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ABSTRACT

Forward and Inverse Models of Electromagnetic Scattering From Layered

Media With Rough Interfaces

by

Seyed Alireza Tabatabaeenejad

Chair: Mahta Moghaddam

This work addresses the problem of electromagnetic scattering from layered dielectric

structures with rough boundaries and the associated inverse problem of retrieving the sub-

surface parameters of the structure using the scattered field. To this end, a forward scattering

model based on the Small Perturbation Method (SPM) is developed to calculate the first-

order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure.

SPM requires the boundaries to be slightly rough compared to the wavelength, but to under-

stand the range of applicability of this method in scattering from two-layer rough surfaces,

its region of validity is investigated by comparing its output with that of a first principle

solver that does not impose roughness restrictions. The Method of Moments (MoM) is used

for this purpose. Finally, for retrieval of the model parameters of the layered structure using

scattered field, an inversion scheme based on the Simulated Annealing method is investigated

and a strategy is proposed to address convergence to local minimum.
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CHAPTER 1

Introduction

1.1 Problem Statement

The thrust of this dissertation is the problem of electromagnetic scattering from layered

dielectric structures with rough boundaries and the associated inverse problem of retrieving

the subsurface parameters of the structure using the scattered field. This work has several

important applications such as retrieval of soil moisture, which is of fundamental importance

to environmental engineering, hydrology, geology, soil physics, civil engineering, and plane-

tary sciences. Exploration of resources such as oil, space explorations such as searching for

water on planets, detection of Improvised Explosive Devices (IEDs), and medical imaging

are a few other applications of the problems addressed in this dissertation.

1.2 Overview of the Study

A layered structure with homogenous dielectric layers and slightly rough boundaries is

considered. The Small Perturbation Method (SPM) is applied to the first order and the

scattered field is calculated. The scattered field is first calculated for a two-layer case and

then for an N -layer structure. The region of validity of the forward model in a two-layer case

is also addressed. The work then focuses on the problem of retrieving the model parameters

of the two-layer structure using synthesized backscattering coefficients at different frequencies

and incidence angles. The inverse problem is formulated as a parameter estimation problem
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that is solved using a global optimization scheme known as the Simulated Annealing.

1.3 Background and Motivation

The problem of scattering from random rough surfaces has been the subject of numerous

studies dating back to the 1950’s, starting with a single rough surface [1–3]. Researchers

have continued developing new rough surface scattering models over the past decades to

increase the accuracy of the old models over various parameters of the rough surface [4].

The interest in this problem is due to the fact that layered structures with rough boundaries

are representative models for many naturally occurring surface and subsurface structures

ranging from layered soil, rivers, lakes, and multi-year ice to smaller scale objects such as the

human body and manufactured optical components comprised of metal-deposited dielectrics.

Among the wide range of applications of scattering from rough surfaces, study of soil

moisture is of fundamental importance to many hydrological and biological processes. Soil

moisture information is critical to agencies and companies concerned with weather and cli-

mate, runoff potential and flood control, soil erosion, reservoir management, geotechnical

engineering, and water quality. Soil moisture plays a fundamental role in controlling the

exchange of water and heat energy between the land surface and the atmosphere through

evaporation and plant transpiration. Consequently, soil moisture becomes a key factor in the

development of weather patterns and production of precipitation. Simulations have shown

that improved characterization of surface soil moisture, vegetation, and temperature can

lead to significant weather forecast improvements. Soil moisture also strongly affects the

amount of precipitation that runs off into nearby streams and rivers. Large-scale dry or wet

surface regions have been observed to impart positive feedback on subsequent precipitation

patterns, such as in the extreme conditions over the central U.S. during the 1988 drought

and the 1993 floods. Soil moisture information can be used for reservoir management, early

warning of droughts, irrigation scheduling, and crop yield forecasting.

Effects of soil moisture and surface roughness on the backscattered field have been studied

dating back to the 1960’s and 70’s [5–7]. Research in soil moisture remote sensing began in

the mid 1970’s shortly after the surge in satellite development [8, 9]. Studies have widely
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been done in the microwave regime of the electromagnetic spectrum, because microwave

measurements are largely unaffected by clouds, and, up to wavelengths of about 3 cm, are

also unaffected by rain. Furthermore, microwave sensors do not depend on solar radiation as

the source of target illumination. Quantitative measurements of soil moisture in the surface

layer of soil have been most successful using passive remote sensing, but use of radiometers in

soil moisture detection is limited because of their low resolution at lower frequencies, which

are required for subsurface observations.

The frequencies used for study of soil moisture should be chosen judiciously in order to

allow use of appropriate scattering models and allow obtaining reliable data. Accuracy of

the scattering model and penetration through soil are two important factors that should be

considered when a measurement system is being designed. Moreover, since 30% of the Earth

land area is covered with vegetation, penetration through vegetation cover is another impor-

tant factor that needs to be considered. To probe the properties of soil, we can ideally use

three ranges of frequencies: L-band (1–2 GHz), UHF (0.3–3 GHz), and VHF (30–300 MHz).

The penetration depth increases as the frequency decreases. Lower frequency microwaves

are needed to achieve penetration through soil, because they retain their information con-

tent while they travel through significant vegetation canopies and through soil. L-band can

be used to estimate soil moisture in the top 0–5 cm in the presence of up to 4 kg/m2 of

vegetation [10–15]. UHF measurements enhance the capability to characterize vegetation

effects as the amount of vegetation is increased to up to 20 kg/m2 [16, 17] and to retrieve

soil moisture in the 0–50 cm depth [18]. VHF data are essential for retrieving soil moisture

under vegetation canopies exceeding 20 kg/m2 and to depths of 2 m or more, depending

on the amount of moisture present. Data from low-frequency experimental systems such

as the Microwave Observatory of Subcanopy and Subsurface (MOSS) tower radar [19] and

actual airborne systems such as the NASA/JPL AIRSAR [18] have shown the practical and

theoretical feasibility of obtaining reliable radar data and subsurface soil moisture products

at low frequencies, legitimizing use of scattering models such as SPM, because this method

assumes that roughness of the surfaces is small compared to the wavelength, which is a

valid assumption at low frequencies. We should note that at least one of the higher frequen-

cies (L-band or C-band) must be present for separating, characterizing, and removing the
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contribution of the vegetation layer.

Study of sea ice is another motivation for development of electromagnetic models for

rough surface scattering. Surface roughness, dielectric properties, and thickness of sea ice

influence the signal received at the antenna, so the geophysical properties of sea ice can be

retrieved using scattered field data.

Sea ice is important to the global climate because of its role in the mass balance and heat

transfer between the ocean and the atmosphere [20,21]. Sea ice modulates energy exchange

between the ocean and the atmosphere, because its high albedo and insulation deflect solar

radiation and prevents a significant amount of heat in the ocean from warming the polar

atmosphere. Sea ice thickness determines the amounts of energy exchange between the air

and the ocean. The thicker the ice cover, the more effective is the insulation between the cold

polar air and the warm ocean. Sea ice also plays an important role in the surface radiation

budget. Because of its high albedo, sea ice can reflect up to 90% of the solar radiation. On

the other hand, the open ocean absorbs most of the solar energy (85–90%) due to its low

albedo. Consequently, changes in sea ice extent over time can be an indicator of the energy

being retained by the Earth. A negative change in the sea ice extent would indicate a global

warming scenario.

The detection and classification of sea ice are important remote sensing applications. The

distinct difference in backscatter between open water and that of sea ice—which is relatively

much higher—helps in the detection of sea ice. The classification of sea ice, on the other hand,

is more complex and is important for estimating ice thickness, hence amount of insulation

provided by the sea ice cover. For remote sensing purposes, sea ice can be categorized into

perennial multi-year ice, which is generally 3–6 m thick, and new first-year ice, which is

relatively thin (1–2 m). It is important to distinguish between different ice ages, particularly

first-year ice and multi-year ice. This is especially important in navigation, because multi-

year ice is usually more dangerous to ships than first-year ice because of its greater thickness

and the fact that it also has more ridges. Multi-year ice and first-year ice have distinct

backscatter signatures, which allows us to distinguish them using remote sensing.

It is of extreme importance that we monitor the Earth’s sea ice on a global scale. Sea ice

is difficult to study directly, because it is in such remote locations. Ships and submarines
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have been used to gather data for sea ice, and scientists have established field camps and

deployed ocean buoys in the Arctic to study the movement of sea ice. The problem with

these methods is that they only explain sea ice conditions in relatively small regions. The

only way we can monitor sea ice globally is by remote sensing from satellites. As a result,

global monitoring of sea ice with polarimetric radar remote sensing has drawn considerable

interest [22–24]. Satellite and airborne instruments collect data that can be used to retrieve

the area covered by sea ice, sea ice temperature, sea ice motion, and other variables.

Because of high albedo of snow and natural insulation of the underlying surface, snow

mapping is also important for climate studies as well as for estimating spring runoff amounts

for predicting water supply, hydroelectric energy production, and potential flooding. Given

its large spatial extent and sensitivity to microwave electromagnetic radiation, microwave

remote sensing is a useful tool for mapping snow. Contrast between the backscatter from

soil, especially frozen soil, and that of snow is used to detect snow. Moreover, variations in

scattered field at the same location can be used to detect seasonal transitions of landscapes.

As soils and vegetation freeze with colder temperatures in the winter, surface roughness

and dielectric constants decrease, leading to low backscatter values. Then, as snow begins

to fall and accumulate over the landscape, backscatter values increase due to strong volume

scattering of microwave energy within the snow pack, especially at higher frequencies. When

winter ends and temperatures rise again, snow begins to melt and the presence of unabsorbed

liquid water leads to rapid decreases in backscatter due to absorption. Lastly, as snow departs

and soils and vegetation begin to thaw, backscatter values begin to rise again as absorbed

moisture in the soils and vegetation increases their dielectric constants.

There exist other applications of rough surface scattering such as study of backscatter-

ing enhancement. Backscattering enhancement finds applications in the study of scatter-

ing phenomena from metallic surfaces with a dielectric coating and metallic coated papers.

Backscattering enhancement is a phenomenon in rough surface scattering which manifests

itself as a well-defined peak in the backscattering direction [25]. Both theoretical [26, 27]

and experimental [28] research efforts have previously been made to study backscattering

enhancement effect of rough surfaces due to surface plasmon resonance. Backscattering en-

hancement of surface plasmon waves is important in various applications, including surface
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plasmon localization in rough-metal surfaces and ocean acoustic applications [25]. It is also

an emerging area of interest in biological applications and has provided a new means to

detect and image biological interfaces of thickness well below the diffraction limit [29].

The aforementioned areas are fraught with challenges. However, extensive studies have

been devoted to these subjects [19, 30–32]. The challenge shared between these areas is de-

velopment of appropriate forward and inverse rough surface scattering models. Soil dielectric

properties and structural properties of multi-year sea ice and snow-covered lands legitimize

modeling these media as layered structures. Soil dielectric profiles strongly depend on soil

type, temperature profile, surface evaporation and moisture content. The real part of the

dielectric constant at VHF ranges from 3 for dry soil to about 30 for wet soil [33]. There-

fore, backscattering coefficients at this frequency band could vary significantly depending

on the ground moisture regime. Along with a non-uniform soil moisture function in depth,

soil consists of different subsurface layers that could be homogeneous, consist of arbitrarily

varying continuous profiles, or represented by inhomogeneous media composed of various

dispersive constituents. These layers are typically rough. Because of the presence of both

inhomogeneous dielectric profiles as well as irregular soil layers, the need for a layered dielec-

tric model with rough boundaries is a necessity in the development of scattering models at

low frequencies. Similarly, multi-year ice is usually very deformed and rough at the surface

due to wave-caused deterioration, ice-pack shearing, and melting/refreezing cycles that occur

over time. First-year ice can also be somewhat rough due to ridging at the edges caused by

wave action and collision with other bodies of ice. We may therefore model first-year ice as

a one-layer rough surface structure whereas multi-year ice needs to be modeled as a layered

structure with rough boundaries.

1.4 Dissertation overview

This dissertation has three main chapters along with the Introduction chapter and a

conclusion statement.

Chapter 2 presents a solution to electromagnetic scattering from a three-dimensional

(3D), layered dielectric structure with rough boundaries using SPM. The first-order spectral-

6



Figure 1.1: Layered soil is an example of layered structures with rough boundaries.

domain bistatic scattering coefficients of a two-layer structure is calculated. The amplitudes

of the fields in all regions are obtained simultaneously. The solution is analytical and in-

trinsically takes into account multiple scattering processes between the boundaries. The

solution is then extended to an arbitrary number of layers. The method is fast and appropri-

ate for being used in inversion schemes. This chapter emphasizes the theoretical analysis of

the problem; however, the primary intent of the solution is for remote sensing applications

involving layered soils.

Chapter 3 addresses the region of validity of SPM for a two-layer structure. The scat-

tered field is calculated for a two-dimensional (2D), two-layer rough surface structure using

the Method of Moments (MoM). The MoM solver needed for deriving the region of validity

should be fast to allow extensive sampling of the model parameters. Therefore, a fast solver

known as UV Multilevel Partitioning Method (UV-MLP) is presented. It is shown that, con-

trary to expectation, for the matrix sizes of interest, this method is not faster than a solver

such as LU factorization. Finally, a comparison between the backscattering coefficients of
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Figure 1.2: Sea ice plays an important role in the mass balance and heat transfer between
the ocean and the atmosphere.

a two-layer structure calculated via SPM and MoM is presented, and recommendations are

made on the region of validity with respect to the dielectric properties of the layers and

statistical properties of the boundaries.

Chapter 4 addresses retrieval of the subsurface parameters of a three-dimensional, two-

layer structure using scattered field. The inverse scattering problem considered here can

be regarded as a nonlinear parameter-estimation problem. The problem is formulated as

an optimization problem that is solved using an enhanced Simulated Annealing method.

A strategy is proposed to escape from local minima and is shown to be effective. The

algorithm is shown to be capable of retrieving the layers dielectric constants, conductivities,

and the mean separation between the layers. All of the model parameters are considered

well retrieved in presence of noise.

Chapter 5 concludes this dissertation, summarizes its contributions, and presents rec-

ommendations on future work.
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CHAPTER 2

Bistatic Scattering from Three-Dimensional Layered

Rough Surfaces

An analytical method to calculate the bistatic scattering coefficients of a three-dimensional,

layered dielectric structure with slightly-rough interfaces is presented. The interfaces are al-

lowed to be statistically distinct, but possibly dependent. The waves in each region are

represented as a superposition of an infinite number of up- and down-going spectral com-

ponents whose amplitudes are found by simultaneously matching the boundary conditions

at both interfaces. A small-perturbation formulation is used up to the first order, and the

scattered fields are derived. The calculation intrinsically takes into account multiple scat-

tering processes between the boundaries. The formulation is then validated against known

solutions to special cases. New results are generated for several cases of two- and three-layer

media, which will be directly applicable for modeling of the signals from radar systems and

subsequent estimation of a layered medium subsurface properties such as moisture content

and layer depths.

2.1 Introduction

The problem of scattering from random rough surfaces has been the subject of numerous

studies dating back to the 1950’s, starting with a single rough surface [1–3]. The interest

in this problem stems from the fact that random roughness is a representative model for

many naturally occurring surface and subsurface structures such as soil and multi-year ice.
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Rough surfaces are also encountered frequently in smaller scales such as in manufactured

optical components comprised of dielectrics with metal deposits. This chapter presents

a solution to the bistatic scattering coefficients of a three-dimensional, layered dielectric

structure with rough boundaries using the small perturbation approximation for each rough

surface. No other approximations are involved, and all multiple scattering processes between

the boundaries are intrinsically considered in the calculation. While this chapter emphasizes

the theoretical analysis of the problem, the primary intent of the solution is for remote sensing

applications involving layered soils, to ultimately estimate the variations of the complex

dielectric constant, hence the subsurface layers moisture content, as a result of changes in

environmental conditions. With the development of low-frequency experimental systems

such as the Microwave Observatory of Subcanopy and Subsurface (MOSS) tower radar [19],

which is meant for estimation of deep soil moisture, the need for an accurate and practical

layered-soil scattering model has become evident. The solution presented here addresses this

need.

Solutions to a single rough surface abound, and can be divided into two general categories

of analytical and numerical approaches. The most common analytical method assumes

a slightly rough surface where the random surface height is assumed to be a zero-mean

random process with a small mean-square variance. This method, pioneered by Rice [34] in

1951, is often referred to as the Small Perturbation Method (SPM), and has been further

evolved into more sophisticated and/or practical approximate solutions [35, 36], including

higher-order expansions [37, 38]. The order of expansion is arbitrary, with the complexity

of solutions increasing with increasing order. The numerical approaches can be divided into

time-domain and frequency-domain methods, with the former typically using a differential

equation formulation as in the finite-difference time-domain method [39, 40], and the latter

using surface integral equation formulations [39], [41–43]. The numerical techniques have

the advantage that they do not rely on simplifying approximations to the surface roughness,

and are able to simulate the scattering process for any arbitrary distribution and roughness

scale. However, the computational cost is typically high, given that many realizations of the

random surface have to be simulated. This is in contrast to the low computational burden

of analytical solutions, which are obtained at the cost of complex analysis and approximate
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results.

The order of complexity of analytical solutions increases when more layers are involved.

Therefore, work on the subject has had limiting assumptions such as a single rough interface

on top of or embedded in a layered medium [44–46] or a rough boundary backed by a perfectly

conducting plate [47]. High-order solutions for layered media are even more involved. Ignor-

ing multiple scattering between the rough boundaries [31] and using the reduced Rayleigh

equations to eliminate scattered fields inside the layered medium in the simplest case of two

independent rough boundaries [48], have been ways of simplifying the analysis. Another

example is a recent semi-analytical semi-numerical method based on the extended bound-

ary conditions used to analyze layered rough surfaces [49]. While this method accounts for

high orders of scattering, it is computationally expensive. Therefore, analytical methods are

still more attractive for applying to practical solutions of inverse problems, where several

evaluations of the forward problem are needed.

An alternative approach to the problem is presented here with some advantages over

previous methods. This approach has the SPM at its core. Fields in each region are rep-

resented as the summation of up-going and down-going waves, with their amplitudes found

by simultaneously matching the boundary conditions for the continuity of tangential electric

and magnetic fields at each rough boundary. The boundary conditions are imposed up to

the first order, as in any other first-order SPM. However, the resulting equations are solved

in the far-field region without any further approximations. Consequently, in contrast to

some of the above methods, this method intrinsically takes into account multiple scattering

processes between the boundaries, all of which are considered rough simultaneously. This

makes the presented SPM approach different from some of the previous methods in that it

is suitable for being extended to higher orders, because it does not rely on the assumption

that each rough boundary contributes to the solution independently of the other bound-

aries, which is only true in the first-order solution. Also, the solution here is presented for

the general case where the rough surfaces are not statistically independent, in which case the

cross-correlation functions of the random interfaces are taken into account for the calculation

of bistatic scattering coefficients. Another strength of this approach, in contrast to some of

the methods above, is that the amplitudes of the fields scattered into the inner media are
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obtained simultaneously without further calculation. Moreover, the formulation presented

here can be easily and systematically extended to cases where an arbitrary number of layers

with rough boundaries are involved. The details of extending the formulation is presented for

transition from two layers to three layers. The first-order solution is presented here. While

higher-order solutions have many applications in optics and areas where coherent effects and

surface waves are important, for the intended soil moisture application, the higher-order

effects are expected to be small.

In the following sections, the focus will be on a two-layer medium. First, the definitions

and notations are presented, and are followed by the analysis leading to the bistatic scattering

coefficients for both horizontal and vertical polarizations. Extension to the three-layer case

is presented afterward. The results are then validated against known solutions to special

cases. Finally, various new results are generated for arbitrary cases of two- and three-layer

media.

2.2 Problem Geometry and Definitions

2.2.1 Geometry

Consider the three-dimensional, two-layer isotropic dielectric structure shown in Fig. 2.1,

where the top and bottom regions are half-spaces. The layers dielectric constants are ε0, ε1,

and ε2, which in general could have complex values. The permeability of all layers is assumed

to be µ0, although this assumption does not impact the analysis method. The boundaries are

denoted by z = ξf1(x, y) and z = −d1 + ξf2(x, y), where both f1(x, y) and f2(x, y) are zero-

mean, stationary random processes with known, distinct, but possibly dependent statistical

properties. The quantity d1 is the mean separation between the boundaries and is referred

to as the first-layer thickness. The quantity ξ is the small perturbation parameter used to

match the boundary condition equations to specific orders. The quantities ξσf1 and ξσf2 are

assumed to be small numbers compared to the wavelength, where σf1 and σf2 are the standard

deviations of f1(x, y) and f2(x, y), respectively. An accurate mathematical statement about

how small these numbers should be and what the limitations on the correlation lengths of
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Figure 2.1: Geometry of the problem: a three-dimensional, two-layer isotropic dielectric
structure with complex permittivities. The boundaries are zero-mean, stationary random
processes with known, possibly dependent statistical properties. The first-layer thickness is
d1.

the surface heights are, requires an involved calculation that is out of the scope of this work.

2.2.2 Definitions

Assume the plane wave incident upon the structure is

Ei = Eoe
iki·r (2.1)

where ki = ki
xx̂ + ki

yŷ− ki
0z ẑ = k0K̂

i
0, K̂i

0 is the incident direction, and k0 is the wavenumber

of the top layer (Region 0). Since Eo · ki = 0, the components of the incident electric field

intensity can be decomposed into two perpendicular unit vectors in a plane perpendicular

to the direction of propagation, i.e.,

Eo = Eo · ĥ(−ki
0z)ĥ(−ki

0z) + Eo · v̂(−ki
0z)v̂(−ki

0z) (2.2)

Due to the roughness of the interfaces, the scattered fields are no longer plane waves, but

they can be expressed in spectral domain as the linear superposition of an infinite number of

up- and down-going plane waves with coefficients to be found. Obviously, E2 has down-going
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field components only. The electric field in each region can be written as

E0 =

∞∫

−∞

∞∫

−∞

dk⊥
{[

A+
h (k⊥)ĥ(k0z) + A+

v (k⊥)v̂(k0z)
]
eik0zz

+
[
A−

h (k⊥)ĥ(−k0z) + A−
v (k⊥)v̂(−k0z)

]
e−ik0zz

}
eik⊥·r⊥ (2.3)

E1 =

∞∫

−∞

∞∫

−∞

dk⊥
{[

B+
h (k⊥)ĥ(k1z) + B+

v (k⊥)v̂(k1z)
]
eik1zz

+
[
B−

h (k⊥)ĥ(−k1z) + B−
v (k⊥)v̂(−k1z)

]
e−ik1zz

}
eik⊥·r⊥ (2.4)

and

E2 =

∞∫

−∞

∞∫

−∞

dk⊥
{[

C−
h (k⊥)ĥ(−k2z) + C−

v (k⊥)v̂(−k2z)
]
e−ik2zz

}
eik⊥·r⊥ (2.5)

where k⊥= kxx̂ + kyŷ and dk⊥ = dkxdky. Note that all integrals are in the form of inverse

Fourier transforms and k⊥ is the Fourier transform variable. For definitions of v̂(·) and ĥ(·),
refer to Appendix A.1.

A−
h (k⊥) and A−

v (k⊥) are the known intensities of the incident electric field components

and are given by

A−
h (k⊥) = Eo · ĥ(−k0z)δ(k⊥ − ki

⊥) (2.6)

and

A−
v (k⊥) = Eo · v̂(−k0z)δ(k⊥ − ki

⊥) (2.7)

A+
h,v(k⊥), B±

h,v(k⊥), and C−
h,v(k⊥) are the unknown intensities of the scattered field compo-

nents in different regions, and are to be determined. The superscripts ‘+’ and ‘−’ indicate

whether the quantity corresponds to an up-going or a down-going plane wave. Once A+
h,v(k⊥)

are known, from (2.3) the scattered field is known everywhere in the region of incidence. Sub-

sequently, B±
h,v(k⊥) and C−

h,v(k⊥) can be calculated leading to the fields in all regions.
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2.3 Analysis

The outline of the analysis is as follows: First, the fields are represented in spectral

domain, as in (2.3)–(2.5), and the unknown coefficients are represented by their asymptotic

expansions in ξ. The integrands are then expanded in ξ and the boundary conditions are

applied afterward. The terms in the resulting equations are matched up to the first order.

This matching will result in two systems of linear equations. Solving for the unknowns will

lead to finding the bistatic scattering coefficients. Now, each step will be described in more

detail.

To determine the unknown coefficients introduced in Section 2.2.2, SPM is applied. This

method suggests that the unknown coefficients, i.e., A+
h,v(k⊥), B±

h,v(k⊥), and C−
h,v(k⊥), be

represented by their asymptotic expansions in ξ with new unknown coefficients a
+(m)
h,v (k⊥),

b
±(m)
h,v (k⊥), and c

−(m)
h,v (k⊥), where the superscript (m) represents the order of the coefficients

and should not be mistaken for the mth power.

A+
h,v(k⊥) ∼

∞∑
m=0

a
+(m)
h,v (k⊥)

m!
ξm (2.8)

B±
h,v(k⊥) ∼

∞∑
m=0

b
±(m)
h,v (k⊥)

m!
ξm (2.9)

C−
h,v(k⊥) ∼

∞∑
m=0

c
−(m)
h,v (k⊥)

m!
ξm (2.10)

as ξ → 0.

2.3.1 Boundary-Condition Equations

To find the unknowns, the boundary conditions, which enforce the continuity of the

tangential components of electric and magnetic fields at the boundaries, should be applied.

n̂1 × E0 = n̂1 × E1

∣∣∣
z=ξf1(x,y)

(2.11)

n̂1 ×H0 = n̂1 ×H1

∣∣∣
z=ξf1(x,y)

(2.12)
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n̂2 × E1 = n̂2 × E2

∣∣∣
z=−d1+ξf2(x,y)

(2.13)

n̂2 ×H1 = n̂2 ×H2

∣∣∣
z=−d1+ξf2(x,y)

(2.14)

where n̂1 and n̂2 are vectors normal to the boundaries, and their expansions are presented

in Appendix A.1. By virtue of imposing the boundary conditions simultaneously, all in-

teractions between the rough boundaries are included in the solution. Note that the mag-

netic field in each region is easily determined from the relation H+
n = k̂n × E+

n/Zn and

H−
n = K̂n×E−

n/Zn, where Zn =
√

µ0/εn. The vectors k̂n and K̂n are defined in Appendix A.1.

Noting that (v̂(·), ĥ(·), k̂) and (v̂(·), ĥ(·), K̂) are orthonormal systems, the magnetic field will

be

H0 =
1

Z0

∞∫

−∞

∞∫

−∞

dk⊥
{[
−A+

h (k⊥)v̂(k0z) + A+
v (k⊥)ĥ(k0z)

]
eik0zz

+
[
−A−

h (k⊥)v̂(−k0z) + A−
v (k⊥)ĥ(−k0z)

]
e−ik0zz

}
eik⊥·r⊥ (2.15)

H1 =
1

Z1

∞∫

−∞

∞∫

−∞

dk⊥
{[
−B+

h (k⊥)v̂(k1z) + B+
v (k⊥)ĥ(k1z)

]
eik1zz

+
[
−B−

h (k⊥)v̂(−k1z) + B−
v (k⊥)ĥ(−k1z)

]
e−ik1zz

}
eik⊥·r⊥ (2.16)

and

H2 =
1

Z2

∞∫

−∞

∞∫

−∞

dk⊥
{[
−C−

h (k⊥)v̂(−k2z) + C−
v (k⊥)ĥ(−k2z)

]
e−ik2zz

}
eik⊥·r⊥ (2.17)

Applying the boundary conditions and using the expansions presented in Appendix A.1

will result in four equations. The boundary condition equations at the first boundary are as
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follows.

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(A(k⊥)a

+(n)
h

+B(k0z,f1)a
+(n)
v )

n!
(ik0zf1(x,y))m−n

(m−n)!
eik⊥·r⊥ξm+

(A(ki
⊥)Eh

o +B(−ki
0z ,f1)Ev

o)eiki
⊥·r⊥

∑∞
m=0

(−iki
0zf1(x,y))m

m!
ξm=

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(A(k⊥)b

+(n)
h

+B(k1z,f1)b
+(n)
v )

n!
(ik1zf1(x,y))m−n

(m−n)!
eik⊥·r⊥ξm+

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(A(k⊥)b

−(n)
h

+B(−k1z,f1)b
−(n)
v )

n!
(−ik1zf1(x,y))m−n

(m−n)!
eik⊥·r⊥ξm (2.18)

1
Z0

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(−B(k0z,f1)a

+(n)
h

+A(k⊥)a
+(n)
v )

n!
(ik0zf1(x,y))m−n

(m−n)!
eik⊥·r⊥ξm+

1
Z0

(−B(−ki
0z ,f1)Eh

o +A(ki
⊥)Ev

o)eiki
⊥·r⊥

∑∞
m=0

(−iki
0zf1(x,y))m

m!
ξm=

1
Z1

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(−B(k1z,f1)b

+(n)
h

+A(k⊥)b
+(n)
v )

n!
(ik1zf1(x,y))m−n

(m−n)!
eik⊥·r⊥ξm+

1
Z1

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(−B(−k1z,f1)b

−(n)
h

+A(k⊥)b
−(n)
v )

n!
(−ik1zf1(x,y))m−n

(m−n)!
eik⊥·r⊥ξm (2.19)

The boundary condition equations at the second boundary are as follows.

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(A(k⊥)b

+(n)
h

+B(k1z,f2)b
+(n)
v )

n!
(ik1zf2(x,y))m−n

(m−n)!
eik⊥·r⊥− ik1zd1ξm+

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(A(k⊥)b

−(n)
h

+B(−k1z,f2)b
−(n)
v )

n!
(−ik1zf2(x,y))m−n

(m−n)!
eik⊥·r⊥+ ik1zd1ξm=

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(A(k⊥)c

−(n)
h

+B(−k2z,f2)c
−(n)
v )

n!
(−ik2zf2(x,y))m−n

(m−n)!
eik⊥·r⊥+ ik2zd1ξm (2.20)

1
Z1

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(−B(k1z,f2)b

+(n)
h

+A(k⊥)b
+(n)
v )

n!
(ik1zf2(x,y))m−n

(m−n)!
eik⊥·r⊥− ik1zd1ξm+

1
Z1

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(−B(−k1z,f2)b

−(n)
h

+A(k⊥)b
−(n)
v )

n!
(−ik1zf2(x,y))m−n

(m−n)!
eik⊥·r⊥+ ik1zd1ξm=

1
Z2

∑∞
m=0

∑m
n=0

∞∫
−∞

∞∫
−∞

dk⊥
(−B(−k2z,f2)c

−(n)
h

+A(k⊥)c
−(n)
v )

n!
(−ik2zf2(x,y))m−n

(m−n)!
eik⊥·r⊥+ ik2zd1ξm (2.21)

where

A(k⊥) :=
kxx̂ + kyŷ

kρ

(2.22)
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B(knz, fi) :=
(−ξfiykρ

2 + knzky)x̂ + (ξfixkρ
2 − knzkx)ŷ

knkρ

(2.23)

We can then match the x̂ and ŷ components of each of these equations separately to a spe-

cific order to derive, for each order, a system of eight linear equations with a
+(m)
h,v (k⊥), b

±(m)
h,v (k⊥),

and c
−(m)
h,v (k⊥) being the unknowns.

2.3.2 Zeroth-Order Solution

Matching the x̂ components of (2.18) to the zeroth order results in

∞∫

−∞

∞∫

−∞

dk⊥

(
kx

kρ

a
+(0)
h +

k0zky

k0kρ

a+(0)
v

)
eik⊥·r⊥ +

(
ki

x

ki
ρ

Eh
o −

ki
yk

i
0z

k0ki
ρ

Ev
o

)
eiki

⊥·r⊥ =

∞∫

−∞

∞∫

−∞

dk⊥

(
kx

kρ

b
+(0)
h +

k1zky

k1kρ

b+(0)
v

)
eik⊥·r⊥ +

∞∫

−∞

∞∫

−∞

dk⊥

(
kx

kρ

b
−(0)
h − k1zky

k1kρ

b−(0)
v

)
eik⊥·r⊥

(2.24)

As stated before, these integrals are in the form of inverse Fourier transform. We know that

if F (k⊥) is the Fourier transform of f(x, y), then F (k⊥ − ki
⊥) will be the Fourier transform

of f(x, y)eiki
⊥·r⊥ . Also the Fourier transform of f(x, y) = 1 is δ(k⊥). Therefore, (2.24) can

be rewritten as

kx

kρ

a
+(0)
h +

k0zky

k0kρ

a+(0)
v − kx

kρ

b
+(0)
h − k1zky

k1kρ

b+(0)
v − kx

kρ

b
−(0)
h +

k1zky

k1kρ

b−(0)
v

= −
(

kx

kρ

Eh
o −

kyk0z

k0kρ

Ev
o

)
δ(k⊥ − ki

⊥) (2.25)

The other seven zeroth-order equations are

ky

kρ

a
+(0)
h − k0zkx

k0kρ

a+(0)
v − ky

kρ

b
+(0)
h +

k1zkx

k1kρ

b+(0)
v − ky

kρ

b
−(0)
h − k1zkx

k1kρ

b−(0)
v =

−
(

ky

kρ

Eh
o +

kxk0z

k0kρ

Ev
o

)
δ(k⊥ − ki

⊥) (2.26)
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− 1

Z0

k0zky

k0kρ

a
+(0)
h +

1

Z0

kx

kρ

a+(0)
v +

1

Z1

k1zky

k1kρ

b
+(0)
h

− 1

Z1

kx

kρ

b+(0)
v − 1

Z1

k1zky

k1kρ

b
−(0)
h − 1

Z1

kx

kρ

b−(0)
v =

− 1

Z0

(
k0zky

k0kρ

Eh
o +

kx

kρ

Ev
o

)
δ(k⊥ − ki

⊥) (2.27)

1

Z0

k0zkx

k0kρ

a
+(0)
h +

1

Z0

ky

kρ

a+(0)
v − 1

Z1

k1zkx

k1kρ

b
+(0)
h

− 1

Z1

ky

kρ

b+(0)
v +

1

Z1

k1zkx

k1kρ

b
−(0)
h − 1

Z1

ky

kρ

b−(0)
v =

1

Z0

(
k0zkx

k0kρ

Eh
o −

ky

kρ

Ev
o

)
δ(k⊥ − ki

⊥) (2.28)

(
kx

kρ

b
+(0)
h +

k1zky

k1kρ

b+(0)
v

)
e−ik1zd1 +

(
kx

kρ

b
−(0)
h − k1zky

k1kρ

b−(0)
v

)
eik1zd1

−
(

kx

kρ

c
−(0)
h − k2zky

k2kρ

c−(0)
v

)
eik2zd1 = 0 (2.29)

(
ky

kρ

b
+(0)
h − k1zkx

k1kρ

b+(0)
v

)
e−ik1zd1 +

(
ky

kρ

b
−(0)
h +

k1zkx

k1kρ

b−(0)
v

)
eik1zd1

−
(

ky

kρ

c
−(0)
h +

k2zky

k2kρ

c−(0)
v

)
eik2zd1 = 0 (2.30)

1

Z1

(
−k1zky

k1kρ

b
+(0)
h +

kx

kρ

b+(0)
v

)
e−ik1zd1 +

1

Z1

(
k1zky

k1kρ

b
−(0)
h +

kx

kρ

b−(0)
v

)
eik1zd1

− 1

Z2

(
k2zky

k2kρ

c
−(0)
h +

kx

kρ

c−(0)
v

)
eik2zd1 = 0 (2.31)

and

1

Z1

(
k1zkx

k1kρ

b
+(0)
h +

ky

kρ

b+(0)
v

)
e−ik1zd1 +

1

Z1

(
−k1zkx

k1kρ

b
−(0)
h +

ky

kρ

b−(0)
v

)
eik1zd1

− 1

Z2

(
−k2zkx

k2kρ

c
−(0)
h +

ky

kρ

c−(0)
v

)
eik2zd1 = 0 (2.32)
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This system of eight linear equations with the eight zeroth-order (m = 0) unknowns can

be represented as

[A(k⊥)]8×8 · [x0(k⊥)]8×1 = [b0(k⊥)]8×1 (2.33)

where x0(k⊥) = [a
+(0)
h a

+(0)
v b

+(0)
h b

+(0)
v b

−(0)
h b

−(0)
v c

−(0)
h c

−(0)
v ]T .

After solving this system of linear equations, the zeroth-order coefficients are found to be

a
+(0)
h (k⊥) =

(k1z + k2z)(k1z − k0z)− ei2k1zd1 (k1z − k2z)(k1z + k0z)

ei2k1zd1 (k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z)
Eh

o δ(k⊥ − ki
⊥) (2.34)

a+(0)
v (k⊥) =

1 + ei2k1zd1 (1− 2k2zk1
2/(k1zk2

2 + k2zk1
2))− 2k1zk0

2/(k1zk0
2 + k0zk1

2)

1 + ei2k1zd1 (1− 2k2zk1
2/(k1zk2

2 + k2zk1
2))(1− 2k1zk0

2/(k1zk0
2 + k0zk1

2))
Ev

o δ(k⊥ − ki
⊥) (2.35)

b
+(0)
h (k⊥) =

−2ei2k1zd1 (k1z − k2z)k0z

ei2k1zd1 (k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z)
Eh

o δ(k⊥ − ki
⊥) (2.36)

b+(0)
v (k⊥) =

−2ei2k1zd1k0k1(−k1zk2
2 + k2zk1

2)k0z

−ei2k1zd1 (k1zk2
2 − k2zk1

2)(k1zk0
2 − k0zk1

2) + (k1zk2
2 + k2zk1

2)(k1zk0
2 + k0zk1

2)
Ev

o δ(k⊥ − ki
⊥) (2.37)

b
−(0)
h (k⊥) =

−2(k1z + k2z)k0z

ei2k1zd1 (k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z)
Eh

o δ(k⊥ − ki
⊥) (2.38)

b−(0)
v (k⊥) =

2k0k1(k1zk2
2 + k2zk1

2)k0z

−ei2k1zd1 (k1zk2
2 − k2zk1

2)(k1zk0
2 − k0zk1

2) + (k1zk2
2 + k2zk1

2)(k1zk0
2 + k0zk1

2)
Ev

o δ(k⊥ − ki
⊥) (2.39)

c
−(0)
h (k⊥) =

−4ei(k1z−k2z)d1k1zk0z

ei2k1zd1 (k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z)
Eh

o δ(k⊥ − ki
⊥) (2.40)

and

c−(0)
v (k⊥) =

−4ei(k1z−k2z)d1k0k1
2k2k1zk0z

ei2k1zd1 (k1zk2
2 − k2zk1

2)(k1zk0
2 − k0zk1

2)− (k1zk2
2 + k2zk1

2)(k1zk0
2 + k0zk1

2)
Ev

o δ(k⊥ − ki
⊥) (2.41)

Analytical validation of the zeroth-order solution is presented in Appendix A.2.

2.3.3 First-Order Solution

Now, the terms in (2.18)–(2.21) can be matched to the first order. Matching the x̂

components of (2.18) to the first order will result in
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∞∫
−∞

∞∫
−∞

dk⊥

[
−f1ykρ

k0
a
+(0)
v +

(
kx
kρ

a
+(0)
h +

k0zky
k0kρ

a
+(0)
v

)
(ik0zf1(x,y))+ kx

kρ
a
+(1)
h +

k0zky
k0kρ

a
+(1)
v

]
eik⊥·r⊥

+

[
− f1yki

ρ
k0

Ev
o +

(
ki
x

ki
ρ

Eh
o−

ki
0zki

y

k0ki
ρ

Ev
o

)
(−iki

0zf1(x,y))

]
eiki

⊥·r⊥=

∞∫
−∞

∞∫
−∞

dk⊥

[
−f1ykρ

k1
b
+(0)
v +

(
kx
kρ

b
+(0)
h +

k1zky
k1kρ

b
+(0)
v

)
(ik1zf1(x,y))+ kx

kρ
b
+(1)
h +

k1zky
k1kρ

b
+(1)
v

]
eik⊥·r⊥

+
∞∫
−∞

∞∫
−∞

dk⊥

[
−f1ykρ

k1
b
−(0)
v +

(
kx
kρ

b
−(0)
h − k1zky

k1kρ
b
−(0)
v

)
(−ik1zf1(x,y))+ kx

kρ
b
−(1)
h − k1zky

k1kρ
b
−(1)
v

]
eik⊥·r⊥ (2.42)

Since the zeroth-order coefficients are linearly proportional to δ(k⊥ − ki
⊥), parts of the

integrals above can be evaluated before applying the Fourier transform on both sides. For

example,
∞∫

−∞

∞∫

−∞

dk⊥
−fykρ

k0

a+(0)
v (k⊥) =

−fyk
i
ρ

k0

a
+(0)
v/δ (ki

⊥) (2.43)

where a+(0)

v/δ (ki
⊥) means a+(0)

v (k⊥) given in (2.35) evaluated at k⊥ = ki
⊥ with δ(k⊥ − ki

⊥)

suppressed. For ease of notation, from now on, a+(0)
v is used instead. Noting that the Fourier

transform of ∂f(x, y)/∂y is kyF (k⊥), the following equation will result.

kx
kρ

a
+(1)
h +

k0zky
k0kρ

a
+(1)
v − kx

kρ
b
+(1)
h − k1zky

k1kρ
b
+(1)
v − kx

kρ
b
−(1)
h +

k1zky
k1kρ

b
−(1)
v =

[
(
− (ki

0z)2ki
y

k0ki
ρ

+
(ky−ki

y)ki
ρ

k0

)
a
+(0)
v − ki

0zki
x

ki
ρ

a
+(0)
h −

(
(ky−ki

y)ki
ρ

k1
− (ki

1z)2ki
y

k1ki
ρ

)
b
+(0)
v +

ki
1zki

x

ki
ρ

b
+(0)
h −

(
(ky−ki

y)ki
ρ

k1
− (ki

1z)2ki
y

k1ki
ρ

)
b
−(0)
v − ki

1zki
x

ki
ρ

b
−(0)
h −

(
(ki

0z)2ki
y

k0ki
ρ

− (ky−ki
y)ki

ρ
k0

)
Ev

o +
ki
0zki

x

ki
ρ

Eh
o

]
(iF1(k⊥−ki

⊥)) (2.44)
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The other seven first-order equations are

ky
kρ

a
+(1)
h −k0zkx

k0kρ
a
+(1)
v − ky

kρ
b
+(1)
h +

k1zkx
k1kρ

b
+(1)
v − ky

kρ
b
−(1)
h − k1zkx

k1kρ
b
−(1)
v =

[
(

(ki
0z)2ki

x

k0ki
ρ

− (kx−ki
x)ki

ρ
k0

)
a
+(0)
v − ki

0zki
y

ki
ρ

a
+(0)
h +

(
(kx−ki

x)ki
ρ

k1
− (ki

1z)2ki
x

k1ki
ρ

)
b
+(0)
v

+
ki
1zki

y

ki
ρ

b
+(0)
h +

(
(kx−ki

x)ki
ρ

k1
− (ki

1z)2ki
x

k1ki
ρ

)
b
−(0)
v − ki

1zki
y

ki
ρ

b
−(0)
h

+
(

(ki
0z)2ki

x

k0ki
ρ

− (kx−ki
x)ki

ρ
k0

)
Ev

o +
ki
0zki

y

ki
ρ

Eh
o

]
(iF1(k⊥−ki

⊥)) (2.45)

− 1
Z0

k0zky
k0kρ

a
+(1)
h + 1

Z0

kx
kρ

a
+(1)
v + 1

Z1

k1zky
k1kρ

b
+(1)
h − 1

Z1

kx
kρ

b
+(1)
v − 1

Z1

k1zky
k1kρ

b
−(1)
h − 1

Z1

kx
kρ

b
−(1)
v

=

[
1

Z0

(
(ki

0z)2ki
y

k0ki
ρ

− (ky−ki
y)ki

ρ
k0

)
a
+(0)
h − 1

Z0

ki
0zki

x

ki
ρ

a
+(0)
v + 1

Z1

(
(ky−ki

y)ki
ρ

k1
− (ki
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o

]
(iF1(k⊥−ki

⊥)) (2.46)
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=
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+
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+
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⊥)) (2.47)
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kx
kρ

e−ik1zd1b
+(1)
h +

k1zky
k1kρ

e−ik1zd1b
+(1)
v + kx

kρ
eik1zd1b

−(1)
h

− k1zky
k1kρ

eik1zd1b
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=
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1z)2ki
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h

]
(iF2(k⊥−ki

⊥)) (2.48)
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=
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+

(ki
1z)2ki

x

k1ki
ρ

)
eiki

1zd1b
−(0)
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ki
1zki

y

ki
ρ

eiki
1zd1b

−(0)
h

+
(
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h

]
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⊥)) (2.49)
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=
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+
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(iF2(k⊥−ki

⊥)) (2.50)
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and

1
Z1

k1zkx
k1kρ

e−ik1zd1b
+(1)
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Z2

k2zkx
k2kρ

eik2zd1c
−(1)
h − 1

Z2

ky
kρ

eik2zd1c
−(1)
v

=

[
1

Z1

(
− (ki

1z)2ki
x

k1ki
ρ

+
(kx−ki

x)ki
ρ
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)
e−iki

1zd1b
+(0)
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(
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−(0)
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1zd1b
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(
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ρ
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+
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ki
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eiki
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(iF2(k⊥−ki

⊥)) (2.51)

This system of eight linear equations with the eight first-order (m = 1) unknowns can be

represented as

[A(k⊥)]8×8 · [x1(k⊥)]8×1 = [b1(k⊥)]8×1 (2.52)

where x1(k⊥) = [a
+(1)
h a

+(1)
v b

+(1)
h b

+(1)
v b

−(1)
h b

−(1)
v c

−(1)
h c

−(1)
v ]T . It should be noted that

the same matrix of coefficients appeared in (2.33), the zeroth-order system of equations.

In fact, it can be seen that A(k⊥) is the matrix of coefficients for all orders. Analytical

validation of the first-order solution is presented in Appendix A.2.

The coefficients that contribute to the first-order scattered field are a
+(1)
h,v (k⊥). It can be

shown that

a
+(1)
h (k⊥) = αf1

h (k⊥)F1(k⊥ − ki
⊥) + αf2

h (k⊥)F2(k⊥ − ki
⊥) (2.53)

a+(1)
v (k⊥) = αf1

v (k⊥)F1(k⊥ − ki
⊥) + αf2

v (k⊥)F2(k⊥ − ki
⊥) (2.54)

where F1(k⊥) and F2(k⊥) are the Fourier transforms of f1(x, y) and f2(x, y), respectively.

Calculation of the coefficients αf1

h (k⊥), αf2

h (k⊥), αf1
v (k⊥), and αf2

v (k⊥) is as follows.

From (2.44)–(2.51), it can be seen that the first four elements of b1(k⊥) are linearly

proportional to F1(k⊥−ki
⊥) and the last four elements are linearly proportional to F2(k⊥−

ki
⊥). Inverting A(k⊥) and solving for the first two elements of x1(k⊥), i.e., a

+(1)
h,v (k⊥), will

result in solutions in the form of linear superpositions of F1(k⊥−ki
⊥) and F2(k⊥−ki

⊥). The

corresponding coefficients are named αf1

h (k⊥),αf2

h (k⊥), αf1
v (k⊥), and αf2

v (k⊥), which can be
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easily computed. To be more specific,

a
+(1)
h (k⊥) =

4∑
j=1

y1jb1,j +
8∑

j=5

y1jb1,j (2.55)

where y1j is the jth element of the first row of Y(k⊥), the inverse of A(k⊥), and b1,j is the

jth element of b1(k⊥). This relation can be rewritten as

a
+(1)
h (k⊥) =

(
4∑

j=1

y1j
b1,j

F1(k⊥ − ki
⊥)

)
× F1(k⊥ − ki

⊥) (2.56)

+

(
8∑

j=5

y1j
b1,j

F2(k⊥ − ki
⊥)

)
× F2(k⊥ − ki

⊥) (2.57)

Therefore,

αf1

h (k⊥) :=
4∑

j=1

y1j
b1,j

F1(k⊥ − ki
⊥)

(2.58)

and

αf2

h (k⊥) :=
8∑

j=5

y1j
b1,j

F2(k⊥ − ki
⊥)

(2.59)

Similarly,

αf1
v (k⊥) :=

4∑
j=1

y2j
b1,j

F1(k⊥ − ki
⊥)

(2.60)

and

αf2
v (k⊥) :=

8∑
j=5

y2j
b1,j

F2(k⊥ − ki
⊥)

(2.61)

2.3.4 Scattering Coefficients

The first-order scattered field is

E(1)
s (r) = ξ

∞∫

−∞

∞∫

−∞

dk⊥
[
a

+(1)
h (k⊥)ĥ(k0z) + a+(1)

v (k⊥)v̂(k0z)
]
eik0zzeik⊥·r⊥ (2.62)

It should be noted that E
(1)
s (r) has a zero-mean and does not modify the coherent solution.

The reason is that a
+(1)
h,v (k⊥) are linearly proportional to F1(k⊥ − ki

⊥) and F2(k⊥ − ki
⊥).
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Noting that

〈F1,2(k⊥ − ki
⊥)〉 =

1

(2π)2

∞∫

−∞

∞∫

−∞

dr⊥e−i(k⊥−ki
⊥)·r⊥〈f1,2(x, y)〉 = 0 (2.63)

it will be obvious that 〈E(1)
s (r)〉 = 0. Therefore, we would need to calculate the second-order

solution to modify the coherent scattered field.

If k0·r is large, (2.62) can be expanded asymptotically using the stationary phase method;

it can be shown that [50]

E(1)
s (r) ' −iξ2πk0 cos θs

eik0r

r

(
a+(1)

h (ks
⊥)ĥ(ks

0z) + a+(1)

v (ks
⊥)v̂(ks

0z)
)

(2.64)

where ks
0z =

√
k2

0 − (ks
x)

2 − (ks
y)

2, ks
x = k0 sin θs cos φs, and ks

y = k0 sin θs sin φs. The

sub/superscript ‘s’ refers to the scattered (observation) direction.

The scattering coefficient σo
pq is defined as

σo
pq := lim

r→∞
lim

A→∞
4πr2

A
〈|E(1)

s (r) · p̂(ks
0z)|2〉, p, q ∈ {v, h} (2.65)

with A being the illuminated area and the incident field being q̂(−ki
0z). Inserting (2.64) into

(2.65), while using (2.53)–(2.54), will lead to

σo
pq=4πk2

0 cos2 θsξ2
(
|αf1

pq(ks
⊥)|2Wf1

(ks
⊥−ki

⊥)+2<{αf1
pq(ks

⊥)α
f2∗
pq (ks

⊥)}Wf1f2
(ks
⊥−ki

⊥)+|αf2
pq(ks

⊥)|2Wf2
(ks
⊥−ki

⊥)
)

(2.66)

where αfi
pq(k

s
⊥) = αfi

p (ks
⊥) with the incident field being q̂(−ki

0z). Wf1(k⊥) and Wf2(k⊥) are

the power spectral densities of the rough boundaries, whose joint spectral density is denoted

by Wf1f2(k⊥). For a brief note on power spectral density, refer to Appendix A.3.

The above equations express the first-order bistatic scattering coefficients in terms of

spectral densities of the two surfaces and the coefficients αfi

h,v, which include the first-order

rough surface effects and all orders of interactions between the two boundaries. We note

that as far as the first-order scattered field is considered, there is no depolarization in the

backscattering direction, a well-established fact in the case of a single rough interface [37].
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To have the continuity of the electric field satisfied at z = ξf1(x, y), this should be true

for the transmitted field in Region 1 as well. By means of ray tracing, we can conclude

that the cross-polarized components of the scattered field in Region 0 in the backscattering

direction will be zero. If this analysis was carried out to the second order, the cross-polarized

components of the backscattered field would not be zero.

2.4 Extension to More Layers

The analysis of the two-layer case can be extended to more layers. Extension from

two layers to three layers is somewhat tricky, but once the three-layer analysis is complete,

extension to more layers is straightforward.

Consider a three-layer dielectric structure as in Fig. 2.2 with a geometry similar to that

of the two-layer structure, and assume the boundaries are denoted by z = ξf1(x, y), z =

−d1 + ξf2(x, y), and z = −d2 + ξf3(x, y). Assumptions are similar to those for the two-layer

case, i.e., the boundaries are zero-mean, stationary random processes, and their roughnesses

are small compared to the wavelength. The new unknown amplitudes are A+
h,v(k⊥), B±

h,v(k⊥),

C±
h,v(k⊥), and D−

h,v(k⊥).
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Figure 2.2: Two-layer structure versus three-layer structure. The figure shows thicknesses,
and amplitudes of the up- and down-going waves.

To derive the two 12 × 12 systems of linear equations for the zeroth- and first-order

solutions, note that for any order, the first four equations in the case of a two-layer medium,

i.e., (2.25)–(2.28) and (2.44)–(2.47), which result from the boundary conditions at z =
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ξf1(x, y), do not change, because in both cases of two- and three-layer structures, these

equations correspond to the same boundary, media, and unknowns. The last four equations

in the case of a two-layer medium, i.e., (2.29)–(2.32) and (2.48)–(2.51), which result from the

boundary conditions at z = −d1 + ξf2(x, y), can be used for the three-layer case as well after

we apply the following changes in order: c → d, b → c, 2 → 3, 1 → 2, f2 → f3 and d1 → d2.

The resulting equations correspond to the boundary conditions at z = −d2 + ξf3(x, y) for a

three-layer structure.

Derivation of the boundary-condition equations at z = −d1 + ξf2(x, y) for the three-

layer structure needs specific attention. Note that apart from the indices, the up-going

(or down-going) amplitudes on both sides of an interface appear analogously on both sides

of the corresponding boundary conditions. These terms, however, will be analogous up to

sign when the equations are formed, because now all unknowns appear on one side of each

equation. Therefore, Fig. 2.2 suggests that, for each order, we take the four boundary-

condition equations at z = −d1 + ξf2(x, y) in the case of a two-layer medium, i.e., (2.29)–

(2.32) and (2.48)–(2.51), and add to each equation terms that account for the up-going

amplitudes c+
h,v. These terms are the negative of the terms containing b+

h,v at the same

boundary, except we should apply the following changes to the new terms: b → c and 1 → 2.

The reader should note that in this case, the index change only applies to terms that are

dielectric-constant dependent. For example, (2.48) should be changed to

kx
kρ

e−ik1zd1b
+(1)
h +

k1zky
k1kρ

e−ik1zd1b
+(1)
v + kx

kρ
eik1zd1b

−(1)
h − k1zky

k1kρ
eik1zd1b

−(1)
v

− kx
kρ

e−ik2zd1c
+(1)
h − k2zky

k2kρ
e−ik2zd1c

+(1)
v − kx

kρ
eik2zd1c

−(1)
h +

k2zky
k2kρ

eik2zd1c
−(1)
v

=

[
(
− (ki

1z)2ki
y

k1ki
ρ

+
(ky−ki

y)ki
ρ

k1

)
e−iki

1zd1b
+(0)
v − ki

1zki
x

ki
ρ

e−iki
1zd1b

+(0)
h

+
(

(ky−ki
y)ki

ρ
k1

− (ki
1z)2ki

y

k1ki
ρ

)
eiki

1zd1b
−(0)
v +

ki
1zki

x

ki
ρ

eiki
1zd1b

−(0)
h

−
(
− (ki

2z)2ki
y

k2ki
ρ

+
(ky−ki

y)ki
ρ

k2

)
e−iki

2zd1c
+(0)
v +

ki
2zki

x

ki
ρ

e−iki
2zd1c

+(0)
h

−
(

(ky−ki
y)ki

ρ
k2

− (ki
2z)2ki

y

k2ki
ρ

)
eiki

2zd1c
−(0)
v − ki

2zki
x

ki
ρ

eiki
2zd1c

−(0)
h

]
(iF2(k⊥−ki

⊥)) (2.67)
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Now, similar to the two-layer case, it can be shown that

a
+(1)
h (k⊥) = αf1

h (k⊥)F1(k⊥ − ki
⊥) + αf2

h (k⊥)F2(k⊥ − ki
⊥) + αf3

h (k⊥)F3(k⊥ − ki
⊥) (2.68)

and

a+(1)
v (k⊥) = αf1

v (k⊥)F1(k⊥ − ki
⊥) + αf2

v (k⊥)F2(k⊥ − ki
⊥) + αf3

v (k⊥)F3(k⊥ − ki
⊥) (2.69)

Therefore, the bistatic scattering coefficients are

σo
pq=4πk2

0 cos2 θsξ2
(
|αf1

pq(ks
⊥)|2Wf1

(ks
⊥−ki

⊥)+|αf2
pq(ks

⊥)|2Wf2
(ks
⊥−ki

⊥)+|αf3
pq(ks

⊥)|2Wf3
(ks
⊥−ki

⊥)
)

(2.70)

where it is assumed that the boundaries are independent random processes.

An interesting special case is when the bottom medium is a perfect conductor. One way of

simulating a good conductor is assigning a large value to the imaginary part of the third layer

dielectric constant. Alternatively, a perfect conductor can be simulated by modifying the

boundary-condition equations, because the boundary condition equation that is analogous to

(2.21), which results from continuity of the tangential magnetic field at z = −d2 + ξf3(x, y),

does not hold when Region 3 is a perfect conductor. Therefore, the last two equations,

which correspond to the x̂ and ŷ components of the equation analogous to (2.21), should be

eliminated. Moreover, since no field exists in a perfect conductor, d
−(m)
h,v (k⊥) are zero, and

therefore, the two columns corresponding to these two unknowns should be eliminated from

the 12× 12 system of equation. The resulting 10× 10 system of equations gives the solution

to this special case. The bistatic scattering coefficients will have the same form as (2.70),

with αfi
pq(k

s
⊥) having different numerical values.
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2.5 Validation and Numerical Results

2.5.1 Validation

The first-order coefficients depend on the zeroth-order solution, and by validating the final

formulation, we are actually validating the zeroth-order coefficients, too. Regardless, we can

easily validate the zeroth-order solution to the two-layer problem by showing that a
+(0)
h,v (k⊥)

can be represented as the well-known reflection coefficients of a two-layer dielectric structure,

which can be found in the literature [51]. Appendix A.2 shows the detail. To validate the

first-order coefficients, some special cases to which known solutions exist are considered:

(1) single rough interface and (2) one flat and one rough interface. In Appendix A.2, an

analytical validation has been presented.

2.5.2 Numerical Results

Some numerical results are presented in this part. In all of the cases below, a Gaussian

correlation function for the boundaries is assumed, that is C(r⊥) = e−|r⊥|
2/l2 , which results

in a spectral density of the form W (k⊥) = σ2l2

4π
e−|k⊥|

2l2/4, where l and σ are the correlation

length and standard deviation of the surface height, respectively.

Fig. 2.3 shows the effect of the second interface roughness on backscattering coefficients.

It is observed that as the roughness increases, the backscattered power also increases, as

expected. The reason is that the second interface itself produces more non-specular scattered

power, part of which is now available to be backscattered into the region of incidence. For

this case, ε1r = 5, ε2r = 10, d1 = λ1, k0lf1 = k0lf2 = 3.0, and k0σf1 = 0.3.

The effect of loss on backscattering coefficients is shown in Fig. 2.4. All parameters are

the same as those of the previous case except that k0σf2 = 0.1 and loss has been added to

both dielectric constants. Both Region 1 and Region 2 are assumed to have identical loss

tangents denoted by tan δ. By adding loss, we are actually adding more contrast between

the region of incidence and Region 1. This will cause more backscattered power. However,

for the total scattered wave in Region 0, this contrast could be counteracted by the power

loss in Region 1. In other words, the loss in Region 1 masks the second interface roughness,
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therefore less scattered power will be observed. There is a compromise between these two

effects. In this case, contrast is dominating power loss.

Fig. 2.5 shows the effect of the second interface roughness on bistatic scattering coef-

ficients. Note the Brewster-like effect in the vertical polarization. There is a distinction

between this case and the case of flat interfaces. When both interfaces are flat, and with a

fixed incidence angle, power is only scattered in the specular direction, which may or may

not correspond to the Brewster angle. However, in the case of rough interfaces with a fixed

incidence angle, this effect is being observed in a direction which is not necessarily the specu-

lar direction. An increase in the scattering coefficient as the roughness increases is observed

again. Here, it is assumed that ε1r = 5, ε2r = 10, d1 = λ1, k0lf1 = k0lf2 = 1.5, k0σf1 = 0.15,

and θi = 135◦.

In all of the above cases, d1 = λ1, the wavelength inside the middle layer. The effect of

the middle layer thickness on backscattering coefficients is shown in Fig. 2.6. The oscillatory

behavior is attributed to pseudo-resonance effects between the two boundaries. A similar

phenomenon is observed when one of the boundaries is flat. For this case, ε1r = 5, ε2r = 10,

k0lf1 = k0lf2 = 1.5, and k0σf1 = k0σf2 = 0.15.

Fig. 2.7 shows the effect of the third interface roughness (a) and the third layer dielec-

tric constant (b) on backscattering coefficients. As expected, more backscattered power is

observed when roughness or dielectric constant increase. When the third layer is a perfect

conductor, the increase in backscattered power is more pronounced. Here, it is assumed that

ε1r = 2, ε2r = 5, 2d1 = d2 = 1 m, k0lf1 = k0lf2 = k0lf3 = 1, and k0σf1 = 1.5k0σf2 = 0.3. In

(a), ε3r = 8 and in (b), k0σf3 = 0.1

2.6 Summary and Conclusion

An analytical method to calculate the bistatic scattering coefficients of two- and three-

layer dielectric structures with rough interfaces has been developed and validated. Several

new results were reported for various combinations of parameters. The assumption of inde-

pendence of the rough interfaces was removed for the general case. The analysis is based on

the Small Perturbation Method (SPM), where the boundary conditions at all interfaces are
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Figure 2.3: Two layers: the effect of the second interface roughness on backscattering co-
efficients for (a) VV and (b) HH polarizations. It is observed that as the roughness in-
creases, the backscattered power also increases. Parameters: ε1r = 5, ε2r = 10, d1 = λ1,
k0lf1 = k0lf2 = 3.0, and k0σf1 = 0.3.
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Figure 2.4: Two layers: the effect of loss on backscattering coefficients for (a) VV and (b)
HH polarizations. Both Region 1 and Region 2 are assumed to have identical loss tangents
denoted by tan δ. By adding loss, we are actually adding more contrast between the region
of incidence and Region 1. This will cause more backscattered power. Parameters: ε

′
1r = 5,

ε
′
2r = 10, d1 = λ1, k0lf1 = k0lf2 = 3.0, and k0σf1 = 3k0σf2 = 0.3.
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Figure 2.5: Two layers: the effect of the second interface roughness on bistatic scattering
coefficients for (a) VV and (b) HH polarizations. Note the Brewster-like effect in VV po-
larization. Parameters: ε1r = 5, ε2r = 10, d1 = λ1, k0lf1 = k0lf2 = 1.5, k0σf1 = 0.15, and
θi = 135◦.
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Figure 2.6: Two layers: the effect of the first layer thickness on backscattering coefficients for
(a) VV and (b) HH polarizations. The oscillatory behavior is attributed to pseudo-resonance
effects between the two boundaries. Parameters: ε1r = 5, ε2r = 10, k0lf1 = k0lf2 = 1.5, and
k0σf1 = k0σf2 = 0.15.
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Figure 2.7: Three layers: the effect of the third layer (a) roughness and (b) dielectric constant
on backscattering coefficients for VV polarization. Parameters: ε1r = 2, ε2r = 5, 2d1 = d2 =
1 m, k0lf1 = k0lf2 = k0lf3 = 1, and k0σf1 = 1.5k0σf2 = 0.3. In (a), ε3r = 8 and in (b),
k0σf3 = 0.1.
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matched to the first order. The method intrinsically takes into account multiple scattering

processes between boundaries which are considered rough simultaneously, hence making the

method suitable for extension to higher orders. The formulation was also shown to be easily

extended to more layers. These are main distinguishing factors of this work compared to

some of the previous studies.

The proposed method provides an efficient analytical means for solving the layered rough-

surface problem. Although the solution is valid for slightly rough boundaries only, it is well

suited for its intended purpose, which is mainly the remote sensing of layered subsurfaces

using low-frequency radars. The computational cost of numerical techniques is rather high

given that many realizations of each of the randomly-rough interfaces have to be simulated.

The present solution, instead, presents a very practical and realistic alternative with negligi-

ble computational overhead. Furthermore, the assumption of slight roughness is a valid one

for this type of application, because to collect discernible data from the subsurface, lower

frequency signals, e.g., in the VHF and UHF range, need to be used to achieve reasonable

penetration depths. In turn, at these frequencies, most surfaces of interest appear only

slightly rough. Therefore, even if the SPM assumptions are removed, gains in accuracy are

expected to be minimal. This method is well suited for developing fast, near-real-time inver-

sion/estimation techniques needed in many scientific and operational applications including

inversion of subsurface soil-layer properties.
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CHAPTER 3

Derivation of Validity Region of SPM Simulation of

One-Dimensional Two-Layer Rough Surfaces

In the previous chapter, the bistatic scattering coefficients of a three-dimensional, two-

layer dielectric structure with slightly rough boundaries were derived. Use of the Small

Perturbation Method (SPM) raises the question about its region of validity. In this work, the

region of validity pertains to the conditions on each layer’s roughness, slope, and permittivity

for which the first-order SPM is accurate within a specified error bound. To this end, the

SPM solution needs to be compared to a solution derived using a method that does not

impose roughness restrictions. Analytical solutions are almost always approximate, and

therefore, our inquiry should be numerical. In this chapter, a PMCHWT-based1 integral

equation [52–54] is used to analyze scattering from a large ensemble of two-layer structures.

The emphasis here is more on developing a systematic comparison between the analytic and

numerical solution rather than the numerical technique itself. To accelerate the numerical

solver, the off-diagonal blocks in the Method of Moments (MoM) interaction matrix are

approximated in terms of low-rank products [55]. Simulations are performed for 1D rough

surfaces represented by zero-mean stationary random processes, separating homogeneous

dielectric layers.

1PMCHWT stands for Poggio-Miller-Chang-Harrington-Wu-Tsai.
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3.1 Introduction

The problem of scattering from a random rough surface is a challenging problem with

no exact analytical solutions, and therefore, we are forced to use approximation schemes to

calculate the scattered wave. The oldest and most widely used approximations are SPM [34]

and the Kirchhoff approximation [56]. Several rough surface scattering models have been

developed over the past decades to increase the accuracy of the old models over various

parameters of the rough surface, but SPM and the Kirchhoff approximation are the most

common among the schemes that have been proposed recently.

A clear understanding of the region of validity of the approximate solutions is necessary

in order to use them properly. SPM is generally valid when the root-mean-square of the

surface height is ‘small’ compared to the wavelength. Moreover, in many treatments of the

perturbation theory, the root-mean-square of the surface slope has also been assumed to be

small compared to the wavelength. However, the precise range of applicability of SPM and

the connection between the small slope approximation and the validity of SPM is not fully

understood.

To find the region of validity of a scattering model, its solution should be compared with

a solution that does not impose any restriction on the rough surface properties. A numerical

method is therefore used to solve the scattering problem for an ensemble of realizations of the

rough surface. The most widely used numerical method, which is also used in this chapter,

is the Method of Moments (MoM) [57]. The comparison between the approximate and

numerical solutions needs to be made for many samples of the model parameters of interest

such as correlation length and standard deviation of the rough surface. Since numerical

solutions are computationally expensive, dense sampling of points from the model space is

the major difficulty in deriving regions of validity for rough surface scattering models.

There have been many quantitative studies on the region of validity of different approxi-

mations for scattering from single rough surfaces [58–60]. These studies have been restricted

to one-dimensional perfectly conductive random rough surfaces that are Gaussian. Improve-

ments in computational power over the years have allowed denser sampling of the model

parameters than was possible before [61].
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When scattering from layered rough surfaces is considered, the assumption of slight

roughness is often valid when probing the layered structure using low-frequency radars.

Indeed, at low frequencies, most surfaces of interest are only slightly rough such that even if

the structure is analyzed using an exact method without making this assumption, gains in

accuracy are expected to be minimal. Therefore, it is imperative to investigate the conditions

on surface roughness and slope for which the first-order SPM is accurate within a specified

error bound.

This chapter presents a study of the region of validity of SPM for a one-dimensional,

two-layer dielectric structure with Gaussian height distribution and Gaussian autocorrela-

tion function. Numerical simulations for one-dimensional surfaces give a quantitative under-

standing of the validity region of various approximations, which are assumed to be accurate

as well when applied to two-dimensional surfaces. Most of the previous studies have used

surfaces with Gaussian height distribution and Gaussian autocorrelation function, because

such surfaces are simplest to describe statistically and can be described fully by the sur-

face height standard deviation and correlation length. Moreover, such surfaces are more

amenable to numerical computation, although many surfaces in nature may have other sta-

tistical properties. Region of validity is expressed as a function of standard deviation and

correlation length of the rough surface. The effect of incidence angle on the region of validity

is not studied here, because MoM fails for large incidence angles. We should note that the

scattering problem in the case of near grazing incidence or scattered angle is of much interest

in applications such as shipborne and airborne radar backscatter from land and sea. The

region of validity of SPM for a perfectly conductive single rough surface in the case of near

grazing incidence angle has been studied by means of numerical simulations that work for

grazing angles as small as 0.1◦ [62]. The effect of the material property on the region of

validity of the first-order perturbation theory has also been studied [63]. All of these studies

have considered a one-dimensional Gaussian random rough surface.

In the next section, the problem geometry is introduced and the PMCHWT equations are

derived from the boundary conditions using the equivalence principle. The MoM formulation

is presented in Section 3.3. The fast solver is discussed in Section 3.6 followed by numerical

results. Section 3.8 addresses the region of validity of SPM for a two-layer rough surface
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structure.

3.2 Problem Geometry and Formulation

The same problem geometry as in Chapter 2 is used except that the rough surfaces are

considered one dimensional in this chapter. Consider the two-dimensional, two-layer isotropic

dielectric structure shown in Fig. 3.1. The top and bottom regions are half-spaces and the

layers dielectric constants are ε0, ε1, and ε2. The permeability of all layers is assumed to be

µ0. The boundaries are denoted by y1 = f1(x) and y2 = −d + f2(x), where both f1(x) and

f2(x) are zero-mean, stationary random processes with known, distinct statistical properties.

The numerical generation of such boundaries is presented in Appendix B.1.
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inc inczE

s

2 2
y d f x

1 1
y f x

Figure 3.1: Geometry of the problem: a 2D double layer rough surface structure with ho-
mogeneous layers.

To solve the scattering problem, i.e., to find the scattered wave, surface equivalence

principle is used to form surface integral equations. The three equivalent problems along

with the corresponding fields and equivalent current sources are shown in Fig. 3.2. The

41



equivalent currents and their signs are determined from the boundary conditions.
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Figure 3.2: The three problems formulated based on the equivalence principle. Each equiva-
lent problem gives the field in a different region, but the problems are solved simultaneously
to find the surface currents.
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The boundary conditions on S1 state that

n̂× Einc = −K1 − n̂× Es (3.1)

0 = K1 + n̂× E1 (3.2)

n̂×Hinc = J1 − n̂×Hs (3.3)

0 = −J1 + n̂×H1 (3.4)

where J1 and K1 are, respectively, the equivalent electric and magnetic currents on S1.

Similarly, the boundary conditions on S2 state that

0 = −K2 − n̂× E1 (3.5)

0 = K2 + n̂× E2 (3.6)

0 = J2 − n̂×H1 (3.7)

0 = −J2 + n̂×H2 (3.8)

where J2 and K2 are, respectively, the equivalent electric and magnetic currents on S2. Note

that (3.1) and (3.3) result from the first equivalent problem where the equivalent currents

on S1 produce the scattered field in the region of incidence and produce null fields in other

regions. Likewise, (3.6) and (3.8) result from the third equivalent problem where the currents

on S2 produce E2 and H2 in Region 2 and produce null fields in other regions. Finally, (3.2),

(3.4), (3.5), and (3.7) result from the second equivalent problem where the currents on S1

and S2 produce E1 and H1 in Region 1 and produce null fields in other regions.

We can find the unknown currents from either the electric or magnetic field boundary

conditions. However, combining (3.1) with (3.2), (3.3) with (3.4), (3.5) with (3.6), and (3.7)

with (3.8) will eliminate the interior resonance in the integral equations and will produce
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more accurate results. The resulting set of equations is

n̂× Einc = −n̂× Es + n̂× E1 (3.9)

n̂×Hinc = −n̂×Hs + n̂×H1 (3.10)

0 = −n̂× E1 + n̂× E2 (3.11)

0 = −n̂×H1 + n̂×H2 (3.12)

These equations are known as the PMCHWT equations and have been applied to dielectric

bodies previously.

3.3 Method of Moment Formulation

Mixed potential formulation is used to find the fields in each region, i.e.,

E = iωµoA−∇Φe −∇× F (3.13)

H = ∇×A + iωεF−∇Φm (3.14)

where, assuming that the boundaries are parameterized in t,

A =
i

4

∫
J(t′)H(1)

0 (kR)dt′ (3.15)

F =
i

4

∫
K(t′)H(1)

0 (kR)dt′ (3.16)

Φe =
i

4

∫
ρe(t

′)
ε

H
(1)
0 (kR)dt′ (3.17)

Φm =
i

4

∫
ρm(t′)

µo

H
(1)
0 (kR)dt′ (3.18)

where J and K are the corresponding equivalent surface currents radiating in an unbounded,

homogeneous space whose wave number is k. The function H
(1)
0 is the zeroth order Hankel

function of the first kind and R is the distance between observation and integration points.
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The quantities ρe and ρm are the equivalent surface charges related to the surface currents

through the continuity equations

∇s · J = iωρe (3.19)

∇s ·K = iωρm (3.20)

Assume that the incident field polarization is transverse magnetic to z (TMz), i.e.,

Einc = ẑEinc = ẑ exp[ikinc · ρ] (3.21)

where

kinc = k0 (x̂ cos φinc + ŷ sin φinc) (3.22)

where k0 is the incidence region wavenumber and φinc is the incidence angle shown in Fig. 3.3.

This figure also shows the vectors tangential and normal to the surface profiles. Noting that,

y

x

ˆ
inc inczE

inc

t̂

n̂

Figure 3.3: Geometry of the problem and the convention for incidence angle, tangential
vector t̂, and normal vector n̂.
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on the boundary, −t̂ · (n̂× E) = Ez and ẑ · (n̂×H) = H t, Equations (3.9)–(3.12) reduce to

Ez
inc = −Ez

s + Ez
1 (3.23)

H t
inc = −H t

s + H t
1 (3.24)

0 = −Ez
1 + Ez

2 (3.25)

0 = −H t
1 + H t

2 (3.26)

which, using (3.15)–(3.18) and noting that ẑ · ∇Φe = 0 in a z-invariant problem, can be

written as

Ez
inc = −ik0η0A

z
0 + ẑ · ∇ × F0

+ ik1η1A
z
1 − ẑ · ∇ × F1 (3.27)

−H t
inc = t̂ · (∇×A0 + iωε0F0 −∇Φm0)

− t̂ · (∇×A1 + iωε1F1 −∇Φm1) (3.28)

0 = −ik1η1A
z
1 + ẑ · ∇ × F1

+ ik2η2A
z
2 − ẑ · ∇ × F2 (3.29)

0 = t̂ · (∇×A1 + iωε1F1 −∇Φm1)

− t̂ · (∇×A2 + iωε2F2 −∇Φm2) (3.30)

The potential functions A0, A1, A2, F0, F1, F2, Φm0, Φm1, and Φm2 are presented in

Appendix B.2.

To solve (3.27)–(3.30) for the unknown currents using MoM, the boundaries should be

discretized. To enforce the integral equations, testing functions will then be applied on

(3.27)–(3.30). Pulse and triangle basis functions, as shown in Fig. (3.4), are used for electric
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Figure 3.4: Pulse (p) and triangle (t) basis functions used to represent electric current J and
magnetic current K, respectively.

and magnetic currents, respectively.

Jz(t) =
N∑

n=1

jnp(t; tn− 1
2
, tn+ 1

2
) (3.31)

Kt(t) =
N∑

n=1

knt(t; tn−1, tn, tn+1) (3.32)

where N is the number of cells on the corresponding boundary. (Assume that the first

and second boundaries are discretized using N1 and N2 cells, respectively.) It is apparent

from the boundary conditions (3.9)–(3.12) and (3.21) that Jz and Kt are the only non-zero

components of the electric and magnetic currents.

The derivation of the MoM formulation is presented below.

3.3.1 Derivation of the MoM Formulation

The formulation presented here is for a general medium and a general number of segments,

denoted by N . Therefore, the terms in (3.27)–(3.30) can be expanded as follows.

The Az terms in (3.27) and (3.29) can be written as

47



∫

S

Jz(t
′)H(1)

0 (kR)dt′ =
N∑

n=1

jnIn(t) (3.33)

where

R =

√
(x(t)− x(t′))2 + (y(t)− y(t′))2 (3.34)

and

In(t) =

∫ t
n+1

2

t
n− 1

2

H
(1)
0 (kR)dt′ (3.35)

which can be written as

In(t) = In1(t) + In2(t) (3.36)

where

In1(t) =

∫ tn

t
n− 1

2

H
(1)
0 (kR)dt′ (3.37)

and

In2(t) =

∫ t
n+1

2

tn

H
(1)
0 (kR)dt′ (3.38)

Applying pulse testing functions on (3.33) would result in

∫ t
m+1

2

t
m− 1

2

∫

S

Jz(t
′)H(1)

0 (kR)dt′dt '
(
tm+ 1

2
− tm

) N∑
n=1

jnIn(tm+ 1
4
)

+
(
tm − tm− 1

2

) N∑
n=1

jnIn(tm− 1
4
) (3.39)

Note that In1(tm− 1
4
) and In2(tm+ 1

4
) are singular integrals if m = n; it can be shown that as

the cell length approaches 0,

Im1(tm− 1
4
) ∼ (tm−tm− 1

2
)

(
1 + i

2

π

[
ln

(
γk(tm − tm− 1

2
)/4

)
− 1

])
+O

(
(tm − tm− 1

2
)3

)
(3.40)

and

Im2(tm+ 1
4
) ∼ (tm+ 1

2
−tm)

(
1 + i

2

π

[
ln

(
γk(tm+ 1

2
− tm)/4

)
− 1

])
+O

(
(tm+ 1

2
− tm)3

)
(3.41)
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where γ = 1.781072418....

Likewise, the t̂ · ∇ ×A terms in (3.28) and (3.30) can be written as

−t̂ · ∇ ×
∫

S

J(t′)H(1)
0 (kR)dt′ = −k

∫

S

Jz(t
′)

(
cos φ(t)

∆x

R
+ sin φ(t)

∆y

R

)
H

(1)
1 (kR)dt′

= −k

N∑
n=1

jnIn(t) (3.42)

where

In(t) =

∫ t
n+1

2

t
n− 1

2

dt′
(

cos φ(t)
∆x

R
+ sin φ(t)

∆y

R

)
H

(1)
1 (kR) (3.43)

which can be written as

In(t) = In1(t) + In2(t) (3.44)

where

In1(t) =

∫ tn

t
n− 1

2

dt′
(

cos φ(t)
∆x

R
+ sin φ(t)

∆y

R

)
H

(1)
1 (kR) (3.45)

and

In2(t) =

∫ t
n+1

2

tn

dt′
(

cos φ(t)
∆x

R
+ sin φ(t)

∆y

R

)
H

(1)
1 (kR) (3.46)

Note that t̂ = −x̂ sin φ(t) + ŷ cos φ(t) where the quantity φ(t) describes the orientation of

the tangential vector t̂ as shown in Fig. 3.5.

Applying pulse testing functions on (3.42) would result in

∫ t
m+1

2

t
m− 1

2

t̂ · ∇ ×
∫

S

J(t′)H(1)
0 (kR)dt′dt '

(
tm − tm− 1

2

)
k

N∑
n=1

jnIn(tm− 1
4
)

+
(
tm+ 1

2
− tm

)
k

N∑
n=1

jnIn(tm+ 1
4
) (3.47)

Note that In1(tm− 1
4
) and In2(tm+ 1

4
) are singular integrals if m = n; it can be shown that

−(ik/4)Im1(t) → −1/2 and −(ik/4)Im2(t) → −1/2 as t → tm− 1
4

and t → tm+ 1
4
, respectively.

The ẑ · ∇ × F terms in (3.27) and (3.29) can be written as
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ŷ

x̂

t̂

Figure 3.5: Orientation of a tangential vector is represented by the angle φ.

ẑ · ∇ ×
∫

S

K(t′)H(1)
0 (kR)dt′ = −k

∫
Kt(t

′)
(

cos φ(t′)
∆x

R
+ sin φ(t′)

∆y

R

)
H

(1)
1 (kR)dt′

= −k

N∑
n=1

knIn(t) (3.48)

where ∆x = x(t)− x(t′), ∆y = y(t)− y(t′), and

In(t) =

∫ tn+1

tn−1

dt′
(

cos φ(t′)
∆x

R
+ sin φ(t′)

∆y

R

)
t(t′; tn−1, tn, tn+1)H

(1)
1 (kR) (3.49)

=

∫ tn

tn−1

dt′
(

cos φ(t′)
∆x

R
+ sin φ(t′)

∆y

R

)
t(t′; tn−1, tn, tn+1)H

(1)
1 (kR)

+

∫ tn+1

tn

dt′
(

cos φ(t′)
∆x

R
+ sin φ(t′)

∆y

R

)
t(t′; tn−1, tn, tn+1)H

(1)
1 (kR)

which can be approximated as

In(t) ' In1(t) + In2(t) (3.50)
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where

In1(t) =

∫ tn

t
n− 1

2

dt′
(

cos φ(t′)
∆x

R
+ sin φ(t′)

∆y

R

)
H

(1)
1 (kiR) (3.51)

and

In2(t) =

∫ t
n+1

2

tn

dt′
(

cos φ(t′)
∆x

R
+ sin φ(t′)

∆y

R

)
H

(1)
1 (kiR) (3.52)

Applying pulse testing functions on (3.48) would result in

∫ t
m+1

2

t
m− 1

2

ẑ · ∇ ×
∫

S

K(t′)H(1)
0 (kR)dt′dt ' −

(
tm − tm− 1

2

)
k

N∑
n=1

knIn(tm− 1
4
)

−
(
tm+ 1

2
− tm

)
k

N∑
n=1

knIn(tm+ 1
4
) (3.53)

Note that In1(tm− 1
4
) and In2(tm+ 1

4
) are singular integrals if m = n; it can be shown that

−(ik/4)Im1(t) → −1/2 and −(ik/4)Im2(t) → −1/2 as t → tm− 1
4

and t → tm+ 1
4
, respectively.

Similarly, it can be shown that the t̂ · F terms in (3.28) and (3.30) can be written as

t̂ ·
∫

S

K(t′)H(1)
0 (kR)dt′ =

∫

S

cos(φ(t)− φ(t′))Kt(t
′)H(1)

0 (kR)dt′ =
N∑

n=1

knIn(t) (3.54)

where

In(t) =

∫ tn+1

tn−1

cos(φ(t)− φ(t′))t(t′; tn−1, tn, tn+1)H
(1)
0 (kR)dt′ (3.55)

=

∫ tn

tn−1

cos(φ(t)− φ(t′))t(t′; tn−1, tn, tn+1)H
(1)
0 (kR)dt′

+

∫ tn+1

tn

cos(φ(t)− φ(t′))t(t′; tn−1, tn, tn+1)H
(1)
0 (kR)dt′

which can be approximated as

In(t) ' In1(t) + In2(t) (3.56)

where

In1(t) =

∫ tn

t
n− 1

2

cos(φ(t)− φ(t′))H(1)
0 (kR)dt′ (3.57)
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and

In2(t) =

∫ t
n+1

2

tn

cos(φ(t)− φ(t′))H(1)
0 (kR)dt′ (3.58)

Applying pulse testing function on (3.54) would result in

∫ t
m+1

2

t
m− 1

2

t̂ ·
∫

S

K(t′)H(1)
0 (kR)dt′dt '

(
tm − tm− 1

2

) N∑
n=1

knIn(tm− 1
4
)

+
(
tm+ 1

2
− tm

) N∑
n=1

knIn(tm+ 1
4
) (3.59)

Note that In1(tm− 1
4
) and In2(tm+ 1

4
) are singular integrals if m = n; it can be shown that

Im1(tm− 1
4
) ∼ (tm−tm− 1

2
)

(
1 + i

2

π

[
ln

(
γk(tm − tm− 1

2
)/4

)
− 1

])
+O

(
(tm − tm− 1

2
)3

)
(3.60)

and

Im2(tm+ 1
4
) ∼ (tm+ 1

2
−tm)

(
1 + i

2

π

[
ln

(
γk(tm+ 1

2
− tm)/4

)
− 1

])
+O

(
(tm+ 1

2
− tm)3

)
(3.61)

where γ = 1.781072418....

Finally, the t̂ · ∇Φm terms in (3.28) and (3.30) can be written as

t̂ · ∇Φm =
∂Φm

∂t
(3.62)

Therefore, applying pulse testing function on (3.62) would result in

∫ t
m+1

2

t
m− 1

2

t̂ · ∇Φmdt′ = Φm(tm+ 1
2
)− Φm(tm− 1

2
) (3.63)

Assuming

Φm(t) =
i

4

∫

S

ρm(t′)
µ0

H
(1)
0 (kR)dt′ =

1

4ωµ0

∫

S

dKt

dt′
H

(1)
0 (kR)dt′ (3.64)

and noting that, from (3.32),

dKt

dt
=

N∑
n=1

kn

(
p(t; tn−1, tn)

tn − tn−1

− p(t; tn, tn+1)

tn+1 − tn

)
(3.65)
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we will have

Φm(t) =
1

4ωµ0

N∑
n=1

kn

[
1

tn − tn−1

∫ tn

tn−1

H
(1)
0 (kR)dt′ − 1

tn+1 − tn

∫ tn+1

tn

H
(1)
0 (kR)dt′

]
(3.66)

Note that Φm(tm− 1
2
) and Φm(tm+ 1

2
) include singular integrals when m = n. These singular

integrals are handled similar to (3.40), (3.41), (3.60), and (3.61).

Applying the testing functions on Ez
inc and H t

inc is simple and is done via numerical

integration.

After completing the discretization and testing the equation, the system of equations can

be expressed as a 2(N1 + N2)× 2(N1 + N2) matrix equation.

Z




J1z

K1t

J2z

K2t




=




Ez
inc

Ht
inc

0

0




(3.67)

where the mth elements of Ez
inc and Ht

inc are respectively found by testing (3.27) and (3.28)

with p(t; tm− 1
2
, tm+ 1

2
). The elements of the vectors J1z, K1t, J2z, and K2t are the electric and

magnetic currents on the corresponding cell. The matrix Z denotes the impedance matrix.

Once the surface currents are found, they are used to calculate the scattering coefficients

of the rough surface structure. In numerical simulations, the rough surfaces are finite, and

if the surface currents suddenly change from non-zero to zero at the end points of the rough

surfaces, artificial reflections occur. Therefore, a tapered incident wave is used so that the

incident wave would decay to zero gradually [64]. A possible choice for tapered incident wave

is [58]

Ez
inc = exp (ik0 (x cos φinc + y sin φinc) (1 + w(ρ))) exp

(
−(x− y cot φinc)

2

g2

)
(3.68)

where g is the tapering parameter and is usually between L/4 and L/10 depending on the
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incidence angle. The incident wave vector is given by (3.22). The choice of w(ρ) is

w(ρ) =

[
2
(x− y cot φinc)

2

g2
− 1

]

(k0g sin φinc)
2 (3.69)

The bistatic scattering coefficient of the rough surface structure is given by [64]

σ(φs) =

1

2η0

1

8πk0

∣∣ψ(N)
s (φs)

∣∣2

Pinc

(3.70)

where, for TM incidence, ψ
(N)
s (φs) can be shown to be

ψ(N)
s (φs) = −

∫

S1

ds

(
ik0η0J1z + ik0K1t

f ′(x) cos φs − sin φs√
1 + f ′(x)2

)

× exp [−ik0 (x cos φs + f(x) sin φs)] (3.71)

Pinc is defined as

Pinc = −
∫

S1

dxSinc · ŷ (3.72)

where Sinc is the incident Poynting vector. If the incident wave is tapered, it can be shown

that

σ(φs) = −

∣∣∣ψ(N)
s (φs)

∣∣∣
2

8πk0g

√
π

2
sin φinc

[
1− 1 + 2 cot2 φinc

2k2
0g

2 sin2 φinc

] (3.73)

Appendix B.3 describes in detail how (3.71) is derived.

3.4 Relation Between Bistatic Scattering Coefficients

from 2D SPM and 2D MoM

Let’s first investigate how 3D SPM formulation can be used to calculate the bistatic

scattering coefficient of a 2D rough surface structure. The formulation presented here is in

fact the 2D version of the formulation presented in Chapter 2.
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3.4.1 Use of 3D SPM Formulation in a 2D Scattering Problem

The power spectral density of f(x), representing a 1D random rough surface, is defined

as

W (kx) := σ2F{C(x)} =
σ2

2π

∫ +∞

−∞
C(x) exp (−ikxx)dx (3.74)

where C(x) is defined in Appendix B.1 and f(x) is assumed to have all of the properties

mentioned in Appendix B.1. It can be shown that

W (kx) = 2π lim
L→∞

〈|F (kx)|2
〉

L
(3.75)

where

F (kx) =

∫ L/2

−L/2

f(x) exp [−ikxx]dx (3.76)

Since the formulation presented here is the 2D version of the formulation presented in Chap-

ter 2, we assume the plane of incidence is the x-z plane. Therefore, the 2D version of (2.62)

can be written as

E(1)
s (ρ) = ξ

∫
dkx

[
a

+(1)
h (kx)ĥ(k0z) + a+(1)

v (kx)v̂(k0z)
]
eik·ρ (3.77)

where k · ρ = k0zz + kxx. The asymptotic expansion of the integral as k · ρ →∞ (far-field

region) is found using the stationary phase method. The stationary point can be found by

solving

∂k · ρ
∂kx

=
∂ (kxx + k0zz)

∂kx

= 0 (3.78)

The solution to (3.78) is ks
x = k0 cos φs, where φs is the observation (scattering) direction.

Therefore,

k · ρ ' k0ρ− ρ

2k0 sin2 φs

(kx − ks
x)

2 (3.79)
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The electric field in (3.77) can then be expanded as

E
(1)
s (ρ) ∼ ξ

(
a

+(1)
h (ks

x)ĥ(ks
0z) + a

+(1)
v (ks

x)v̂(ks
0z)

)
eik0ρ

×
∫ ∞

−∞
exp

[
−i

ρ

2k0 sin2 φs

(kx − ks
x)

2

]
dkx (3.80)

It can easily be shown that

E(1)
s (ρ) ∼ ξ

√
2πk0e

−i π
4

(
a

+(1)
h (ks

x)ĥ(ks
0z) + a+(1)

v (ks
x)v̂(ks

0z)
)

sin φs
eik0ρ

√
ρ

(3.81)

The bistatic scattering coefficient for 1D rough surfaces is defined as

γ2D
pq (k̂i, k̂s) = − lim

L→∞
lim
ρ→∞

2πρ

L cos θi

〈∣∣E(1)
s (ρ) · p̂(ks

0z)
∣∣2

〉
(3.82)

where p, q ∈ {v, h} and the incident field is assumed to be q̂(−ki
0z). The incidence angle θi

is defined according to the convention in Chapter 2. See Fig. 2.1.

Similar to the 2D rough surface case,

a
+(1)
h (kx) = αf1

h (kx)F1(kx − ki
x) + αf2

h (kx)F2(kx − ki
x) (3.83)

a+(1)
v (kx) = αf1

v (kx)F1(kx − ki
x) + αf2

v (kx)F2(kx − ki
x) (3.84)

Inserting (3.83) and (3.84) in (3.81) and using (3.75), the bistatic scattering coefficient given

by (3.82) will reduce to

γ2D
pq (k̂i, k̂s) = 2πk0

sin2 φs

| sin φinc|ξ
2

2∑
i=1

∣∣αfi
pq(k

s
x)

∣∣2 Wfi
(ks

x − ki
x) (3.85)

where αpq(k
s
x) = αp(k

s
x)|Ei=q̂(−ki

0z). These coefficients can be calculated by setting ki
y = ks

y = 0

in the calculation of αpq(k
s
⊥) in 3D SPM. Therefore, by comparing (3.85) with (2.66) and

assuming that the two rough surfaces are not correlated,

γ2D
pq (k̂i, k̂s) =

1

2k0

γ3D
pq (k̂i, k̂s)|ki

y=0,ks
y=0 (3.86)
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where, assuming Gaussian correlation functions for the 1D and 2D cases, W (k⊥) in (2.66)

has been replaced by 2
√

π
l

W (k⊥). Note that in the 3D problem, the incidence direction is

described by θi and in the 2D problem, the incidence direction is described by φinc, which

is a negative number. It is clear that −φinc = θi − π
2
. We should also note the difference

between σo
pq in (2.66) and γ3D

pq in (3.86). Conventionally, σo
pq = −γ3D

pq cos θi = −γ3D
pq sin φinc.

We should now investigate the relation between the bistatic scattering coefficient calcu-

lated by (3.73) and (3.86). This relation is necessary in order to compare the numerical

result with the analytical solution. To see how (3.73) (or equivalently (3.70)) and (3.86) (or

equivalently (3.82)) are related, the incident wave is assumed to be a plane wave.

Einc = ẑEinc = ẑ exp[ikinc · ρ] (3.87)

where

kinc = k0 (x̂ cos φinc + ŷ sin φinc) (3.88)

where k0 is the incidence region wavenumber and φinc is the incidence angle shown in Fig. 3.3.

Therefore,

Sinc =
1

2η0

(3.89)

where Sinc is the magnitude of the incident Poynting vector. According to (3.72) the incident

power is

Pinc = −
∫ ∞

−∞
dx

1

2η0

sin φinc = − lim
L→∞

SincL sin φinc (3.90)

The bistatic scattering coefficient, as determined by (3.70), is

σ(φs) = − lim
L→∞

1

2η0

1

8πk0

∣∣ψ(N)
s (φs)

∣∣2

SincL sin φinc

(3.91)

Since, according to [64], the scattered Poynting vector in the far-field region is

Ss =
ρ̂

2η0

(
1

8πk0ρ

) ∣∣ψ(N)
s (φs)

∣∣2 (3.92)
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we can rewrite (3.91) as

σ(φs) = lim
ρ→∞

lim
L→∞

1

2π

2πρ

L |sin φinc|
Ss

Sinc

(3.93)

Comparing (3.93) with (3.82) would lead to

σ(φs) =
γ2D

pq

2π
(3.94)

3.5 MoM Numerical Results

To validate the MoM solution, the solution of (3.67) is compared with the solution found

from Chapter 2. Consider a two-layer dielectric structure with the model parameters shown

in Table 3.1 where N1 and N2 denote the number of cells on the first and second boundary,

respectively, and f denotes the frequency. Note that all of the parameters are in SI units.

Fig. 3.6 shows comparisons between SPM and MoM solutions. It is clear from the plots that

for very smooth surfaces (Case 1), the MoM and SPM solutions agree well while when the

second boundary becomes rougher (Case 2), these solution do not agree.

Table 3.1: The model parameters of the structures simulated with SPM and MoM. The
results of simulations are shown in Fig. 3.6.

ε
′
1r ε

′
2r d lf1 σf1 lf2 σf2 N1 N2 f (MHz)

Case 1 2.0 + i0.01 4.0 + i0.02 0.3 0.2 0.01 0.2 0.01 750 1000 300
Case 2 2.0 + i0.01 4.0 + i0.02 0.3 0.2 0.01 0.2 0.05 750 1000 300

The significant discrepancy between the MoM and SPM solutions for scattering angles

around the specular direction is due to the fact that the first order SPM solution is incoherent

and does not include the specular peak. The disagreement between the MoM and SPM

solutions in the backscattering direction in Fig. 3.6(b) implies that we should study the

region of validity of the SPM for a two-layer structure. To derive the region of validity of the

SPM formulation of Chapter 2, we need to systematically compare the SPM solution to the

numerical solution derived above. To this end, we need a fast solver of the matrix equation

(3.67). In what follows, the fast solver employed in this chapter is described.
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Figure 3.6: Comparison between SPM and MoM solutions for two cases presented in Ta-
ble 3.1. When both surfaces are smooth, the SPM and MoM solutions show good agreements,
but when one or both of the surfaces become rough, these solutions do not agree.
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3.6 Fast Solver

The idea behind a fast solver of a matrix equation such as (3.67) is to accelerate the

product of a matrix and a vector. The fast solver employed in this work is based on the UV

Multilevel Partitioning Method (UV-MLP) [55]. In a UV decomposition, an N by N matrix

is decomposed as

A = U×V (3.95)

where U is an N by r and V is an r by N matrix. The quantity r is the rank of A. The

computational cost of the direct product of A and a vector is O(N2), but if we multiply a

vector by V and multiply the result by U, the computational cost will be O(2rN). Therefore,

if r ¿ N , the computational cost reduces significantly.

In the following subsections, the theory of UV decomposition of a matrix and the Mul-

tilevel Partitioning Method are presented.

3.6.1 UV Decomposition

Assume that the rank of an N by N matrix A is r and denote the independent columns

of A by ūl where 1 ≤ l ≤ r. These columns form an N by r matrix U with elements uil.

uil = (ūl)i (3.96)

where 1 ≤ i ≤ N . The quantity (ūl)i is the ith element of the column vector ūl. Since {ūl}
are independent, any column of A can be written as a linear combination of {ūl} as

āj =
r∑

l=1

vljūl (3.97)

Equivalently,

aij =
r∑

l=1

uilvlj (3.98)
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Equation (3.98) can be reformulated as

A = U×V (3.99)

where V is an r by N matrix with elements vlj introduced in (3.97). To find V, note that

according to (3.98),

āi =
r∑

l=1

uilv̄l (3.100)

where āi is the ith row of A and v̄l is the lth row of V. Assuming the r independent rows

of A form a matrix Ṽ, the ith row of Ṽ, denoted by ¯̃vi, can be presented as

¯̃vi =
r∑

l=1

um(i)lv̄l (3.101)

where 1 ≤ i ≤ r and m(i) maps the row index i of Ṽ to the corresponding row index of A

according to (3.100). For example, if the fifth row of A is the third row of Ṽ, then m(3) = 5.

Equation (3.101) can equivalently be written as

ṽij =
r∑

l=1

um(i)lvlj (3.102)

which can be reformulated as

Ṽ = W ×V (3.103)

where the r by r matrix W can be thought of as the intersection of U and Ṽ. Finally, from

(3.99),

A = UV = UW−1Ṽ (3.104)

To summarize the process, if the rank of AN×N is r, the independent columns form UN×r

and the independent rows form Ṽr×N . If Wr×r is the intersection of these two matrices, A

can be decomposed as in (3.104). Fig. 3.7 visualizes the process.
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Figure 3.7: UV decomposition of a matrix. The red elements form the intersection matrix
W.

3.6.2 Multilevel Partitioning

In UV-MLP, a matrix is decomposed to multilevel blocks as shown in Fig. 3.8. Block

size is smaller for the blocks closer to the diagonal. Each of the blocks, except for the

diagonal blocks, which are full-rank matrices, is decomposed to a UV product using the

method mentioned in the previous subsection. The algorithm that is used in this chapter to

determine the rank of a block is as follows.

Let’s start with ro as an initial guess at the rank of the block. The block rows and

columns are sampled to form the intersection matrix W. The rank of W, denoted by r, is

determined using the singular value decomposition (SVD) of W. To determine the rank of

an N by N matrix using SVD, assume the singular values of the matrix are σ1, σ2,. . . ,σN

where σ1 ≥ σ2 ≥ . . . ≥ σN . The rank of the matrix is determined to be r if

σr+1

σ1

< ε (3.105)
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Figure 3.8: Multilevel partitioning of a matrix [55].

where ε is the accuracy used to determine the rank. The above process is repeated Nro times

and the largest rank r is called rm. Three cases might happen:

1- If rm and ro are equal, it means that there might be more independent rows and columns

that have not been sampled. So we increase ro by 1, i.e., ro = ro + 1, and repeat the above

process with the new ro.

2- If rm = ro − 1, we determine the rank of the block as rm.

3- If rm < ro − 1, it means that so many rows and columns have been sampled. So we

decrease ro by 1, i.e., ro = ro − 1, and repeat the above process with the new ro.

According to (3.9)–(3.12), the matrix equation (3.67) can also be presented as




Zs1
ej1

Zs1
ek1

Zs1
ej2

Zs1
ek2

Zs1
hj1

Zs1
hk1

Zs1
hj2

Zs1
hk2

Zs2
ej1

Zs2
ek1

Zs2
ej2

Zs2
ek2

Zs2
hj1

Zs2
hk1

Zs2
hj2

Zs2
hk2







J1z

K1t

J2z

K2t




=




Ez
inc

Ht
inc

0

0




(3.106)

This presentation shows the boundary, the boundary condition, and the current to which each

element of the impedance matrix corresponds. For example, the submatrix Zs2
ek1

represents

the contribution of the magnetic current on the first boundary to the electric field on the
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second boundary. Each of the submatrices in (3.106) can be partitioned to multilevel blocks

as shown in Fig. 3.9.

1

1

s

ej
Z

Figure 3.9: Multilevel partitioning of the submatrices of the impedance matrix in (3.67).

The distribution used in this chapter for sampling of the rows and columns of a block in

a submatrix is uniform, because this distribution was found to lead to more accurate results

for the problem considered here. See Appendix B.4 for another possible distribution.

3.7 Fast Solver Numerical Results

To check the performance of the fast solver, let’s first consider a one-layer problem where

the impedance matrix can be decomposed as in Fig. 3.10. The equations for the one-layer

case can easily be derived from (3.106) and are shown below.


Zs1

ej1
Zs1

ek1

Zs1
hj1

Zs1
hk1





 J1z

K1t


 =


 Ez

inc

Ht
inc


 (3.107)

64



Figure 3.10: Multilevel partitioning of the submatrices of the impedance matrix in (3.107).

The matrix equation is solved using two different methods: LU decomposition to invert the

full matrix and UV-MLP method along with an iterative solver called Transpose-Free Quasi-

Minimal Residual (TFQMR) algorithm [65]. When solving the matrix equation Ax = b,

the stopping criteria is
‖b−Ax‖
‖b‖ < ε (3.108)

It is assumed that ε = 10−3 throughout this chapter. For comparison purposes, only one

realization of the random rough surface is considered. We should note that the iterative

solver can be used for the full matrix inversion as well, but it has been observed that for the

matrix sizes considered in this chapter, LU decomposition is faster.

The first simulated case is a one-layer structure where ε1r = 8.0 + i0.05, σf1 = 1 cm and

lf1 = 20 cm. The frequency is 300 MHz and the incidence angle is 45◦. The number of cells

used to discretize the rough surface is 1600 and the length of the rough surface is L = 50λo.

The tapering factor is g = L/10. Fig. 3.11 shows the bistatic scattering coefficient calculated

with both methods. Remember that the precision used for determining the rank of W is

65



assumed to be 10−10 throughout this chapter. It is also assumed that Nro = 1. Table 3.2

compares the computational cost of both methods assuming the size of the smallest block

(represented by M) in the UV-MLP implementation is 50 by 50. According to Table 3.2, the

computational cost of UV-MLP is obviously more than that of full-matrix handling. When

UV-MLP is used, ‘matrix filling’ in this table refers to UV decomposition of the blocks,

but refers to element by element calculation in the case of full-matrix handling. ‘Linear

system solver’ refers to matrix inversion using LU decomposition in the case of full-matrix

handling and refers to TFQMR algorithm when UV-MLP is used. Solving the linear system

is faster using the iterative solver assuming the UV decompositions of the blocks are already

available—the iterative solver takes about 40% less time. However, the total computational

cost is larger when UV-MLP is used.
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Figure 3.11: Bistatic scattering coefficient calculated with MoM using full-matrix solver and
UV-MLP. Parameters: ε1r = 8.0 + i0.05, N1 = 1600, M = 50.

Let’s consider a larger problem where ε1r = 16.0 + i0.05 and where the number of cells
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Table 3.2: Computation time for one realization of the MoM solver for full matrix and
sampled matrix.

CPU: Pentium 4 (3.00 GHz), N1 = 1600, M = 50, Nro = 1

Full Matrix Sampled Matrix
Matrix Filling (Minutes) 14.7 44.1

Linear System Solver (Minutes) 1.5 0.9

used to discretize the rough surface is 2000. Other model and simulation parameters are the

same except that M = 125. Fig. 3.12 shows the bistatic scattering coefficient for horizontal

polarization. Table 3.3 compares the computational cost of both methods assuming the size

of the smallest block in the UV-MLP implementation is 125 by 125. The computational cost

of UV-MLP is still more than that of full matrix handling.
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Figure 3.12: Bistatic scattering coefficient calculated with MoM using full-matrix solver and
UV-MLP. Parameters: ε1r = 16.0 + i0.05, N1 = 2000, M = 125.

Let’s consider a larger matrix size where ε1r = 16.0+ i0.05 and where the number of cells
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Table 3.3: Computation time for one realization of the MoM solver for full matrix and
sampled matrix.

CPU: Pentium 4 (3.00 GHz), N1 = 2000, M = 125, Nro = 1

Full Matrix Sampled Matrix
Matrix Filling (Minutes) 22.4 41.2

Linear System Solver (Minutes) 2.8 1.3

used to discretize the rough surface is 2400. Other model and simulation parameters are the

same except that M = 75. Fig. 3.13 shows the bistatic scattering coefficient for horizontal

polarization. Table 3.4 compares the computation time for both methods assuming the size

of the smallest block in the UV-MLP implementation is 75 by 75. Similar observation is made

here. The computational cost of UV-MLP is still more than that of full matrix handling.
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Figure 3.13: Bistatic scattering coefficient calculated with MoM using full-matrix solver and
UV-MLP. Parameters: ε1r = 16.0 + i0.05, N1 = 2400, M = 75, Nro = 1.

We should note that to increase the accuracy of the UV-MLP, we may increase Nro ,
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Table 3.4: Computation time for one realization of the MoM solver for full matrix and
sampled matrix.

CPU: Pentium 4 (3.00 GHz) , N1 = 2400, M = 75, Nro = 1

Full Matrix Sampled Matrix
Matrix Filling (Minutes) 32.0 63.7

Linear System Solver (Minutes) 4.9 2.0

which increases the computational cost of the method. To verify this fact, let’s consider the

same problem where ε1r = 16.0 + i0.05 and where the number of cells used to discretize the

rough surface is 2400. Other model and simulation parameters are the same except that

Nro = 3. Fig. 3.14 shows the result. Table 3.5 compares the computational cost of both

methods assuming the size of the smallest block in the UV-MLP implementation is 75 by

75. It is observed that the accuracy has increased but the computational cost of UV-MLP

has increased as well.

Table 3.5: Computation time for one realization of the MoM solver for full matrix and
sampled matrix.

CPU: Pentium 4 (3.00 GHz), N1 = 2400, M = 75, Nro = 3

Full Matrix Sampled Matrix
Matrix Filling (Minutes) 32.0 226.6

Linear System Solver (Minutes) 4.9 1.9

For the matrix sizes considered in this chapter, the computational cost of the UV-MLP

is more than that of a full-matrix solver. Therefore, to systematically compare the solution

of SPM and MoM, we may focus our attention on using a full-matrix solver such as the one

used in this chapter.

3.8 Region of Validity

Let’s consider 5 different cases.

• Case 1: ε1r = 2.0 + i0.01, ε2r = 4.0 + i0.02, d = 30 cm, lf1 = 20 cm, σf1 = 1 cm. The

quantity lf2 is varied between 1 cm and 20 cm. The quantity σf2 is varied between

1 cm and 5 cm. (100 cases)
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Figure 3.14: Bistatic scattering coefficient calculated with MoM using full-matrix solver and
UV-MLP. Parameters: ε1r = 16.0 + i0.05, N1 = 2400, M = 75, Nro = 3.

• Case 2: ε1r = 2.0 + i0.01, ε2r = 4.0 + i0.02, d = 30 cm, lf2 = 20 cm, σf2 = 1 cm. The

quantity lf1 is varied between 1 cm and 20 cm. The quantity σf1 is varied between

1 cm and 5 cm. (100 cases)

• Case 3: ε1r = 4.0 + i0.01, ε2r = 8.0 + i0.02, d = 30 cm, lf1 = 20 cm, σf1 = 1 cm. The

quantity lf2 is varied between 1 cm and 20 cm. The quantity σf2 is varied between

1 cm and 5 cm. (100 cases)

• Case 4: ε1r = 4.0 + i0.01, ε2r = 8.0 + i0.02, d = 30 cm, lf2 = 20 cm, σf2 = 1 cm. The

quantity lf1 is varied between 1 cm and 20 cm. The quantity σf1 is varied between

1 cm and 5 cm. (100 cases)
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• Case 5: ε1r = 4.0 + i0.01, ε2r = 8.0 + i0.02, d = 15 cm, lf1 = 20 cm, σf1 = 1 cm. The

quantity lf2 is varied between 1 cm and 20 cm. The quantity σf2 is varied between

1 cm and 5 cm. (100 cases)

These cases help understand the effects of dielectric constants of the layers and the statistical

properties of the interfaces on accuracy of SPM solution. Case 5 is considered in order to

observe how the thickness would change the accuracy of the SPM solution.

Fig. 3.15 through Fig. 3.19 show |γMoM−γSPM| versus kσ and kl, where k is the wavenumber

of the medium with the varying statistical properties. For example, in Fig. 3.15, which

corresponds to Case 1, the contours are plotted versus k2σ2 and k2l2. Both of the parameters

γMoM and γSPM are expressed in dB.

The immediate conclusion is that σf/λ and lf/λ are not the only parameters that would

determine the region of validity, because despite the fact that the contours are plotted versus

kσf and klf , we observe different regions of validity in each case. This fact is confirmed when

we compare Fig. 3.15 and Fig. 3.17 or Fig. 3.16 and Fig. 3.18. These figures suggest that the

region of validity is also a function of dielectric constants of both layers. Therefore, even if

we are able to accurately determine the region of validity for a set of dielectric constants, care

is needed when using SPM in an inversion algorithm, because as we will see in Chapter 4,

the forward model is assumed to be accurate in a range of values of the dielectric constants

and other model parameters. So the recommendations we make must take into account the

need for a region of validity that is accurate for a range of values of the dielectric constants.

This task is not easy as apparent from the plots. We should add that the region of validity

is also a function of polarization and incidence/scattering angles, but these parameters are

fixed in this analysis.

We can make some qualitative observations based on the contour plots shown below.

Based on the rate of change in the colors, we can conclude that sensitivity of the region of

validity to σf is more for larger dielectric constants. This sensitivity also increases as σf

increases. Another qualitative, and expected, observation is that for Case 1 through Case 4,

a combination of large σf and small lf decreases the accuracy of SPM. This observation is

not valid in Case 5, where the thickness is smaller, causing the effect of multiple scattering

processes between the layers more pronounced. An interesting observation is that when the
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correlation length becomes large enough, meaning the surfaces become very slowly vary-

ing, large σf is tolerable and does not decrease the accuracy of SPM regardless of surface

roughness height.

If we consider 1.5 dB a tolerable difference between the SPM and MoM solutions, based

on Fig. 3.15 and Fig. 3.17, a conservative condition would be k2σ2 < 0.6 although for slowly

varying surfaces, we can go beyond this limit. A similar limit can be expressed based on

Fig. 3.16 and Fig. 3.18, which suggest k1σ1 < 0.3. This condition is similar to the one

reported in [66] for one-layer structures. It is also observed that for small enough σf , no

obvious lower limit of lf exists. Although this statement is true for the cases simulated

here, for a more accurate statement on lf , as well as other model parameters, we need more

extensive numerical simulations and more systematic comparisons between the SPM and

MoM solutions. One possible method is locally minimizing a cost function defined as the

difference between the bistatic scattering coefficients calculated using both methods.

3.9 Summary and Conclusion

A PMCHWT-based integral equation was used to calculate the scattering coefficients of a

two-layer rough surface structure and the numerical results were compared with those found

from SPM formulation. The difference between the SPM and MoM solutions implied the

need for deriving the region of validity of SPM. To systematically compare the solutions of

SPM and MoM, a fast solver known as the UV Multilevel Partitioning Method (UV-MLP)

was implemented. To test the performance of the fast solver, it was used for a one-layer

structure. It was observed that the computational cost of the method is more than that of

a solver such as LU factorization, which uses the full impedance matrix. Consequently, LU

factorization was used as the MoM solver and 500 different combinations of the statistical

properties of the interfaces and dielectric constants of the layers were simulated. The contour

plots suggested that σf/λ and lf/λ are not the only parameters that would determine the

region of validity, which is believed to be a function of the dielectric constants as well.

Another conclusion was that the sensitivity of the region of validity to σf is more for larger

dielectric constants and also increases as σf increases. An interesting observation was that
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Figure 3.15: Contour plot of |γMoM− γSPM| for Case 1. Both of the parameters γMoM and γSPM

are expressed in dB.

when surfaces become very slowly varying, large σf becomes tolerable and does not decrease

the accuracy of SPM. Quantitative observations made were that if we consider 1.5 dB a

tolerable difference between the SPM and MoM solutions, k2σ2 < 0.6 and k1σ1 < 0.3 would

be conservative conditions on the surface roughnesses although for slowly varying surfaces,

we can go beyond these limits. It was also observed that for small enough σf , no obvious

lower limit of lf exists. For a more systematic comparison and more definitive statements

on the limits on the model parameters, especially those limits that are affected by multiple

scattering processes between the boundaries, it was suggested that an optimization problem

be solved to locally minimize the error between the SPM and MoM solutions with respect

to surface and media parameters.
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Figure 3.18: Contour plot of |γMoM− γSPM| for Case 4. Both of the parameters γMoM and γSPM

are expressed in dB.
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Figure 3.19: Contour plot of |γMoM − γSPM| for Case 5. Both of the parameters γMoM and
γSPM are expressed in dB. This case shows how the multiple scattering processes between the
layers could lead to counter intuitive results for the region of validity.
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CHAPTER 4

Inversion of Subsurface Properties of Layered

Dielectric Structures with Random Slightly-Rough

Interfaces Using the Method of Simulated Annealing

In this chapter, the parameters of a two-layer dielectric structure with random slightly-

rough boundaries are retrieved from data that consist of the backscattering coefficients for

multiple polarizations, angles, and frequencies. The Small Perturbation Method (SPM) is

used to solve the forward problem and assume the roughnesses are small compared to the

wavelength. The inversion problem is then formulated as a least square problem and is solved

using a global optimization method known as the Simulated Annealing (SA). This method is

capable of minimizing cost functions with global minima hidden among many local minima

and is shown to be a robust retrieval algorithm. The algorithm performance depends on

several parameters. Recommendations are made on these parameters and a technique is

proposed for exiting local minima when encountered. The sensitivity of the inversion scheme

to measurement noise is tested and it is shown that by averaging over several measurements,

the Gaussian noise is suppressed in such a way that the algorithm retrieves the parameters

successfully.
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4.1 Introduction

The problem of determining the properties of layered rough surface structures from scat-

tering data arises in many areas of science and engineering such as geosciences, biomedicine,

and optics. These structures are of special interest, because they are representative models

for many naturally occurring structures ranging from layered soil, rivers, and lakes to smaller

scale objects such as the human body and optical thin films. This class of problems falls

within the broad category of inverse scattering problems, in which the goal is to characterize

the electrical and geometric scattering properties of a target from the scattered field. Com-

plex dielectric constants, layer thicknesses, and statistical properties of the boundaries are

the unknowns in an inverse scattering problem associated with a layered dielectric structure

with rough boundaries. Of particular interest is estimation of soil moisture, which can be

translated as estimation of the soil permittivity for a general soil type. This problem is of spe-

cial interest in environmental engineering, hydrology, geology, soil physics, civil engineering,

and planetary exploration.

Effects of soil moisture and surface roughness on the backscattered field have been studied

dating back to the the 1960’s and 70’s [5–7]. Passive microwave radiometers have been widely

used for soil moisture retrieval [8, 9, 67], but use of radiometers in soil moisture detection is

limited because of their low resolution at lower frequencies, which are required for subsurface

observations. Active sensors have the potential to make the inversion of soil properties more

rigorous. Experiments conducted with active sensors at the ground level [7, 68], and via

aircraft and satellite [69] have shown strong radar backscatter dependence on soil moisture.

These experiments have also demonstrated the significant effect of surface parameters such

as surface roughness on radar backscatter.

The inversion models for estimation of the surface parameters, i.e., permittivity, surface

roughness, and surface correlation length, can generally be categorized into empirical and

theoretical models. Empirical models are based on experimental data and the scattering

behavior of the rough surface in limiting cases. These models use inversion methods as

simple as solving a system of algebraic equations, to estimate the surface parameters. The

corresponding forward models are empirical and are developed from measurement of the
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scattering coefficients σo
hh, σo

vv, and σo
hv [10, 11,70]. The empirical inversion models are fast,

hence suitable for real time inversion. However, they are not only site-specific but also

difficult to develop for layered media, in which case many measurements are required to

account for different combinations of the model parameters. On the other hand, inversion

algorithms that utilize theoretical forward models, which sometimes use involved numerical

techniques [71], are not site-specific and are more accurate, but more challenging, too [72].

Statistical inversion [73], neural network [74, 75], the simplex method [76], and the genetic

algorithm [77] are among these techniques. Progress in theoretical forward models such as

the Integral Equation Method (IEM) has offered alternative approaches to inversion [78].

As the number of layers increases, the number of measurements needed to invert for the

unknowns also increases and the inversion process would become more challenging, due to the

severe nonlinearity of the forward model. The focus of this chapter is on retrieving the pa-

rameters of a two-layer dielectric structure with rough boundaries shown in Fig. 4.1. Despite

the practical importance of this problem, its solution has not yet been addressed appropri-

ately due to a number of reasons including the complexity and lack of forward scattering

solutions, lack of experimental data, and the large number of distinct physical parameters

needed to characterize the scatterer. To nondestructively calculate the characteristics of lay-

ered structures, a multifrequency polarimetric radar backscattering approach can be used,

where subsurface probing capability is achieved through the use of low frequency radar mea-

surements. Such systems are at preliminary research stages, and therefore to refine their

operating parameters and measurement scenarios, it is essential to use theoretical scattering

models that are general enough to be able to simulate the backscattering responses of a

wide range of subsurface structures. These forward models should be fast and accurate in

order that they enable reliable inversion algorithms for the subsurface sensing. A number of

analytical and numerical models for radar scattering from general N -layer rough surfaces,

including an incoherent small perturbation model, developed in Chapter 2, and a full-wave

coherent model for the general roughness case [49] have been introduced recently. The latter

has provisions for including dielectric profiles and both classes of models can incorporate

discrete random scatterers. These models have the required parametric flexibility suitable

for inversion of layered media properties.
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The inverse scattering problem considered here can be regarded as a nonlinear parameter-

estimation problem. An optimization scheme, known as Simulated Annealing, is applied to

solve the estimation problem. While the capability of other global optimization methods

such as genetic algorithm [79] and particle swarm [80] can be studied and explored for the

purpose of subsurface sensing, the purpose of this work is to investigate the performance of

the Simulated Annealing method in inversion associated with layered structures.

Since the forward problem based on which the estimation is carried out is a complicated

nonlinear function of the parameters, care must be taken to understand and best use the

regions of sensitivity of the forward model to the parameters to ensure convergence to correct

results. The scattering data used with this inversion algorithm consist of measurements of the

backscattered wave for different incidence angles at center frequencies of 137 and 435 MHz.

(The use of the SPM model at 137 and 435 MHz is justified because at these frequencies,

most surfaces of interest appear only slightly rough.) Synthetic data are used to develop

and validate the inversion algorithm. The choice of frequencies is made based on currently

available radar systems and these are envisioned to be available from airborne and spaceborne

platforms in the foreseeable future [19].

A brief introduction to the forward model is presented in Section 4.2. Section 4.3 intro-

duces the inverse problem, the model parameters, the inversion algorithm, the cost function,

and the measurement and inversion parameters. Simulation results including the results of

a sensitivity analysis in Section 4.4 will be presented afterward. The results of noise analysis

follow in Section 4.5.

4.2 The Forward Model

The success of any approach to an inverse problem depends critically on the validity of the

forward model employed. The forward model, reported in Chapter 2, uses SPM to calculate

the electromagnetic wave scattered from the rough surface structure shown in Fig. 4.1. The

solution is analytic in the sense that it does not rely on numerical techniques or discretizing

approximations to the unknowns. Therefore, its dependence on the unknowns has an explicit

form, which can be evaluated fast. This is a great advantage, because in an inversion process,
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Figure 4.1: Geometry of the problem: a 3-dimensional 2-layer isotropic dielectric structure
with complex permittivities. The boundaries are zero-mean stationary random processes.
The layers mean separation is denoted as d.

the forward model could be evaluated a large number of times.

The forward model is presented briefly and the reader is referred to Chapter 2 for details.

Consider the three-dimensional, two-layer homogeneous isotropic dielectric structure with

infinite surfaces shown in Fig. 4.1, where the top and bottom regions are half-spaces. The

dielectric constants are ε0, ε1, and ε2, which in general could have complex values. The

permeability of all of the layers is assumed to be µ0, although this assumption does not impact

the analysis method. The boundaries, which are assumed to be zero-mean stationary random

processes with known statistical properties, are denoted by ξf1(x, y) and −d + ξf2(x, y).

The conditions on the surface statistical properties for which the first-order SPM is accurate

within a specified error bound is determined by the region of validity. This region is a

function of the layers complex dielectric constants, polarization of the incidence wave, and

the incidence angle. The region of validity of SPM for a single dielectric rough surface is

known to be k1σf1 < 0.3 and
√

2σf1/l1 < 0.3 [66]. It has been mentioned in the same reference

that no precise validity conditions have been obtained for SPM and the given conditions

should be viewed only as a guideline. The focus of this chapter is on the effectiveness of the

inversion algorithm independent of the physical accuracy of the forward model. The region

of validity of SPM for a two-layer dielectric structure with rough boundaries was addressed

82



in Chapter 3.

The first-order scattered field can be represented as

E(1)
s (r) = ξ

∞∫

−∞

∞∫

−∞

dk⊥
[
a

+(1)
h (k⊥)ĥ(k0z) + a+(1)

v (k⊥)v̂(k0z)
]
eik0zzeik⊥·r⊥ (4.1)

where k⊥ = kxx̂ + kyŷ, dk⊥ = dkxdky, and k0z =
√

k2
0 − k2

x − k2
y. The quantities kx and

ky are the Fourier transform variables and k0 is the incidence region wavenumber. The

quantities a
+(1)
h,v (k⊥) are the first order amplitudes of the scattered field and are given by

a
+(1)
h (k⊥) = αf1

h (k⊥)F1(k⊥ − ki
⊥) + αf2

h (k⊥)F2(k⊥ − ki
⊥) (4.2)

a+(1)
v (k⊥) = αf1

v (k⊥)F1(k⊥ − ki
⊥) + αf2

v (k⊥)F2(k⊥ − ki
⊥) (4.3)

where F1(k⊥) and F2(k⊥) are the Fourier transforms of f1(x, y) and f2(x, y), respectively.

The subscripts h and v represent the horizontal (h) and vertical (v) polarizations, respec-

tively. The reader is referred to Chapter 2 for the details of calculation of the coefficients

αf1

h (k⊥), αf2

h (k⊥), αf1
v (k⊥), and αf2

v (k⊥). Finally, it can be shown that the bistatic scattering

coefficients of the layered structure are given by

σo
pq = 4πk2

0 cos2 θsξ
2
(|αf1

pq(k
s
⊥)|2Wf1(k

s
⊥ − ki

⊥) + |αf2
pq(k

s
⊥)|2Wf2(k

s
⊥ − ki

⊥)
)
, (4.4)

where αfi
pq(k

s
⊥) = αfi

p (ks
⊥) with the incident field having q-polarization component only,

where p, q ∈ {h, v}. The vectors ki
⊥ and ks

⊥ refer to the incidence and scattering directions,

respectively, and θs denotes the scattering angle. The quantities Wf1(k⊥) and Wf2(k⊥)

are the spectral densities of the rough surfaces, which are assumed to be independent. (If

the surfaces are correlated, the joint spectral density of the two surfaces, defined as the

Fourier transform of the correlation function of the two profiles, will be present in (4.4). See

Chapter 2 for more details. Therefore, the number of model parameters will increase if the

surfaces are correlated, but the approach to the inversion would be similar.)
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4.3 The Inverse Problem

The goal in an inverse problem is to determine a vector of unknown parameters X, given

a set of data d = f(X,p) + n, where the vector f represents the forward function and

the vector p represents known measurement parameters such as the frequency of operation

and incidence angle. The vector n represents any additive error that may contaminate the

measured data. In a probabilistic approach to inverse problems, knowledge of the probability

distributions of d and n is also necessary, but in this work, the approach is deterministic in

that such distributions are not considered.

4.3.1 Model Parameters

There are two types of model parameters involved in the forward model: dielectric param-

eters, namely real and imaginary parts of a layer dielectric constant (ε
′
i and ε

′′
i ), and geometry

parameters, namely the mean separation between the two rough interfaces referred to as layer

thickness (d) and statistical properties of the boundaries (σfi
and lfi

). The dielectric param-

eters depend on the mixture model used for the scattering media. Several mixture models

exist for soil and ice dielectric properties at different frequency ranges [33,81,82].

Nine model parameters are used to characterize the two-layer structure. These parame-

ters are real parts of the layer permittivities (ε
′
1 and ε

′
2), conductivities of the layers (σ1 and

σ2), the standard deviation and correlation length of each interface (σfi
and lfi

), and the

layer thickness (d). The vector of unknowns, X, is defined in such a way that X(1) = ε
′
1r,

X(2) = σ1, X(3) = ε
′
2r, X(4) = σ2, X(5) = d, X(6) = lf1 , X(7) = σf1 , X(8) = lf2 , and

X(9) = σf2 . SI units are used for all of the model parameters, that is to say siemens per

meter (S/m) for conductivity (σ1 and σ2) and meter (m) for length (d, lf1 , lf2 , σf1 , and σf2).

Table 4.1 summarizes the physical model parameters and their analogous elements of the

unknown vector X.

Table 4.1: The physical model parameters and their analogous elements of X.
X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9)

ε
′
1r σ1 ε

′
2r σ2 d lf1 σf1 lf2 σf2
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Based on the dielectric model for soils given in [33], ε
′
and ε

′′
are functions of four other

parameters, i.e., volumetric moisture content (mv), bulk density (ρb), and mass fractions of

sand and clay (S and C). To present the general methodology of inversion by the method

of Simulated Annealing and show its strength, The generic model for the complex dielectric

constant is used, i.e., it is assumed that ε = ε
′
+ iσ/ω and that the real part of the dielectric

constant does not vary with frequency in the frequency range considered—a good assumption

according to [33]. After ε
′
and σ have been retrieved, mv can be found by making certain

assumptions about type of the soil. The dielectric model used in the forward problem can

always be modified to make it appropriate for the dielectric structure under study and the

corresponding application based on ancillary data.

The inverse problem is posed as an optimization problem. Since multiple parameters

determine the measured radar signal, multiple measurements viewed at different frequencies

and observation angles are necessary to define the cost function. The cost function used in

this chapter is

L(X) =

Nf∑
i=1

Nθ∑
j=1

[(
σo

vv (X; fi, θj)− dvv(fi, θj)

dvv(fi, θj)

)2

+

(
σo

hh (X; fi, θj)− dhh(fi, θj)

dhh(fi, θj)

)2
]

(4.5)

where Nf and Nθ are the number of frequency points and measurement angles used in

measurement, respectively. As it is apparent from the definition above, all of the possible

combinations of the Nf frequency points and Nθ measurement angles are used. The values

of σo
pq (X; fi, θj) and dpq (fi, θj) are, respectively, the calculated and measured backscattering

coefficient of the layered structure at a certain frequency and observation angle for pq polar-

ization, where p, q ∈ {h, v}. Since the forward model is incoherent, the only backscattering

coefficients available from the model are σo
vv and σo

hh. The normalizing terms in (4.5) are in

fact regularizing factors. This definition of the cost function causes the measurements at dif-

ferent frequencies and angles to matter equally. If we do not use these normalizing terms, the

elements of the measured data vector, which have different strengths at different frequencies

and angles, would have unbalanced contributions to the value of the cost function.
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4.3.2 Inversion Algorithm

Local optimization techniques are popular for solving optimization problems because of

their speed, but due to the nonlinearity of the forward models and existence of many local

minima, use of these techniques in geophysical inversion is limited. Such techniques require

very good a-priori information, or initial guesses, to avoid converging to (or getting trapped

in) local minima. Existence of many local minima in a cost function is the cause of the poor

performance of local optimization methods in terms of convergence to correct results.

The inversion technique applied to the problem is an optimization scheme known as the

Simulated Annealing (SA). Simulated Annealing is a global optimization technique capable

of minimizing cost functions with global minima hidden among many local minima [83,

84]. This method uses an analogy between the unknown parameters in an optimization

problem and particles in the annealing process of solids. These particles are distributed

randomly in the liquid phase at a high temperature. If cooling happens slowly enough, at

each temperature T , the solid reaches thermal equilibrium, which is characterized by the

Boltzmann distribution [83]. As the temperature decreases, the distribution concentrates

on lower energies, and finally, when the temperature approaches zero, the only state that

has a non-zero probability is the minimum energy state. In an optimization problem, the

cost function L (X) and configurations of the model parameters are analogous to energy and

different states of a solid, respectively.

In an SA-based algorithm, a small, randomly generated perturbation is applied to the

current model parameters. If the cost function decreases, i.e., ∆L ≤ 0, the new state is

accepted, otherwise it is accepted with probability e−∆L/T . The quantity T represents the

temperature. This rule is referred to as the Metropolis criterion [85] and the SA-based

methods use this criterion at a sequence of decreasing temperatures.

The Simulated Annealing scheme used in this work is based on the algorithm by Corana et

al. [86]. Let’s start from an initial guess X1, an initial temperature T1, and an initial step

length vector vo. A random move is generated sequentially along each coordinate direction j

by X′ = Xc + rvjej, where j = 1, . . . , N , X′ denotes the trial point, which is either accepted

or rejected according to the Metropolis criterion, N denotes the model space dimension, Xc
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is the current state, or the latest accepted point, r is a random number drawn uniformly

from [−1, 1], vj is the jth element of the step length vector, and ej is the unit vector of the

jth coordinate. This set of sequential perturbations is repeated Ns times. The step length

is then adjusted according to the Corana algorithm step length adjustment rule (presented

at the end of this subsection) and the iteration continues until the number of step length

adjustments reaches NT . Fig. 4.2(a) illustrates the sequential perturbations followed by the

step length adjustment. The temperature is reduced at this point by Tnew = RT Told, where

RT is the reduction factor. The iteration continues at the new temperature starting from

the current optimal point. This procedure is illustrated in Fig. 4.2(b), where the current

state at each step length adjustment is denoted by X2, X3, . . . , XNT +1. Note that the first

step length adjustment in each chain happens at X2 and the last one happens at XNT +1,

which is also the last accepted point of the corresponding chain. It can be shown that if

the length of the chains formed by X1, X2, . . . , XNT +1 approaches infinity, the Simulated

Annealing algorithm converges to a global minimum of the cost function as the temperature

approaches zero [87].

The inversion process stops when the cost function value becomes smaller than a value

denoted by δ, i.e., L ≤ δ, when the number of forward function evaluations reaches a certain

number, or when the algorithm converges to local minima for a certain number of times.

The Corana algorithm can be modified in order to make it exit a local minimum to which

the algorithm has converged. If the value of the cost function at XNT +1 is L∗k, the following

rule is used to decide whether the algorithm has been trapped in a local minimum.

∣∣L∗k − L∗k−i

∣∣ < ε, i = 1, 2, . . . , Nε (4.6)

where the subscripts k − i refer to the previous chains. The quantities ε and Nε are chosen

empirically to achieve the best results. If (4.6) is satisfied, the temperature is increased to

make the algorithm exit the local minimum area. To understand this approach, consider the
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Figure 4.2: The outline of the Simulated Annealing algorithm used in this work. (a) Random
moves are generated sequentially along coordinate directions. (b) Step length is adjusted
NT times at each temperature before the temperature is reduced. The current state at each
step length adjustment is denoted by X2, X3, . . . , XNT +1.

step length adjustment rule in the Corana algorithm:

v
′
j =





vj

(
1 + cj

nj/Ns−0.6

0.4

)
if nj > 0.6Ns

vj

(
1 + cj

0.4−nj/Ns

0.4

)−1

if nj < 0.4Ns

(4.7)

88



where cj = 2 for 1 ≤ j ≤ N and nj (j = 1, . . . , N) is the number of accepted moves along

the jth coordinate since the last step length adjustment. As the temperature decreases, the

step length becomes smaller and Corana algorithm concentrates on a smaller area. On the

contrary, if the temperature is forced to increase, according to the Metropolis criterion and

(4.7), both the step length and the probability of accepting uphill moves increase. Therefore,

in a situation where the algorithm has converged to a local minimum, by increasing the

temperature, the algorithm is allowed to continue its search for the global minimum with a

bigger step length, i.e., in a larger area. This process can be repeated multiple times until

convergence to the global minimum is achieved.

4.3.3 Inversion and Measurement Parameters

The constraints on the model parameters are based on existing models and data for soil

moisture applications [33, 77], i.e., 3.0 ≤ ε
′
r ≤ 15.0, 0.0 ≤ σ ≤ 0.1, 0 ≤ σf ≤ 5 (cm), and

1 ≤ lf ≤ 25 (cm). The constraint on layer thickness, 0.1 ≤ d ≤ 1.0 (m), is based on typical

observed depths of the root zone, bedrock, and other natural features. These bounds can be

modified according to the dielectric model, dielectric structure, and application. Table 4.2

summarizes these bounds.

The inversion parameters used in the algorithm are T1, Ns, NT , RT , δ, ε, Nε, and vo

introduced in Section 4.3.2. The process of choosing inversion parameters that would improve

the inversion results is the subject of much investigation. The values of Ns, NT , RT used here

are the values recommended by Corana et al., i.e., 20, 100, and 0.85, respectively. The values

of T1, δ, ε, Nε, and vo(j), the jth element of vo, are derived empirically to achieve the best

results. Note that it can easily be verified that the algorithm performance is independent

of the initial guess if the above values of the inversion parameters are chosen. Table 4.3

summarizes the inversion parameters.

The measurement parameters are the frequency and observation angle. The algorithm is

ultimately intended for use with radar data from an experimental tower-based instrument

designed for estimation of subsurface soil moisture. Therefore, the frequencies used in the

inverse model are the same frequencies available from the MOSS tower radar system, i.e.,
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f1 = 120.0, f2 = 137.0, f3 = 150.0, f4 = 420.0, f5 = 435.0, and f6 = 450.0 MHz. These

frequencies are centered at 137 and 435 MHz. The radar antenna is a log-periodic one, which

has a rather wide beam. This beam can be focused at various locations, providing different

incidence angles. The measurement angles are chosen to be θ1 = 30◦ and θ2 = 45◦. The

choice of measurement angles used in the inversion process is based on a qualitative analysis.

Since σo
vv and σo

hh are equal at θ = 0, observing the difference between σo
vv and σo

hh versus

measurement angle and looking for angles at which this difference is large, provides insight.

Fig. 4.3 shows |σo
vv − σo

hh| versus the measurement angle θ at several frequencies that are

centered at 137 MHz and 435 MHz for a case where ε
′
2r = 2ε

′
1r = 10.0, σ2 = 2σ1 = 0.01,

d = 0.2, lf1 = lf2 = 0.2, and σf1 = σf2 = 0.02. Based on this information and other similar

simulation scenarios, 30◦ and 45◦ are chosen as the measurement angles. Therefore, if, for

example, Nf = 2 and Nθ = 2, then in (4.5), f1 = 120.0, f2 = 137.0, θ1 = 30◦, and θ2 = 45◦.

Table 4.4 summarizes the measurement parameters used in the inversion process.

Table 4.2: Constraints on the model parameters. Units are SI.
ε
′
1r σ1 ε

′
2r σ2 d lf1 σf1 lf2 σf2

Lower Bound (Xl) 3.0 0.0 3.0 0.0 0.1 0.01 0.0 0.01 0.0
Upper Bound (Xu) 15.0 0.1 15.0 0.1 1.0 0.25 0.05 0.25 0.05

Table 4.3: Inversion parameters
T1 Ns NT RT cj δ ε Nε vo(j)

100, 000 20 100 0.85 2.0 10−12 10−10 10 Xu(j)−Xl(j)

Table 4.4: Measurement parameters
f1 f2 f3 f4 f5 f6 θ1 θ2

120 MHz 137 MHz 150 MHz 420 MHz 435 MHz 450 MHz 30◦ 45◦

4.4 Inversion Results

4.4.1 5-Parameter Problem

Let’s start with the assumption that the first 5 parameters, i.e., ε
′
1r, σ1, ε

′
2r, σ2, and d, are

unknown, because we are usually most interested in these 5 parameters and less interested

in the statistical properties of the interfaces.
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Figure 4.3: Maximizing |σo
hh − σo

vv| with respect to measurement angle at different frequencies
centered at 137 and 435 MHz. It is assumed that ε

′
2r = 2ε

′
1r = 10.0, σ2 = 2σ1 = 0.01,

d = 0.2, lf1 = lf2 = 0.2, and σf1 = σf2 = 0.02. Based on this qualitative analysis and similar
simulations, 30◦ and 45◦ are chosen as the measurement angles.

Fig. 4.4 shows the inversion result for a case where ε
′
1r = 4.00, σ1 = 2.0×10−2, ε

′
2r = 12.00,

σ2 = 1.0× 10−1, and d = 0.40. The known parameters are assumed to be lf1 = 0.5lf2 = 0.1

and σf1 = 2σf2 = 0.02. This case is referred to as Case 1 hereafter. This figure shows the

relative error in the current value and the optimum value of X(1) = ε
′
1r. Current Value refers

to the value of the model parameter in the last accepted state in each chain, i.e., XNT +1.

Optimum Value refers to the value of the model parameter in the current optimum state in

a chain, denoted by Xopt in Fig. 4.2(b). It is observed that the algorithm may accept bad

solutions in terms of relative error in the model parameter, but ultimately converges to the

right solution.

Fig. 4.5 shows the inversion result for another case where ε
′
1r = 5.00, σ1 = 5.0 × 10−2,

ε
′
2r = 10.00, σ2 = 1.0 × 10−1, and d = 0.20. The known parameters are assumed to be

lf1 = 0.5lf2 = 0.1 and σf1 = 2σf2 = 0.02. This case is referred to as Case 2 hereafter. It is
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Figure 4.4: Relative error in the current value and optimum value of X(1) = ε
′
1r as the

Simulated Annealing algorithm progresses. The layers dielectric properties and the layer
thickness are the unknown model parameters while the boundaries statistical properties are
assumed known (Case 1, 5-parameter problem). Actual model parameters: ε

′
1r = 4.00,

σ1 = 2.0× 10−2, ε
′
2r = 12.00, σ2 = 1.0× 10−1, d = 0.40, lf1 = 0.5lf2 = 0.1, σf1 = 2σf2 = 0.02.

Refer to Table 4.6.

apparent from this figure that the algorithm has increased the temperature 4 times in this

case to achieve the correct result. Table 4.5 summarizes Case 1 and Case 2.

Table 4.5: The two cases of the true values used for simulations in Sections 4.4.1, 4.4.3, 4.4.4.
Units are SI.

ε
′
1r σ1 ε

′
2r σ2 d lf1 σf1 lf2 σf2

Case 1 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40 0.1 0.02 0.2 0.01
Case 2 5.00 5.0× 10−2 10.00 1.0× 10−1 0.20 0.1 0.02 0.2 0.01

Table 4.6 and Table 4.7 show the actual values and initial guess in each case as well

as the final inversion results. The quantity Nfcnevl is the total number of forward function

evaluations and Number of Jumps refers to the number of times that the temperature has
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Figure 4.5: Relative error in the current value and optimum value of X(5) = d as the
Simulated Annealing algorithm progresses. The layers dielectric properties and the layer
thickness are the unknown model parameters while the boundaries statistical properties are
assumed known (Case 2, 5-parameter problem). The temperature has been increased 4
times to make the algorithm converge to the global minimum. Actual model parameters:
ε
′
1r = 5.00, σ1 = 5.0 × 10−2, ε

′
2r = 10.00, σ2 = 1.0 × 10−1, d = 0.20, lf1 = 0.5lf2 = 0.1,

σf1 = 2σf2 = 0.02. Refer to Table 4.7.

been increased. Note that the total number of cost function evaluations is Nfcnevl/NfNθ. In

the majority of the cases of the 5-parameter problem that were simulated, it was observed

that the combination Nf = 3 and Nθ = 2 would lead to good results.

Each complete simulation case could take from a few minutes to a few hours depending

on the number of unknown parameters, number of forward function evaluations (which is

directly proportional to the product of number of frequency points and number of mea-

surement angles), measurement noise, and the specific machine used. For example, Case 1

and Case 2 took 12 and 65 minutes, respectively, on an AMD Opteron 240, 1.4 GHz CPU

with 1MB cache. When the number of unknown model parameters are 7 and 9 in Case 1,

computation time is 25 minutes and 100 minutes, respectively, on the same CPU.
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Table 4.6: Actual values, initial guess, and inversion results (Case 1, 5-parameter problem).
Units are SI.

ε
′
1r σ1 ε

′
2r σ2 d

True Value 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40
Initial Guess 12.00 6.0× 10−2 4.00 1.0× 10−2 0.10
Final Value 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40

Nf Nθ Tfinal Nfcnevl Lmin Number of Jumps
3 2 0.11× 10−9 12, 721, 494 0.70× 10−12 0

Table 4.7: Actual values, initial guess, and inversion results (Case 2, 5-parameter problem).
Units are SI.

ε
′
1r σ1 ε

′
2r σ2 d

True Value 5.00 5.0× 10−2 10.00 1.0× 10−1 0.20
Initial Guess 14.00 8.0× 10−2 4.00 1.0× 10−2 0.50
Final Value 5.00 5.0× 10−2 10.00 1.0× 10−1 0.20

Nf Nθ Tfinal Nfcnevl Lmin Number of Jumps
3 2 0.66× 10−10 67, 596, 486 0.92× 10−12 4

4.4.2 Sensitivity Analysis

The assumption that the statistical properties of the rough interfaces are known can

cause the final error to be large, because in a 5-parameter problem, the values assigned to

X(6) = lf1 through X(9) = σf2 are a-priori while these parameters could have noticeable

impact on the backscattering coefficients. To observe the impact of one parameter on the

output, we may monitor the output of the forward model while changing the value of that

parameter and keeping the values of the other parameters fixed. For example, Fig. 4.6 shows

the sensitivity of the backscattering coefficient σo
vv to the model parameters for a case where

the layers are lossless. The plots show that the backscattered power is more sensitive to the

first layer dielectric properties and that the statistical properties of the second layer have a

smaller effect on the backscattered power. The measurement parameters are f = 137.0 MHz

and θ = 45
◦
. When the value of a model parameter is varied, the other model parameters

are fixed at ε
′
2r = 2ε

′
1r = 10.0, σ2 = σ1 = 0.0, d = 1.0 (m), lf1 = lf2 = 10.0 (cm), and

σf1 = σf2 = 3.0 (cm).

Loss in the first layer can mask the effect of the second layer interface. Fig. 4.7 shows
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the sensitivity analysis results for a case where σ2 = 2σ1 = 0.01 and where all of the other

parameters are the same as in Fig. 4.6. It is observed that even a small amount of loss has

masked the effect of the second layer interface. However, increasing the contrast between

the layers can nullify the effect of loss in the first layer. Fig. 4.8 shows a case where all

of the parameters are the same as in Fig. 4.7 except that ε
′
2r = 20.0 and σ2 = 0.1, which

implies more contrast between the two layers. The added contrast has made the impact of

the second interface statistical properties larger.
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Figure 4.6: Sensitivity of the backscattering coefficient σo
vv to the model parameters. Baseline

values: ε
′
2r = 2ε

′
1r = 10, σ2 = σ1 = 0.0, d = 1.0 (m), lf1 = lf2 = 10 (cm), σf1 = σf2 = 3 (cm).

Measurement parameters: f = 137.0 MHz and θ = 45◦.
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Figure 4.7: Sensitivity of the backscattering coefficient σo
vv to the model parameters. Baseline

values: ε
′
2r = 2ε

′
1r = 10, σ2 = 2σ1 = 0.01, d = 1.0 (m), lf1 = lf2 = 10 (cm), σf1 = σf2 = 3

(cm). Measurement parameters: f = 137.0 MHz and θ = 45◦.

4.4.3 7-Parameter Problem

A simple simulation shows that a 50% error in the a-priori values assigned to lf1 , σf1 ,

lf2 , and σf2 would result in, for example, −100% error in σ1 in Case 1 and −100% error in

σ2 in Case 2. To account for the impact of the error in the a-priori values assigned to the

statistical properties of the boundaries, i.e., lf1 , σf1 , lf2 , and σf2 , let’s consider X(1) = ε
′
1r

through X(7) = σf1 as unknown in Case 1 of Section 4.4.1. Fig. 4.9 shows the inversion

results. Only the optimum value of the model parameters is shown in this figure. Table 4.8

summarizes the actual values and initial guess as well as the final inversion results. In the

majority of the cases of the 7-parameter problem that were simulated, it was observed that
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Figure 4.8: Sensitivity of the backscattering coefficient σo
vv to the model parameters. Baseline

values: ε
′
2r = 4ε

′
1r = 20, σ2 = 20σ1 = 0.1, d = 1.0 (m), lf1 = lf2 = 10 (cm), σf1 = σf2 = 3

(cm). Measurement parameters: f = 137.0 MHz and θ = 45◦.

Nf = 4 and Nθ = 2 would lead to good results.

Table 4.8: Actual values, initial guess, and inversion results (Case 1, 7-parameter problem).
Units are SI.

ε
′
1r σ1 ε

′
2r σ2 d

True Value 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40
Initial Guess 12.00 6.0× 10−2 4.00 1.0× 10−2 0.10
Final Value 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40

Nf Nθ Tfinal Nfcnevl Lmin Number of Jumps
4 2 6.9× 10−12 25, 657, 440 0.70× 10−12 0
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Figure 4.9: Relative error in the optimum value of X(1) = ε
′
1r, X(2) = σ1, X(3) = ε

′
2r,

X(1) = σ2, and X(5) = d as the Simulated Annealing algorithm progresses. The layers
dielectric properties, the thickness, and the first boundary statistical properties are the
unknown model parameters while the second boundary statistical properties are assumed
known (Case 1, 7-parameter problem). Refer to Table 4.8.

4.4.4 9-Parameter Problem

Simulations show that a 50% error in the a-priori values assigned to lf2 and σf2 would

result in, for example, 110% error in d in Case 1 and −20% error in ε
′
2r in Case 2. These

errors are smaller compared to the ones in the 5-parameter problem with the same amount

of error in the a-priori values. However, these output errors are still large and to avoid them,

all of the model parameters are now considered as unknown.

Let’s first consider Case 1 in Section 4.4.1. Fig. 4.10 shows the inversion results. Table 4.9

summarizes the actual values and initial guess as well as the final inversion results. In the

9-parameter problem, it was observed that Nf = 5 and Nθ = 2 would lead to good results

in the majority of the simulated cases.

To show the performance of the algorithm in inversion of the model parameters, several
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Figure 4.10: Relative error in the optimum value of X(1) = ε
′
1r, X(2) = σ1, X(3) = ε

′
2r,

X(1) = σ2, and X(5) = d as the Simulated Annealing algorithm progresses. All of the
model parameters are considered unknown (Case 1, 9-parameter problem). The algorithm
has increased the temperature 1 time. Refer to Table 4.9.

Table 4.9: Actual values, initial guess, and inversion results (Case 1, 9-parameter problem).
Units are SI.

ε
′
1r σ1 ε

′
2r σ2 d

True Value 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40
Initial Guess 12.00 6.0× 10−2 4.00 1.0× 10−2 0.10
Final Value 4.00 2.0× 10−2 12.00 1.0× 10−1 0.40

Nf Nθ Tfinal Nfcnevl Lmin Number of Jumps
5 2 9.5× 10−12 82, 260, 040 0.90× 10−12 1

cases are simulated as follows and the final errors in X(1) = ε
′
1r, X(3) = ε

′
2r, and X(5) = d

are presented. A baseline case is chosen where ε
′
1r = 6.00, σ1 = ε

′
1r/150 = 0.04, ε

′
2r = 12.00,

σ2 = ε
′
2r/150 = 0.08, d = 0.4, lf1 = 0.5lf2 = 0.1 and σf1 = 2σf2 = 0.04. Then, the true value

of one of the three parameters ε
′
1r, ε

′
2r, and d is varied while the other two are assumed to

have their baseline values. The true values of ε
′
1r are 3.0, 4.0,. . . ,15.0, the true values of ε

′
2r
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are 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0,. . . ,15.0, and the true values of d are 0.2, 0.3,. . . ,1.0.

These variations of true value result in 36 cases. Note that while σ1 and σ2 are considered

unknown, their true values are assumed to be ε
′
1r/150 and ε

′
2r/150, respectively.

Fig. 4.11, Fig. 4.12, and Fig. 4.13 show the final values of ε
′
1r, ε

′
2r, and d versus their

actual values. While the algorithm shows a great performance in inverting all of the model

parameters, especially ε
′
1r and σ1, in a small number of these cases, as indicated in the figures,

significant errors in ε
′
2r, σ2, and d are observed. Similarly good results are obtained for the

other unknowns.
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Figure 4.11: Error in the retrieved model parameter X(1) = ε
′
1r for the cases simulated in

Section 4.4.4. The true values of ε
′
1r are varied while the other model parameters (except for

σ1) are fixed at their baseline values. The true value of σ1 is assumed to be ε
′
1r/150.

4.4.5 Discussion

The presented results show that the method of Simulated Annealing is a powerful tool

for retrieval of the subsurface properties of a two-layer rough surface structure. We observed
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Figure 4.12: Error in the retrieved model parameter X(3) = ε
′
2r for the cases simulated in

Section 4.4.4. The true values of ε
′
2r are varied while the other model parameters (except for

σ2) are fixed at their baseline values. The true value of σ2 is assumed to be ε
′
2r/150.

significant errors in the retrieved X(3) = ε
′
2r, X(4) = σ2, and X(5) = d in very few cases,

but the errors in the retrieved X(1) = ε
′
1r and X(2) = σ1 were always small.

The inversion parameters presented in Table 4.3 are either recommendations by Corana et

al. [86] or recommendations derived empirically in this work. The measurement parameters,

i.e., frequency points and measurement angles, are based on the specifications of the MOSS

tower radar [19] and the simple analysis presented in Section 4.3.3, respectively.

The quantities Nf and Nθ, which are the number of frequency points and the number

of measurement angles, respectively, are key to successful retrieval. These numbers affect

both the smoothness and information content of the cost function. The values of Nf and

Nθ in this chapter are based on several inversion cases with different number of unknown

model parameters. However, the optimum values of these parameters as well as the values of

the frequency points and measurement angles, with the number of cost function evaluations
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Figure 4.13: Error in the retrieved model parameter X(5) = d for the cases simulated in
Section 4.4.4. The true values of d are varied while the other model parameters are fixed at
their baseline values.

being a constraint, could be explored further.

4.5 Noise Analysis

As mentioned in Section 4.4.1 and Section 4.4.3, the results would suffer from large errors

if only a subset of the model parameters are treated as unknown and imperfect a-priori values

are assigned to the rest of the model parameters. Therefore, the noise analysis results are

presented assuming all of the 9 model parameters are unknown.

Assuming the measured scattered power is contaminated by noise, the inversion algorithm

is evaluated in presence of Gaussian noise. The noisy data is modeled as

σo
n = σo + ∆×N(0, 1)× σo (4.8)
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where σo
n is the noise contaminated data point, σo is the synthesized noise free data point

predicted by the forward model, ∆ is the additive noise standard deviation, and N(0, 1)

represents a random number drawn from a normal distribution with a zero mean and unit

standard deviation.

We should note that noise contaminates the received voltage, not the power. However,

this analysis, which assumes the backscattered coefficients are contaminated by Gaussian

noise directly, offers insight into the sensitivity of the inversion algorithm when the measured

data deviate from what the forward model predicts. If we consider a noise model where

Gaussian noise contaminates the measured voltage, ∆ in the received power would correspond

to the larger value of
√

∆ in the received voltage. In other words, larger than normal data

perturbations are considered here. For instance, a ∆ of 0.05 (5% noise) would correspond

to a significant amount of noise, which if expressed in terms of signal to noise ratio (SNR),

would give a value of < 20 dB. This SNR can easily be achieved and surpassed in realistic

radar systems. An SNR of 30 dB, which is also achievable in current radar systems, would

correspond to less than 1% noise in this assessment.

Two cases, designated as Case 3 and Case 4, are simulated. These cases are presented

in Table 4.10 assuming different values for ∆. The inversion algorithm is run 50 times for

each case of the model parameters and noise standard deviation. The average and standard

deviation of the relative output error for X(1) through X(5) are plotted. Fig. 4.14 and

Fig. 4.15 show these results. The inversion parameters are the same as in Table 4.4 except

that Nε = 5.

Table 4.10: The two cases of the true values used for simulations in Section 4.5. Units are
SI.

ε
′
1r σ1 ε

′
2r σ2 d lf1 σf1 lf2 σf2

Case 3 5.00 1.0× 10−2 10.00 2.0× 10−2 0.50 0.1 0.02 0.2 0.01
Case 4 5.00 5.0× 10−2 10.00 1.0× 10−1 0.30 0.1 0.02 0.2 0.01

We should consider the fact that the performance of the inversion algorithm has been

tested in presence of extremely large noise amplitudes. Nevertheless, the noise analysis results

suggest that X(3) = ε2r and X(5) = d are retrieved with reasonably small error (< 20%)

for all noise amplitudes considered. Large standard deviations in most cases, especially in
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Figure 4.14: Average and standard deviation of the output error at 6 different noise strengths
(5%, 6%, 7%, 8%, 9%, and 10%) for Case 3 (See Table 4.10). Number of realizations is 50.

cases where the average output error is small, suggest that we cannot rely on the average

output error as the only piece of information about the retrieved model parameters. Other

measures of sensitivity to noise are, for example, the most probable point and distribution

of the output error. These measures are easily presented by the histogram of the output

error. Case 1 and Case 2, presented in Table 4.10, are simulated assuming 5% Gaussian

noise, i.e., ∆ = 0.05. The inversion algorithm is run 100 times and the histograms of the

output for X(1) through X(5) are plotted. Fig. 4.16 and Fig. 4.17 show these histograms.

An immediate conclusion from these histograms is that as far as the most probable point is

concerned, all of the model parameters, except for X(3), are retrieved with small deviation

from the average.
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Figure 4.15: Average and standard deviation of the output error at 6 different noise strengths
(5%, 6%, 7%, 8%, 9%, and 10%) for Case 4 (See Table 4.10). Number of realizations is 50.

We can use another noise model in which the Gaussian noise contaminates the received

voltage. Assume

vn = v + ∆×N × v (4.9)

where v denotes the noise free voltage and vn denotes the measured voltage received at the

antenna. We then have

v2
n = v2 + 2v∆N + ∆2N2v2 (4.10)

Averaging (4.10) over realizations of the rough surface with the assumption that N and v
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Figure 4.16: Histograms of the error in the retrieved model parameters in presence of 5%
Gaussian noise added to the measured data for Case 1 in Section 4.5. Number of simulated
realizations: 100.

are independent random variables,

〈v2
n〉 = 〈v2〉 (1 + ∆2N2

)
(4.11)

Since the measured voltage is proportional to the measured electric field, (4.11) and (2.65)

give

σo
n = σo

(
1 + ∆2N2

)
(4.12)

where N2 has Rayleigh distribution. Case 3 is simulated with the new noise model con-

sidering 5 different noise strengths, that is, ∆ =0.01, 0.02, 0.03, 0.04, 0.05, or equivalently,
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Figure 4.17: Histograms of the error in the retrieved model parameters in presence of 5%
Gaussian noise added to the measured data for Case 2 in Section 4.5. Number of simulated
realizations: 100.

noting that 〈N2〉 = 1, SNR ∼ 40, 34, 30, 28, 26 dB. Fig. 4.18 shows the average and stan-

dard deviation of the relative output error for the model parameters for the SNR values

considered.

Notice that for the practical SNR values considered in this simulation, the output error

is always smaller than 25%. The largest errors are observed in ε1r and d, and the errors in

other model parameters are smaller than 13.7%.

The above results indicate that the estimated values generally show sensitivity to the

input noise and we should put effort into reducing the input noise as much as possible. This

is not surprising given the extremely nonlinear nature of the scattering model. A strategy to

overcome the instability of inversion in presence of large amounts of noise is to average several
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Figure 4.18: Average and standard deviation of the output error at 5 different noise strengths
(∆ =0.01, 0.02, 0.03, 0.04, 0.05, or equivalently, SNR ∼ 40, 34, 30, 28, 26 dB) for Case 3
(See Table 4.10). Number of realizations is 50.

noise-contaminated data points and feed the averaged data into the inversion algorithm. If

we collect N data points at each frequency and incidence angle, the averaging over data

samples in (4.8) would be davg =
∑N

i=1 di/N . Here, it is assumed that N = 256. Table 4.11

shows the output error in the model parameters X(1)–X(5) for Case 1 and Case 2 after

averaging the noise over 256 data points. It is apparent that the output error in all of the

model parameters has been improved significantly showing that averaging the input data

cancels the additive noise in the measured data.
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Table 4.11: Output error in the model parameters after averaging the noise over 256 data
points contaminated by 10% Gaussian noise.

ε
′
1r σ1 ε

′
2r σ2 d

Case 1 −1.1% −4.3% −13.1% −6.4% 0.2%
Case 2 −0.7% 0.5% −3.3% −4.0% −0.5%

4.6 Summary and Conclusion

This chapter presented the application of the Simulated Annealing method to the inver-

sion of the 9 model parameters characterizing a two-layer dielectric structure with rough

boundaries. The forward model calculates the backscattering coefficients of the structure

using SPM. It was shown that the Simulated Annealing is a powerful tool capable of re-

trieving all of the 9 unknown model parameters and minimizing the associated cost function

globally. The parameters of most interest are dielectric properties of the layers and the layer

thickness. However, it was shown that if we only consider these parameters as unknown and

treat the rest as known, error in the a-priori values assigned to statistical properties of the

interfaces would result in large errors in the retrieved model parameters, and therefore, we

need to consider all of the 9 model parameters as unknown.

Values of the inversion parameters were either recommended by Corana et al. or derived

empirically in order to achieve robust and accurate inversion results. The values of frequency

points are forced by the application and measurement system, but the values of observation

angles were selected qualitatively in order that the maximum difference between σo
vv and σo

hh

would result. The other measurement parameters, namely the number of frequency points

and the number of measurement angles, were also derived empirically in order to achieve

accurate inversion results. These numbers directly impact nonlinearity of the cost function

as well as its information content. The values Nf = 5 and Nθ = 2 were selected for the cases

where all of the 9 model parameters were considered unknown.

To have the algorithm exit a local minimum, the algorithm was enhanced by forcing the

temperature to increase when a local minimum is encountered. Based on the Metropolis

criterion and the step length adjustment rule of the Corana algorithm, if the temperature

is forced to increase, both the step length and the probability of accepting uphill moves
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increase, allowing the algorithm to continue its search for the global minimum with a bigger

step length, hence in a larger area.

The inversion algorithm shows sensitivity to input noise due to the severe nonlinearity

of the problem. However, we should consider the fact that the performance of the inversion

algorithm has been tested in presence of extremely large noise amplitudes. Still, depending

on the measure considered, all of the model parameters could be considered well retrieved,

especially when we assume that measurement noise contaminates measured voltage and

when practical values of SNR (20–40 dB) are considered. This is promising for the retrieval

of subsurface soil moisture layers. Error in the model parameters can be reduced significantly

by averaging the noise over several data points—256 in this work.

While it was shown that the Simulated Annealing is a powerful scheme for inversion

of subsurface properties of a layered structure, other algorithms and strategies can also be

investigated to speed up the inversion. Use of faster Simulated Annealing schemes such

as Very Fast Simulated Reannealing (VFSR) [88] or hybrid optimization schemes [89] are

methods yet to be evaluated for inversion of a layered structure properties.
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CHAPTER 5

Conclusions and Recommendations for Future Work

5.1 Summary

Layered structures with rough boundaries are representative models for many naturally

occurring structures such as layered soil, multiyear ice, and snow-covered lands. Mapping

soil moisture, sea ice, and snow is of special interest to scientists due to the critical infor-

mation content of these maps; knowledge of soil moisture is critical for weather and climate

prediction, flood control, and reservoir management. Due to the role of sea ice in the mass

balance and heat transfer between the ocean and the atmosphere, a negative change in the

sea ice extent would indicate a global warming scenario. Snow mapping is also important for

climate reasons as well as for estimating spring runoff amounts for predicting water supply,

hydroelectric energy production, and potential flooding. Mapping soil moisture, sea ice, and

snow strongly depends on our ability to retrieve the model parameters of the correspond-

ing layered structures. This work addressed the problem of electromagnetic scattering from

layered dielectric structures with rough boundaries and the associated inverse problem of

retrieving the subsurface parameters of the structure using the scattered field. To this end, a

forward scattering model based on the Small Perturbation Method (SPM) was developed to

calculate the first-order spectral-domain bistatic scattering coefficients of an N -layer rough

surface structure. The region of validity of the forward model was investigated to ensure

proper use of the model. Finally, to retrieve the model parameters of the layered structure

using the scattered field, an inversion scheme based on the simulated annealing method was
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developed and a method was proposed to address a shortcoming of all inversion algorithms,

that is, convergence to a local minimum.

5.2 Contributions

The following subsections outline the contributions of this dissertation.

5.2.1 Scattering from Layered Rough Surfaces

The first-order bistatic scattering coefficients of a three-dimensional N -layer dielectric

structure with slightly rough interfaces were calculated in the spectral domain using SPM.

The layers were considered isotropic and homogenous. The amplitudes of the fields in all

regions were obtained simultaneously. The solution is analytical and intrinsically takes into

account multiple scattering processes between the boundaries. The method is fast and

appropriate for being used in inversion schemes.

5.2.2 Region of Validity of Small Perturbation Method

The region of validity of SPM was investigated. The bistatic scattering coefficients of a

two-dimensional two-layer dielectric structure with rough boundaries were calculated using

the Method of Moments (MoM). The UV Multilevel Partitioning Method (UV-MLP) was

applied to accelerate the MoM solver and it was shown that for a dielectric rough surface

scattering, contrary to expectation, UV-MLP does not make the MoM solver faster than

a solver such as LU factorization. Five hundred different combinations of the statistical

properties of the interfaces and dielectric constants of the layers were simulated. Several

observations were reported based on the contour plots of |γMoM − γSPM|, where γ is the

bistatic scattering coefficient.
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5.2.3 Inversion of Subsurface Parameters of Two Layer Rough

Surfaces

To retrieve the model parameters of a three-dimensional two-layer dielectric structure

with rough boundaries, an inversion algorithm based on the simulated annealing was investi-

gated and a method was proposed to address convergence to a local minimum. Some of the

inversion parameters were empirically derived to guarantee convergence to correct results.

The forward model used in the inversion algorithm to evaluate the cost function as well as

to synthesize measured data was the forward model developed in Chapter 2. The algorithm

was shown to be capable of retrieving the layers dielectric constants, conductivities, and the

mean separation between the layers. All of the model parameters were shown to be well

retrieved in presence of noise.

5.3 Future Work

This dissertation addressed a very broad area of research in electromagnetic scattering.

The forward modeling of electromagnetic scattering from layered dielectric rough surfaces

is a new research area that has much room for advancement. Inverse electromagnetic scat-

tering, which falls into the broader category of inverse problems, though an old area, is still

challenging and calls for more research as new forward models are developed and as retrieval

of more model parameters with better accuracy and resolution is demanded. The area of

inverse electromagnetic scattering is particularly rich with possibilities of being applied to

random media. This section outlines a few research areas most relevant to this dissertation.

5.3.1 Forward Model Development

An accurate and fast forward model is necessary to insure a successful inversion process.

The first order scattered field in the SPM solution, presented in Chapter 2, is incoherent.

While for many applications, the first order solution is considered accurate enough, the

coherent scattered field needs to be calculated in order that more sensitive measurements

and more accurate inversion become feasible. Extension of the current SPM solution to
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higher orders, especially second order, would address this need. The second order solution

would also allow calculation of the co-pol phase difference, which has been shown to be very

sensitive to subsurface parameters [90].

Naturally occurring structures are represented by different models. For example, the

structure in Fig. 2.1 can represent a lake or a simple layered ground while more complex

structures would involve inhomogeneous layers, irregular interfaces including very rough as

well as undulating interfaces, layers with buried objects, and layers covered by vegetation

(Fig. 1.1). Development of analytical and numerical models for scattering from layered

rough surfaces that include such media can be very useful in geophysical research, especially

mapping soil moisture.

5.3.2 Region of Validity of Small Perturbation Method

It was shown in Chapter 3 that for dielectric rough surfaces, UV-MLP is not faster than a

solver such as LU factorization. It was also concluded that for more definitive statements on

the limits on the model parameters, especially those affected by multiple scattering processes

between the boundaries, more extensive numerical simulations are needed to allow finer

sampling of the model space. Possible future work includes developing fast solvers that

are more appropriate for scattering from dielectric rough surfaces. These solvers should be

fast enough to allow, for example, use of an iterative nonlinear optimizer, which requires fine

sampling of the model space as well as measurement parameters such as incidence/scattering

angles and polarization.

5.3.3 Inverse Model Development

The Simulated Annealing was shown to be a powerful scheme for inversion of subsurface

properties of a layered structure. In addition to investigating the capability of other algo-

rithms and strategies such as genetic algorithms [79] and particle swarm algorithm [80], use of

faster Simulated Annealing schemes such as Very Fast Simulated Re-Annealing (VFSR) [88]

or hybrid optimization schemes [89] are yet to be studied and developed further for inversion

of a layered structure properties.
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Figure 5.1: A sample cost function used in the inversion algorithm in Chapter 4 plotted
versus two of the model parameters for two different sets of measurement parameters. X(1)
represents ε′1r and X(4) represents σ2.

5.3.4 Design Space for Future Remote Sensing Systems

To successfully and efficiently retrieve the unknowns in the optimization problem associ-

ated with the inverse problem in Chapter 4, the number and value of measurement frequencies

and observation angles should be chosen judiciously to increase the efficiency and accuracy

of the inversion algorithm. These numbers and values affect both the smoothness and in-

formation content of the cost function. Fig. 5.1 shows a cost function versus two different

model parameters. This figure shows how the nonlinearity of the cost function along different

coordinates can vary depending on the number of frequency points and measurement angles.

In this dissertation, these quantities were selected empirically based on many inversion cases

with different number of unknown model parameters. However, finding the optimum values

of these parameters as well as the values of frequency points and measurement angles, with

the number of cost function evaluations being a constraint, remains a subject to explore.

115



APPENDIX

116



APPENDIX A

A.1 Necessary Expansions

This appendix presents some of the expansions used in the analysis in Chapter 2.

The vectors ĥ(·) and v̂(·) are defined as below,

ĥ(−ki
0z) :=

K̂ i
0 × ẑ

|K̂ i
0 × ẑ| (A.1)

v̂(−ki
0z) := ĥ(−ki

0z)× K̂ i
0 (A.2)

The minus sign in ĥ(−ki
0z) and v̂(−ki

0z) indicates that the incident plane wave is down-going.

Similarly,

ĥ(knz) =
k̂n × ẑ

|k̂n × ẑ| (A.3)

v̂(knz) = ĥ(knz)× k̂n (A.4)

ĥ(−knz) =
K̂n × ẑ

|K̂n × ẑ| (A.5)

v̂(−knz) = ĥ(−knz)× K̂n (A.6)

where k̂n = (kxx̂ + kyŷ + knz ẑ)/kn, K̂n = (kxx̂ + kyŷ − knz ẑ)/kn, knz =
√

k2
n − k2

x − k2
y,

kn = ω
√

µ0εn, and n = 0, 1, 2. It is worth mentioning that knz is considered a positive

quantity throughout the analysis.

According to (A.3)–(A.6),
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ĥ(±knz) =
−kxŷ + kyx̂

kρ

(A.7)

and

v̂(±knz) = ∓ knz

knkρ

(kxx̂ + kyŷ) +
kρ

kn

ẑ (A.8)

where kρ =
√

k2
x + k2

y. Also, the unit vectors normal to the boundaries are

n̂1(r⊥) =
−ξf1xx̂− ξf1yŷ + ẑ√
ξ2f1x

2 + ξ2f1y
2 + 1

(A.9)

and

n̂2(r⊥) =
−ξf2xx̂− ξf2yŷ + ẑ√
ξ2f2x

2 + ξ2f2y
2 + 1

(A.10)

where subscripts ‘x’ and ‘y’ indicate the partial derivative with respect to x and y, respec-

tively. Therefore, the expressions for n̂1,2 × ĥ(·) and n̂1,2 × v̂(·) are as follows.

n̂1,2 × ĥ(±knz) =
kxx̂ + ky ŷ + (ξf1,2xkx + ξf1,2yky)ẑ

kρ

√
ξ2f1,2x

2 + ξ2f1,2y
2 + 1

(A.11)

n̂1,2 × v̂(±knz) =
(±knzky − ξf1,2ykρ

2)x̂ + (∓knzkx + ξf1,2xkρ
2)ŷ + (±ξf1,2xknzky ∓ ξf1,2yknzkx)ẑ

knkρ

√
ξ2f1,2x

2 + ξ2f1,2y
2 + 1

(A.12)

When the boundary conditions are applied, the exponential terms in the integrands

should be expanded in terms of ξ using Taylor series representation.

e+ik0zξf1(x,y) =
∞∑

n=0

(+ik0zf1(x, y))nξn

n!
(A.13)

Other exponential terms are expanded similarly. Additionally, note that

∞∑
m=0

a
+(m)
h,v ξm

m!
×

∞∑
n=0

(+ik0zf1(x, y))nξn

n!
=

∞∑
m=0

m∑
n=0

a
+(n)
h,v (+ik0zf1(x, y))m−nξm

n!(m− n)!
(A.14)

Similar relations hold for the terms that include b
±(m)
h,v and c

−(m)
h,v .
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A.2 Analytical Validation of the Zeroth- and First-

Order Solutions for the Two-Layer Case

A.2.1 Zeroth-Order Solution

Solving for the zeroth-order coefficients results in

a
+(0)
h (k⊥) =

(k1z + k2z)(k1z − k0z)− ei2k1zd1(k1z − k2z)(k1z + k0z)

ei2k1zd1(k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z)
Eh

o δ(k⊥ − ki
⊥) (A.15)

The reflection coefficient of a two-layer dielectric structure for horizontal (perpendicular or

TE) polarization is known to be [51]

Rh =
Rh

01 + Rh
12e

i2k1zd1

1 + Rh
01R

h
12e

i2k1zd1
(A.16)

where Rh
01 and Rh

12 are the Fresnel reflection coefficients for horizontal polarization and are

given by

Rh
01 =

k0z − k1z

k0z + k1z

(A.17)

and

Rh
12 =

k1z − k2z

k1z + k2z

(A.18)

Substituting (A.17) and (A.18) into (A.16) will result in

Rh =
(k1z + k2z)(k1z − k0z)− ei2k1zd1(k1z − k2z)(k1z + k0z)

ei2k1zd1(k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z)
(A.19)

The solution for vertical polarization as well as the solution to the three-layer case can be

validated similarly.

A.2.2 First-Order Solution

In the special case of ε1 = ε2 and with the assumption Ev
o = 0, Mathematica gives
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a+(1)

h (k⊥) =
ikρF1(k⊥ − ki

⊥)

ki
ρ(k

2
x + k2

y)(k1z + k0z)
×

[
a+(0)

h (ki
⊥)

(
(ki

ρ)
2
(
k2

x − kxk
i
x + k2

y − kyk
i
y

)− (
kxk

i
x + kyk

i
y

)
ki

0z

(
k1z + ki

0z

))−

b−(0)

h (ki
⊥)

(
(ki

ρ)
2(k2

x − kxk
i
x + k2

y − kyk
i
y) + (kxk

i
x + kyk

i
y)k

i
1z(k1z − ki

1z)
)
+

Eh
o

(
(ki

ρ)
2
(
k2

x − kxk
i
x + k2

y − kyk
i
y

)
+

(
kxk

i
x + kyk

i
y

)
ki

0z

(
k1z − ki

0z

)) ]
(A.20)

Since ks
x = k0 sin θs cos φs, ks

y = k0 sin θs sin φs, ki
x = k0 sin θi cos φi, ki

y = k0 sin θi sin φi,

ks
ρ = k0 sin θs, and ki

ρ = k0 sin θi, after inserting the zeroth-order solution into (A.20), the

following will result:

a+(1)

h (ks
⊥) =

i2Eh
o F1(k

s
⊥ − ki

⊥)(ki
1z − ki

0z)k
i
0z cos(φi − φs)

ks
1z + ks

0z

(A.21)

Multiplying both the numerator and denominator by (ki
1z + ki

0z), and inserting the result

into (2.64) and (2.65) will give

σo
hh(k̂s, k̂i) = 16πk4

0 cos2 θs cos2 θi

∣∣∣ (k2
1 − k2

0)

(ks
0z + ks

1z)(k
i
0z + ki

1z)

∣∣∣
2

cos2(φs−φi)Wf1(k
s
⊥−ki

⊥) (A.22)

which shows a perfect match with the literature [37]. Similar calculations can be done for

other coefficients.

Another special case is when F1(k⊥ − ki
⊥) = 0, which means a rough interface covered

by a flat dielectric layer, in which case Mathematica gives

a+(1)

h (k⊥) =
−i2k1zkρe

id1(k1z−ki
1z)F2(k⊥ − ki

⊥)

ki
ρ(k

2
x + k2

y) (ei2d1k1z(k1z − k2z)(k1z − k0z)− (k1z + k2z)(k1z + k0z))
×

[
b−(0)

h (ki
⊥)ei2d1ki

1z
(
(ki

ρ)
2(k2

x − kxk
i
x + k2

y − kyk
i
y)− ki

1z(k
i
1z − k2z)(kxk

i
x + kyk

i
y)

)
+

b+(0)

h (ki
⊥)

(
(ki

ρ)
2(k2

x − kxk
i
x + k2

y − kyk
i
y)− ki

1z(k
i
1z + k2z)(kxk

i
x + kyk

i
y)

)−
c−(0)

h (ki
⊥)eid1(ki

1z+ki
2z)

(
(ki

ρ)
2(k2

x − kxk
i
x + k2

y − kyk
i
y) + ki

2z(k2z − ki
2z)(kxk

i
x + kyk

i
y)

) ]
(A.23)
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With similar substitutions, a+(1)

h (ks
⊥) can be shown to be

a+(1)

h (ks
⊥) = −8eid1(ks

1z+ki
1z)ks

1zk
i
1z(k

2
1 − k2

2)k
i
0z cos(φs − φi)×
1

eid1ks
1z(ks

1z − ks
0z)(k

s
1z − ks

2z)− (ks
1z + ks

0z)(k
s
1z + ks

2z)
×

1

eid1ki
1z(ki

1z − ki
0z)(k

i
1z − ki

2z)− (ki
1z + ki

0z)(k
i
1z + ki

2z)
(A.24)

Inserting (A.24) into (2.65) gives

σo
hh = 256πk4

0 cos2 θi cos2 θs|k2
1 − k2

2|2 cos2(φs − φi)

×
∣∣∣ ki

1z

ei2d1ki
1z(ki

1z − ki
0z)(k

i
1z − ki

2z)− (ki
1z + ki

0z)(k
i
1z + ki

2z)

∣∣∣
2

×
∣∣∣ ks

1z

ei2d1ks
1z(ks

1z − ks
0z)(k

s
1z − ks

2z)− (ks
1z + ks

0z)(k
s
1z + ks

2z)

∣∣∣
2

Wf2(k
s
⊥ − ki

⊥) (A.25)

which is similar to the results in [46]. Similar calculations can be done for other coefficients.

It is worth reminding that in the zeroth-order coefficients appearing in (A.20) and (A.23),

δ(k⊥ − ki
⊥) is suppressed. The solution to the three-layer case can be validated similarly.
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A.3 Note on Power Spectral Density

Power spectral density of a 2D rough surface profile has the following definition:

Wf1(k⊥) :=
σ2

f1

(2π)2

∞∫

−∞

∞∫

−∞

dr⊥Cf1(r⊥)e−ik⊥·r⊥ (A.26)

It also satisfies the relation

Wf1(k⊥) = (2π)2 lim
A→∞

〈|F1(k⊥)|2〉
A

(A.27)

where Cf1(r⊥), the correlation coefficient between two points on the surface f1(x, y), is

defined as 〈f1(r⊥1)f1(r⊥2)〉/σ2
f1

and in general is a function of r⊥2 and r⊥1. Since the surface

is assumed to be statistically homogeneous isotropic, Cf1 is a function of |r⊥| = |r⊥2 − r⊥1|.
The quantity σf1 is the standard deviation of f1(x, y). Likewise, we may define Cf1f2 as

〈f1(r⊥1)f2(r⊥2)〉/σf1σf2 and define Wf1f2 accordingly. Assuming that Cf1f2 is a function of

|r⊥| = |r⊥2 − r⊥1|, Wf1f2 will be real and will satisfy the following relation:

Wf1f2(k⊥) = (2π)2 lim
A→∞

〈F1(k⊥)F ∗
2 (k⊥)〉

A
(A.28)
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APPENDIX B

B.1 Random Rough Surface Generation

This section describes how realizations of Gaussian random rough surfaces can be gener-

ated [64].

If z1 and z2 are two random variables, their correlation coefficient is defined as

C =
〈(z1 − η1) (z2 − η2)〉

σ1σ2

(B.1)

where ηi and σi are the mean value and standard deviation of zi, respectively. Similarly, the

correlation function of a random process f(x) is defined as

C(x1, x2) =
〈(f(x1)− η1) (f(x2)− η2)〉

σ1σ2

(B.2)

Let’s assume that the rough surface is represented by a random process that is stationary

to order two. Therefore, η1 = η2, σ1 = σ2, and C(x1, x2) = C(x1 − x2). If we assume that

η1 = η2 = 0 and σ1 = σ2 = σ,

C(x1 − x2) =
〈f(x1)f(x2)〉

σ2
(B.3)

Let’s also assume that the process f(x) is normal, that is, the random variables f(x1), f(x2),

. . . , f(xn) are jointly normal for every n and x1, x2, . . . , xn. Therefore, the statistics of f(x)

are completely determined by η and C(x1 − x2). The Fourier transform of σ2C(x) is the
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spectral density

W (kx) := σ2F{C(x)} =
σ2

2π

∫ +∞

−∞
C(x) exp (−ikxx)dx (B.4)

A surface of finite length L is to be generated. The function f(x) is made periodic outside

L, i.e., f(x) = f(x + L) and use a Fourier series to represent f(x).

f(x) =
1

L

∞∑
n=−∞

bn exp

(
i2πnx

L

)
(B.5)

where bn is a Gaussian random variable. From (B.5), we have

〈f(x1)f(x2)〉 =
1

L2

∞∑
n=−∞

∞∑
m=−∞

〈bnb∗m〉 exp

(
i2πnx1

L

)
exp

(−i2πmx2

L

)
(B.6)

From (B.3), (B.4), and (B.6), we can write

〈bnb
∗
m〉 = δnmBn (B.7)

and ∫ ∞

−∞
dkx exp (ikx(x1 − x2)) W (kx) =

1

L2

∞∑
n=−∞

Bn exp

(
i
2πn

L
(x1 − x2)

)
(B.8)

where δnm is the Kronecker delta function. If ∆kx = 2π
L

and Kn = 2πn
L

= n∆kx, discretizing

the integral in (B.8) results in

2π

L

∞∑
n=−∞

exp (iKn(x1 − x2)) W (Kn) =
1

L2

∞∑
n=−∞

Bn exp (iKn(x1 − x2)) (B.9)

which results in

Bn = 2πLW (Kn) (B.10)

From (B.7) and (B.10),

〈|bn|2〉 = 2πLW (Kn) (B.11)

From the properties of the Fourier series (B.5), we have bn = b∗−n. If we let m = −n in (B.7),
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we get 〈bnb
∗
−n〉 = 0. Therefore,

〈bnbn〉 = 0 (B.12)

which, letting bn = <{bn}+ i={bn}, gives

〈(<{bn})2〉 = 〈(={bn})2〉 (B.13)

and

〈<{bn}={bn}〉 = 0 (B.14)

From (B.5), 〈bn〉 = 0, so 〈<{bn}〉 = 0 and 〈={bn}〉 = 0. Therefore,

〈<{bn}={bn}〉 = 〈<{bn}〉〈={bn}〉 (B.15)

meaning that <{bn} and ={bn} are independent Gaussian random variables with a variance

equal to half of the variance of |bn|. This can easily be seen from <{bn} = (bn + b∗n)/2,

={bn} = (bn − b∗n)/2, and (B.12).

Since the surface is generated with a limited number of points, the DFT version of (B.5)

is used. Let there be N points in both spatial and spectral domains, that is, ∆x = L
N

and

xm = m∆x for m = −N
2

+ 1, . . ., 0, 1, . . . , N
2
. Then

fm =
1

L

N
2∑

n=−N
2

+1

bn exp

(
i
2πnm

N

)
(B.16)

The inverse DFT is

bn =
L

N

N
2∑

m=−N
2

+1

fm exp

(
−i

2πnm

N

)
(B.17)

Both fm and bn are periodic sequences with period N . That is, bn+N = bn and fm+N = fm.

Therefore,

b−N
2

= bN
2

(B.18)

Therefore, bN
2

is real, because bn = b∗−n, which also implies b0 is real.

To summarize, b0 and bN
2

are two Gaussian numbers. The quantities b−N
2

+1, b−N
2

+2,
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. . . , b−2, b−1 are complex numbers with real and imaginary parts that are Gaussian. The

quantities b1, b2, . . . , bN
2
−1 can be calculated using the fact that bn = b∗−n. The algorithm

to generate the Gaussian random rough surface is as follows.

• Generate N independent Gaussian random numbers with zero mean and unit variance.

Denote these numbers by r1, r2, . . . , rN .

• Calculate

b0 =
√

2πLW (0)rα (B.19)

bN
2

=

√
2πLW (

πN

L
)rβ (B.20)

where rα and rβ are two of the N Gaussian random numbers generated.

• Calculate

bn =
√

2πLW (|Kn|)
{

1√
2
(rσ + irξ)

}
(B.21)

for n = −N
2

+ 1, . . . , −2, −1 where rσ and rξ are two of the N Gaussian numbers

generated.

• Calculate

bn = b∗−n (B.22)

for n = 1, 2, 3, . . . , N
2
− 1

• The rough surface profile is calculated from (B.16).

B.1.1 Numerical Example

If we assume the correlation function is Gaussian, i.e., if

C(x) = exp

(
−x2

l2

)
(B.23)

where l is the random process correlation length, the spectral density will be

W (kx) =
σ2l

2
√

π
exp

(
−k2

xl
2

4

)
(B.24)
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Fig. B.1 shows two Gaussian rough surface profiles generated with the above algorithm. The

top surface has been generated with 1000 points and the bottom surface has been constructed

using 800 points. The top rough surface has a correlation length of 20 cm and the bottom

rough surface correlation length is 50 cm. Both surfaces have a standard deviation of 1 cm.

Both of the rough surfaces are assumed to have Gaussian correlation functions. The mean

separation between the rough surfaces is 30 cm.
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Figure B.1: Two Gaussian random rough surfaces generated using the algorithm in Ap-
pendix B.1.
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B.2 Electric and Magnetic Potential Functions

Assuming the boundaries in Fig. 3.1 are parameterized in t, the potential functions in

(3.27)–(3.30) are

A0(t) =
i

4

∫

S1

J1(t
′)H(1)

0 (k0R)dt′ (B.25)

A1(t) =
i

4

∫

S2

J2(t
′)H(1)

0 (k1R)dt′ − i

4

∫

S1

J1(t
′)H(1)

0 (k1R)dt′ (B.26)

A2(t) = − i

4

∫

S2

J2(t
′)H(1)

0 (k2R)dt′ (B.27)

F0(t) =
i

4

∫

S1

K1(t
′)H(1)

0 (k0R)dt′ (B.28)

F1(t) =
i

4

∫

S2

K2(t
′)H(1)

0 (k1R)dt′ − i

4

∫

S1

K1(t
′)H(1)

0 (k1R)dt′ (B.29)

F2(t) = − i

4

∫

S2

K2(t
′)H(1)

0 (k2R)dt′ (B.30)

Φm0 =
i

4

∫

S1

ρm1(t
′)

µ0

H
(1)
0 (k0R)dt′ (B.31)

Φm1 =
i

4

∫

S2

ρm2(t
′)

µ0

H
(1)
0 (k1R)dt′ − i

4

∫

S1

ρm1(t
′)

µ0

H
(1)
0 (k1R)dt′ (B.32)

Φm2 = − i

4

∫

S2

ρm2(t
′)

µ0

H
(1)
0 (k2R)dt′ (B.33)

and R =
√

(x(t)− x(t′))2 + (y(t)− y(t′))2.
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B.3 Derivation of the Bistatic Scattering Coefficient of

a 1D Rough Surface

This appendix describes how (3.71) is derived. Assume the total field in the incidence

region is ψ(ρ), which represents Ez for TM incidence and Hz for TE incidence. According

to Huygen’s principle, the scattered field is

ψs(ρ
′) = −

∫

S1

ds [ψ(ρ)n̂ · ∇g(ρ,ρ′)− g(ρ,ρ′)n̂ · ∇ψ(ρ)] (B.34)

Given ψ(ρ) and n̂ · ∇ψ(ρ) on the surface, the scattered wave ψs(ρ) can be calculated by

calculating the above integral.

Assuming the observation point ρ′ is in the far-field region,

g(ρ,ρ′) =
i

4

√
2

πkoρ′
e−i π

4 eikoρ′e−iko(x cos φs+y sin φs) (B.35)

Therefore,

n̂ · ∇g(ρ,ρ′)
∣∣
y=f(x)

√
1 +

(
df

dx

)2

=
i

4

√
2

πkoρ′
e−i π

4 eikoρ′

×
[
df(x)

dx
(iko cos φs)− iko sin φs

]
e−iko(x cos φs+f(x) sin φs) (B.36)

From (B.34), (B.35), and (B.36), we have

ψs(ρ
′) =

i

4

√
2

πkoρ′
e−i π

4 eikoρ′ψ(N)
s (φs) (B.37)

where

ψ(N)
s (φs) = −

∫ ∞

−∞
dx

(
−U(x) + ikoψ(x)

[
df

dx
cos φs − sin φs

])

×e−iko (x cos φs + f(x) sin φs) (B.38)

129



where U(x) = n̂ · ∇ψ
∣∣
y=f(x)

√
1 +

(
df
dx

)2
. Noting that

dx =
ds√

1 +

(
df

dx

)2
(B.39)

we can rewrite (B.38) as

ψ(N)
s (φs) = −

∫

S1

ds


−n̂ · ∇ψ(x) + ik0ψ(x)

df

dx
cos φs − sin φs

√
1 +

(
df
dx

)2




×e−ik0 (x cos φs + f(x) sin φs) (B.40)

Assuming a TM incidence, that is, Einc = ẑψinc and the total field in the incidence region is

E0 = ẑψ = ẑ(ψinc + ψs), we can write

∇× ẑψ = ik0η0H0 (B.41)

Since ∇ × ẑψ = ∇ψ × ẑ, we have H0 = ∇ψ × ẑ/ik0η0. Applying the boundary condition

n̂×H0 = J1 on S1 gives

n̂×H0 =
n̂× (∇ψ × ẑ)

ik0η0

= − n̂ · ∇ψẑ

ik0η0

= J1z ẑ (B.42)

So

n̂ · ∇ψ(x) = −ik0η0J1z(x) (B.43)

The boundary condition n̂× ẑψ = −K1 implies

ψ(x) = K1t (B.44)

because n̂× ẑ = −t̂ according to the convention shown in Fig. 3.3. Equations (B.40), (B.43),
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(B.44) result in

ψ(N)
s (φs) = −

∫

S1

ds

(
ik0η0J1z + ik0K1t

f ′(x) cos φs − sin φs√
1 + f ′(x)2

)

× exp [−ik0 (x cos φs + f(x) sin φs)] (B.45)

Similarly, for TE incidence,

ψ(N)
s (φs) = −

∫

S1

ds

(
ik0η0M1z − ik0J1t

f ′(x) cos φs − sin φs√
1 + f ′(x)2

)

× exp [−ik0 (x cos φs + f(x) sin φs)] (B.46)
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B.4 Index-Dependent Probability Density Functions

For sampling rows and columns of a block, one might want to use a density function that

depends on the row and column indices. Consider Zs2
ek1

in (3.106) and assume it has been

decomposed to 25 blocks of the same size. See Fig. B.2(a). Although this decomposition

is not consistent with multilevel partitioning, it helps understand the distribution used for

row and column samples. Since the location of the block is below the diagonal, for a fixed

column, i.e., cell current, as the index of the observation cell increases, the contribution of

the cell current to the boundary field decreases. See Fig. B.2(b). Therefore, the probability

of choosing rows with larger row indices should be smaller for this block. On the other hand,

since for a fixed row, as the column index increases, the distance between the cell current and

an observation point on the second boundary decreases, the probability of choosing columns

with larger indices should be larger. Similar discussion holds for blocks above the diagonal,

except that for such blocks, the probability of choosing rows/columns with larger indices,

should be larger/smaller. We may, therefore, use the following probabilities for sampling

rows and columns of a block within a submatrix. If i and j denote the row and column

indices, respectively, and if ib and jb respectively denote the relative indices of a block within

a submatrix,

Pr{i} =





i−1

M∑

l=1

l−1

if ib > jb

i
M∑

l=1

l

if ib < jb

(B.47)

Pr{j} =





j
M∑

l=1

l

if ib > jb

j−1

M∑

l=1

l−1

if ib < jb

(B.48)

This appendix describes how such distributions can be generated from a uniform distri-

bution. Assuming the probability density function of a random variable X is fX(x), the
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Figure B.2: (a) A block within a submatrix of the impedance matrix. The red block rep-
resents the interaction between the red current elements on the first boundary and the
boundary field at the red cells on the second interface. (b) Red cells on the first boundary
correspond to the columns of the red block and red cells on the second boundary correspond
to the rows of the red block.

probability density function of the random variable Y = g(X) is

fY (y) =
fX(x1)

g′(x1)
(B.49)
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where x1 is the solution to the equation y = g(x). The goal is generating an integer,

representing a row or column index, with a probability that is either directly or inversely

proportional to the integer. Equivalently, if the integer is the integral part of y = g(x),

we look for a function g(x) so that the random variable Y would have the probability

density function shown in Fig. B.3. Assume y = g(x) has only one solution and will build

the function g(x) with such a property. It is also assumed that the random variable X is

uniformly distributed between 0 and 1, i.e.,

fX(x) =





1 : 0 ≤ x < 1

0 : otherwise

(B.50)

For the case where Pr{i} ∝ i, the following probability density function is used. See

Fig. B.3(a).

fY (y) =





1/α : 1 ≤ y < 2

2/α : 2 ≤ y < 3

...

M/α : M ≤ y < M + 1

(B.51)

where M is the block size and

α =
M∑

l=1

l (B.52)

From (B.49), (B.50), and (B.51), we have the following equation for g(x).

i

α
=

1

g′(x)
: i ≤ g(x) < i + 1 (B.53)

for i = 1, 2, · · · ,M . Therefore,

g(x) =
α

i
x + ci : i ≤ g(x) < i + 1 (B.54)
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for i = 1, 2, · · · ,M . To find ci, note that from (B.54),

i(i− ci)

α
≤ x <

i(i + 1− ci)

α
(B.55)

for i = 1, 2, · · · ,M . Since x ≥ 0, set
i(i− ci)

α
= 0 for i = 1, which gives c1 = 1. The

following condition is also imposed on (B.55), because x is a continues variable.

i(i + 1− ci)

α
=

(i + 1)(i + 1− ci+1)

α
(B.56)

or equivalently,

(i + 1)ci+1 = ici + i + 1 (B.57)

for i = 1, 2, · · · ,M − 1. Solving this recursive equation with c1 = 1 gives

ci =
i + 1

2
(B.58)

for i = 1, 2, · · · ,M . From (B.54), (B.55), and (B.58) we have

g(x) =
αx

i
+

i + 1

2
:

i(i− 1)

2α
≤ x <

i(i + 1)

2α
(B.59)

Similarly, for the case where Pr{i} ∝ i−1, the following probability density function is

assumed. See Fig. B.3(b).

fY (y) =





1/α : 1 ≤ y < 2

2−1/α : 2 ≤ y < 3

...

M−1/α : M ≤ y < M + 1

(B.60)

where M is the block size and

α =
M∑

l=1

l−1 (B.61)
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From (B.49), (B.50), and (B.60), we have the following equation for g(x).

1

iα
=

1

g′(x)
: i ≤ g(x) < i + 1 (B.62)

for i = 1, 2, · · · ,M . Therefore,

g(x) = iαx + ci : i ≤ g(x) < i + 1 (B.63)

for i = 1, 2, · · · ,M . From (B.63),

i− ci

αi
≤ x <

i + 1− ci

αi
(B.64)

for i = 1, 2, · · · ,M . Since x ≥ 0, set
i− ci

αi
= 0 for i = 1, which gives c1 = 1. Moreover,

continuity of x results in
i + 1− ci

αi
=

i + 1− ci+1

α(i + 1)
(B.65)

or equivalently,

ci+1 = (ci − 1)
i + 1

i
(B.66)

for i = 1, 2, · · · ,M − 1. From (B.63) and (B.64), we have

g(x) = iαx + ci :
(i− ci)

αi
≤ x <

i + 1− ci

αi
(B.67)

where ci is found from (B.66) with c1 = 1.
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(a) Probability of choosing a row or column is directly proportional to
its index i.
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(b) Probability of choosing a row or column is inversely proportional to
its index i.

Figure B.3: Probability density functions used for sampling rows and columns of the blocks
in the impedance matrix in Chapter 3.
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