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CHAPTER 1

INTRODUCTION

In 1864 James Clerk Maxwell established his famous equations and predicted

the propagation of electromagnetic waves in free space at the speed of light. This

was later proved by Heinrich Rudolf Hertz who conducted the historical experiment

demonstrating the generation, propagation, and reception of radio waves. Inspired by

these profound events, numerous innovations and new applications using radio waves

instead of wirelines appeared in the first half of the 20th century, such as wireless

telegraph, broadcasting radio and television, navigation systems, and radar (radio

detection and ranging). After a relatively quiet period, wireless communication again

entered a splendid era in the 1990s with the advent of advances in digital communi-

cation technology and the prevalence of the internet. The ever-increasing demand for

personal mobile communications has been the underlying driving force. For example,

by mid-2000, more people in Europe had mobile phones than had personal comput-

ers or cars, and the number of cell phone subscribers in the U.S. reached about 118

million in 2001 [1]. Even bigger markets exist in developing countries such as China

and India. In addition, wireless data services are becoming more and more frequent

in our daily life. More and more people are using cell phones or PDAs (Personal Data

Assistants) to access the internet for weather, traffic, or stock information while on

the road. Using a laptop computer to surf the web or conduct M-commerce activity
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through WLAN or Bluetooth in university campuses or a Starbucks café is more often

seen. And subscribers to the satellite TV/internet or wireless local loop (WLL) in

residential areas just keep increasing.

The amazing beauty of wireless communication lies in the fact that information

is carried by an electromagnetic wave which propagates in free space and can po-

tentially reach anywhere in any direction and distance. This provides the advantage

of mobility and accessibility in that one or both communication ends are free from

being attached to fixed cables. Sensors in the most remote areas on Earth can com-

municate with others, and beyond the globe radio links between spacecraft, satellites,

space and ground stations are able to convey important information for various civil-

ian, scientific and military applications. Such flexibility comes at a price: wireless

communication channels involve complex environments inside which electromagnetic

waves are propagating. Such environments generally pose great challenges on the

wireless systems because:

• the waves propagating in these environments are not confined in space, as op-

posed to those in a transmission line;

• these environments usually contain numerous scatterers that interact with the

propagating wave in a very complicated manner, e.g. the buildings in a city,

trees, hills or mountains in rural areas, and rain drops in the atmosphere;

• often times the wireless channels are shared by multiple users, therefore wave

signals of any individual user are susceptible to interference from other users in

the same environment.

In order to overcome these constraints, in-depth knowledge of the wave propaga-

tion behavior in complex wireless channels is needed. Characterizing such behavior

by conducting physical measurements is extremely expensive and inefficient. How-

ever, the alternative of using physics-based modeling of wave propagation in complex

environments with fast computers in conjunction with Monte Carlo simulation has
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attained prominence in recent years [2, 3, 4]. These models allow for simulations

directly based on the physical environment, and give insight into the mechanisms

of radio wave propagation. Therefore these models inherently provide much more

accurate results compared to other heuristic empirical models, such as the Okumura

model [5], and oversimplified analytical models, such as the Longley-Rice model [6].

Also such a physics-based modeling methodology is more comprehensive and gen-

erally applicable to a broad class of wireless communication scenarios. In addition,

these computer-aided wave propagation models have the advantage of low-cost as

compared to conducting physical measurements. If all detailed features of the physi-

cal environment are captured and correctly represented, these models can essentially

run “experiments” in a virtual environment simulated on a computer. Not only sig-

nal power but also its phase, spatial and spectral correlation functions, and wideband

time domain response can all be characterized. The statistical nature of the wave

propagation channel can be accounted for by Monte Carlo simulation.

Despite significant progress in physics-based modeling of wave propagation for

wireless applications, there are still many at standing problems to be solved in order

to improve the propagation models both qualitatively and quantitatively. In this

dissertation, two very challenging problems related to wave propagation for wireless

systems are considered. One topic is related to the problem of wave propagation

in foliage which is often encountered in terrestrial communications. The other topic

involves enhancing the upward radio link between a ground station and a deep-space

spacecraft. Complex electromagnetic models are developed in this dissertation to

treat the wave propagation in random volumes and rough surfaces. These models are

needed in order to deal with the practical issues encountered in the above two wireless

applications in terrestrial and deep-space communications. The skills required to treat

these problems are essentially the same and that is why such two apparently disparate

problems are treated in a single dissertation. In the following sections the nature of
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wave propagation in foliage and deep-space communication are described in detail

and specific contributions of this dissertation to these problems are clearly presented.

1.1 Wave Propagation in Forested Environments

In many wireless systems such as land mobile communication systems as well as

microwave remote sensing systems, vegetation such as trees, bushes, and crops may

appear in the wireless channels. Channel characteristics need to be thoroughly stud-

ied if the accuracy of the system planning tools are to be improved and the spectrum

utilization optimized. Foliage can obstruct the line-of-sight between the transmit-

ter and receiver of a communication system or can obscure the view of a microwave

sensor such as a radar. Scattering and absorption of the propagating wave by nu-

merous foliage scatterers such as branches and leaves can significantly affect the wave

propagation behavior and hence the electromagnetic filed at the receiver or an obser-

vation point. The wireless channel becomes extremely complex in this case due to

the involvement of a forested environment. Existing empirical foliage channel mod-

els, such as the Weissberger model [7], are constructed from measured data under

specific environmental and system conditions, and are not directly connected to the

physical processes involved. Such limitations prevent these empirical models from

general use. On the other hand, commonly used analytical foliage models are gener-

ally oversimplified and have very limited regions of validity. For example, one type of

analytical model treats the foliage medium as dielectric slab(s) with constant permit-

tivity and conductivity and employs ray-based methods to capture direct, reflected,

and diffracted field components [8, 9]. In case the distance between the transmitter

and receiver inside the medium is large, a lateral wave that propagates along the air-

canopy interface has been shown to be very important [10]. However, such models are

essentially low-frequency models since the slab approximation for the foliage medium

is only valid at low frequencies (e.g. < 250 MHz).
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Recently, physics-based foliage wave propagation models have attracted signif-

icant attention by representing the foliage as a mixture of trunks, branches, and

leaves, while including all important mechanisms of radio wave interaction with these

discrete scatterers [11, 12, 13]. Each particle (scatterer) is described by a simple

geometry with complex permittivity and a spatial location as well as orientation.

The statistical nature of the forest structure can be realized by associating the size,

location and orientation of foliage scatterers with certain pre-assumed probability

density functions (PDFs). A more accurate representation of the forest medium has

been developed recently by using fractal geometry theory to generate realistic-looking

trees, and placing tree samples randomly into a specified area [14]. Both radiative

transfer and distorted Born approximation methods have been employed in the lit-

erature to compute the wave propagation inside a forested environment containing

discrete scatterers. Radiative transfer [15, 16] is a heuristic method based on the law

of energy conservation. This method only deals with power, therefore it supplies no

phase information and neglects any coherence effect [13]. In addition, the radiative

transfer method cannot be easily implemented for a forested environment, which is

a complex three-dimensional (3D) medium with plenty of large scatterers, due to

the lack of definition for the “unit volume” required by the integro-differential radia-

tive transfer equation (RTE). On the other hand, the distorted Born approximation

(DBA) method [11, 16] provides a better solution for modeling wave propagation in-

side forested environments. This method is based on stringent electromagnetic wave

theory and hence is more accurate in terms of providing the coherence effects and

phase information. Also DBA works quite well in dealing with large scatterers in the

complex forest environment.

Based on a fractal-tree generator and a DBA wave computation engine, and in

conjunction with a Monte Carlo simulation, a fractal-based coherent scattering model

(FCSM) has been developed in the Radiation Laboratory at the University of Michi-

5



gan [14], and been applied to a number of different problems [17, 18, 19]. A detailed

review of this model is given in Chapter 2 of this dissertation. Although it may be the

most accurate foliage wave propagation model by far, FCSM has its own limitations,

including:

• questionable applicability at millimeter-wave frequency range;

• extensive computation required for large distance wave propagation inside fo-

liage;

• unmodeled multiple-scattering components;

• complicated implementation and difficult access for use.

It is the intent of this dissertation to develop more accurate and simple-to-use foliage

propagation models by overcoming the above limitations of FCSM for many important

applications.

Enhanced FCSM at Millimeter-Wave Range

Wideband wireless communication and remote sensing systems at millimeter-wave

frequency are attracting more and more attention in recent years as a result of in-

creasing demand for high data rate wireless applications. Forested environments pose

a significant challenge for the operation of such systems. In order to assess the per-

formance of these high frequency wireless systems, an accurate foliage propagation

model at such high frequencies is required. The Weissberger model covers frequencies

from 230 MHz to 96 GHz, however this model is an empirical model based on limited

measured attenuation data carried out in several specific forest environments in the

U.S., and hence is not generally applicable. Several vegetation path-loss models based

on the radiative transfer method have been developed for millimeter-wave frequen-

cies [20, 21, 22]. These models are semi-empirical though, in the sense that they all

require input values of several model parameters based on measurement results. In

addition, the above millimeter-wave foliage models only provide power information
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while other important channel characteristics related to fields is not available. Wave

theory foliage models working at millimeter-wave frequencies have not been devel-

oped yet in the literature. Physics-based foliage models based on the DBA method

are only validated up to X-band [13]. It has been shown recently that applying the

existing DBA models such as FCSM at millimeter-wave frequency can cause signifi-

cant overestimation of the wave attenuation rate [23]. Such a limitation of FCSM is

related to Foldy’s approximation [16, 24] used to estimate the coherent mean-field.

This approximation only applies for a sparse medium due to the employment of a

single-scattering formulation. This is not the case for densely clustered foliage. Such

inaccuracy is not significant at low frequencies where mutual coupling between fo-

liage particles is negligible. While at millimeter-wave frequency range, such an effect

is magnified to a degree where the multiple-scattering among leaves in a leaf cluster

is no longer negligible. In this dissertation, an enhancement of FCSM is achieved by

including the mutual coupling among leaves of the dense leaf clusters, which extends

FCSM’s region of validity up to Ka-band (35 GHz). Details regarding this work are

presented in Chapter 3.

FCSM-Based Foliage Path-Loss Model

Accurate estimation of signal attenuation in highly scattering environments such

as a forest has long been a challenging problem. The challenges arise from the fact

that the incoherent power becomes dominant after the wave propagates for a long-

enough distance. This results in a different slope of the foliage path-loss (in dB) at

larger distances, compared to the much steeper slope for coherent power at closer

distances. This is the so-called “dual-slope” phenomenon of the foliage path-loss

often observed experimentally in forested environments [20, 25, 26]. Current models

used to predict foliage path-loss are again those empirical or semi-empirical models

which are not generally applicable. Analytical models such as those based on a slab
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approximation and ray tracing methods are too simple to be valid, and the prediction

of foliage path-loss at large distances by these models tends to be very erroneous.

The physics-based FCSM model is an ideal candidate to attack such a problem in

that it is able to capture the incoherent power contributed by the scattering from

foliage particles. However, the extensive computational requirement of FCSM poses

a great challenge. Computing scattered fields from all scatterers inside a large forest

environment can be prohibitively time-consuming. In addition, FCSM is essentially

a single-scattering model. For highly scattering environments and long propagation

distances, multiple-scattering components become important in contributing to the

incoherent power. In this dissertation, a statistical wave propagation model, SWAP,

based on FCSM is developed to tackle these issues. Compared to a brute force

approach which applies FCSM to the whole forest domain, the computation time of

SWAP is significantly reduced since the extensive wave propagation computation is

only confined to a single block of forest with much shorter range. Meanwhile the

prediction accuracy is improved since the multiple-scattering components between

scatterers inside different forest blocks are taken into account in the SWAP model.

Details of this work are provided in Chapter 4.

Macro-Modeling Foliage Path-Loss

The FCSM and SWAP models have proven to be very accurate foliage propagation

models. However the implementation of both FCSM and SWAP is very complicated.

The existing codes for these models are developed in such a researcher-oriented way

that ordinary users without enough knowledge on the subject find them too difficult to

use. Even though a user-friendly interface could be designed so that users can set up

the simulation with relative ease, the extensive computational requirements, such as

powerful computers and long computation time, may still work against routine use of

these models, especially for applications that require real-time computing. Therefore,
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a macro-model with simple mathematical expressions similar to those in the empirical

models is of great interest. Such a macro-model can be extracted from a large number

of simulations based on the complicated FCSM or SWAP models. This procedure is

analogous to developing empirical models from real experiments, but is much more

cost-efficient and flexible due to the capability of simulating wave propagation inside

any particular forest environment of interest. In this dissertation, a foliage macro-

model named Michigan Foliage Attenuation Model (MiFAM) is developed based on

this methodology to provide much more accurate prediction of foliage path-loss than

the empirical models, while being as simple to use as those empirical models. Details

of developing such a model are provided in Chapter 5, and examples of MiFAM for two

typical tree species, red maple and red pine, are provided at UHF-band (300∼1100

MHz).

1.2 Phase Calibrating Uplink Ground Array

Space exploration is undergoing a great boom fueled by exciting missions spread

throughout the solar system. Spacecraft such as the Voyagers are even traveling

towards the boundary of the solar system which is thought to exist somewhere from

8 to 22.5 billion km (5 to 14 billion miles) from the sun. As of January 2006, Voyager

1 has traveled about 98 AU (astronomical unit, 1 AU ∼ 93 million miles and is the

distance from the Earth to the Sun), after being in space for more than 28 years

[27]. In order to maintain a reliable link as the distance between a ground station

and a deep-space spacecraft increases, the effective isotropic radiated power (EIRP)

of the radio link must be increased. Considering the limited available power and

space on a spacecraft, most efforts on improving EIRP must be concentrated on

the earth ground station. Current state-of-the-art NASA (National Aeronautics and

Space Administration) DSN (Deep Space Network) ground stations are capable of

transmitting a maximum EIRP of 149 dBm (0.8 TW) at S-band (2.1 GHz), 146 dBm
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(0.4 TW) at X-band (7.2 GHz) with 70-m reflector antennas, and 138 dBm (0.07

TW) at Ka-band (35 GHz) with 34-m reflector antennas [28, 29]. A factor of about

13 dB for the EIRP enhancement is expected in the next two decades. Although

serious limitations on power and space do not exist for ground stations, technological

and economic challenges do exist. For instance, ground stations become dramatically

more expensive as the size of their antennas increases [30].

The prohibitive cost of building colossus precise reflector antennas has triggered

an effort to find alternative solutions for the problem [31, 32]. One of the most

promising approaches is to use an array of many dish antennas, which provides a

number of advantages including considerable cost-reduction. Currently the cost of

building a single 70-m antenna station is about $100M, while about forty 12-m re-

flector antennas would produce the same performance for only a fraction of the cost

[33]. However, difficulties exist for this approach in achieving phase coherence among

the array elements in order to combine their signals at the receiver constructively.

It turns out that for downlink operation, the proper phase distribution can be ob-

tained a posteriori by cross-correlating recorded signals at each array element [34].

Such a technique cannot be used at the spacecraft for uplink arraying simply because

the receiver of the spacecraft could not align signals from different ground antennas.

Therefore the phase coherence of these signals has to be determined on the ground so

that they arrive at the spacecraft receiver coherently. However, considering the large

size of each antenna element and the distant spacing between these elements, it is

very challenging to determine the phase center locations of all the elements to within

a small fraction of the wavelength at the operating frequency (X- or Ka-band). An-

other factor that exacerbates the difficulty of achieving array phase coherence is the

earth movement. To maintain the beam on the spacecraft, the array elements all have

to track the spacecraft as the earth rotates. Since the rotation pivots of the antennas

are not necessarily collocated with the antenna phase centers, the phase distribution
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among array elements must be determined for all possible array attitudes.

This dissertation presents some original work on achieving phase coherence of

an uplink phased array system containing a number of sparsely distributed large

reflectors, through phase calibration. Very little research regarding this problem has

been conducted in the literature. Therefore the relevant work in this dissertation is of

great importance and novelty. Three different phase calibration methods are proposed

and their feasibility studied through physics-based modeling of wave propagation in

the respective calibration scenarios.

Radar Calibration Using LEO Targets

This method is based on a radar calibration approach in conjunction with the

concept of phase conjugation. The system infrastructure is designed so that each array

element can operate in both uplink and downlink modes. A group of orbiting space

objects, such as low earth orbit (LEO) satellites are potential calibration targets.

The abundance of such targets and their orbiting behavior can supply calibration

opportunities at any required array attitude. An aerospace software, STK, can be

employed to investigate such calibration opportunities. However there is a critical

issue associated with this method which lies in the fact that the calibration targets

usually fall into the near-field zone of the whole array. A path-length compensation

technique is provided to resolve this problem. The performance of this calibration

method is studied statistically by modeling the random positions of array element

phase centers and the calibration targets, as well as signal phase fluctuation, in a

Monte Carlo simulation. Details of this calibration method are presented in Chapter

6.
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Radar Calibration Using the Moon

This method is also a radar calibration approach, but with all array elements

operating in uplink mode only to save the unit cost of each element. Correspond-

ingly the calibration has to be conducted in uplink mode as well. Orthogonal PN

(pseudo noise) codes find the proper application in this all-transmitter array calibra-

tion scenario. The moon is selected as calibration target since it falls within the array

far-field zone, therefore the undesired near-field effect does not exist. The difficulty of

this method stems from the fact that the moon cannot be treated as a point target,

instead it appears as a distributed target from the perspective of the Earth ground ar-

ray. Synthetic aperture radar (SAR) imaging technique can be employed to overcome

this difficulty. In addition, the lunar surface is essentially a random rough surface,

and the backscattering of the incoming waves by such a surface must be modeled

statistically. Details of implementing this calibration scheme are provided in Chapter

7.

Calibration Using VLBI Infrastructure

This last method is a different one based on the existing VLBI or VLA (Very Large

Array) infrastructures. Celestial radio emitters, Quasars, serve as beacon sources and

the downlink phase differences between array elements can be measured through cross-

correlation of the received signals. Such phase differences are treated as references for

determining the phase calibration values for uplink operation of the array. However,

system modification of the existing downlink-only infrastructure is necessary. Several

schemes are proposed and their feasibilities are studied in Chapter 8.
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1.3 Dissertation Outline

This dissertation is composed of 9 chapters. The first major part includes the

next 4 chapters and deals with modeling the wave propagation through forested en-

vironments. As mentioned above, Chapter 2 introduces the basis model, FCSM, as a

computation engine for further advanced modeling. Chapter 3 enhances the FCSM

model at millimeter-wave frequency range by accounting for the multiple-scattering

inside leaf clusters when estimating the coherent mean-field. In Chapter 4, the foliage

path-loss model, SWAP, is developed by dividing the forest into statistically similar

blocks along the direction of wave propagation, and then applying FCSM to a typi-

cal block to estimate the wave propagation behavior. Such behavior is common and

can be reused for all the forest blocks in a network cascading fashion. Chapter 5 at-

tempts to derive a simple-to-use macro-model for foliage path-loss, based on numerous

simulations using the complicated SWAP model. As the second major part of this dis-

sertation, Chapter 6−8 present three methods for phase calibrating a large-reflector

uplink ground array. Chapter 6 proposes a One-Transmitter-All-Receiver (OTAR)

radar calibration approach based on the concept of phase conjugation. LEO satellites

are candidates of the calibration targets. Chapter 7 provides a All-Transmitter-One-

Receiver (ATOR) radar calibration approach which uses the Moon as calibration

target. And Chapter 8 describes a different downlink approach using the existing

VLBI/VLA infrastructures. In the end of this dissertation, Chapter 9 draws the

conclusions and motivates the future work.
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CHAPTER 2

FCSM: COMPUTATION ENGINE FOR

FOLIAGE WAVE PROPAGATION MODELING

2.1 Introduction

Fractal-based Coherent Scattering Model (FCSM) is a wave theory model devel-

oped in the Radiation Laboratory at the University of Michigan to simulate radio

wave propagation through foliage [14]. This chapter is devoted to outlining the fea-

tures of this model, as it will be used as a baseline for: 1) enhancing its region of

validity; 2) using it as a tool for developing other models presented in this dissertation.

The algorithm of FCSM consists of three major components. The first component

of FCSM is related to modeling of complex tree structures in a deterministic fashion

using simple mathematical and statistical algorithms. The computer-generated forest

is made up of realistic-looking trees described by fractal geometry [35]. The second

component of FCSM is the electromagnetic engine where the distorted Born approxi-

mation (DBA) method is used to compute the wave propagation and scattering from

the vegetation constituents. The algorithm is developed so that a forest stand of

mixed or single species can be treated in a computationally efficient manner. Finally

the third component of FCSM derives the statistical parameters of wave propagation

through repeated calculation of wave propagation for different realizations of a sta-

tistically homogeneous forest stand. Such a Monte Carlo simulation procedure leads
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to a number of samples of the received field, from which the field statistics such as

the average received power and spatial or temporal correlation functions can be ob-

tained. The advantage of FCSM is its inherent fidelity since it accounts for detailed

tree architecture, which has been shown to significantly influence the wave scattering

and attenuation by foliage [37, 38]. In addition, being a wave theory model, FCSM

supplies complete information of the propagating wave including power, phase, and

field polarization. The Monte Carlo simulation provides a database for statistically

estimating all desired quantities and their random distributions, taking into account

the random medium nature of the forested environment. Correspondingly, the per-

formance of FCSM is then determined by three factors each associated with one of

the three components, i.e. the fidelity of how the forested environment can be re-

constructed, the accuracy of the wave propagation computation, and the number of

realizations carried out in the Monte-Carlo simulation. In what follows, different

components of FCSM are briefly reviewed and its applications and limitations are

presented. For more details, one can refer to the original papers [14, 39].

2.2 Forest Reconstruction Using Fractal Theory

With computer graphics, various tree species of different architectures can be

generated based on a fractal tree model using statistical Lindenmayer systems (L-

systems) [14]. L-systems are well-known tools for constructing fractal patterns such

as the geometrical features of most botanical structures in which self-similarity is

preserved through a so-called rewriting process [36]. Such a recursive process based

on simple structural grammar rules can easily be implemented by computers. Figure

2.1 shows an example of the growing process of a 2D fractal tree, and Figure 2.2 shows

computer-generated branching structures of two different kinds of 3D fractal trees,

namely deciduous and coniferous trees respectively. Leaves with a known geometry

such as circular or elliptical disks can be generated as well, and attached to the
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Figure 2.1: Four steps of the growing process of a 2D fractal tree (adapted from [14]).

branches with realistic orientations. Randomly varying these structural parameters,

a number of tree samples are then generated and their locations inside the forest are

assigned randomly according to certain parameters such as tree density and minimum

tree spacing. By placing the tree samples into an area of specified dimensions, a tree

stand, i.e. a block of forest, can be formed.

The fidelity of the computer-reconstructed forest environment depends on two fac-

tors, namely the fractal scheme and the geometrical parameters. The fractal scheme

is defined based on the architecture of a particular tree species. For example, how

the branches will taper as they grow higher vertically and farther horizontally? How

the next branch will change its orientation compared to the previous one? And how

branchy the tree will be? These details are all determined in a structural grammar file

called the “DNA” file for each specific tree species, where a number of user-defined

symbols representing different growing commands (e.g. move forward, reduce diam-

eter, and rotate azimuthally) are combined in a specific way according to the botan-

ical architecture. The length of the growing process, i.e. the number of iterations of

rewriting, is also defined in the DNA file to determine the density of branches.

With the fractal growing scheme defined, one needs the specific quantities of the

structural parameters to generate a realistic-looking tree. These include tree and
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(a) (b)

Figure 2.2: Two different kinds of 3D tree branching structures, (a) deciduous tree;
and (b) coniferous tree.

trunk height, crown radius, trunk diameter and tilt angle, branching (elevation) angle

and rotation (azimuth) angle, branch forward step distance and tapering ratio (both

vertically and horizontally), leaf orientation angle, number of leaflet, leaf dimensions,

stem radius, stem length, etc. Usually a ground truth measurement is used to obtain

such quantities at a forest site of interest. The mean and standard deviation of

each measured parameter are then collected and stored in an input file. Such an

input file, together with the DNA file, is then read by a computer program which

decodes the fractal growing scheme and generates the tree trunk, branches, stems,

and leaves with a random sample value of each structural parameter. Therefore the

random nature of the tree structure is embodied through these random values. The

PDF of each parameter is generally presumed to be a simple function, such as a

normal distribution. Besides the tree structural parameters, forest parameters such

as the tree density, and dielectric property parameters such as the moisture content

of branches and leaves are also provided in an input file.
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The accuracy of the ground truth measurement data obviously impacts the fi-

delity of the reconstructed fractal trees, however some parameters such as branching

angle and branch forward step distances are difficult to measure accurately. Addi-

tionally, the DNA coding scheme usually starts with the general definition for the

whole species, not the specific trees at the site of interest. Therefore a trial-and-error

approach is adopted to adjust both the scheme and parameter values. Due to the

large number of tree components, it is difficult to examine the accuracy by manual

inspection of their dimensions and locations. Instead, visual inspection of the tree

image provides a better way. For example, how branchy the tree is can be easily

judged from the image of a defoliated fractal tree. Such a visualization program is

also developed in [14].

2.3 Wave Scattering Computation Using DBA

The approach of wave propagation computation in FCSM is based on the distorted

Born approximation (DBA). In this method scatterers, such as branches and leaves,

inside the forest are assumed to be illuminated by the coherent mean-field propagat-

ing in an effective medium composed of air and vegetation. The scattered fields from

each individual scatterer also propagate in the effective medium towards the receiver

and are added coherently. The propagation constant of the mean-field is estimated by

Foldy’s approximation [16, 24]. The mean-field experiences exponential attenuation

and additional phase shift due to the complex nature of the effective dielectric con-

stant of the air-vegetation mixture. In terms of the scattered field computation, DBA

is essentially a single-scattering approach. And the widely-used formula of Foldy’s

approximation is also based on the scattering of individual scatterers. Such a simpli-

fication reduces the computational complexity drastically, since multiple-scattering

among branches and leaves is ignored.

Commonly the scatterers inside a forest are modeled as dielectric objects of dif-
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ferent geometries. For example, tree trunk, branches and stems, as well as needle-like

leaves of coniferous trees are treated as dielectric cylinders with finite length, while

broad leaves of deciduous trees are approximated as thin dielectric disks of round, el-

liptical, or other arbitrary-shape boundaries. Scattering formulations of these single

scatterers, whether based on low-frequency or high-frequency approximation tech-

niques or exact eigen-series solution for infinite length objects, are thoroughly stud-

ied and implemented in literature [4, 18, 40, 41, 42] and hence will not be presented

here. More accurate solutions including a full-wave solution using MoM (Method of

Moments) can also be found in [23]. With these well-developed scattering formulae,

one can first estimate the propagation constant of the effective forest medium, Mpq,

according to Foldy’s approximation

Mpq =
j2πn

k0

〈Spq〉 (2.1)

where j =
√−1, n is the number of scatterers per unit volume and k0 is the free space

wave number. Spq is the forward scattering amplitude of a single scatterer, given by

Ēs
p =

ejk0R

R
Spq · Ēi

q (2.2)

where Ēi
q, Ēs

p are incident and scattered fields with polarizations q and p respectively,

and R is the distance from the scatterer to the receiver which detects the scattered

field. The operator 〈 〉 in (2.1) represents the ensemble average of the forward scatter-

ing amplitude (Spq) of all the scatterers inside the unit volume. Practically, each Mpq

is calculated by computing the summation of Spq of all scatterers inside a specified

volume and then normalized by the occupying volume. Due to the inhomogeneous

nature of tree structures along the vertical direction, the forest can be divided into a

number of horizontal layers, for which Mpq are different depending on the constituents

and the respective geometry and volume function [14]. The scheme of dividing lay-
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Figure 2.3: Layer division of a red pine stand.

ers vertically results from a trade-off between accuracy and simplicity. Usually for

coniferous trees, the forest block is divided into three layers, i.e. the trunk layer, the

overlap layer, and the top layer, as shown in Figure 2.3 for a red pine stand. The

distinction between the overlap and top layers is due to the overlapping of conical

structures of the neighboring tree crowns. For deciduous trees the division of the tree

crown has no specific rules and can be customized according to the specific tree and

stand structure as well as the accuracy requirement of the application.

Next the scattered field from each individual scatterer to the receiver is calculated

using the above-mentioned scattering formulations, with both incident and scattered

field modified by Foldy’s propagation constant compared to their free-space counter-

parts, i.e.

E = T · E0 (2.3)

where

E =




Ev

Eh


 , E0 =




Ev
0

Eh
0


 (2.4)

and

T =




ejMvvR 0

0 ejMhhR


 . (2.5)

E and E0 represent polarized electric field vectors of the radio wave propagating inside

the effective forest medium and inside free space, respectively. The superscript v and
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h stand for vertical and horizontal polarizations. T is the transmissivity matrix of

the effective medium with Foldy’s propagation constant Mvv and Mhh, and R being

the distance that the incident wave travels upon hitting the scatterer or the scattered

wave travels before arriving at the receiver. It is worth mentioning that in most

natural structures such as a forest, azimuthal symmetry can be assumed and hence

the averaged transmissivity of depolarized components is approximately zero, that is

Mvh ' 0, Mhv ' 0.

Another important feature of wave propagation computation in FCSM is the

ground effect. As shown in Figure 2.4, four different wave propagation mechanisms

exist inside a forested environment, where ~Ed, ~Etg, ~Egt and ~Egtg stand for the direct

scattered field with the scatterer illuminated by the direct incident wave, the reflected

scattered field with the scatterer illuminated by the direct incident wave, the direct

scattered field with the scatterer illuminated by the reflected incident wave, and the

reflected scattered field with the scatterer illuminated by the reflected incident wave,

respectively. The ground effect is accounted for by using the GO (Geometric Optics)

method, with the Fresnel reflection coefficients modified by Kirchhoff’s approximation

[16] to take into account the ground surface roughness. Alternatively, image theory

can be applied where the approximate image current under the ground can be derived

to compute the reflected scattered field [18].

A subtle point in implementing the scattered field computation lies in the fact

that the available formulations of scattering from a single scatterer usually depend

on the polarization of the incident and scattered waves. And such a polarization is

defined as v̂ (vertical polarization) or ĥ (horizontal polarization), where

ĥ =
ẑ × k̂

|ẑ × k̂| (2.6)
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Figure 2.4: Components of scattered field from a scatterer above ground plane cor-
responding to four wave propagation scenarios: direct-direct, direct-
reflected, reflected-direct, and reflected-reflected.

and

v̂ = ĥ× k̂ (2.7)

with k̂, ẑ being unit vectors of the direction of incident or scattered wave and the

z-direction, respectively. All these unit vectors are defined in the local coordinates

of the scatterer which could be different from the global coordinates of the real en-

vironment, since these scatterers all have their specific orientations. In this case,

coordinate transformation has to be performed frequently, that is, one first trans-

forms the incident wave from global to local, then computes the scattered field, and

at the end transforms the scattered field back from local to global [18]. In some spe-

cial cases where the scattering formulation can be modified to a new version that can

be applied directly in the global coordinates, the coordinate transformation process

is minimized and hence computation time is reduced. Calculating the scattered field

from a cluster of pine needles is such an example (see Appendix A).

Once the scattered field at the receiver from all scatterers are computed, they

are coherently added to obtain the total scattered field. This is in fact only one
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random sample. In order to estimate the wave propagation behavior statistics, the

Monte-Carlo simulation technique is employed where the above forest-reconstruction

and scattering computation are repeated for many “realizations”. At each realiza-

tion, the structural parameters of the forest are varied randomly according to their

prescribe PDFs, resulting in a random sample of the forested environment. The re-

quired number of realizations can be determined by standard convergence verification

techniques.

2.4 Applications & Limitations of FCSM

Figure 2.5 illustrates various scenarios to which FCSM can be applied directly.

Originally FCSM was developed for the purpose of interpreting the radar backscatter

of a forest and extracting the desired botanical parameters such as the biomass and

average tree height [17, 43]. For such applications (corresponding to a satellite or

aircraft above the forest), both the transmitter and receiver are outside the foliage and

in the far-field region of the foliage scatterers. In this case plane wave illumination can

be assumed where the wave enters the foliage through a diffuse top boundary and gets

scattered back by scatterers inside the forest as well as the ground or the interaction

between these two [14]. Another scenario of interest is the problem of camouflaged

targets under foliage. In this case the hard targets are in the near-field region of

the scatterers. An additional scenario of similar arrangement is communication to a

point (transmitter or receiver) inside the forest from an aircraft or satellite above the

foliage. For example, to assess the performance of GPS receivers under foliage, or to

design a satellite radio link such a scenario is encountered. This wave propagation

scenario is similar to the previous one in that a plane wave still illuminates the

foliage. Instead of computing the backscatter field, however, the scattered field at the

receiver location will be calculated. The reciprocity theorem can be applied for the

case of a transmitter sending electromagnetic waves to a target far beyond the canopy
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Figure 2.5: Wave propagation scenarios of different applications where FCSM can be
applied.

top. Wireless communications between a transmitter and a receiver both inside the

forest are also of importance especially for military applications. In this case, a

spherical wave has to be considered instead of plane wave propagation, and again the

transmitter and receiver may be in the near-field region of the scatterers. One more

application is to estimate the foliage path-loss for a horizontally propagating wave

through the foliage. This wave propagation scenario can be considered as a plane

wave illuminating the forest from its edge, as shown in Figure 2.5.

There are several limitations associated with FCSM though. The Foldy’s ap-

proximation used in FCSM applies only for a sparse medium, since it assumes inde-

pendent scatterers in the medium. This results in a single-scattering approximation

for computing the average forward scattering amplitude in 2.1. Such an approxi-

mation is reasonable for the frequency bands where multiple-scattering effects are

negligible. However, at upper microwave and millimeter-wave frequencies, where the

size of densely packed particles becomes larger or comparable with the wavelength,

the single-scattering model is not sufficient. Basically near-field interactions between

scatterers, such as those within a dense leaf cluster, influence the value of the forward
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scattering amplitude which determines the attenuation rate of the coherent mean-

field through the foliage. Such an effect has to be taken into account if the accuracy

of FCSM is to be enhanced at high frequencies. Some intensive numerical techniques,

such as MoM, may be needed to provide the exact full-wave solution.

The second limitation of FCSM is again related to the multiple-scattering ef-

fect, and this time it is the multiple-scattering components in the scattered field

at the receiver that attract the attention. As described earlier, the DBA technique

employed by FCSM is essentially a single-scattering method, although the effective

medium accounts for scatterers along the wave propagation path in an average sense.

For highly scattering environments or long propagation distances, multiple-scattering

components involving two or more discrete scatterers become important and must

be accounted for, although the computational complexity may be increased drasti-

cally. The third limitation of FCSM corresponds to a particular kind of application

where the propagation distance inside a forest is very large, such as when estimating

foliage path-loss. Direct application of FCSM over long distances would require com-

putation of scattering from many scatterers which is practically impossible. Smarter

approaches and algorithms have to be developed to overcome or circumvent such

limitations.

Finally the applicability of FCSM is limited to users with in-depth knowledge of

the wave propagation model which consists of thousands of lines of computer codes.

Without a user-friendly interface and powerful computers for running simulations,

such a model is not easy to use. Therefore it is of great interest to develop some simple-

to-use formulae based on the simulation results using FCSM. In other words, just like

conducting real experiments and extracting an empirical model from the measured

data, one essentially runs numerical “experiments” with FCSM on computers and

develops a macro-model from the simulated data.
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CHAPTER 3

AN ENHANCED MILLIMETER-WAVE

FOLIAGE PROPAGATION MODEL

3.1 Introduction

The demand for high data rate wireless communication is on the rise in recent

years. People enjoy exchanging photos or even videos through their cell phone or

laptop, satellites in space transmit more and more valuable data and images back to

Earth frequently, etc. For this purpose wideband communication at millimeter-wave

frequencies is under consideration for various applications. Forested environments

pose a significant challenge for the operation of such systems. In order to assess the

performance of communication devices operating at high frequencies, characteristics

of the communication channel such as path-loss, coherence bandwidth, fading statis-

tics, etc., must be determined. This requires an accurate electromagnetic model to

predict the wave propagation behavior inside forested environments.

The fractal-based coherent scattering model (FCSM) described in the previous

chapter has proven to be one of the most accurate models for foliage wave propa-

gation. However, the Foldy’s approximation used in FCSM assumes scatterers are

independently interacting with the propagating wave and have no mutual coupling,

resulting in a single-scattering formulation for estimating the Foldy’s propagation

constants. Such an approximation is reasonable for sparse media where scatterers are
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far apart, or for frequency bands where multiple-scattering effects are negligible. At

upper microwave and millimeter-wave frequencies, where the size of densely packed

particles becomes larger or comparable with the wavelength, the single-scattering

formulation is not sufficient. It has been shown that neglecting near-field mutual

coupling, such as those that occur within a dense leaf cluster, tends to overestimate

the attenuation rate of the effective forest medium at millimeter-wave frequencies

[23].

In this chapter, in order to overcome such a limitation, the multiple-scattering that

occurs among leaves of highly dense leaf clusters is included in the wave propagation

model. Other constituents of the forest, such as branches and trunks, however, are

distributed sparsely and single-scattering is still applicable for them. A full-wave

numerical technique, MoM (Method of Moments) [44], is used to calculate the exact

scattering from a cluster of leaves or needles exactly. However, this technique requires

significant computational resources which prohibit its direct application in the wave

propagation model. Therefore a computationally efficient technique is presented. For

a semi-random cluster of pine needles the scattered field remains coherent only in the

forward direction and a small angular range near the forward direction, which depends

on the size of the cluster relative to the wavelength. To calculate the coherent field,

the distorted Born approximation (DBA) is applied to an inhomogeneous, anisotropic

dielectric object having the same boundary as the needle cluster. The scattered

field outside the forward scattering cone has a random phase with almost uniform

scattered power. In situations where a clear boundary between leaf clusters and the

surrounding air cannot be recognized, such as those of deciduous trees, this technique

is not applicable. However, for those leaf clusters where broad leaves are relatively

sparse, the effect of multiple-scattering is not as significant.

To examine the accuracy of the enhanced wave propagation model, an outdoor

measurement through a pine tree stand was conducted at Ka-band (35 GHz). Sim-
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ulation results using the single-scattering model (FCSM) and the multiple-scattering

model (the enhanced model) are compared with the measured result, and the impor-

tance of the latter is clearly justified.

3.2 Multiple-Scattering Effects from Needle Clus-

ters

In this section a MoM solution for calculating the scattered field from red pine

needle clusters is presented and compared with the single-scattering solution to inves-

tigate multiple-scattering effects. The computational requirements are also examined

to justify the need for developing a macro-model for the cluster. Since the macro-

model encapsulates the effect of many needles (e.g. ∼100), the computation time for

the propagation model can be greatly reduced.

A red pine needle cluster has its needle buds distributed as three concentric spirals

around a small stem. Needles come off of the stem at an angle which will be referred

to as the tilt angle. There are two kinds of clusters on coniferous trees, the end-cluster

and the stem-cluster. For the end-cluster, the tilt angle decreases as the needle bud

approaches the tip of the stem. For the stem-cluster, the tilt angles are the same for

each needle. The distance between each pair of needles can be as small as 5 mm, less

than half a wavelength at 35 GHz, and the needle length can vary from 1 cm to 10

cm, which is much larger than a wavelength. In this case mutual coupling among

needles may be significant. Based on a ground truth measurement for the red pine

stand used in the path-loss measurement, the end-cluster and the stem-cluster (see

Figure 3.1) were measured to have an average of 96 and 117 needles, respectively.

The average needle length and diameter for this pine tree were measured to be 3.5

cm and 0.45 mm respectively.
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(a) (b)

Figure 3.1: The needle cluster structures: (a) end-cluster, (b) stem-cluster.

3.2.1 MOM Formulation

In this specific application of MoM for needle clusters, pulse basis functions (con-

stant current across each cell), point matching for weighting functions, along with the

volume equivalence principle, are assumed in the formulation [44]. For the time being,

the stem is excluded. The volumetric integral equation for the MoM formulation is

given by

Ēs(r̄m) + Ēi(r̄m) = Ē(r̄m) =
J̄eq(r̄m)

−jωε0(εr − 1)
(3.1)

and

Ēs(r̄m) =

∫ ∫

V

∫
jωµ0G(r̄m, r̄′) · J̄eq(r̄

′)dV ′ (3.2)

where subscripts s and i indicate the scattered and incident field, respectively, and

the right side of (3.1) is an equivalent volumetric current. Also r̄m is the center

position of the mth cell, G(r̄m, r̄′) is the free space electric dyadic Green’s function

which indicates the electric field at r̄m generated by a point current source at r̄′ and

is given by

G(r̄m, r̄′) =

(
I +

∇∇
k2

0

)
ejk0R

4πR
(3.3)
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where I is the unit dyadic and R is the distance between r̄m and r̄′ which is |r̄m− r̄′|.
Substituting (3.2) into (3.1), one obtains

Ēi(r̄m) =
J̄eq(r̄m)

−jωε0(εr − 1)
−

∫ ∫

V

∫
jωµ0G(r̄m, r̄′) · J̄eq(r̄

′)dV ′. (3.4)

Discretizing this equation using a total of N cells for all the needles, a 3N × 3N

matrix equation is obtained as




Ex
i

Ey
i

Ez
i




=




Zxx Zxy Zxz

Zyx Zyy Zyz

Zzx Zzy Zzz







Jx
eq

Jy
eq

Jz
eq




(3.5)

which can be solved for the unknown current coefficient Jeq in each cell. Notice that

each matrix or vector component in (3.5) represents the quantity for N cells. The

matrix of 3× 3 components is defined as the impedance or Z-matrix and given by

Z(r̄m) =
I

−jωε0(εr − 1)
−

∫ ∫

V

∫
jωµ0G(r̄m, r̄′)dV ′. (3.6)

Equation (3.5) cannot be decomposed in the normal fashion into TM and TE

incident fields in order to reduce the number of unknowns as each needle is oriented

at a different angle so that a TM or TE incident wave only has meaning in the

local coordinates of one single needle. Instead, this problem is directly solved in

the coordinates of the whole cluster without decomposition, where the needle cluster

stem is assumed to be oriented along the z-axis. The Z-matrix is independent of the

incident field and hence need only be calculated and inverted once to compute the

unknown currents for different excitations, i.e.

J̄eq = Z
−1

Ēi. (3.7)
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Figure 3.2: Self-cell configuration.

Therefore Z
−1

can be reused for clusters with various orientations in the foliage. Note

that according to the reciprocity theorem, the Z-matrix is symmetric. Therefore, the

number of elements requiring storage is reduced from 3N × 3N to 3N × (3N + 1)/2.

To obtain Z
−1

, (3.5) should be solved directly, which requires significant computer

memory. In order to evaluate the Z-matrix in an efficient fashion, the self-cell, the

adjacent cells in the same needle, and the adjacent cells in different needles are treated

in different ways.

Self-cell

Due to the singularity of the electric dyadic Green’s function in the source region,

the impedance matrix of self-cells must be evaluated in an alternate way. A source

dyadic L is introduced according to [45]. As seen in Figure 3.2, a self-cell, with b

the radius of its transverse cross-section and dl the length, is divided into two parts,

an infinitesimally thin cylinder (radius of the transverse cross-section, a, approaching

zero) along the z-axis of the cell and the remainder of the volume. The contribution

31



from the infinitesimally thin cylinder is given by −L/(jωε0) where [45]

L =




1/2 0 0

0 1/2 0

0 0 0




. (3.8)

The remainder is calculated by applying the principal value integral

lim
a→0

∫ ∫

V

∫
jωµ0G(r̄m, r̄′)dV ′, (3.9)

where V stands for the volume of the self-cell excluding the infinitesimally thin cylin-

der. According to (3.3), two integrals need to be evaluated:

I1 = lim
a→0

∫ ∫

V

∫
ejk0R

R
dV ′ (3.10)

and

I2 = lim
a→0

∫ ∫

V

∫
∇∇ejk0R

R
dV ′, (3.11)

where R =
√

x′2 + y′2 + (z′ − zm)2 =
√

ρ′2 + (z′ − zm)2.

Since each cell is electrically small (k0R << 1), (3.10) can be expanded using the

first 2 terms of a Taylor series, i.e.

I1 ' lim
a→0

∫ ∫

V

∫ (
1

R
+ jk0

)
dV ′, (3.12)

which simplifies to

I1 ' jk0∆V + 2π


dl

2

√
b2 +

(
dl

2

)2

+ b2 ln

(
dl/2 +

√
b2 + (dl/2)2

b

)
−

(
dl

2

)2



(3.13)
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where ∆V = πb2dl is the volume of the cell. To evaluate (3.11), one can first evaluate

I3 = lim
a→0

∫ ∫

V

∫
∂2

∂z2

ejk0R

R
dV ′ = lim

a→0
− ∂

∂z

∫ ∫

V

∫
∂

∂z′
ejk0R

R
dV ′, (3.14)

where the identity ∂
∂z

ejk0R

R
= − ∂

∂z′
ejk0R

R
is applied. By integrating over z′ on of the

partial derivatives, ∂
∂z′ in (3.14) is eliminated. Evaluation of the remaining integral

and then evaluation of the second partial derivative in (3.14) gives

I3 = 4π

[
ejk0

√
b2+(dl/2)2 dl/2√

b2 + (dl/2)2
− ejk0dl/2

]
. (3.15)

The other two diagonal elements are difficult to evaluate directly. However, they can

be evaluated alternatively according to the Helmholtz equation

∫ ∫

V

∫
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k0

2)
ejk0R

R
dV ′ = 0, (3.16)

since the integration is performed over a source-free region (the source point is inside

the infinitesmally thin cylinder and has been excluded). In addition, it can be noticed

that there is no difference between the integration with respect to x and y. Therefore,

one obtains

I4 =

∫ ∫

V

∫
∂2

∂x2

ejk0R

R
dV ′ =

∫ ∫

V

∫
∂2

∂y2

ejk0R

R
dV ′ = −1

2
(I3 + k0

2I1) (3.17)

The off-diagonal elements of I2 are equal to zero since the cell is symmetric about the

z-axis.

An alternative way to evaluate the self-cell is to treat the whole cell as the source
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Figure 3.3: Configuration of two adjacent cells in the same needle.

region which contributes as a source dyadic [45]

L =




1
2
cos θ 0 0

0 1
2
cos θ 0

0 0 1− cos θ




. (3.18)

Provided that the dimensions of the self-cell are small enough, this approach can give

similar results to that given by the previous method.

Adjacent Cells in a Single Needle

Figure 3.3 shows the individual cells in a single needle. The electric field at the

center of the mth cell generated by the nth cell is calculated by evaluating similar

integrals as for the self-sell. The difference lies in that for this case the observation

point (center of the mth cell) is out of the integration region (the nth cell), therefore

no singularity occurs. Also for the integral I5 =
∫∫∫

ejk0R

R
dV ′, the approximation used
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in (3.12) is not suitable due to the relatively large distance between the two cells.

Instead, I5 is evaluated as the following

I5 =

∫ dl/2

−dl/2

∫ 2π

0

∫ b

0

ejk0R

R
ρ′dρ′dφ′dz′

=
2π

jk0

∫ dl/2

−dl/2

(ejk0

√
b2+(zm−zn−z′)2 − ejk0

√
(zm−zn−z′)2)dz′,

(3.19)

where zm, zn are the z-coordinates of the mth and nth cell, respectively. The evalu-

ation of integral
∫ dl/2

−dl/2
ejk0

√
b2+(zm−zn−z′)2dz′ can be approximated by expanding the

integrand into a Taylor series up to the cubic term.

The evaluation of the elements of I6 =
∫∫∫∇∇ ejk0R

R
dV ′ are performed the same

way as evaluating I2. First, we compute

I7 =

∫ ∫

nth cell

∫
∂2

∂z2

ejk0R

R
dV ′ = − ∂

∂z

∫ 2π

0

∫ b

0

∫ dl/2

−dl/2

∂

∂z′
ejk0R

R
dz′ρ′dρ′dφ′

=−2π

[
ejk0

√
b2+(zm−z1)2

zm − z1√
b2 + (zm − z1)2

− ejk0(zm−z1)

−ejk0

√
b2+(zm−z2)2 zm − z2√

b2 + (zm − z2)2
+ ejk0(zm−z2)

]
.

(3.20)

where z1 = zn + dl/2, z2 = zn − dl/2. The other two diagonal elements are computed

similarly to that for the self-cell (see (3.16) and (3.17)). Again, the off-diagonal

elements equal zero due to the symmetry of the cylinder.

The integrals above, including that for the self-cell, are evaluated in the local

coordinates of a single needle. When modeling the whole needle cluster, global co-

ordinates of the cluster must be used. A coordinate transformation matrix [18] is

employed to transform the impedance matrix from each needle’s local coordinates to

the global coordinates.
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Figure 3.4: Configuration of two adjacent cells in different needles.

Cells in Different Needles

Evaluating individual cells in different needles (Figure 3.4) is more difficult as they

are not oriented identically. Performing a coordinate transformation for each needle

will greatly increase the problem complexity. In addition, those volume integrals in

(3.19) and (3.20) are difficult to evaluate in this case since the two cells are not coaxial.

However, due to the relatively far distance between these two cells, it is possible to

make the following mid-point approximation [46]

∫ ∫

nth cell

∫
jωµ0G(r̄m, r̄′)dV ′ ' ∆V jωµ0G(r̄m, r̄n). (3.21)
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The elements of G(r̄m, r̄n) are given by

Gmn
xpxq

=
jωµ0k0∆V exp(jαmn)

4πα3
mn

[
(α2

mn − 1 + jαmn)δpq

+
(xm

p − xn
p )(xm

q − xn
q )

R2
mn

(3− α2
mn − 3jαmn)

]
,

(3.22)

where p and q both take on the values 1, 2, and 3, independently, so that they

represent the coordinates x, y, and z. Also, Rmn = |r̄m− r̄n|, and αmn = k0Rmn. The

Kronecker delta δpq = 0 if p 6= q and δpq = 1 if p = q. In (3.21), every cell is in the

global cluster coordinates and a coordinate transformation is not necessary.

3.2.2 Simulation Results

The above MoM formulation is applied to examine the multiple-scattering from

both the end-cluster and stem-cluster in Figure 3.1. For comparison, the single-

scattering from needle clusters is also calculated where the scattered field from each

single needle is added coherently. Two solutions are employed to compute the scat-

tered field from a single needle. One is based on a low frequency technique, Rayleigh-

Gans approximation [40], which is quite simple but not accurate at millimeter-wave

frequencies. The other is the semi-exact solution based on the eigen-series solution for

scattering from an infinite dielectric cylinder [48], which is accurate but more compli-

cated computationally. Figure 3.5 shows the forward scattering from the end-cluster

versus the incident angle θi (angle between the stem axis and the incident wave). It is

obvious that the Rayleigh-Gans approximation is no longer valid at millimeter-wave

frequencies, and the semi-exact single-scattering solution overestimates the forward

scattering by an amount as large as 3 dB, compared with the multiple-scattering

solution using MoM.

According to Foldy’s approximation, the attenuation rate is proportional to the
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Figure 3.5: Comparison of forward scattering from an end-cluster: (a) |Shh|, (b) |Svv|.
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Figure 3.6: Comparison of forward scattering from a stem-cluster: (a) |Shh|, (b) |Svv|.
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imaginary part of the forward scattering amplitude. Examination of this quantity

based on the above simulation shows that using single-scattering theory to calculate

scattering from needle clusters will cause a significant overestimation of the attenu-

ation rate which mandates inclusion of the effects of multiple-scattering. That is, if

the effects of multiple-scattering are ignored, calculation of the mean-field through

the foliage will be erroneous. On the other hand, it is quite challenging to keep track

of multiple-scattering in needle clusters, as MoM is computationally intensive. First,

the direct inversion of the impedance matrix is required in order to reuse it for clus-

ters with the same structure but different orientation. This poses great challenges

on computer memory and speed requirements. For example, at 35 GHz, a typical

end-cluster shown in Figure 3.1 requires about 387 MB (megabyte) of memory to

store the impedance matrix, and a stem-cluster requires 471 MB. If the number or

length of the needles increases, the number of cells (or unknowns) will also increase.

To account for variabilities in clusters many such matrices must be stored. Moreover,

since the direct inversion algorithm must be employed, and the computation time

is proportional to N3, where N is the number of unknowns, the time for inverting

the impedance matrices could be prohibitively long. For instance, it takes about 1

hour to invert a matrix with 6000 unknowns using a Linux machine with a 2.4 GHz

processor.

Second, even when the inverse impedance matrices are stored for reuse, the direct

usage of the pre-stored matrices is still prohibitive since there are many clusters in

one tree, many trees in a forest, and many realizations required by the Monte-Carlo

simulation. A better approach is to calculate and pre-store the full bistatic scattering

matrix, Smn(θi, φi, θs, φs), where m,n stand for vertical or horizontal polarization,

θi, φi and θs, φs represent the incident and scattering angles, respectively. The pre-

stored S can be used as a lookup table which can be searched based on the incident

and scattering angles. However to generate S lookup table for each cluster, more than
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1 GB (gigabyte) of memory and 3 hours of computation time are required. Our goal

is to find an alternative approach to the aforementioned techniques. A macro-model

based on an analytical method and computational results obtained from the MoM is

developed.

3.3 Macro-modeling Multiple-scattering from Nee-

dle Clusters

In this section, the statistical behavior of scattered field that is important to the

development of the macro-model is presented first and then the detailed algorithm

using the distorted Born approximation (DBA) to model scattering near the forward

direction is described. Finally the comparison between the macro-model results and

those obtained from the brute force full-wave numerical simulations are presented.

3.3.1 Statistical Behavior of Scattering from Needle Clusters

For a needle cluster inside a forest canopy, the rotation angle around its central

stem is random. Also the position, pitch angle, and length of needles on a stem has a

certain degree of randomness. These random parameters are used in a Monte-Carlo

simulation of bistatic scattering from needle clusters to study the statistical behavior

of the bistatic pattern. Figure 3.7 shows the bistatic scattering pattern of a needle

cluster having 96 needles of diameter 0.45 mm, length 3.54 cm, and relative dielectric

constant 6.6 + j6.2 at 35 GHz. The solid line represents the average scattered power

and the dashed line represents the power of the averaged field. Outside the forward

scattering beam the significant difference between the power of the mean-field and

total power indicates that the phase of the scattered field along these directions varies

randomly, that is, the field is totally incoherent. In addition, the averaged power in

this region is substantially lower than that in the forward direction and has small

fluctuation. Therefore, a constant function can be used to approximately model the
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average scattered power over the scattering angles outside forward scattering beam.

The scattered field in this region can be given a random phase.

Near the forward direction, scattering from all individual scatters are in-phase

and therefore the mean-field is strong only in this region. Over the forward scattering

beam the total scattered power and the power of the mean-field are identical. This

indicates that over this region the scattering is coherent. The accuracy requirement

for the macro-model in this region is much more strict since the attenuation rate is

directly proportional to the imaginary part of the forward scattering amplitude. To

model the mean-field it is sufficient to model scattering from the “average” scatterer.

The average scatterer can be viewed as a body of revolution having a surface defined

by the envelope of the needles tip as shown in Figure 3.8. Due to the preferred vertical

orientation of needles in the cluster and the variation of vegetation volume fraction

within the cluster volume, the average scatterer is modeled by an inhomogeneous

anisotropic medium. As an initial estimate, using a simple mixing formula [49], the

average permittivity of the end and stem-clusters at 35 GHz are calculated to be

around 1.16+ j0.18 and 1.086+ j0.095, respectively. This effective dielectric constant

is not low enough to allow for the application of the Born approximation in the

calculation of the bistatic scattered field. However, accounting for the attenuation

and phase velocity of the incident wave through the effective dielectric block, i.e.

using DBA, the interior field can be estimated and used to calculate the scattered

field.

3.3.2 The Distorted Born Approximation

In this section, a general algorithm for the calculation of scattering from an ar-

bitrary dielectric object is described first, then the validity region of such a method

is examined by comparing the exact solution for a dielectric sphere with that ob-

tained from DBA. Next, the DBA algorithm is applied to the needle clusters and the
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Figure 3.7: Bistatic scattering from a needle cluster, averaged over the rotation angle
around central stem: (a) H-polarization, (b) V-polarization.
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Figure 3.8: Algorithm of Distorted Born Approximation.

simulation results are compared with the MoM solution.

DBA Algorithm

The distorted Born approximation algorithm proposed here has a slightly dif-

ferent implementation from the one employed in FCSM. It is a classic method for

computation of the scattered field from dielectric objects whose permittivity is close

to that of the surrounding medium. The first step of the proposed DBA algorithm is

target discretization and phase change of incident field as shown in Figure 3.8. The

interior field of the cell centered at the point r̄′, Ē(r̄′), is computed by calculating

the attenuation and phase change along the path Li(r̄′). The induced polarization

currents in each cell are then easily obtained from J̄p(r̄′) = −ik0Y0(ε − 1)Ē(r̄′). In

this approximation the interior field of the dielectric object is approximated by a field

similar to the incident field having the same amplitude and polarization but a differ-

ent propagation constant. The propagation constant of this field is that intrinsic to

the medium the scatterer is made of. Because of its simplicity, DBA can be applied to
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scatterers of arbitrary shape and dielectric profile. The scattered field in the far-field

region at an observation point r̄ is then given by

Ēs(r̄) = jωµ0

∫ ∫

V

∫
G(r̄, r̄′) · J̄p(r̄

′)dV ′

=
k2

0

4π

∫ ∫

V

∫
ejk0R

R
(I − k̂sk̂s) · (εeff (r̄

′)− I) · Ē(r̄′)e−jk0k̂s·r̄′dV ′

(3.23)

where G is the free space dyadic Green’s function, R is the distance from the cell

center to the observation point, k̂s is the unit vector along the scattering direction,

and I is the dyadic idemfactor. εeff (r̄
′) represents the effective permittivity tensor of

the medium. The attenuation and phase change of the incident field along the path

Li(r̄
′) can be simply calculated by identifying cells along this path.

Validity Region of DBA

Although the distorted Born approximation is a classic approach, except quali-

tatively, its region of validity in terms of dielectric contrast and object size is not

reported in the literature. The exact Mie-series solution of the scattering from a

dielectric sphere is well-known. Figure 3.9(a) and 3.9(b) show the magnitude and

phase of the forward scattering as a function of normalized size k0a (k0 is the free

space wavenumber, a is the radius of the sphere), computed by the DBA algorithm

and Mie solution, for a dielectric sphere with εr = 1.5 + j0.5 at 35 GHz. Very good

agreement is shown for spheres as large as k0a = 50. This agreement verifies our cor-

rect implementation of DBA and indicates that the DBA algorithm can be applied to

needle clusters at millimeter-wave frequencies. Figure 3.10(a) and 3.10(b) show the

percentage errors of the magnitude of the forward scattering versus the normalized

size (k0a) and the real part of the relative dielectric constant (ε′r) assuming a fixed
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loss tangent (tan δ) of 0.1 and 0.3, respectively. Less than 10%, i.e. 1 dB error for

magnitude is achieved for k0a up to 50 and ε′r up to 2.0 in both cases. A phase error

(not shown in Figure 3.10) of less than 3% is achieved as well. It is observed from

Figure 3.10a and 3.10b that a null (minimum error) exists in both cases, and above

the null, the error increases as k0a and ε′r increase. The larger the loss tangent, the

closer the null is to the bottom-left corner of the figure, and the larger error for the

same k0a and ε′r above the null.

Scattering from Needle Clusters Using DBA

As mentioned earlier needle clusters cannot simply be modeled by a homogeneous

isotropic medium. Figure 3.11 shows the surfaces of “the average scatterer” for an end-

cluster and a stem-cluster. The end-cluster is approximately a double-cone and the

stem-cluster resembles a cylinder with concave and convex conical ends. The effective

permittivity profile is computed according to the local needle volume fraction. For

instance, in both end-cluster and stem-cluster, the needle volume fraction decreases

radially. Figure 3.12(a) shows a transverse slice of a needle cluster. The needle volume

fraction is inversely proportional to radial distance |OA|. For end-clusters, the needle

volume fraction also increases from the bottom to the tip due to the decrease of the

tilt angle of the needles. Figure 3.12(b) shows a longitudinal slice of an end-cluster.

The needle volume fraction is proportional to 1/ sin θt, where θt is the local needle

tilt angle.

Once the information related to needle volume fraction is known, the effective

permittivity at each point can be calculated using the Clausius-Mossotti dielectric

mixing formula [52]

εeff = εh

[
I + (I − η < α >

3εh

)−1 · η < α >

εh

]
(3.24)

where εh is the permittivity of the background medium which is air, η is the needle
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Figure 3.9: Forward scattering from a dielectric sphere (εr = 1.5 + j0.5) versus k0a,
computed by DBA algorithm and Mie solution : (a) magnitude (in dB),
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Figure 3.11: Effective dielectric blocks approximated from needle clusters.

volume fraction of the cell, and < α > is the polarizability tensor averaged over the

needle orientation angle. For a needle segment oriented at angle (θt, φt) the associated

polarizability tensor of the needle can be calculated as

α = T
−1 · α0 · T (3.25)

where, α0 is the polarizability tensor when (θt, φt) = (0, 0) and is given by [50]

α0 =




2(εn−1)
εn+1

0 0

0 2(εn−1)
εn+1

0

0 0 εn − 1




, (3.26)

εn is the permittivity of the needles, and T is the coordinate transformation matrix

given by [51]

T =




cos θt cos φt cos θt sin φt − sin θt

− sin φt cos φt 0

sin θt cos φt sin θt sin φt cos θt




. (3.27)

49



(a)

(b)

Figure 3.12: (a) A transverse slice of the needle clusters, (b) A longitudinal slice of
the end-cluster.
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Due to the azimuthal symmetry of the needles, φt is a random variable uniformly

distributed over [0, 2π]. Averaging over φt leads to a diagonal tensor α with α11 =

α22 = (1 + cos2 θt)/(εn + 1) + sin2 θt/2 and α33 = 2 sin2 θt/(εn + 1) + cos2 θt.

After implementing the DBA algorithm for the needle clusters, the scattering

pattern is compared with the exact MoM solution. Figure 3.13 shows the forward

scattering from an end-cluster versus the incident angle. The DBA solution (dashed

line) agrees well with the MoM solution (solid line) with less than 0.5 dB in error

magnitude and less than 10 degrees error in the phase. Figure 3.14 plots the bistatic

scattering patterns from the same needle cluster at angles near the forward scattering

direction. Comparison with MoM shows very good agreement in both magnitude and

phase of the bistatic scattering patterns. It should be mentioned that the simulation

results presented so far are all based on a free space environment. The ground plane

effect on the scattered wave from the needle clusters is taken into account afterwards

in the wave propagation model using a geometric optics approach [14, 18, 53]. Since

the needle clusters are not very close to the ground (many wavelengths away), the

ground does not affect the multiple-scattering within the needle clusters.

It should be noted that the DBA algorithm described above requires numerical

integration over the volume of the scatterer, however, compared to MoM, DBA is

much less computationally intensive, and is scalable with the increase in the number

of needles since the shape of the average scatterer is not affected by the number and

only the needle volume fraction increases. The computation time for the end-cluster

using MoM takes about 1 hour, whereas the same simulation using DBA takes only

about 20 seconds.
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Figure 3.13: Comparison of forward scattering from a needle cluster between DBA
and MoM: (a) Shh, (b) Svv.
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Figure 3.14: Comparison of bistatic scattering pattern from a needle cluster between
DBA and MoM: (a) Shh, (b) Svv.
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3.4 Outdoor Measurement of Wave Propagation

Through Foliage

In this section, the procedure for an outdoor wave propagation measurement is

described and the comparison between the measurement and wave propagation sim-

ulation results is presented. Simulation results using single-scattering and using the

macro-model to estimate the coherent mean-field attenuation rate are both presented,

indicating an improvement by including the effect of multiple-scattering in the dense

leaf clusters.

The outdoor measurement was conducted in November, 2002 for a pine tree stand

including 13 red pine trees (5 rows, 2-3 trees each row) at Ka-band (35 GHz). This

stand occupies a 15m× 25m area with an average distance of 5m between two adjacent

trees. The average tree height, crown depth, and crown diameter are 7.5m, 6.4m,

and 5.5m, respectively. Figure 3.15 shows the measurement system block diagram

designed for this experiment. Power measurement was performed for determining the

path-loss. The transmitted power was set at 23 dBm which was radiated through

a horn antenna with a gain of 28 dB. The received signal was down-converted to

an IF band (30 MHz) using a harmonic mixer. The IF signal was then amplified

and filtered before detection by a spectrum analyzer. The receiver antenna was a

horn antenna identical to the transmitter antenna having a half-power beamwidth

of 10 degrees. The transmitter was located in a clear area, 20m away from the tree

stand, illuminating it from the side. The distance was chosen so that the tree line

was in the far-field of the transmitter antenna. The antenna footprint at 20m away

is about 3m × 3m which is substantially smaller than the tree crown dimensions,

ensuring a distributed illumination. The receiver was first set up in front of the tree

line for calibrating the system, and then moved behind the trees for taking power

measurements. The received power in front of the tree stand is proportional to the

system gain minus the free space loss, and the power received behind the tree stand
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Figure 3.15: Block diagram of the wave propagation measurement system.

is equal to the same system gain minus the sum of a different free space loss and

the path-loss due to the tree stand. By comparing these two power measurements

and correcting for the difference in the free space loss, the path-loss through the tree

stand is obtained.

For this measurement both the transmitter and receiver antennas were kept 1.3m

above the ground, at a height above the trunk layer. The alignment of the transmitter

and receiver antennas was achieved by attaching a laser pointer parallel to the antenna

boresight at each antenna. To acquire the desired path-loss statistics, 84 indepen-

dent spatial samples of the transmitted signal through the pine stand were collected.

The FCSM is used to simulate propagation and scattering through the tree stand.

Ground truth measurements were performed to ensure that the computer-generated

fractal tree model is as close as possible to the real trees. FCSM is modified for the

normal incidence case, and the antenna patterns of both transmitter and receiver

antennas are taken into account. 100 realizations were performed for this Monte-

Carlo simulation to obtain the statistics of the field through foliage. The cumulative

distribution function (CDF) of the calibrated path-loss from outdoor measurements
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Table 3.1: Comparison of mean and stand deviation of path-loss between measure-
ment and simulation results.

Mean (dB) Std. (dB)
Measurement -24.8 -23.8

Multi. Scat. (macro-model) -26.4 -25.6
Single Scat. (semi-exact) -33.1 -32.3

Single Scat. (Rayleigh-Gans) -51.7 -51.9

(solid line) and computer simulations are shown in Figure 3.16. Table 7.1 also shows

the mean and standard deviation of the path-loss of these results. It is obvious that

single-scattering applied to pine needles whose scattering are computed by Rayleigh-

Gans approximation (dotted line) grossly overestimates path-loss at millimeter-wave

frequencies. Using single-scattering in conjunction with the semi-exact solution to

calculate the scattering from individual needles (dashed line), the path-loss estimate

improves but there is still 8∼9 dB of difference between the simulation and measured

results. Using the macro-model where the multiple-scattering effects in the needle

clusters are accounted for in the wave propagation model (dot-dash line) the agree-

ment between the measurement and simulation results is markedly improved. It is

also worth mentioning that the macro-model also improves the computation time of

the wave propagation simulation as well. This is due to the fact that many needles

(∼100) are lumped into one scatterer, and the scattering matrix of this scatterer is

pre-computed and stored to be used as a lookup table. Comparing the computation

time of the propagation simulation using the macro-model multiple-scattering and

the Rayleigh-Gans single-scattering, a speedup of about 30% is achieved (the latter

one takes about 10 hours).
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Figure 3.16: Comparison of path-loss through foliage between measurement and sim-
ulation results.

3.5 Conclusions

In this chapter the accuracy of single-scattering theory for estimation of attenua-

tion rate of a dense medium like a needle cluster is examined by comparing methods

based on single-scattering theory and a full-wave solution MoM. Simulations of for-

ward scattering show that single-scattering theory usually overestimates the attenua-

tion rate. This is severe at high frequencies since scatterers become electrically large

and fall within the near field of each other.

To incorporate the multiple-scattering effects from needle clusters without in-

creasing the complexity or the computation time, a novel macro-modeling approach

is presented. This is done by modeling the bistatic scattering outside the forward

scattering beam by an incoherent field having a constant average bistatic scattering

pattern, and inside the forward scattering beam by the distorted Born approximation

(DBA). It is shown that when DBA is applied to the equivalent “average scatterer”
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having an inhomogeneous and anisotropic dielectric constant the mean bistatic scat-

tered field can be computed very accurately. The results of the macro-model for an

end-cluster and a stem-cluster are compared with the MoM solution. The macro-

model is accurate, and is by two orders of magnitude faster than the MoM solution.

An outdoor path-loss measurement was conducted for a pine tree stand to examine

the accuracy of the wave propagation model using the macro-model. The comparison

between the measurement and simulation results shows that for this specific case

the propagation model that uses single-scattering to estimate coherent mean-field

overestimates the path-loss by 8∼9 dB, whereas when the macro-model is used the

path-loss estimate is within 1∼2 dB of the measured results.
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CHAPTER 4

SWAP: ACCURATE AND TIME-EFFICIENT

PREDICTION OF FOLIAGE PATH-LOSS

4.1 Introduction

It is well known that forested environments can affect wireless communication

significantly and impose stringent constraints on system design. The most important

effect introduced by the forest is the extra signal path-loss in addition to that due to

free space propagation. This extra path-loss is often referred to as foliage path-loss.

Signal attenuation caused by the forest is due to absorption and scattering by dis-

crete scatterers such as branches and leaves within the forest. Foldy’s approximation

[16, 24] has been widely used to estimate the signal attenuation rate in sparse random

media. It predicts an exponential decay of the field, which corresponds to a linear

foliage path-loss (in dB) versus the wave propagation distance. However, Foldy’s

approximation can only capture the coherent power which is due to the mean-field

of the signal. In addition, the random distribution of foliage particles outside the

line-of-sight scatters the incident wave and redirects some of it towards the receiver,

generating incoherent power. For long distance communication systems, such a contri-

bution tends to dominate the overall received power after the exponentially-decaying

coherent power becomes insignificant. For larger distances, this phenomenon results

in a different slope of the foliage path-loss (in dB). This is the so-called “dual-slope”
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phenomenon of the foliage path-loss often observed experimentally in forested envi-

ronments [20, 25, 26].

In order to account for the effects of incoherent power in the propagation model,

both radiative transfer and wave theory approaches have been pursued [15]. As men-

tioned earlier, the radiative transfer approach is not suitable for forested environments

which contain three-dimensional complex tree structures, due to the difficulties in de-

termining the phase and extinction matrices; while the wave theory model, FCSM

(fractal-based coherent scattering model), introduced in the previous chapters pro-

vides a better solution. However, FCSM is essentially a single-scattering model. For

highly scattering environments and long propagation distances, multiple-scattering ef-

fects become important in estimating both the coherent mean-field and the incoherent

power, and must be taken into account. In chapter 3, an enhanced model was de-

veloped to improve the Foldy’s approximation in estimating the coherent mean-field.

The enhanced model is especially necessary at high frequency bands (e.g. millimeter-

wave range) where mutual coupling of densely clustered leaves is strong. At lower

frequencies, such as the UHF (ultra high frequency) band, mutual coupling is not

as significant, but the multiple bounces between distant scatterers, such as those

between two branches, contribute to the incoherent power at the receiver. Such a

contribution is generally smaller than the single-scattering components. However,

when the propagation distance is large, where the incoherent power dominates, this

contribution may result in an observable increment in the overall incoherent power.

Another limitation of FCSM lies in the required computation time. Computing

scattered fields from all scatterers inside the large dimensions of a forested environ-

ment can be prohibitively time-consuming even when single-scattering models are

used. The aforementioned difficulty can be circumvented by treating the forest as a

statistically homogeneous medium along the direction of wave propagation and only

analyzing a typical block of forest using FCSM. This way, the computation time
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can be significantly reduced while the prediction accuracy can still be maintained as

compared to a brute force approach which applies FCSM to the whole forest environ-

ment. A new model based on such methodology, which is referred to as the Statistical

WAve Propagation model (SWAP), has been developed recently and is presented in

this chapter. The new model can also be adjusted to incorporate multiple-scattering

in computing the incoherent power. Using the SWAP model, simulation results for fo-

liage path-loss as a function of propagation distance, frequency, and forest density are

presented, and the new model is also validated by comparing its predictions against

independent propagation measurements through foliage.

4.2 SWAP Model

In this section, the details of the SWAP model are described. Figure 4.1 shows

the scenario of plane wave propagation through a forested environment which is sta-

tistically homogeneous in the sense that the average structural features of the forest,

such as tree species and tree density, along the direction of wave propagation are

the same. Therefore the forest can be divided into similar blocks cascaded along the

propagation direction. With a sufficient number of trees in every block, the wave

propagation behavior within each block is statistically identical. By applying the

existing FCSM model to a single block, these properties can be obtained and then

reused for all blocks. Together with network theory, the field statistics over arbi-

trarily large distances can be calculated. This approach keeps track of all coherent

and incoherent wave components through all forest blocks, and accounts for multiple-

scattering effects between scatterers in different blocks. In addition, it only requires

wave propagation computation over a relatively short distance, i.e. the extent of a

single block of forest, hence reducing computation time significantly. The dimensions

of the forest block must be carefully selected to be just large enough to ensure cap-
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Figure 4.1: A forest divided into statistically similar blocks.

turing all structural features of the forest. Any larger and the time efficiency will

suffer.

4.2.1 Estimation of Wave Propagation Parameters

The most important wave propagation parameters include: 1) the coherent mean-

field propagation constants; 2) the coefficient of variation and the spatial correlation

function of the field distribution on the output surface of a forest block; and 3) the

transfer matrix between field distributions on the input and output surfaces of that

block.

The coherent mean-field propagation constants Mpq are estimated according to

Foldy’s approximation by (2.1). In order to estimate the coefficient of variation and

the spatial correlation function, the electric field statistics at the output surface of the

block is computed using the FCSM model. Considering the statistical homogeneity

along the horizontal dimension of the forest (y-direction in Figure 4.1), the data points

obtained along the horizontal direction are averaged to obtain better statistical values.

Since field variation is small in a half-wavelength neighborhood, these points are

spaced by less than that before averaging. Similarly the spacing of data points along

the vertical direction is selected to be half a wavelength or smaller. The coefficient of

variation is defined by

σ/µ =
σ[Ēp(r̄

′)]
|〈Ēp(r̄′)〉|

(4.1)

where Ēp(r̄
′) is the field distribution of polarization p at the location r̄′ on the output
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surface and can be written as a sum of the mean and fluctuating components, i.e.

Ēp(r̄
′) = 〈Ēp(r̄

′)〉+ Ẽp(r̄
′). (4.2)

σ[Ēp(r̄
′)] is the standard deviation of Ēp(r̄

′), and in fact σ[Ēp(r̄
′)] = σ[Ẽp(r̄

′)], since

〈Ẽp(r̄
′)〉 = 0. The spatial correlation function of the electrical field is defined and

computed as

C[Ēp(r̄
′
1), Ēq(r̄

′
2)] =

〈[Ēp(r̄
′
1)− 〈Ēp(r̄

′
1)〉] · [Ēq(r̄

′
2)− 〈Ēq(r̄

′
2)〉]∗〉

σ[Ēp(r̄′1)] · σ[Ēq(r̄′2)]

=
〈Ẽp(r̄

′
1) · Ẽq(r̄

′
2)
∗〉

σ[Ẽp(r̄′1)] · σ[Ẽq(r̄′2)]
(4.3)

where Ẽp(r̄
′
1) and Ẽq(r̄

′
2) are the field distributions at r̄′1 and r̄′2 on the output surface,

of polarization p and q, respectively. Numerical experiments show that the quantities

defined in (4.1) and (4.3) depend only on the properties of the forest, not the incident

wave. Figure 4.2 shows some typical spatial correlation functions along the vertical

and horizontal dimensions, as calculated with this method. These simulations were

conducted with a red pine tree stand at a tree density of 0.05 trees/m2 (i.e. 5 trees

per 100 square meters) and a frequency of 0.5 GHz. V-V polarization is assumed, i.e.

both p and q are vertical polarizations. C1(∆z) is the correlation function between a

fixed point (near the trunk region) on a vertical line and another point on the same

line, where ∆z is the distance between these two points. C2(∆z) is the correlation

function along the vertical line for a fixed point in the crown region. C3(∆y) and

C4(∆y) are correlation functions along the horizontal direction for two fixed points at

the same height above the ground. As shown in Figure 4.2, C3(∆y) and C4(∆y) are

almost the same, as expected. C1(∆z) and C2(∆z) are much different from each other

due to the inhomogeneous forest structure along the vertical dimension. Also notice
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Figure 4.2: Spatial correlation functions along the vertical and horizontal dimensions.

that C(∆z) drops much more slowly than C(∆y), indicating a strong correlation

along the vertical dimension caused by structural correlation of the forest.

The relationship between the input and output surface fields of a single forest block

is of great importance in building the propagation network in the SWAP model, and

can be estimated by computing a field transfer matrix. As shown in Figure 4.3, both

input and output surfaces of a single forest block are divided into K pixels with spac-

ing half a wavelength or smaller. Therefore the field within one pixel can be assumed

approximately constant. According to the field equivalence principle [54], equivalent

surface currents (two polarizations) at each input pixel can be deduced from the field

distribution inside that pixel. These currents, acting as a radiation source, emit elec-

tromagnetic waves that propagate through the forest block and generate a field at

every output pixel. Therefore the input-output field relationship can be represented

as a K ×K transfer matrix T (r̄′, r̄′′). The elements, Tij, relate the field distribution

at the jth pixel on the input surface and the ith pixel on the output surface, where r̄′

and r̄′′ stand for the locations of an input surface pixel and an output surface pixel,

respectively. When the mean-field on the output surface is desired, it can be obtained
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Figure 4.3: Input-output field relationship of a single block of forest.

by treating the forest block as an “average” lossy dielectric medium with propagation

constants Mpq, and letting the emitted electromagnetic waves travel in the effective

medium.

4.2.2 Propagation Network of Cascaded Forest Blocks

In this section, the procedure for computing the received power (from which the

foliage path-loss can be deduced) is explained. The single-block wave propagation

parameters estimated previously will be used repeatedly, in conjunction with a prop-

agation network. Figure 4.4 shows the block diagram of the proposed propagation

network in the SWAP model. There are altogether N cascaded forest blocks between

the transmitter (Tx) and receiver (Rx). The total field at the receiver is given by

Ē(r̄) = 〈Ē(r̄)〉+ Ẽ(r̄) (4.4)

where r̄ represents the receiver location. 〈Ē(r̄)〉 represents the coherent mean-field;

Ẽ(r̄) is the fluctuating field and 〈Ẽ(r̄)〉 = 0. Therefore, the average received power
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Figure 4.4: Network block diagram of in-forest horizontal wave propagation model
using cascaded forest blocks.

contains coherent and incoherent components and is given by

〈|Ē(r̄)|2〉 = |〈Ē(r̄)〉|2 + 〈|Ẽ(r̄)|2〉. (4.5)

Consequently the foliage path-loss can be computed as |Ēinc|2/〈|Ē(r̄)|2〉 , where

|Ēinc|2 represents the power carried by the incident wave when hitting the front edge

of the forest.

To compute the coherent power |〈Ē(r̄)〉|2 and the incoherent power 〈|Ẽ(r̄)|2〉,
express the total field at the surface of each block as the sum of the mean-field and

the fluctuating field. That is, at the output surface of the (j − 1)th block, the field

distribution can be written as

Ēj−1(r̄
′′) = 〈Ēj−1(r̄

′′)〉+ Ẽj−1(r̄
′′) (4.6)

where r̄′′ is an arbitrary point on the surface. According to the field equivalence prin-

ciple, Ēj−1(r̄
′′) acts as an excitation source illuminating the jth block and generating

fields at its output surface. An operator L{ } can be defined between the equivalent

sources on the input surface and the mean-fields on the output surface of the block.
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That is, 〈Ēj(r̄
′)〉 can be computed as

〈Ēj(r̄
′)〉 = L{Ēj−1(r̄

′′)} = L
{
〈Ēj−1(r̄

′′)〉+ Ẽj−1(r̄
′′)

}
(4.7)

where r̄′ is an arbitrary point on the output surface of the jth block. In fact, as shown

in Figure 4.4, Ēj(r̄
′) has two components, i.e.

〈Ēj(r̄
′)〉 = 〈Ēj(r̄

′)〉Foldy + 〈Ēj(r̄
′)〉s (4.8)

where 〈Ēj(r̄
′)〉Foldy corresponds to the attenuated direct coherent mean-field from the

transmitter, and 〈Ēj(r̄
′)〉s (indicated by the dashed lines) corresponds to all other

contributions. Changing the subscript in equation (4.8) from “j” to “j − 1” and

substituting into equation (4.7), one obtains

〈Ēj(r̄
′)〉= L

{
〈Ēj−1(r̄

′′)〉Foldy + 〈Ēj−1(r̄
′′)〉s + Ẽj−1(r̄

′′)
}

= L{〈Ēj−1(r̄
′′)〉Foldy}+ L

{
〈Ēj−1(r̄

′′)〉s + Ẽj−1(r̄
′′)

}
.

(4.9)

Comparing equations (4.8) and (4.9), one finds that

〈Ēj(r̄
′)〉Foldy = L

{〈Ēj−1(r̄
′′)〉Foldy

}
(4.10)

and

〈Ēj(r̄
′)〉s = L

{
〈Ēj−1(r̄

′′)〉s + Ẽj−1(r̄
′′)

}
. (4.11)

〈Ēj(r̄
′)〉Foldy can be obtained from the incident wave Ēinc propagating through the

“average” forest medium using Foldy’s approximation, i.e.

〈Ēj(r̄
′)〉Foldy = Ēinc · ej(k0+M)R (4.12)
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where M is the Foldy’s propagation constants (polarization subscript neglected) and

R is the propagation distance inside the forest. For 〈Ēj(r̄
′)〉s, the operator L{ } can

be realized approximately via the transfer matrix, T (r̄′, r̄′′). By cascading the mean-

field through each block to the output of the N th block, the coherent power can be

calculated since 〈ĒN〉 = 〈Ē〉, as shown in Figure 4.4. The incoherent power at the

receiver is made up of contributions from scattered fields by random scatterers within

all individual forest blocks. For example, the fluctuating field Ẽj(r̄
′)at the output

surface of the jth block is caused by random scattering within the jth block. It then

reradiates as a secondary source through the “average” forest medium and generates

a component of the fluctuating field, Ẽj(r̄) , at the receiver, where r̄ is the position

of the receiver. Therefore the total incoherent power can be obtained by

〈|Ẽ(r̄)|2〉 =
N∑

j=1

〈|Ẽj(r̄)|2〉. (4.13)

Here we have used the fact that the fluctuating scattered fields generated by different

blocks are statistically independent.

The fluctuating field Ẽj(r̄
′) is computed by reusing the statistical parameter σ/µ

instead of applying the brute force FCSM to each forest block over and over again,

since numerical simulations show that this quantity is invariant for different forest

blocks along the direction of wave propagation. With the mean-field 〈Ēj(r̄
′)〉 calcu-

lated, the standard deviation of Ēj(r̄
′), or Ẽj(r̄

′) , can be obtained by multiplying

σ/µ with the mean-field amplitude |Ēj(r̄
′)|. Once σ[Ẽj(r̄

′)] is known, pseudo-random

samples of Ẽj(r̄
′) are generated assuming it is a zero-mean Gaussian random variable.

This pseudo-random sample of Ẽj(r̄
′) is generated for each realization in a Monte-

Carlo simulation (different one from that used for single block wave propagation

behavior estimation), enabling one to compute a sample of the received power. With

a sufficient number of samples computed, the average and variance of the received
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Figure 4.5: Simplified network block diagram of the SWAP model with only single-
scattering mechanisms accounted for between blocks.

power can be obtained.

It is worth mentioning that Figure 4.4 includes all the multiple-scattering effects

in the forward direction between scatterers within different forest blocks. For exam-

ple, the transfer matrix T (r̄′, r̄′′) relays the scattering from inside the (j − 1)th block

into the scattering inside the jth block (Ẽj−1(r̄
′′) → 〈Ēj(r̄

′)〉 → Ẽj(r̄
′)). In fact,

T can be generalized to relate scattering that occurs inside any two distant blocks,

as illustrated in Figure 4.4 by the dash-dotted lines. However, multiple-scattering

between scatterers within the same block is not accounted for. In the case where

single-scattering is sufficient for the entire forest, the SWAP model can be simpli-

fied by turning off the between-block multiple-scattering mechanisms, i.e. neglecting

the excitations of 〈Ēj−1(r̄
′′)〉s and Ẽj−1(r̄

′′) on the jth block. The resulting single-

scattering SWAP model is equivalent to the FCSM model applied to the entire forest.

Figure 4.5 shows the block diagram of this simplified model. In the SWAP model

described so far, backscattering mechanisms are neglected since they are generally

much smaller than the contribution from forward scattering.
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Figure 4.6: Fluctuating fields from each block generate incoherent power at the re-
ceiver (ground reflection effect accounted for by using image of the fluc-
tuating fields).

4.2.3 Formulation for Computing Incoherent Power

To complete the specification of the SWAP model, one must compute the con-

tribution of Ẽj(r̄
′) to the incoherent power, i.e. 〈|Ẽj(r̄)|2〉. Figure 4.6 shows the

geometry of this propagation problem where the output surface of the jth block is

shown as Sj. Also shown is the image of the jth block in the ground plane. The

ground effect is accounted for by using approximate image theory [55]. Here the fluc-

tuating field distribution and its image are respectively denoted by Ẽd
j (r̄′) and Ẽr

j (r̄
′),

where the superscripts “d” and “r” stand for “direct” and “reflected”. The vertical

(z-direction) and horizontal (y-direction) extent of the forest block are denoted by H

and W respectively.

Based on the field equivalence principle, the surface fields on Sj can be replaced

with a magnetic current J̃m(r̄′), given by

J̃m(r̄′) = Ẽd
j (r̄′)× ŝ = Ẽd

j (r̄′)× (−x̂), (4.14)

backed by a perfect electric conductor (PEC). Similarly, the image fields are equivalent
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to the image magnetic current J̃ i
m(r̄′i), given approximately by [55]

J̃ i
m(r̄′i) ≈ <‖J̃my(r̄

′)ŷ + <⊥J̃mz(r̄
′)ẑ, (4.15)

also backed by a PEC. <‖, <⊥ are the modified Fresnel reflection coefficients taking

into account the ground surface roughness using Kirchhoff’s approximation [16]. Then

the field radiated from these surface currents to the receiver can be computed as

Ẽj(r̄) = Ẽd
j (r̄) + Ẽr

j (r̄)

=

∫∫

Sj

∇′ × G(r̄, r̄′) · 2J̃m(r̄′)ds′ +
∫∫

Si
j

∇′ × G(r̄, r̄′i) · 2J̃ i
m(r̄′i)ds′i.

(4.16)

The factor of 2 indicates that the current sources are backed by a planar PEC over

the surface Sj and its image. G(r̄, r̄′) is the dyadic Green’s function of a medium

having a permittivity equal to the effective dielectric constant of the forest, and the

curl of G(r̄, r̄′) is given by

∇′ ×G(r̄, r̄′) = ∇′g(r̄, r̄′)× I =




0 − ∂
∂z′

∂
∂y′

∂
∂z′ 0 − ∂

∂x′

− ∂
∂y′

∂
∂x′ 0




g(r̄, r̄′) (4.17)

where I is the dyadic idemfactor, and g(r̄, r̄′) is the scalar Green’s function given by

g(r̄, r̄′) =
ejkeR

4πR
(4.18)

where R =
√

(x− x′j)2 + (y − y′)2 + (z − z′)2 is the distance from a source point

on surface Sj to the receiver location r̄, and ke is the effective wave number in the

“average” forest medium. Using equation (4.16), the incoherent power at the receiver
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contributed by the jth block of forest can be calculated from

〈|Ẽj(r̄)|2〉 = 〈Ẽj(r̄) · Ẽj(r̄)
∗〉 = 〈|Ẽd

j (r̄)|2〉+ 〈|Ẽr
j (r̄)|2〉+ 2Re

{
〈Ẽd

j (r̄) · Ẽr
j (r̄)

∗〉
}

.

(4.19)

The three components in (4.19) are obtained in a similar manner, therefore only the

derivation of the first term is presented below, i.e.

〈|Ẽd
j (r̄)|2〉= 〈Ẽd

j (r̄) · Ẽd
j (r̄)∗〉

=

〈[∫ H

0

∫ W/2

−W/2

∇′ ×G(r̄, r̄′1) · 2J̃m(r̄′1)ds′1

]

·
[∫ H

0

∫ W/2

−W/2

∇′ ×G(r̄, r̄′2) · 2J̃m(r̄′2)ds′2

]∗〉

=

〈∫ H

0

∫ W/2

−W/2

∫ H

0

∫ W/2

−W/2

[∇′ ×G(r̄, r̄′1) · 2J̃m(r̄′1)] · [∇′ ×G(r̄, r̄′2)

·2J̃m(r̄′2)]
∗dy′1dz′1dy′2dz′2

〉
.

(4.20)

Substituting equations (4.14) and (4.17) into (4.20), and after some algebraic manip-

ulations one obtains

〈|Ẽd
j (r̄)|2〉= 1

4π2

∫ H

0

∫ W/2

−W/2

∫ H

0

∫ W/2

−W/2

ejkeR1−jk∗eR2(jkeR1 − 1)(−jk∗eR2 − 1)

R3
1R

3
2

·
{
〈Ẽjz(r̄

′
1) · Ẽjz(r̄

′
2)
∗〉(z − z′1)(z − z′2)

+〈Ẽjz(r̄
′
1) · Ẽjy(r̄

′
2)
∗〉(z − z′1)(y − y′2)

+〈Ẽjy(r̄
′
1) · Ẽjz(r̄

′
2)
∗〉(y − y′1)(z − z′2)

+〈Ẽjy(r̄
′
1) · Ẽjy(r̄

′
2)
∗〉(y − y′1)(y − y′2)

+〈Ẽjy(r̄
′
1) · Ẽjy(r̄

′
2)
∗〉(x− x′j)

2

+〈Ẽjz(r̄
′
1) · Ẽjz(r̄

′
2)
∗〉(x− x′j)

2

}
dy′1dz′1dy′2dz′2.

(4.21)
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According to equation (4.3)

〈Ẽjp(r̄
′
1) · Ẽjq(r̄

′
2)
∗〉 = C[Ẽjp(r̄

′
1), Ẽjq(r̄

′
2)] · σ[Ẽjp(r̄

′
1)] · σ[Ẽjq(r̄

′
2)] (4.22)

where subscripts “p”, “q” can represent either “y” or “z”. The dimensions of sur-

face Sj are truncated to the forest extent since the scattered field distribution with

significant magnitude and proper phase is confined within the forest extent.

Since the forest is statistically homogeneous along the horizontal dimension and

assuming stationarity in the wide sense, the correlation function C[Ẽjp(r̄
′
1), Ẽjq(r̄

′
2)]

can be considered a smooth function of the coordinate difference y′1−y′2, and the stan-

dard deviation function σ[Ẽjp(r̄
′)] is uniform along the y-axis. Then the stationary

phase approximation method [15] can be applied to the integral in equation (4.21).

With the stationary phase point at y′1 − y′2 = y, the integrand terms with multiplier

terms or vanish, and equation (4.21) reduces to

〈|Ẽd
j (r̄)|2〉= 1

2πk0

∫ H

0

∫ H

0

ejkeRsp
1 −jk∗eRsp

2 (jkeR
sp
1 − 1)(−jk∗eR

sp
2 − 1)

(Rsp
1 Rsp

2 )3(Rsp
1 Rsp

2 )1/2

·
{

C[Ẽjz(y, z′1), Ẽjz(y, z′2)]σ[Ẽjz(z
′
1)]σ[Ẽjz(z

′
2)]

·[(z − z′1)(z − z′2) + (x− x′j)
2]

+C[Ẽjy(y, z′1), Ẽjy(y, z′2)]σ[Ẽjy(z
′
1)]σ[Ẽjy(z

′
2)]

·(x− x′j)
2

}
dz′1dz′2

(4.23)

where Rsp
1 =

√
(x− x′j)2 + (z − z′1)2 and Rsp

2 =
√

(x− x′j)2 + (z − z′2)2. Due to vari-

ations in particle distribution and density along the vertical dimension, σ[Ẽjp(z
′)] and

C[Ẽjp(y, z′1), Ẽjq(y, z′2)] are functions of z′ over the finite vertical extent of the forest

block. Lacking analytical expressions for C and σ, numerical integration must be

carried out for equation (4.23).
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4.3 Model Validation

In this section, the validity of the SWAP model is examined in two different

ways. The first method studies simulation results for red pine stands. The second

is a quantitative comparison in which foliage path-loss predictions obtained from the

SWAP model are compared against a set of independent experimental data of path-

loss through a pecan orchard at 9.6 GHz [26]. Despite the fact that the trees are

evenly planted and only a very limited number of measurements at each receiver

location are available, very good agreement between the measured results and the

model prediction is obtained.

4.3.1 Qualitative Validation of the SWAP Model

Here three sets of simulation experiments are conducted. The single-scattering

SWAP model, as shown in Figure 4.5, is first compared with the FCSM model for

propagation in forests. Next, the single-scattering SWAP model is applied to forest

stands with different tree densities and at different frequencies to examine the depen-

dence of path-loss on these parameters qualitatively. Finally, the multiple-scattering

components are included in the SWAP simulations to evaluate their importance in the

path-loss estimation. For all simulations a vertically polarized plane wave is normally

incident upon a red pine stand which is about 8m tall, having a trunk layer of about

1.2m high, an individual tree crown diameter of approximately 5m and trunk diam-

eter of about 20cm, and several different tree densities. A receiver detecting fields at

vertical polarization is placed at a number of locations along the wave propagation

direction. A block of the forest, 15m long, 15m wide, and 8m tall, is selected for

evaluation of statistical wave propagation parameters. All simulations are performed

on a Linux workstation with a 2.4 GHz processor and 1 GB memory.

Figure 4.7 shows the foliage path-loss versus propagation distance in the red pine
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stand with a tree density of 0.05 trees/m2, using the SWAP and the FCSM models at

a frequency of 0.5 GHz. The receiver is located 1.5m above the ground, in the crown

overlap layer. The simulation results from the FCSM model are based on 40 realiza-

tions. As a reference, the coherent power calculated based on Foldy’s approximation

is also plotted in the figure. Clearly the single-scattering SWAP model provides very

accurate results when compared to the FCSM model. The simulation time using

SWAP is significantly less than the “brute force” FCSM model. Specifically, run-

ning one realization for all receiver locations using the FCSM model took about 2800

seconds and 40 realizations took more than 30 hours of computation time. On the

other hand, the computation time to run the SWAP model required only 200 seconds.

However, to estimate the behavior of wave propagation inside the forest, 100 Monte-

Carlo realizations that took about 8 hours had to be carried out. It should be noted

that this Monte-Carlo simulation for SWAP is required once and the results can be

reused for simulations of wave propagation through forests with arbitrary distances

and receiver heights.

Figure 4.8 shows the foliage path-loss as a function of propagation distance when

the SWAP model is applied to the same red pine stand with a tree density of 0.05

trees/m2 at different frequencies: 1.0 GHz, 2.0 GHz, and 4.0 GHz. Each curve has a

knee, the point of slope change where the SWAP model curve starts deviating from

the Foldy’s path-loss prediction. It can be seen that the knee occurs at a shorter

propagation distance as the frequency increases, which indicates that the ratio of

incoherent power to coherent power increases with frequency. However, since the

coherent mean-field is attenuated faster at higher frequency, the foliage path-loss may

still be larger at higher frequency, as seen from the comparison between 1 GHz and

2 GHz data. At larger propagation distances, where the incoherent power dominates

the overall received power, the foliage path-loss at higher frequency becomes less than

that at lower frequency. For instance, at distances greater than 200m, the foliage

75



Figure 4.7: Comparison between the single-scattering SWAP and FCSM models (fre-
quency = 0.5 GHz, tree density = 0.05 trees/m2). The good agreement
shows that the single-scattering SWAP is implemented correctly.

path-loss at 4 GHz is less than that at 2 GHz.

A similar result is shown in Figure 4.9 where the SWAP model is applied to red

pine stands at three different tree densities (0.05 trees/m2, 0.1 trees/m2, and 0.15

trees/m2) all at 0.5 GHz. This time the receiver is located 0.75m above the ground,

in the trunk layer. As expected, higher tree density causes more attenuation and

scattering, resulting in more incoherent power relative to coherent power after the

wave propagates a long distance inside the forest. This also shows that the foliage

path-loss knee occurs at a shorter propagation distance for higher tree densities.

Figure 4.10 shows the results of applying the multiple-scattering SWAP model, as

shown in Figure 4.4, to the red pine stand of tree density 0.15 trees/m2. At this high

density the multiple-scattering effects are expected to be significant. Simulation fre-

quency is chosen to be 0.5 GHz and the receiver is located at 1.5m above ground. An

obvious decrease of foliage path-loss is observed at range values where the incoherent

intensity dominates, beyond about 100m.
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Figure 4.8: Comparison of the single-scattering SWAP model applied at three differ-
ent frequencies for a tree density of 0.05 trees/m2. The ratio of incoherent
to coherent power increases with frequency.

Figure 4.9: Comparison of the single-scattering SWAP model applied to different tree
densities at a frequency of 0.5 GHz. The ratio of incoherent to coherent
power increases with tree density.
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Figure 4.10: Multiple-scattering effects decrease the foliage path-loss through the for-
est as compared to the single-scattering model (frequency = 0.5 GHz,
tree density = 0.15 trees/m2).

4.3.2 Comparison with Measurements

Schwering et al. conducted a propagation measurement through a pecan orchard

at 9.6 GHz [26]. Range dependence of the foliage path-loss was obtained for both

foliated and defoliated conditions for transmitter-receiver heights of 1, 4, and 6 m,

respectively. Despite the random fluctuations of the measured data points, the under-

lying dual-slope phenomenon can be observed in the measurement results (see Figure

4.13). For each measurement, the transmitter was located 300m away from the front

edge of the orchard and the receiver was placed at a height equal to that of the

transmitter at different spots into the orchard, as shown in Figure 4.11. The pecan

trees are uniformly planted in a grid with about 13m spacing. There is little overlap

between neighboring tree crowns. The line of receiver locations passes through the

center of a tree row and encounters maximum vegetation density, and hence the co-

herent field attenuation was maximized as well, especially at the trunk layer where
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Figure 4.11: Path-loss measurement scenario in a pecan orchard, according to [26].

the shadowing effect is significant. A calibration measurement was first conducted by

setting the receiver at the front edge of the orchard to remove the effects of instrument

loss and free space (ground present) path-loss. The remaining foliage path-loss can

then be modeled as the attenuation of a plane wave propagating through the orchard.

The ground truth for the pecan orchard was described in [26], however it lacks in-

formation on average trunk diameter and detailed branching structure, which makes

the fractal tree modeling difficult. With the help of pictures of the orchard pre-

sented in Schwering’s paper and botanical information of the typical pecan tree [56],

computer-generated pecan trees out-of-leaf and in-leaf are obtained as shown in Fig-

ure 4.12(a)and 4.12(b), respectively. Both trees have a tree height of approximately

9m and a canopy crown diameter of about 13m. The trunk layer height is about 1.5m,

although for the in-leaf pecan tree some branches can droop to the 1m level. The

trunk diameter is chosen to be 50cm in order to match the coherent field attenuation

observed from the measured data.

To apply the SWAP model, a 25m long, 40m wide, and 9m tall block of pecan trees

is used for estimating the required statistical wave propagation parameters. About 6

79



(a)

(b)

Figure 4.12: Computer-generated fractal model of pecan trees: (a) out-of-leaf condi-
tion; (b) full-leaf condition.
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trees are randomly located inside the block. Although this random distribution of tree

locations deviates from the uniform plantation of the pecan orchard, the scatterers

inside the canopy crown, such as the leaves and branches, should have similar random

distributions especially at high frequencies where the size of the scatterers is much

larger or comparable to wavelength. The vertical dimension of the block is divided into

4 layers. The depth of each layer from the trunk to the top of the canopy is 1.5, 3.0, 2.5,

and 2.0 m, respectively. This way we can distinguish the trunk layer, the two crown

layers where the 4m and 6m measurement heights respectively fall into, and the crown

top layer where scatterers are relatively sparse. Foldy’s propagation constants are

first estimated using a number of random tree samples. Field distribution statistics,

i.e. the variances and correlation functions, along a vertical line with sample points

at half-wavelength spacing in the middle of the output surface of the block is then

obtained through a Monte-Carlo simulation of 100 realizations, at which point the

convergence of the field statistics is achieved.

Figure 4.13(a) and 4.13(b) illustrate the comparison between SWAP model sim-

ulation and Schwering’s measured data of the foliage path-loss at 9.6 GHz versus

the number of trees obstructing the signal path (see Figure 4.11) at the heights of 4

and 6 m respectively. The pecan trees are in a defoliated state. Figure 4.14(a) and

4.14(b) show similar results for the pecan orchard in full-leaf. The measured data

shows some fluctuation along an underlying dual-slope trend due to the fact that the

signal path was fixed during each measurement and no averaging on independent spa-

tial samples was carried out. All simulations assume V-V polarization in accordance

with the measurement scenario, i.e. the transmitter sends a vertically polarized wave

and the receiver detects vertical polarization as well. As seen from these plots, the

multiple-scattering SWAP model predicts the foliage path-loss reasonably accurately.

For instance, the simulated foliage path-loss slope agrees well with the measurement.

Specifically, the path-loss slope changes more abruptly for the foliated state. Approx-
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imately 5 dB more path-loss in the foliated state compared to the defoliated state is

predicted as well (notice the difference of the propagation distance ranges in Figure

4.13 and 4.14. By including higher order multiple-scattering effects which is impor-

tant in this scenario, the path-loss estimation agrees more closely to the measured

data.

It is worth noticing that the difference between single-scattering and multiple-

scattering estimations is much larger for the defoliated state. This is because of the

less coherent attenuation experienced by the multiple scattered fields when leaves are

not present as a major scattering and absorption source. The comparison for the

scenario where transmitter and receiver are located at the trunk layer (e.g. height of

1m) has not been carried out due to the difference of trunk locations in the SWAP

simulation and the real measurement site. As mentioned before, the trunks are in

rows and the transmitter and receiver are placed along a row. However this is not a

limitation of the SWAP model since the tree locations are easily adjustable, merely

a limitation of this specific implementation of this orchard in our model.

4.4 Conclusions

A statistical wave propagation (SWAP) model has been introduced in this pa-

per that provides an accurate and time-efficient simulation tool for wave propagation

over long distances within forested environments. SWAP uses an existing wave theory

model (FCSM) and applies it to a representative block of the forest to pre-compute

the statistical wave propagation parameters. These parameters are then used in con-

junction with a network approach to calculate the total power at the receiver. The

computation time is significantly reduced. Modeling accuracy is enhanced by in-

cluding multiple-scattering components. Three sets of simulation experiments are

conducted on a red pine stand to examine the validity of the SWAP model qualita-
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(a)

(b)

Figure 4.13: Comparison between SWAP model simulation and measurement data,
(a) receiver height at 4m; (b) receiver height at 6m. Pecan trees are
out-of-leaf. Note that the multiple-scattering SWAP model results are
very close to the measurements.
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(a)

(b)

Figure 4.14: Comparison between SWAP model simulation and measurement data,
(a) receiver height at 4m; (b) receiver height at 6m. Pecan trees are in
full-leaf.
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tively. Independent measured data at X-band for path-loss through a pecan orchard

is predicted by the SWAP model accurately. Further improvement of the SWAP

model can be made by including multiple-scattering among scatterers within each

forest block, and by accounting for backscattering mechanisms which are neglected

for the time being due to their relatively small contributions. The SWAP model is

also applicable to inhomogeneous forests containing different tree species by including

different block types throughout the forest.
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CHAPTER 5

MiFAM: A MACRO-MODEL OF FOLIAGE

PATH-LOSS

5.1 Introduction

In the previous chapter, an accurate and time-efficient foliage path-loss model,

SWAP, was introduced. As discussed, SWAP is based on applying a state-of-the-art

wave propagation model, FCSM, to a block of forest in order to estimate the wave

propagation behavior in foliage over a long distance in a computationally tractable

manner. FCSM and SWAP are research codes, however, and are difficult for ordinary

users who do not possess in-depth knowledge of the codes to use. Although SWAP

is capable of predicting the path-loss through foliage of arbitrary parameters, at any

desired frequency, or over any radio link distance, its accessibility and operability to

a wide range of users are rather limited. A macro-model using simple mathematical

expressions while maintaining the accuracy of the original model is desired. Such a

macro-model can be extracted from a large number of simulations using the original

codes. As mentioned earlier, this procedure is similar to developing empirical mod-

els from real measured data, but has the advantage of greater flexibility and more

general applicability. For example, the empirical Weissberger model [7] for foliage

path-loss only involves the operating frequency as a single parameter besides the

propagation distance; the aforementioned macro-modeling methodology can include
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all parameters of the forested environment and radio link attributes. Additionally,

this macro-modeling methodology is more cost-efficient as compared to conducting

physical experiments.

In this chapter, an accurate foliage path-loss macro-model called the Michigan

Foliage Attenuation Model (MiFAM) is developed. First, a physics-based parametric

model for the foliage path-loss which is capable of predicting the dual-slope path-loss

behavior is selected. Then, the most influential foliage and radio system parameters

and their effects on the parameters of the aforementioned parametric model are de-

termined through sensitivity analysis. In addition, allometric models for tree species

are used to minimize the number of foliage parameters. Next, a multiple linear re-

gression is performed to relate the parametric model parameters to the foliage and

radio system parameters quantitatively. In what follows, details of the development

of MiFAM are provided and an example of MiFAM applied to red maple trees is

presented.

5.2 Michigan Foliage Attenuation Model

5.2.1 Parametric Model for Foliage Path-Loss

The dual-slope foliage path-loss as a function of distance has been reported in

the literature; the results have been obtained mainly through experimental efforts

[20, 25, 26]. The physics of wave attenuation in a highly scattering environment can

be attributed to two phenomena: 1) attenuation due to absorption, and 2) attenuation

along the direction of propagation due to scattering. As explained in the previous

chapter, the initial attenuation rate at short propagation distances corresponds to

the absorption and scattering of the coherent mean-field by foliage particles along the

direction of wave propagation. On the other hand, scattering by foliage particles can

provide power gain as well, by redirecting part of the incident power (either directly
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from the transmitter or scattered from other particles) towards the receiver. This

mechanism contributes to the so-called incoherent power at the receiver. After a

certain distance in the random medium, the coherent power decays to insignificant

levels and only the incoherent power resulting from scattering remains. In this region,

which is usually far away from the transmitter, attenuation can only be attributed

to absorption as it is expected that what is lost due to scattering can be regained

through further scattering in an average sense. Therefore the attenuation rate of the

dominant incoherent power is significantly different from that of the coherent power,

giving rise to the dual-slope path-loss curve as a function of distance.

A simple parametric model capable of explaining such phenomenon is given by

[15]

PL = −10 log10

{
(1− q)e−(σa+σs)d + qe−σad

}
(5.1)

where PL stands for foliage path-loss (in dB) as a function of the propagation dis-

tance d (in meters) inside the foliage. σa and σs are power attenuation rates due to

absorption and scattering, respectively, and q is a parameter related to the degree of

scattering in the medium. The combination of σa, the absorption coefficient, and σs,

the scattering coefficient, leads to the extinction coefficient which is the same as the

attenuation rate of the coherent power. At short distances, i.e. for small d, the first

term in (5.1) is dominant (q is usually a very small quantity), resulting in path-loss

given by

PL ≈ −10 log10

{
e−(σa+σs)d

}
. (5.2)

This agrees with the observation that path-loss is dominated by the coherent power

attenuation at short propagation distances. At large distances, i.e. for d À 1, (5.1)

can be approximated by

PL ≈ −10 log10

{
qe−σad

}
, (5.3)

indicating that the path-loss curve slope is only proportional to σa, or the attenuation
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Figure 5.1: A 3-parameter macro-model explaining a foliage path-loss curve computed
from the SWAP model.

is due only to absorption. In the direction of propagation the power lost due to

scattering is further scattered back into that direction by other scatterers. From (5.3),

one observes that q contributes to an offset in the path-loss value when the expression

is evaluated for d = 0. Ishimaru interprets q as the fraction of total scattered power

within the receiving angle of the receiver in an isotropic random medium [15]. An

accurate physical meaning of q for more complicated media such as a forest, however,

is not as straightforward. Figure 5.1 shows how well the 3-parameter parametric

model can fit the path-loss curve computed from the SWAP model. Coherent power

attenuation based on Foldy’s approximation is also shown. By selecting proper values

for σa, σs, and q, the 3-parameter model completely agrees with the SWAP model.

It is worth mentioning that some other models with adjustable parameters, such

as the Non-Zero Gradient model [22], may be adopted as well, although numerical

examination shows inferior agreement with the simulation result of the SWAP model.
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5.2.2 Model Parameters as Functions of Foliage & Radio Sys-
tem Parameters

In the previous section, a simple 3-parameter foliage path-loss model was shown to

be adequate for capturing the path-loss behavior in a forest environment. It is obvious

that with different foliage and radio system scenarios, the foliage path-loss curve

varies, hence, the model parameters must change accordingly. Generally, the specific

scenario can be described with a number of foliage and radio system parameters.

Foliage parameters include the structural and forest stand parameters, as well as the

vegetation dielectric parameters. The structural parameters which determine the tree

structures include

• tree height (th)

• trunk diameter at breast height (dbh)

• crown-to-trunk ratio (ctr)

• branching angle (ba)

• branch density (bd)

• leaf density (ld)

• cone angle (ca, only for coniferous trees),

and the forest stand parameters are

• tree species

• tree number density (td).

The parameters that determine the dielectric constants of foliage particles and the

underlying ground are

• wood moisture (mw)

• leaf moisture (ml)

• soil moisture (ms).

The empirical dielectric mixing formulae reported in [106] are used to calculate the

dielectric constants of vegetation and soil. The foliage parameters can be determined
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either from the ground truth measurement of a desired site or simply from estimated

values reported in literature for different forest stands. The radio system parameters

are as follows:

• operating frequency (f)

• transmitter-receiver height (H)

• transmitter-receiver polarization (pol).

The purpose of macro-modeling is to relate the path-loss model parameters (σa,

σs, q) to the foliage and radio system parameters. Considering the large number of

foliage and system parameters, extensive sensitivity analysis is required to establish

such relationships. Since path-loss is an average quantity resulting from the statis-

tical average of many quantities, it is expected that the path-loss model parameters

be a smooth function of the foliage and radio system parameters. That is, no singu-

larities or resonance are expected for the functional forms chosen to relate the model

parameters to the foliage and system parameters.

The most general relationship form or relating function may be written as

Y = g(X) (5.4)

where Y, the vector of path-loss model parameters, is given by

Y =




σa

σs

q




, (5.5)

X, the input vector containing all pertinent foliage and system parameters, is given

by

Xt = [x(1), x(2), · · · , x(k)], (5.6)
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where the superscript (j), j = 1, 2, · · · , k, stands for the jth foliage/system parameter,

and g is a multivariate vector function. In order to obtain the function g, sensitiv-

ity analysis is carried out for each individual foliage and system parameter. First,

a centroid value is assigned to each foliage and system parameter. Then, for the

parameter under study, its value is varied within a certain range around its centroid,

while other parameters remain at their respective centroid. Using this set of foliage

and system parameter values, one runs the SWAP model to obtain a corresponding

foliage path-loss curve, from which the three model parameters are retrieved by stan-

dard curve-fitting process. Repeating this previous step for different values of the

parameter under study, one can obtain a number of data points relating each model

parameter and the parameter under study. From these data points, the relation-

ship between each model parameter and the parameter under study can be extracted

through curve-fitting.

The most simple relationship between the model parameters and the foliage/system

parameters is a linear function, i.e.

Y ' Y0 + A ·X (5.7)

where Y0 corresponds to a constant term; A contains the linear coefficients, and is

given by

A =




a
(1)
1 a

(2)
1 · · · a

(k)
1

a
(1)
2 a

(2)
2 · · · a

(k)
2

a
(1)
3 a

(2)
3 · · · a

(k)
3




.

Y0 and A can be obtained by first generating a number of data samples of (X,Y)

from the SWAP model and then using standard multiple linear regression technique to

retrieve the linear coefficients relating X and Y. The combination of equations (5.1)

and (5.7) essentially provides a macro-model for the foliage path-loss prediction, which
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will be referred to as the Michigan Foliage Attenuation Model (MiFAM). Compared

to Weissberger’s empirical model where frequency is the only parameter for path-loss

measurements, MiFAM is obviously much more accurate and general.

A subtle point in the construction of MiFAM is that not all the foliage/system

parameters are continuous variables, e.g. the transmitter and receiver polarizations

are discrete. For these parameters, they are not included in X. Instead, different sets

of Y0 and A are developed at different values of such parameters, e.g. the V-V and

H-H polarizations. Some continuous variables may be treated similarly in order to

simplify the macro-model. For example, although the transmitter or receiver height

can vary continuously, the layered structure of the foliage makes its effect dependent

on other parameters, such as tree height and crown-to-trunk ratio. A reasonable

approximation is to discretize this parameter by placing the receiver or transmitter

in the crown layer or the trunk layer. Other examples of parameters that can be

discretized are the branch and leaf densities. These are continuous variables that are

difficult to measure in practice. They are also discretized into different categories,

e.g. less dense, dense, and denser, and separate sets of Y0 and A are provided, one

for each category. It should also be mentioned that since the fractal trees forming

the virtual forest environment are species-dependent, MiFAM is species-dependent as

well.

The development of MiFAM requires a large number of simulations and amount

of curve-fitting, which are by no means an easy task. However, once such a macro-

model is obtained, it will greatly benefit many end users in terms of providing accurate

path-loss model with significant time savings. In what follows, a detailed example of

MiFAM for a common deciduous tree species is provided.
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5.3 MiFAM for Red Maple Forest

Red maple, one of the most prevalent tree species in northern America, belongs

to the deciduous tree category. Its structural architecture is well studied and the

corresponding L-systems “DNA” file has been developed in the Radiation Laboratory

at the University of Michigan. Based on the realistic-looking fractal tree models

generated from such DNA file, and the well-developed SWAP path-loss model, the

MiFAM macro-model can be obtained through the methodology described in the

previous section. In this section, the development of MiFAM for red maple forest will

be demonstrated. This macro-model targets the UHF (ultra-high frequency) band

(300 − 1100 MHz). It is noted that a number of cell phone communication systems

such as AMPS, GSM, and IS-95 [57] are specified to operate in this band.

5.3.1 Sensitivity Analysis

In this section, sensitivity analysis for the red maple tree is carried out in order to

construct the foliage path-loss macro-model. The model provided in this section is for

defoliated trees. Path-loss models for fully foliated trees can be developed in a similar

manner with the inclusion of additional foliage parameters related to the leaves, such

as leaf density and moisture. In this example, branch density is selected to be dense,

the transmitter and receiver are placed in the crown layer and V-V polarization is

chosen. Figure 5.2 shows computer-generated fractal red maple trees in the defoliated

state with varying branch densities. Except for the leaf parameters, the remaining

foliage/system parameters to be included in X and their centroid values are listed in

Table 5.1.

Simulation results indicate that variations of the crown-to-trunk ratio parameter

ctr, the branching angle ba, and the soil moisture ms have little effect on the model

parameters σa, σs, and q. Therefore, they are excluded from the foliage/system pa-

94



Table 5.1: Foliage/system parameters and their centroid values to be used in the
MiFAM model for red maple trees

tree density (m−2) tree height (m) trunk diameter (cm)
td0 th0 dbh0

0.05 10 15
crown-to-trunk ratio branching angle (deg.) wood moisture (g/g)

ctr0 ba0 mw0

4 22 0.5
soil moisture (cm3/cm3) frequency (MHz)

ms0 f0

0.18 700

Figure 5.2: Fractal red maple trees with different branch densities, (a) less dense; (b)
dense; (c) denser.
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Figure 5.3: Fractal red maple trees corresponding to different tree densities, (a) 0.025
trees/m2; (b) 0.05 trees/m2; (c) 0.1 trees/m2.

rameter vector X. The remaining five parameters are of importance and are described

in detail in what follows.

Tree Density

The foliage crowns of adjacent deciduous trees generally occupy the space in be-

tween the trees but do not extend past their immediate neighbor. In this case there

is a simple relationship between the crown diameter (Cdia) and the tree density (td)

given by

Cdia '
√

1/td. (5.8)

Figure 5.3 shows three fractal red maple trees corresponding to different tree densities,

0.025 trees/m2, 0.05 trees/m2, and 0.1 trees/m2. The related crown diameters are

about 6.3m, 4.5m, and 3.2m, respectively. The distinction of tree structures with

various crown coverage is clearly observed.
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(a)

(b)

Figure 5.4: Simulation results for different tree densities of red maple forests, (a)
foliage path-loss curves; (b) path-loss model parameters as functions of
tree density.
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Figure 5.4(a) plots three sets of foliage path-loss curves with respect to the different

tree densities; as can be seen, the structural differences and tree number density

significantly affect the foliage path-loss. Each set includes the total power path-loss

curve calculated by the macro-model whose parameters are determined by curve-

fitting the path-loss simulated from the SWAP model; the coherent power path-loss

curve based on Foldy’s approximation is included as a reference. Figure 5.4(b) plots

the values of the three macro-model parameters σa, σs and q for the different tree

density values. It is clearly observed that linear functions are sufficient to predict the

behavior of σa, σs and q over a very wide range of tree density values.

Tree Height

Figure 5.5 shows three fractal red maple trees with different tree heights, 5m, 10m,

and 15m. It is clear that shorter trees appear to have more branches since the same

number of branches are confined into a smaller volume. As shown in Figure 5.6, both

σa and σs decrease as the tree height increases. Again a linear relationship exists

between each model parameter and the tree height.

Trunk Diameter

Figure 5.7 shows three fractal red maple trees with trunk diameters, 10 cm, 15 cm

and 20 cm. The value of the trunk diameter sets the thickness of the branches in the

tree but does not affect the branching architecture. Figure 5.8 provides the simulation

results of foliage path-loss at different values of trunk diameter. It is observed that

σa, σs and q are sensitive to the trunk diameter in a linear manner.

Wood Moisture

The wood moisture parameter describes the gravimetric water content in the wood

of the tree trunk and branches. Therefore, it also determines the dielectric properties,
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Figure 5.5: Fractal red maple trees with different tree heights, (a) 5m; (b) 10m; (c)
15m.
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(a)

(b)

Figure 5.6: Simulation results for different tree heights of red maple forests, (a) fo-
liage path-loss curves; (b) path-loss model parameters as functions of tree
height.

100



Figure 5.7: Fractal red maple trees with different trunk diameters, (a) 10 cm; (b) 15
cm; (c) 20 cm.
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(a)

(b)

Figure 5.8: Simulation results for different tree trunk diameters of red maple forests,
(a) foliage path-loss curves; (b) path-loss model parameters as functions
of trunk diameter at breast height.
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and affects the way the wood absorbs and scatters the propagating wave. Figure 5.9

provides the simulation results of foliage path-loss at different values of wood moisture.

The linear relationships between model parameters and the wood moisture is clearly

observed. Wood moisture is usually difficult to measure. A suggested value for the

red maple trees is 0.5 grams of water per gram of wood.

Frequency

Frequency is an important factor because it affects the scattering and absorption

behavior of foliage particles interacting with the propagating waves. The dielectric

constants of the foliage particles as well as the soil ground are frequency-dependent,

although such dependence is not considerable over a small range of frequencies. Fig-

ure 5.10 provides the simulation results of foliage path-loss at different UHF band

frequencies. As seen in the figure, the three model parameters all vary linearly with

the frequency.

5.3.2 Evaluation of MiFAM Coefficients

The above sensitivity analysis results for five important foliage/system parameters

showed that simple linear relationships exist between each individual model param-

eter (σa, σs, and q) and those five foliage/system parameters. Therefore a standard

multiple linear regression technique can be applied to obtain the matrices A and the

vector Y0 in equation (5.7). The results are given by

A =




0.002 −1.8e−4 −4.0e−5 −0.001 −1.5e−6

0.481 −0.0024 0.0036 0.05 1.6e−5

1.95e−6 −3.0e−7 −2.56e−7 −5.0e−6 −3.0e−9




, (5.9)
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(a)

(b)

Figure 5.9: Simulation results for different wood moisture of red maple forests, (a)
foliage path-loss curves; (b) path-loss model parameters as functions of
wood moisture.
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(a)

(b)

Figure 5.10: Simulation results for red maple forests at different frequencies, (a) fo-
liage path-loss curves; (b) path-loss model parameters as functions of
frequency.
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and

Y0 =




0.00675

−0.0475

0.0000157




. (5.10)

Also the foliage/system parameter vector and its centroid value are given by

X =




td

th

dbh

mw

f




, X0 =




0.05

10

15

0.5

700




. (5.11)

Figure 5.11 shows the fitting performance of the multiple linear regression for σa, σs,

and q. The “*” markers represent data points with values of σa, σs, or q computed

from both SWAP and MiFAM with the evaluated A and Y0. As shown in the figure,

those “*” markers are concentrated around a diagonal line, indicating that the model

parameters computed by MiFAM agree with the original values computed by SWAP

quite well. This proves the successful evaluation of the MiFAM coefficients.

5.3.3 MiFAM Validation Against SWAP

Equations (5.1), (5.7), and (5.9)−(5.11) establish the complete MiFAM for foliage

path-loss through red maple forests. Users can plug in the specific values of the

five foliage/system parameters in their wave propagation scenarios and compute the

foliage path-loss at certain propagation distances. As a validation of MiFAM, a

number of sets of foliage/system parameters are chosen and they are used both in the

SWAP model and the MiFAM. The resulting path-loss model parameters from SWAP

and MiFAM are then compared against each other. Notice that the foliage/system

parameters selected here are independent sets from those used in evaluating MiFAM
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(a)

(b)

(c)

Figure 5.11: Results of multiple linear regression, (a) fitting performance for σa; (b)
fitting performance for σs; (c) fitting performance for q.
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coefficients. Figure 5.12 shows the simulation results, which is similar to Figure 5.11.

Good agreement between MiFAM and SWAP model is observed, which provides a

quantitative validation of the developed MiFAM for red maple forest.

5.4 Conclusions

In this chapter, a macro-modeling technique for foliage path-loss prediction is

presented. It is based on sensitivity analysis of foliage and radio system parameters

using the well-developed SWAP model. First, a simple mathematical expression with

three model parameters is established to explain the dual-slope foliage path-loss as

a function of propagation distance. Then each of these model parameters is related

to a number of foliage and radio system parameters through the extensive sensitivity

analysis and multiple linear regression. Once these relationships are obtained, the

user can plug in their specific foliage/system parameters and compute the three model

parameters from which the foliage path-loss curve is determined. This foliage path-

loss macro-model is referred to as the Michigan Foliage Attenuation Model (MiFAM).

The model is tree species and radio system dependent. An example of MiFAM for

defoliated red maple forest is provided for certain transmitter-receiver polarization

and over a certain frequency range. This MiFAM model is also validated against

additional independent simulation results from the SWAP model. As a final comment,

it is worth mentioning that because of the generality of the SWAP model on which

it is based, the macro-model described in this chapter has no fundamental limitation

in predicting the foliage path-loss for any radio system inside any arbitrary forest

environment.
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(a)

(b)

(c)

Figure 5.12: Validation of MiFAM against SWAP model, (a) comparison of σa; (b)
comparison of σs; (c) comparison of q.
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CHAPTER 6

PHASE CALIBRATION OF

LARGE-REFLECTOR ARRAY USING LEO

TARGETS

6.1 Introduction

Exploration of solar system has long been a human aspiration. With the advent of

launch vehicles, communications, lightweight and compact electronics, remote sensing

tools, and robotics this dream has become a reality over the past several decades. In

this endeavor the space agencies’ goal has always been to minimize mission cost and

complexity while simultaneously increase functionality. Current plans for space ex-

ploration missions call for sending spacecraft farther and farther away from the earth.

At the same time the demand for communication throughput has increased while the

existing communication link between distant spacecrafts and earth ground stations

are very weak. There is an urgent requirement for great enhancement of such a ra-

dio link. Enough effective isotropic radiated power (EIRP) must be provided for the

wireless communication channel so that sufficient signal-to-noise ratio (SNR) can be

achieved to ensure the desired communication capacity. Antenna arrays consisting of

large reflector antennas have already been employed at ground stations to communi-

cate with spacecraft during the missions, such as the Very Large Array (VLA) in New

Mexico, U.S. [58]. However, their up-to-date usage is primarily limited to downlink
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operation where phase coherence of signals at all array elements can be achieved by

a posteriori signal processing using recorded data such as images transmitted back

from a spacecraft. The uplink operation such as telemetry of navigation and mission

command still relies on single large reflector antennas at ground stations. For exam-

ple, the 70-m antenna of NASA (National Aeronautics and Space Administration)

DSN (Deep Space Network) is the primary resort for emergency uplink contact with

lost spacecraft. However, due to its aging effect and power as well as size limitation, it

needs to be replaced or upgraded in the near future. Instead of building new colossus

reflectors which is extremely expensive, arraying a number of smaller size reflector

antennas would produce the same performance at a fraction of the cost [32], provided

that their phase coherence can be assured in the uplink operation mode.

As mentioned earlier the downlink signal processing technique is not applicable

to uplink arraying. In addition, the phase center of a large reflector antenna cannot

be easily determined to the desired accuracy at the operation spectrum (X- and

Ka-band). Therefore an external calibration using a calibration target is necessary.

Due to the large size of array elements and their sparse distribution, the calibration

target has to be located very distant from the array so that it appears in the main

beams of all array elements. And it is desirable that the terrestrial environment does

not cause severe interference with the calibration. Furthermore, Earth rotation and

spacecraft movement mandates the calibration at all array attitudes. Considering all

these requirements, one finds the existing low earth orbit (LEO) orbiters promising

candidates for calibration targets, for their remoteness in respect to the surface of

the earth, abundance, and their ability to supply multiple calibration opportunities

at different array orientations. More importantly, they are free to use. Although

launching new LEO micro-satellites becomes more and more affordable nowadays,

it may still cost millions of dollars per launch. The trade-off of such a cost-free is

that these existing targets generally do not have the resource to transmit particular
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beacon signals for the array calibration purpose, in other words, they appear as passive

targets. Therefore an active array calibration approach must be employed.

In this chapter a radar calibration method for a sparsely distributed large-reflector

phased array is proposed. Such an approach is based on the concept of phase con-

jugation and calibrates the phase center and instrument phase shift altogether using

a group of LEO orbiters as calibration targets. In what follows, the proposed ar-

chitecture for an uplink phased array and the corresponding calibration method are

presented in Section 6.2. Section 6.3 studies the array dynamics as a function of Earth

spin and orbital movement. The optimal orbit and required number of in-orbit LEO

calibration targets for providing frequent calibration opportunities is also investigated

by employing an aerospace simulation software package STK (Satellite Tool Kit) [60].

In Section 6.4 an array gain performance analysis of the proposed array system in

terms of the residual phase errors of array elements is presented using a statistical

modeling approach. Finally in Section 6.5, concluding remarks and comments are

provided.

6.2 Coherent Phased Array System

Figure 6.1 shows a simplified block diagram of the proposed array system. In

this scheme, the array elements are capable of operating in both transmit and receive

modes at the same frequency band. To calibrate the phase of the array elements, one

antenna is used as a transmitter illuminating an in-orbit calibration target and all

array elements are used as receivers. In this case the target behaves as the source for

all receivers. To maintain the system coherence, a common phase-stable local oscil-

lator (LO) and identical T/R (transmitter/receiver) amplifier modules are employed.

Each T/R module is composed of two low-loss, high-power, and high-isolation SPDT

(Single Pole Double Throw) switches which are connected to the input and output of
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Figure 6.1: Simplified block diagram of proposed array system and calibration pro-
cedure.

a low noise amplifier (LNA) and a power amplifier (PA), as shown in Figure 6.1.

The received backscatter signals at each antenna are carried to a control room,

and down-converted to an IF frequency in a mixer using the common LO signal. The

outputs of all mixers are filtered, amplified, and coherently detected using quadrature

receivers where the magnitude and phase of the signals are measured and stored. For

array downlink operation (receive mode), phase compensation at each element is ap-

plied by subtracting the corresponding stored phase values from the received signals.

For uplink operation (transmit mode), according to the concept of phase conjugation,

the array can focus back at the source location once the array phase distribution in

transmission is the negative of that of the received signals during the calibration.

In practice, an IF signal with phase conjugation can be generated in a waveform

generator, and then up-converted using the same mixer and LO. To accommodate

this phase conjugation scheme, the components along the signal path of each array
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element must be reciprocal (like the transmission lines) or commonly shared by all

elements (like the LO). The transmission lines carrying signal from each antenna to

the control room should be very low-loss and phase-stable. Because of their rigidity,

low-loss property at high frequencies and relatively low transmission phase variation

with temperature, metallic waveguides may be used. However, waveguides are disper-

sive and for certain signal bandwidth and transmission line length, a matched filter

may be required to compensate for the frequency dispersion. Alternatively air-filled

rigid coaxial lines or fiber optics may be selected instead. For active devices such as

mixers and amplifiers, the phase shifts must be pre-characterized. For instance, if the

amplifier T/R modules are not identical, then their transmission phase characteristics

must be measured a priori and be used during phase conjugation processes. Basically

a correction must be made so that the sum of the phases of S12 and S21 of all T/R

modules become identical.

It is worth mentioning that the calibration procedure only aligns the carrier phase

at each array element. The true-delay synchronization of modulating pulses at each

element must also be taken into account. For example, as shown in Figure 6.2,

pulse #1 and #2 are the modulating signals at two array elements. Although the

phases of their carriers (the underlying sinusoidal curves) are perfectly aligned through

calibration, the timing asynchronization of these two pulses causes information loss

for ∆τ duration out of the total pulse duration τ . Signal delay circuits are therefore

needed to correct for the asynchronization ∆τ . Basically ∆τ comes from the path-

length difference between signals of different array element. With enough accuracy

in the knowledge of such path-length differences, the effect of ∆τ can be eliminated.

For instance, through GPS [59] measurements of the antenna locations, the path-

length differences from different antennas to the spacecraft can be determined within

meter-level accuracy, corresponding to time delay of nanoseconds, which is generally

insignificant for throughput of megabytes per second.
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Figure 6.2: Pulse asynchronization between array elements.

In the calibration procedure described so far, the calibration target must be in the

far-field of each element but can also be in the near-field region of the array. In most

practical situations, array focusing is required at infinity (far-field), but in this case it

is often impossible to place the calibration target in the far-field. For example the far-

field distance of an array occupying an area of 1 km × 1 km at 7.2 GHz and 35 GHz

is 48,000 km and 233,333 km respectively. As to be shown later, the gain drop for a

near-field focused array may be compensated by employing an algorithm that adjusts

the differences between near-field and far-field focusing. Therefore the appearance

of LEO orbiting targets in the array near-field, generally several hundred to a few

thousand kilometers above the earth, does not prevent them from being considered

proper candidates of calibration targets. As mentioned earlier, Earth’s rotation adds

significant complexity to the operation of large uplink arrays since the array has to be

calibrated for different antenna attitudes. This obviously raises the question of what

are the best orbits and how many in-orbit calibration targets are needed to cover

the required aspect angles. In the following section this issue is considered in more

details, and the dynamics of the array with respect to the in-orbit calibration targets

and a deep space communication probe is examined.
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6.3 Array Dynamics and Calibration Using In-Orbit

Targets

During a single overpass, an in-orbit target, depending upon its altitude and orbit

inclination, is observable by the array at azimuth and elevation angles that may be

quite different from those needed to point at a deep space spacecraft traveling in the

plane of solar system. In fact during each overpass, an in-orbit target can produce

a calibration opportunity for only one direction. Also the overall array phase sta-

bility dictates how often the array would require calibration and hence the number

of in-orbit targets. In order to quantify the required orbits, the number of calibra-

tion targets, and the intervals required to fulfill the required calibrations, a realistic

scenario is considered next.

To study the complex relative motion of the earth, calibration targets, and the

deep space spacecraft, an aerospace software package, known as STK [60], is used

throughout. With its powerful analytical engine, STK computes and provides visual-

ization of various time-dependent information for satellites and other space objects,

including orbit/trajectory ephemeris, acquisition times and angles, sensor coverage,

etc. Using this software Figure 6.3 shows the pointing angles of the ground station

antenna to the spacecraft and the range of the spacecraft during a half-day period.

The elevation angle is defined to be the angle between the pointing direction and the

plane tangential to the earth at the location of the ground station. The azimuth angle

is defined in that tangential plane with 0◦ corresponding to the local North direction.

In Figure 6.3, R represents the moment when the spacecraft is rising from horizon

in view of the ground station antenna, O represents when the spacecraft is almost

overhead of the ground station, and point S represents the spacecraft setting below

the horizon. Figure 6.4 shows the 3D view of this tracking period. The spacecraft is

orbiting in the ecliptic plane, which intersects the earth equator plane with an angle of

23.6◦ (the earth inclination angle). Due to the earth’s spin, the ground station moves
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Figure 6.3: Pointing angles of the ground station antenna and the range of spacecraft
from Earth versus time.

from point R to O then to S, and changes its pointing angles to track the spacecraft.

The pointing vectors intersect a celestial sphere with some altitude (e.g. 500 km)

above the earth surface. The intersecting points (including R’, O’, and S’) make up

a projection curve on the celestial sphere surface. Ideally, one would like to place

in-orbit calibration targets along this projection curve. However, without spending

significant energy, maintaining such position is practically impossible. Therefore the

array phase calibration needs to rely on system repeatability, in other words the lo-

cations of phase centers of the antennas for a given set of azimuth and elevation

orientation angles remain the same as a function of time. Hence the calibration can

be done a priori at different instances where the tracks of in-orbit targets such as a

number of LEO satellites intersect the projection curve on the celestial sphere. The

number and the orbits of the LEO satellites must be designed in such a way to ensure

a complete and frequent intersection.

To examine the track crossing of a LEO satellite with the projection curve, the
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Figure 6.4: 3D view of the ground station tracking the spacecraft.

temporal azimuth and elevation angles of array pointing direction can be represented

parametrically in the azimuth and elevation plane. The parametric plots of the array

pointing direction to the spacecraft and to a LEO satellite on a circular orbit with

altitude of 500 km and inclination angle of 68.5◦ are shown in Figure 6.5 for a one-day

duration. The circle symbols on the dash-lines record the pointing angles to the LEO

at a 60-second interval during the period when the antenna can “see” the LEO. And

the intersection points A, B, C, D, E, and F provide six calibration opportunities.

For missions with long durations, calibration points over an area in the azimuth-

elevation plane must be determined. In order to cover all pointing angles in a relatively

short period of time, many LEO satellites at different planes, i.e. different inclination

angles and RAAN (Right Ascension of Ascending Node), are required. By optimal

design of the LEO satellites orbits, one can use the minimum number of LEO’s to

cover all points with a specified frequency. The parameters that can be manipulated

in the optimization include the inclination angle, the altitude (for circular orbit) or

apogee and perigee (for elliptical orbit), and number of satellites. As an example,

the five parametric lines in Figure 6.6 shows the pointing angles of a California DSN

array to a deep space spacecraft at five different days with an interval of a month

(first day of March, April, May, June, and July in 1997). Observation points from
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Figure 6.5: Antenna pointing angles to spacecraft and to a LEO satellite for one-day
period.

the same array to LEO satellites must cover the area between the innermost and

outmost lines. In the following, the LEO orbit is chosen as circular with an altitude

of 2000 km. The altitude of 2000 km is chosen because the LEO moves slower and al-

lows for enough time to mechanically steer the antennas between different calibration

angles. Of course the signal-to-noise ratio (SNR) is another factor determining the

altitude, as will be discussed later. Observation angles of the array 60 seconds apart

for a single day will be displayed. Depending on the number of satellites and the

required number of calibration points (required pointing angle resolution), the entire

calibration may take more than a day. The pointing angle resolution is dictated by

the array elements mechanical stability in maintaining antenna phase center as the

antenna moves. First, 24 LEO satellites orbiting in a plane with RAAN = 0◦ and

equally spaced are used. The simulation results for 30.6◦ and 37.5◦ plane inclination

angles are shown in Figure 6.6(a) and 6.6(b), respectively, where the LEO targets in

the plane of 30.6◦ inclination provide calibration opportunities (indicated by markers)

covering most of the spacecraft tracking zone with relatively high resolution, except
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for some low elevation points which can be covered by the LEO targets in the plane

of 37.5◦ inclination. A combination of LEO targets at 30.6◦ and 37.5◦ inclination

angle orbit planes can cover the pointing angles required to track the spacecraft dur-

ing its whole mission. Notice that the apparent sparsity of calibration points at high

elevation angles in Figure 6.6 is partially an artifact of displaying the LEO locations

every 60 seconds. If we can reduce the unit time required for array calibration at

each pointing angle, then more calibration points can be obtained.

So far we have not considered the timing sequence of the calibration targets.

One problem that can occur is that two or more LEOs may appear over the desired

spacecraft tracking zone simultaneously and the array can be pointed at only one of

them. This is especially true when all the LEOs are put in the same orbit plane, as

in the above simulations. To rectify this problem the number of orbiting planes can

be increased while reducing the number of LEOs in each plane accordingly. Figure

6.7(a) shows the array observation angles in a one-day period by tracking 24 LEOs

in 24 different orbital planes with equally spaced RAAN and 30.6◦ inclination angle

(one LEO per each plane). Although in this scenario LEOs’ appearances are spread

over time, Figure 6.7(a) clearly shows that a full coverage of desired angle area cannot

be accomplished in a single day calibration. Figure 6.7(b) shows the tracking angles

for three consecutive days. Except low elevation angles, excellent coverage of the

spacecraft-tracking zone is clearly observed over a three-day period. Notice that in

Figure 7.5 the calibration points are connected sequentially to show better coverage

of the tracking zone.

6.4 Phase Calibration Error and Array Gain Per-

formance Analysis

In this section, the performance of the proposed calibration technique is evaluated

in terms of the phase calibration residual errors and the array gain degradation caused
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(a)

(b)

Figure 6.6: Pointing angle map for the spacecraft (whole mission, indicated by lines)
and the calibration targets (one day, indicated by * markers): (a) LEO
satellites in a 30.6◦ inclination plane; (b) LEO satellites in a 37.5◦ incli-
nation plane.
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(a)

(b)

Figure 6.7: View angles of calibration points for 24 LEOs in 24 different orbital planes
with equally spaced RAAN and 30.6◦ inclination: (a) in one-day period;
(b) in three consecutive days.
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by such errors. Basically there are two categories of phase calibration errors, namely

the positioning errors and the signal phase errors. Positioning errors refers to the

uncertainties of the location of calibration targets, array elements, and the spacecraft.

Signal phase errors include the phase errors associated with the signals at each array

element due to insufficient SNR, mechanical motion, and unstable phase reference

distribution, etc. Since close-form solutions expressing these errors cannot be found,

thus their effects on the calibration performance are studied through a Monte-Carlo

simulation method.

6.4.1 Positioning Errors

As mentioned previously, the LEO calibration targets generally fall within the

near-field of the array due to the very large physical extent of the array compared

to wavelength. Therefore focusing on such targets does not produce the maximum

array gain in the far-field where the deep space spacecraft is going to be. However it

may be possible to compensate for the differences in signal paths, as shown in Figure

6.8. For simplicity, only two of the array elements are presented. Points A and B are

the phase centers of the two elements. Assuming that the coordinates of A and B,

and those of the calibration target (C) and the spacecraft (D) are known, the path

difference between AC and AD, and that between BC and BD can be calculated

and used for phase compensation. In practice, the exact locations are not available.

The dash-dot circles in Figure 6.8 indicate the range of position uncertainty of the

antenna, the target, and the spacecraft from their nominal locations. In fact, the

positioning uncertainty of the spacecraft has a negligible effect, since the navigation

tracking accuracy of the spacecraft is sufficiently high, e.g. within 10 nano-radians

[61]. On the other hand, the calibration target, such as a LEO satellite, may not

have a space navigation instrument, and therefore its position may not be known

with the required accuracy. The physical positions of the antenna array elements
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Figure 6.8: Phase compensation needed to correct for path length differences between
the array elements to spacecraft and to the calibration target. The figure
also shows the position uncertainties of the array elements, the calibration
target, and the spacecraft.

can be determined to meter level accuracy, using the differential GPS technique [59].

However, the phase center of each antenna with large dimensions cannot be easily

determined, especially at high frequency (X- or K- band). Nevertheless, the deviation

of the phase center location from its nominal position is estimated to be less than

several meters.

To investigate the effects of position uncertainties, a Monte-Carlo simulation is

conducted for an 8 × 8 array at X-band (7.2 GHz). Each array element is chosen

to be a 12m-diameter dish antenna and element spacing is assumed to be 72m. The

array elements are placed on flat surface and the in-orbit target and the spacecraft are

placed along the antenna boresight at 500 km and the 100,000 km respectively. First,

the calibration target and the spacecraft are fixed at their nominal positions, and the

position of each array element varies randomly according to a uniform distribution

within a sphere centered at the nominal position of that element. The radius of the
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Figure 6.9: Array gain degradation versus the position error of array elements.

sphere is specified as the position deviation in meters. For each specific position

deviation values, a Monte-Carlo simulation with 10000 realizations is carried out.

For each realization, a random location is selected for antenna elements. After going

through the proposed calibration procedure, the power received at the spacecraft is

calculated and compared to its ideal value corresponding to a situation where all

array elements are at their nominal positions. Figure 6.9 shows the degradation of

the array gain versus the position deviation values of the array elements. The circle

in Figure 6.9 indicates the mean degradation and the error bar specifies the range of

the degradation. Gain degradation is observed to be very small in this case.

Next, the positions of the array elements and the spacecraft are fixed and the

position of calibration target is varied within a sphere with a specified radius. Similar

Monte-Carlo simulations are carried out. Figure 6.10 shows the array gain degrada-

tion as a function of calibration target position uncertainty radius. As the position

error of the calibration target becomes larger, the array gain further deteriorates. For

instance, for a 30m position uncertainty radius, which corresponds to a maximum
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Figure 6.10: Array gain degradation versus the position error of calibration target.

angular deviation of 60 micro-radians, the array gain can suffer a maximum of 14 dB

loss. Some angular measurement techniques, such as VLBI and differenced Doppler

[61], is necessary to confine the positioning error of the calibration target within 15m

(or 30 micro-radians) in order to limit the array gain degradation to less then a max-

imum of 3 dB. Another solution is to load a GPS receiver on board of the in-orbit

satellite which carries the calibration target. This way, the target position can be

measured to several meters accuracy. It is also worth mentioning that although the

range of the gain degradation is relatively large, the mean degradation seems tolerable.

Therefore some sort of statistical averaging will be helpful to improve the calibration

performance. Of course this requires more calibration opportunities. From the above

simulations, it is obvious that the positioning error of LEO calibration targets is the

dominant factor in the calibration accuracy.

6.4.2 Signal Phase Errors

During the calibration process, besides the positioning errors, there are uncer-

tainties associated with the phase of signals at each array elements. These errors
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basically come from three sources: 1) phase measurement; 2) mechanical motions

and thermal fluctuation; 3) signal propagation. Phase measurement error is directly

related to the SNR, i.e. Pr/Pn. Here Pr, Pn are the signal and noise powers at the

receiver respectively. Assuming a zero mean Gaussian noise, the knowledge of SNR is

sufficient for determining the measured phase standard deviation which, in degrees,

can be calculated from [63]

σφ ≈ 57.3√
SNR

. (6.1)

The overall system SNR depends on the array system parameters and the target

attributes. The starting point of calculating SNR is the radar equation given by

Pr =
PtA

2
effσ

4πR4λ2
. (6.2)

where Pt is the transmit power, R is the target range to the radar, Aeff is the

effective aperture of the antenna, σ is the target radar cross section (RCS), and λ

is the wavelength. With Pt, Aeff , and λ fixed according to system standard, the

only parameters to increase Pr, hence SNR, are R and σ. Smaller R renders larger

Pr, however the integration time which affects SNR (as will be mentioned later)

also becomes shorter. Therefore an optimal R value can be found. Meanwhile, the

availability of the calibration targets at such range has to be considered. To improve

the target RCS, retro-reflective structures such as corner reflectors, Luneburg lens,

and Van Atta arrays may be employed [48]. Unlike a metallic sphere, the RCS of

these structures is a function of incident angle, that is, only for a limited range of

incident angles the RCS remains unchanged. This again could affect the integration

time.

Noise power can also be easily computed from

Pn = KTsysBeff (6.3)
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where K = 1.38 × 10−23 is the Boltzmann’s constant, Tsys = Tant + Trec is overall

system noise temperature including the antenna and receiver noise temperatures, and

Beff is the effective system bandwidth. The effective system bandwidth is defined

as the smaller of the physical system bandwidth and the reciprocal of the coherent

analog or digital integration time τ . In situations where SNR is poor (small target,

long range, low transmit power, etc.) target response over many transmit pluses are

averaged coherently to reduce the effect of noise. Equivalently this can be done by

transmitting long pulses provided that the pulse duration does not exceed twice the

travel time to the target (τ ≤ 2R/c). In practice, however, there is an upper bound for

the integration time that is a function of system quality and measurement scenario.

For a stationary scenario where both radar and target are fixed the upper limit for the

integration time is determined by the radar system transmitter and local oscillator

frequency stability. Over time periods of a few seconds or shorter the frequency drift

of most stable sources can be approximated by a linear function of time, and may be

represented

fdrift = αt (6.4)

where α is some constant specifying the rate of frequency drift. In this case the phase

of the received signal is quadratic with time and therefore the upper bound for the

integration time takes the following form

τ ≤ 1√
2α

. (6.5)

The integration time can be severely limited in two ways when the radar, target, or

both are moving with respect to each other. First, the relative motion produces a

Doppler shift, which if not account for, limits the integration time to τ ≤ 1/(2fd).

Here fd = 2v/λ denotes the Doppler shift for a target having a radial velocity v with

respect to the radar. In situation where the relative radial velocity of the target as
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a function of time is known to within ±δv, the integration time must be limited to

τ ≤ λ/(4 δv). For example for an integration time of one second the radial velocity

of the target must be known with an accuracy of 10−2 m/s at 7.2 GHz. In practice

both Doppler shift and frequency drift exist and hence the combine effect must be

considered, i.e. the upper bound for the integration time is given by

τ ≤
√

f 2
d + 2α− fd

2α
. (6.6)

If the Doppler shift is known with an accuracy of ±δfd, the expression given by

(6.6) can be used provided fd is replaced with δfd. Another limiting factor on the

integration time for the non-stationary scenario is the temporal variation of the target

backscatter. For physically large targets and at high frequencies the amplitude and

phase of the target RCS varies very rapidly with the incidence angle that changes

continuously as the target moves. For a target with a maximum dimension Dt a

change in the aspect angle by an amount δθ = λ/(2Dt) can cause a significant change

in the target RCS and as much as 180◦ phase shift in the backscatter field. This

change of course depends significantly upon the shape and orientation of the target.

For example the backscatter of a target with spherical symmetry (independent of its

size) is insensitive to changes in the aspect angle. However most passive targets, such

as space debris or in-orbit satellites, have complex geometries and sharp varying RCS

patterns. Limiting the integration time to the first null of the RCS pattern, for a

target at a distance R traveling with a tangential velocity u the integration time can

be calculated from

τ ≤ Rλ

2Dtu
. (6.7)

As an example, for Dt = 5m, u = 555 m/s, and R = 500 km, the maximum integration

time is limited to τ = 2.7s. An additional motion factor is wobbling of the target. In

space most in-orbit objects have some undesirable wobbling motion, which can limit
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the integration time by

τ ≤ λ

2Dtfwθmax

(6.8)

where θmax and fw are, respectively, the maximum angular variation (with respect to

radar look angle) and frequency of wobbling.

Once the effective system bandwidth is determined,the SNR at the output of each

receiver can be determined. Figure 6.11 shows the received power normalized to noise

power for a unit bandwidth for a monostatic radar system having a 12-m diameter

reflector antenna with an aperture efficiency of 60% which transmits 3.6 kW power

towards a calibration target with a nominal radar cross section 1 m2 as a function of

range. This figure provides Pr/KT at two operating frequencies at X-band (7.2 GHz)

and Ka-band (35 GHz). In this simulation the overall receiver noise temperature of

the receiver is assumed to be 60 Kelvin. As shown in Figure 6.11, for an in-orbit

target at the altitude of 20,000 km (such as GPS satellite), the calculated Pr/KT is

about 10.5 dB and 21.3 dB at X-band and Ka-band respectively. For an integration

time of 1 ms, the SNR at X- and Ka-band are −19.5 dB and −8.7 dB respectively.

According to (6.1), 1◦ phase measurement accuracy requires about 32 dB of SNR and

−10 dB SNR can cause an exorbitant phase standard deviation (STD) of 180◦. Here

it should be pointed out that equation (6.1) for the phase standard deviation is only

valid for relatively high SNR as it does not account for the fact that phase is measured

modulus 2π. The most random case for phase probability distribution is a uniform

distribution, which has a STD of about 104◦. Therefore, unless the target range is

reduced to within 3,000 km or the integration time is increased to at least 3 seconds,

the phase measurement error would be greater than 10◦ for X-band operation.

Except for the phase measurement error, mechanical motion, thermal fluctuation,

and signal propagation also introduce phase errors. As mentioned before, the uplink

array operation relies on the application of the pre-stored phase calibration informa-

tion obtained from in-orbit targets. Due to the time elapse between the calibration
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Figure 6.11: Received power over per unit bandwidth noise power versus range for a
reflector antenna calibrating a target.

procedure and uplink communication, a number of environmental and systematic

factors as well as residual calibration errors cause array phase uncertainties. For

instance, the mechanical motion of the antenna structure, the wind and gravity ef-

fects may all change the phase center slightly, causing a certain amount of phase

error. Similarly the dimensions and shape of the antennas may change with ambient

temperature which could be different between the calibration and uplink operations.

These changes may move the location of the array elements phase centers as well.

In addition, the phase reference distribution could be unstable and fluctuates as a

function of time. The devices along the signal path, such as mixers, filters, and ampli-

fiers, etc., may have temporal variations. These changes can be easily corrected for by

monitoring the phase of an injected tone slightly out of band. Also, the atmosphere,

especially the troposphere, affects the signal phase distribution if the humidity and

turbulence conditions vary across the array area. An estimation of such signal phase

errors is given in [64, 65], and the typical values are listed in Table 7.1.

To quantify the effect of array phase distribution uncertainties, a Monte-Carlo
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Table 6.1: Signal phase error budget table.

Signal Phase Error Typical Value
1) Phase Measurement (at SNR = 32dB) 1◦

2) Mechanical Motion & Thermal Fluctuation
a) Feed Horn & BWG 2◦

b) Mirror 3◦

c) Reflector-Subreflector Structure 5◦

3) Signal Propagation
a) Phase Reference Distribution & BWG 2◦

b) Mixers, Filters, Amplifier, etc. 7◦

c) Troposphere & Ionosphere 7◦

simulation is carried out for the same 8 × 8 array at X-band by giving the phase

of each array element a random distribution and calculating the mean and standard

deviation of the array gain degradation. Figure 6.12 shows the degradation of the

array gain versus the standard deviation of a random phase error introduced to the

phase of each array element. The phase error probability distribution is assumed to

be a zero mean Gaussian random variable. In this simulation effects of positioning

errors are ignored and 10000 Monte-Carlo realizations are conducted. As shown in

Figure 6.12 the average array gain degradation is less than 3 dB for random phase

errors with less than 40◦ standard deviation.

6.5 Conclusions

Array of large reflectors is studied for next generation deep space communication

to enhance the radio link between ground stations and deep space spacecraft. Radar

calibration technique using a number of LEO in-orbit calibration targets is proposed

for determination of the array uplink phase distribution. The advantage of this tech-

nique lies in the fact that the calibration targets are in the far-field region of array

elements and relatively a small number of them can supply frequent calibration oppor-

tunities for different array attitudes globally. In addition, such radar approach based
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Figure 6.12: Degradation of array gain versus standard deviation of random phase
errors introduced to each array element of an 8× 8 array at X-band.

on the concept of phase conjugation makes the array operation easy and flexible. An

overall system design and tracking scenarios are studied using STK software package

to identify optimal calibration opportunities. A Monte-Carlo analysis on the array

gain degradation due to random positioning of the array elements and the calibration

target is conducted. This study indicates that array elements positioning errors have

minimal effect on the array gain, while the calibration target positioning error can

cause significant degradation. Similar study on the array gain degradation due to

random signal phase errors is performed as well. This analysis shows that for phase

errors within less than 40◦ gain degradation is not significant. The sources of signal

phase errors are also clarified.

In order to avoid the calibration target positioning error, it is desired to use cali-

bration targets in the far-field region of the whole array. Moon and the celestial radio

emitter Quasar are two potential candidates. In the next two chapters, techniques

based on using Moon and Quasar as array calibration targets will be introduced re-

spectively. Notice that the signal phase error still exists. As a matter of fact, due to
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the large distance of these far-field targets from the array, SNR is much reduced and

may cause large phase measurement errors. Corresponding methods to overcome such

a challenge will be presented. Other signal phase errors are independent of calibration

schemes, therefore will not be repeated in the next two chapters.
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CHAPTER 7

UPLINK CALIBRATION OF

LARGE-REFLECTOR ARRAY USING LUNAR

INSAR IMAGERY

7.1 Introduction

In the previous chapter, a radar calibration method, based on the concept of

phase conjugation, is developed to obtain the proper phase distribution for array

coherence. In this method LEO (low earth orbit) orbiters are selected as calibration

targets due to their abundance in space and close range to the ground array. Through

orbiting activity they are able to provide calibration opportunities for various array

orientations. One issue about this method comes from the fact that both transmitter

and receiver working at the same frequency band are required at each array element.

The cost of building an array containing a large number of elements calls for an all-

transmitter array, that is, each array element has only a transmitter and no receiver.

Accordingly, the array calibration has to be conducted in an uplink mode.

Another issue lies in that LEO calibration targets fall within the array near-field.

This necessitates a path-length difference correction to ensure the array focusing on

the far-field instead of the near-field target. However, target positioning error can

degrade the calibration performance, as shown in the previous chapter. The orbits of

LEO targets tend to be unstable since they are often affected by local gravity field
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variations and atmospheric drag effects. Existing tracking accuracy on these targets

by NORAD (North American Aerospace Defense Command) is about 5 km [66], far

beyond the threshold which can be tolerated. Installing GPS receivers on some new

LEO targets would supply the required positioning accuracy, but launching these

targets could be cost prohibitive. Equipping high-accuracy tracking facilities, such as

a gigantic phased array radar, at the ground array site is another option, provided that

the expense could be afforded. Alternatively, calibration targets in the array far-field

can be used in which case it is not necessary to perform the path-length correction.

However, the low SNR (signal-to-noise ratio) may become the major challenge for the

calibration. For a 1 km × 1 km array operating at X-band (7.2 GHz) the far-field

zone is at 48,000 km away. Compared to the LEO targets which are locate ∼1,000

km away, there is an extra free space path-loss of about 70 dB.

In this chapter, a new radar calibration method is proposed for the all-transmitter

array where all array elements transmit simultaneously in the sense that the transmit-

ted signals encounter the calibration target at the same time. Signals from different

elements are modulated by different orthogonal PN (pseudo-noise) codes. Then the

mixture of backscatter signals is received at a common receiver where matched filter-

ing and phase detection are performed to provide the desired array phase calibration

values. A natural celestial body, the Moon, is selected as a calibration target for

its appearance in the array far-field. In addition, the large dimensions of Moon can

cover the main beams of array elements and hence provide large backscatter signals

to increase the signal-to-noise ratio (SNR). However, this cannot be easily achieved

by treating the Moon as a point target like those LEO orbiters. Instead the foot-

print of a real-aperture ground antenna on the lunar surface is so large (hundreds

of kilometers) that it is indeed a distributed target with unknown scattering phase

center. In order to discover suitable “point targets” on the lunar surface for calibra-

tion, the planetary SAR (Synthetic Aperture Radar) imaging technique [68] can be
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employed. For each array element, the relative motion between the Earth and Moon

is able to form a very large synthetic antenna aperture that focuses at a set of small

pixels on the lunar surface. Every pixel can be treated as a “point target”. Each

array element forms an image of these pixels based on their backscatter signals. The

phase difference between images (backscatter signals) of the same pixel at different

array elements is called an “interferogram”. The system measuring and utilizing such

interferograms is known as an interferometric SAR (InSAR) system. For the interest

of this chapter, the interferogram is used to calibrate the phase distributions of the

array. The number of pixels contributes as the number of independent calibration

samples.

In what follows, section 7.2 explains how orthogonal PN-codes work for the all-

transmitter array calibration. Then the details of the proposed calibration method

via interferometric SAR (InSAR) imaging of Moon are described in section 7.3. Sec-

tion 7.4 presents the phase difference (or interferogram) statistics between two array

elements of an InSAR system analytically. In section 7.5, a 3D lunar random rough

surface backscattering model is developed to simulate the interferogram statistics

numerically under different scenarios. A practical example of calibration system pa-

rameters design is provided in section 7.6, and the effects of pixel SNR, undulation,

and misregistration on the variance of interferogram are investigated. Section 7.7

draws the conclusions.

7.2 All-Transmitter Array Calibration

Figure 7.1 shows the simplified system block diagram of radar calibration for an

all-transmitter array. A base-band radar pulse signal

A(t) =

{
1 0 < t < τ

0 otherwise
(7.1)
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Figure 7.1: Simplified system block diagram of the all-transmitter array calibration.

(τ is the pulse duration) is up-converted to radio frequency (RF) at array element

j (j = 1, 2, ..., N and N is the number of elements), by a carrier cos(ωct) supplied

from a common local oscillator (LO). The RF signal is then modulated by one of the

N orthogonal PN-codes, PNj(m), using BPSK (binary phase shift keying), where m

= 1, 2, ..., M . M is the chip length of the PN-codes, i.e. each PN-code contains a

random sequence of M mixed +1’s or −1’s (chips). The modulated RF signal is then

given by pj(t) · cos(ωct) , where

pj(t) =

{
PNj([t/δτ ] + 1) 0 < t < τ

0 otherwise
(7.2)

and δτ is the modulation duration for each chip. The operator [ ] takes the maximum

integer less than the value inside. The signal is amplified and transmitted from the

element antenna towards the calibration target which scatters the signal back to a

common receiver. Considering the close spacing between array elements relative to

the long range from the array to the calibration target, the aspect angles of incidence

for all elements are almost the same, therefore a constant amplitude of backscatter

from the calibration target, s, is assumed. The total received signal at the common
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receiver is then given by

r(t) =
N∑

j=1

s · pj(t− tj) · cos[ωc(t− tj) + θj] (7.3)

where tj = dj/c is the signal propagation time from the jth element antenna to the

calibration target and then to the common receiver, dj is the corresponding path-

length and c is speed of light. θj represents the phase shift due to instrument and

atmosphere. In fact the phase value

φj = ωctj − θj (7.4)

is exactly what is needed to calibrate the phase distribution of the array element. In

order to detect φj , the received signal is first down-converted by the same carrier to

f(t) =
N∑

j=1

s · pj(t− tj) · cos φj (7.5)

and then sent through a bank of matched filters p∗i (−t), i = 1, 2, ..., N . The matched

filtering corresponds to a convolution operation in the time domain or a multiplication

in the frequency domain. Therefore the Fourier transform of ui(t), the output signal

of the ith matched filter, is given by

Ui(ω) =
N∑

j=1

s · cos φj ·Xji(ω) · e−jωtj (7.6)

where

Xji(ω) = Pj(ω) · P ∗
i (ω). (7.7)
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Pj(ω), P ∗
i (ω) are Fourier transforms of pj(t) and p∗i (−t) respectively, and the inverse

Fourier transform of Xji(ω) is a correlation operation in the time domain, given by

xji(t) = F−1[Xji(ω)] = pj(t)⊗ p∗i (t) (7.8)

where F−1[ ] is the inverse Fourier transform operator and ⊗ stands for a correlation

operator. Now the output signal ui(t) can be written as

ui(t) = F−1[Ui(ω)] =
N∑

j=1

s · cos(φj) · xji(t− tj)

= s · cos(φi) · xii(t− ti) +
N∑

j 6=i

s · cos(φj) · xji(t− tj).

(7.9)

The PN-code has such a property that its autocorrelation function xii(t) is similar

to a triangle function which has a large peak at origin and very small amplitude

elsewhere. The PN-codes chosen for different elements are orthogonal in the sense

that their cross-correlation amplitudes are negligibly small compared to their auto-

correlation peak amplitudes. Therefore one can detect the phase φi from ui(ti) by

setting t = ti in equation (7.9), where the autocorrelation xii(0) term is the desired

signal, cross-correlation xji(ti − tj) terms contribute as noise, and the resulting SNR

is approximately given by g/(N − 1). Here we introduce g as the “correlation gain”

which is equal to the amplitude ratio of the autocorrelation peak of one PN-code to

the average cross-correlation level between this PN-code and another PN-code. The

larger the g is, the higher the SNR, and hence the more accurate phase detection.

The technique described so far assumes a stationary calibration target. For a

moving in-orbit target, the transmitted signals from the various array elements need

to impinge upon it at the same time to ensure a constant backscatter. This can

be done through signal synchronization which adjusts the timing when radar pulses
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are transmitted out of different array elements based on the path lengths from each

element to the calibration target. Such synchronization is also necessary during up-

link communication with deep-space targets. With the current NASA DSN timing

standard [69], the accuracy of signal synchronization is at microsecond level, which

is quite sufficient even for targets moving at a speed of thousands of kilometers per

second.

One of the most commonly used PN-codes in communications is called the “max-

imal length sequence” (m-sequence) [67] whose chip length is (2k − 1) with k the

number of shift registers for code generation. With a small number of shift registers,

one can generate very long m-sequences. The peak-to-minimum ratio of the autocor-

relation function is approximately equal to the chip length. The number of available

m-sequences for a given k-stage shift registers is much less than (2k − 1) though.

And the bound of the cross-correlation level of these m-sequences has no well-defined

formula. Another type of PN-codes is the so-called “Gold” code [67]. It is obtained

by combining a pair of m-sequences or their shifted versions. There are a total of

(2k + 1) Gold codes available with k shift registers, and their cross-correlation level

bound is well-defined as (2k/2+1 + 1) for k even and (2(k+1)/2 + 1) for k odd, with a

little sacrifice on the autocorrelation performance. In the real implementation of the

all-transmitter array calibration system, orthogonal PN-codes have to be carefully

selected to ensure that both autocorrelation and cross-correlation meet the required

criteria.

7.3 Lunar InSAR Imagery for Array Calibration

As mentioned earlier, the Moon is selected as the calibration target and the SAR

imaging technique has to be employed to isolate the big antenna footprint on the

lunar surface into many point-target-like small pixels. SAR is a coherent imaging

system which makes use of the concept of synthetic aperture, that is, a large antenna
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Figure 7.2: Earth-based SAR antenna taking images of lunar surface (adapted from
[78]).

aperture is synthesized by recording the complex (both magnitude and phase) radar

backscatter using a much smaller real antenna aperture at many spots along a path.

An overview of SAR system characteristics and techniques can be found in many

books [70, 71, 72, 73] and papers [74, 75, 76]. Utilizing the relative motion between

the Earth and other celestial bodies to form the synthetic aperture, the planetary SAR

imaging technique is also developed [77] using the delay-Doppler algorithm, similar

to the range-Doppler algorithm in airborne SAR. Both Stacy [78] and Webb et al.

[79] conducted radar imaging for the Moon and obtained high resolution lunar SAR

images. Margot [80] took similar images at two NASA Goldstone DSN antennas to

form an InSAR imaging system which provided lunar topography from the extracted

interferograms. Next a brief review of the lunar SAR imaging technique is presented.

As shown in Figure 7.2, the x-axis is defined as the line of sight direction from

Moon’s center of mass (the origin) to the radar antenna on Earth. The z-axis is

called the apparent rotation axis, which is a vector perpendicular to the x-axis and
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Figure 7.3: Interferometric SAR antennas taking images of a lunar surface pixel.

represents the direction of apparent angular velocity of the Moon, ~ωa, as seen by the

radar. The y-axis completes a right-handed coordinate system. Contours of equal

range or constant delay form an annulus parallel to the y-z plane, while contours of

equal Doppler shift form a semi-annulus parallel to the x-z plane. The latter is true

because the line of sight velocity of any point on the lunar surface at a great distance

from the radar on the Earth is given by

vlos ≈ ~v · x̂ = (~ωa × ~r ) · x̂ = ~r · (x̂× ~ωa) ∝ ry (7.10)

where ~r is the vector from the origin to the surface point and ry is its y-component.

Therefore any surface points with the same ry share the same Doppler shift. The two

contours intersect and form two resolution pixels A and B which have the same delay

and Doppler shift. Such north-south ambiguity can be avoided if the radar footprint

on the lunar surface is confined to either the northern or the southern hemispheres,

as shown in Figure 7.2.

By employing two array elements with SAR antennas on Earth to form an InSAR
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imaging system, one can obtain two images (backscatter signals) for the same reso-

lution pixel. As shown in Figure 7.3, the rectangle with solid sidelines represents a

lunar surface pixel whose range and cross-range resolutions are Ax and Ay, respec-

tively, and the equivalent scattering center is located at C. Both antenna 1 and 2

transmit and the mixed backscatter signals are received at antenna 1 (assuming ele-

ment 1 is equipped with both transmitter and the common receiver). With orthogonal

PN-codes used the two received signals can be extracted from their mixture. An in-

terferometric operation on them results in a phase difference (interferogram). The

two InSAR antennas have approximately same looking angle α to the pixel, due to

the large slant ranges (R1 and R2 ∼ 300,000 km) and relatively small baseline (B ∼
1 km). In other words, the angle between the line of sight directions from the two

antennas to the pixel scattering center, ∆α, is very small. Therefore the backscatters

of the pixel itself in response to incident waves from antenna 1 and 2 are almost

the same, and their common phase can be canceled out through the interferometric

operation. What is left in the interferogram is the phase difference term induced

by path-length difference and instrument dissimilarity. This phase difference value

is desired for phase calibrating the two elements, as mentioned before. Expressed

mathematically, the two extracted received signals corresponding to elements 1 and

2 are given by

E1 = P1 + n1 (7.11)

and

E2 = P2 + n2, (7.12)

respectively, where P1, P2 are the echo signal from the imaged pixel given by

P1 = K1 · exp

[
j(

2πR1

λ
+ θ0)

]
· S1 · exp

[
j(

2πR1

λ
+ θ1)

]
(7.13)
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and

P2 = K2 · exp

[
j(

2πR1

λ
+ θ0)

]
· S2 · exp

[
j(

2πR2

λ
+ θ2)

]
. (7.14)

K1, K2 are constants accounting for antenna gain, transmit power, and path-loss.

θ0, θ1, and θ2 are instrument phase shifts for element 1 receiving, transmitting, and

element 2 transmitting, respectively. S1, S2 are complex scattering amplitudes of the

pixel under the incidence from antenna 1 and antenna 2. n1, n2 are system noises

inherent in the two received signals caused by both thermal and cross-correlation

effects. λ is the wavelength at the operating frequency. Let us define the interfero-

metric phase between the two received signals, i.e. the interferogram of the InSAR

system, as

φ = arg{E1 · E∗
2}. (7.15)

By multiplying (7.11) and conjugate of (7.12), one can obtain

E1 · E∗
2 = P1 · P ∗

2 + P1 · n∗2 + n1 · P ∗
2 + n1 · n∗2 (7.16)

where

P1 · P ∗
2 = K1K2 · |S1S2| · exp(jφ0) (7.17)

with the phase term

φ0 = φ0c + arg{S1S
∗
2} (7.18)

and

φ0c =
2π(R1 −R2)

λ
+ θ1 − θ2. (7.19)

Phase coherence can be realized by compensating for φ0c during uplink operation.

Notice that the path-lengths R1 and R2 are based on the equivalent scattering center

of the pixel, which may deviate from its geometric center. It has to be ensured that

such deviation is insignificant.
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In practice only the interferogram φ is measured. Assuming the system noises

are small enough to be neglected in equation (7.16), φ is approximately equal to φ0.

Furthermore, since

S1 ≈ S2, (7.20)

then φ0 ≈ φ0c and hence φ ≈ φ0c. In other words, φ can be used as a substitute for

φ0c to phase calibrate the two elements. However, unlike φ0c which is a deterministic

value, φ is a random variable due to system noise and backscatter signal fading.

The signal fading results from the random rough surface characteristics of the pixel.

Therefore φ has a probability density function (PDF) centered at φ0c with certain

deviation. The narrower the deviation, the more accurately one can use a single

measured φ value for calibration. In the next section, the PDF of φ is examined in

detail and a number of factors affecting the variation of φ are discussed.

7.4 Interferometric Phase Statistics

The statistics of the phase difference between the backscatter signals of two SAR

antennas (E1 and E2) from the same target has been analytically derived by many au-

thors [81, 82, 83, 84], where the two signals under study are assumed to be zero-mean

circular complex Gaussian random variables. This is a reasonable approximation ac-

cording to [85], where the use of Rayleigh fading statistics is experimentally justified

for many kinds of terrains. Let us define the complex correlation coefficient of E1 and

E2 as

γ =
〈E1 · E∗

2〉√
〈|E1|2〉 · 〈|E2|2〉

(7.21)

146



where the operator 〈 〉 stands for expectation. Then the PDF of the interferogram is

obtained by [83]

PDF (φ) =
1− |γ|2

2π

1

1− β2
{1 +

β · cos−1(−β)

(1− β2)1/2
}, (7.22)

where

β = |γ| · cos(φ− φ̄0) (7.23)

and

φ̄0 = arg{γ}. (7.24)

|γ|, φ̄0 are known as the degree of correlation and the coherent phase difference,

respectively [83]. It is not difficult to prove that

φ̄0 = φ0c + arg{〈S1 · S∗2〉}. (7.25)

Under the assumption of equation (7.20), φ̄0 ≈ φ0c. Figure 7.4 plots the PDFs of

φ with different values of |γ|, assuming φ̄0 = 0◦. φ̄0 is the mode of the PDF, and

φ concentrates around φ̄0 with a certain deviation which decreases as |γ| increases.

Therefore, the accuracy of estimating φ̄0 using a sample of φ can be improved by

maximizing the degree of correlation.

Basically there are five types of decorrelation effects, namely thermal, baseline,

misregistration, Doppler, and temporal decorrelations [81, 86, 87]. Thermal decorre-

lation results from system noise n1, n2. Even if P1 and P2 were perfectly correlated,

E1 and E2 will still have a certain amount of decorrelation because n1 and n2 are un-

correlated. The other four decorrelations all refer to the decorrelation of P1 and P2, in

that S1 and S2 are not exactly equal to each other. The slight difference of incidence

angle, ∆α, will cause the so-called baseline decorrelation. In some cases, especially for

repeat-pass InSAR, the pixels the two antennas focused on are not exactly the same
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Figure 7.4: PDFs of an interferogram for fixed φ̄0 = 0◦ and different |γ|.

one, even after the image coregistration process [70]. As seen in Figure 7.3, the two

pixels with solid-line and dash-line borders (pixel #1 and #2) have slight deviation

∆x and ∆y at the range and cross-range directions, respectively. In this case, the

scattering amplitude of these two pixels, S1 and S2, are slightly different. This decor-

relation between S1 and S2 results in so-called misregistration decorrelation. Doppler

decorrelation happens due to the slightly different line of sight velocity, hence the

Doppler frequency shift, as viewed by the two antennas. Usually this decorrelation

effect can be avoided by compensating for the Doppler frequency shift difference using

the available ephemeris information. The temporal decorrelation is only observed for

repeat-pass InSAR, since the scatterers inside the same pixel may vary with time.

An analytical expression for the relationships between the degree of correlation and

the major three decorrelation effects, i.e. thermal, baseline, and misregistration, is

developed in [86]. However, to relate these decorrelations with the variation of the

interferogram φ around φ̄0 requires a numerical simulation.
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It is also worth mentioning that besides maximizing the degree of correlation, an

alternative way of reducing the variance of the interferogram is to use multi-look (or

multi-pixel) averaging. With Ns independent measurement samples of E1 and E2,

the interferogram is given by a maximum likelihood estimator [70]

φ̂ = arg

{
Ns∑
i=1

E1i · E∗
2i

}
. (7.26)

Its PDF has been thoroughly studied in [82, 84], which still has a mode at φ̄0 but

with narrower deviation depending on both the degree of correlation and the number

of independent looks.

7.5 3D Interferometric Scattering Model

The analytical analysis in [86] is based on some statistical assumptions such as the

Rayleigh fading characteristics of the scattered signals and the white uniform scat-

tering function. There is no specific scattering model involved. For InSAR imaging

of the lunar surface, the fluctuation pattern of the terrain elevation, the dimensions

of the imaged pixels, the realistic surface scattering mechanism, may all affect the

above assumptions. What’s more important, the analysis assumes locally constant

terrain height over the whole pixel, and only results in a 2D scattering function.

This assumption may also affect the phase computation of the received signals at

radar antennas. Therefore a more realistic and accurate 3D terrain scattering model

is necessary to evaluate the interferogram statistics and hence the array calibration

performance. In this section such a model is developed.
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7.5.1 Lunar Surface Properties

During the boom of lunar exploration in 1960s and 1970s, many lunar orbiter

satellites were launched to study the lunar surface [88, 89, 90, 91, 92]. Meanwhile,

Earth-based remote probing of the moon surface through infrared and microwave

emission or radar techniques was also conducted [93]. From these studies, a great

deal of the lunar surface properties, such as the lunar topography, surface roughness,

the composition and dielectric constant of the lunar soil, were learned. The Moon

surface is essentially a rocky sphere with a mean radius of Rm ≈ 1737.1 km [96],

but the dynamic range of the surface elevation can reach ±8 km. It is covered

by a gently rolling layer of powdery soil with scattered rocks, called the regolith.

Studies on the regolith [90, 91, 94, 95] have found that it is an unconsolidated layer

of several meters extent, with the effective dielectric constant εr around 2.5 to 3.0.

As a natural terrain surface, the lunar surface obeys power-law spectra for its surface

height correlation function [97], with an average rms slope of about several degrees.

Such surfaces possess self-affine, or fractal, roughness properties, i.e. a roughness

appearance independent of the scale of observation [35]. The Hurst exponent [98], H,

controls the rms height and correlation length observed at a given scale L by

hL = h0 ·
(

L

L0

)H

(7.27)

and

lL = l0 · L

L0

, (7.28)

where hL, lL and h0, l0 represent the rms height and correlation length observed at

scale L and a reference scale L0, respectively. Planetary surfaces generally have H

ranging from 0.5 to 0.95 [35]. Smith et al. [99] applied the power-law spectrum func-

tion used by Goff and Jordan in their seafloor topography study [100] to characterize

the lunar topography based on the Clementine altitude data [101], and achieved good
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agreements. The 2D covariance function of the surface height is given by

c(ρ) = h2Gν(kcρ)/Gν(0) (7.29)

where Gν(x) = xνKν(x) and Kν is the modified Bessel function of the second kind and

order ν. h represents the rms height and kc is some corner wave number determining

the correlation length as 1/kc. The corresponding 2D power spectrum is then

P (k) = 4πνh2k−2
c

[(
2πk

kc

)2

+ 1

]−(ν+1)

(7.30)

where k is the wave number in unit of m−1. It is believed that there is a typo in the

equation for P (k) in [99]. In the case of ν = 0.5, equations (7.29) and (7.30) reduce

to those for an exponential surface with c(ρ) ∼ exp(−kcρ). After processing the

Clementine data, Smith et al. present the surface large-scale roughness (undulation)

of the Moon in 30◦ × 25◦ squares with stochastic parameters such as the rms height

and correlation length. These parameters vary markedly over the lunar surface and

are based on observation scales at about 10 to 100 km.

7.5.2 Generating a Lunar Surface Pixel

Based on the lunar surface properties described above, the elevation profile of a

pixel on the Moon surface can be generated. Generally the InSAR imaging pixels have

much smaller scales than the Clementine observation scales. In this case, equations

(7.27) and (7.28) are used to adjust the rms height and correlation length according

to the desired scale. Then equation (7.30) is adopted with some reasonable value of ν

to generate the surface profile using the 2D spectral synthesis technique described by

Saupe [102, 103]. As an example, let us consider a 640m × 640m pixel and divide it

into a 64 × 64 grid, rendering a scale of L = 10 m. Assuming L0 = 10 km, h0 = 1 km,
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(a)

(b)

Figure 7.5: (a) surface elevation profile of a lunar pixel (640 × 640m) generated by
the 3D random rough surface generator; (b) optical image of the lunar
surface.
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H = 0.7 and l0 = 100 km, we get hL ≈ 8 m and lL = 100 m (therefore kc = 0.01 m−1

in (7.30)). According to [100], ν is just equal to the Hurst exponent H. A random

sample of this surface profile is plotted in Figure 7.5(a). One can see its similarity

with the optical image (shown in Figure 7.5(b)) taken by a lunar-orbiting satellite.

The mosaics in Figure 7.5(a) making up the surface are formed by connecting the

neighboring four surface height grids. Each mosaic actually contains two triangular

sheets (sub-pixels), such as T1 and T2 shown in Figure 7.6, forming a rooftop-like

geometry.

7.5.3 Scattering from a Lunar Surface Pixel

With the high-fidelity lunar surface pixel constructed, we are ready to set up a

model to compute interferometric backscatter signals. As shown in Figure 7.6, the

scattered fields from every single sub-pixel (triangular sheet) are coherently added

at the receiver antenna. The path-lengths R1 and R2 are calculated from antenna

1 and 2 to the geometric center of each sub-pixel, and should take into account the

elevations of the sub-pixels. Tx represents the dimensions of the sub-pixel. The

backscatter function s(xi, yi) of the ith sub-pixel at (xi, yi) can be assumed the same

for both antennas. In addition, s(xi, yi) and s(xj, yj) from two different sub-pixels

(ith and jth sub-pixels) are assumed to be uncorrelated provided that the dimension

of the sub-pixel contains several wavelengths. Values of misregistration errors ∆x

and ∆y can be selected arbitrarily, but are generally around 0.05 × pixel dimension

[86] based on the performance of the standard coregistration technique [104] in SAR

image processing.

It is assumed that s(xi, yi) is a complex Gaussian random variable with 〈|s(xi, yi)|2〉 =

aiσ0, where ai is the area of the ith sub-pixel. σ0 is the average radar cross section

per unit area for the sub-pixel and can be computed by standard rough surface scat-

tering models, such as PO (Physical Optics) [105]. Basically, the sub-pixel is still a
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Figure 7.6: Backscatters of sub-pixels under the illumination of antenna 1 and 2,
received at antenna 1.

rough surface, only with a much smaller scale of roughness. Power spectrum (7.30)

is applicable, but an exponential surface correlation function is better in providing a

closed-form expression. Figure 7.7 shows the σ0 versus local incidence angle θi upon

the sub-pixel. Both measurement data obtained by Hagfors [93] and computational

results from a PO backscatter model with an exponential rough surface are presented.

εr = 2.6 is assumed, and the surface rms roughness and correlation length are selected

to be 1 cm and 8 cm to achieve a good agreement. It has to be mentioned that the

scattering models used here are based on a semi-infinite ground with a random rough

surface. This approximation is reasonable although the lunar regolith is only sev-

eral meters deep on average, because the frequency bands of interest are X-band and

Ka-band whose wavelengths are centimeters or sub-centimeters. In addition, the scat-

tering effects contributed by the individual rocks on top of or underneath the ground

[93] are accounted for in our model through the surface roughness and the equivalent

dielectric constant of the regolith.
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Figure 7.7: Comparison between measurement and model prediction for backscatter
RCS of lunar surface.

In order to compute σ0 of the ith sub-pixel, the local incident angle must be

determined. This is given by θL
i = π − cos−1(k̂i · n̂), where the superscript “L”

stands for local, k̂i is the direction of the incident wave, and n̂ is the outward vector

normal to the sub-pixel. θL
i should be in the range of [0, π/2] and if θL

i > π/2, the

backscattering contribution from that sub-pixel is neglected due to shadowing.

Once σ0 is computed for the ith sub-pixel, a random sample of s(xi, yi) can be

generated, where both its real and imaginary parts are random numbers drawn from

a zero-mean Gaussian distribution with standard deviation σ0/
√

2. After considering

the antenna pattern and path-length, the backscatter signal at the receiver antenna

contributed by the ith sub-pixel can be calculated. Coherently summing up the con-

tributions from all sub-pixels, the total scattered signals P1 and P2 are obtained. The

system noises n1 and n2 are then generated randomly from zero-mean Gaussian dis-

tributions with their variances corresponding to the specified noise powers. By adding

P ’s and n’s, the received signals E1 and E2 can be computed. An independent sam-

ple of the interferogram can then be generated using equation (7.15). Repeating
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the above process for a number of realizations, many samples of interferogram can

be obtained and the histogram of the interferogram can be plotted to estimate the

phase difference required for calibrating the two array elements, and to evaluate the

accuracy of the estimation.

7.5.4 Monte-Carlo Simulation of Interferogram

An example of Monte-Carlo simulation computing the interferogram statistics

based on the above algorithm is presented as follows. DSN X-band uplink frequency

f = 7.2 GHz, and the lunar surface εr = 2.6 are assumed. Let us first generate a

similar pixel as in Figure 7.5(a), i.e. a 640m × 640m pixel with 64 × 128 sub-pixels

(triangular sheets). The generated pixel is then imprinted on top of the underlying

lunar sphere, with its center located at a spot of interest, e.g. 45◦ elevation (from the

xy-plane) and 0◦ azimuth (from the +x-axis) angles based on the coordinates shown in

Figure 7.2. Two Earth-based antennas are located on the +x-axis with 300m spacing.

The distance from the Moon to the middle point between the two antennas is set to

be 3.8 × 108 m. As to the receiver signal-to-noise ratio (SNR), let us use the same

value as in [80] which is about 21.5 dB per unit surface area, since the backscatter

power is directly proportional to the pixel area. The interferogram computation

is carried out for 1000 realizations and the histogram is plotted in Figure 7.8. A

bell-shape PDF similar to those in Figure 7.4 is observed. The MLE (maximum

likelihood estimator) of the mode of this distribution, i.e. the estimated coherent

phase difference φ̂0 , is 13.34◦. Since no instrument phase difference between the two

antennas has been introduced in the simulation, φ̂0 accounts for path-length difference

only. Using the geometric center point of the pixel to compute the path-length, the

corresponding phase difference φ0c is about 13.33◦. This agrees very well with the

simulation result, indicating that the equivalent scattering center of the pixel is very

close to its geometric center. The standard deviation from the estimated mode φ̂0 is
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Figure 7.8: Histogram of interferogram based on 1000 realizations.

very small, about 1.05◦, since the relatively short baseline and small pixel size result in

negligible baseline decorrelation, pixel misregistration is neglected in the simulation,

and the SNR is very high, about 34.6 dB. Recall that the phase measurement error

due to thermal noise is related to SNR as [63]

εφ ' 57.3◦√
SNR

. (7.31)

Therefore, under the conditions in this simulation, a very accurate estimate of the

correct value for array phase calibration can be obtained by measuring a single sample

of the interferogram.
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7.6 InSAR Calibration System Parameters Design

7.6.1 Signal-to-Noise Ratio

The simulation result presented in the previous section is overly optimistic since

an extremely high SNR is assumed by using the DSN 70-m reflector antenna as the

transmitter with a peak transmit power of 350 kW and 34-m reflector antenna as

receiver. It is not practically feasible to form a ground array of hundreds of such big

reflectors. In fact the original proposal [33, 65] was to use 12-m reflectors with a peak

transmit power of 3.6 kW. Obviously the SNR in the latter case is much lower for the

same size pixel. The expression for SNR in the SAR imaging process is given by [80]

SNR =
PtGt

4πR2
σ0Ascatt

Ar

4πR2

1

kTB

τp

δτ
fptcoh (7.32)

where

Pt peak transmitter power;

Gt transmitter antenna gain;

R distance to the Moon;

σ0 average backscatter cross section per unit area of the lunar surface;

Ascatt area of the lunar surface imaged pixel;

Ar effective area of the receiver antenna;

k Boltzmann’s constant (= 1.38× 10−23);

T sum of the receiver system temperature and the noise temperature of the Moon;

B bandwidth of the receiving system;

τp uncompressed pulse width;

δτ compressed pulse width;

fp pulse repetition frequency;

tcoh coherent processing interval.
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The factor τp/δτ results from the pulse compression technique [106] which is routinely

employed in radar imaging. The uncompressed pulse is divided into many much

narrower compressed pulses that are phase modulated according to a specific PN-

sequence (similar to those described in section 7.2). The compressed pulse width

corresponds to the range resolution

rg = c · δτ

2
. (7.33)

The cross-range resolution is given by [80]

raz =
λ

2ωa

δν =
λ

2ωa · tcoh

(7.34)

where ωa is the apparent angular velocity of the Moon, δν is the Doppler spectral

resolution and equal to the inverse of the time interval over which radar returns

are collected coherently. The pixel area is the product of range and cross-range

resolutions, i.e.

Ascatt = rg · raz. (7.35)

Substituting (7.33-7.35) into (7.32), and taking into account the fact that for an

optimal receiver B · δτ ≈ 1, one obtains

SNR =
PtGtAr

(4πR2)2
σ0fpτp

cλδτ

4ωakT
. (7.36)

A number of parameters in (7.36) are fixed such as R (≈ 3.8×108 m), ωa (≈ 10−6

rad/s), and T (= Tsys + TMoon ≈ 60 + 200 = 260 K). Pt = 3.6 kW is available

although 20 kW peak transmit power is more favorable. Using 12-m reflectors at 7.2

GHz with 64% efficiency, Gt ≈ 57 dB. One existing 34-m reflector (assuming 64%

efficiency as well) can serve as the common receiver giving effective Ar ≈ 580 m2.

The average scattering cross section per unit area, σ0, can be read from Figure 7.7
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with the incidence angle computed as that between the direction from the transmit

antenna to the pixel geometric center and local normal at the center of the pixel. It is

obvious that areas under near normal incidence provide stronger backscatter, but the

north-south ambiguity explained in section 7.3 prohibits the imaging of such areas.

Nevertheless a value of 15 dB can be assumed for σ0 by keeping the incidence angle

around 30◦. The radar duty cycle fpτp has to be chosen, e.g. 10%, such that it allows

interleaving of transmit and receive signals in order to avoid interference.

It seems from equation (7.36) that high SNR favors large δτ or rg. This is actually

an artifact resulting from the fact that cross-correlations between received signals

from different array elements have not been considered yet. Assuming N elements

use orthogonal PN-codes of length M chips (M = 2k−1 = τp/δτ), the SNR including

cross-correlation is approximately given by

SNR ≈ S

kTB + S(N − 1)/g
(7.37)

where S stands for the desired signal from one element and according to (7.36)

S =
PtGtAr

(4πR2)2
σ0fpτp

cλ

4ωa

. (7.38)

kTB is the thermal noise, and S(N − 1)/g gives the cross-correlations from other

elements as noises. g is the correlation gain mentioned in section II, and usually

there is a positive correlation between g and M . For example, the bound of cross-

correlations between Gold colds is 2(k+1)/2 − 1 with k odd, therefore the correlation

gain is (2k − 1)/(2(k+1)/2 − 1) ≈
√

M/2. And assuming cross-correlation signals

from the (N − 1) elements are independent, the total cross-correlation noise power is

S(N−1)/g . Substituting (7.38) into (7.37) and noticing that B = 1/δτ , one obtains

SNR ≈
{

kT (4πR2)24ωa

PtGtArσ0fpτpcλδτ
+ (N − 1)/g

}−1

(7.39)
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where δτ contributes oppositely to the two components inside the braces (notice that

g is related to M which is inversely proportional to δτ). For a single pixel, maximum

SNR is achieved for an optimal value of δτ . With multi-pixel averaging, the random

thermal noise power is effectively reduced by an approximate factor of 1/Ns (Ns is

the number of pixels for averaging), while the cross-correlation noise is deterministic

and remains unchanged. Therefore priority must be given to minimizing the cross-

correlation level, which can be done by maximizing the chip length M . However δτ

cannot be too small, or multi-pixel averaging will not sufficiently reduce the thermal

noise power for reasonable values of Ns. Setting the SNR due to thermal noise to the

order of −3 dB, and using the pre-assigned parameter values provided under (7.36),

one obtains δτ ≈ 0.5 µs according to equation (7.36). This corresponds to a range

resolution of rg ≈ 75m. On the other hand, the pulse repetition frequency fp is

dictated by the need to avoid range and Doppler ambiguities. The successive pulses

are separated by a duration greater than the roundtrip light-travel time corresponding

to a lunar hemisphere (i.e. 2Rm/c ≈ 11.6 ms). And the Nyquist sampling criterion

requires fp to be greater than the total Doppler bandwidth (zero-Doppler-offset [106]

receiver assumed) of the illuminated area, in this case the antenna footprint of the

34-m reflector. With some safety margin, fp is set to 31 Hz and the corresponding

pulse repetition period is Tp = 1/fp ≈ 32 ms, an integer multiple of 4 ms which is

chosen as τp, giving a radar duty cycle about 12%. Now the chip length M is about

8000 and Gold codes of 8191 chips long can be employed.

The number of array elements allowed in the system is then determined by the

required signal to cross-correlation ratio g/(N − 1) and the correlation gain g, sim-

ilar to that in a CDMA (code division multiple access) system. The worst scenario

happens when the cross-correlation has a 90◦ phase shift from the desired signal so

that the phase error εφ is maximized, as shown in Figure 7.9. In order to keep εφ (in

degrees) below a certain threshold, e.g. 3◦, the signal to cross-correlation ratio (in
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Figure 7.9: Phase error caused by cross-correlation.

power) has to be greater than 400, according to equation (7.31). Suppose a 36 dB

correlation gain is available, the system capacity is approximately 11 array elements.

It is also worth mentioning that although raz seems irrelevant in equation (7.39),

tcoh needs to be small, since the revolution of the Moon around the Earth requires

the Earth antennas to rotate and track the imaging site on the Moon, but the array

calibration has to be carried out for each fixed antenna orientation. A cross-range

resolution of 5 km corresponds to about 4 seconds of observation time during which

the Moon moves only about 4 km and the Earth antennas can track it without chang-

ing their attitude. Too big of a cross-range resolution is not desirable either, due to

its decorrelation effect on the backscatter signals of different array elements.

According to the above system parameter design, a simulation example is pre-

sented as follows. A lunar surface pixel of size 80m × 5120m (8 grids × 512 grids)

and the same surface roughness characteristics as were described in section 7.5.2 is

generated at the location of 30◦ elevation, 0◦ azimuth. The rms height and corre-

lation length are selected as 8m and 100m, respectively. The array elements under

study are still located at their previous locations and there are 9 more elements con-

tributing cross-correlation noise. Other system parameters take the values provided
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Table 7.1: Effects of SNR on interferogram statistics (number of multiple pixels based
on a 20.5 km × 20.5 km footprint)

Pixel Size (m) single pixel SNR (dB)
80 × 5120 -2.4

φ̂0 (deg.): single pixel STD (deg.): single pixel
9.0 81

φ̂0 (deg.): multi-pixel STD (deg.): multi-pixel
12.5 3

under equation (7.36). 1000 realizations are generated to compute the interferogram

statistics. To examine the multi-pixel averaging effect on thermal noise, 256 × 4

pixels inside a 20.5 km × 20.5 km illumination area are generated and the maxi-

mum likelihood estimator from equation (7.26) is used to calculate the interferogram.

Simulation results are presented in Table 7.1, and notice that φ0c is about 6.7◦. As

expected, the SNR for a single pixel is about −2.4 dB and thermal noise in this case

dominates, causing a variation of more than 80◦ for the estimated interferogram. Af-

ter averaging 1024 pixels, thermal noise is much reduced and only brings about 3◦

uncertainty on the interferogram estimation. However, the estimated inteferogram

is about 6◦ away from φ0c. This bias is a result of the cross-correlation noise in the

worst case, i.e. 3◦ error for each of the two backscatter signals.

7.6.2 Surface Undulation

Surface undulation and roughness of the pixel are also likely to affect the inter-

ferogram statistics. It is trivial to show that an increase of the small scale roughness

will increase the backscatter power, and hence the SNR, which will reduce the inter-

ferogram variance. The simulation conducted here is focused on the effect of different

large scale undulation levels. The more abrupt the surface undulation, the more un-

certain the equivalent phase center of the pixel will be, and hence the more spread

of the interferogram. However a counter effect exists as well since the more abrupt
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Table 7.2: Effects of surface undulation on interferogram statistics

rms Height (m) φ̂0 (deg.) STD (deg.)
8 12.5 3
80 12.5 5
800 12.5 4

surface tends to have more surface area which causes more backscatter. Similar sim-

ulations are carried out for pixels with a large scale rms height of 8m, 80m, and 800m

while keeping the same correlation length of 100m. 1024 pixels are averaged for each

simulation. The results are presented in Table 7.2, which shows that the surface un-

dulation level has little effect on the interferogram distribution. This conclusion is

reasonable since the ground antennas are so far away from the pixel that the details

of the pixel surface may not be sensed. Therefore the surface undulation is not a

concern when selecting imaging sites on the lunar surface.

7.6.3 Image Misregistration

So far, the pixel misregistration has been assumed to equal zero. The misregistra-

tion error is introduced and its effect on interferograms is examined in the following

simulations. Two 80m × 5120m pixels are generated with shifts in location (∆x and

∆y in Figure 7.3) set to 0 × 0, 1 × 64, and 2 × 128 grids, respectively (1 grid corre-

sponds to 10m). Basically the pixel misregistrations are about 0, 0.125, and 0.25 pixel

size, respectively. Results are presented in Table 7.3, where 1024-pixel averaging is

still performed. The significant effect of pixel misregistration is observed. Although

the MLE estimate remains relatively constant at the expected value, the standard

deviation of the interferogram increases dramatically as the pixel shifts get larger due

to signal decorrelation. A 0.125 pixel size misregistration renders a standard devi-

ation of more than 50◦, which is unacceptable for calibration purposes. With 0.05

pixel coregistration accuracy routinely available in InSAR imaging process [86], and
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Table 7.3: Effects of pixel misregistration on interferogram statistics

Pixel Shifts (grids) φ̂0 (deg.) STD (deg.)
0 × 0 12.5 3
1 × 64 13.1 54
2 × 128 13.6 76

with more pixels for averaging, the variation in the estimated interferogram can be

reduced to a specifically required value. Nevertheless, the pixel image misregistration

error has to be minimized as much as possible during InSAR process, e.g. imaging

sites with sharp features may be preferable due to their easy recognition for image

coregistration.

7.7 Conclusions

In this paper an all-transmitter array phase calibration method is proposed for

a ground array of large reflectors based on using different orthogonal PN-codes for

transmit signal modulation at different array elements. Since it falls in the array far-

field and does not have the positioning errors of LEO satellites, the Moon is selected

as a calibration target. Lunar InSAR imagery has proven to be a promising technique

that can be employed to perform uplink phase calibration. Although the long distance

to the Moon causes huge signal path-loss and provides very low SNR for a single pixel,

a large number of pixels inside the antenna footprint can be combined for multi-pixel

averaging to reduce the phase difference estimation error. System parameters design

is illustrated through an example where the pixel size is determined by a specified

single pixel SNR, and the number of array elements allowed in the system is dictated

by the correlation performance of the PN-codes used. A high-fidelity 3D lunar surface

profile and scattering model is developed and used in conjunction with the Monte-

Carlo technique to simulate the interferogram statistics. It is found that the pixel
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surface undulation has marginal effect while the pixel misregistration effect is critical.

One final comment on the proposed calibration technique pertains to the available

calibration opportunities for different array orientations. With only a single orbit, the

calibration opportunities provided by the Moon may be limited. Nevertheless, at the

available opportunities, the lunar InSAR imagery technique is still a better option

than using LEO calibration targets due to the extremely large positioning errors of

the LEO targets.

166



CHAPTER 8

VLBI: DOWNLINK INFRASTRUCTURE FOR

UPLINK CALIBRATION?

8.1 Introduction

The motivation for investigating VLBI (Very Long Baseline Interferometry) [107,

108] as a phase-calibration technique for large-reflector uplink ground arrays is to

utilize existing infrastructures and techniques. The VLBI infrastructure is made up

of an array of large reflector antennas (the VLBI receivers) operating in downlink

mode. By modification of this existing facility, the array might be used as an uplink

array. Even in the cases where building a new uplink array infrastructure is of inter-

est, techniques used in VLBI may be helpful to phase calibrate the new array. For

example, VLBI has extremely accurate positioning capability (better than GPS) that

may be employed to determine the phase center of array element antennas. Another

interesting point is that the VLBI receivers receive signals from celestial radiation

sources, such as Quasars, which are so distant away that they essentially serve as

far-field calibration targets. These Quasars are also abundant in the sky, occurring

about every 4◦ of azimuth or declination, and are advantageous to the near-field LEO

(low earth orbit) targets and the single-orbit target, Moon. The only disadvantage

of the Quasars as calibration targets lies in the fact that they are so faraway that the

signal arriving at VLBI receivers is essentially noise-like, causing very low signal-to-
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noise ratio (SNR). Cross-correlation technique can be applied, in conjunction with

extended observation (integration) time, to overcome such a problem.

In this chapter, the VLBI technique is reviewed, and then three different methods

based on VLBI are proposed and their feasibilities studied. It has to be mentioned

that the Very Large Array (VLA) [58] facilities, although constructed for different

purpose, are similar to VLBI in terms of the cross-correlation processing. They

are basically downlink arrays which receive signals from spacecraft and adjust the

signal phases at different array elements in order to combine them coherently. The

major distinction between VLBI and VLA is that VLBI emphasizes in measuring

the time delay among signals at each receiver, while VLA is focused on cohering

the phases. Although time delay and phase are highly correlated by nature, some

additional techniques such as bandwidth synthesis have to be employed by VLBI to

extract delay out of phase measurements. In addition, VLBI includes a significant

part of theoretical modeling to derive the desired quantities from the measured delays.

Since the interest of the uplink array calibration is mainly the signal phases, VLA is

certainly considered a promising candidate for this purpose. However the review of

VLA is not presented in this chapter since the VLA technique is a category of VLBI.

8.2 VLBI Review

VLBI is an interferometer operating at radio frequencies that makes use of Earth-

based receivers separated by intercontinental distances observing a radio source in

space. Analyses of the VLBI experiment data can measure relative positions of points

on the Earth’s surface at centimeter level and the angles between celestial objects at

nanoradian level currently. If the receivers are separated by distances on the order

of 1 km, i.e. they are located at the same area such as the BWG (Beam Waveguide)

antennas at Goldstone, California, such arrangement is known as CEI (Connected
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Element Interferometer) [107]. CEI experiments have the advantage that the receiver

stations share a common frequency and time standard, and the experiment data

analyses are performed in real time. However, its capability of measuring angular

change is much weaker than VLBI since the angular change resolution is inversely

proportional to the baseline distance.

Figure 8.1 shows the schematic diagram of a VLBI experiment. Two receiver an-

tennas, separated by a baseline vector ~B, detect the incoming wave front propagating

along unit vector k̂ from the same faraway radio source. There is a time delay between

the arrival of the two signals at the receiver detectors, due to the separate locations of

receiver antennas, the differences in the atmospheric paths, and the slightly different

clock references for the two receivers. In order to extract such delay information,

the received signals are sampled, digitized, and recorded into video tapes which are

then taken to the SPC (Signal Processing Center). For CEI, recording signals in

video tapes is not necessary, instead the signals from different receivers are sent to

SPC via microwave transmission lines or fiber optics. A cross-correlation analysis is

then performed on these recorded data and the so-called “observables” are generated

which includes phase delay τp , group delay τg , and phase delay rate τ̇p. The detailed

signal processing procedure is described in [109, 108]. A brief derivation is presented

as follows.

For simplicity let us first consider a monochromatic radio source in the absence

of background and receiver noises. Suppose the received signals at the feed points of

the two antennas can be represented as

V1(ω, t) = A1 cos(ωt) (8.1)

and

V2(ω, t) = A2 cos[ω(t− τg)] (8.2)
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Figure 8.1: Schematic diagram of VLBI experiment.

where A1, A2 represent the signal strengths and τg represents the time delay (group

delay). These signals are down converted to video band after superheterodyne pro-

cesses and are given by

V1L(ω, t) = B1 cos[(ω − ω
LO1

)t + θ1] (8.3)

and

V2L(ω, t) = B2 cos[(ω − ω
LO2

)t− ωτg + θ2] (8.4)

where B1, B2 represent the strength of the video band signals, ω
LO1

, ω
LO2

represent

the sum of local oscillator frequencies in the superheterodyne processes, and θ1, θ2

represent the sum of all instrument phase shifts caused by mixers, amplifiers, filters,

cables, etc. The cross-correlation process between V1L, V2L consists of shifting V2L

in the time axis by a priori value τm that approximates the expected group delay
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τg, multiplying the resulting signal by V1L, and integrating (or low-pass filtering) the

product. From (8.3) and (8.4), the cross-correlation function is given by

R(ω, t, τm) =
1

∆t

∫ t+∆t/2

t−∆t/2

V1L(ω, t) · V1L(ω, t + τm)dt =
1

∆t

∫ t+∆t/2

t−∆t/2

B1B2

2
·





cos[(ω
LO2

− ω
LO1

)t− (ω − ω
LO2

)τm + ωτg + θ1 − θ2]+

cos[(2ω − ω
LO2

− ω
LO1

)t + (ω − ω
LO2

)τm − ωτg + θ1 + θ2]





dt

(8.5)

where ∆t is the time interval of the integration. To filter out the high frequency term

(the second term in the braces) in (8.5), ∆t À π/(ω − ω
LO

) is required, where ω
LO

can be either ω
LO1

or ω
LO2

since the two frequencies are very close to each other. And

because ω
LO1

− ω
LO2

is approximately zero, the low frequency term (the first term

in the braces) in (8.5) is slowly varying during the integration interval and can be

evaluated by mid-point approximation, which results in

R(ω, t, τm) ≈ B1B2

2
cos[φ(ω, t, τm)] (8.6)

with the phase function φ(ω, t, τm) given by

φ(ω, t, τm) = cos[(ω
LO2

− ω
LO1

)t− (ω − ω
LO2

)τm + ωτg + θ1 − θ2]. (8.7)

In reality, the radio source signal received by VLBI receivers has broadband spectrum

and can be approximated with a constant spectral density over the band of interest.

In this case, the cross-correlation function is given by [109]

R(ω, t, τm) = D(∆τ) cos[φ(ω, t, τm)] (8.8)
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where the amplitude function is given by

D(∆τ) = KW
sin(πW∆τ)

πW∆τ
. (8.9)

K is a constant, W is the bandwidth of the video spectrum channel recorded at the

receiver antennas, and

∆τ = τg − τm. (8.10)

There are two ways to determine the group delay τg from the cross-correlation

function, namely from its amplitude function D(∆τ) or its phase function φ(ω, t, τm).

The accuracy of determining τg from the amplitude function depends on the channel

bandwidth W and the curve-fitting process. As shown in Figure 8.2, the ideal nor-

malized amplitude function (shown as thick line) is a “sinc” function with its peak at

∆τ = 0 and first nulls at ∆τ = ±1/W . In practice, the value of the a priori τm, and

hence the value of ∆τ , is varied. The corresponding cross-correlation function is then

calculated and its amplitude value is recorded. These discrete values are plotted as

those dots shown in Figure 8.2, which are fitted into a “sinc” function by standard

least-square-error technique. The interpolated value of τm corresponding to the peak

of this “sinc” function is therefore obtained as τg, according to (8.10). Typically this

approach can estimate the delay with an accuracy of [63]

σ∆τ = στg ≈ 0.005/W ∼ 0.05/W. (8.11)

For a typical VLBI receiver channel bandwidth of 2MHz, this accuracy is about 2.5

∼ 25 nanoseconds, which is not sufficient for phase calibration at X-band or higher

frequencies. For example, at 7.2 GHz the wave period is only about 0.14 nanosecond,

and one wave period corresponds to 360◦ in phase. A higher accuracy in picosecond

level is therefore needed, which would require recording the signal on a channel with
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Figure 8.2: Illustration of the delay estimation accuracy using amplitude function.

much wider bandwidth, e.g 2 GHz. This is difficult to realize due to the requirement

of ultra-wide band circuitry, extremely high signal sampling rate, and enormous data

recording and computation capability.

Instead, an alternative way of using the phase function to determine the delay is

routinely used in VLBI. In this approach, several channels with narrow bandwidths

(e.g. 2 MHz). The phase values of the signal cross-correlation at each channel and at

different moment are detected. These values are then fitted into a bilinear function,

given by

φ(ω, t, τm) = τp · ω0 + (τg − τm) · (ω − ω0) + τ̇p · ω0 · (t− t0) (8.12)

where ω0 stands for the center frequency of the first channel and t0 the first moment

to measure the radio signal from the source. The a priori value τm here is a best

guess with the help of a preliminary amplitude function study. From this bilinear

function, desired observables can be extracted out, such as the phase delay

τp = φ(ω0, t0, τm)/ω0, (8.13)
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the group delay

τg = τm +
dφ(ω, t, τm)

dω
, (8.14)

and the phase delay rate

τ̇p =
1

ω0

dφ(ω, t, τm)

dt
. (8.15)

The way to determine τg by equation (8.14) is the so-called bandwidth synthesis tech-

nique [110] in VLBI. As shown in (8.14), the estimation accuracy of τg depends on

the measurement accuracy of the phase of the cross-correlation function and the total

spanned frequency bandwidth, i.e. the separation between the lowest and highest

frequency channels. While the total spanned bandwidth is limited by receiver hard-

ware, e.g. the dispersiveness of wideband channels needs be taken into account, the

phase measurement accuracy depends on the SNR of the cross-correlated signals. The

current Goldstone CEI is capable of measuring τg at very high accuracy, e.g. 2∼6

picoseconds using 34-m diameter BWG reflector antennas [111].

The last step in VLBI is to construct a physical model to interpret the measured

delay observables. Such a model involves an unusually broad cross section of physics

and can be divided into three components: the geometric delay model, the instrument

delay model, and the atmospheric delay model [107]. Each component contains some

parameters for estimation. Typically, a priori values of those model parameters are

supplied first. Then the observables from measuring many different radio sources

are processed to extract refined model parameters through a multi-parameter least-

squares estimation algorithm. Problems with resolving ambiguities in the signal phase

over large distances usually preclude the direct use of the phase delay observable τp.

Therefore, the VLBI models are usually applicable to group delay τg and phase delay

rate τ̇p.
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8.3 Uplink Array Calibration Using Baseline

One of the most powerful abilities of VLBI is its positioning capability. Using the

group delay measurement results, in conjunction with an accurate physical model, the

baseline vector between the two VLBI receivers can be determined very accurately

which essentially provides an accurate reference position. For uplink array calibration,

it is desired to determine the phase centers of array antennas based on this reference

position. However the phase center of a large reflector antenna is generally a virtual

point that cannot be located. In this case an RF probe technique can be employed

where a non-invasive RF probe is placed at a grid of points on a near-field plane of the

antenna to measure the electric fields. With these field information and the known

positions of the corresponding points, the far-field radiation pattern of the antenna

can be obtained through a Fourier transform operation [112]. This far-field pattern

can be used for array calibration in such a way that it will be adjusted (by varying

the phase of the transmitted signal from the antenna) until the radiated field at the

desired place, e.g. at the spacecraft, is in phase for each array element.

The current standard VLBI positioning accuracy is at the centimeter level, how-

ever, great endeavors are being made to push that into millimeter range. This millime-

ter level accuracy is in fact what is needed for our uplink array calibration at X-band

or higher frequencies. Next an example of baseline estimation using the state-of-the-

art Goldstone CEI facility is presented in order to examine the possibility of achieving

sub-centimeter accuracy and hence the feasibility of using baseline vector for array

calibration. A recent two-receiver CEI measurement achieved picosecond-level accu-

racy in the group delay at X-band, which corresponds to millimeter-level accuracy

in signal path-length [111]. It is hoped that the baseline vector estimation based on

such a delay measurement can also reach the same accuracy. Basically there are six

model parameters including the baseline vector (X, Y, Z), the difference of the zenith

troposphere extent above each antenna, and the two linear coefficients of the receiver
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clock offset drift are considered to have effects on τg. Other model parameters are

assumed to be insignificant for the CEI case where the two receiver antennas are

separated at only 0.5km level. The group delay consists of three components: the

geometric delay, the receiver clock offset, and the tropospheric delay, represented by

τgeo, τc, and τtr, respectively.

First, the clock model is considered. Although CEI has the advantage of common

frequency and time standards, the FODA (Fiber Optics Distribution Assembly) which

delivers the frequency references brings in some additional delay. In addition, some

differences in the geometric signal paths at the two receiver antennas are modeled as

if they were “clocklike”. By setting one station clock as the reference, the relative

clock offset of the other station can be modeled as

τc = τc1 + τc2(t− t0) + τc3(t− t0)
2. (8.16)

Usually, only the linear portion of this model is needed unless the lack of synchro-

nization of clocks between stations is too large.

Next, the geometric delay model is presented. Figure 8.3 shows the generalized

geometric structure of a receiver antenna. BE is an axis fixed to Earth surface. BA

rotates around BE to vary the azimuth angle of the antenna pointing. At the same

time, BA serves as the second rotation axis around which AD rotates to change the

elevation angle of the antenna pointing. The antenna is fixed to the point D. Since

axis BE is fixed to the Earth surface, any point along this axis can be selected as the

terminating point of the baseline vector. The point B is chosen here. The distance

from B to the wave front plane W which contains point A is equal to L, which causes

a delay L/c (c is the speed of light) for the wave to propagates from plane W to point

P. Any delay along the axis AD up to the position of the feed (either inside the

dish or buried underground) is absorbed into the clock model, since such a delay is
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Figure 8.3: Generalized geometric structure of an antenna station.

independent of the antenna orientation and therefore indistinguishable from a clock

offset. However, in reality gravity loading of the flexible dish structure changes the

antenna’s focal length and therefore affects such delay as antenna orientation varies.

Some empirical formulations are used to account for such systematic error delay [107].

By considering all these facts, the geometric delay can be modeled as

τgeo = −
~B · k̂
c

− L1 − L2

c
+ (τsr1 − τsr2) (8.17)

where the subscripts “1” and “2” refer to antennas 1 and 2 as in Figure 8.1.

The last component of the delay model is the tropospheric delay. Troposphere

exists at the lower few tens of kilometers of Earth’s atmosphere. Radio signals pass-

ing through troposphere experience delay, bending, and attenuation relative to an

equivalent path through a vacuum. The excess path delay caused by troposphere is

τ i
tr =

∫

Si

(n− 1)dS (8.18)
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where i refers to the antenna number 1 or 2, n is the index of refraction, and Si

represents the signal path through troposphere arriving at antenna i. Therefore the

total tropospheric delay model for a given baseline is τtr = τ 1
tr− τ 2

tr. The tropospheric

delay has two components, the dry and wet components, which correspond to the

contributions from the dry air constituents and the water vapor. The zenith dry

and wet delays due to the presence of troposphere are represented as Zd and Zw , in

meters. And the so-called “mapping functions”, Md(E) and Mw(E), relate delays at

an arbitrary elevation angle E to the zenith delay as

τ i
tr(E) = Md(E) · Zi

d + Mw(E) · Zi
w. (8.19)

The Goldstone CEI experiment was conducted at cold winter night when the air was

assumed dry. Therefore, the tropospheric delay between two antenna stations can be

modeled as

τtr(E) = Md(E) ·∆Zd (8.20)

where ∆Zd is a model parameter representing the difference of zenith troposphere

delays above the two antenna stations. The mapping functions are discussed in more

detail in [107].

Accuracy of modeling any of the above three components directly affects the esti-

mation accuracy of the model parameters in this component, and in other components

as well. For example, the simplicity of a linear clock offset model and the mapping

function of the troposphere delay model can result in inaccuracy of the estimation of

baseline vectors at the centimeter or sub-centimeter level [107]. As another example,

the empirical formulations used to account for system error delay caused by grav-

ity loading of the large reflector are not very accurate, and the coefficients in such

formulations have 5% error [107]. One more concern in the recent Goldstone CEI

experiment is that the positions of the radio sources (Quasars) are pre-determined
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from a reference frame constructed by previous VLBI measurements, which tend to

have similar errors. Altogether, there are many challenges in achieving millimeter-

level accuracy on baseline estimation by VLBI. And these challenges have not been

fully addressed yet.

8.4 Uplink Array Calibration Using Group Delay

With the possibility of using the estimated baseline from VLBI for uplink array

phase calibration closed for the time being, the direct use of the measured group

delay is considered. In fact the delay maps to the phase by a multiplication of the

operating angular frequency. Figure 8.4 proposes such a scheme where for each array

element, the antenna is shared by the transmitter, and a VLBI receiver. When the

antennas are connected to the VLBI receivers, the delay which consists of the group

delay and the receiver instrument delay is measured, i.e.

τA→R
g = (τa1 + τr1)− (τa2 + τr2). (8.21)

Similarly, when the transmitters connect to the VLBI receivers, the measured delay

includes the instrument delay of both transmitter and receiver, given by

τT→R
g = (τt1 + τr1)− (τt2 + τr2). (8.22)

Therefore the delay calibration value for uplink array operation where the transmitters

are connected to the antennas can be obtained by

∆τ = (τt1 + τa1)− (τt2 + τa2) = τA→R
g − τT→R

g + 2(τt1 − τt2). (8.23)

It is assumed that the instrument delay difference between the array element cir-

cuitries (excluding antennas) can be pre-characterized.
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Figure 8.4: Uplink array calibration using group delay measured by VLBI receivers.

In order to examine the performance of such a calibration technique, an example

of evaluating the measurement accuracy of τg is presented as follows. As mentioned

earlier, the Quasars are so faraway that their radiated signals arriving at the VLBI

receivers are like noise. Therefore the received signal power is given by

Pri = KTaiW, (8.24)

similar to the noise power

Pni = KTsiW. (8.25)

Here K = 1.38 × 10−23 is the Boltzmann’s constant and Tai and Tsi stands for the

effective radio source temperature at the receiver antenna and the receiver system

noise temperature (in Kelvin). The subscript i = 1 or 2, corresponds to the two

VLBI receivers. Tai can be calculated as

Tai =
1

2
J × 10−26Ariηi/K (8.26)
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where J is the power flux from the radio source in Jansky (= 10−26 watt/m2/Hz), Ari

stands for the receiver antenna apertures, and ηi represents the antenna efficiencies

at the two VLBI receivers. The factor 1
2

accounts for antenna polarization loss.

Assuming J = 1 Jansky which is true for many radio emitters, Ari = 12 m, and ηi =

64%, one can calculate Tai to be less than 0.05 Kelvin, much less than a usual system

noise temperature, 30 Kelvin. This is why the signal cross-correlation and extended

integration (observation) time are necessary in VLBI to improve SNR. Suppose a

single channel bandwidth W , the minimum sampling rate is then 2W . With an

observation time Tobs, the effective signal processing gain is

g = 2W · Tobs. (8.27)

The signal and noise powers out of the correlator are then given by g(KTa1W ) ·
(KTa2W ) and (KTs1W )·(KTs2W ), respectively. Therefore the SNR can be computed

as

SNR =
2W · Tobs · Ta1Ta2

Ts1Ts2

. (8.28)

Assuming a 2MHz channel bandwidth and 150 seconds observation time, one obtains

a SNR value of about 460, i.e. more than 26 dB. Using the phase measurement

accuracy formula [63], the phase of the cross-correlation function can be as accurate

as

σφ ≈ 57.3√
460

= 2.7◦. (8.29)

The accuracy of delay measurement using bandwidth synthesis is given by [63]

στg =
σ∆φ

∆ω
=

√
2σφ

2πBs

(8.30)

where ∆φ is the difference between the phase values obtained at the lowest and highest

channels, Bs is the total spanned bandwidth. With the commonly used Bs, 500 MHz,
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the highest accuracy of τg that can be achieved in the above VLBI system is about

21 picoseconds.

The requirement of the uplink array calibration at X-band on the delay accuracy is

about 3 picoseconds. Therefore the 21 picoseconds accuracy provided in the above ex-

ample is not sufficient. Either of the antenna aperture, the single channel bandwidth,

the total spanned bandwidth, or the observation time, or the combination of some

or all of them, must be increased. In fact, as mentioned earlier, the Goldstone CEI

with 34-m antennas can achieve the required accuracy. However, there are still some

issues about the proposed technique. First of all, the bandwidth synthesis in VLBI

employs many separate channels resulting in a total spanned bandwidth of hundreds

of megahertz. This is therefore a wideband system. Correspondingly the element

transmitters connecting to the VLBI receivers have to provide the same bandwidth.

It obviously brings up a challenge of characterizing the instrument delay for such a

wideband system. In addition, there should be no dispersive devices allowed in the

system due to the wideband spectrum. The most important concern lies in the fact

that in this scheme the uplink array transmits in the same spectrum as the VLBI

downlink. This may result in severe interference problem.

8.5 Uplink Array Calibration Using Phase Func-

tion

In this section a different calibration technique is proposed to overcome the chal-

lenges encountered in the previous section. In this approach, the spectrum of VLBI

channels are not used. Instead the uplink array operates in its own frequency channels.

The bandwidth synthesis used in VLBI is discarded, since the phase measurement

of a single channel can be directly used for array calibration instead of the group

delay. In fact, equation (8.29) shows very small phase error of the single channel

measurement. This way the problems caused by wideband operation in the previous
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technique are eliminated. The only concern left would be the requirement of operat-

ing at the same frequency channel in both uplink and downlink modes. If that can be

justified, an even simpler scheme compared to Figure 8.4 can be adopted, based on

the concept of phase conjugation. Figure 8.5 illustrates such a scheme. This scheme

is very similar to that shown in chapter 6. The only distinction regards to the phase

detection circuitry. While in Figure 6.1 the received signal phase at each array ele-

ment is measured independently and sent to the wave generator for determining the

phase calibration values applied to the uplink signals, the cross-correlator in Figure

8.5 directly collects all the received signals from array elements and computes the

cross-correlation functions pairwise. The phases of these cross-correlation functions

are in fact what is needed for phase calibrating the uplink array, and are sent to the

wave generator to align the phases of the uplink signals. Such a cross-correlation

and phase-alignment technique is indeed employed in the Very Large Array (VLA) as

well. As mentioned earlier, another advantage of this calibration approach is that the

Quasars, as calibration targets, fall in the array far-field zone, and they are abundant

in the sky.

8.6 Conclusions

In this chapter, the possibility of using the existing VLBI/VLA infrastructures

and techniques for the uplink array calibration is examined. The principle of VLBI

technology is reviewed and three relevant calibration techniques are proposed. The

first one is to make use of the VLBI positioning capability to determine the phase

centers of the uplink array elements. This would not be successful due to the insuf-

ficient positioning accuracy. The second one takes advantage of the downlink group

delay measured by VLBI and converts it into the proper usage for uplink array cali-

bration. The major problem of this approach is that the uplink array has to work at

the same wideband spectrum as that in VLBI, which is not feasible. The last method
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Figure 8.5: Uplink array calibration based on downlink cross-correlation and concept
of phase conjugation.

does not use the existing VLBI infrastructures, instead it applies the cross-correlation

technique in VLBI to a new uplink array calibration system. Since this technique es-

sentially operates in a downlink mode, it requires a downlink circuitry in the system

in addition to the uplink array. An example of such a downlink-uplink system based

on the concept of phase conjugation is presented. Compared to the one described

in Chapter 6, this new approach has the advantage of using array far-field targets

for calibration. It has to be mentioned that if an uplink-mode-only array system is

desired, this last approach also fails since it relies on downlink cross-correlation.
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CHAPTER 9

Conclusions & Future Work

9.1 Conclusions

This dissertation includes two main parts. Each provides solutions for important

applications in terrestrial or space wireless communications, namely, wave propaga-

tion through foliage and uplink ground array phase calibration. A physics-based

modeling methodology is adopted throughout, in order to develop high fidelity wave

propagation models for these applications. The emphases of the work for the two

different applications, however, are not the same. While the solution for the foliage

application lies in improving an existing single-scattering wave theory model by in-

troducing more accurate and time-efficient algorithms and modeling procedures, the

work for the array application develops a number of original calibration schemes.

In Chapter 2, the existing FCSM (fractal-based coherent scattering model) is

reviewed for the application of foliage wave propagation. This model begins by gen-

erating a realistic-looking forested environment using fractal geometry. It then uses

Foldy’s approximation to estimate the propagation constant of the effective forest

medium. Subsequently, the distorted Born approximation (DBA) method is applied,

where the coherent mean-field is attenuated by the effective medium before hitting

individual particles in the foliage. The scattered field from each particle is then co-
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herently added at the receiver, after being attenuated by the effective medium as well.

The limitations of such a model are pointed out and indicate the need for improve-

ment. The major challenges are: 1) Foldy’s approximation assumes a sparse medium

where scatterers are independent and no mutual coupling occurs; 2) DBA is essentially

a single-scattering approach, and the multiple-scattering effects must be considered

at high frequency or for large propagation distances; 3) FCSM is too computation-

ally intensive to be applied for large distance wave propagation in foliage; 4) FCSM

is too complicated to be directly used by wireless communication system designers.

The approach described in Chapter 3 overcomes the first challenge by including the

mutual coupling among highly clustered scatterers, such as pine needle clusters, in

Foldy’s approximation. Both a full-wave MoM (Method of Moments) model and an

approximate macro-model are employed to compute the scattering from a cluster of

pine needles at millimeter-wave frequency. The approximate macro-model is com-

putationally much less intensive than the MoM model. Comparison of the results

of these models to the single-scattering results suggests that the attenuation rate of

the effective forest medium is significantly overestimated if mutual coupling among

needles is neglected at high frequency. In order to verify this simulation conclusion,

an outdoor measurement is conducted for a pine tree stand at Ka-band (35 GHz).

In this experiment 84 independent spatial samples of transmitted signal through the

pine stand were collected to obtain the foliage path-loss statistics. The measure-

ment results confirm the previous hypothesis obtained by simulation. By including

multiple-scattering (i.e. mutual coupling) of clustered needles in FCSM, much bet-

ter agreement is obtained for both the mean and standard deviation of the foliage

path-loss.

A solution corresponding to the second and third limitations of FCSM is discussed

in Chapter 4. The so-called SWAP (Statistical WAve Propagation) model for foliage

path-loss estimation assumes the forest is statistically homogeneous along the direc-
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tion of wave propagation, and the potentially large distance between the transmitter

and receiver in the forest is divided into many statistically similar blocks of finite

dimension. FCSM is then employed as a foundation and applied to a representa-

tive block of the forest. The statistical input-output field relationship including field

attenuation and regeneration (due to scattering) for the representative block is com-

puted by a Monte-Carlo simulation. These pre-computed statistical quantities of the

forest are then applied to all blocks using a network theory. The overall received

power, and hence the path-loss, is estimated by following the coherent and incoherent

power through all the forest blocks. Compared to a brute force approach the com-

putation time is significantly reduced while the prediction accuracy is maintained.

This model is successfully validated both qualitatively through simulation results of

foliage path-loss in a red pine stand, and quantitatively by comparing its predictions

against independent propagation measurements in a pecan orchard.

Chapter 5 develops a foliage path-loss prediction macro-model, MiFAM (Michi-

gan Foliage Attenuation Model), which is based on the SWAP model. This model

has the advantages of empirical models which feature simple mathematical formula-

tions and hence easy implementation. Additionally, it overcomes the restriction of

empirical models and is more generally applicable. First, it is observed that besides

the propagation distance the foliage path-loss is also a function of three other pa-

rameters. Such path-loss parameters in turn vary with the foliage parameters, such

as tree hight, trunk diameter, tree density, branch density, wood moisture content,

etc., as well as the radio system parameters, such as frequency and antenna height.

Numerous SWAP simulations are carried out while varying the foliage and system

parameters around their centroid values. Then a polynomial function curve-fitting

process is conducted for the three path-loss parameters as a function of each of the

foliage and system parameters. This results in a multivariate polynomial function for

each of the three path-loss parameters, which jointly determine the foliage path-loss.
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Therefore, MiFAM takes into account all the foliage and system conditions with an

easy-to-use formulation. In this way both accuracy and simplicity are simultaneously

achieved in the complicated and difficult task of foliage path-loss prediction. In this

dissertation, MiFAM is successfully applied to two typical tree species, namely, the

deciduous red maple and the coniferous red pine. There is no essential limit, however,

to what kind of foliage MiFAM may be applied.

In the application of uplink array calibration, a phased array of many modest-size

reflector antennas is employed to drastically improve the uplink effective isotropic

radiated power (EIRP) of a ground station. Three potential schemes are proposed

corresponding to different calibration targets they tend to use. In Chapter 6 a radar

calibration procedure for the array phase distribution is presented using a number of

low earth orbit (LEO) targets. The concept of phase conjugation is adopted for such

a one-transmit-all-receive system where each array element is required to work both

uplink and downlink. Design of optimal orbit and the number of LEO calibration tar-

gets is investigated in order to provide the frequent calibration opportunities needed

as the array tracks a spacecraft. Array far-field focusing based on the near-field LEO

targets through path-length compensation is also described and an analysis of array

gain degradation based on the position error of the array elements and in-orbit tar-

gets is developed. It is shown that errors in the in-orbit targets’ positions significantly

degrade the far-field array gain while the errors in array elements’ positions are not

important. A similar analysis shows that phase errors caused by thermal noise, system

instability, and atmospheric effects are insignificant factors in array gain degradation.

In order to eliminate the calibration target position error, Chapter 7 and Chapter

8 seek alternative candidates in the array far-field, namely, the Earth’s natural orbiter,

Moon, and celestial radio emitters, Quasars. In Chapter 7, a technique using lunar

InSAR (Interferometric SAR) imaging to phase calibrate the ground array is stud-

ied. As a distributed radar target, Moon cannot be directly used like a point target
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for calibration. The planetary SAR (Synthetic Aperture Radar) imaging technique

is employed to isolate the whole antenna footprint on the lunar surface into many

small pixels. Each array element can form a SAR image of a same pixel and the

phase differences (interferograms) among these images can be used to perform phase

calibration. An all-transmit-one-receive system scheme is adopted to reduce the unit

cost of the array element due to the absence of a receiver. As a result, orthogonal PN

(pseudo noise) codes have to be employed for different array elements to distinguish

their signals at a common receiver. In order to evaluate the deviation of measured

samples of phase differences from the desired values, a high-fidelity 3D lunar surface

profile and scattering model is developed. Practical design of the calibration system

parameters is illustrated through a real example. Simulation results are presented to

show that the effects of image SNR (signal-to-noise ratio) and image misregistration

are very important, while the surface undulation of the imaged pixels is insignificant.

The idea of using Quasars as calibration targets is inspired by the existing VLBI

(Very Long Baseline Interferometry) technology. It would be beneficial if the existing

VLBI facilities or the technique used by VLBI can be used for uplink array calibration.

The only obstacle lies in the fact that VLBI is essentially a downlink technique.

Directly using VLBI to determine the phase center of each array element antenna is

proved to be infeasible due to insufficient positioning accuracy. Therefore some system

modification is necessary in order to perform uplink phase calibration via the downlink

VLBI facilities. There are two viable ways to do so. In the first approach, both the

uplink array and the downlink VLBI share the same reflector antennas. The delay

from the antenna feed to the far-field target is reciprocal and hence its uplink value

can be obtained from the downlink calibration using VLBI. This approach assumes

the instrument delays of the uplink array elements can be pre-determined through

other measurement or calibration techniques. The second approach is based on the

concept of phase conjugation. In this approach, the existing VLBI facilities are not
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necessarily required. Only the cross-correlation technique used by VLBI (or VLA) is

borrowed. This scheme is similar to that in Chapter 6, with the far-field active targets

(Quasars) replacing the near-field passive targets (LEOs). An additional advantage

is the abundance of Quasars which supplies sufficient opportunities to calibrate the

uplink array at various attitudes.

9.2 Future Work

Future work involves further improvement of the SWAP (and hence MiFAM)

model, validation of the MiFAM model, and experimental development of the uplink

array calibration system. The details in each area are as follows.

1. Multiple-scattering inside a single forest block needs to be accounted

for in the SWAP model.

FCSM, which is applied to a typical block of forest in the SWAP model, is a

single-scattering model, therefore multiple-scattering between scatterers inside

this block is neglected. Consequently, the estimated wave propagation behav-

ior within a single block is based on a single-scattering scenario. Although

partial multiple-scattering is included through the network cascading approach

described in Chapter 4, it only corresponds to multiple-scattering between scat-

terers inside different forest blocks. To complete the multiple-scattering SWAP

model, new algorithms need be developed to take the multiple-scattering within

a single block into account.

2. MiFAM needs experimental validation.

MiFAM is simple-to-use and expected to be fairly accurate since it is based on

simulation results of the well-developed SWAP foliage path-loss model. How-

ever, it would be more conclusive if MiFAM could be validated by a number

of path-loss experiments conducted in various foliage environments. Measure-
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ment data reported in the literature may not serve well due to incomplete

ground truth or unsuitable foliage conditions. In this case new, carefully de-

signed measurement systems need to be developed.

3. The uplink array calibration schemes need to be tested using existing

ground facilities.

The array calibration work in this dissertation is mainly conceptual and theo-

retical. The proposed calibration system schemes must be experimentally eval-

uated using some prototype array such as the 34-m BWG reflector antennas at

Goldstone, CA. In particular, the schemes based on lunar InSAR imagery and

VLBI are worth investigating in a concept-proof experiment. Before designing

the hardware for such an experiment, however, there is additional theoretical

work which is necessary. This work includes the PN-code selection and SAR

image processing software for the lunar InSAR case, and the cross-correlation

and phase detection algorithms for the VLBI case.
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Appendix A

A Faster Algorithm for Calculating the Scattered

Field from a Pine Needle Cluster

At low frequencies where multiple-scattering is insignificant, scattering from a

pine needle cluster, as shown in Figure 3.1, can be approximated as the coherent

summation of the scattered fields from individual needles. A concise expression for

such a far-field scattered field is obtained in terms of the polarizability tensor of a

dielectric cylinder [50, 41], based on the low-frequency Raleigh scattering approxi-

mation. However this closed-form formulation is valid only in the local coordinates

of a single needle. Therefore the traditional method of computing the needle cluster

scattering involves transforming the incident field from the global cluster coordinates

into the individual local needle coordinates, calculating the scattered field from each

needle, then transforming back to the global coordinates for coherent addition. This

method is inherently inefficient since the multiple coordinate transformations result

in a computational slowdown. When processing thousands of needles in foliage, this

slowdown dominates the run-time of the computer algorithm. In order to improve

on the speed and efficiency of such an algorithm, it would be desirable to directly

compute the scattering from a single needle in the global coordinates. It turns out

that by a modification of the polarizability tensor this can be achieved.

In the local needle coordinates, as shown in Figure A.1, where the needle is oriented

along the z-axis, the far-field scattered field from a very thin dielectric finite cylinder
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(approximation of a pine needle) can be calculated as

Ēs = −ejk0r

4πr
Ak2

0

{
k̂s × k̂s ×

[
P · Ēi

]}
l sinc(U) (A.1)

where A is the area of the transverse cross section of the cylinder and l the length.

r is the distance from the center of the needle to the receiver, k0 is the free space

wave number, Ēi represents the incident field, k̂s is the propagation unit vector to

the observation position (coordinate origin is at center of cylinder), and P is the

polarizability tensor which can be expressed as

P =




Pxx 0 0

0 Pyy 0

0 0 Pzz




. (A.2)

For a right circular cylinder with relative dielectric constant εr , Pxx = Pyy = 2(εr −
1)/(εr + 1), and Pzz = εr − 1. The “sinc” function is given by

sinc(U) =
sin(πU)

πU
, (A.3)

where

U =
k0l

2
(k̂s − k̂i) · ẑ. (A.4)

k̂i is the propagation direction of the incident plane wave, and sinc(U) is a result of

approximating a finite cylinder based on an infinite one. Such an approximation is

valid when the length to radius ratio of the cylinder is large.

The above computations are performed in the needle local coordinates. In the

cluster global coordinates, the needle is oriented (θt, φt), as shown in Figure A.2.

Therefore, all vector quantities in the global coordinates must be first transformed

into the local coordinates, via a coordinate transformation matrix T from equation
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Figure A.1: Needle cylinder scattering in the local coordinates of the needle.

Figure A.2: Needle cylinder scattering in the global coordinates of the needle cluster.
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(3.27), as

k̂s = T · k̂g
s (A.5)

k̂i = T · k̂g
i (A.6)

Ēi = T · Ēg
i , (A.7)

where the superscript “g” indicates global coordinates. After calculating Ēs in local

coordinates, it is then transformed back to global coordinates by

Ēg
s = T

−1 · Ēs. (A.8)

Notice that each transformation will take 12 multiplications and at least 3 transfor-

mations are needed for each needle (it is not necessary to transform k̂s and k̂i for

calculating U since U is a scalar and can be calculated directly in global coordinates).

After carefully examining equation (A.1), it is obvious that instead of transforming

k̂s, k̂i and Ēi into local coordinates, it is much simpler to transform the local P to

global coordinates and then directly calculate the scattered field in global coordinates,

i.e.,

Ēg
s = −ejk0r

4πr
Ak2

0

{
k̂g

s × k̂g
s ×

[
P

g · Ēg
i

]}
l sinc(U) (A.9)

Here, U is given by

U =
k0l

2
(k̂g

s − k̂g
i ) · l̂, (A.10)

where unit vector l̂ represents the global orientation of the needle. The global polar-

izability tensor P
g

can be computed as

P
g

= T
−1 · P · T . (A.11)

This can be proved by substituting (A.11) into (A.9) and performing a T transforma-

tion on both sides, which will give the same expression as (A.1). Now the coordinate
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transformations are encapsulated in the polarizability tensor and one can expand

(A.11) to take advantage of the symmetric properties of the tensor. Specifically, P
g

can be written as

P
g

=




P g
xx P g

xy P g
xz

P g
yx P g

yy P g
yz

P g
zx P g

zy P g
zz




, (A.12)

where

P g
xx =

1

εr + 1

[
2 + (εr − 1) sin2 θt cos2 φt

]
(A.13)

P g
yy =

1

εr + 1

[
2 + (εr − 1) sin2 θt sin2 φt

]
(A.14)

P g
zz =

1

εr + 1

[
2 + (εr − 1) cos2 θt

]
(A.15)

P g
xy = P g

yx =
εr − 1

εr + 1
sin2 θt sin φt cos2 φt (A.16)

P g
xz = P g

zx =
εr − 1

εr + 1
sin θt cos θt cos φt (A.17)

P g
yz = P g

zy =
εr − 1

εr + 1
sin θt cos θt sin φt. (A.18)

Notice that only 14 multiplications are required to calculate P
g
, taking the off-

diagonal symmetry into account.

Another approximation which can speed up the algorithm is to assume k̂g
s from

each needle in the cluster is approximately the same as that from the center of the

cluster. Since the cluster is small it appears as a point source in the far-field. It

has to be mentioned that the k̂g
s in the “sinc” function must be retained since small

differences can be amplified by the multiplication with large k0 at relatively high fre-

quencies. Applying this approximation to (A.9), k̂g
s is factored out from the braces.

And the cross multiplication need only be performed once, after summing the con-

tributions from all needles. The same technique can be applied to Ēi as well as r.

However the computation of r in the phase calculation must preserve the exact value.
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Finally, the total scattered field from an N -needle cluster can be calculated as (“c”

in the subscript stands for “cluster”)

Ēg
sc ≈ −Alk2

0

4πR
k̂g

s × k̂g
s ×

{
N∑

i=1

[
P

g

i · Ēg
i

]
sinc(U) ejk0r

}
, (A.19)

where R is the distance from the center of the cluster to the receiver, and the subscript

“i” represents the ith needle in the needle cluster.
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