (5.4). Using

(B.1), (B.2),and (B.3) an integral equation for the unknown polarization current can

be obtained,

1(p) = —ikoYoler(7) — LHE(7)  ikoZo [ 1.(5) - (5, s’}
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If the incident field has a uniform polarization, then the problem may be decoupled
into TM and TE problems. For the TM case the incident, scattered, and hence, the
polarization current have only z components and the integral equation is
. . JR2
Jz(.’l}, y) = _Zkoyo[er(xa y) - I]E;(x’ y) + Z%‘l[er(mv y) - 1]

s
U

f, J-(' g HE (ko | 7= p [)da'dy'}.

(B.4)

In the TE case both = and y components of the polarization current are induced and

they satisfy the following coupled integro-differential equations

Jo(z,y) = —ikoYolex(2,y) — 1 E(2,y) + ler(2,y) — 1]
(s + k) J, Ju(', 9 ) H (ko | 7= p |)da'dy’
+3255 Jo Ty, VHD (ko | 5~ 7' |)dz'dy’}

Jy(2y) = —ikoYole(w,9) — 1B (,y) + le(z,y) — 1]
{525 J, Jol!, g ) HO (ko | 5= p' |)dz'dy’

s+ ) J, I (2, y ) HY (ko | 5= 7' 1)da'dy'}

(B.5)

The resultant integro-differential operators obtained for the polarization current do
not impose any restriction on the functional form of the current, in particular, the
pulse function is in the domain of the operators. It should be noted here that the
kernel of the integral equation (Green’s function) for the TE case is more singular
(9—1,) than for the TM case (In p).

There is no known solution for these integral equations in general, but their forms

are amenable to numerical solution.

B.3 Numerical Analysis

An approximate numerical solution for the integral equations that were developed
in the previous section is given using the method of moment in conjunction with the

pulse expansion function and the point-matching technique. The cross section of
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the scatterer is divided into N rectangular cells that are small enough so that the
polarization current and relative permittivity can be assumed to be constant. The

unknown current can be approximated by
N
Jp(z,y) = E JnP( — Ty, Y — Ym), P=2,Y,O0r 2 (B.6)
m=1

where J,,, are the unknown coefficients to be determined and P(z — Zm,y — ym) is

the pulse function defined by

1 |‘T—'xm|<AXa |y_yml<Ay
P(‘T—xmay—ym) = 2 2 (B7)
0 otherwise

By inserting the current as expanded in (B.6) into integral equations (B.4) and (B.5)
and then setting the observation point at the center of the m*® cell, a linear set of
equations is formed. In matrix notation, these linear equations can be represented
by

[2TM]17.] = [€:] (B.8)

for the TM case, where [ZTM] is the impedance matrix, [7,] is the unknown vector,
and [&;] is the excitation vector. Similarly for the TE case the coupled integral

equation (B.5) in matrix form becomes

T
BT 2= (B.9)
28T+ 2{8T, = &,
where as before ZIE ... ZIF are N x N impedance matrices and £; and &, are
the excitation vectors. The above coupled matrix equation can be represented by a
2N x 2N matrix equation similar to (B.8).

Although the variation of the polarization current and dielectric constant over

each cell is ignored, this cannot be done for the Green’s function. Actually for cells




334

close to the observation point, the Green’s function varies considerably and its con-
tribution must be evaluated more precisely. Let us denote the function representing

the Green’s function contribution by

:!.'n+_n yn+ 2 (1)

z,y) = o Ho (koy/(z — 2')2 + (y — y')?)dz’dy’ (B.10)

AXn

where 1 <n < N. If the observation point (z,y) is different from (z,,y.) , then the

integrand in (B.10) is not singular and since | 2’ — z, |< 242 and | y' -y, |< 812, its

Taylor series expansion may be substituted. By retaining the terms up to the cubic

order in the expansion of the Hankel function, the function (B.10) is found to be:

L(z,y) = AX AV, {H (ko/(z — 20)2 + (y — yn)?) + LKL A(z — 2,y — ya)+

ool B(z — 24,y — yn)}
(B.11)
where

Al — zp,y — Yn) = A(Tn,0,) = —Hél)(korn) cos’ 9, + iil-k)i—f‘:o—rﬂl(cos2 6, —sin?4,),
" (B.12)
B(x — 2n,y — Yn) = B(ry,0,) = — él)(korn) sin? 0, + E—(-l;(()%ﬁ(sinz 6, — cos?9,)
(B.13)

with the following definition for a pair of local polar coordinates:
= (@ —22)2+ (Y~ 9a)’ .

fn = arctan(32=X).

The second order derivatives of I,,(z,y) are also needed for calculation of the impedance
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matrix elements for the TE case, and are given by

(1)
(6_,,2 )I (51? y) AX,AY, k2{ (1)(korn) sin2 6, + M(COS2 6, — sin2 on)
FAXE (2 4 k) Ay, 0,) A2 (25 4 k2)B(r,, 0,))
(& + k) Ia(e,y) = AXQAY,k3{HS (ko) cos? 0, + B0m) (5in? g, — cos?6,)

BX2 (2 4 k2 A(ra,0,) 8L (s + k) B(rn,0)}

24

(B.15)
where
6.1:2 A(r,0,) = k{HM (kor,)[cos? 0,.(2 cos? 0, + £ sin®0,)
+2(Z$ ‘)72 (3 cos? 8, — sin? 4,)]
+H{ )(korq)[—q- cos? 02 sin? 02 — %‘%%(3 cos? 6, — sin?6,,)]
+H(1)(korn)[—% cos® 0, + (—s,i—:)-‘-r:gfz-(—Q cos? 0, + sin? 4,,)]
+H{ (kor,)[2 cos? 0 (cos? 8, — sin? 6,)]},

(B.16)
2 A, 0,) = K3{H H (kor,)[sin? 0 (2 cos? 0, + Lsin?6,)
+2(z:: ;’2 (cos? 8, — 3sin?4,)]
+HO (korn)[—r{— cos? 0, sin’ 0, + 4(;:—“2')95*(3 sin?8,, — cos?6,,)]

+HD (kor,) [~ sin? 0, cos? 6, +£98—£‘L(951n 0, — cos?6,)]

+H(1)(korn)[§ sin? 0, (cos? 8,, — sin?4,)]},
(B.17)
22 B(ra,0.) = K3{H; (kory)[cos? 0u(

3sin? 0, + 3 cos?6,,)

+2(::)'; ‘;’2 (sin? 8, — 3 cos? 4,,)]
+H{ (k n)[M( 4 cos? 0, +sin?0,,) + %’%‘?(3 cos? 8, — sin4,,)]

+H(1)(ko7‘n)[—§ sin? 6, cos? 0, + -(s,'c%ﬁ)“z-(9 cos? 0, — sin?0,,)]

+H{P (kory)[§ cos? . (sin? 6, — cos? 0,)]},
(B.18)
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& B(ra,0,) = kR{H"(kor,)[sin? 6n(2 sin? 8, + L cos? 6,)

+2(z°“ ‘)’2 (3sin? 4, — cos? 9,,)]
+H{! (korn)[——— sin? §,, cos? 6, — “(Z“: ‘)’3 (3sin? 8, — cos? 6,,)]
+H{ )(korn)[—— sin 0, —5“‘——"-(931n 0, — cos?8,)]

+H{ (kor,)[2 sin? 8, (sin? 6, — cos?4,,)]}.
(B.19)

We also note that an exact analytical expression for a_ay »(z,y) can be obtained

without using the Taylor expansion and is given by

sy Tn(2,y) = HO(ko/(z — 20 — 2507 + (y = v — 2277)
—Hg (koy/(z — 2n — 852)2 + (y — yu + 2J2)?)
) (koy/(z = o + BT+ (y — v — BP)2)+

HP (koy[(z — 2 + 222 + (y — yo + 4Ja)2)

(B.20)

When the observation point is in the center of the cell itself, the Taylor series ex-
pansion cannot be used. In this case we can employ the small argument expansion

of the Hankel function, i.e.
2 N 2 2
M A L
He (z) = (1= )+ —[(n5 + (1 - ) + ] (B.21)

Then at the center of the cell (self-cell contribution), we have

i4 (RRAXnAY, in kor/(AXn) 2 +(AYn)?
In(2nyyn) = S{88%nAYa1, _ ind3 | 1 R/ OIS HER) )

(B.22)
+(fa8%a)? arctan(£5) + (25¥2)%(Z — arctan(2¥>))}.
Using the same expansion we can also get
EaAnllin i (AX")2+(AY")2
( & )I T, Yn) = i kAX AY, ___+_3+1n ko+/
527 (Znyyn) = T{2=F—0 -5 ( ; ) (B.23)
+2 a,rcta.n(A—Y‘L) + (kedta)2(z arcta,n(A—Y‘L))},

2 iq (k2 Ax,,AY,, ir koy/(AXn)2+(AY,)?

R T i o

+2(Z - arctan(z—;(’:-)) + (E-"AT}‘—"‘-)2 arctan(z—;:-)}.
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The evaluation of the second order derivatives of I,(z,y) (expressions in (B.15))
gives accurate results when r, > A/60. For smaller values of r,, the small argument

expression for the Hankel function can be used. In such cases we have

(& + k) Ia(z,y) = Fi(z,y) — Fa(z,y)

(B.25)
(3y2 + k) (2, y) = Gi(z,y) — Ga(z,y)
where
Fiz,y) = k3A%ab,(% — 22 1) 4 (tan 322 — tan gut)(2 — %ibai)
ik In Az — g In LT
: 2 (B.26)
Gi(z,y) = kAR an(% — 22— 1) + (tan b2 — tan ba)(% — Hitei)
iani 3‘ a?“. 2, a'ru'
—-Tka[bnz In @ b 1o L+l
with
T —an— 88 i=1
fini = (B.27)
T — Ty + =8 72 =92
— Yn — Al 1 =1
b= (B.28)
y—ys+ 20 i=2

Now we are in a position to express the impedance matrix elements in terms of

I.(z,y). The off-diagonal entries of the impedance matrix for the TM case are given
by

tk?
Zi = 40[6r(a=m,ym) 1L (Zm, Ym) (B.29)

and the diagonal entries are
k2
ZEM = Z2{er(@n,ya) = UIn(@ay¥n) = 1 (B.30)

For TE polarization, where the impedance matrix is composed of four sub-impedance
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matrices, the off-diagonal elements of each matrix are

ZlTrfn = i-[fr(zm,ym) - 1][(;_:2 + kg)ln(zm’ym)]

ZEE = er(@mrm) — Ul In(@m )]

(B.31)
Zg‘E — ZéI‘E
Zf,fn = %[er(zm’ Ym) — 1][(%:2 + kg)ln(zma Ym)]
and the diagonal elements are given by
ZlTnIi = i[er(zm Yn) — 1][(5% + kg)In(xm Yn)] — 1
ZTE = 0
(B.32)
ZTE - ¢

Z3E = ile(@nsyn) — 1(Z5 + k) a(@n, yn)] — 1

The excitation vector elements for the TM and TE cases, respectively, are given by

eIM = ikoYoler (Tm, Ym) — E(Zm, Ym), (B.33)
and

T = ikoYoler (Tmy Ym) — 1) EL(Tpm, Ym ), (B.34)

eﬁIiN = ikoYo[Cr(IL‘m, ym) - l]E;(zm,ym) (B35)

Once the matrix equation is solved for the polarization current, the scattered
field can be computed at any point. The primary interest is the far field expressions
which can be obtained by employing the large argument expansion of the Hankel
functions. The scattered field, in the far zone, is in the Z and qAS directions for TM
and TE polarization, respectively. If the polar coordinate of the scattering direction

is denoted by (p, @), in the far zone we have

Tn RS p — Tp COS Py — Yy, SiN P, (B.36)
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and the far field amplitudes as defined by (5.72) for TM and TE cases are

PTM = 3=hZ $N_ 7 (1. 2)AX,AY,[1 — $&Xal o552 g _ (ol¥a) 2 4 )

.¢—tko(cos dszn+sin ¢ayn),
(B.37)

N koAX,)? koAY,)?2 .
PTE = ¢L‘Q4ZD. Z'nN=l AXnA)/‘n[l - -(_0—24—)— 0082 ¢8 - -(-OT)_ S]n2 ¢8] (B,38)
¢~ tko(cos $szntsin ¢’y")[Jy($m 2n) €08 ¢y — Jz(Tn, 2,) 5in @]

B.4 Extension to Three-Dimensional Scattering

In this section we obtain a connection between the two- and three-dimensional
radar cross sections of cylinders of infinite and finite length respectively. The finite
cylinder is just a section of the infinite cylinder and if the length is large compared
with the wavelength we can assume the polarization current to be identical with that
of the infinite cylinder.

If the observation point is in ¢ — y plane and its direction is denoted by £,, the

scattered field in the far zone of the cylinder is

tkor 2kZ ZO

E =~
koT i

/ ; / By x By x 3o(r')eoker dg'dy" . (B.39)
2

Since J is independent of the axial variable z, the z integration can be carried out,
in which case the expression for the far field amplitude reduces to

2k Zo

Y l/k x By x Jo(p')e =k P 4’ . (B.40)

For an infinitely long cylinder the electric field in the far zone is approximated by

2

Tkop

B~ ef<k0ﬂ-"/4>¥ [Rx B x 3 (e REras . (BAL)

which results in the two-dimensional far field amplitude

ko Zo

P = /lc?, X ky X Je(p')e_ik°';"”'ds' . (B.42)
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A comparison of equations (B.40) and (B.42) shows that

S = _2;L P, (B.43)

and the relationship between the two- and three-dimensional radar cross sections is:

2
s = %02_ (B.44)
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