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~As you set out for [thaka hope vour road is a long one. full of adventure. full of discovery.

Laistrygonians. Cvclops. angry Poseidon - don’t be afraid of them: you’ll never find things

like that one on your way as long as vou keep your thoughts raised high. as long as a rare
sensation touches your spirit and your body.

Keep [thaka always in your mind. Arriving there is what you're destined for. But don't
hurry the journey at all. Better if it lasts for years. so you're old by the time you reach the
island. wealthy with all you've gained on the way. not expecting Ithaka to make vou rich.
Ithaka gave you the marvelous journey. Without her you wouldn't have set out. She has

nothing left to give vou now. And if vou find her poor. [thaka won’t have fooled vou.

Wise as you become. so full of experience, you will have understood by then what these

Ithakas mean. ~

K.Kavafis, “Ithaka™ (1911)
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CHAPTER 1

Introduction

1.1 What are the Microwaves?

More and more often, the term "Microwaves” is used in applications related to radar and
communication systems. Radar systems are used for detecting and locating air, ground or
sea-going targets, by airport traffic-control radars, missile tracking radars, fire-control radars
and other weapon systems. Radar is also used for weather prediction and remote sensing
applications. Microwave communication systems handle a large fraction of international
and other long-haul telephone traffic (satellite and radio-link communcations), in addition
to wireless cellular applications.

As a result, a naturally rising question is: What are the Microwaves? This term refers
to alternating current signals with frequencies between 300 MHz and 300 GHz. The corre-
sponding electrical wavelength ranges from A = ¢/ f=1 m to A=1 mm where ¢ = 3z103m/sec
is the speed of light in a vacuum. Because of the high frequencies (and short wavelengths),
standard circuit theory cannot be applied directly to solve microwave network problems.
Microwave components usually are distributed elements, where the phase of voltage or

current changes significantly over the physical length of the device because its physical di-



mensions are on the order of the microwave wavelength. At much lower frequencies, the
wavelength is so large that there is a minor phase variation across the component (lumped
approximations).

The small wavelengths of microwave energy provide unique advantages. Antenna gain
is proportional to the electric size of the antenna. At higher frequencies, more antenna
gain is possible for a given physical antenna size. More bandwidth (information-carrying
capacity) can be realized at higher frequencies. Microwave signals travel by line-of-sight
and are not bent by the ionosphere as are lower frequency signals. Terrestrial and satellite
communication links with high capacities are thus possible. In addition, the radar cross-
section of a radar target is usually proportional to the target’s electrical size; this fact makes
microwave frequencies the preferred band for radar applications. Nevertheless, one must
begin with Maxwell’s equations to analyze microwave topologies. In practical applications,
high mathematical complexity arises, as Maxwell’s equations involve vector differential or

integral operations.

1.2 Time-Domain Techniques

With the advent of microwave circuits used in high-frequency communications, there
is a compelling need to develop efficient and reliable full wave simulation techniques for
the modeling process. Until 1990, the modeling of electromagnetic wave interactions was
dominated by frequency-domain techniques. Apart from high-frequency asymptotic meth-
ods [1, 2], electromagnetic simulations involved setting up and solving frequency-domain
integral equations [3, 4] for the phasor electric and magnetic currents induced on the sur-
faces of the geometries of interest. This Method of Moments (MoM) involves setting up and

solving dense, full, complex-valued systems of tens of thousands of linear equations using



direct or iterative techniques. The use of MoM in EM has become popular since the work
of Richmond (5] and Harrington [6] in 1967. The method has been successfully applied to
a wide variety of EM problems of practical interest such as radiation due to thin-wire ele-
ments and arrays, scattering problems, analysis of microstrips and lossy structures, antenna
beam pattern and many more. The procedure for applying MoM usually involves initially
the derivation of the appropriate integral equation (IE). This IE is converted (discretized)
into a matrix equation using basis (expansion) functions and weighting (testing) functions.
After the matrix elements have been evaluated, the matrix equation is solved, thus deriving
the parameters of interest. Though MoM has been proven to be a very robust technique, it
is plagued by significant computational burdens, when it is used at very large geometries.
In addition, modeling of a new structure requires the reformulation of the integral equation,
a task that may require the very difficult derivation of a geometry-specific Green’s function.
On the contrary, techniques based on the partial differential equation (PDE) solutions
of the Maxwell’s equations yield either sparse matrices (frequency-domain finite-element
methods) or no matrices at all (time-domain finite-difference or finite-volume methods). It
is well known (7] that classical (analytical) approaches may fail if the PDE is not linear
and cannot be linearized without seriously affecting the result, the solution region is com-
plex, the boundary conditions are of mixed types or time-dependent or if the medium is
inhomogeneous or anisotropic. In these cases, it is preferable to use numerical solutions.
The Finite-difference method was first developed by A.Thom [8] in the 1920’s under
the title “method of squares” to solve nonlinear hydrodynamic equations. This technique
divides the solution region into a grid of nodes and approximates the given differential
equation by finite difference equivalents that relate the dependent variable at a point in the

solution region to its values at the neighboring points. The new difference equations are



solved subject to the prescribed boundary and/or initial conditions.

The Finite-element analysis of any problem [9] involves the discretization of the solution
region into finite number of subregions or elements and the derivation of the governing
equations for a typical element. All elements are assembled in the solution region and
finally the solution of the system of equations is obtained.

Generally, when using PDE approximation techniques, specifying a new geometry is
reduced to a problem of mesh generation only. Thus, time-domain PDE solvers could
provide a framework for a space/time microscope permitting the EM designer to visualize
with submicron/subpicosecond resolution the dynamics of electromagnetic wave phenomena
propagating at light speed within proposed geometries. EM Finite-Difference Time-Domain
(FDTD) is a direct solution method for Maxwell’s time dependent curl equations. It is
based upon volumetric sampling of the unknown near-field distribution within and around
the structure of interest over a period of time. No potentials are employed. The sampling is
set below the Nyquist limit and typically more than 10 samples per wavelength are required.
The time-step has to satisfy the stability condition. For simulations of open geometries,
absorbing boundary conditions (ABC) are employed at the outer grid truncation planes in
order to reduce spurious numerical reflection from the grid termination.

In 1966, Yee [10] introduced the first finite-difference time-domain technique (FDTD)
for the solution of Maxwell’s curl equations. Interleaved positioning of the electric and
magnetic field components provided a second-order accuracy of the algorithm. Taflove and
Boldwin [11] presented the numerical stability criterion for Yee’s algorithm and Mur [12]
published the first numerically stable second-order accurate absorbing boundary condition
(ABC) for the Yee’s mesh. The perfectly Matched Layer (PML) ABC, introduced in 2D by

Berenger in 1994 [13] and extended to 3D by Katz et al. [14], provides numerical reflection



comparable to the reflection of anechoic chambers with values -40dB lower than the Mur
ABC. The FDTD technique has been applied to various High-Frequency simulations with
remarkable success. Taflove [15] and Umashankar [16] used FDTD to model scattering and
compute near/far fields and RCS for 2D and 3D structures. Waveguide - Cavity struc-
tures and microstrips were analyzed with FDTD by Choi [17] and Zhang [18] respectively.
Maloney [19] introduced the FDTD modeling of antennas and El-Ghazaly [20] applied this
technique to picosecond optoelectronic switches. Toland et al. [21] published the first FDTD
models of nonlinear devices (tunnel diodes and Gunn diodes) exciting cavities and antennas
and Sui et al. [22)modeled lumped electronic circuit elements in 2D.

Despite the numerous applications of FDTD, many practical geometries, especially in
microwave and millimeter-wave integrated circuits (MMIC), packaging, interconnects, sub-
nanosecond digital electronic circuits (such as multichip modules (MCM)) and antennas
used in wireless and microwave communication systems, have been left untreated due to
their complexity and the inability of the existing techniques to deal with requirements for
large size and high resolution. Multiresolution analysis based on the expansion in scaling and
wavelet functions has demonstrated a capability to provide space and time adaptive grid-
ding without the problems encountered by the conventional Finite Difference Time-Domain
schemes. As a result, it could be used as a powerful foundation for the development of very

efficient electromagnetic simulation techniques.

1.3 Wavelets-Multiresolution Analysis

The term "wavelets” has a very broad meaning, ranging from singular integral opera-
tors in harmonic analysis to subband coding algorithms in signal processing, from coherent

states in quantum analysis to spline analysis in approximation theory, from multiresolution



transform in computer vision to a multilevel approach in the numerical solution of partial
differential equations, and so on. Considering the characteristics of time-domain numeri-
cal techniques for the solution of Maxwells’ equations, wavelets could be considered to be
mathematical tools for waveform representations and segmentations, time-frequency anal-
ysis and fast and efficient algorithms for easy implementation in both time and frequency
domains.

One of the most important characteristics of expansion to scaling and wavelet functions
is the time-frequency localization. The standard approach in ideal lowpass ("scaling”) and
bandpass ("wavelet”) filtering for separating an analog signal into different frequency bands
emphasizes the importance of time localization. The Multiresolution Analysis (MRA), in-
troduced by Mallat and Meyer (23, 24], provides a very powerful tool for the construction
of wavelets and implementation of the wavelet decomposition/reconstruction algorithms.
The sampling theorem can be used to formulate analog signal representations in terms of
superpositions of certain uniform shifts of a single function called a scaling function. Stabil-
ity of this signal representation is achieved by imposing the Riesz condition on the scaling
function. Another important condition of an MRA is the nested sequence of subspaces as
a result of using scales by integer powers of 2.

In the case of cardinal B-splines {25], an orthonormalization process is used to produce
an orthonormal scaling function and, hence, its corresponding orthonormal wavelet by a
suitable modification of the two-scale sequence. The orthonormalization process was in-
troduced by Schweinler and Wigner [26] and the resulting wavelets are the Battle-Lemarie
wavelets, obtained independently by Battle [27] and Lemarie [28] using different methods.
The only orthonormal wavelet that is symmetric or antisymmetric and has compact support

(to give finite decomposition and reconstruction series) is the Haar {29] wavelet [30]. Nev-



ertheless, these wavelets exhibit poor time-frequency localization. Throughout this Thesis,
Battle-Lemarie and Haar scaling and wavelet functions will be used as an expansion basis
for the E- and H- field components in space and time domain respectively, in order to derive
an efficient and fast Multiresolution Time-Domain Scheme for the numerical approximation

of Maxwell’s equations in a way similar to [31].

1.4 Overview of the Dissertation - Achievements

Chapter 2 gives a general overview of the FDTD Technique. Excitation topics and ways
of improving the algorithm performance are discussed separately. Next, FDTD is used in
the analysis of various planar circuits and waveguide probe structures. A new waveguide
absorber based on analytic modal Green’s functions is developed; it is characterized by a
better performance in memory requirements than the PML absorber, while maintaining
similar accuracy. The scattering parameters of the probe structures are calculated and
verified by comparison with FEM and experimental data. The effect of critical geometrical
parameters on the probe performance are investigated and the probe behavior is optimized.

Chapter 3 starts with a discussion on the need of development of novel time-domain
schemes which would alleviate the serious memory and execution time limitations of the
existing techniques. The basic principles of the Multiresolution Analysis as well as the tech-
nique of the construction of wavelet functions are presented. Analytical spectral expressions
for the linear and cubic cardinal splines are derived as an example. The 2D MRTD algo-
rithm based on Battle-Lemarie expansion basis is developed for a grid similar to that of the
FDTD. Hard Boundaries, such as Perfect Electric Conductors, and arbitrary excitations
are implemented in an automatic way. The principles of the PML absorber are extended in

split and nonsplit formulations providing a very efficient absorber. Notes on the total field



value calculation at every spatial point conclude this Chapter.

In Chapter 4, the MRTD scheme is applied to the numerical analysis of 2.5D shielded
and open striplines and microstrips. The field patterns and the characteristic impedance
are calculated and verified by comparison to reference data. Simulations display memory
savings by a factor of 25 and execution time savings by a factor of 4-5. For structures
where the edge effect is prominent, additional wavelet resolutions have to be introduced to
maintain a satisfactory performance while using a coarse MRTD grid. The non-split PML
algorithm is evaluated for different cells sizes and its performance is comparable to that of
the conventional FDTD PML absorber.

Chapter 5 investigates the stability and the dispersion performance of MRTD for differ-
ent stencil (number of summation terms) sizes and for O-resolution of wavelets. Analytical
expressions for the maximum stable time-step are derived for schemes containing only scal-
ing functions or combination of scaling and wavelet functions. It is proved that larger
stencils decrease the numerical phase error making it significantly lower than FDTD for
low and medium discretizations. The addition of wavelets further improves the dispersion
characteristics for discretizations close to the Nyquist limit, though it decreases the value
of the maximum stable time-step.

A mathematically correct way of dielectric modeling is presented and evaluated in the
first part of Chapter 6. A dynamically changing space- and time- adaptive meshing MRTD
algorithm based on a combination of absolute and relative thresholding of the wavelet values
is proposed. Different thresholding implementations are evaluated by the application of
the dynamically changing grid to the numerical analysis of various nonhomogeneous 2D
waveguide structures. This scheme offers memory savings by a factor of 5-6 per dimension

in comparison to FDTD.



The direct application of the principles of the Multiresolution Analysis to the time do-
main is presented in Chapter 7. A Time Adaptive Time-Domain Technique based on Haar
basis is proposed and applied to various types of circuits problems with active and passive
lumped and distributed elements. The addition of the wavelets increases the resolution in
time, something that is very important especially in circuits with nonlinear devices such as
diodes and transistors. This scheme exhibits significant savings in execution time and mem-
ory requirements while maintaining a similar accuracy with conventional circuit simulators.

The Thesis closes with ideas for future work described in Chapter 8.



CHAPTER 2

The Finite Difference Time Domain Technique (F.D.T.D.)
and its Applications in the Analysis and Design of

Microwave Circuits and Waveguide Probes

2.1 Foundations of the Finite Difference Time Domain (F.D.T.D.)

Technique

Considering an area with no electric or magnetic current sources, the time-dependent
Maxwell’s equations are given in differential form by

Faraday’s Law:

ot
Ampere’s Law:
at
Gauss’s Law for the electric field:
V-D=40
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Gauss’s Law for the magnetic field:

V.-B=0

Here, E is the electric field vector, D is the electric flux density vector, H is the magnetic
field vector, B is the magnetic flux density vector, J. is the electric conduction current den-
sity, Jm is the equivalent magnetic conduction current density. In linear. isotropic nondis-
persive materials, B and D can be related to H and E, respectively, using the constitutive

equations:

B = uH

D = €F (2.1)
where p is the magnetic permeability and e is the electric permittivity. To account for the
electric and magnetic loss mechanisms, an equivalent electric and magnetic current can be
introduced

Jo = oF

Jn = p'H (2.2)

with o the electric conductivity and pr the equivalent magnetic resistivity. Combining

Eqgs.(2.1)-(2.2) with Maxwell’s equations, we obtain

oH 1 o

97 _ _‘vxe-Lg 2.
5 #Vx ? (2.3)
JF 1 c

The curl equations (2.3)-(2.4) yield the following system of six coupled scalar equations in

the 3-D rectangular coordinate system (z,y, z):



oH,

OH,
Y
dE,
ot
dE,
ot
dE,
a1

;(6_:: ~ %z " p'Hy)
%‘ aai" - % - ¢'H:)
2G-S ok
é(."’a% - aa_% _oE,) (2.5)

Eq.(2.5) forms the basis of the FDTD numerical algorithm for general 3-D objects. The

FDTD algorithm need not explicitly enforce the Gauss’s Law relations. This occurs because

they are theoretically a direct consequence of the curl equations. However, the FDTD space

id must be structured so that the Gauss’s Law relations are implicit in the positions of the
gri p

electric and magnetic field vector components in the grid and the numerical space derivative

operations upon these vector components that model the action of the curl operator.

The above system of equations can be reduced to 2-D assuming no variation in the

z-direction. That means that all partial derivatives with respect to z equal zero and that

the analyzed structure extends to infinity in the z-direction with no change in the shape or

position of its transverse cross section. Eq.(2.5) will give in rectangular coordinates:

OH,
ot
H,
ot
oH,
8t
OE,
ot
dE,
8t
dE.
ot

LS - ) (2.6)
i - pHy) (2.7)
15 05y, as
%(6;11; - oE;) (2.9)
22 _oRy) (2:10)
%(%%y - %- - oE:) (2.11)

Eqs.(2.6),(2.7),(2.11) constitute the transverse magnetic (T M?) mode; the rest the trans-
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verse electric (T E®) mode 2-D equations. The TE* and TM? modes are decoupled since
they contain no common field vector components. These modes are completely independent
for structures composed of isotropic materials or anisotropic materials having no off-diagonal
components in the constitutive tensors. That means that they can exist simultaneously with
no mutual interactions.

Equations for 1-D cases can be derived in a similar way assuming no variation in the x-
or y-direction in excess to no variation in the z-direction.

Yee [10] proposed a set of finite-difference equations for the time-dependent Maxwell’s
curl equations, solving for both electric and magnetic fields in time and space instead of
solving for the electric field alone (or the magnetic field alone) with a wave equation. In
this way, the solution is more robust and more accurate for a wider class of structures. In
addition, both electric and magnetic material properties can be modeled in a straightfor-
ward manner. In Yee’s discretization cell (Fig.2.1), E- and H- fields are interlaced by half
space and time gridding steps. The spatial displacement is very useful in specifying field
boundary conditions and singularities and creates finite-difference expressions for the space
derivatives which are central in nature and second-order accurate. It has been proven that
the Yee mesh is divergence-free with respect to its electric and magnetic fields, and thereby
properly enforces the absence of free electric and magnetic charge in the source-free space
being modeled. The time displacement (leapfrog) is fully explicit, completely avoiding the
problems involved with simultaneous equations and matrix inversion. The resulting time-
stepping algorithm is non-dissipative; numerical wave modes propagating in the mesh do
not spuriously decay due to a nonphysical artifact of the time-stepping algorithm.

Denoting any function u of space and time evaluated at a discrete point in the grid and

13



at a discrete point in time as

u(iAz, jAy, kAz, IAL) = (u; jk

where At is the time step and Az, Ay, Az the cell size to the x-, y- and z-direction, the
first partial space derivative of u in the x-direction and the first time derivative of u are

approximated with the following central differences respectively

ou, . . o %ib1/2,5k — 1Bim1/2,5k 2
a—(zA:r,]Ay, kAz,IAL) = s + 0[(Az)?%

%(iAz,jAy,kAz,lAt) = AR TSR 4 of(at)?) (2.12)

Applying the above notation, the following FDTD equations are derived for 3-D geometries

(1 - 5axlt)

T - 24, T
osHij oskoos = | =57 | toos Hlioskoos
\1 + P k22

2u; BN

At Yy _ y _ z
( 4 . k \ IEi'j-o.s.k lEi.j—o.s k-1 lEt WJrk—0.5 lEi'j—x ko5
+ At -

\1+—'¢L— az Ay

2“1,_; k

(2.13)
(1 - Zarll)

v 2[‘: N3

y
1o H? . — Pk}, HE .
0.5 " i_g.5,5,k~0.5 1 kAt 0.5 "i_0.5.5vk—0.5
+—L—

Zl‘tjk

/—é‘—\,E

“i]k

— z . T ., - z .
vJvk 0.5 lE‘—l vJvk—O.S _ lE‘—O.Sv.’vk lE‘—O.SvJvk—l
\1 + ‘lllk / A.’L‘ AZ

2“-.) k
(2.14)
1 - p:lllkAt
z - 2!‘- 3.k z
H; i-0.5.J-0.5.k At | 1-os Hf-o.s,j-o.s.k
llhk
2[-‘:) k

los

T _ z v —
ﬂ- .. & (lEi-o.s.j.k IEi-o.s.J'—l.k _ lEhJ—o.s-k lE i_1,J—0.5.k
A

Pigkd y Az

2#|)k

(2.15)
ai, hkAt At
2¢;, 4.3,
llEf-o.syJ'.k = ( 1+ a.ZZZt) lEl?—o.s.j.k + (1 + a: :kAt) )
(lo

2(. 2ok 2¢; 4.k

-5 -os.Jos kK~

H y —HY .
los Hi-o.s.j-o.s.k _ lHi-o.s.J'.ko.s IHl-o.s.J.k—o.s
Ay Az
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(2.16)

_ Giy kAt At
2¢; €
v  LCigk k v s,0.k .
L Ei.j—o.s.k g, kAL T, Gia kAt ’Ei.j-o.s.k + 1+ Tz At

+ 2¢; ;. k 2“-]."

Az Az

elll‘kAt At
z _ 2¢; 4.k €.k
E.J. k_os — ( o :At) E!ZJ.k-o.s + (1 + ajlkAt) )

r - ., z - z .
tos H; i.Jo.s.ko.s ‘0.5 Ht.Jo.s kos _ los Hto.s Jo.s.k ~ los Hx_o:s +Jo.5 .k)

(2.17)

2C| Jok 2c'--.lvk

- v . T, - z.
lo s.dk—os ~ los H!—o.s Jik—os lo.s Hﬂdo.s Jk_os ~ los th-o.syk—o.s
Az Ay

(2.18)

where o; ; x and p:-‘ .k are the electric and magnetic loss coefficients for the (i, j, k)—cell. The
notation
laUip,je kg = l—aUi—b,j—ck~d

is used for compactness.It can be observed that a new value of a field vector component
at any space lattice point depends only on its previous value and the previous values of
the components of the other field vectors at adjacent points. Therefore, at any given time
step, the value of a field vector component at p different lattice points can be calculated
simultaneously if p parallel processors are employed, something that demonstrates the fact
that the FDTD algorithm is highly parallelizable.

The exponential decay of propagating waves in certain highly lossy media is so rapid
that the standard Yee time-stepping algorithm fails to describe. Holland [32] has proposed

an exponential time-stepping. For example, for large values of o, the field component E; is

given by
1 -—rT At .
Il Ef-o.s.j,k = ¢ Tk kAt/C.J kIE t1-9. SvJvk .. (e Thak /e.",'k - 1) ’
Oi.j.k
z z y - y
los Hi-o.syjo.s.k “los Hi-o.s J—0.s.k IHi-o.s Jrko.5 lH!-o .5:J:k—0.5 9. 19)
Ay Az
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instead of Eq.(2.16).
Stability analysis [62] has shown that the upper bound for the FDTD time step for a

homogeneous region of space (€., u,) is given by

At < 1 \/‘r? 1
c\/ @ T @y T @e?

for 3-D simulations and
At < VEHr

- 1 1
VAT i v.o

for 2-D simulations. Lower values of upper bounds are used in case a highly lossy material

or a variable grid is employed. Discretization with at least 10-20 cells/wavelength almost
guarantee that the FDTD algorithm will have satisfactory dispersion characteristics (phase

error smaller than 5°/A for time step close to the upper bound value).

2.1.1 Overview of Numerical Absorbing Boundary Conditions

It is very common for the geometries of interest to be defined in "open” regions where
the spatial domain of the computed EM fields is unbounded in one or more coordinate
directions. Since no computer can store an unlimited amount of data, the field computation
domain must be limited in size. The computation domain must be large enough to enclose
the structure of interest, and a suitable absorbing boundary condition (ABC) on the outer
perimeter of the domain must be used to simulate its extension to infinity. ABC’s cannot be
directly obtained from the numerical algorithms for Maxwells’ curl equations defined by the
Yee’s finite-difference systems. This is due to the fact that these systems employ a central
spatial difference scheme that requires knowledge of the field one-half cell to each side of
an observation point. Central differences cannot be implemented at the outermost lattice
planes, since by definition there exists no information concerning the fields at points one-half

space cell outside of these planes. Backward finite differences are generally of lower accuracy
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for a given space discretization, so they cannot be used as a reliable solution. Several
approximate ABC’s have been proposed [33, 34, 35, 36]. In our FDTD simulations, 1st and
2nd order Mur ABC [12], coupled with Mei-Fang Superabsorption [37] for complicated
structures, have been used to terminate open domains due to their simplicity and versatility
. Reflection coefficients close to —60dB have been achieved for a wide range of incidence
angles and frequencies. For waveguide structures a new ABC based on Green’s functions
has been developed. Reflection coefficients obtained by the recently developed PML [13]

have been used as a reference for the validation of the novel ABC.

2.1.2 Excitation Topics

The first source to be modeled in FDTD was a plane wave incoming from infinity [10].
The plane wave source is very useful in modeling radar scattering problems, since in most
cases of this type the target of interest is in the near field of the radiating antenna, and the
incident illumination can be considered to be a plane wave.

The hard source [38] is another common FDTD source implementation. It is set up
simply by assigning a desired time function to specific electric or magnetic field compo-
nents in the FDTD space lattice. In this way, it radiates a numerical wave having a time
waveform corresponding to the source function. This numerical wave propagates symmet-
rically in both directions from the source point. However, this way of excitation has some
drawbacks. As time-stepping is continued to obtain either the sinusoidal steady state or
the late-time impulse response, the reflected - from the discontinuities - numerical wave
eventually returns to the source grid location. Since the total electric field is specified at
the excitation point without regard to any possible reflected waves, the hard source causes a

spurious, nonphysical retroreflection of these waves toward the structure of interest, failing
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to simulate the propagation of the reflected wave energy. A simple way to avoid this prob-
lem is to remove the source from the algorithm after the pulse has decayed essentially to
zero and apply instead the regular Yee update. However, this approach cannot be used for
continuous source waveforms where the source remains active even after reflections propa-
gate back to it. It has been observed that much less error occurs for hard sources in 2-D and
3-D than in 1-D because the hard sources in 2-D and 3-D intercept and retroreflect much
smaller fractions of the total energy in the FDTD grid. Collinear arrays of hard-source field
vector components in 3D can be useful for exciting waveguides and strip lines.

The total field excitation eliminates the retroreflection problems of the hard source.
A proper field component is simply added to the field values given by the regular FDTD
equations. Let’s consider for example Eq.(2.16) for o; it = 0 and no field variation to the

z-direction

fl 2z H 4
T At losti_g5.j0s.k “los?ti_gs,j0.5.k
1, E7 o= 1EF

1 ™05,k 1-0.5.J.k €k Ay

In the total field implementation of the source, one time dependent term is added to the field
component of interest. Calling for simplicity this term As, E, component at the excitation

cell is updated by

z 2z
Ee _ gF At (tosH{ o4 ok ~losH (g i ok A
Wi g5k = 1 55,5,k + € ik Ay +Aas

If the circuit and the position where the source is applied allow a conductance current to

flow, this term actually can be seen as an impressed conductance current density given by

At
As = -€—J22+1/2

On the other side, if a conductance current cannot flow, and thus only a displacement

current can exist (e.g. the excitation of an empty cavity by applying a point source in
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the middle), it actually works as if an additional term added to the E, component. The

modified discretized Maxwell equation can be written as:

z z
ET L —EF .. _Ag= At [los Hf—o.s.jo.s.k T los Hi-o.s,j—o.s.k
L& o5k ~ 1 gs.5k - €k Ay

That corresponds to the following analytical expression

OE; _ds(t) _ 0H.
at dt ~ Oy

Thus, the term added to the field component is the derivative of the waveform we want to
obtain. As a conclusion, if the circuit allows a conductive current density to be supported,
the desired waveform must be simply added to the field component at the location of the
source; if only a displacement current can be supported by the structure, the derivative of
the desired waveform must be added instead. In the FDTD simulations reported in this
Chapter, a Gaussian pulse (nonzero DC content) was used as the excitation of the microstrip

and stripline structures.The Gabor function

where pw = 2- mi%, to = 2pw, w = 7(fmin + fmaz), Was used as the excitation
of the waveguide structures, since it has zero DC content. By modifying the parameters pw
and w, the frequency spectrum of the Gabor function can be practically restricted to the
interval [ frin,fmaz)- As a result, the envelope of the Gabor function represents a Gaussian

function in both time and frequency domain.

2.1.3 Linear Predictors

It is very common, especially for high-speed circuit structures, to use a cell size A that

is dictated by the very fine dimensions of the circuit and is almost always much finer than
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needed to resolve the smallest spectral wavelength propagating in the circuit. As a result,
with the time step At bound to A by numerical stability considerations, FDTD simulations
have to run for tens of thousands of time steps in order to fully evolve the impulse responses
needed for calculating impedances, S-parameters or resonant frequencies. One popular
way to avoid virtually prohibitive execution time has been to apply contemporary analysis
techniques from the discipline of digital signal processing and spectrum estimation. The
strategy is to extrapolate the electromagnetic field time waveform by 10:1 or more beyond
the actual FDTD time window, allowing a very good estimate of the complete system
response with 90% or greater reduction in computation time.

The class of linear predictors or autoregressive models (AR) is the most popular time
series modeling approach due to the fact that an accurate estimate of the AR parameters
can be derived by solving a set of linear equations. Though Prony’s method [39] uses a
sum of deterministic exponential functions to fit the data, the AR approach constructs a
random model to fit a statistical data base to the second-order. Let’s consider the FDTD

impulse response p + 1 equally spaced time samples after at time-step n

-+
fl N3 n:::]ia 9f|n'_1,p

This time series is said to represent the realization of an AR process of order p if it satisfies

the following relationship

fI‘l,J,k - _alflzlj:l aplf?:ls + Q(n)

where the constants aj, ..., a, are the AR parameters to be determined from the previous
values of f and g(n) is a white noise process whose variance has to be calculated before
carrying out the extrapolation of f. Once the AR coefficients have been determined, the

above equation permits the prediction of a new value of the time series from p known
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previous values. Numerous different approaches for the evaluation of a; have been proposed.
Three of them of the most widely used: the covariance method, the forward-backward
method and the nonlinear predictor. The covariance method involves setting up and solving

a p x p linear system of equations

[cff(lvl) crs(L,2) ... Cfl(l’P)\ {al\ (cn(l,O)\
cr(2,1) epp(2,2) ... css(2,p) as _ crs(2,0)
| erre) e o esten) J\ @)\ ern0) )

where ¢y are the covariances defined by

+ fIM-{-n—b)

vJv

cff(a,b) i,k

Pz

The above matrix can be solved with Cholesky decomposition. The order p of the model is

very critical. The use of low order AR model causes the extrapolated waveform to atten-

uate quickly in a nonphysical manner. However, a high-order model can cause divergence

problems in some cases because of statistical instabilities introduced by the large order. A
common way to estimate p is the use of the Akaike Information criterion [39].

Forward and backward prediction methods avoid these problems by working directly

with the time-domain data, rather than calculating the covariance functions of the data. It

solves the following (p + 1) x (p + 1) linear system

( V(L) (L)

r(0,0) ... r(0,p)

r(1,0) ... r(1,p) a; 0

\r(p,O) r(p,p)/ \ap/ \ 0 /
where for 0 < a,b < p,
N—p

M tp+i=b ¢ Mp+i= {
r(a, b) Z (fl;,] kp 'J'+P ¢ + fIAg:H*.b Ig:'. +a)
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p
ep = Zazr(o,l)

1=0

Marple [40] reported favorable results for the forward-backward method versus existing
popular AR approaches such as the Burg and the Yule-Walker algorithms. It provided
more accurate spectra and its order was much lower (close to 10% — 15% of the order of
the other approaches). In addition, the forward-backward method is sufficiently robust and

fast, though it’s slightly less stable than the covariance methods.

2.2 Applications of F.D.T.D. to Planar Circuits

2.2.1 Open Circuit Design

The F.D.T.D. is initially applied in the design of a patch to be used as an open for
the frequency range from 0-6 GHz (Fig.2.2). The dielectric constant of the substrate is
€r = 5.46 and the dielectric thickness is 0.5 mm. The feeding microstrip line (104.86875 mm)
is excited by applying horizontally the Gaussian pulse e_(ﬁ;;—(g)z with pw = 8.333 - 10711,
dt = 2.9 - 107 3sec, to = 3pw. The excitation is on for t = 0,.., ts time-steps with
tap = 6pw/At. During this period, a PEC (perfect electric conductor) is placed behind
the source at the vertical to the propagation plane. After t becomes larger than ., this
PEC is replaced with a 1st order Mur’s absorber and the results converge after 30,000 time
steps. After numerical experimentation, it is observed that the smallest vertical distance
the top-plane 1st order Mur absorber can work efficiently equals to 30 times the substrate
thickness. The front and the side absorbers are placed at a distance 49.35 mm and 7.7425
mm away from the patch respectively. In addition, the resonant frequency of the patch

antenna should be such that it would not cause any problems for the operating frequency

range. As a result, the almost square shape of the patch is maintained, but the dimensions
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have to be appropriately modified. After using a mesh with cell size dz = 0.lmm,dy =
0.20375mm, dz = 1.23375mm, the optimum performance patch dimensions are found to be:
7.4025 mm (length) x 7.335 mm (width). (Fig. 2.3) demonstrates that the performance of
the open is almost perfect since the reflection coefficient is larger than 0.97 for the whole

frequency range.

2.2.2 Viahole Analysis

The viahole transition between two bended microstrips (Fig.2.4) is another geometry
analyzed with F.D.T.D. The two microstrip lines are sandwiched on a dielectric substrate
with €, = 7 and the ground plane is placed in the middle of their distance. The top stripline
is excited by applying horizontally a Gaussian pulse 0-20GHz. The discretization cell has
dimensions 10um X 50um x 50pum and the time step is 31ps. A forward-backward predictor
based on the first 4,300 steps with order p = 27 is employed to shorten the computation
time of the 18,000 steps. The S-parameters are calculated (Fig.2.5). (Fig.2.6-2.7) showing
the total E-field distribution along the top and bottom microstrip planes as well as along the
ground plane at frequency 10 GHz, demonstrate the capability of the F.D.T.D. technique
for an accurate spatial mapping of EM energy. Knowledge of the electric field intensity over
a microwave circuit is extremely useful in directly identifying microwave circuit problems
such as the existence of substrate modes, circuit radiation, device to device coupling. With
tighter control over line lengths and losses that may be derived from electric field intensity
(and phase), it may be possible to reduce the number of iterations during the design of
MMIC’s. Also, with a map of the electric field intensity above the substrate it would be
possible to define low electric field regions around a device that could be used for placement

of more circuitry, thus saving valuable chip real-estate.

23



2.2.3 Filter Design

(Fig.2.8) displays the geometry of a three stage coupled line filter fabricated on Duroid
(e,=10.8, h=635 pm). All dimensions are in um. The bandpass filter has a measured
insertion loss of 2.0 dB in the passband from 8.0GHz to 10.5GHz and provides better
than -25dB rejection at 12GHz. (Fig.2.9) shows that good agreement is achieved between
measurements and FDTD calculations. The FDTD cell was chosen to be 52.9 um for the
vertical direction, 100 um for the propagation direction and 25 um for the direction normal
to propagation. The time step is chosen to be 73 fsec to satisfy the stability criterion. These
choices result in a grid with 140x234x448 cells. The 1st-order Mur’s ABC is applied to the
boundaries of the computational domain and superabsorber is enhanced at the input and
output planes.

For wideband S-parameter extraction, a Gaussian pulse of 100 psec is used as the vertical
microstrip excitation. The source is applied 5 cells inside the feediine in the propagation
direction. Two simulations of pulse propagation along the microstrip line are made: one
simulation for the filter and one for a 50 Q microstrip through-line. The filter simulation
gives the sum of the incident and the reflected waveforms and the through-line simulation
gives only the incident waveform. By subtracting the incident from the total waveform,
the reflected waveform at the input port is derived, which permits the calculation of the
reflection coefficient S;;. The transmission coefficient S, is given by the ratio of the Fourier
transforms of the transmitted and the incident waveforms. The field probes are located at

distances far enough from the filter discontinuities to eliminate evanescent waves.
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2.2.4 Finite-Ground CPW Line Analysis

Coplanar waveguide with finite width ground planes (F.G.C.) (Fig.2.10) is characterized
through measurements and F.D.T.D. to determine the optimum ground plane width. It is
found that the characteristics (attenuation, effective permittivity) of the Finite Ground
Coplanar Line are not dependent on the ground plane width if it is greater than twice
the center conductor width, but less than A;/8 to keep the radiation losses and dispersion
small. Also, the field distribution plots show that the power that propagates along the
F.G.C. is concentrated on the surface of the substrate and the magnitude of this power
is inversely dependent on the ground plane width. For small finite ground plane, there
exists a significant amount of power on the surface of the substrate outside of the ground
planes.This is demonstrated by the distribution of the normal-to-strip magnetic field H,
for lines with ground plane widths of B=25 and B=100 um (Fig.2.11) and § = W = 25um
on Si wafers of ¢,=11.9 and of thickness of 400 um. The field is approximately twice as
strong for the narrower ground plane, and decays away from the outer edge of the ground
plane. As a conclusion, coplanar waveguide with a finite ground plane width as small as
twice the center strip width may be used without adversely affecting the attenuation and
permittivity of the lines.

The 2.5-D FDTD algorithm is used in the simulations. The dimensions of the Yee’s
cell are chosen to be 2.5um for the direction parallel to the coplanar line and 25um for the
normal direction. The time step is 7.45 ps and the 1st-order Mur’s ABC is applied to the
top, left and right boundaries of the computational domain. The top absorber is placed at
a distance equal to 15 times the dielectric thickness and the side absorbers at a distance
equal to 7 times the gap of the coplanar line. A delta function with even (odd) symmetry

is used for the excitation of the horizontal electric field across the gaps. The propagation
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constant used in the simulations has the value 100.

2.3 Application of FDTD to Waveguide Structures

2.3.1 FDTD and Waveguide Probe Structures

Significant attention is being devoted now-a-days to the analysis and design of waveguide-
probes [41] - [58]. Many different configurations of waveguide probes are used either to sense
the modal propagation inside the waveguides or to mount active elements inside cavities.
The common design objective is to maximize the coupling between the probe and the
waveguide over the widest possible frequency range. The characterization of waveguide-
probes demands an accurate calculation of the scattering parameters over a wide band of
frequencies. In this Section, FDTD is used in the RF characterization of diode mounting
and waveguide probe structures. The waveguide probe geometry analyzed in this section is
shown in (Fig.2.12). The probe is fed by a shielded coplanar line and has the shape of a
patch. It is inserted into the waveguide through a slot and it is supported by a dielectric
substrate which is not connected to any waveguide wall. The dimensions of the probe as
well as the thickness and the dielectric constant of the substrate are of critical importance
to achieve broadband coupling and low reflection loss.

Usually more than one mode are excited inside the rectangular waveguide, making the
numerical simulation tedious when using the conventional absorbing boundary conditions
(ABC’s) [12], [37]. These ABC’s specify the tangential electric field components at the
boundary of the mesh in such a way that waves are not reflected. For TEM structures
the waves will be normally incident to the boundaries of the mesh, thus requiring a simple

approximate absorbing boundary condition, Mur’s first order absorbing boundary condition
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(12]. The assumption of normal incidence is not valid for the fringing fields propagating tan-
gential to the walls. For this reason, for non-TEM structures the superabsorption boundary
condition [37] is used in conjunction with Mur’s absorber for better accuracy. This combi-
nation results in an improvement with respect to the reflection coefficient. However, despite
the use of superabsorber, when the frequency range of interest becomes large, significant
reflections occur, even if there is only one propagating mode. To overcome this difficulty,
numerous approaches have been proposed. The technique of diakoptics [45], initially devel-
oped for TLM [46] and later for FDTD ([47], used in conjunction with the modal Green’s
function has been successfully applied to TLM [48], {49], [50]. In the analogous FDTD ap-
proach [51], the fields are decomposed into incident and reflected wave amplitudes ("TLM”
approach) and the characteristic impedance is used for the calculation of the reflected wave
amplitudes. A similar absorber based on a circuit (voltage-current) approach has been pro-
posed by F. Moglie et al. [52]. Due to the field decomposition, both of these approaches
are characterized by higher memory and execution time requirements than the conventional
FDTD absorbers.

In contrast to these approaches, the Diakoptics technique is derived directly from Maxwell’s
equations following an approach similar to [53] and only total field values are used. The ab-
sorber proposed is based on the analytic Green’s functions of the waveguide modes. These
Green's functions are used to calculate the tangential electric (for TE modes) and magnetic
(for TM modes) field components located at the boundary of the mesh. The tangential
fields one cell away from the boundary are decomposed into modes and for each mode the
tangential field at the boundary is calculated by taking the convolution of the mode am-
plitude and the Green’s function for this mode with respect to time. For simplicity, we

consider only TE propagating modes, while the approach for the TM propagating modes
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is dual and straightforward. A similar approach based on numerical Green’s functions has
been presented in [54]. This approach requires the numerical evaluation of each mode’s
Green’s function that is obtained by running an FDTD simulation for each mode and/or the
application of the F'D? principles. On the contrary, the proposed absorber evaluates ana-
lytically the Green’s functions by applying the Inverse Fourier transform to the well-known
expressions in frequency domain. Thus, similar accuracy is obtained without a significant

computational overhead.

2.3.2 Novel Absorber Description

=
-4

. modes, propagat-

For the sake of simplicity in the presentation, we consider only T.
ing in the z-direction, and assume that the waveguide cross-section is located on the xy-

plane. For the tangential magnetic field adjacent to the boundary of the mesh at k = n.-0.5,

eqs.(2.13),(2.14) for non-lossy material are simplified to

z At IE{ i+1/2,nz lEz j+1/2.n.—1
w1285 1 2m—05—1-172H jr1/2n0-05 = — ( Lt/ X ity (2.21)
Ho z
At [ f+1/2.j,n,-1 ‘lEix+1/2.j.n,
l+1/2H:y+l/2,j.n;—0.5 _"1/2ny+1/2,j,n:-0.5 = I ( Az - (2.22)

The absorber is used to calculate the tangential electric field components at the boundary

of the mesh (kK = n,) from the tangential electric field components one cell away from

x

the boundary plane (k = n, — 1). The tangential magnetic field components Hi;ni—o0s

and HY; _o5 are updated using eqs.(2.21)-(2.22) and depend both on the values of the

'thn!

electric field components calculated by Yee’s FDTD scheme and on the values of the electric
field components calculated by the absorber. Using eq.(2.15), the normal magnetic field

and EY

components at k = n,, H f [2,5+1/2,n,7 TOBY be calculated from E7, i1 2

i i+1/2,j,n:

Thus, for the TE}, ; modes, the normal magnetic field components are also determined so
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that the reflection from the boundary is minimized. A similar argument can be used for
the position of the absorber for the TM, ,, modes.
In order to derive the absorber based on the analytic Green’s functions, we start with

the wave equation in cartesian coordinates

182F 0% 08 8 18
“oor =Gtz ez T @)t =0

V2F (2.23)

where F indicates the tangential electric field components E*(z,y, 2,t), E¥(z,y,2,t) and ¢
represents the velocity of light. The tangential electric field components in the waveguide

can be written as

o] o0
E*(z,y,z,t) = Z Z EZ a(2,t) cos(Bz,mT) sin(By,ny) (2.24)
m=0n=1
E¥(z,y,z,8)= ) Y E% .(2,)sin(Br,mz) cos(By,ny) (2.25)
m=1 n=0
where
mn nr
= = — 2.2
Bem= "0\ Byn =, (2.26)

m, n € N, axb are the waveguide cross section area and E7, ,(2,t) and EY, .(z,t) are

the modal coefficients given by

9 a pb
Bz n(nt) = 2220m0) [° [P po(a g,z ) co Wha)sin(Shy)dzdy  (2.27)
' ab o Jo a b
- a rb
EY .(z,t)= A2 = bno) / / EY(z,y,z,t)sin( n_zzz) cos(ﬂy) dzdy . (2.28)
! ab o Jo a b

In egs. (2.27) and (2.28), é;m o is the Kroenecker delta given by
1 form=0
5m.0 =

0 form#0
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In view of the above, eq.(2.23) yields

2Fnn(zt) (0 o . 182 _
—azz_ p— ( z.m + ﬂ n + C—zgt? Fm'n(Z, t) = 0 ) (2.29)

where Fp, 1(z2,t) = EZY.(2,1t).
Applying the Fourier transformation (Finn(2z,w) = F{Fmn(z,t)}) with the angular

frequency w=2xf, the wave equation is transformed into frequency domain, and eq.(2.29)

yields
O%Fpn(z, 2\ _
ézgz W) - ( z,m + :Bz,n - ‘:_2) Fm,n(sz) =0 . (2.30)

Following a procedure analogous to [53] and assuming a given amplitude Fi, ,((n,—1)Az,w)

of the TEZ, , mode at k = n, — 1, we obtain

_ JBz,mn(z—(n:—1)Az) _ ] F nl2,
Franlz,w) = £ Fra((n: = 1)Az,w) — 7 Ofnnlzw)
2 Bzmn 0z z=(nz—1)Az
=iBzmn{z—(n:—1)Az) _ ] 8f’ I, W
: 5 (Fm,n((n,— DAzw) + 52 ""(I;E ) )
Mz,mn < z=(n:—1)Az
(2.31)
with
“l:' w2 - wc‘mn fOI‘ w 2 wc'mn

ﬂ:.mn = (232)

—Je\/Wimn —w?  for w < wemn ,

where w; ;mn = c\/ (Bz,m)? + (By,n)? is the cutoff frequency of the TEZ ;. mode. The function
Finn(zw) has exponentially increasing and decreasing solutions with respect to z for w <
We,mn- The exponentially increasing solutions have to vanish for z — oo for w < wemn, thus

eq.(2.31) yields

] 0F,a(z,w)
ﬂz.mn 0z z=(n:—1)Az

Foa((n: - D)Az,w) = (2.33)
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and
Frn(z,w) = G_TE,‘,,.,,(Z —(nz = D)Az,w) Fpa((n; — 1)Az,w) , (2.34)

where G—'m'zn'n(z,w) = e~?P=mnZ i5 the Green’s function for the TE7, , modes. By satisfying
eq.(2.33), Frnn((n: — 1)Az,w) results in an outward propagating solution with respect to
z for w > wemn only. Thus, computation of Fi, ,(z,w) according to eq.(2.34) requires no

backward propagating solution.

Applying the convolution theorem [55], eq.(2.34) in time-domain reduces to
+o0
Fn(zt) = / Grms, (7= (R = 1)Az,t = ') Fpn((ne — 1)Az, ') dt!  (2.35)
—o0

where Gtz . (2,t) = F‘l{ém&_n(z,w)}. As a result, the tangential electric field compo-

nents at the boundary of the mesh at k=n, are expressed in the form:
+0co
Frn(n.Az,t) = / Grms, (Az,t—t) Fun((ne — DAz £) d! . (2.36)
—-00

Following a procedure similar to [68], Fin n((n: —1)Az,t’) can be expanded in a series of
triangle basis functions in time-domain. Inserting this expansion in eq.(2.36) and sampling

Frnn(n:Az,t) using delta functions with respect to time, we obtain
o o]
Fra(n:Az,IAt) = Y 1 _pGrEs,, Fua((n: — 1)Az,I'At) (2.37)

'=—00

where the discrete FDTD Green’s function 1GTE;, , may be calculated analytically by
400 1 +00

Gz, = / G1py, (B2, 1At~ 3) g(2) dz = 5 / G, (Az,w) §(w) €10t dus (2.38)
-0 -0

and z = ¢’ — I'At. The triangle basis function is given by:
1-|E&| for|z| < At

9(z) =
0 for |z| > At
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and its Fourier transform is:

. wAt 2
3(w) = Flg(t)} = At [ sin(*37) )] . (2.39)
2

Due to causality, we have

1G1EZ,, =0 forl <0 (2.40)
and as a result,
{
Fan(n:Az,IAt) = Y _vGrEs,, Fna((n: — 1)Az,lAt) (2.41)
'=—00

which represents the mathematical formulation of the Diakoptics technique.
As an example, let’s consider the TEf, mode. For the y-component IEff i, Of the

tangential electric field at k = n,, eqs.(2.25) and (2.41) yield

{
1Ein, = Y 1-vGrE;, EYo((n: — 1)A2,I'At) sin(riAz/a) (2.42)

"jvnx
l'=—0c0

where EY 5((n.—1)Az, I'At) may be calculated from eq.(2.28) . The discrete FDTD Green’s

function I—l'GTE,‘o is given by
1
1-0GTE; ) = o— / G1E: (Az,w) g(w) e@=1AL4, (2.43)
’ 2 1.0
—oo
with g(w) given by eq.(2.39) and
GTE,‘O(A%W) = e~ B:z104z , (2.44)

where §; )¢ is calculated by eq.(2.32) for m = 1,n = 0.

Absorber Evaluation

To validate the absorber presented herein, we calculate the magnitude of the reflection
coefficient in frequency domain for the waveguide structure shown in (Fig.2.13). The xy-

plane of the waveguide at z = 0 is short-circuited and the ABC is utilized to calculate the
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electric field components in the xy-plane at z = 2880Az. The waveguide cross-section is
47.6mmx22mm and the cell size is given by Az = 4.76mm, Ay = 1.1mm and Az = 0.4mm.
We use a mesh of the size 10 x 20 x 2880 and run the simulation for 25000 time-steps. All
conductors are assumed to be perfect electric conductors.

We simulate the wave propagation for frequencies between 3.1GHz and 7.4GHz so that
three different modes are excited, TE{ 4, TE5; and TE§,. To accommodate the presence
of these three modes, we use a superposition of three Gaussian pulses multiplied with the
corresponding mode patterns at z = 2840Az to provide the correct excitation. For the

calculation of the reflection coefficient p, we use the formula

— Et - Ercf
Ercf ’

(2.45)
where E; is the tangential electric field probed at z = 2860Az and E,. is the tangential
electric field probed at the same position of a semi-infinitely long waveguide (no effect
from reflections from the ABC) with the same cross section. The semi-infinite length of
the waveguide is approximated by 6700Az and the tangential electric field is probed again
at z = 2860Az. The evaluated ABC is replaced by a PEC. The length of this reference
waveguide is chosen such as no reflections from the PEC plane return to the probe position
for the 25000 steps of simulation. The absorber based on the analytic Green’s function is
compared to the 1st-order Mur’s ABC coupled with the superabsorption condition. The
effective dielectric constant [37] for the superabsorber is chosen to 0.407.

For practical applications, the infinite summation in eq.(2.41) has to be approximated by

a finite number of terms T. This approximation corresponds to a truncation of the discrete

FDTD Green’s function according to
1GrEs,,, =0 fori>T , (2.46)
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where T represents the length of the discrete FDTD Green'’s function with respect to time.

We obtain

l
Fm,n(nn t) = z l—l'GTE,‘,,.,, Fm,n(nz - 171,) - (2'47)
'=l-T
and eq.(2.42) can be written as

l
lE.y = Z: [_[:Gmlz'o E{"O(nz - 1, II) Sin(WiAI/a) . (248)

e S

The reflection coefficient is minimized if we truncate the discrete FDTD Green’s function
at its zeros. In (Fig.2.14), results for the reflection coefficient for the TEf, mode are shown
for three different values of T, 616, 1127 and 2646. The graph for the lst-order Mur ABC
with the Superabsorption condition is symbolized with (sup). The larger the length T of the
discrete FDTD Green’s function, the more effective the absorber becomes. For T = 2646,
the amplitude of the reflection coefficient is less than —40dB for almost the whole frequency
range. Thus, the ABC based on the analytic Green’s function is effective in a much wider
frequency range than the super-absorbing lst-order Mur ABC. This is true even when we
improve the performance of the superabsorbing 1st-order Mur ABC by applying it to each
waveguide mode separately. Similar results were observed for the reflection coefficient for
the TE ; and TE§; modes.

The PML absorber [13] achieves a comparable behavior for a wide frequency range.
For example, the length T = 2646 of the discrete TE], Green’s function offers a reflection
coefficient very close to that of a PML layer of 4 cells with R = 105 (Fig.2.15)and T = 4161
has similar performance with a PML layer of 8 cells with R = 105, Generally, considering
larger values of the length T is equivalent to increasing the number of the PML cells.
Nevertheless, the memory requirements of the proposed absorber are much lower than the

memory requirements for the PML absorber. For each mode, the convolution of eq.(2.42)
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requires the storage of the T terms of the modal Green’s function and of the T previous
values of the mode amplitude at the z = (n, — 1)Az. Thus, the extra memory requirement
of the Green’s function absorber is 2 X T real numbers per mode. A PML layer of N cells
to the z-direction requires M = 6 X N X n X n, new variables, where n. x n, is the grid
size for the waveguide cross-section. Generally M > 2 x T, especially for large grids. Due
to the details of the waveguide probe structure analyzed in the next section, the waveguide
cross-section grid has a size of 477 x 220 cells. That means that even a PML layer of 4 cells
to the z-direction requires the storage of M = 2,518,560 new variables !! Using an absorber
based on Green’s functions with length T’ = 2646 for the TEf 4, T = 2238 for the TE3, and
T = 2412 for the TE§,, only 14,592 new variables have to be stored (0.58% of the PML
memory requirements). As a result, the Green’s function-based ABC offers a significant

economy in memory while maintaining similar accuracy with the PML absorber.

Waveguide Probe Structure Characterization

The FDTD technique coupled with the proposed waveguide absorber is used in the RF
characterization of the waveguide probe geometry shown in (Fig.2.12). The probe in the
shape of a rectangular patch is fed by a shielded 508 coplanar line and is inserted into the
waveguide through a slot. The dielectric substrate carrying the probe is not connected to
any waveguide wall. This type of probe can be used as a coupler to a rectangular waveguide
or as a diode mounting structure. The dimensions of the probe as well as the substrate
thickness and the dielectric constant of the substrate are of critical importance in optimizing
coupling to the waveguide.

In our simulations, we try to optimize the thickness of the dielectric substrate carrying

a probe which is 3.6mm wide. The dielectric constant of the substrate is assumed to be
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€,=12 (GaAs). The width of the dielectric substrate entering the waveguide is 5.8mm
and its thickness is limited to less than 2mm. The probe is designed to feed a WR-187
rectangular waveguide and for this reason, excitation is provided on the coplanar feedline
by a Gabor function which covers the frequency range of 3.1 GHz to 7.4 GHz. For the
simulated frequency range, three different modes are excited inside the waveguide, TEf ,
TE3 4 and TE§ ), with the cutoff frequencies 3.15 GHz, 6.30 GHz and 6.82 GHz respectively.
The mesh used in the FDTD simulation consists of 480x477x52 cells with a time step of
At = 0.31425ps. The simulation runs for 20,000 time steps to achieve converging results.
The absorber discussed previously is used to absorb simultaneously all propagating modes
of the waveguide for the simulated frequency range.

To characterize the probe performance for different dielectric thicknesses, the magnitude
of the reflection coefficient |S11] for the dominant TEf 3 mode is calculated. For validation
purposes, the calculated results are compared to data derived by the FEM (Finite Ele-
ment Method) assuming a probe width of 3.6mm and a dielectric thickness of 2.0 mm (See
(Fig.2.16)). For the FDTD simulation, the waveguide absorber based on the Green’s func-
tions for the three propagating waveguide modes is used at the terminal plane. For the
FEM simulation, an artificial absorber depending on frequency and angle of incidence is
applied to terminate the waveguide. For the whole operating frequency range (3.1-7.5 GHz)
the performance of both absorbers is comparable and the results show very good agreement.

The dimensions of the shield of the coplanar feedline are chosen to be 5.8mm x 3.8mm,
such as only the CPW dominant mode can propagate and the field patterns are not disturbed
by the side walls in the frequency range of the simulation. In this way, the superabsorption
condition can be applied effectively at the input plane of the feedline.

The performance of the probe has been evaluated for three different dielectric thicknesses
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2.0mm, 1.2mm and 0.0 mm, with the last value corresponding to a microwave probe printed
on a dielectric membrane ([57]. Results in terms of the reflection coefficient are shown in
(Fig.2.17). As it can be observed from this figure, the value of the reflection coefficient
reduces over a large frequency range and shows symmetrical behavior round the center
design frequency as the dielectric thickness approaches zero. The electric field (E) and
magnetic field (H) distributions for zero dielectric thickness are plotted for t = 6,000 time
steps across the probe structure symmetry plane (Fig.2.18) and across the coplanar feedline
plane (Fig.2.19) and represent the transmitted and the reflected energy respectively.

The reflection coefficient of the Si-membrane printed probe has been calculated for four
different patch widths 3.6mm, 9.8mm, 11.4mm and 13.0mm and the results are shown in
(Fig.2.20). From this figure, it can be concluded that the width of 9.8mm offers the most
symmetrical behavior for the frequency of operation. The reflection coefficient for widths
larger than 9.8mm is much smaller than that of 3.6mm for most of the simulated frequencies
except a small region round 4.6 GHz. Nevertheless, the widths of 11.4mm and 13.0mm offer
no significant improvement over the width of 9.8mm.

Another geometry parameter of the Si-membrane printed probe that has been investi-
gated is the distance of the probe patch from the short circuit of the waveguide. Lengths
of 8.8mm, 10.4mm, 12.0mm and 13.6mm have been used and the results are plotted in
(Fig.2.21) it can be noticed that the value of 12.0mm offers the best performance in terms
of the value and the bandwidth of the reflection coefficient.

The FDTD results derived by using the absorber presented in Section III.2 have been
validated by comparing to experimental data. The probe has dimensions 13.2mm x 4.3mm
on a dielectric substrate with thickness 2.1mm, width 28.7mm and ¢,=13. The probe has

been inserted in a WR229 waveguide and is located at a distance of 14.7mm from the top
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surface short circuit. For the FDTD absorber there have been used T=2871 time steps.
The performance of the probe has been evaluated for the frequency range of 3.3-4.6GHz
and the results are shown in (Figs.2.22-2.23). The agreement between the FDTD and the
experimental results is good especially in the frequency range of the optimum performance of
the probe. The abrupt variation in S;; observed for the higher frequencies in the experiment

is maybe due to calibration or other reasons related to the experimental setup.

2.4 Conclusion

The finite-difference time-domain method has been used to analyze planar circuits and
waveguide probe structures. For the analysis, a waveguide absorber based on analytic
Green’s functions has been developed. This absorber is characterized by a better perfor-
mance in accuracy and computational efficiency than the super-absorbing lst-order Mur
ABC and by a better performance in memory requirements than the PML absorber. The
scattering parameters of the probe structures have been calculated and the results have
been verified by comparison with FEM and experimental data. The influence of critical

geometrical parameters on the probe performance has been investigated and optimized.
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Figure 2.2: Patch Geometry to be used as Open.
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Figure 2.5: S-Parameters of the Viahole.
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Figure 2.6: E-Distribution across Top Viahole (Top), Middle Ground Plane
(Bottom).
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Figure 2.7: E-Distribution across Bottom Viahole.
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Figure 2.18: E- and H-field Distributions across the Probe Structure Sym-
metry Plane.
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|Elatt= 6000 * dt on const-Z plane |H | att= 8000 * dt on const-Z plane
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Figure 2.19: E- and H-field Distributions across the Coplanar Feedline Plane.
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CHAPTER 3

Development of New Time-Domain Schemes with Higher

Order Basis Functions

3.1 Introduction

Significant attention is being devoted now-a-days to the analysis and design of various
types of printed components for microwave applications. To understand high-frequency
effects and incorporate them into the design process, there is a compelling need to implement
full-wave solutions during the modeling process. There has been a variety of full wave
techniques developed for this purpose, with many of them available commercially. Despite
the wealth of available codes, many problems in electromagnetics and specifically in circuit
and antenna problems have been left untreated due to the complexity of the geometries
and the inability of the existing techniques to deal with the requirements for large size
and high resolution due to the fine but electrically important geometrical details. The
straightforward use of existing discretization methods suffers from serious limitations due
to the required substantial computer resources and unrealistically long computation times.
As a result, during the past thirty years the available techniques are almost incapable

of dealing with the needs of technology leading into a quest for fundamentally different
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modeling approaches.

The use of multiresolution analysis in time domain has shown that Yee’s FDTD scheme
can be derived by applying the method of moments for the discretization of Maxwell’s equa-
tions [56] using pulse basis functions for the expansion of the unknown fields. The use of
scaling and wavelet functions as a complete set of basis functions is called multiresolution
analysis and demonstrates that Multiresolution Time-Domain (MRTD) schemes are gener-
alization s to Yee’'s FDTD and can extend the capabilities of the conventional FDTD by

improving computational efficiency and substantially reducing computer resources.

3.2 Fundamentals on Multiresolution Analysis

A multiresolution analysis consists of a sequence of successive approximation spaces V;.

More precisely, the closed subspaces V; satisfy

N ZY el TR el 7Y ol RN el 20N ali (3.1)
with
U Vi = L*(R) (density) (3.2)
i€z
ﬂ Vi = {0} (separation) (3.3)
i€z

There exist many ladders of spaces satisfying the above conditions that have nothing
to do with "multiresolution”; the multiresolution aspect is a consequence of the additional

requirement

f(z) €V; & f(27z) € Vy (scaling) (3.4)

That is, all the spaces are scaled versions of the central space V. Another feature that we
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require from multiresolution analysis is the invariance of Vp under integer translations
f(z)eVo = f(z—n)eVo,VneZ (3.5)

Because of Eq.(3.4), this implies that if f(z) € Vj, then f(z —2'n) € V] for all n € Z.
Finally, we require that there exists ¢ € Vj such that {¢g,,n € Z} is an orthonormal basis
in Vo, where for all j,n € Z,¢;n(z) = 277/2¢(277z — n). As a result, {#jn,n € Z} is an

orthonormal basis for V; for all j € Z; that is,
< ¢j,m~; ¢j.n >= 6m.n, m,n€Z (3'6)

where 6 notates the Kronecker symbol

1 m=n
Omn =

0 elsewhere
Throughout this Chapter, there will be used the following notations for the tnner product

and norm for the space L2(R):
<f9>= [ f@)g@s

A = 1 fllz =< £, f >'/?

The basic idea of the multiresolution analysis is that whenever a collection of closed sub-
spaces satisfy Eqs.(3.1)—(3.5), then there exists an orthonormal wavelet basis {¢;,n € Z}

of L*(R), ¢;n(z) = 279/2¢(27Jz — n), such that for all fin L2(R) ,

Piaf=Pif+ ) < fitix > ¥ik (3.7)

kez

where P; is the orthogonal projection onto V;. For every j € Z, define W; to be the
orthogonal complement of V; in V;_;. We have
Via=V,0W; (3.8)
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and

W; L Wy,j# ' (3.9)

It follows that, for j < J,

V= Vi@ (822 " Wit) (3.10)

where all these subspaces are orthogonal. Eq.(3.8) is the foundation of Multiresolution.
Supposing that scaling functions of J-order approximation are used, the enhancement of
wavelets of orders J to j+1 create an approximation with much better accuracy (j-order ap-
proximation). In other words, the scaling functions describe accurately the smooth features
of a function and the wavelets the finer details for which a more accurate approximation
has to be used. In this way, Multiresolution Analysis operates as a "mathematical micro-
scope”. Wherever needed, a finite linear combination of wavelets can offer an arbitrarily
small precision of the approximation.

It has to be noted that the W; spaces inherit the scaling property from the V;:

flz) e W; — f(2z) € Wy (3.11)

3.3 How to construct a Wavelet Function

Before describing the construction procedure of the wavelets, it would be worthy to
write out some interesting properties of the scaling functions. Each ¢ € Vo C V_; can be

written as a linear combination of the ¢_; , which are an orthonormal basis of V_,:

¢ = Z hn¢-1,n (312)
with
hn =< ¢yd_1n >, I lhal* =1 (3.13)
neZ
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Eq.(3.11) can be rewritten as

#(z) = V2 Z ha¢(2z — n) (3.14)
Defining f to be the Fourier transform of a function f
f= 7;_; /_ : f(z)e~dz (3.15)
eq.(3.14) is written as
o= 3 hneI25(6/2) = mol€/2)HE/2) (3.16)
where
mo(€) = s 3 hne™ (3.17)

The function mg(§) is a 27 periodic function in L2([0, 2x]).
Daubechies has proven the following Theorem:
If a ladder of closed subspaces (Vj)jez in L%(R) satisfies Eqs. (3.1)-(3.6), then there

exists an associated orthonormal wavelet basis {%;x;j,k € Z} for L?(R) such that
Py, =PFP+ Z < ik > Yk (3.18)
k

One possibility for the construction of the wavelet ¥ is

B(E) = ¥’ mo(€/2+ m)(£/2) (3.19)

or equivalently
Y= an(—l)"-lh_n-m-l.n (3.20)
#(2) = /(2) (-1 hon-16(22 — n) (3.21)

It has to be noted that 9 is not determined uniquely by the multiresolution analysis ladder

and Eq.(3.19): if ¥ satisfies Eq.(3.19), then so will any ! of the type

¥H() = p(£)P(E) (3.22)
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with p 2x-periodic and |p(€)|=1. In particular, we can choose p(£) = poe™P with m €
Z,|po|l = 1, which corresponds to a phase change and a shift by m for . We will use this
freedom to define
V=3 gnb-1nr Gn = (—1)"A_ns1 (3.23)
n
The orthonormality condition of Eq.(3.6) can be relaxed. It is sufficient to require that
the ¢(z — k) constitute a Riesz basis of Vp; that means that they span V; and for all

(ck)kez € L*(Z) with Tk |cx|? < oo it holds

AY JelP <1 erd(z = k)P < B Jexl? (3.24)
k k k

or equivalently

0< (2r)7'A< S 1d(6+ 2nl)> < (27)'B < 0 (3.25)
{

where A > 0,B < oo are independent of the c,. Supposing that ¢ € L2?(R) satisfies

Eq.(3.25) and defining V; = Span{;r; k € Z}, then ;7 V; = 0. Also, if #(€) is bounded
for all € and continuous near £ = 0, with ¢(0) # 0, then m = L?(R). One Riesz basis
which satisfies these criteria, satisfies the density and separation qualities of the multireso-
lution analysis.

Chui [?] has proven that {¢(z — k) : k € Z} is an orthonormal family if and only if
27 2 _ o |#(€ + 2x1)|? = 1,Vz € R. This is a very useful criterion for the orthonormality
of a specific scaling family.

We can therefore construct an orthonormal basis ¢ for Vg by defining

ot = (20) 737 (g€ + 2n D)2 g(e) (3.26)
{

Clearly, 3 [¢+(€ + 2n1)|? = (27)~!, which means that the ¢1(z — k) are orthonormal.
Finally,
B() = /2 mg(£/2+ 7) $*(€/2) (327)
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with
mg (€) = mo(€)[D_ 16(€ + 2x1)|*1M [3 |4(2€ + 2x1)?] /2 (3.28)
{ [

or equivalently

¥(z) =D (-1)" hiny 9t (z = n) (3-29)

n
with mg(§) = 71; Y. At einE,

The Battle-Lemarié wavelets [27, 28] are associated with multiresolution analysis ladders
consisting of spline function spaces. A B-spline with knots at the integers is considered the
original scaling function. The zero order cardinal B-spline Np is the characteristic function

of the unit interval [0,1)

1 0<z<1
No(z) =

0 elsewhere

For m > 1, the m-th order cardinal B-spline N,, is defined recursively by the following

convolution:

Nn(z) = /_: Now_1(z — £)No(t)dt

1
= [ Nao(e -t (3.30)
0
with the Fourier transform

() = (am)rgieca (22D

where o = 0 if m is odd and ¢ = 1 if m is even. For even m, ¢ = N,,, is symmetric around
z = 1/2, for odd m, around z = 0. Except for m = 0 the scaling functions constitute a
Riesz basis, but they are not orthonormal. To apply the orthonormalization of Eq.(3.26),

Daubechies [30] has shown that

8in2m+2(z) d2m+1
T(2m+ 1) dg?mHt

[> ]
21 Y |Nm(2z +27k)2 =
k=—o00

cot(z)
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The result of the orthonormalization is that support of the ¢+ = R = support of the
¥ for all the Battle-Lemarie wavelets. The "orthonormalized” ¢' has the same symmetry
axis as ¢. The symmetry axis of ¥ always lies at z = 1/2. (For m even, % is antisymmetric
around this axis, for m odd, ¥ is symmetric). Even though the supports of ¢+ and v equal

the whole R, ¢t and 4 still have very good (exponential) decay
¢, v(z)| < Ce Pl ze R

The Battle-Lemarie wavelets based on the m-th order cardinal B-splines belong to C* with
k < m—1 and have m vanishing moments: [ dz z! ¥(z) = 0 for 1=0,1,..,m for ¥{!) bounded
for | < m. It is impossible for orthonormal ¥, to have exponential decay and to belong to
C, with all derivatives bounded, unless ¥ = 0. As a result, to achieve fast (exponential)
decay, only a finite number k of derivatives can be continuous. The decay rate decreases
as k increases. On the contrary, the Meyer wavelet, which is C*, decays faster than any
inverse polynomial, but not exponentially fast.

In the general case, ¢ = Ny, the ¢ satisfies [ dz¢(z) = 1 and

2n+1
272 Z?:?)-l ¢(2z —n—-1473), m=2n = even
J
o(z) = «
2n + 2
2-2n-1 yoind? #2c—n—1+j), m=2n+1=odd
J

If we choose ¢ to be the 0-th order cardinal spline,

0 elsewhere
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and we follow the previous steps, we end up with the Haar basis

4

1 0<z<1/2

Y(z)=1 -1 -1/2<z<1/2

0 elsewhere

.

No orthonormalization is needed since ¢ is orthogonal to its translations.
Choosing the piecewise linear spline (m=1) as the scaling function,

1-|z] 0<|z <1
#(z) =

0 elsewhere

it satisfies

#(z) = 0.56(2z + 1) + ¢(2z) + 0.5¢(2z — 1) (3.31)
and its Fourier transform is

Ty —1/2_—i¢/ stn€/[2
3(6) = (am) et (S 2y

It can be observed that

21 37 |0(E + 2xl)[? = ; + %cosf - %(1 + 2c0s%(£/2))
leZ

Since ¢ is not orthogonal to its translates, it is needed to apply the orthogonalization trick

described above. The orthonormalized scaling function is given by

4sin?(£/2)
£2[1 + 2cos?(£/2))1/2

&+ (6) = V3(2r) /2

The ¢+ is not compactly supported unlike ¢ itself. The corresponding mg is

1+ 2c032(§/2)] 1/2

n’zol(f) = cos2(f/2)[ 1 4 2cos?(§)

and the wavelet 1 is given by

1 + 2sin?(£/4)
1 + 2cos?(£/2)

)2 1+ 2sin?(£/4 12,
= VB sin®(e/8) [t i CE o e a9

¥(€)

el2sind (g/4) ]I/Zq‘s*(f/z) (3.32)
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The choice of the scaling function for the development of the new Time-Domain MRTD
scheme is the cubic cardinal spline (m = 3). After orthonormalization, the spectral expres-

sions of the scaling and the wavelet functions are

" in( & 1
Ft(€) = (27)"1/? sin(3) 4 3.34)
(©=Gm7H 5 : \/1 — sin?(§) + Zsin*(§) — 5i-sin(5) (
and
- . -'L - -
’I’L(f) = etEﬂM(bJ.(f/Q) = t(€) (3.35)

¢L(£/2+ )
The Cubic Spline Battle-Lemarie Scaling and Wavelet functions are plotted in (Figs.3.1-

3.2) in Spatial Domain and in (Figs.3.3-3.4) in Spectral Domain.

3.4 The 2D MRTD scheme

For simplicity, the 2D MRTD scheme is analyzed for a homogeneous lossless medium
with the permittivity € and the permeability u. Assuming no variation along the y-direction,

the Maxwell’s equations for the two-dimensional TM* mode [67] can be written as:

9E, _  10H,
at € 8z (3.36)
0H, _ 1,0E. OF,

ot = 2oz 9z (3.37)
0E. _ 108,

5 " < es (3-38)

To derive the 2D MRTD Scheme, the electric and magnetic field components incorporated
in these equations are expanded in a series of Battle-Lemarie scaling and wavelet functions

in both x- and z-directions and in pulse functions in time.
+oo 56
Ex(z,2z,t) = Y kE72,.m he(t) G1-1/2(2) dm(2)

klm=—oc0
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+o0 400 272-1 o
T Tz,pz Tz
+ z: Z z kEI_l/g',: hk(t) ¢l—l/2(z) wm,pz(z)
klm=—occ r;=0 p,=0
+o0 400 271 " s
T Yrr.px
+ Z Z Z "EI—I/2.:n hi(t) 92 I/2p3(z) ém(2)
kilm=—=c0 rs=0 pr=0
+00 400 2rFTr 1 o "
+ Z Z Z El '172‘: P hi(2) 11’1-1/2 p,(-"’) ¢m.p,(2)
klm=—oc0 rzr;=0 pz,p:=0
+o0
E.(z,2,t) = > Ef',ifllg hi(t) d1(z) dm—1/2(2)
klm=—co
+00 +oo 277-1 b0
Y Y T RERE k) o) ¥, (2)
klm=—oc0 r:=0 p;=0
+oo 400 277 -1 " s
2 X X REREE h(®) 915,(2) Smogal(2)
klm=—co rz=0 pr=0
+oco 2rx.fz -1 " "
ZWrz,px Vrz,pz Tz
+ Z Z Z kEl.m—l72 7* hi(t) wlpz(z) "bm—l/z.pz(z)
klm=—oc0 rz,r:=0 pz,p:=0

+co

Hy(z,z,t) = Z k+1/2Hf_'¢1’72,m_1/2 hiy172(8) G1m1y2(z) Sdm-1/2(2)
klm=—co
+o0 400 2721
+ Yo Y Dkl 1/2 /2 Perr/2(t) dimrya(2) U5 ,.(2)
klm=—co r:=0 ==0
400 400 272 -1

+ Z Z Z k+1/2H .'1;2:,1_1/2 hk-f—l/'Z(t) w[ril/g'p,(x) ¢m—1/2(2)

klm=—c0 rz=0 p:=0

+o0 2TE T ]

rr, :d"’x z Tz Tz -
+ Z Z Z k+1/2H—1/2:n—1/; hict1/2(2) '/’l—l/z,p,(z) ¢’m—1/2.px(“) ’

klm=-00 rz,rz=0 pz,p:=0
(3.39)
where ¢n(z) = ¢(& — n) and ¢} ,(z) = 27/2 ¥o(27[E — n] - p) represent the Battle-
Lemarie scaling and r-resolution wavelet function respectively. The expressions of the scaling
and the 0O-resolution wavelet in the spectral domain are given in Eqs.(3.34)-(3.35).Since
higher resolutions of wavelets are shifted and dilated versions of the O-resolution, their
domain will be a fraction of that of the 0O-resolution wavelet; thus there are going to be
more than one higher resolution wavelet coefficients for each MRTD cell. Specifically, for

the the arbitrary r-resolution and for the n-cell to the x-direction, there exist 2" wavelet
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coefficients located at ;= =n+ 2—,%1-, p=20,..,2"— 1. This is the reason for the summation
of the p terms for each resolution r in the expansion of Eq.(39). +E;,” and xy1/2H/~ with
K =1z,y,zand u,v = ¢, 1 are the coefficients for the field expansions in terms of scaling and
wavelet functions. The indices I, m and k are the discrete space and time indices related to
the space and time coordinates via z = [Az,z = mAz and t = kAt, where Az,Az are the
space discretization intervals in x- and z-direction and At is the time discretization interval.
For an accuracy of 0.1% the above summations are truncated to a finite number of terms

determined by the dispersion and stability requirements (typically between 22-26). The

time-domain expansion function hi(t) is defined as

t
hi(2) = h(E - k) (3.40)
with the rectangular pulse function

1 for |t| < 1/2

h(t) =14 1/2 for |t|=1/2

L 0 for |t| > 1/2
The magnetic field components are shifted by half a discretization interval in space and
time-domain with respect to the electric field components (leap-frog).

Upon inserting the field expansions, Maxwell’s equations are sampled using pulse func-
tions as time-domain test functions and scaling/wavelet functions as space-domain test-

functions. For the sampling in time-domain, the following integrals are utilized

+oo
/ hi(t)he(t)dt = & o AL (3.41)

and
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+0o
Ohy t
/ hk(t)%tl—/i)-dt = bkpr — bk prg (3.42)
where 6y &/ is the Kroenecker symbol,

1 fork=F
Oppr =
0 fork#K

Sampling in space-domain is obtained by use of the orthogonality relationships f or the

scaling and for the wavelet functions [30]

+00
[ #n@)mi(@)dz = b sz, (3.43)
/ bom(2) s po()dz = 0, ¥ 1,p (3.44)
and
/ U (2 W (2)AT = by gt byt Bppr AZ (3.45)

The integrals containing derivatives can be approximated by the following expressions:

na-1
/¢m( )%Lm(_)d = Z a( )6m+xm’ (3°46)
with
N Lo
ai) = 7 [T 18O esinle i+ /20 (3.47)
/ bm(z) mtt11220) '“/“’(z) dz ~ 5% 4P omsim (3.48)
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with

d.(i,p)= = [ 277 7%6m(©) Wol/2)1 € sinle (i + 05+ /27 +1/27 ) de, (3.49)

+oo n
. a¢m' (.’L‘ c,r,2 )
/ lbm,,,(:t) 5;/2 )dz = Z c,.(z, p)6m+t',m' (3.50)
-0 i=-":.r,l

with

lip)= 1 [T 27 6(©) Wol€/2)| € sinle(i+ 0.5~ p/27 /2] &, (351)

+o0 n
31/) : ( ) b,ry 72,2 -
/ 1/):1}.;;, (z) +5;2 L [P Z bry.r2 (3,01, P2)0msim? (3.52)
—-co i=-"b.r1 2.1

with

bryra (81, p2) = /Ow Do(€/27)| [o(£/27)| € sinl€ (i+1/2+p2/27—p1 /27 +1/277F1 ~1 /27141 ) dg
(3.53)

For the rest of the MRTD Technique description, an expansion only in a series of scaling and

0-resolution wavelet functions will be considered. Hints for the enhancement of additional

wavelet resolutions will be presented where needed. Since for the 0-resolution (r = 0) there

is only one wavelet coefficient per cell (p = 0), the p symbols will be omitted from the

definition of the b, ¢, d coefficients, which will be given by

+o0 Rc,0,2

/ ¢?n(z)-a¢L;;/2(—“’ldzg S co(i)mpim (3.54)
with

(i) = 1 [ 4m(€) 19(©)] € sinlgi g, (3.55)

/ Sm(z £y ms1ya2) '“/2( 2y de~ Y do(i)bmtipme (3.56)
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with

do(i) = [ " Bm(£) [Bo(€)] € sin(Ei + 1) dE = coli + 1) (3.57)

Thus, eq.(3.56) can be written as

+oo n -1
a m ¢,0,2 .
/ ¢m(z)ﬁ'—a.{:—/g(_z_)'dz = Z co(? + 1)bm ism (3.58)

'.=—nc.0.l -1

/ ¥ (z ) '“’2(2) dz =~ ”zfz bo(i)bmim? (3.59)
with
bo(i) = booli) = /0 " \o(E)1 € sinle (i + 1/2)]d€ (3.60)

with a(7), bo(), co(2) given in Table (3.1) [31]. Due to symmetries in the integrals for the
0O-resolution, the coefficients satisfy the conditions: a(—1 — ¢) = —a(7), bo(—1 — ) = —bo(?)
and cg(—1) = —cg(2) for ¢ < 0. Hence, the stencil lengths have to be: nyp0,1 = ns002+1 =
ny and n.g1 = nco2 = N.. These conditions are not general and do not hold for any
other arbitrary resolution. The stencil size is determined by the dispersion requirements. It
has to be noted that the Battle-Lemarie scaling function has exponential decay; thus, the
coefficients a(7) for ¢ > 12 are not zero, but their value is negligible (< 10~4).

After applying the Galerkin technique to Egs.(3.36)-(3.38), the following MRTD equa-

tions are derived:

0 z,0¢ -1
k+1E:z—1/2, kEi_1/2.5 1,
At - - eAz(J _z_:n a(s’ )"+1/2Hx —1/2,j+j'+1-1/2
Ne
+ ) E CO(j,)k+1/2Hij;’g‘j+jl_1/2)
J'=—n.
zv¢0¢ -’t"’bo‘ﬁ Nna—1
k+155_1/2,5 ~ E1—1/2,] _ <
At -7 eAz(] _Z_:n LERIRY Y. Hay SRR
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i a(t) bo(?) co(?)

0 1.29161604157839 2.47253977327429 0.

1 -0.155978843323672 0.9562282774123074 | -4.659725793402785E-02
2 | 5.9606303324687290E-02 | 0.1660591600788887 5.453939813583327E-02

3 | -2.929157759806890E-02 | 9.392437777679437E-02 | -3.699957746974982E-02
4 | 1.5362399457426780E-02 | 3.141444475216036E-03 | 2.057449098775452E-02

5 | -8.184462325283712E-03 | 1.349356908709108E-02 | -1.115303180864957E-02
6 | 4.3757585552354830E-03 | -2.858941810094752E-03 | 5.976877725279031E-03

7 | -2.342365356649461E-03 | 2.778680514115529E-03 | -3.202621363952005E-03
8 | 1.252877717042020E-03 | -1.129446167303586E-03 | 1.714086849566890E-03

9 | -6.716635068590737E-04 | 7.071507309377701E-04 | -9.176508438494196E-04
10 | 3.583506907489797E-04 | -3.491267305845643E-04 | 4.911754748072018E-04

11 | -1.931321684715780E-04 | 1.952711419194906E-04 | -2.629253013538502E-04
12 } 1.019327767057869E-04 | -1.021304423384722E-04 | 1.407386855875626E-04
13 | -5.613943183518454E-05 | 5.531259273864269E-05 | -7.533840689573666E-05
14 | 2.834596805928539E-05 | -2.947330468694831E-05 | 4.033146235099674E-05
15 | -1.700348604873522E-05 | 1.572110653438641E-05 | -2.159462850665844E-05

Table 3.1: Coefficients a(t), bo(), co(7)
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The indices 7, j and k are the discrete space and time indices related to the space and time
coordinates via z = tAz,z = jAz and t = kAt, where Az,Az are the space discretization
intervals in x- and z-direction and At is the time discretization interval. The values of the

stencil lengths ng,np, n. depend on the accuracy and dispersion requirements.

3.4.1 Modeling of Hard Boundaries

Unlike the FDTD where the consistency with the image theory is implicit in the ap-
plication of the boundary conditions, for MRTD schemes based on entire-domain functions
this theory must be applied explicitly in the locations of Perfect Electric (PEC) or Magnetic
Conductors (PMC). The total value of a field component at a specific cell is affected by a
theoretically infinite - practically finite - number of neighboring cells due to the fact that the
basis functions extend from -oo to co. Some of these neighbors may be located on the other
side of the conductor. This effect is taken into consideration by applying the image theory
(Fig.3.5). In this way, the physical boundary condition of zeroing-out the E-field tangen-
tial to the PEC is automatically satisfied. For example, even symmetry is applied for the
normal-to-PEC electric field components and odd symmetry for the parallel-to-PEC. Image

Theory can be implemented automatically for an arbitrary number of hard boundaries.
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The time-domain numerical techniques are modeling the real space by creating a discrete
numerical grid. Sometimes, this mesh does not coincide with the electrical one and MRTD
is one example. The enhancement of wavelets on MRTD requires a special treatment of
the wavelet components of the normal-to-PEC electric field. Assuming a vertical PEC in
(Fig.3.6), the electrical domains (I) and (II) are isolated from each other. That means that
one wavelet component value of the normal electric field EXACTLY ON the PEC would
create a non-physical electrical coupling. Thus, TWO wavelet components, one located
infinitesimally left of the PEC and the other infinitesimally right of the PEC, have to be
defined in order to satisfy the electrical isolation condition. The H-field component that
is parallel to the PEC has to be treated in a similar way. The rest components of the E-
and H-field have to be zeroed-out on both sides of the PEC, so one value is sufficient. In
FDTD the interleaved positioning of the field components on the Yee’s cell (which are the
same with the scaling functions components on the MRTD’s cell) requires that the normal-
to-PEC E-field component is located half cell size away from the conductor. In this way,

the definition of only one field component per cell is sufficient.

3.4.2 Modeling of Excitation

Without loss of generality, the modeling of the excitation for the 2D and 2.5D MRTD is
presented. The 3D algorithm is a direct extension of the 2D. For simplicity, only 0-resolution
wavelets are used.

In order to apply a point (pulse) excitation P(z,, z,) for z, = mAz, z, = nAz, the pulse

has to be decomposed in terms of scaling and wavelet functions

P(zo,20) = Z Z cos(lz,6:12,) d(m +1z4) d(n+1:4)

Iz p=-00 l;9=—00
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+ Y Y coullagilay) dmtlzg) v(n+ly)
Iz g=—00 I3 y=—00
o0 o0
+ ) S cuellzgilzg) ¥(m+ley) d(n+1.4)
l:‘¢,=—oo l,'¢=—co

+ Z Z coullzyslzy) Y(m+1zy) Y(n+ 1l y) . (3.63)

Iz p=—00 I3 y=-c0

with

m+0.5 n+0.5

cso(lzg:lz0) = 05 /ﬂ 05 d(m+l4) ¢(n+l.4) dz dz
m-—y. —U.
m+0.5 rn40.5

colleorlin) = [ /n Kt log) (n+lsy) dz da
m—u.. -LJ.
m+0.5 n+0.5

cvsllepnles) = [ [T Gmtloy) O(n+lug) dz da
m-U. —U.
m+0.5 n+0.5

coullownley) = - / L Hmtly) d(ntlig)dzds . (364)
m—U. n—u.

Practically, the summations of Eq.(3.63) can be truncated to a finite number of terms.
Usually 6-8 terms on each side of the excitation point per direction can offer an accuracy
of representation close to 0.1%. In case the neighboring scaling or wavelet functions are
located outside the computational domain (e.g. m+ ;4 > n; or m + I, 4 < 0 for a domain
[0,n;] to the x-direction), image theory has to be applied for their translation inside the
computational grid.

If there is no discontinuity (hard boundary or dielectric interface) in the summation

interval of Eq.(3.63), the double integrals of Eq.(3.64) can be split in two single integrals

m+0.5 n+0.5
coollogrleg) = [ dm+lig)dz [T T4+ leg) do = collas) colls)

m=0.

n~—

m+0.5 n+0.5
cop(lzgrlzy) = / d(m+14) dz_/ os Y(n+1:y) dz = cp(lz,8) cy(lzy)

m-0.5 n-0.

m+0.5 n+0.5
cvsllznleg) = [ wmtlog)de [ 00+ lg) di = culleg) colles)

m-—0. n-0.

m+0.5 n+0.5
cvullownlew) = [ wmtlg)de [T ntly) do = eulleg) cullew)

with ¢4, cy given in Tables (3.2)~(3.3).

75



Due to the symmetries of the Battle-Lemarie scaling and wavelet functions, the decom-

position coefficients have to satisfy the following conditions

co(lg) = cs(—l3), Iy =-1,-2,.

C¢.(l¢) = C,/,(l - I,j,), l.[, = 0, -—1, -—2, ..

For each time-step, the excitation scaling and wavelet components have to be superim-
posed to the respective field values obtained by the MRTD algorithm in order to provide a

transparent source similar to that described in Section 2.1.2.

ety = KEmet, yntt, s + o6z 120)
e ety = B gkt g + Coullzr o)
"Erﬁif:'t:,ln+l,'¢ = kEiﬁI,",.n-f-I,‘é + c"'ds(ll'.!l'v 12.42)
k ”ﬁ"t:.tz'ln#x.w = kE'd:il:.wvﬂ'H:.w + cvyllzylzn)

For the 2.5D-MRTD algorithm that requires impulse excitation in time-domain, the above
superposition takes place only for the first time step (t=0). Nevertheless, for the 2D-MRTD

it has to be repeated throughout the number of time-steps that the excitation is on. The

Iy 0 1 2 3 4 5 6

cs(ly) | 0.91507 | 0.03820 | 0.00963 | —0.00863 | 0.00502 | -0.00268 | 0.00141

Table 3.2: Excitation Scaling Decomposition Coefficients

ly 1 2 3 4 5 6 7

cy(ly) | -0.10250 | 0.12115 | -0.02975 | 0.01501 | -0.00598 | 0.00298 | ~0.00139

Table 3.3: Excitation Wavelet Decomposition Coefficients
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appropriate number of the time-steps will depend on the time dependence of the excitation
(Gaussian, Gabor, ...).

Arbitrary excitation spatial distributions f(z, z) for an area [z; = m1Az,z; = maAz] x
[z1 = n1Az,z; = npAz] can be modeled in a similar way. The spatial distribution has to

be sampled with scaling and wavelet functions, giving the new decomposition coefficients

m2+0.5 pny40.5
coslleartss) = [ [ f(a,2) Bmi+ L) S + L) da d

mi—0.5 1-0.5
mo+0.5 n2+40.5
coslleartes) = [ T[T e 2) 6mi+lng) Ylm + L) d d
- ny—
ma40.5 n,+0.5
cvellewleg) = [0 77 fn,z) tmt lo) dlm + Lug) d da

ma+40.5 n240.5
cosllogiley) = / 05/ S(@,2) $(my+lng) W+ Ly) dz da
0. ng—

For most simulations the choice of —8 < I, 4,z 4 < (m2—m1)+8and -8 <l 4,0>y <

(n2 — nq1) + 8 offer an accuracy close to 0.1%.

3.4.3 Treatment of Open Boundaries - PML Absorber

As it was discussed in Ch.2, for all discrete-space full wave techniques a special treatment
should be given to geometries of interest defined in "open” regions where the computational
grid is unbounded in one or more directions. Since the computational domain is limited in
space by storage limitations, an appropriate boundary condition should be implemented to
effectively simulate open space and satisfy the radiation condition. Berenger [13] proposed
the Perfect Matched Layer (PML) Absorber, which is based upon splitting the E- and
H- field components in the ABC area and assigning artificial electric and magnetic loss
coefficients. On the condition that these loss coefficients satisfy the PML relationship for
each point of the absorber area, this nonphysical absorbing medium has a wave impedance

less sensitive to the angle of incidence and frequency of outgoing waves than the preexisting
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absorbers.In this Subsection, the non-split and split extensions of the PML absorber for the
2D-T'M* Battle-Lemarie MRTD are discussed. Their performance is going to be validated
in Ch.4. Assuming that the PML area is characterized by (¢,, 1to) and electric and magnetic
conductivities (og,oy), the TM? equations can be written by adding an extra term to
Eqs.(3.36)—(3.38)

oH,

€02 +ogE, = - Ep (3.65)
JE, _ oA,

Go—at— +ogE, = 9z (366)
oH, 0E, OE,

o ET, +opH, 3z 92 (3.67)

Without loss of generality, PML cells only along the z-direction are considered. The exten-
sion to the x- and y- directions is straightforward. For each point z of the PML area, the

magnetic conductivity oy needs to be chosen as [13]:

o5(2) _ on(z)
€ Ho

, (3.68)

for a perfect absorption of the outgoing waves. A parabolic spatial distribution of og g,
og.H(z) =ogH (1 - -;—)p , with p=2 for0< =<6 (3.69)

is used in the simulations, though higher order distributions (e.g.Cubic p=3) can give similar
results. The PML area is tcrminated with a PEC and usually has a thickness varying
between 4-32 cells. The maximum value gZ%* is determined by the designated reflection

coefficient R at normal incidence, which is given by the relationship

mGS‘

20
R= e—f_:? :as(z)dz = ¢ cocdptl) ] (3.70)

In MRTD, the PML area can be modeled by discretizing the above equations in a similar
way to the non-conductive area described in the beginning of Section 3.4 and split and

non-split formulations can be derived.
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Similarly, the PML equations for the TE? can be written as,

0H, _ 0E,

5 +oyH, = 3= (3.71)
0H, _ 0E,

Ho=5, +oyH, = 92 (3.72)
OFE, _ 0H, 0H;

ot ok, T oz + 0z (3.73)

Split Formulation

Following the approach of [13], H,, is split in two subcomponents, H,;, H,, and Eqs.(3.65)-

(3.67) are written as,

ea%%--f-ag(z)E, = ———aH""a: Hy: (3.74)
o = Yetle (3.75)

plme o 95 (3.76)

b g on(IHye = (3.77)

For the sake of simplicity in the presentation and without loss of generality, the fields
E., E. Hy, H,. are expanded in terms of scaling functions only in space domain and pulse
functions in time domain. By applying Galerkin’s technique [31, 58], the following split

PML equations are obtained

z,0d _ =L Atfey T dP
e Bl = e BN,
1 —-aLAt/e
+ (e °E ° -1
£ $¢ b0
! yz, vz,
) Z a(i )(k+1/2Hi-1/2.j+j'+1—1/2 + k+1/2Hi—1/2,j+j'+1—1/2)
t!==ng
2,00 _ z2,¢¢
BT = kB
a—1
At % I)( ny.¢d> Hyz,¢¢
+ eoAz.Z &Y k12 0012 jo1p2 + kv Hi i1 12, 5-172)
t'=-nq
vz, 90 - yz.0¢
k120305502 = k-12B 00 5 1



Ng— 1
At z,0¢

-f
T Az i,;_n e(O) L io1y2)
ey _ =2 A/, y-)
IRV ity IR R LWV (ot A
1 LN ! N T
+ ——ople " °—1) Y a(j WE s ey - (3.78)
AZ O’JH j'=—ng

Exponential time-stepping is being used for the field components affected by the PML con-
ductivities og, og. Due to the entire-domain nature of the Battle-Lemarie scaling functions,

the PML conductivity must be sampled by them over at least 12 cells (6 cells per side),

. 146
Ok = /J 1_6 ogHu(2)p;(z)dz . (3.79)

Image theory is applied to extend the conductivity layer outside the terminating PEC’s. The
presented formulation follows the idea introduced by Berenger for the FDTD. Nevertheless,
an efficient non-split form of the PML equations does not demand extra memory for the

storage of two H, subcomponents per cell.

Non-split Formulation

Substituting in Eqs.(3.65)-(3.67) [59]:

Ei(z,z,t) = Ei(z,z,t)e G (3.80)

and

Hi(z,z,t) = 1-11‘(1', z,t)e~7H ) o (3.81)

for i=x,z and j=y leads to the following system of equations:

dE, _ 0H,

© 5 = 32 (3.82)
9E, _ oA,
607 = oz (383)
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o0H, _ 9E. OE.

Fo3¢ = Bz 0z

(3.84)

Discretizing Eqs.(3.82)-(3.84) and inserting Eqs.(3.80)—(3.81) yields the unsplit formu-

lation of the fields for the PML region:

k+lEf_'q:72'j = e—alam/t"kEf-'??z.j
e-0schat/e, 81 (1 ni-:l a(Vkr1/2HE70 4 jrs1-1/2)
& Az = g
Y R R ¥
4+ =057k ?At/e ?—: ( ,;z nil a(i’)k+1/2H1§’4'-??+1—1/2.j—1/2)
t/=—nq

e-ai;l/zAt/ muo

v:9¢ -
k+1/2Hi-1/2,j—1/2 k-1/2Hi—1/2.j-1/2

+ e—0-50%* At/ uo At

Ho
1 na—1 1 nag—1

. z,0¢ . .0
Az Z a(zl)kE,‘.*.,'?‘j_l/g Az Z a(]’)kE,'_l/g,Jq.J'l) ’

=—ng j'==ng

(3.85)

where the terms g% ;; are given by Eq.(3.79).

3.4.4 Total Field Calculation

Due to the nature of the Battle-Lemarie expansion functions, the total field is a sum-
mation of the contributions from the non-localized scaling and wavelet functions. For
example, the total electric field E.(z,,20,%,) with (k — 1/2)At < t, < (k + 1/2) At,
(i-1)Az<z,<iAzand (j—1/2) Az < z, < (j +1/2) Az is calculated in the same way

with [31, 58] by
I
Ez:(zo’ 20y to) = Z kE:‘:'.?tl/g'j.'.jl ¢i+i’—l/2(zo) ¢j+j'(20)

i 3'=-0

rmaz l2,r 2711

QWF;, z z
+ Z Z Z kE"z_*_"l_l/pz‘J‘_i_jl ¢i+i’—l/2(zo) 'Z’;.q..j',p:(zt))

re=0 i’ j'==l3, p2:=0
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Tmazx 13,1' 2Tz 1

N Iv'ﬁr:, ,¢5 rr A
+ Z Z Z "Ei+i'—1p/2,j+j' ¢i+i'—1/2,p,(z°) @+ (20)

rz=0 ' j'=—I3, pz=0

Fmas lar 7=z

Draopstors,
+ Y > Yo kBT Yiiio1y2p. (%) Wi, (20)

Tre=0 i j'=—ly, Pz.ps=0

(3.86)
where ¢n(z) = (& — n) and ¥ (z) = 27/2 ¥o(2"[& — n] — p) represent the Battle-
Lemarie scaling and r-resolution wavelet function respectively and rpmq- is the maximum
wavelet resolution used in this area of the computational domain. It has been observed
that the values [} = ly0 = l30 = l40 = 10 and l3; = I3; = l4; = 6 offer accuracy close to
0.5% for most simulations incorporating the first two wavelet resolutions. For the cases of
narrow strips with very sharp field discontinuities, the summation limits must increase up
to 15-20 terms per direction.

The fact that the MRTD is based on entire-domain basis functions with varying values
along each cell offers the unique opportunity of a multi-point field representation per cell.
The neighboring scaling and wavelet coefficients can be combined in an appropriate way to
calculate the total field value for more than one interior cell points. In this way, MRTD
creates a mesh with much larger density than that offered by the nominal number of the
cells without increasing the memory requirements. This additional density is very useful
in the calculation of the characteristic impedance of planar lines, where even a small field
variation can cause a perturbation of the impedance value by 5 — 10Q2. On the contrary,
FDTD is based on pulse basis functions that have a constant value for each cell, offering a

single-point field representation.
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3.5 Conclusions

After reviewing the general principles of Multiresolution Analysis, novel time-domain
schemes based on expansions in scaling and wavelet functions (MRTD) have been derived.
FDTD implementation schemes (excitation, hard/open boundary and dielectric interfaces)
have been extended to Multiresolution schemes based on entire-domain expansion basis,
while maintaining similar performance characteristics. These schemes offer the unique op-
portunity of a multi-point field representation per cell. Battle-Lemarie functions are used

throughout the dissertation due to their special qualities.
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Figure 3.2: BL Cubic Spline Wavelet - Spatial Domain.
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Figure 3.3: BL Cubic Spline Scaling - Spectral Domain.
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Figure 3.5: Image Theory Application for tangential-to-PEC E-field.
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Figure 3.6: Treatment of Wavelet Components of normal-to-PEC E-field.
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CHAPTER 4

Characterization of Microwave Circuit Components

Using the Multiresolution Time Domain Method (MRTD)

4.1 Introduction

Recently, the Battle-Lemarie based MRTD technique has been successfully applied [31,
58, 59] to a variety of microwave problems and has demonstrated unparalleled properties.
When applied to linear as well as nonlinear propagation problems, it has exhibited MRTD
schemes based on other entire-domain expansion basis can be developed in a similar way by
calculating the appropriate summation coefficients. The use of Battle-Lemarie basis allows
for a more simplified evaluation of the moment method integrals is simplified due to the
existence of closed form expressions in spectral domain and simple representations in terms
of cubic spline functions in space domain. The use of non-localized basis functions cannot
accommodate localized boundary conditions. To overcome this difficulty, the image principle
is used to model perfect electric and magnetic boundary conditions. Pulse functions are
used as expansion and test functions in time-domain. In this Chapter, a 2.5D MRTD scheme
is developed and applied to a variety of shielded and open of transmission line problems.

Specifically, propagation constant, characteristic impedance and field patterns are derived
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for shielded and open transmission line structures and compared to FDTD results. For tke
treatment of open boundaries, Berenger’s PML principles [13] have been extended in split

and non-split form, so as they can be used for entire-domain basis MRTD schemes.

4.2 The 2.5D-MRTD scheme

For simplicity, an overview of the 2.5D-MRTD scheme is presented for 2 homogeneous
medium. The derivation is similar to that of the 2D-MRTD scheme in CH.3, which uses the
method of moments with pulse functions as expansion and test functions. The magnetic
field components are shifted by half a discretization interval in space and time-domain with
respect to the electric field components.

Using the approach of [60], Maxwell’s curl equations for a homogeneous medium with

the permittivity € and the permeability u can be written in the following form

0E. _ OH.

€ ot = Ty—-*-ﬁHy (4.1)
0E, 0H.

o = ~PH:-= (4.2)
0E., _ 0H, OH:

ot T Bz dy ’ (4.3)

where (3 is the propagation constant and j = v/=1. The electric and magnetic field com-
ponents incorporated in these equations are expanded in a series of Battle-Lemarie scaling
and wavelet functions in both x- and y-directions. For example, E. can be represented as:

+o0
Ex(z,y,t) = Y kEDSY, . hi(t) dim1/2(z) dm(y)
kJlm=—co

400 400 2"¥-1

+ Y Y T ETT he(t) 1o al2) ¥, (4)

klm=—co ry=0 py=0

2 = Vrs.ps
rr— Zy¥rz,px T
+ E E .smm;::o1 kEl—l/2,‘:n he(t) ¢{_1/g‘p,(z) ém(y)

klm=—oc0 rz=0
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2r=ry —1

= = Y ¥
+ D X RELIERTTT h(t) ¥y, () Ui, (9)

klm=—co rz,ry=0 pz,py=0

(4.4)
where ¢n(z) = ¢(Z5 — n) and ¢}, ,(z) = 2or/2 %o(27[Z — n] — p) represent the Battle-
Lemarie scaling and r-resolution wavelet function respectively in space and hj(t) represent
rectangular pulses in time. (E[ and pyq/0H " with x = z,y,2 and p,v = ¢, 9 are
the coefficients for the field expansions in terms of scaling and wavelet functions. The
indices i,j and k are the discrete space and time indices related to the space and time
coordinates via z = iAz, y = jAy and t = kAt, where Az,Ay are the space discretization
intervals in x- and y-direction and At is the time discretization interval. Upon inserting
the field expansions, Maxwell’s equations are sampled using pulse functions as time-domain
test functions and scaling and wavelet functions as space-domain test-functions. Following
the procedure of Section 3.4, the 2.5D MRTD scheme is derived. As an example, let’s
consider the discretization of eq.(4.1). For simplicity, it is assumed that the fields have been
expanded only in scaling functions summations. Wavelets can be added in a straightforward
way yielding equations similar to (3.61). Applying the Galerkin’s technique, the following

difference equation is obtained for a homogeneous medium with the permittivity e,

Na-1
€ b0 e 1 : 8¢ b0
E(k+1Ef_1/2,j‘kEf-1/2.j) = A_y(_ Z a(J,)"+1/2Hiz—l/2.j+j’+1-l/2)+'3 k+1/2H:y—1/2,j ?

j'=-na
(4.5)
with the coefficients a(j’) being defined in Table (3.1) The unit cell of the 2.5D-MRTD
scheme is identical to the unit cell of the conventional Yee’s FDTD scheme. To calculate

the total field at a space point, the field expansions are sampled with delta test functions in

space and time domain. For example, the total electric field E(z,, yo, t,) With (k—1/2) At <
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to <(k+1/2)At, Az <z, <iAz and (j —1/2)Ay < yo < (j + 1/2) Ay is calculated by

Ex(ortorts) = [ [ [ Bulz,0,0)8(z - 20) 6y ~ 1) 8(¢ ~ 1) d dy

Z "E:i??—l/2,j+j' Bivir—172(20) Di457(Yo)

Q

" kED% 2.+t Piri=1/2(Zo) Birir(¥o) - (4.6)

#5'=—=l

Extending the dispersion analysis from 2D to 2.5D space, the stability condition for the
2.5D S-MRTD scheme results in

1
<
/()2 + (£ T a(@)2 + (§)2

with the wave propagation velocity c. It is preferable to choose At at least 1.2-2.5 time less

At (4.7)

than the stability limit. In this way, much more linearity of the dispersion characteristics

is achieved.

4.3 Applications of the 2.5D-MRTD scheme to Shielded Trans-

mission Lines

First, the 2.5D-MRTD scheme is applied to the analysis of shielded stripline and mi-
crostrip lines to investigate propagation and coupling effects. Results for these shielded
structures are presented and discussed separately below.

A shielded stripline is a simplified version of a membrane microstrip shown in (Fig.4.1a).
The metallic shield has dimensions 47.6mm x 22.0mm and the central strip has length
11.9mm. The stripline is filled with air (¢, = 1.). The analysis for the higher order
propagating modes is straightforward. For the analysis using Yee’s FDTD scheme, a 40 x 10
mesh was used resulting in a total number of 400 grid points. When the structure was

analyzed with the 2.5D-MRTD scheme , a mesh 8 x 4 (32 grid points) was chosen reducing
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Mode TEM Shield T Eyg
Analytic values | 1.4324 GHz | 3.4615 GHz
8x2 MRTD 1.4325 GHz | 3.4648 GHz
Rel.Error 0.007% 0.095%
8x4 MRTD 1.4325 GHz | 3.4641 GHz
Rel.Error 0.007% 0.075%
16x4¢ MRTD | 1.4325 GHz | 3.4633 GHz
Rel.Error 0.007% 0.052%
40x10 FDTD | 1.4322 GHz | 3.4585 GHz
Rel.Error -0.014% -0.087%

Table 4.1: Mode frequencies for 8 = 30

the total number of grid points by a factor of 12.5. In addition, the execution time for the
analysis was reduced by a factor of 3 to 4. The time discretization interval was chosen to
be identical for both schemes and equal to the 0.8 of the 2.5D-MRTD maximum At. For
the analysis 3 = 30 was used and 5,000 time-steps were considered.

From (Table 4.1) it can observed that the calculated frequencies of the two first prop-
agating modes for 8 = 30 by use of 2.5D-MRTD scheme are very close to the theoretical
values, since the largest error is less than 0.1%. The relative error of the 2.5D-MRTD calcu-
lated frequencies is always positive, which corresponds to an overestimation of the resonant
frequencies. This is exactly what has to be expected from the dispersion behavior of the
MRTD schemes.

The non-localized character of the basis functions offers the opportunity to calculate the

field values in any point of the discretization cells. The field values at the neighboring cells
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can be combined appropriately by adjusting the scaling functions’ values and by applying
the image principle. For example, the total electric field E.(z,, ¥,,%,) with (kK — 1/2) At <
to < (k+1/2) At is calculated by Eq.(4.6) by simply truncating the ¢, j' summation from
Iy = —-12,..,12 for each index. That means that the summation based only at the 12
neighboring cells from each side gives the total field component values with good accuracy.
In (Fig.4.2-4.4), the value of the E, field has been calculated and plotted for the 4 cells
exactly below the strip by use of the 2.5D-MRTD scheme. The relative position of the strip
is from 15 to 25 . For the TEM mode the pattern obtained by use of the conventional FDTD
scheme is plotted for comparison. For the shield T F;o mode, the analytically calculated
pattern has been added for reference. All results are normalized to the peak value. It can
observed that the agreement of the MRTD calculated field pattern with the reference data
is very good for the shield T E;o mode, where the values are changing slowly (sinusoidally)
(Fig.4.2). On the contrary, for the TEM mode where the edge effect is more prominent, the
agreement is not good. In this case, wavelets of 0-Resolution are added in both directions to
describe the higher spatial frequencies. It can be observed from (Fig.4.3) that the wavelet
coefficients for the 8x4 grid have a significant contribution (> 10%) close to the stripline.
Increasing the grid size from 8 to 16 to the strip direction and/or from 4 to 8 to the normal
to the strip direction improves more the accuracy of the field representation (Fig.4.4). It has
been observed that 0-Resolution MRTD Schemes converge faster if the wavelet excitation
coefficients are 3-4 times higher than the respective scaling coefficients.

The characteristic impedance Z, for the TEM mode of the stripline is computed from

the equation:

V fC Eyd.'l
= 2Ly TV I 4.
I fcc Hdl i (4.8)



Subpoints/cell | Z3° () | Relative error | Z¥* (Q) | Relative error
3 80.56 -15.711 % 84.04 -12.07 %
5 94.46 -1.17 % 92.55 -3.17 %
7 99.06 +3.64 % 94.59 -1.04 %
9 101.44 +6.13 % 94.96 -0.65 %
11 97.56 +2.07 % 95.01 -0.60 %

Table 4.2: Z, for different number of subpoints/cell (8x4 Grid).

where the integration paths C, and C, are shown in (Fig.4.1a). Since both of the schemes
used in the analysis are discrete in space-domain, the above integrals are transformed to
summations. For the FDTD summations, only one field value per cell is needed, due to the
fact that pulse expansion functions which are constant for each cell are utilized. On the
contrary, for the 2.5D-MRTD summation the field values for a number of subpoints along
the integration path have to be calculated, since the expansion functions are not constant
for each cell. It can be observed from (Table 4.2) that the accuracy of the calculation of
the characteristic impedance is improved by increasing the number of subpoints per cell, at
which the field values are calculated. An accuracy better than 1% is achieved if the field
values are computed for more than 9 subpoints per cell along the integration path for the
scheme including wavelets of 0-resolution to both directions. On the contrary, the value of
Z, that is calculated from the scheme based only on scaling functions is oscillating, thus
indicating that a denser mesh is required. The analytical value of the Z, is 95.58 Q [61].

The modification of the dimensions of the MRTD mesh (Table 4.3) shows that the
accuracy of the calculation of the Z, by use of the MRTD is much better than that of the

Yee’s FDTD scheme with a 40x10 mesh (relative error -3.28%).
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Z, () | Relative error
Analyt. Value | 95.58 0.0%
8x4 MRTD 95.01 -0.60%
8x8 MRTD 95.19 -0.41%
16x4 MRTD 95.71 0.14%
40x10 FDTD 92.44 -3.28%

Table 4.3: Z, for different mesh sizes (11 subpoints/cell).

A similar procedure is used for the analysis of the shielded coupled-stripline geometry
of (Fig.4.1b) for the first even and odd mode. Both strips have a length of 11.9mm, the
distances between them is 11.9mm, from the top and bottom PEC’s are 11.0mm and from
the left and right PEC’s are 11.9mm. The structure is filled with air (¢, = 1.). For the
analysis with the conventional FDTD scheme, a 70 x 20 mesh resulted in a total number
of 1400 grid pints. The same accuracy is achieved by an MRTD mesh 14 x 4 (56 grid
points) resulting in an economy of memory by a factor of 25. The space distribution of the
tangential-to-stripline E is plotted in logarithmic scale in (Fig.4.5) for the even mode.

The 2-D MRTD technique is also used for the analysis of a shielded microstrip (Fig.4.1¢)
with width 9.9mm on a dielectric substrate with ¢, = 10.65 and thickness 11mm. The mi-
crostrip is placed in the center of a rectangular shield 69.3mm x 44mm. The same accuracy
for the characteristic impedance calculation (Theoretical Z, = 50 Ohms) is achieved by an
FDTD mesh 140 x 80 and an MRTD mesh 28 x 20resulting in an economy in memory by

a factor of 20.
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4.4 Validation of the MRTD-PML Split and Non-split Algo-

rithms

The extension of the popular PML absorber [13] principles for MRTD applications has
been presented in CH.3. In this Section, the numerical performance of this absorber is
investigated for 4-32 cells and for different cell sizes (A/10-A/2.5). Specifically, propagation
constant, characteristic impedance and field patterns are derived for open transmission lines
and compared to 2D results.

A parallel-plate waveguide of width d=48 mm, terminated at both ends by PML, is
used to validate the described algorithm. A TM? line source with a Gabor time variation
is excited close to the one side of the waveguide. The benchmark MRTD solution with
no reflections is obtained by simulating the case of a much longer parallel-plate waveguide
of the same width to provide a reflection-free observation area for the time interval of
interest. A quadratic variation in PML conductivity is assumed for all cases, with maximum
theoretical reflection coefficient of 10™° at normal incidence. Two frequency ranges are
investigated,[0, 0.9 fT™:] (TEM propagation) and [0,0.9 fTM2] (TEM + T M, propagation),
where fTMn = 2¢ = 3.125 n (GHz) is the cutoff frequency of the T'M,, mode. The time-step
is chosen to be 0.637 of the Courant limit according to the stability analysis of Ch.5.

For the TEM propagation frequency range, it can be seen from Figs.(4.6)—(4.8) that
for dense grids (Cell Size = Apaz/10) even 8 PML cells offer a numerical reflection close
to -80 dB. Different values of theoretical maximum reflection ranging from 1075 to 10~
don’t change significantly the numerical performance of the absorber (variation of 4-5 dB’s).
When 16 PML cells are used, the spurious reflection is below -100 dB for the whole frequency

range. Similar conclusions can be drawn for the multimodal propagation (TEM + T M) in
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Fig.(4.9). It can be observed that 8 and 16 PML cells cause a numerical reflection close to
-70 dB and below -100 dB respectively. For coarse grids with cell sizes close to the Nyquist
limit (Cell Size = Ajq2/2.5), the behavior of the PML layer changes. The Large cell size
causes retrospective reflections between the lossy cells and the numerical reflections from
the absorber increase. Thus, a larger number of cells is required to obtain an acceptable
reflection coefficient. Fig.(4.10)—(4.11) show that at least 32 cells are needed for reflection
around -50 dB for the high frequencies. Again, the reflection at lower frequencies is negligible
(below -100 dB’s). It should be emphasized that the loss coefficients assigned to each cell
must be given by Eq.(3.79); that implies that the conductivity profile must be sampled with
the scaling and wavelet functions that have a significant value in the PML layer. For all
simulations, scaling (and wavelet) functions located up to 6 cells away from the PML layer
are used for the sampling. When this procedure is not applied and the loss coefficients get
the point value of the loss distribution at each cell (FDTD approach), the PML performance
gets worse as it is displayed at Fig.(4.12). It should be noted that the performances of the

split and the non-split formulations are almost identical as it is displayed in Fig.(4.13).

4.5 Application of PML to the Analysis of Open Stripline

Geometries

The PML non-split algorithm presented in Section 3.3.2 can be easily extended for the
2.5D and the 3D MRTD algorithms incorporating scaling and wavelet functions maintain-
ing the same performance characteristics. For each resolution added to the scheme, the
conductivity must be sampled with an appropriately positioned wavelet function. It was

observed that §;; changes only by 1-1.6 dB after the enhancement of multiple resolutions.
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In this section, the 2.5D MRTD scheme is applied to the analysis of open single and coupled
striplines to investigate propagation and coupling effects. In all simulations only wavelets of
the O-resolution are used for both directions, since the value of the higher resolution fields
is negligible (smaller than 1%).

First, the 2.5D MRTD scheme is applied to the analysis of the open stripline for the
first (quasi-TEM) propagating mode. The analysis for the higher order propagating modes
is straightforward. The central strip has a length of 23.8mm and the distances from the top
and bottom are 5.5mm and 16.5mm respectively. The structure is filled with air (e, = 1.).
The PML absorber is applied for 4 cells to the left and the right sides of the structure
and the maximum theoretical reflection is Rpyor=1e-7. For the analysis using Yee’s FDTD
scheme, a 42 x 28 mesh is used resulting in a total number of 1176 grid points. Analyzing
the structure with the 2D-MRTD scheme, a mesh 12 x 4 (48 grid points) is chosen to reduce
the total number of grid points by a factor of 24.5 . In addition, the execution time for
the analysis is reduced by a factor of 4 to 5. The time discretization interval is chosen
to be identical for both schemes and equal to 1/10 of the 2D-MRTD maximum At. For
the analysis 8 = 30 is used and 20,000 time-steps are considered. From (Table 4.4) it can
observed that the calculated frequencies of the dominant propagating mode for 3 = 30 by
use of 2D-MRTD scheme is very close to the theoretical values, since the largest error is
less than 0.1%, for mesh sizes much smaller than those used for the conventional FDTD
simulations.

In (Fig.4.14), the pattern of the E, field just below the strip has been calculated and
plotted by use of the 2D-MRTD scheme. The pattern obtained by use of the conventional
FDTD scheme is plotted for comparison. Since the edge effect is prominent, a mesh 12 x 8

(96 grid points) with scaling functions and wavelets of 0-resolution is used for the MRTD
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Muode TEM Rel.Error

Analytic values | 1.4324 GHz | 0.000%

12x4 MRTD 1.4329 GHz | 0.035%

12x8 MRTD 1.4325 GHz | 0.007%

42x28 FDTD | 1.4321 GHZ | -0.021%

Table 4.4: Dominant mode frequency for 8 = 30

simulation. The characteristic impedance Z, for the quasi-TEM mode of the stripline is
computed from Eq.(4.8).

For the FDTD summations, only one field value per cell is needed, due to the fact that
pulse expansion functions which are constant for each cell are utilized. On the contrary, for
the 2D-MRTD summation the field values for a number of subpoints along the integration
path have to be calculated, since the expansion functions are not constant for each cell.
(Table 4.5) shows that the accuracy of the calculation of the characteristic impedance is
improved by increasing the number of subpoints per cell, at which the field values are
calculated. An accuracy better than 1% is achieved if the field values are computed for
more than 9 subpoints per cell along the integration path. (Table 4.5) shows the calculated
values of the characteristic impedance Z,.

A similar procedure was used for the analysis of the open coupled-stripline geometry of
(Fig.4.15) for the dominant even and odd modes. Both strips have a length of 23.8mm,
the distances between them is 23.8mm, from the top PEC 16.5mm and from the bottom
PEC 5.5mm. The MRTD-PML layer has a thickness of 4 cells (23.8mm) with maximum
reflection R,,-=1e-7 and starts ezactly at the edge of the striplines. The structure is filled

with air (¢, = 1.). For the analysis with the conventional FDTD scheme, a 65 x 20 mesh
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Zo, (1) | Relative error
Analyt. Value | 56.83 0.0%
12x4 MRTD 57.24 +0.72%
12x8 MRTD 57.09 +0.46%
42x28 FDTD 54.96 -3.29%

Table 4.5: Z, for different mesh sizes.

resulted in a total number of 1300 grid points. The same accuracy is achieved by an MRTD
mesh 20 x 4 (80 grid points) resulting in an economy of memory by a factor of 16.25. The
space distribution of the tangential-to-stripline E is plotted in logarithmic scale in (Fig.4.16)

for the even mode and in (Fig.4.17) for the odd mode.

4.6 Conclusion

A multiresolution time-domain scheme in 2D has been applied to the numerical analysis
of shielded and open striplines and microstrips. The field patterns and the characteristic
impedance have been calculated and verified by comparison to reference data. In compar-
ison to Yee’s conventional FDTD scheme, the proposed 2.5D-MRTD scheme offer memory
savings by a factor of 25 and execution time savings by a factor of about 4-5 maintaining a
better accuracy for characteristic impedance calculations. This indicates memory savings of
a factor 5 per dimension leading to two orders of memory savings in three dimensions. Com-
pared to 2.5D-FDTD, 25 times less cells in MRTD require about 5 times less running time,
thus the computation time per cell is increased by a factor of 5. This leads to computation
time savings of more than one order for 3 dimensional structures. For structures, where the

edge effect is prominent, additional wavelets have to be introduced to improve the accuracy
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when using a coarse MRTD mesh. A non-split PML absorber has been evaluated and its
performance is similar to that of the conventional FDTD Split PML absorber (reflections

close to -100 dB).
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Figure 4.1: Printed Lines Geometries.
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Figure 4.6: 4 PML cells - Non-split formulation - Dense Grid.
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Figure 4.7: 8 PML cells - Non-split formulation - Dense Grid.
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Figure 4.8: 16 PML cells - Non-split formulation - Dense Grid.
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Figure 4.17: Tangential E-field Distribution (Open - Odd Mode).
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CHAPTER 5

Stability and Dispersion Analysis of Multiresolution

Time-Domain Schemes

5.1 Introduction

Discretized Time-Domain numerical techniques are very popular in the analysis of var-
ious microwave geometries and for the modeling of EM wave propagation. Though many
of them are very simple to implement and can be easily applied to different topologies with
remarkable accuracy, they cause a numerical phase error during the propagation along the
discretized grid [62]. For example, the numerical phase velocity in the FDTD can be dif-
ferent than the velocity of light, depending on the cell size as a fraction of the smallest
propagating wavelength and the direction of the grid propagation. Thus, a non-physical
dispersion is introduced and affects the accuracy limits of FDTD simulations, especially of
large structures.

In addition, it is well-known that the finite-difference schemes in time and space domain
require that the used time step should take values within an interval that is a function of
the cell size. If the time-step takes a value outside the bounds of this interval, the algorithm

will be numerically unstable, leading to a spurious increase of the field values without limit
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as the time increases.

Though the stability and the dispersion analysis for the conventional Yee’s FDTD algo-
rithm has been thoroughly investigated, only a few results have been presented concerning
MRTD schemes based on cubic spline Battle-Lemarie scaling and wavelet functions [31].
The functions of this family do not have compact support, thus the finite approximations
of the derivatives are finite-stencil summations instead of finite differences. In this paper,
the effect of these stencils’ size as well as of the enhancement of wavelets is investigated
and a comparison with 2nd-order and higher-order FDTD schemes exhibits the differences

in their respective behaviors.

5.2 Stability Analysis

Following the stability analysis described in [62], the MRTD [31] equations are de-
composed into separate time and space eigenvalue problems. Assuming a 2D expansion
only to scaling functions (S-MRTD) similar to Eqs.(3.36)-(3.38) of CH.3, the left-hand side
time-differentiation parts can be written as an eigenvalue problem

F 4 x
k1285510 = k17287512

y y
k+1/2H_ o i = k=172 5 5
1/2:At iZ1/25 kH?—uz,j (5.2)
k1 EY; — kB
y L = A p12EE; . (5.3)

At
In order to avoid having any spatial mode increasing without limit during normal time-

stepping, the imaginary part of A, Imag(A), must satisfy the equation

2 2
-—< < — . 4
~ < Imag(A) < = (5.4)

For each time step k, the instantaneous values of the electric and magnetic fields distributed

in space across the grid can be Fourier-transformed with respect to the i- and j- coordinates
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to provide a spectrum of sinusoidal modes (plane wave eigenmodes of the grid). Assuming an
eigenmode of the spatial-frequency domain with k; and k, being the x- and y- components

of the numerical eigenvector, the field components can be written

EfJ = Ezoej(k‘ IAz+kyJAy
Hf; 12 = H, el k=s187+ky (J-1/2)0y
HY \pps = H, eltkeI-1/2)Az+kyJ 0y

Substituting these expressions to (5.1)-(5.3) and applying Euler’s identity, we get

, na—1 na-—1
N = el X o sli + UDAD + 5 37 ol einlhls + 1/2)29)

Thus, A is a pure imaginary, which can be bounded for any wavevector k = (k, ky):

na-1
- 2 (“ZO la(i)]) \/(Ax)2 (A 2 < I'mag(A)
nig—1 , 1
S 2C ( ',go Ia(l )I) (AI)Z + (Ay)2 b (5'5)

where ¢ = 7}“—( is the velocity of the light in the modeled medium.

Numerical stability is maintained for every spatial mode only when the range of eigen-
values given by (5.5) is contained entirely within the stable range of time-differentiation
eigenvalues given by (5.4). Since both ranges are symmetrical around zero, it is adequate

to set the upper bound of (5.5) to be smaller or equal to (5.4), giving:

na=1 |, l 1 1 (5.6)
c (3% 1e() /@ + @
For Az = Ay = A, the above stability criterion gives
A A
Ats_ < —_— 5.7
S-MRTD £ st = 4SS5 (5.7)
It is known [10] that
1

Atrprp < - - ) (5.8)

c\/iA:i! + iAyi’
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which gives for Az = Ay = A

A
Atpprp £ — . (5-9)

cv2
Equations (5.7)-(5.9) show that for same discretization size, the upper bounds of the time-
steps of FDTD and S-MRTD are comparable and related through the factor s. The stability
analysis can be generalized easily to 3D. The new stability criteria can be derived by the
equations (5.7) and (5.9) by substituting the term /2 with /3.

More complicated expressions can be derived for the maximum allowable time-step for
schemes containing scaling and wavelet functions. For simplicity and without loss of gener-
ality, it is assumed that the stencil size is equal for all three summations (n, = ny = n. = n).
The upper bound of the time-step for the 2D MRTD scheme with 0-resolution wavelets to
the one (x-direction) or two directions (x- and y-directions) for Az=Ay=A is given by

A

AlWoS-MRTD,maz = swosm
with
s 2

WoS =
\/3(2," la])? + (i 1bol)? + 2(Zi [col)? + (Zir le + bol)v(2ur [a — o[)? + 4(2 s [col)?
and
A
Atw,Wy—MRTD,maz = swowom
with
2

SWoWo

VAT lal)? + 2T 1Bol)? + 4T leol)? + 2T [a + bo) (g 12 = BaE T Aoy [eo])?

where the notation

n-1
D olzl= > l=(k)|
kl

k'=0

has been used.
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It can be observed that the upper bound of the time step depends on the stencil size
Tiq, My, M. This dependence is expressed through the coefficients sss, sw,s, swow,, Which
decrease as the stencil size increases . (Figure 5.1) shows that sss practically converges to
the value 0.6371 after n, > 10 and sw,s = 0.3433 and sw,w, =~ 0.2625 for n, = ny = n, >

10. The expression of sss can be easily derived by the expressions of sw,s and sw,w, by

zeroing out the effect of bg,co.

5.3 Dispersion Analysis

To calculate the numerical dispersion of the S-MRTD scheme, plane monochromatic
traveling-wave trial solutions are substituted in the discretized Maxwell’s equations. For

example, the E, component for the TM? mode has the form

kEiJ = E. ej(k,[Ax-f-k,JAy—kat)
y 2o

where k. and k, are the x- and y- components of the numerical wavevector and w is
the wave angular frequency. Substituting the above expressions into Eqs.(3.36)-(3.38), the
following numerical dispersion relation is obtained for the TM* mode for the S-MRTD

Scheme after algebraic manipulation

Na—1

P = [ ( Y a(i)sin(ksli+1/2)A2)]?

/=0

1 'n(“’_Af
nag—1

+ [Aiy(za(j')sin(kym 1/2)Ay))]? (5.10)
j'=0

For square unit cells (Az=Ay=A) and wave propagating at an angle ¢ with respect to

x-axis (k; = k cos¢ and ky = k sin¢), the above expression is simplified to
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Ng-1
[cA sin(Z 2“ 2 = (D a(i') sin(k coss (' + 1/2) A))?
/=0
ng—1
+ (X a(y) sin(k sing (7' +1/2) A))? (5.11)

3'=0

This equation relates the numerical wavevector, the wave frequency, the cell size and
the time-step. Solving this numerically for different angles, time-step sizes and frequencies,
the dispersion characteristics can be quantified.

Defining the Courant number ¢ = (cAt)/A and the number of cells per wavelength
n; = ARear/A and using the definition of the wavevector £ = (27)/Anuas the dispersion

relationship can be written as

ng—1

[% sin(r ¢ [n)F = [ a(i’) sin(r u (2 + 1) cos¢ [n)]?
t'=0
ng—1

+ [Z a(j") sin(m u (2§’ + 1) sing /n)J (5.12)

i'=0

where v = Argar/ANUM is the ratio of the theoretically given to the numerical value of
the propagating wavelength and expresses the phase error introduced by the S-MRTD algo-
rithm. To satisfy the stability requirements, q has to be smaller than 0.45 (= 0.6371/v2)
for the 2D simulations.

The above analysis can be extended to cover the expansion in scaling and 0-resolution
wavelet functions in x-, y- or both directions.

The general dispersion relationship is

(C4Cs + C5Cs)? (C1C2 + CoC3)?
A + B ]

E (€101 + €10+ CiCa+ CsCs) + (A7
Eya 2 201 11 _
+(€) (C1C2 4+ C1C3)*(C4Cs + CsCs) (A + B) F = 1 (5.13)
with
1 1
F=1 - (B0 + CCa)lP5 - [E(CACs + CsColP 5
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Scheme Cl Cz C3 C4 Cs Ce

#0( 0 | 0 [#0] 0 | 0

WoS |#0] 0 | 0 |#0]|#0][#0

SWo |#0|#£0|#0]|#0]| 0 | 0

WoWo |#0|#0|#0|#0|#0|#0

Table 5.1: Coefficients C; for Different MRTD Schemes

. The C; are defined by

C1

C,

Cs

Cy

Cz

Cs

- [g(czc2 + C3C3 + CsCs + CeCo)

1- %(CICI + C2C2 + CsCs + CsCs)

1-gqa+aa+aa+@@)

AL S5 o )sin(ky (7' + 1/2)A)

pAsm(wAt/2)
At

i'=0

B ulsin(wAt/2) ,g) bo(#')sin(

Z co(7")sin(kyj'A)

uAsm(wAt/Q) o

uAsm?wAt/Q) Z bo(7")sin(ky(5’ + 1/2)A)

At
uAsm(wAt/2) Z

At
uAsm(wAt/Z)

At

a(i)sin(k-(i' + 1/2)A)

Z co(?')sin(k-i'A)

k=(i + 1/2)A)

(5.14)

(5.15)

(5.16)

Eq.(5.13) can be applied to the dispersion analysis of SS (only scaling functions), WS

(O-resolution wavelets only to x-direction), SWy (0-resolution wavelets only to y-direction)

and WoWy (0-resolution wavelets to both x - and y- directions) following Table (5.1). In

case the C; # 0, it can be calculated by Eq.(5.16).

The above equation is solved numerically by use of Bisection-Newton-Raphson Hybrid
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Technique for different values of n,, ny, n. ni, ¢ and ¢q. (Figs.5.2-5.5) show the varia-
tion of the numerical phase velocity as a function of the inverse of the Courant number
1/s=1/q for stencil sizes nqa = ny = n. = 8, 10,12, 14. For each figure, three different dis-
cretization sizes are used: 10 cells/wavelength (coarse), 20 cells/wavelength (normal) and 40
cells/wavelength (dense). The results are compared to the respective values of conventional
FDTD. It can be observed that the phase error for F.D.T.D. decreases quadratically. The
variation of the phase error in M.R.T.D. exhibits some unique features. Though for any
stencil size the numerical phase error for M.R.T.D. discretization of 10cells/) is smaller
than that of the F.D.T.D. discretization of 40cells/A, the M.R.T.D. error doesn’t behave
monotonically [63]. It decreases up to a certain discretization value and then it starts in-
creasing. This value depends on the stencil size and takes larger values for larger stencils.
For example, this value is between 10 and 20 cells/A for stencil equal to 10, between 20
and 40 cells/A for stencil=12 and very close to 40 cells/A for stencil=14 and can be used
as a criterion to characterize the discretization range that the M.R.T.D. offers significantly
better numerical phase performance than the F.D.T.D.

The phase error caused by the dispersion is cumulative and it represents a limitation
of the conventional FDTD Yee algorithm for the simulation of electrically large structures.
It can be observed that the error of S-MRTD is significantly lower, allowing the modeling
of larger structures. FDTD is derived be expanding the fields in pulse basis. As it is well
known the Fourier transform of the pulse is a highly oscillating Si(x). On the contrary, the
Fourier transform of the Battle-Lemarie Cubic spline is similar to a low-pass filter. That
"smooth” spectral characteristic offers a much lower phase error even for very coarse (close
to 3-4 cells/A) cells.

By using a larger stencil n,, the entire-domain oscillating nature of the scaling functions
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is better represented. Thus, smoother performance for low discretizations (Fig.5.6) and
lower phase error for higher discretizations (Fig.5.7) is achieved as n, increases from 8 to
12. Wavelets contribute to the improvement of the dispersion characteristics for even coarser
cells (close to 2.2-2.4 cells/)\) as it is demonstrated in (Figs.5.8-5.13). For discretizations
above 4 cells/ A the effect of the wavelets is negligible. (Fig.5.11) and (Fig.5.13) show clearly
that the phase error has a minimum for a specific discretization (17 for n, = 10 and 25 for
ne = 12).

(Figs.5.14-5.17) show that for discretizations smaller than 30cells/A the choice of the
Courant number affects significantly the dispersion performance which starts converging to
the minimum numerical phase error (0.8 deg/A for n, = ny = n. = 10 and 0.2 deg/\ for
n, = np = n. = 12) for 1/q close to 10. On the contrary, the F.D.T.D. dispersion is almost
independent of the Courant number (Figs.5.18-5.19).

It has been claimed in [64] that the S-MRTD Scheme is slightly oscillating and its
performance is only comparable with the 14** order accuracy Yee’s scheme. Though this
is true for the S-MRTD schemes with stencil size of 8, the comparison of the dispersion
diagrams of Yee’s FDTD scheme, Yee’s 16th order (H.F.D.-16) and 22th order (H.F.D.-22)
and S-MRTD and Wo-MRTD schemes with different stencils leads to interesting results.For
comparison purposes, the values of At = Atp,,:/5 and Atper = 0.368112A!/c have been
used and all the dispersion curves are subtracted by the linear dispersion relation for 1D
simulations. (Fig.5.20) shows that the S-MRTD scheme with stencil 10 has a comparable
performance to the 16th order Yee’s scheme. The enhancement of the wavelets for the same
stencil improves significantly the dispersion characteristics of the MRTD scheme increasing
the dynamic range of w by approximately 90% and comparing favorable even to the 22th

order Yee's scheme. This is expected due to the fact that the scaling+wavelet basis spans
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a larger ("more complete”) subspace of R than the scaling functions alone. Both S-MRTD
and Wo-MRTD schemes have identical numerical phase errors up to the point that the
S-MRTD scheme starts diverging (Fig.5.21). As the stencil size of the Wo-MRTD scheme
is increasing from 6 to 12 (Figs.5.22-5.23), the oscillatory variation of the phase error is
diminishing to a negligible level generating an almost flat algorithm similar to the higher
order Yee's ones.

As a conclusion, due to the poor dispersion performance of the FDTD technique even
for 10 cells/wavelength a normal to coarse grid is always required to avoid significant pulse
distortions especially for the higher-spatial-frequency components. MRTD offers low dis-

persion even for sparse grids very close to the Nyquist limit.

5.4 Conclusion

The stability and the dispersion performance of the recently developed Battle-Lemarie
MRTD schemes has been investigated for different stencil sizes and for 0-resolution wavelets.
Analytical expressions for the maximum stable time-step have been derived. Larger sten-
cils decrease the numerical phase error making it significantly lower than FDTD for low
and medium discretizations. Stencil sizes greater than 10 offer a smaller phase error than
FDTD even for discretizations close to 40 cells/A. The enhancement of wavelets further
improves the dispersion performance for discretizations close to the Nyquist limit (2-3
cells/wavelength) making it comparable to that of much denser grids, though it decreases

the value of the maximum time-step guaranteeing the stability of the scheme.
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CHAPTER 6

Development of a Space- and Time-Adaptive MRTD
Gridding Algorithm for the Analysis of 2D Microwave

Dielectric Geometries

6.1 Introduction

In CH.4, the MRTD Technique has been applied to a variety of homogeneous microwave
problems and has exhibited significant savings in memory and execution time. Nevertheless
the most important advantage of this new technique is its capability to provide space and
time adaptive gridding without the problems that the conventional FDTD is encountering.
This is due to the use of two separate sets of basis functions, the scaling and wavelets and
the capability to threshold the field coefficients due to the excellent conditioning of the for-
mulated mathematical problem. In this Chapter, a space/time adaptive gridding algorithm
based on the MRTD scheme is proposed and applied to nonhomogeneous waveguide prob-
lems. As an example, the propagation of a Gabor pulse in a partially-filled parallel-plate
waveguide is simulated and the S-parameters are evaluated. Wavelets are placed only at

locations where the EM fields have significant values, creating a space- and time- adaptive
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dense mesh in regions of strong field variations, while maintaining a much coarser mesh
elsewhere. The modification of the 2D MRTD algorithm to include dielectric variation is

presented and wavelet thresholding approaches are compared and evaluated.

6.2 The 2D-MRTD Nonhomogeneous scheme

6.2.1 The 2D-MRTD scaling and wavelets scheme

For simplicity the 2D-MRTD scheme for the T M, modes will be used herein. To derive
the 2D-MRTD scheme, the field components are represented by a series of cubic spline
Battle-Lemarie ([30] scaling and wavelet functions up to the rp.z-resolution to the longi-
tudinal direction in space and pulse functions in time in a similar way to CH3. Due to the
entire domain basis functions, D of one cell is related to E values all over the neighboring
cells. To circumvent this problem, the CurlD equations have to replace the CurlE equations
and then the E-coefficients have to be calculated from the D-coefficients in a mathematically
correct way. After inserting the field expansions in Maxwell’s equations, we sample them
using pulse functions in time and scaling/wavelet functions in space domain.

As an example, sampling 3D, /0t,= — dH,/3z in space and time, the following equa-

tions are obtained
]

m
1 ¢z Pz
E(k+1Dl+l/2,m = kDi1/2m) = ( Z %(‘)k+1/2 Hl+1/2 m4i+1/2
;—-mg
Tmaz 27~—1 &rp é v
. rp¥Y
+ Z Z Z awr,p(')’ﬂ-l/? Hl+1P/2.m+i+(2p+l)/2"+l) ’ (6.1)
r=0 p=0 ;,__ ¢
$r.p
_1_ Dtb,.l 1T 'IJ"'-P'I _
At ( ka1 1+1/2,m+(2p'+1) 27"+~ K I+1/2.m+(2p'+1)/2"+‘) -
mor'®

1 2 111 ' 0
- _A_y E (‘)k+1/2 Hl+1/2 m+i+1/2
[

. ! pl
= ‘"1o
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L SV
m P
Tmax 2"—1 ¥r,p

¢H, . Yrpy
+ Z Z 2 “vpr,:'(‘)kﬂﬂHl+172.m+i+(2p+1)/2'+‘) ’ (6.2)

r=0 p=0 . Yot o
t=-m
$r.p

where lef.fn and ka'fn with £=¢ (scaling),¥r, (wavelets of r-resolution at the p-position
of the cell) are the coefficients for the electric and magnetic field expansions . The indices
l,m and & are the discrete space and time indices, which are related to the space and time
coordinates via z = [Az,z = mAz and t = kAt, where Az,Az are the space discretization
intervals in x- and z-direction and At is the time discretization interval. The coefficients

ag(i), aﬁ°'°(i), af;o . (1) a,fg'z(i) are derived in a similar way to CH.3. For an accuracy of 0.1%

the values mg =10-12 and m:°'° = mﬁo'o = m:f::g = 8 — 12 have been used when only the

0-resolution of the wavelets was applied.

6.2.2 The PML numerical absorber

For open structures, the perfectly matched layer (PML) technique can be applied by
assuming that the conductivity is given in terms of scaling and wavelet functions instead of
pulse functions with respect to space [66]. The PML is characterized by artificial electric
and magnetic conductivities £ and ¢/, which satisfy the relationship

9 _ 9 _ 9D (6.3)

for each cell with constitutive parameters (e,u,). The spatial distribution of the magnetic
conductivity for the absorbing layers is modeled by assuming that the amplitudes of the
scaling and the wavelet functions have a polynomial distribution (linear, parabolic, ...)
and by sampling this distribution with scaling and wavelet functions (Eq.(3.79)). It has
been observed that the parabolic distribution is the most computationally efficient. For
multidielectric non-magnetic structures, the electric conductivity is given from the above

relationship assigning the appropriate . The MRTD mesh is terminated by a perfect electric
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conductor (PEC) at the end of the PML region. Following a procedure similar to (3.4.3)

the equations for the D, scaling components in the PML region are given by

na—1
T, 00 = —a’ At/(o o -0.507,At/e
k1D 5 = kD2 p;—€ b °€ Ay( ,Z a( k412 H l—l/2.J+J'+1/2
=—nq
Tmazx 2" -1 ¢rp

¢ : Dr,
+ Z > Z @y, o (k172 H?—1/23+j’+(2p+1)/2'+1) »(6-4)

r=0 p=0 ji—_m$
Similar equations can be obtained for the wavelet equations. For the simulations pre-
sented in this paper, there are used 24 cells of PML medium with oy for designated
Rmaz=1.e-6 for MRTD (coarser mesh) and for Rnq-=1.e-7 for FDTD (4 times/dimension

finer mesh) which provide reflection coefficients in the region of -80 to -90 dB.

6.2.3 The Excitation Implementation

In order to implement an excitation Ep(t) at z = mAz and to obtain an excitation
identical to an FDTD excitation (pulse excitation with respect to space), the space pulse is

decomposed in terms of sca.ling and wavelet functions.
Tmaz 27—1 (!l’rp

¢ESS = Ep(kAt)( Z o bmiit Y. 50 Y cunp(NU5) (6.5)

i=—Co r=0 p=0 i=—(y,,
where the coefficients c4(2), cyy,(3), €y, (i), €y, 2 (i) (Wavelets of 0- and l-resolutions) are
given in Chapter 3. For ¢ < 0 it is cy(—1t) = cg(?), Cyo, (1) = Cyo, (=1 = 1), ¢y,,(3) =
Cyy,(—1—1) and €y 2 (1) = ¢y, ,(—1-1). The above excitation components are superimposed
to the field values obtained by the MRTD algorithm for the same time step. For example,

the total kEd’ m+; Will be given by

tEgd|, = Er(kAt) co(i) + EE,y; (6.6)

It has been observed that the minimum limits of the summations for an accuracy of 0.1%

are (4 = (yyo=4 and (y, , = (y,, =3 for the first 2 resolutions of the wavelets (rpqz=1).
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Similar accuracy can be observed when the scaling function at the excitation cell is
set equal to the value of the excitation function Er(t). No superposition is used and the
field scaling and wavelet values elsewhere are given by the MRTD equations. The wavelet
coefficients are excited through the coupling of the discretized MRTD equations. In the
following numerical simulations the latter excitation technique was employed since it adds

significantly smaller computational overhead.

6.2.4 The Modelling of Dielectrics

Starting from the constitutive relationship D = ¢E for the total electric field at one
mesh point and sampling the scaling and wavelet components with a similar way to (A) we

reach the following equations for D,

l¢ Tmaz 27—-1 Ii'rp
4 Yr,
DU = D0 calUELp+ D0 D0 X € dliREE S (6.7)
==y r=0 p=0 j'=~ly,_ rp
and
ot o1 Lo Tmar 2"—1 6"1';7 " ) "
kDI = D et (i WES i+ 22 30 X ey URE (6.8)
J'=—€s r=0 p=0 J'——f‘,rp
where
[o o]
i) = [ eon(ebuap(2)dz (6.9)
—00
oQ
3P = [ et (a)ds (6.10)
o 17
i) = [ W] (D)ney(2)az (6.11)
-0
o0 '~
&hr )= [ B @iz (6.12)

Equations (6.7) and (6.8) can be written in a compact form

[D] = [@E)] (6.13)



For geometries with dielectrics varying from air (e,=1) to Si (¢,=2.56), it was observed that
the above summations can be truncated for lg=ly, , =64 =&y, , =6 when only one resolution of
wavelets (r;,,,=0) was used. Also, the integrals can be approximated by finite summations
of 10 cells on each side of the central cell (k-cell).

Due to the orthogonality relationship between the scaling and the wavelet functions,
for uniform dielectrics (constant € throughout the integration domain) these integrals are
simplified to cgd = €b;p, ci';"’ = cz,.:_,: = 0 and 632',’,’,,.1(1') = €6y, 0, ,6i0 and [€]
becomes a diagonal matrix. For structures containing dielectric discontinuities, none of
these integrals have a zero value. In this case, the whole geometry has to be preprocessed
before the initialization of the time loop and coefficients cﬁd, ci'i"’, czrl'pl,cii',;, 4 have to be
assigned to any cell (m,n) and included in the matrix [€]. For each cell the amplitude of
these coefficients is compared to the amplitude of the self-term czd(i). If all coefficients are
below a threshold (usually < 0.1%), they are set to zero and this cell is exempted from
the following inversion, otherwise it is included in a new submatrix. This submatrix has
significantly smaller dimensions than [€] (usually < 10%) and contains only cells close to
dielectric discontinuities. The inverse of this matrix is used for the calculation of the E

from the D values for each time step. The inversion takes place only once, thus it adds only

negligible computational overhead to the algorithm.

6.2.5 Total Field Calculation

Due to the nature of the Battle-Lemarie expansion functions, the total field is a sum-
mation of the contributions from the non-localized scaling and wavelet functions. For ex-
ample, the total electric field E (z,, 2,,t,) With (1 — 1)Az < z, < iAz, (j - 1/2)Az <

zZ, < (J+1/2)Azand (k—1/2)At < t, < (k+ 1/2) At is calculated in the same way with
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[31, 58] by
lzo

Iz
Er(z0,20,t) = Z Bivir—1/2(%0) ( Z kE?:i'_l/z'j+j'¢j+j'(ZO)

==l J'==l:e

rmas 27=1 lze(rp)

'pr,pl' r.p
F 3 S B s )
r=0 p=0 j'==l;y(rp)

(6.14)
where ¢;(z) = #(& — i) and ¢['P(z) = ¢I(E& - p) = 27/2 ¥2(2" & — p) represent the
Battle-Lemarie scaling and r-resolution wavelet function respectively. For an accuracy of

0.1% the values Iy = l.4 = l,4(0,0) = 4 have been used.

6.2.6 Time-Adaptive Gridding

The Multiresolution Analysis is based on the fact that the wavelets increase the local
resolution of the expansion. Each added wavelet resolution virtually is equivalent to the
use of a denser grid with half cell size. In addition, wavelets have significant values close to
discontinuities or near regions of fast field variation, since they contain only high frequency
spatial components. There are many different ways to take advantage of these wavelet
characteristics in order to create a space and time adaptive gridding algorithm. In Digital
Signal Processing, thresholding of the wavelet coefficients over a specific time- and space-
window (5-10 points) contribute significant memory economy (factor between 4-8 in com-
parison to scaling-only expansions), but increase the implementation complexity and the
execution time. Sometimes the added computational overhead is greater than the previous
execution time.

The simplest way to create a dynamically changing grid is to threshold the wavelet
components to a fraction (usually < 0.1%) of the scaling function at the same cell (space

adaptiveness) and/or to an absolute threshold (usually 0.0001 or a number smaller than
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1/10000 of the peak of the excitation time-domain function). This comparison is repeated
for each time-step (time adaptiveness). All components below this threshold are eliminated
from the subsequent calculations. Th is is the simplest thresholding algorithm. It doesn’t
add any significant overhead in execution time (usually < 10%), but it offers only a moderate
(pessimistic) economy in memory (factor close to 2). Also, this algorithm allows for the
dynamic memory allocation in its programming implementation by using the appropriate
programming languages (e.g. C).

The principles of the dynamically changing time- and space-adaptive grid are demon-
strated in (Fig.6.1). A pulse is propagating from the left to the right in a partially filled
parallel plate waveguide. For t=0, the wavelets are localized at the excitation area. They
follow the propagating pulse (t before the incidence to the dielectric interface) creating a
moving dense subgrid. After the pulse has been split in reflected and transmitted pulses,
the wavelets increase the grid resolution only around these pulses. Elsewhere the wavelet

components have negligible values and are ignored.

6.3 Applications of 2D-MRTD

6.3.1 Air-Filled Parallel Plate Waveguide

The 2D-MRTD scheme is applied to the analysis of an air-filled parallel-plate waveguide
with width 4.8 mm. The front and back open planes are terminated with a PML region
of 22 cells and 0%~ calculated for designated Rpyqr=1.e-7. The waveguide is excited with
a Gabor function 0-30GHz along a vertical line next to the PML region. A Gabor exci-
tation is propagating for a distance of 2,000 mm. For the analysis based on Yee’s FDTD
scheme, a 4 X 1120 mesh is used resulting in a total number of 4480 grid points. When

the structure is analyzed with the 2D-MRTD scheme, a mesh 2 x 160 (320 grid points) is
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chosen (dz = 0.24),, dz = 0.42), for f = 30GH:z). This size is based on the number of
the scaling functions, since the wavelets are used only when and where necessary. The time
discretization interval is selected to be identical for both schemes and equal to the 1/4 of
the 2D-MRTD maximum At. For the analysis we use 3,000 time-steps. The longitudinal
distance is chosen such that no reflections would appear before the Gabor function is com-
plete and the schemes dispersion performance can be evaluated. The normal electric field
E; is probed at three different locations and the results are plotted in (Fig.6.2) showing
only minimal dispersion.

The capability of the MRTD technique to provide space and time adaptive gridding is
verified by thresholding the wavelet components to the maximum of the 0.01% of the value
of the scaling function at the same cell for each time-step and the absolute threshold of 10~°.
The use of the absolute threshold enhances the efficiency of the algorithm for very small field
values. It has been observed that the accuracy by using only a small number of wavelets is
equal to what would be achieved if wavelets were used everywhere. Though this number is
varying in time , its maximum value is 122 out of a total of 320 to the z-direction (economy
in memory by a factor of 5.1 to the z-direction) as it can be observed from (Fig.6.3). In
addition, execution time is reduced by a factor 3-4. The principle of the space-adaptive grid
is exhibited at (Fig.6.4) which represents the E field distribution at t=1000 time steps.
The wavelets have a significant value only at the region of the propagating pulse, thus

creating a locally dense grid.

6.3.2 Parallel-Plate Partially Filled Waveguide

The second structure analyzed with the MRTD algorithm was the geometry of (Fig.6.5).

A Gabor pulse 0-30 GHz is propagating from the left (air region) to the right (region
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with €, = 2.56). PML regions of 16 cells with 0g?* calculated for designated Rmq-=1.e-7
terminate the grid and wavelets of 0-resolution are used in the longitudinal direction. The
reflection coefficient Sy; is calculated by separating the incident and the reflected part of
the probed field and taking the Fourier transform of their ratio (Fig.6.6). Similar accuracy
can be obtained for a 4x640 FDTD grid and a 2x80 MRTD grid with relative threshold
0.01% and absolute threshold 10~3. The maximum number of wavelets used is 36 (Fig.6.7)
offering an economy in memory by a factor of 6.53 in comparison to the FDTD simulations
for the longitudinal (z) direction. The results for 5 GHz (TEM propagation ) are validated
by comparison to the theoretical value obtained applying ideal transmission line theory [67]
and are plotted at Table (6.1).

The time- and space-adaptive character of the gridding is exploited in (Fig.6.8) which
show that the wavelets follow the reflected and the transmitted pulses after the incidence to
the dielectric interface and have negligible values elsewhere. The location and the number
of the wavelet coefficients with significant values are different for each time-step, something
that creates a dense mesh in regions of strong field variations, while maintaining a much

coarser mesh for the other cells.

6.3.3 Parallel-Plate Five-Stage Filter

The last structure analyzed with the variable grid is the 5-stage filter of (Fig.6.9). A
Gabor function 0-4GHz is propagating from the left to the right. The input and output
stages have ¢, = 12.5 and the intermediate stages have ¢, = 50.5 (stages with d; = ds =
0.5mm and d3 = 2mm ) and ¢, = 1. (stages with d; = d4 = 14.mm). The total length
to the longitudinal direction is 600 mm and to the vertical 4.8 mm. PML regions of 16

cells with o** calculated for designated R, = l.e — 7 terminate the grid and wavelets
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of O-resolution are used to the longitudinal direction. The structure is analyzed by using
an FDTD grid of 8x1600 cells, a scaling only MRTD grid of 2x400 cells and an adaptive
(scaling+wavelets) MRTD grid of 2x200 cells. The relative threshold has the value of 0.01%
and the absolute threshold equals to 10™%. The maximum number of wavelets required
during the 3,000 time steps of the simulation is 102 (Fig.6.10) , offering an economy by
37.25% in comparison to the scaling only grid and by a factor of 6.37 in comparison to
the FDTD scheme for the direction of wavelet expansion (z-direction). The accuracy in
the calculation of the S-parameters is similar for all three schemes as it can be observed
from (Fig.6.11). Again, the time- and space- adaptive character of the proposed gridding is

demonstrated in (Fig.6.12) with the E. field space distribution for t=1000 time steps.

6.4 Conclusion

A dynamically changing space- and time- adaptive meshing algorithm based on a mul-
tiresolution time-domain scheme in two dimensions and on absolute and relative thresh-
olding of the wavelet values has been proposed and has been applied to the numerical
analysis of various nonohomogeneous waveguide geometries. A mathematically correct way
of dielectric modeling has been presented and evaluated. The field distributions and the S
parameters have been calculated and verified by comparison to reference data. In compar-
ison to Yee’s conventional FDTD scheme, the proposed scheme offers memory savings by
a factor of 5-6 per dimension maintaining a similar accuracy. The above algorithm can be

effectively extended to three-dimension problems.
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S11 (R2) | Relative error

Analyt. Value [67] | 0.4298 0.0%
4x640 FDTD 0.4283 -0.3%
2x80 MRTD 0.4360 +1.4%

Table 6.1: §;; calculated by 2D-MRTD
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Figure 6.1: Time- and Space- adaptive grid.
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Figure 6.4: Adaptive Grid Demonstration (t=1000 steps).

Figure 6.5: Parallel-Plate Partially Filled Waveguide.
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CHAPTER 7

Time Adaptive Time-Domain Techniques for the Design of

Microwave Circuits

7.1 Introduction

In the previous Chapters, MRTD schemes based on cubic spline Battle-Lemarie scaling
and wavelet functions have been successfully applied to the simulation of 2D and 3D open
and shielded problems [31, 58, 70, 66]. The functions of this family do not have compact
support, thus the MRTD schemes have to be truncated with respect to space. Localized
boundary conditions (PEC’s, PMC’s etc.) and material properties are modelled by use of
the image principle and of matrix equations respectively. However, this disadvantage is
offset by the low-pass (scaling) and band-pass (wavelets) characteristics in spectral domain,
allowing for an a priori estimate of the number of resolution levels necessary for a correct
field modelling. In addition, the evaluation of the moment method integrals during the
discretization of Maxwell’s PDEs is simplified due to the existence of closed form expressions
in spectral domain and simple representations in space domain. Dispersion analysis of this
MRTD scheme shows the capability of excellent accuracy with up to 2 points/wavelength

(Nyquist Limit). However, specific circuit problems may require the use of functions with

151



compact support. Especially in the approximation of time derivatives, the use of entire
domain expansion basis would require very high memory resources for the storage of the
field values everywhere on the grid for the whole or a large fraction of the simulation time.
This problem does not exist in the approximation of the spatial derivatives since the field
values on the neighboring spatial grid points have to calculated and stored no matter what
expansion basis are used. For that reason, Haar basis functions have been utilized and
have led to [71]. As an extension to this approach, intervalic wavelets (Fig.7.1) may be
incorporated into the solution of SPICE-type circuits , especially those containing active
elements (PN Diodes, ...). Results from this new finite-domain expansion basis will be

presented in this Chapter .

7.2 Time Adaptive MRTD Scheme

The major advantage of the use of Mutiresolution analysis to time domain is the capabil-
ity to develop time and space adaptive schemes. This is due to the property of the wavelet
expansion functions to interact weakly and allow for a spatial sparsity that may vary with
time through a thresholding process. The adaptive character of this technique is extremely
important for the accurate modelling of sharp field variations of the type encountered in
beam focusing in nonlinear optics, etc. The use of the principles of the multiresolution
analysis for adaptive grid computations for PDEs has been suggested by Perrier and Basde-
vant [72]. To understand the fundamental steps of such an adaptive scheme for Maxwell’s

hyperbolic system, let’s consider Maxwell’s equations in 2D (1 for space and 1 for time):

- 0 —¢(z)" 12
(Z)_::‘ = Au = 7% @, @=(E(zt),H(zt)T (7.1)
~u(z)' £ 0

After manipulation, the above equation can be written as
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eTiD, T}D.
Mzi = =0
zZ!D, uzlD,
where Zj, T}, are half shift operators for space and time coordinates z,t and Z f, T,I are their

Hermitian conjugates. D;, D, are difference operators given by:

8 9 9

D, = Klt'(‘.__\;_g ST~ 3 aul@T ™), D= i(‘g—;g (D274 aelZ7)

(7.2)
where a4,ay are the coefficients associated with the scalar and the wavelet functions re-
spectively. At each time step we keep both the wavelet field values that are larger than a
given threshold as well as the adjacent values. An adjacent wavelet field value is defined
on the basis of the wavelet resolution level(s) incorporated in the solution. Recently, an
efficient space/time adaptive meshing procedure was proposed [73] for Battle-Lemarie ex-
pansion functions. In this chapter, intervalic 0-order wavelets are used for the expansion of

the fields and a simple thresholding procedure is employed. The adaptive mesh is applied

to a variety of circuit problems and results are discussed in the next section.

7.3 Applications in SPICE problems

For simplicity, the 1D MRTD scheme will be derived. It can be extended to 2D and 3D
in a straightforward way. In addition, only the O-resolution of wavelets is enhanced. The
Voltage and the Current are displaced by half step in both time- and space-domains (Yee
cell formulation) and are expanded in a summation of scaling functions in space and scaling

(¢) and wavelet (¢p) components in time

(= o0

V(z,t) = 3 3 (VRei(t) + VP %0i(t)) ém(2)

I(z,t) = Y Y G-oslP_o50i-05(t) + i-0.512 o.5%0.-05(t)) Sm—os(z) (7.3)

M==00 {=--00
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where ¢;(t) = ¢(t/At — 1) and 9gi(t) = ¥o(t/At — i) represent the 0-order intervalic scaling
and O-resolution wavelet functions. The conventional notation V;, is used for the voltage
component at time ¢ = kAt and z = mAz, where At and Az are the time-step and the
spatial cell size respectively. The notation for the current I is similar.

Due to the finite-domain nature of the expansion basis, the Hard Boundary conditions
(Open/Short Circuit) can be easily modeled. If a Short Circuit exists at the z = mAz, then
both scaling and wavelet voltage coefficients for the m — cell must be set to zero for each
time-step k.

(Ve = V¥ =0, £=0,1,2,... (7.4)
Similarly, an Open Circuit at z = (m — 0.5)Az can be modeled by applying the conditions
k—O.SIS;_O,s = k—O.SI:bno_o,s = 0’ 9k = 01 17 21 eee (7'5)

The alternating nature of the 0-resolution wavelet function guarantees the double time-
domain resolution of the MRTD scheme. Assuming that the voltage scaling and wavelet
coefficients at m = Az for a specific time-step k, two values can be defined for the time

span [(k — 0.5)At, (k + 0.5)At] of this time-step

Vet = VR 4V, te((k-05)AL, kA (7.6)
pVIeh = v3 b e (kAL (k+0.5)At] . (7.7)

7.3.1 Distributed Elements

Lossless Line

The ideal transmission line (Fig.7.2) equations are given by

dv dI
dz ~Ldis dt
dI dVv
o = —Cuis 7y , (7.8)



where Lg;,,Cais are the distributed inductance and capacitance of the line. Inserting the

expansions of Eq.(7.3) and applying the Method of Moments, the following MRTD equations

are derived
Cii 1
Ats (k+1Vrﬁ - kvrﬁ) = _E (k+0.511¢;+0.5 - k+0.5-[:1_0_5) (7-9)
Cai 1
A eVl =k V) =~ (kroslplos — keoshitos)  (7.10)
Lg; 1
At’ (k+0505 o5 — k-05l5_o5) = ~xz &V —kVE_)) (7.11)
Ly 1
Ad‘t’ (k05 o5 — k-0.5T0tgs) = - (V2o — V) (7.12)

It can be observed that Eqs.(7.9) and (7.11) updating the scaling coefficients only are
independent of the Eqs.(7.10) and (7.12) updating the wavelet coefficients. To create an
efficient time adaptive algorithm, all four equations must be coupled. An efficient way
is to apply the excitation in a physically correct manner. If the excitation has the time-
dependence g(¢) at the location z = m.Az, then the scaling and wavelet coefficients for this

cell have to take the values

(k+0.5)At
e = [ () eult) d
(k—0.5)At

(k+0.5)At

e = [ () ves() dt (7.13)
(k—0.5)At

To validate this approach, the MRTD algorithm was applied to the simulation of a lossless
transmission line with (Lgis, Cais) = (20nH/m,3nF/m) for a Gabor excitation and time-
step dt = dt;a:/1.01. (Fig.7.3) which displays the Voltage Scaling and Wavelet Coefficients
evolution at 2 = 200Az for the first 800 time-steps of the simulation, shows that the wavelet
coefficients have the correct shape (significant values only at areas with significant scaling
function values) and are close to the 12% of the respective scaling functions. (Fig.7.4)
which compares the total voltage value at z = 200Az calculated by FDTD (Sc.ONLY)

and MRTD (Sc.+Wav.) for the time-steps 357-362 demonstrates the ability of this MRTD
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scheme to double the conventional FDTD resolution in the time-domain by providing two
values for each time-step. The fact that the wavelet coefficients take significant values only
for a small number of time-steps allows for their thresholding by comparing them to a
combination of relative to the respective value of the scaling coefficient (5.e-4) and absolute
(1.e-6) thresholds. (Fig.7.5) proves that up to 60% of the maximum number of wavelet
coefficients are necessary for an accurate simulation, offering an extra economy in memory

by a factor of 20%.

Lossy Line

The lossy transmission line (Fig.7.6) equations are derived by the ideal transmission line

equations (Eq.(7.8)) adding the Conductor Loss Rg;, and the Dielectric Loss Gy;,

dv dI

E = —Rd:sI - Lduz

dI dav

7 = ~GdsV —Caisr . (7.14)

Following a procedure similar to the previous section, the following MRTD equations are

derived
C,-C C
Vi= - (—102—2) At (Ic+051¢+05 — k—0sl? m_o0.5) T ci At (k+051i+05 - k= osf"b_os)
1
(C1 —C2)?+ C3) C
+ 02 2 kV,ﬁ Cg V,,'f“
C Ci1+C
ka Vo = — Ci At (k4050 405 — k05T g5) — (10—22) At (kro5I 05 = k-0512 4 5)
1
, C Ci-Cy)? +C2
- g oSG
C C
k+0.51,d,:_o,5 = - (7—4—)' At (kV,ﬁ - kV¢_1) + C; At (kV""° - kV'&“ 1)
3
(C3 = Ca)? + C?) C'
+ C§ 4 k-0.54m_0.5 — 2 C_g k-0 51%_05
C Ci3+C
k05T o5 = — C; At (V2 - V) - (30—24) At (V2o — V)
3
02 Cs — Cy)? + C2
- C.3 k-0. 51¢_0_5 +( 3 Cfsz) 4 k—0.54m 0.5 ’
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with

Ci1=Cyu4:Az , Ca=0.5Gyi,Az At,

C3z = LgisAz , Cs4=0.5 Rg;sAz AL,

For this type of transmission line, the equations giving the scaling and wavelet coef-
ficients for voltage and current are coupled. Nevertheless, the condition (7.13) has to be
applied in order to satisfy the physical boundary condition at the excitation cell(s). It has
to be noted, that Eqs.(7.15)—-(7.18) can be used only for lossy lines with low to medium Loss
Coefficients. The threshold C, < 4C) for Gg;s (C4 < 4C3 for Ry;,) gave satisfactory results
for all simulations. For higher loss coefficients, the Loss can be modeled in an exponential
way similar to [66]. For example, for large values of Ry;s (C4 > C3), Eqs.(7.17)—(7.18) have

to be replaced by the following uncoupled expressions

) —Ryi At =0.5Ry, At At ¢
k1050 o5 = € Fas 4 osI® o5 —e  Lais ron (Ve - kV2_) (7.19)
—Rdl'lAl —O.SRdl:At At

k0500 05 = € Las g o5l os—e  Law (V¥ — Vo) (7.20)

Cs
Using this procedure, a termination layer similar to the FDTD widely used PML layer can
be easily modeled. The Rg;s, G4is should have a spatial parabolic distribution with very
high maximum value and they should satisfy the condition Ggais = RdisLais/Cuis for each
cell of the layer. In this way, one matched transmission line can be simulated by choosing
the appropriate Ryis,G4is that satisfy the specified numerical reflection coefficient (usually
smaller than -80dB).

For validation purposes, the MRTD algorithm was applied to the simulation of a lossy
transmission line with (Lgis,Cais) = (20nH/m,3nF/m) and (Rdis, Gais) = (0.1Q/m, l.e —
5Q~1/m) for a Gabor excitation [50 MHz, 100 MHz], 5,000 time-steps with size At =

0.79Atmaz and 4,000 cells with Az = 15¢m. (Fig.7.7(a)) which displays the Voltage Scaling
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and Wavelet Coefficients evolution at z = 1500Az for the first 1400 time-steps of the
simulation, shows that the wavelet coefficients have the correct shape (significant values
only at areas with significant scaling function values and approximately equal to the values
of the first derivative of the voltage spatial distribution) and are close to the 11% of the
respective scaling functions. Figs.(7.7(b))—(7.7(c)) which compare the total voltage value
at the same probe position calculated by FDTD (Scal.) and MRTD (Scal.+Wav0) for the
time-steps 1000-1400 and 1103-1107 respectively, demonstrate the ability of this MRTD
scheme to double the conventional FDTD resolution in the time-domain by providing two

values for each time-step.

7.3.2 Lumped Elements
Passive Elements

Lumped Passive Elements such as Capacitors, Inductors and Resistors can be modeled
in a similar way with the Distributed ones by numerically distributing them along one
cell. For example, if one lumped Capacitor Ciym is located at z = mAz along a lossy
line with (Rgis, Gdis, Ldis, Cais), the voltage coefficients r41V,8, r41V,¥0 will still be given
by Egs.(7.15)~(7.16). The only difference is that the constant C; will have the new value
C1 = Ceot Az with

Clum

Ciot = Clist + As . (7.21)

PN-Diode

To model lumped active elements such as a PN-diode, their nonlinear equation has to
be discretized after inserting the voltage and current expansions. The MRTD equations are

not linear and require the use of numerical solvers for nonlinear systems. The combined
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Newton-Raphson/Bisection solver has provided stable solutions for PN-diode simulations
with I < l.e — 10A,though sometimes diverges for larger values. The voltage scaling and
wavelet coefficients for the diode cell are updated by inserting the voltage and current

expansion in the equation

Iprope(V) = Ip (e7/*T — 1) (7.22)

adding the diode capacitance C; to the Cg;, and applying the moments method, thus giving

the nonlinear system for a diode positioned in parallel

(Cs + Cuais) V2 + Cs kV¥ +(Cs — Cuais) k-1V3
- Cs V¥ 4+ -ﬁ—Z(k—o.sff;w.s — k-05l o)
+ 0.5 At C;(e<T/a ko (k=-1Vi —k-1Vi®) 4 okT/a fo (kv,‘,’.+kv,ﬁ°)) -0
(7.23)
—Cs Vg — (Cs—Cuis) kV2 +Cs k1 V2
- (Cs+ Ctum) k-1V2o + g(k—o.sfiﬂ.o,s — k0512 o 5)

+ 0.5 At Cj(efT/ako (k1 VP =1 Vil®) _ KT/q Iy (,‘v;,’;+,,v,;f°)) -0

(7.24)

with

Cs =05 At Glum - (7.25)

To validate the algorithm, the rectifier topology of (Fig.7.8) is analyzed using FDTD (Scaling
Only) with At = Atgnez/4.4 and MRTD (Scaling+wavelets) with double time-step At =
Atmar/2.2. A lossless line with (Lgis, Cais) = (20nH/m,3nF/m) and a PN-Diode with
Iy = 3pA are used in the simulation. The probed total voltage is plotted in (Fig.7.9)
and the agreement is very good. The use of an absolute threshold of 106 and a relative

threshold of 5e — 4 offers an extra economy of 35% for the MRTD algorithm.
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7.4 Discussion on the Values of the Absolute and Relative

Thresholds

The fact that the wavelet coefficients take significant values only for a small number of
time-steps allows for the development of a time adaptive gridding algorithm. One thresh-
olding technique based on absolute and relative thresholds offers very significant economy
in memory while maintaining the double resolution in time where needed. For each time-
step the maximum value of the voltage scaling coefficient over the whole grid is identified.
All wavelet components with values below a specific fraction (Relative Threshold) of the
above number are eliminated. To take into consideration the time-steps that the voltage
scaling components have a very small value (close to numerical accuracy of the algorithm),
an absolute threshold is introduced. Similar approach is used for the current wavelet co-
efficients. It has to be noted that the absolute threshold for the current components is a
scaled version of the absolute threshold for the voltage components in order to account for
their time-lag by half time-step as well as for their relationship through the wave impedance
of the respective medium(s). Different values of the relative and absolute thresholds are

investigated in Figs.(7.11)—(7.12) in terms of

Memory Compression(%) = # Wavelets(%)

Number of Wavelets above Thresholds

Total Number of Wavelets x 100%
(7.26)
and
Voltage iy — Voltage
Relative Error (%) = |[Voltagers) agenTh)ll2 ’ -~

[|Voltage(nenyll2

where Voltage(ry) and Voltage nyTh) are the total voltage values at the probe position at

z = 1500Az with and without the use of the thresholding algorithm and [|z||; = Zfiﬁo EAR
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is the norm-2 defined over the total number N, of the simulation time-steps. For the
simulations, it is used a lossy transmission line with (Lgis, Cyis) = (20nH/m,3nF/m) and
(Rdis, Gdis) = (0.12/m,1.e — 527! /m) for a Gabor excitation [50 MHz, 100 MHz], 5,000
time-steps with size At = 0.79A¢t,,,- and 4,000 cells with Az = 15¢m. Fig.(7.11) displays
the performance for relative thresholds between 10~7 and 3 x 10~2 and absolute threshold
of 10~7. For values below 3 x 10~¢ the Memory Compression is stabilized to 20% and
accuracy close to 0.01%, though for values above 102 almost no wavelets are used and the
additional accuracy offered by the wavelets is lost (accuracy =~ 11%). It can be observed
that in order to achieve accuracy below 1% a relative threshold below 5 x 10~ has to be
used. The best compromise between compression and accuracy can be achieved for Relative
Threshold between 10™* and 5x 10~* (Compression ~ 10% and Relative Error € [0.1%, 1%)].
In Fig.(7.12) the effect of the addition of the Absolute threshold is investigated for three
different values of Relative Thresholds. Absolute Thresholds with values between 10~ and
10~° for a Relative Threshold of 5x 10~* increase the memory compression to 6% — 7% while
maintaining a relative error below 1%. Thus, the values Relative Threshold = 5 x 10~4
and Absolute Threshold = 5 x 10~¢ have been found to have the optimum performance.
They offer a double resolution in time-domain in comparison to the conventional FDTD

scheme, while increasing the memory requirements only by 6% — 7%.

7.5 Conclusion

A Time Adaptive Time-Domain Technique based on intervalic wavelets has been pro-
posed and applied to various types of circuits problems with active and passive lumped and
distributed elements. This scheme, based on a combination of absolute and relative thresh-
olding, exhibits significant savings in memory requirements while maintaining a similar
accuracy with the conventional FDTD technique.
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CHAPTER 8

Conclusions

8.1 Summary of Achievements

The goal of this dissertation was to develop efficient time-domain numerical techniques
for the analysis and design of microwave circuits. The widely used FDTD Technique has
been used as the starting point. Various planar circuits and waveguide geometries have been
simulated and a memory-efficient waveguide absorber based on analytic Green’s functions
has been derived. This absorber has a similar performance to the PML absorber in terms of
numerical reflection, but requires significantly less memory resources. The S-parameters of
a specific waveguide probe structure have been calculated for a variety of critical geometrical
parameters and its performance has been optimized by use of the above absorber.

The most fundamental contribution of this Thesis is that the principles of Multiresolu-
tion Analysis have been employed for the first time in Time-Domain numerical techniques
and novel time-domain schemes based on field expansions in scaling and wavelet functions
have been derived (MRTD). FDTD implementation schemes (excitation, hard /open bound-
aries) have been extended to Multiresolution schemes maintaining similar performance char-

acteristics. Battle-Lemarie basis has been used for the expansion of field components in
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Space-Domain throughout the Dissertation due to their special properties.

The MRTD schemes have been applied to the simulation of 2.5D shielded and open
striplines and microstrips. In comparison to FDTD, they offer memory savings by a factor
of 4-5 per dimension for macroscopic parameters (dispersion, characteristic impedance) and
a factor of 2-3 per dimension for microscopic parameters (field distributions). In addition,
the execution time requirements are decreased by a factor of 4-5 for 2.5D and the accuracy
is comparable to FDTD. For geometries, where the edge effect is prominent, wavelets have
to be introduced in order to improve the accuracy of the local field representation. A
non-split formulation for the PML absorber for open structures has been derived and its
performance is similar to the FDTD split PML (numerical reflection smaller than -100db).
It has to be noted that due to the entire-domain character of the used basis, MRTD offer
the opportunity of a multi-point field representation per cell.

Stability analysis has provided analytical expressions for the maximum stable time-step
of the MRTD schemes. As far as it concerns dispersion, it has been proven that larger
summation stencils decrease the numerical phase error making it significantly lower than
FDTD for low and medium discretizations (up to 40 cells /A for stencil size of 10). The
addition of wavelets further reduces this phase error for discretizations close to the Nyquist
limit to values comparable to those of much denser grids, although it decreases the value of
the maximum stable time-step.

Analysis of various nonhomogeneous geometries with MRTD schemes based on Battle-
Lemarie expansion basis in Space-Domain have proven that wavelets can contribute to the
development of a space- and time-adaptive meshing. This is the most important and unique
feature of the Multiresolution Techniques!! Localized use of wavelets provides a zoom-in

and zoom-out capability as well as computational efficiency without introducing errors due
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to spurious numerical phase velocity mismatches. A combination of relative and absolute
thresholds for the wavelet values offers memory savings by a factor of 5-6 per dimension
without loss of accuracy in comparison to FDTD for 2D cases. The field distributions
and the S-parameters have been calculated and verified by comparison to reference data.
Arbitrary spatial distributions of the dielectric constant have been modelled in terms of
scaling and wavelet functions in a mathematically correct way. The algorithm can be easily
extended to 3D.

MRTD schemes based on expansion in Haar basis in the Time-Domain have been applied
to various SPICE-type geometries. Simulations of numerous circuit problems with active
and passive lumped and distributed elements have demonstrated the capability of these
schemes to provide a real-time time-adaptive time-domain gridding algorithm for circuit
analysis. Increased resolution in time-domain is achieved with significant savings in memory

while the accuracy is similar to that obtained with the conventional FDTD Technique.

8.2 Future Work

Considering the above list of achievements, future work on the MRTD schemes should
include the study of the effects of the enhancement of arbitrary wavelet resolutions for
schemes based on entire-domain and finite-domain expansion basis. In addition, different
functions should be tested and their performance for different geometries should be evalu-
ated. It has been shown that the dielectric interfaces can be modeled by use of entire-domain
basis by discretizing the constitutive relationship and inverting the matrix involved in the
resulting tensor equation. Different techniques for this procedure could be compared in
terms of efficiency in execution time as well as in terms of minimization of the dimension

of these matrices.
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As it was displayed in Chapters 6-7 dynamic gridding is achieved by a simple thresh-
olding algorithm. It might be useful to perform a systematic study on the relationship
between different thresholding schemes and the error of calculations in order to guarantee
a predefined accuracy and justify an a-priori choice of a relative and an absolute threshold.
The space- and time- adaptive grid could be a very promising tool for the analysis and
optimization of geometries used in High Frequency VLSI and in Wireless Communication
Systems. These geometries are characterized by large volumes and fine details, something
that makes almost impossible their simulation with uniform and conventional non-uniform
grids. On the contrary, MRTD schemes could employ coarse grids and use wavelets only

where a larger resolution is needed.
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