oMo

ELECTROMAGNETIC SCATTERING FROM CERTAIN
RADIALLY INHOMOGENEOUS DIELECTRICS

by

[;N icolaos Georgiou Alexopoulos

Chiao-Min Chu
Piergiorgio L. E, Uslenghi

Co-Chairmen:
In this research, the phenomenon of electromagnetic wave propagation
through, and scattering from, radially inhomogeneous dielectrics is studied

for very high frequencies. The dielectrics are considered lossless, rad1a11y

inhomogeneous in the spherical coordinates system, an nd of thhe;cqhyﬁergm&or of |
the diverging type. The lens problem is studied by the geometrical optics tech-
nique and the radar cross-section of perfectly conducting spheres coated with
radially inhomogeneous dielectrics is investigated. By assuming a plane wave
as the incident electromagnetic field, the contribution in the backscattering

direction due to the reflected field and the creeping waves is determined by

x applymg asymptot1c theory. This necessitates the use of the WKB and/ or

/

f
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Langer's method for the solution of the pertment d1fferent1a1 equatmns,

dependmg on whether there ex1st trans1t10n points in the range for which the
solutions are required. Also, the integrals of Scott (1949) are needed in order

to determine the reflected portion of the field.

Such a study is mterestmg not only from the theoretical but also from
the practical point of V1ev;; :;that it lends itself useful to the understanding
of radio wave propagation in radially inhomogeneous dielectrics and of the
effect of coating perfectly conducting spheres with radially inhomogeneous
media. It also has applications to problems of wave propagation in the iono-
sphere and around the earth.
. ”;I‘o begin with, a general outline of the problerh and the methods of sol-

ution is given. Then, a new class of radially inhomogeneous dielectrics is

introduced and it is studied by the ray tracing technique. This new class of



radially inhomogeneous dielectrics is also treated as the coating of a perfectly

conducting sphere and the monostatic cross-section is examined when the

dielectric is of the converging or diverging kmci F;inallg; arrlic;filer’ clagsiof

radially inhomogeneous media, previously discussed by Nomura and Takaku,

is considered and its effect in reducing or enhancing the radar cross-section

of a perfectly conducting sphere is idet“éx:inineid.
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ELECTROMAGNETIC SCATTERING FROM CERTAIN
RADIALLY INHOMOGENEOUS DIELECTRICS

by

Nicolaos Georgiou Alexopoyulos

ABSTRACT \

In this research, the phenomenon of electromagnetic wave propagation
through, and scattering from, radially inhomogeneous dielectrics is studied
" for very high frequencies. The dielectrics are considered lossless, radially
inhomogeneous in the spherlcal;oord1naws system, and of the converging or of *
the diverging type. The lens problem is studied by the geometrical optics tech-
nique and the radar cross-section of perfectly conducting spheres coated with
radially inhomogeneous dielectrics is investigated. By assuming a plane wave
as the incident electromagnetic field, the contribution in the backscattering
direction due to the reflected field and the creeping waves is determined by
applying asymptotic theory. This necessitates the use of the WKB ahd/ or
Langer's method for the solution of the pertinent differential equations,
depending on whether there exist transition points in the range for whiqh the
solutions are required. Also, the integrals of Scott (1949) are needed in order
to determine the reflected portion of the field.

Such a studyis interesting not only from the theoretical but also from
the practical point of view, in that it lends itself useful to the understanding
-of radio wave propagation.in-radially inhomogeneous dielectrics and of the
effect of coating perfectly conducting spheres with radially inhomogeneous
media. It also has applications to problems of wave propagation in the iono-
sphere and around the earth. ‘

To begin with, a general outline of the problem and the methods of sol- '
ution is given. Then, a new class of radially inhomogeneous dielectrics is

introduced and it is studied by the ray tracing technique. This new class of
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radially inhomogeneous dielectrics is also treated as the coating of a perfectly
conducting sphere and the monostatic cross-section is examined when the
dielectric is of the converging or diverging kind, Finally another class of
radially inhomogeneous media, previously discussed by Nomura and Takaku,
'i{s considered and its effect in reducing or enhancing the radar cross-section

of a perfectly conducting sphere is determined.
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CHAPTER I
GENERAL CONSIDERATIONS

1.1 Introduction

The problem of electromagnetic scattering from radially inhomogeneous
media has been considered in the past by many authors. On the subject there
exist some books such as Brekhovskikh's (1960) and Wait's (1962) and numerous
articles published in technical journals. The problem in its most general form
was considered by Gutman (1965), Gutman assumed the electromagnetic
properties of the medium to be inhomogeneous in the rangul‘ar as well as the
radial direction. He applied a modified form of the Hansen~-Stratton vector
wave-function method due to Kisun'ko in order to solve the vector wave equation
and thus to determine a representation of the electromagnetic field in the
medium. The solution which he obtained, however, is of a purely formal
nature since it involves an infinite set of first order linear ordinary differen-
tial equations. Explicit results can be obtained if the inhomogeneity is only
in the radial direction and it is with this case that this research is concerned,
Marcuvitz (1951) gave a rather systematic treatment of the electromagnetic
field representation in a medium whose index of refraction depends on the
radius in the spherical coordinate system. Nomura and Takaku (1955)
studied the radio wave propagation around the earth. They considered both
the earth a.nd the atmosphere radlally stratified with the permittivity being

given by e( )_(-) K, p <-1, k = index pertaining to the ;cth layer of

stratification, Tai (1958a) apphed the vector wave—functmn method of

Hansen and Stratton to obtain a complete representation of the electromag-
netic field by superposing electric and magnetic types of waves each of which
he expressed in terms of two vector wave functions. He then applied these

general results to the particular case of a sphere whose index of refraction
’/ 1/2

N3)- -



is that of the Luneburg lens and obtained the complete representation of the
electromagnetic field inside the sphere, as well as the scattered and total

fields, when the excitation source is a dipole of moment p, in the x-direction

and located at (r,6,@) = (b,7,0) m the spherwal coordmates system Flammer

(1958) gave asymptotic solutions for the case of the conical Luneburg lens.
His approach is not complete in the sense of comparison Witﬁ the method
developed by Tai and also the solutions he obtained are not exact, but asym-
ptotic. Other radially inhomogeneous media which have been studied are

the Maxwell f1sh -eye by\Ta1 (1958b) and a Gaussmn type of inhomogeneity by

| Yeh and Kapr1el1an (1960). ~ Arnush (1964) stud1ed the case of scattering when
“the dielectric constant vanishes on a spherical surface by using a phase-shift
analysis method. Fikioris (1965a) examined the behavior of a bi-conical

|antenna immersed in radially stratified media and performed detailed cal-

e T e e e [ B e e —_—

used the Rayleigh-Gans approximation fo determine the scattermg by a

culations for small-angle and w1de—ang1e biconical ‘antennas. Farone (1965) s

radially inhomogeneous sphere whose index of refraction is close to unity.
Finally, Uslenghii(1967) extended Tai's method for media whose permeability
is also radially inhomogeneous. He established general results for the pre-

sense of resonances and dips in the low-frequency backscattered cross section.

Uslenghl (1968) also studled the | high frequency backscattering problem from
the inverse square power lens by appl{mg asymptotlc theory. ) —\\

In this dissertation, the case of high frequency electromagnetm scat-

tering from radially inhomogeneous media in the spherical coordmates system\

is considered. The relative magnetic permeability is taken to be unity and
the excitation field is assumed to be a plane wave. Particular emphasis is
placed upon the study of backscattering from perfectly conducting spheres
coated with a radially inhomogeneous medium and on the computation of the
monostatic scattering cross section. This study is of practical importance
in that it lends itself useful to the understanding of electromagnetic wave
propagation in dielectric lenses at microwave and optical frequencies, the
propagation of radio waves around the earth, and the effect of coating per-

fectly conducting spheres with radially inhomogeneous dielectrics.



In assuming the incident field to be a plane wave, it is implied that the
more general case of an arbitrary incident electromagnetic field can be sim-
plified by decomposing it into the sum of plane'moﬁochro;pgti_g waves by
Fourier analysis, and therefore the simplest case only is considered. In
what follows, the rationalized MKSA system of units is used and the time
dependence e-iwt js omitted. The following symbols are listed for con-
venience.

w = angular frequency,
27 _

W "Eo/“'o' = wave number in vacue,

A
€, = electric permittivity (dielectric constant) in vacuo
o = magnetic permeability in vacuo,

7z =y"1 =fu0/eo = intrinsic impedance of free space (= 1207 ohm),

€, 1 = relative permittivity, permeability inside the inhomogeneous
medium (functions of r ) ,

i =y=T = imaginary unit,

E and H = electric and magnetic field vectors,
X,¥,z = rectangular Cartesian coordinates,

r, 0, = spherical polar coordinates.

Vectors will be underlined and unit vectors will be denoted by carets.

Maxwell's equations are recalled and in the notation considered they
are
Vx H=-ikYeE, (1.1)
Vx E =ikZuH,
with the constitutive relations
Ve €E =0
V-H=0 ,

(1.2)

and € = u =1 in the case of {\;a'c"ﬁum. The general geometry of the problem is
shown in Fig. 1-1 with region I representing the scatterer and II the free
space. The superscript i indicates the incident field while , later on, s

indicates the scattered field.

=\
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FIG.1-1: GEOMETRY OF THE PROBLEM

The electric field of the incident plane wave is
§1=§e1kz . (1.3)

The scattered field is required to satisfy Sommerfeld's ‘radiation condition

at infinity throughout the free space region, specifically the condition
ES
r x (Vx)Hkr™ _ =0 (1.4)

lim

r-»
must hold uniformly in £. This is known as the Silver-Miller condition.
Also, at the interface of regions I and II the appropriate boundary con-
ditions, i.e. the continuity of the total tangential electric and magnetic fields,
are applied for the determination of any constants pertinent to the solution of
the problem. In order also are the following definitions in regard to the

scattering cross-section of the body. The differehtiai ;'_s;ééttering cross-

section or bistatic radar cross-section o(6, ) is given by
|2

12
‘I

(1.5)

-~ lim 2
a(6, P) e drr

|e



The total scattering cross-section is defined by the ratio of the time averaged
total scattered power to the time averaged incident Poynting vector, and is

related to the bistatic cross-section by
T 27

f a(6, P)sin6dodap. (1.6)
§=0

Since the research herein is concerned primarily with backscattering, the

= ..}_
Ototal 4
6=0

definition of the monostatic radar cross-section is given for reference as

S2
E

oo, 9| =lm 4gr? (1.7)

_ r+m .12 '
6= lE

o=m

1

It is also mentioned here that the methods of solution to be applied are the
geometrical optics method, exact solutions and asymptotic determination of
formal solutions. The approach employed in each of these methods is well’
known (e.g. Uslenghi, 1967) and therefore detailed description is omitted.

1.2 Scattering From Radially Inhomogeneous Media

Assume a plane wave incident upon a radially inhomogeneous sphere of
outer radius a whose index of refraction is N(§) where £= r/a (see Fig.1-1).
Applying the pertinent boundary conditions at r=a and at r=co the far zone
(r-> ) bistatic scattered electric field produced by the incident ﬁeld of Eq (1. 3)

is given by the well known expression

. ol 51
ikr w P:(cosH) dp-
£ A
Esﬂ—ie——— .2n_+1 E:_ L-Ibs n]cos¢9_

siné n deé
. dP;\ . Pé(cose)
-12, 55 *Py —smB :Ism¢¢ , (1.8)

which in the backscattered dlrectlon becomes



6

B -1——/ z (- (n+ 1) [ —bi] : (1.9)
, = -

These expressions are the Mie series for the radially inhomogeneous scatterer.

‘8 s
The scattering coefficients a and bn are given in their general form by

¥ 1(ka)-M_(ka) ¥ (ka) v <ka)-’1\‘4’ (ka) ¥ (ka)

S
m (1.10)

a =- b‘

n (1) (ka)-M (ka)§(1)(k g B ( )

(ka)- M (ka)§ (ka)

where

00052 3y e, )= T Ry 0c0)

and the primes indicate differentiation with respect to ka. The constants M (ka)

and M (ka) are determined from the boundary conditions at r=a and r= 0 1f the I

scatterer isa radlally mhomogeneous sphere throughout the range 0Krga, or
by the boundary conditions at r=a and r=b if the scatterer is a perfectly con-
ducting sphere of radius r=b coated with a radially inhomogeneous medium of

outer radius a. For these two cases, these constants are given respectively by

' M_(ka)= - ;’.g. “’El 8 )= 2 BE a’(gﬂ (1.11)
= E:l

and by

aInC(EB) s

M (ka)"
13
E=1

O2m
3 cn('é',ﬁ)
1 ToEoB
f_ka)= = —p—
k& a8 .8 —
Y £=1

and they are true only if €(1)=1 which is the case in this research. The para-

meters involved in the previous expressions are defined as

P N
§=£,~B:/a, ~ (1.13)
c_¢.8- s‘1’<s)s‘2’<ﬁ> sD@sPe (1.14)



and

(2)

(s @B)—\T )8 T‘”(B) (”(B)T © . (1.15)

The functions S(J)(S) T(J)(E) j=1,2, are any two linearly independent solutions
of

2

o’s (&)

— D ) Re(- 2D s (0= 0 (1.16)
a8 (ka)’g

and

2

d"T (§) aT (&)

i B ) Qe R T @120 (117
dg (ka) &

(1)

where €(§)=N 2(5) The functions S ( )

(§) a
determine M (ka) and M (ka) in (1. 11) are requlred to be finite at § = 0.

(8) which are used to

The d1fferent1a1 equat1ons (1 16) and (1 17) arise as follows. ConS1der the

vec tor wave equatmn

[LY +k (5)] F=0 (1.18)

with k2(§)=w2u e§), F= {% inside the radially inhomogeneous medium.

The vector wave equation is reduced to the scalar wave equation

~ (m)
[V2+k (E)] w(e) =0 (1.19)

by defmmg,-after Tai (1958a) vector wave-functions M( m)_ Vx(rw(m)) pro-
portional to the electric field for magnetic type or transverse electric modes,
and M(e)= vx(r w(e)) proportional to the magnetic field for electric type or
transverse magnetic modes. Separation of variables in the spherical polar
coordinates system yields (1.16) and (1.17) for the magnetic and electrlc type ].
of waves correspondingly. Superposition of the two types of waves g1ves the |

complete representation of the electromagnetic field in the medium.



1.3 Outline of Research .

/ The backscattei'ed field given by (1.9) is amenable to numerical calcula-

tion for ka not too large. When ka >> 1, Eq. (1.9) is extremely slowly

convergent and it is necess;élry tflerefore, since this research is in regard
with high frequency backscattering, to subject expression (1.9) to a Watson
transformation. Thus the summation is firstly transformed to a line

integral by applying Cauchy's residue theorem. The backscattered field

is then given by

b.s. A eikr i, s s, 1 vdy s s

.S, e {2 — - eV - 1.20

E v Yo @, by "3 COS TV [av-l/z bV‘l/z] ’ (1.20
C

I
'

—

where V = n+-;' anddvg and ka are assumed complex with 0 < Imk <<1.

The path C in the complex p-plane is shown in Fig. 1-2.

Iy
[
. -
3/2 7/2 11/2 - Rep'
1/2 5/2 9/2
-+ -
C

FIG. 1-2: CONTOUR C IN THE COMPLEX v-PLANE
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By observing that

M 1/Cka)-1\"/f‘ Ly, (ka)

S

a -b =i ]
v-a v ((1)/ (ka) -M - (ka )g(l)/ (ka))( ( )/ (ka) -M vy, (ka)g’(l)/ (ka))

the path C is deformed in such a manner that it accounts for the contribution

of any poles of the integrand in the first quadrant of the complex v-plane.

These poles occur at the zeros of

(1)‘

1
() G)-m (k) c( )

-, (ka) =0
and

(1)' (l)
=0

The new path is shown in F1g 1-3.

Imy

4

(1.21)

(1.22)

TN
.,

FIG. 1—3:[ THE DEFORMED PATH IN THE COMPLEX v-PLANE
- 1'
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Expression (1.20), can now be rewr1tten as

b.s eikr i, s .8, 1 1% s 5
B~ (2% P32 jr: COS T v [av—llz— bv—llz] v -
1

YRS T e
2 R +
2 f cos TV [au-l/2 by_]-/z] dv+27i (residues

in 15 quadrant) . (1.23)

/ Further computatlon of (1. 23) 1s achleved through asymptotlc

analysis. The integral along l"1 together with the term i/2 [a -b ]glves

the major contribution to the backscattered field, It physmally corresponds

to the reflected port1on of the f1eld The mtegratmn over I, is performed by the

1
1/2+6 with >0 but 6<< 1 and

| saddle pomt method over the ‘range v= O(ka)

the maJor contrlbutlon arlsmg near v = 0 In performmg the 1ntegrat10n
one needs the appropriate Debye expansmns\for the spherical Bessel and

Hankel functions in the proper regions of the complex v—plane. The

integrations are carried out with the aid of the formulas of Scott (1949) to

(0] [(ka) 2] This 1mp11es that the radial elgenfl;ctlons S:j] 1 /Z(E) and
) v

o1 /2(&’) need to be computed to O [(ka) -2 ] This can be achieved by

expansions vahd in the reglons of interest or by obtaining the asymptotic
solutions directly from the differential equations, The latter is achieved
by operating directly on the differential equations by the WKB method

provided that the Stokes phenomenon is not present in the regions of interest.

Otherwise, Langer s theory of transition points is to ‘be used.

o To obtain the pertinent asymptotic expansions for S(J ) 1 /2(5)
e) he 1

V 1 /2(5) ,J= 1, 2 equatmn (1.17) is put fu?é? in the normal form




11

2
dUu (&) 2., 2
v=1/2" | (a2 {e('g’)— v/ 1 d"e(£)

ag? £%(ka)? 2g§f§)(ka)2 ag?
3 1 [de(%)] 2
-2 U (8) =0 (1.24)
4 @] 20® L€ v-1/2
by setting
TV—l/z(g) = #E(E) UV—1/2(‘§) . (1.25)

By defining now

: s i=1
£7(ka)
Q( i)( E) 2 2 T -
. V7 S de® 3 _1_
N 2, 2 2 2 " a 2
£%(ka) 2e(E)ka)”  dE [e®)]
x 1 de(§) 2_ {=9 (1.26)
(ka)Z \a 2 17 .

the asymptotic solutions for (1.16) and (lv."‘,zré‘) are found directly by applying
the WKB method provided that the Q(i)('g‘) have no zeros and that the

following gqédj?tippsﬁhol

2 2
5% % aQ (&)
4 d = Q . (E) (1)
3 2 (i) —_— S
1 dg << L dg / X1
2 3 4ka 13/2
8(ka) [a,®] [o,®]
(1.27)
throughout < & < 1 ., The solutions are
T



12

v\ -1/4
Vi )('5) ~[Q(1)(§)] exp {+ 1kaf ‘\’Q(l)(g

5 dQ;)& d Q(i)(g)

" - Q,.,(&) T
4 df d§2 (i) 3
+ - ag [ {1+o[ta ]t (1.
8(ka) Q(i)(E) ) o
with
( ) e s L
_1/2(5) if i=1
vk - (1.
(1) ( )
_1/2(5) if i=2
( ) (J)
1/2(5) = ie(‘é’) (2)(5) . (1.
It remains now to develop,with the aid of '(’1;2 8),the 'é's&*x‘nﬂr?fgt’ig'_expansions
to O[(ka)_Z] of M 1 /z(ka) and M 1 /2(ka) From the definitions of
Cv—1/2(ka) and E “1/2 (ka) and from Eq. (17248) it is fqund | that
(1) (2) (1) (2)

and asymptotically

e o 14 T |
C,_1/p(E: B~ 21 [Q,,©19,)®)] "/ sin [1ka 7 E.8) *

x [1+~0 [?] ] . (1.

Likewise

3 ] (1), 112y D@
C,_1/o(&: 0 = Ye(eld) [ Vi) V(5 (B)- v(z)(ﬁw(z)(g)] (1.

and asymptotically

28)

29)

30)

31)

32)

33)
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. | /s
HRNERINES EERE) (0,810 5,®)] " 4sin [iraz (e8] »

x [1 +0 [(ka)'z]] , (1.34)
with

g

F(i)(s, B) = f ‘VQ(i)(E) [1+f(i)(§)] dg - (1.35)
B o o

and

2
5 dQ(i)(E) d Q(i)(s)

4 a dgz Q(i)(g)

f(l)(E) = (1.36)

3
k) [@,(8)]
From the definitions of M, (ka) and M jka) i terms of C,_,(ka)

~
and C

o1 /Z(ka) one obtains

1 d i -1/4 . —
Mv—l/Z(ka)~ {a E .Q(l)(S)] +1i Q(l)(S) ko

x cot | [1ka F(l)‘g" B)] } [1 +0 [(ka)‘z] ] . (1.37)

g=1

~ 1 dr .1’ —— -1/4
’ (&) _
+ k-lz %(—22))7&) [d% in(‘v e(B) [Q(z)(B)] _1/4)]5602 [1ka F(Z)S B)]
- i'\’Q(z)(S) tan [1ka F(z)(S‘B)]} - [1+ O[(ka)'zl] . (1.398)

From expressions (1,37) and (1. 38),the difference of the scattering coefficients

follows:
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s s HQ(D ) cot(ika F (£, B))+«{Q(2)(§) tan (ika F(z)(g,ﬁ))] +

av‘l/z_bv ‘1/2~ ( 1) -1/4
{ (ka)—{VQ(l) cot(1kaF(l)(§ B))+k aE [(1)(}5)] }x

Q (sz)
- . a&’ ((Q(D(s) [“9]-1/2 -
)

T ’ '(s)
Tt (ka)] [ (”/ (ka) - {k—— Eln( T )[Q(z)(’é)] 3/ g(ﬁ) 2 e(B) X

QB | T
%2 s 174\ 2y,
VQ(Z)(B) “aﬁ(“VE‘B’ [0 ®] )Se° (27 yte.m)

3

¥ [Q(z>‘5’]-l/4ﬂsecz(ikaF(Z)(s,B))—iVQ(z)(s) tan (ke (€, B))} 3 (ka)]
LI § 5
x [1+o[(ka)'2]]. (1.39)

and (a(s) -bcs)) is obtained when v = 1/2. By substituting in (1. 39) the appro-
priate Debye expansions for the spherical Bessel and Hankel functions in the

proper regions of the complex v-plane and by carrying out the algebra to

[(ka) _2] the reflected portion of the field is immediatefy%btained after the

integration is carried out along I'i with the aid of the mtegrals of Scott (1949).

The advantage of this last result is that the final form of the integrand in (1.23)
is determined for arbitrary €(£) and one can, with direct substitution of the

functional form of €(£) in expression (1.39), carry out the algebra asymptot-

(3
("

ically and perform the integration without solving for the V ('g‘) eigenfunctions,
in order to determine the reflected field.

The contribution of the integral along r‘2 has been shown to be zero for

the general case (GOOdI‘lCh and Kazarinoff, 1963) as R —r o, “and the verifi-

cation for the partlcular cases considered here is therefore omitted.
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The summation over the residues in (1.23) gives the contribution in the
backscattering direction due to creeping waves. In order to determine this
contribution, asymptotic expansions are needed for the radial eigenfunctions
which are valid for v near ka. These asymptotic expansions are derived
directly by the WKB method if Q(i)('g") has no zeros in the interval Bg &K1.

In case there exists a single turning point at B\< £ 1, then Langer's method 1/3
isused tdsdlv?e'ﬂie diffﬁfeﬁfigl equations. ByWritmg v = mt+ka with m= ( 5 )

Langer's scheme gives, with the following definitions

¢(i)(§) = (1)(55) (1. 40)
3
D)@ = f NGR: (1.41)
3
=@ = 1° @ 0% ® (1.42)
(D) (i)
()(E) ka¢(i)(§) (1.43)
and £
u(i)(’s‘) = [ A(i)(és) g, (1.44)
o]
the solutions
v 2y 1/3 (9
()(E) ._.( )(%’) {kaq)( )(S)} 1/3 (A(i)(g)) (1. 45a)
or ///\k \ﬁ" ‘\\‘\__‘_/
e e g 1/6 /;
- ()(e) ds . 1/3

X §];<s)~ i 7 ka f ],Qmu;) dgp X
- [&y @] g, ,

/
/

3
Gy d
X H1/3 kaf VQ(i)(g) ds _ (1. 45b)
£,
_° /
| with i, ji=1, 2 /,/
—— /’/
T —— 4
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If one now deﬁnes:

2/3
NG (f],Q() )ds) (1.46)

2 -3/2
)(g‘) 5 [%9) (1.47)

and

it follows that
_ .02/3
and the solutions can finally be written in the form
¢, (0 /4
NI ik
( i) Q( )(E)

The w(j) {(ka)2/3 g(i)(g)} are Airy functions in Fock's notation and they

2/3 .
w(j) (ka) C(i)('g')}, i=1,2 (1.49)

are related to the Airy functions of Miller (1246) by

§1§(t) —'V_[Bi(t)ii_A?(t)] ) (1.50)
2

The creeping wave contribution to the backscattering direction now becomes

ke [ |
b.s e (D (1)
[Ex ]cr.v?:7r kr {z cosm ( (ka) 5 [ 1/ (ka) —
, ‘ \ R

i
|

. —']‘.“'
. (1) v (1) a_ (1) /
.- MV _1/2 (ka) gv_l/z(ka)] ) - a COSTY (§V_1/2 (ka) e [ / (ka) /
o | VY, e ]

-1 '
~ (1)
—MV"l/z (ka) §V_},2 (ka)] ) } 5 . (1-51)

with v p and ?/'1 being respectively the roots of
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("
Cv_l/z
(1)
Cv _1/2 (ka)

(ka)
=M (k) (1.52)

and of

7 (1)| 4
Sv-1,

g’( (ka)
V“l/z

(ka)

M,y () (1.53)

with Imy, >0, Im¥, > 0.

With the asymptotic forms

§1(/1_)1/2(ka)~ -iml/ (1)(t) (1.54)
(1)/ (ka)Nim“l/ (1)(t) (1.55)

and the substitution y = mt+ka, the creeping wave contribution gives

b. T eikr Vy -2 tl
E ~ = — |w, . (t) —_— +
X m kr COSTV (1)' ¢ mz

CTr.W. 9 £
1 oMy ~»2 LY, N
Tmoet | _[M(tfz)] T Cosa¥ [W(l)(t/z)] 2
—tl - T4 £ m
1 oMt ~~ 2] 7
Tm oot |, o _[M(tl)] ] (1.56)
t=t
2
where the index £ scans the zeros of
Wi (t) R
_‘;l_ﬂl__)(?l;)_: —mM(tl),and (1)(‘{) = -mM(fz) . (1.57)
(1)'¢ Yt !
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It remains to evaluate M =i (ka), M vl (ka) and then put them in the form

M(t ) and M(t ) for the solutlon of equat1ons (1.57) for the zeros tﬁ and t

The following explicit forms can be written down for M VY, {ka) and M 1/ (ka)

for the case where v is near ka:

N L G .
v-/s e NG Qy® o -
at, () [?/ e @] w [(ka)z/sc @]-w, [k %, (8]
——— {(1) /(1) “(2) WP /(1)
1/3 of
(ka) O (CSRACAN ) (2)[(ka) % 1@ -w L) % (8]«
. [ '2/3 ]

273 (1.58)
PN (CORAIN ) -

and
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. 3¢, (&) (&)
~ P 1 1 (2 1 (2)
Mv—Vz(ka) lia o9& foye® + 4ka {r(z)(‘é’) ok Q(2)(S) 1 } ¥

-+

. af(z)(%'){ i [0 e o] iy [0 ™ % 8] w | [0 % 8]

(ka)1/3 13 w(l)[(ka) C(Z)(S)]w(z)[(ka) 2/3 C(z)(ﬁ)]—w(l)[(ka) 5(2)(3)]

oe,.(5) 0t (B)
RVERATP 2)
X Wiy) [(k"") ’5(2)(5)]} 4ka) BE .

98,5\ (B
Wi Lk e 6] 2

) .1!—‘ 2/3 (2™
[BB InYe(p) +(ka) 5B X

) [(ka)2/3§(2)(§)] ¥(2) [(ka)z/ 3§(2)(B)] w0 1)[(ka)2/ 3§(2)(B)] (o) [(ka)zl 3§(2)(‘s°)]} )

vl 3¢, @) wig [0 3¢ )] -wi,) o 3c(2)(§)]x
¥(1) o™/ % ]y L 2/3‘5’(?»(3’] Wiy 2 2/35(2{‘@ ]~

-

1 (1.59)

iy ™ g’(2)(5)1, ? et

xw,. [0 %, (0] |
o [ 2) N

where to arrive at the forms (1.58) and (1.59) use has been made of the

Wronskian

wil)(t) w(z)(t) (1)(t) w(z)(t) =2i . (1.60)

Primes above indicate differentiation with respect to the argument and it is

assumed that
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2/3 2/3 2/3 2/3
wepy [k ™ e @] w gy [0 €] v g, [0 8] Wi L™ e ()] # 0.

(1.61)

By substituting v = mt+ka in (1.58) and (1.59),M(t1) and ﬁ(tf) can be
simplified asymptotically and then equations (1.57) are solved numerically

for the first few roots when t lies in the first quadrant. Finally for particular

ka, expressmn (1.56) w1ll g1ve a numerwal value for the creepmg wave

contr1but10n in the backscattermg d1rect10n "v\
From the therret1cal expressions which will be obtained for the reflected
electric field, the monostatic cross-section based on this reflected field will be
derived and it will be computed for various thicknesses of the radially inhomo-
geneous coating as a function of ka, for two types of radially inhomogeneous

dielectrics.

In Chapter Two a new class of radlally 1nhomogeneous dxelectrlcs 1s dis-

cussed The exact solutlons for the rad1a1 eigenfunctions are derived and the

geometrlcal optics technique is applied in order to determine the ray path of \
an incident ray through the medium in the optical limit (ka -> ). Deta11ed
numerical computations of the deviation angle as a function of the angle of inci-

dence and other pertinent parameters, are given. In Chapter Three this new

class of radlally inhomogeneous dielectrics is considered as a coatmg ofa

perfectly conducting sphere The detailed asymptotic computations for the deri-

" vation of the reflected electric field are presented begmnmg with the apphcatmn

¢ PR

of the WKB method for the asymptotlc determmatwn of the radial eigenfunctions.

The expression for the reﬂected electric field obtained by this method, is carried
out to O[(ka) _2] . As a means of comparison, the reflected field is also obtained
by application of geometrical optics to O[(ka)—1 . The results of the two methods

are compared and the monostatic cross- -section is computed for both cases with

ka varying from ka = 50 to ka = 1000. Then the percentage error in
considering only the geometrical optics solution is examined. Finally, in

this chapter, the creeping wave study is outlined.
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In Chapter Four, the Nomura-Takaku (1955) radial inhomogeneity is
considered, as in Chapter Three with the exception that a more detailed
study is carried out for the creeping wave contribution in the backscattering
direction. This type of radial inhomogeneity has an index of refraction
N(E) = Ep (with p> -1, for reasons which will become apparent from the

discussion of the exact solutions of the radial differential equations).



CHAPTER II
A NEW CLASS OF RADIALLY INHOMOGENEOUS MEDIA

2.1 'Introductlon' o

In the study of electromagnetlc wave propagatlon in, as well as
scattering from, radially inhomogeneous media, one of the difficulties is
the dete?ihmatmn of exact solutions for the eigenfunctions S(J)(E) and

(J)(E), and especially for the latter. Generally speaking, these eigen-
functlons are expressed in their exact form in terms of hypergeometric
and/or confluent hypergeometric functions, which are chosen to be finite
at the origin. Although asymptotic solutions for the differential equations
in the radial direction can always be found, by either applying the WKB
method or Langer's uniform asymptotic theory under certain restrictions
on the coefficients Q(i)(‘é’), it is with the exact solutions that one has most
of the difficulties. In this chapter, a particular technique is presented
which simplifies the problem of finding exact solutions fqr (1. 16) and (1.17)
considerably and which at the same time gives rise to a new class of radlally

inhomogeneous dielectrics.

If the differential equatlon (1 16) and the normal form of (1 17)\are

considered, it is seen that they reduce to one and the same differential

equation if
= (2.1
Qp® = Qy® : )
which implies that one needs to solve only one equation, since in this case

Tg)(%’) = Ye(&) Sg)('g") =VE(E) US)(E) . Relation (2.1) is satisfied if and only
if ‘

2 |
1 ad) 3 (de<'€>> - o (2.2)
2B g2 4 [(g)]z

which is rewritten as

22
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2
d [—d—lne('é’)] 1 (de(s)) o . (2.3)
d§ |d€ ZE(S)]z d€

By substituting w(£) = d/d§ [ﬂn 6(5)] in (2.3), the following Riccati differential

equation is obtained in w(£):

dw(g) 1 2
'ag—' -3 [W(E)] =0 (2.4)

If variables are separated in (2.4), then upon integration one obtains

| - dw __ 2
kfdg_szz or E——w'*"}’ s (2.5)
e

where v is an arbitrary constant. From the substitution

w(g) = d/dE [t e(£)] and (2.5), it follows that

_ 2 1 de(®)
WEIET W o« (2.6)
which finally gives a solution for €(£) . This solution is
(5 = —2— (2.7
(E- )

where A is another arbitrary constant. For the cases of interest in this
research, i.e. for radially inhomogeneous media, the constant A is
determined by choosing a continuous transition from free space to the

inhomogeneous dielectric, i.e. €(&) 1 , which yields' A = (1- 7)2, and

£=1
[Q— 1~ 2
(8 = (g{ﬁ) : (2.8)

This type of functional dependence for the permittivity éncompasses a large

family of inhomogeneous media. Depé?iding on the choice of <, it lends

itself to both converging and diverging types of dielectrics. Its most

¥
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valuable 1mportance rests however in that 1t facilitates the theoretical

study of the problem by reducing the two differential equations essentially

to one.

2.2 Solution for the Eigenfunctions |when e(&) = (1- 7)%&—7)2

In this section, the exact solutions for the radial eigenfunctions are

determined when e(£) is given by (2,8). The various poss1b1e applications

with such a permittivity function are ‘also dlscussed brleﬂy ‘

By investigating the d1fferent1a1 —ezluatmn for the (E) eigenfunctions,

when €(§) is g1ven by (2 8), 1t is found that it has three regular singular

points at S 0 E=vyand §= . This d1fferent1a1 equat1on is easily red@

to a hypergeometric type with its Rieman P-symbol given by

o 0% 0
SLJ)(E) = P a' b! c' £ s (2.9)
a" b" c"

with a',a"; b',b"; and ¢', ¢" being the exponents or solutions of the indicial
equation at the singularity points' 0; 'yar;d‘ o0, respectively. In particular,

these exponents are

a'=1+n , a"=-n , (at §=0) , (2.10)

2 2 2 2
b = 1 +'{1_;(ka) (1-7) , b = 1-‘{1—4(21{3.) (1-7) ,(at §='Y) s (2.11)

and

ol = -1+'/1-4[(ka)2(1-7)2-n(n+1)] o = —1-'{1-4|:(ka)2(1—y)2—n(n+l)]
2 ’ 2 ’

(at £ = oo) X (2.12)

By reducing (2.9) to its canonical form, the result is
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1 Y- 4tk X172 0 1 ®

SS)(§)=§H+1(§-’Y) -2 Pl O 0 a Elv (2.13)

where

@, = ¥ )[Zli' k) X(1-m> + /(n+1/2)2 ~ (k)X (1-7)° (2.14)
L -

and

ag = 2(n+1) . (2.15)

The functions represented by the canonical P-symbol are well known, and
a solution is chosen which is finite at the origin. Then the radial eigenfunctions

are given by

1+ £4(ka)2(1—‘y)2

st - ™ len 2 JF, (e, ary; 20me1); E/7) (2.16)
and

(D)o - 1=y (1)

e - 2 sPe . (2.17)

(2 (1)

A second solution Sn )(S), @El;}independent from Sn (&), is obtained
by replacing 2F1 in (2’162 with any other solution of the hypergeometric

differential equation _s_eliisgfiédiby 2F1 which is linearly independent from

2F1 itself.
Now e(£) is investigated for various choices of 7.
Case 1 The constant v is chosen so that 0 £ v < 1. The dependence
of e(g); is plotted vs. S aé; shown 1n15‘_1_g_‘ 2-1. It is seen that as § tends to v,

e(§) approaches infinity (i.e. lim. 6(5\—> o ). This implies that the dielectric
§> vy
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sphere acts as a penetrable barrier at £=7v and therefore allows
2

energy penetration for £ <v. When y=0 then €(§)=1/E". This

case corresponds to the inverse square power lens which has been

studied by Uslenghi (1968).

e(§)

(_1_-1
Y

Y 1 g

FIG. 2-1: Casel: 0L v<1

3 Case2 \In this case v > 1 (see Fig. 2-2) and e(§) < 1 for 0< £ <1,

Th1s case may be useful in studying diffraction of waves by plasma coated

spheres or scattering from plasma clogc_ii of spherical nature surrounded

by an external medium w1th5(“§)> 1.

~4
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e(g)

FIG. 2-2: Case2: v 2 1

i * Case 3 Under this case (y < 0, see Fig. 2-3) the lens has been studied

from the point of view of geometrical optics in section 2.3.

¥

Cjil
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(&)
et

FIG. 2-3: Case 3: v< 0, 'yé—h, h>0

For a spherical lens of radius r=a made of a radially inhomogeneous

dielectric with
N(§) = —== (0<&<1 , (2.18)

and h 2 0, the exact backscattered field when the incident field is a plane

wave is still given by expression (1.9) with

28
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_ 1 Ta .40
Mn(ka) * a [85 InS (S)] lg:l (2.19)
and
~ N 1
Mn(ka) = Mn(ka) " fa(l) (2.20)

where S( )(E) is given by (2.16) with y=-h. It is observed here that
M (ka) - M (ka) is a known quantity and that it is independent of n. -

‘ThIS 1s of great‘advantage in the determmatmn of the hlgh frequency

backscattered field, because whenever e(l) 1 (as is usually the case for
dielectric lenses), the leading terms in the high-frequency expansions of
Mn and 1?/f are equal, and since (M —ﬁn) appears in the numerator of
all terms of the infinite series representmg Eb S two terms are generally

needed in the expansions of M and M to obtain the leading term in the

expansion of Eb' s

2.3 Geometrical Optics Approach for the New Class of Lenses

In this section it is assumed that the wavelength is infinitesimally
small,i.e. ka - o for finite a. Under this condition, the electromagnetic
wave propagation properties through the dielectric sphere are examined with
incident ray making an angle of incidence o at the surface of the dielectric

sphere. The following parameters are also defined in Fig. 2-43%
& = 6¢e, h) = deviation angle
v =y(&); Y1) =a
ME ) =T /2
p=p(&
and

6= 2p(& n;in)

[N
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téngent at-P

FIG. 2-4: RAY PATH THROUGH THE INHOMOGENEOUS DIELECTRIC:

o
¥
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The generalized Snell law for the index of refraction is given by

EN(E) siny = constant. When £=1, N(1)=1 and ¢=e. Then it follows that

_1+h _ sine
NO = 5 T Temu (2.21)
and when Ezgmin
1+h sin o sin o
NE .) = = - = (2.22)
min Emin—'-h Eminsm ”/ 2 Emin
or
g - _Lsie (2.23)

min = 1+h-sin &

?PEI%%EEG: gmin #£0 unless h=0. If h=0, then agreement results
with the inverse square power lens, where Sminz 0. In order to investigate

how the refracted rays leave the lens, one considers the differential equation

for the '};;yt;avljectory,whirc!lri; \

= -& coty . (2.24)

£lm

Upon integrating (2.24) one obtains the following expression

3
p(E) = - -gdf;w . (2.25)
1

With the aid of (2.25) and the relations 6§ =0+ 2a-7 , 6 = 2p(§min) and

V2140 20s02e - (£+h)>
E+h '

coty = the deviation angle is given by

E .
min N

6(a’h)=2a-7r-2j —— oo
| (eIl oscta- (g2
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which upon completion of the integration yields

2 sin o h+ cosza + cos '[(1+h)2— sinza
8{a, h) = log

— hsina
.1/ (1+h)2— sinzar

From the latter expression, the quantitative behavior of &(c,h) has been

(2.27)

computed for different values of o and h. In Figs. 2-5 and' 2-6, o(a,h)
has been plotted vs. «. In these figures it is seen that § increases from
zero at a=0 (with a slope (%)

a

then it decreases toward zero, which is reached at @ = 7/2 with a slope

=+ o to a maximum value 6 s
0 max

k%%) = "“-'-12-1 . Also the maximum deviation angle is shown as a function
a=7[2

of h in Fig. 2-7. As h diminishes, émax increases to infinity which

indicates that the ray trajectory inside the lens follows a logarithmic spiral

toward the origin in agreement with the inverse square power lens. On

the other hand, as h increases indefinitely, the maximum deviation

approaches zero in agreement with the fact that

lim N(§h) =1
h—» o

i.e. the lens assimilates free space.

S—

)
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300

200
100

FIG. 2-5: DEVIATION ANGLE VS, ANGLE OF INCIDENCE
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FIG. 2-6: DEVIATION ANGLE VS. ANGLE OF INCIDENCE
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CHAPTER III

HIGH FREQUENCY BACKSCATTERING FROM A PERFECTLY
CONDUCTING SPHERE COATED WITH THE NEW CLASS OF
RADIALLY INHOMOGENEOUS DIELECTRICS

3.1 Introduction

In this chapter, a theoretical study is carried out in order to determine
the electric field in the backscattering direction, for high frequencies, when
a plane wave is incident upon a perfectly conducting sphere, coated with the
new class of radially inhomogeneous dielectrics. By high frequencies it is
implied that ka.v’>->71 or \'<< a , where A is the wavelength of the incident
field. The analysis follows the discussion of section 1.3 in chapter one.
The perfectly conducting sphere is of radius b and the outer radius of the
coating is a. The electric field of the incident plane wave is given by (1.3)
and the geometry of the problem is shown in Fig. 3-1. Following the
development in chapter one, the Mie series (1. 9) is transformed into a
contour integral in the complex v-plane, where v=n+1 /2. Then, the
reflected portion of the electric field is determined asymptotically to

o [(ka)—z] . This is accomplished by solving for SS)l/ (£) and T(J)/(g)
' ~2

+
with the WKB method for v = O [(ka)ll2 6] , then computing av 1/ - v 1/ _
- ~72

to O[(ka)-z] with the aid of the Debye expansions for /(ka) and

t
§(1)1 (ka) in the proper regions of the complex v-plane, and fmally by per-
v-Y, A

forming a saddle point 1ntegrat10n using the mtegrals of Scott (1949) Itis
recalled that the main contribution results near v=0 on the F path of
integration, The expression thus obtained for the electric field is then used
to find the monostatic cross section, which is normalized to the monostatic
relation is then used for numerical computations for 0.2 <3< 0.99,

0.253< v<0.998, 1.1 <vy< 2 and 50 < ka < 1000. The ray tracing

-

O,
~—
—
A}



37

technique is also applied to determine the reflected electric field to O [(ka)_l].
This is accomplished by considering the conservation of energy between
incident and scattered fields in order to find the amplitude of the reflected

field,and the eikonal relation in order to determine the phase. The result

"is then compared to the first term of the electric field obtained by the

use of asymptotlc theory Fmally, usmg this geometr1cal opt1cs

expression, the monostatlc cross section normahzed to that of a perfectly
conducting sphere of radius b is computed, for the corresponding values
of B and v considered previously. From these numerical data, the
monostatic cross §eje’t-i§§ as determined by geometrical optics is plotted
vs, B. Also,the percent error in using geometrical optics instead of the
rigorous asymptotic theory to ' O [(ka)_z] to determine the cross section

is plotted vs. ka for 50 < ka < 1000.

The last section of this study is devoted to ouflining the creeping wave
contribution in the backscattering direction. The differential equations (1.13)
and (1.24) are solved for v near ka by applying Langer's uniform asymptotic

theory, since in this case it is found that Q(i)(g) has a zero 5;-’0 in BS £EL1.

3.2 The Asymptotic Solutions of S ,,(€) and T ,, (£).
' V-4 v/,

The asymptotic solutions to 0[(ka)_2] for the radial eigenfunctions

1/(S) and T(])
method directly to Egs. (1. 16) and (1. 24) Firstly, it is recalled that for

(]) A (E) are obtained in this section, by applying the WKB

this class of radially 1nhomogeﬁe;;s rcheie”c‘trlcs S(])1 /(E) (3)1/ () and
2
therefore
1-y 2 vz— 1{4 |
QUE) = Q\(§) = ( - (3.1)
WA )
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for i =1,2. From (3.1) it is seen that Q(§) has a zero at

v(1-v) ka VVZ—I/4 - 7(1/2—1/4)

(1—7)2(ka)2 - P 1/4)

(3.2)

which is almost zero, It follows, therefore, that if B < £<1 such that

B> E the WKB method can be used. By restricting B to values greater

than S it is seen thatlcondltmns (1 27) are also sat1sf1ed and this further

]uStlfleS the use of the WKB method. The solutions which are obtamed
+
here are valid for v~ O [(ka)l/2 6} with § >0 but 6§<< 1. These

solutions are given by

(J)

1/(5) ) v

1/(53) Vi )(E) (3.3a)

from (1.28) with Q(£) as in (3.1) and

e) ) (1_—*{) i N
Do = () shye (3.3b)

To obtain these solutions in their final form, one has to develop the asymptotic
expansions, To this end, it is found with the aid of the binomial series

expansions that

2 2
-1/4 - -
on e eof 2 (i)'} o

4(ka)"&

( . )

+ o[(ka)'z] + 0

and that

At
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5 dQ(f)  d2Q(E)

: ‘ 4 df a2 Q&)
exp{+ ikaf VQ(E) 1+ - dE Y Ar

8(ka)> @ (E)

2
~ €XP {i i <ka(1—7) In (§-7) - 2k:(1—7) [£n§+ %]) } X

s 4 |
- 1 Y] (_ 1 - 1) ¥ i _—L‘—"—
b 8ka (1-y) (n y 5) £ i 4(ka)3(1—'}')3 e

Y .2 ﬁ) ( [ v ] [:ﬁ ]
+ 313X 4+ 1+0 + 0 +
§ a2 38 (ka)> (ka)?
6 8 |
+o[”5] + O[Vs} . (3.5)
(ka) (ka) -

By combining (3.4) and (3.5) the solutions in their final form are

s?_)llg«‘s)ﬂlv% exp {i i [ka(l—'y) {n (§-v) -
_—”—2— £n§‘+1".\ R — [Jzn(l-—"f) -
2ka(1-7) £/ 8ka(1-7) 3
- 1] + _ (1_,1)2; vt [£n§+
s a(ka)X(1-7) £ 3

8(ka)>(1-7)

2 3 1 2
PR G S —7——:] 1+ 0[(ka)—2] +lo Y= | +
R BN 1

(ka)3

ol R o R e
+ O + O + 0 (3.6)
(ka)* (ka)> (ka)®

(3
and TV-]'/

(&) is given by (3.3b). These solutions are valid provided that
2

€40, Efv and |2ka(1—‘y)l >> 1.
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FIG,
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2a

3-1:

THE GEOMETRY OF THE PROBLEM. (c=ay)
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3.3 The Reflected Electric Field

With the asymptotic forms of S(J) /(E) and Tf}])l/('i) one easily
=72

proceeds to determine the reflected electric field to OEka)-ZJ . Itis

pertinent, that first of all the asymptotic expression for asv y - by y
I —12 T2

be derived. To this end, a step by step procedure is employed in deter-

mining these coefficients. Firstly, the definitions for M 1/ (ka) and
2
M L,y (ka) are recalled in terms of C 1/(§ ,B) and T 1/(E ,B). Inthis

case M (ka) is simplified in the following form.
v/,

. 8C 1/ (€.8)
M,y (ka) = - i 45k [c /(8,8 - (B __ql/____.]

" ka(l-y)  ka 9t 8.
s £o1
T e - R o (3.7
From (3.6) : T T e
2 2
O 4 ]’ v E-v) L
c, 3, (£,8 (&-7)(B-7) exp 4 a2 ((1_7) 2 +
2 2 4 6 8
+ (%) —15) sing(g,B)[H oftxa) 2]+ o[ v 3]+ 0[ v 4]+ o[ L 5]+o[ v 6]] ]
B (ka) (ka) (ka) (ka)
(3.8)

From this derivation for Cv 1 (&,P) one obtains:
=72

o 1 1 3g(£. P
Mv—l/z (ka) 2ka(1-7) T ka (COtg(E’B)); ok (1 ¥
~ €=1

i 2 4 6 8
+ o[(ka) 2] + O[ L4 3]+ 0[ 4 4]+ 0[ ]+ 0[ v 6] (3.9)
(ka) - L(ka) (ka.) (ka)

and
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~s 1 1 9 (E )
M,y (ka) ~ {' oka(1-7) ka(COtg(g’B)) ot

1 (B-7) esc’g (E,7) ag;%@ aggséﬁ) } [
= L+
ka 2 2
%'?11 - 2 %(?_7) - (B"Y)(cotg(g,ﬁ))a (E,8) -
_—Y aB
(ka)~ B .

-2 [ 2 v 1 uér N V8 |
+ oftar?] + o[(ka)3]+9 (33)4_+o[(ka)5]+o[i@6] (3.10)
where 2

) 1 Ey)y_ 1 v
g(ga B) - {ka(l"Y) - 8ka(]_—‘y)} fn (B-’Y) - 2 ka(l-’Y) X

£ 1 1 u4 [ £ 1 1
X /zn-+7(——) -8 3. 3 ’Zn—+37(_'—) )

B P 8 (ka)?’(l—")’)3 B ¢ F

3
2 1 _1_> v <_1_ 1_)]
Y - + - (3.11)
g2 g2 3 \g g

and henceforth g(E,B)’ =g(1,R) =g . (3.12)
g=1

nfeo

By observing that

, 2 4
1 9g(E,B) 1y (a2 [u ]
_— ~l-= + 0O} (ka) + O} — (3.13)
ka 8§ £=1 2 (ka)2 (ka)4

and by simplifying (3.10) after the term (B—'y)(cot g (S,B))Qgé—%@ is factored

out in the denominator, the following expressions are derived:'

M . (ka) | =—— ¢ (1-1 s tg)[1+ofar®] +
v-1, 2\ 2ka(1-7) R cotg)lTOka [

[ R e o e v —
+ O +0 +0 +0 (3.14)
ka)3 (ka)4 (ka)5 (ka)6

and



43

~ ) ) 0 .
Mv-l/sza)“’ " Skt T Tka(ioy) € E\173 ? tan g (1+
_2 v2 1/4 .l U6 y8
+ ofwar®] + o sl o ol *olgars ) . (3.15)

It remains now to obtain the asymptotic expansions for the spherical Hankel
function of the first kind and its derivative in the proper regions of the complex
v-plane. Therregionsr in'the complex v-plane are shown in Fig. 3-2 (Watson,
1952). For the case of the reflected electric field the Debye asymptotic

expansions are needed in reglon one. These expansmns are

'

T
Q-iZ 2
(1) i 4 i -2
¢, 3y ka) ~ 'l/smlhn e _“Q1-gpop |1+ of(xay 2] + O[(:a)3] (3.16)

and
.
Q-i =~ 2
(1) i 4 1 i v -2
¢y ka) ~ Y= i+ 2L A ofwar?]
Y/, hn 8ka 2 (ka)z
VZ
+ 0 3 (3.17)
(ka)
with the following relations being recalled
v=kacoshn , Q=v(tanhn-n) , (3.18)
the restriction |
- _g < arg (-i sinhn) < _;_r (3.19)

and the requirement that I-; is sufficiently far from v=ka in the fourth quadrant

wh11e it runs close to the imaginary v-axis in the second quadrant It is

noted here that the notatlon has been changed somewhat from that of Watson —\

(e.g. Watson uses v instead of n ) for convenience. If now the followmg/ l

RS

asymptotlc expressmns are taken 1nto account .
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FIG, 3-2: CONTOURS OF INTEGRATION AND DIFFERENT REGIONS
CONSIDERED IN THE COMPLEX v-PLANE.
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20 v2 V4 v6
e~ exp imy -1~ -i2ka 1-1i 3 T O 5 . (3.20)
a 12(ka) (ka)
1 4 6
sinhn~ i {1-= & > 1+0[" 4]+ o|-+ = , (3.21)
(ka) (ka) (ka)
2
1 1 v ( 1
- — -— o ——
/(ka) /(ka) Tall-7) 5 2 2 csc Zg) 2iallo) X
(ka)
2 4 6 8
X sec’g > 1+ o[(xar?] +o|:—’—’——§] +o[” 4]+ o[” 5] + o[ v 6] (3.22)
(ka) (ka) (ka) (ka)
then together with (3,14, 15, 16 and 17) the difference of the scattering
~ coefficients is found to be .
s 8 y v2 i iu4
a . gy-b 4, ~ {iexp imy - — - i2ka + i2g 1+ — - — -
v-Y, v-1Y, ka dka o0 )3
tang i sin 2g vz
" ka(l-v) exp i2gp - 3 ka(1-7) exp inv " i2ka + i2g 1+
2 4
+ ofmar?] + o[-’i—g] + o[” ] [ ] [ ] (3.23)
(ka) (ka) (ka) (ka)
By substituting in (3.23):
g = El <4 €2 (3.24)
where
o 1-v 1 vz 1
= };a(l-—y) ﬂn(B_’Y) + 3 m InB+y (E - 1) s (3.25)
) 7

&
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4

1 Q'l’ 1 v [ 1
€. = in + = ——— | inB+3yi=-1 +
2~ 8ka(l-7) ( 1-7) CHI (5 )

3
3 2( 1 Y 1
2 BZ 3 BB

such that €2 << €

then (3.23) is given in the following simpler fofm:

2 . 4
) S . s s V . . 1 .
- - - 32— + + _ +
av—1/2 bv—l/zN ( iexp l iy - i3 i2ka + i2¢, i {1 Y i o )3

4
i By) , i _ v 1 ).3.2(1_ ).
e o () 4 i [ Go) 10 G)

13_ 1 (tanel)[exp (i2€1)] S
) (E' >:| B ka (1-7) \ "7_

2
(sin 2¢ )exp[iﬂv— iL- - i2ka + i% ] .
- = 1 ka 1 + 2 sin 2 sec2 exp \inv -
2 ka(1-v) 4ka(1-7) €,5€C €, exp

vz 2 vz 1/4
- iE - i2ka + 1261 1+ O[(‘lfa) ] + O[—,g—] + O[——;] +
(ka) (ka)
6 8
+ o[” 5] + o[l—s] ] . (3.27)
(ka) (ka)

If v=1/2in(3.27),then

ot o 2l (o 5‘7)]{1 - 1—} [1 +oftkar?] +
o] 0

4ka
] o]
+0 +0 +0
(ka)’ (ka)* (ka)’

8
+0 [-V——g-] ] results, (3.28)
(ka)
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If now one writes

bS eikr il s S J Ve—iﬂv
A 1 B - ve
B ~ 2 5 () o [, ]

LA

then by substituting (3.27) and (3.28) in (3.29) and by performing the inte-
gration along I—; with the aid of the integrals of Scott (1949), the I‘éﬂegét_il
electric field is obtained in an explicit but asymptotic form.

It is recalled that the integration along r‘ is a saddle point integration
over the range v = O [(ka)ll 2+ 6] with the major contribution arising for
v near zero. Scott (1949) evaluated such a class of integrals which in their

general form are

e —ew

4

E = f S w2d L aw (3.30)
iy

1+e

with 9 =0,1,2,3,. .., 0<y< 7/2. By performing the saddle point
integration for v << ka Scott found that the major contribution arises

for v near zero. Some of the integrals which he computed and which are of

importance here are

1 7r2 1
E ~ — -—+ 0O) (3.31)
0,0 2e 6

1 o
E ,~ — + O) (3.32)
0,1 2

2€

and

E o~ = + O . (3.33)
0,2 63

Scott used these integrals in order to determine the backscattered electric

field from a perfectly conducting sphere, when the incident field is a plane

.
¥
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wave, for ka >> 1. Throughout expressions (3.30) - (3.33), € and w
are given by
i

4W2ka

and w = i27v. In the problem considered here, expression (3.29) is
reduced to several integrals of the type (3.30) by substituting the asymptotic
expression for a® 1/ b 1/2 in (3.29) and by letting w = i27v, In this
case, in each occurring mtegral € is a function of the B and vy parameters
as well as of ka. A typical integral e.g. results if the first term of (3.27)
is considered.i.e. the term -i exp {i'frv - i(vz/ka) - i2ka + i2€1} . The

integral along r; in this case becomes :

j' sl [S/ 1/2] . —i2ka[1-(1-'y)£n(é-z—;€)]

- V = — e x
r {+g 2TV an2 X
1

iy :
+2 )

Tve we-ew2 ; -iZka [1 -(1-v)n ([—13—_1)] ) 7r2 —~

" e oo T ML 2o
l+e a7 €
-2nve
(3.34)
where for this particular integral, € = - 1 1-mB-v/B and
47r2ka 1-y

= (ka) 1/2+ €. By proceedmg ina 31mllar manner, the followmg expressmn

is finally obtained for the reflected electric f1e1d'\

ey
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. . 1—
b.s.NAelkr ) Ka(1-v) e—12ka[l—(1—’¥)x€n—Y—B_'Y]x
=refl. kr \: 2(1'»&13"%) R |

i B~y _xy_,_ 1, ,5_%
X<1+ i | By " B 1 3(1 0B B) +
2 3
2 2 X Y _ 22y _
) SHO-v-65+3 -5 3 21an+
) |
- X
(1 - 108 1)
; 1-
exp |iZka(1-v) fn =L
+<1—1n6—%) ' B_Y:I +
1+ v-2 (nB+ %)
exp [—i2ka(1-'y)1n é—ﬁ] 9
+ =Y + o[(ka)" ] . (3.35)

1-y
The correctness of this expression is checked with the known result for the
perfectly conducting sphere. It is thus observed that if B=1, i.e. if the
thickness of the radially inhomogeneous coating is zero, then (3.35) reduces
to

S~k - o R TR olkar?]}p, (3.36)
b=a )

whlch is the well known result for the reflected f1elgliby a perfectly con-

‘ducting sphere. It is also observed in (3. 357)7that since Imk << 1 but pos1t1ve,

in the limit B=y the expression (3.35) reduces to

Eb.s. A i ikr-iZka

i 174
Zrefl.™ X Blr(l-y) © 1+ 0[(ka) ] (3.37)

which indicates that if B=7v. the reflected field contribution is very small.
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3.4 Derivation of the Reflected Electric Field by Geometrical Optics.

Although the geometrical optics contribution can be determined from

bution by the ray tracing technique. Such a derivation gives not only a
e
means of comparison with the results obtained by rigorous asymptotic

theory, but also a physical insight into the problem.

In considering the geometrical optics solution for the reflected electric
field, it is implied that ka -»o. Furthermore, the reflected electric field
Eb. S. _ ;\{ Eb.s.

X

is polarized as the incident one, i.e. , and it satisfies the

vector wave equation. This vector wave equation easily reduces to

[Vé+.(ka)2N2(£)] EZ' S =0 (3. 38)
where
d
v = = 3.39
e i ( )
A solution is assumed for EZ S. in the form
0 Eb. s,
Eb. S, elke(S) +im z ! (3. 40)
p.4 (ik)!
£=0

whose leading term is

Eb. 5., Eb. S. elke(g‘) +iw

X o (3.41)

and which is the geometrical optics solution for the reflected electric field.

The amplitude E];' 5 is easily determined from the principle of con-
servation of electromagnetic energy between the incident and scattered
electromagneticv_fmiAe_‘_l_qws'. ~ This of course implies that the inhomogeneous
dielectric is assumed to be lossless. The phase &(£) is determined from
the eikonal equation

a

[1 Ve e(s)] 2 - N(®)? (3.42)
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which follows from substituting (3. 40) into (3. 38), performing the differen-
tiations and then equating terms in powers 1 / k2 to zero.

In order to determine E};' S explicitly, a tube of rays of cross-sec-
tional area 7rd2 is assumed incident- upon the coated sphere in the +z-
direction. By considering the amplitude of the incident plane wave to be
unity, the electromagnetic energy carried in the incident tube of rays is
given by

2
o incident _ xd
[ = 57 . (3.43)

On the other hand, the energy of the scattered field is

. z b. s
g scattered _ [E ‘[ f (3. 44)
2[a'+p]

where &€ = electromagnetic energy.

From the last two relations, it follows that

1
7rd2

27 T
f f ds (3. 45)
0 -2 [a-l-p]"‘ :

where dS is the element area in the spherical polar coordmates system. The

limits of integration can be understood from Fig. 3-3. Upon completion of

the integration, the denominator inside the radical of (3. 45) is

= 'Jrr2 -cos [Z(at .
[ .[, 2[%p]ds— 2me? [1- cos [ 0] (3. 46)

and therefore the magnitude E:' S becomes

b.s. _ . d
E0 = lim or sin (o) sin (aFp) . (3.47)

“
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From the definition of p(£) as given by (2. 25), one obtains

B B
0 =f dp(8) = -sina f g‘”dzg — . (3. 48)
. . eV ®-z-n2sina

By observing that d = a sina, it easily follows that

asina
Eb' S = lim B

(o)
*=>0 5 {sin a—sinaf > (g_;)dg — ) (3. 49)
A T

and finally by carrying out the limit

EZ' = F 1—_[}1-5—% (3.50)
results.
In determining the phase O(£), it is first mentioned that the factor of 7
in (3. 40) is added in order that the 1800 phase shift, from the total reflection
of the incident rays at r=b, pewta;l{én into account. The explicit form of 6(&)
is evaluated from (3. 42). By taking the origin (£=0) as the zero phase reference

point, the solution of the first order linear differential equation

dae(s) _ (_1__7_
a a 5_7) (3.51)
is

8(&) = aE-2a [1-(1-7)Jzn(%:—77)] . (3.52)

It follows then from (3.41) together with (3. 50) and (3.52) that the reflected

electric field is given by

. . 1-v\| ’
Eb.s _Q e11«:r ka(1-7) e—12ka [l—(l—'y)ln(ﬁ——_,y)]

x ke [1-an-%]

(3.53)

—_—_—

j% %
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It is observed that this latter expression is in agreement with the first order

term of (3. 35).

} R PR

3.5 Scattering Cross-Section Computations

[ —

"It is of interest to perform numerical computations, so that the effect
of the radially inhomogeneous coating in reducing or enhancing the monostatic
cross-section of the perfectly conducting sphere of radius b, is determined.
These computations are carried out for different values of é, v, and ka. The
cross-section of the perfectly conducting sphere of radius b is denoted by

o, and it is normalized to oc, where Gc is the cross section of this same

b

perfectly conducting sphere coated with the new class of radially inhomogeneous
dielectrics with rcrnirter radius a. The normalized cross-section oN = %c— is
determined for two cases. Under case one, oNl is derived by considering the
reflected electric field given byu geometric optics. Under case two, 0N2 is

derived by using expression (3. 35. The expressions for N and oy, are
' 1 2

given respectively by

2
Io) = Bz ﬂnﬁ—-’YLB_ (3‘54)

N1 1 "'Y

and o e -
2
_ 2 1 1-4nB-7/B [1 __1‘!._@_[_“ -¥/B . ) 1y
ch Bg° {1+ 462(1{&)2 ( = ) + ka(1l-) s1n[2ka(1 'y)l ln(B-‘Y)] X

[y

~

=]
A
o
=P

2
=
e’ ||

[ o
Wk

i

—

1
wIS
N

.—L

e

=)

oy}
™l
S

+

2
« ( 1 1 )] P S
1-v  1+y-2[4nB+~/B] 16(ka)2(1-'y)2

—— o e \

2 . 2. Y %2 2,9.3
st4r-v -65+3(9"-3(g) "-2tmp -
+ 3 (1-[n‘8_f//3)2/ B — +(l'£n6-7/@ cos [Zka(l-‘)’)fn(—ﬁ—_—:zy)] x

Y- -1 (3. 55)
2

w1, 1

(1-7 1+v-2(2nB+ 7/3))]
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O‘Nl- 0'N2
cer

0.2£B<0.99, 50 < ka £ 1000 and various values of v. The parameter D

Along with o and o, the relation D = x 100 is computed for

N, N,

gives the percent error in using the geometrical optics approx1mat1on in order
to determine the cross-section, instead of (3.35). The most 1nterestmg num-
erical results are shown in Fig. 3-4 through Fig. _3:13. In Fig. 3-4 the

parameter o is plotted vs. B for 0< v< 1. For this range of v, the

N,
inhomogeneous dielectric is of the converging type and the coating enhances

the cross-section of the perfectly conducting sphere as one '\E/_(;hid'expect based

on physical reasoning. On the other hand when v>1 the inhomogeneous dielectric
is of the diverging type and gg it would be expected the coating reduces the cross-
section of the perfectly conducting sphere. In Fig. 3-5 one observes that this

is the case and that for smaller 8 and 7 very close to unity, the reduction of

the cross-section is cons1derab1e The percent error D is presented in the
remammg f1gu—rgs vs. ka for various values of B and 7. It is deduced

from these f1gures that the percent error is 1nS1gn1f1cant for ka as low as 50.

The conclusion then is that the geometrmal optics techmque is mdeed a?(;va—

ful, very accurate and very simple tool in studying the cross sectmns of per-
fectly conducting spheres coated with radially inhomogeneous dielectrics. An
“exception to the above conclusion is the case ¥ = 0.99 B. 1t is seen in the last
two graphs that for this case, the error is as high as 74 percent when ka = 50.

‘However, this should be expected if it is recalled that the radial eigenfunctions

S) (8) and T(J Y, (§) as obtained by the WKB method are Vahd prov1déd that
2

£+0 and |2ka(1- 7)|>>1 When v= 0.998 and B= 0.98 it clearly follows that

this latter condition is violated and therefore the error for this case is ex-

plainable.

3.6 An Outlme for the Creeping Wave Contribution in the Backscattering

D1rect10n
In this section, part of the analysis required in order to obtain the creeping

wave contribution in the backscattering direction, in an explicit form, is presented.
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D
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FIG. 3-7: DVS. ka FOR v = /4
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D FIG. 3-8: DVS. ka FOR y = B/2
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: FIG. 3-10: D VS. ka FOR v = 38/4
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e (3

The asymptotic expansions for the radial e1genfunct10ns S

1/ (&) and T( )1/ (8),

which are valid for v near ka, are given in terms of the A1ry functions in Fock's
notation. These expansions must, more accurately, be valid for v = ka+ mt,
where m= (1{:»1/2)1/3 and t is of the order of unity. Since, in this research,
interest is confined to the contribution of the first few creeping waves in the
backscattering direction, particular attention is paid to those poles in the com-
plex-v plane which are located nearest the Re v-axis. A parameter 7 is,
therefore, defined such that

t

2
m

Q
]}

(3.56)

which implies that }11< < 1, and this latter condition corresponds to considering
only the first few creeping waves in the 6 = ™ dlrectlon
With def1n1t1on (3.56), the coefficient Q(E) of the differential equation (1. 16)

becomes

2
'r+I—— L

2— 4 2
_(1-yY _ 1 _ 4(ka)
Q(E) = (—-———E —v) 5 2 (3.57)

§ 3

In order to examine whether the zeros of Q(£) lie within B £ 1 one first

finds the zeros of

1- 2 1
I) - — =0 (3.58)
g-v g2
which are at
501 =1 (3.59)
and "
gOZ = -2':(- (3.60)
It follows that since v < B, E is outside B £ 1 and therefore 501 is the
only simple ~furmng point in that range. By defming a parameter -
] - oz = - IR
Te Tt s

4(ka)
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then since 7 = O[(ka) -2/ 3] and similarly T = O[(ka)_z/S], by a pertur-

bation technique the sunple turning point is found more accurately to lie at

_ 1-v 2
'»50—1—(————27 )T+O(T) (3.61)

Since 72 = O(Tz), then to the same order of approximation T~7 and

E=1- (12“77) 7+ O(r)) (3.62)

This turning point is within B g o & 1 and therefore Langer's technique is now

used to solve the dlfferentlal equation. By writing the coefficient as

2
[ 1-x 1+7
o, =(5) - g

the differential equation to be solved is

2

a () 2 (3 _
L7 Sy, @ T @ sl @0 (3.6
The solutions of (3.63) are given by
s, ® o0 1/‘]:w [xa)?/3e(o)] (3.64)
Q (S) (3) )
and
0 D, @ ( o, (”1/ ® , i=1,2 (3.65)
In the above relations
£ 2/3
¢ (®=(35 f Yo @ , (3.66)
g
o

and therefore one calculates:

)
o
Li
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L

£ .
2 A ]
17" 1t7 _w{z_ _ VZ_ .
f (E-’y) 5 dE =¥y —2y-71 ﬁn{ Y —-2y—17

3 §

o

! 3
(72—27—7)§2+2v(1+7)€—'}’2(1+7) +(72~2’Y—7)§+Y(1+'r)} -1 11+-r X

EO
1 13
n{éﬁ' WV(vz—zv—v)Ezmv(lw)5—72(1+7) - g(1+fr)+(1+v)} .
(o]
" 3
—(1-7) In m ‘V(’Y -2v-71) & +21’(1+7)S—'Y (1+'r) +’§T"',}‘, +1 :
(o]
(3.67)

In order to proceed in computing numerically (1.56) which gives the contri-
bution of the creeping waves in the backscattering direction, equations (1.57)

must be solved for the zeros t! and “t'z . This in turn necessitates simpli-

fication of Mv y (ka) and ﬁy Y (ka) asymptotically in terms of 7 or
=2 ~12

t/m2 .

From relation(3.67), the asymptotic expansions to 0(7'5/2) of

1
f Q ( £) d¢ and f -‘,Q (&) d& are obtained first. Then (1),

3

0

). a§({.i) a¢(B)

BE R etc., are computed, to give finally the asymptotic forms

of M(t) and M(t) This work has not been included here due to the cumber-
some expansions. The same technique, however, is cgr}i_'e‘g“_qut in Chapter
Four for a simpler type of radial inhomogeneity, and the constants M(t) and

~J
M(t) are there given explicitly.



CHAPTER IV

HIGH FREQUENCY BACKSCATTERING FROM A PERFECTLY
CONDUCTING SPHERE COATED WITH A DIELECTRIC
WHOSE INDEX OF REFRACTION IS N(§) = &P

4.1 Introduction

Nomura and Takaku (1955) considered an interesting class of radially
inhomogeneous dielectrics in their study of radio wave propagation in an
inhomogeneous atmosphere. They assumed the atmosphere to consist of
stratified layers of radially inhomogeneous media. The index of refraction
of the kth layer was taken to be N(£) = Sp", with p> -1. This index of
refraction represents a class of radially inhomogeneous dielectrics which

are ofthe diveréing type 'fhe Iafgei' iﬁévekp;)henf P, tﬁe éi‘éater is the divekrgence

| of the electromagnetic rays. Nomura and Takaku (1955) solvedthe wave equation

and superposed\ the solutions of TE and TM modes in order to obtain a com-

plete represéﬁtation of the electromagnetic field. The following radial

eigenfunctions were obtained for the corresponding TE and TM modes.

w . pt+l
) —Wf 7 () (kag
sv_l/z(&’) =\ 2z H ( v} ) for TE modes

: - . ptl
(3) P " T (j)  ka&
Tv—1/2 (&) =kak —_2(2p+ E Hv" ( p+1 ) for TM modes

with , - i
2,2
y' = v and y" = m
p+1 p+ 1 - e I

From these solutions, the restriction p> -1 becomes clear if one observes
the argument of the Hankel functions. By assuming a dipole excitation source
and by applying the Watson transformation the authors obtained a residue
series, which represents the radio waves traveling around the earth. Nomura
and Takaku also applied geometrical optics to trace the ray paths in the inho-
mogeneous atmosphere, and performed numerical computations by assuming

different values of p for various environmental conditions.
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In this chapter, the above mentioned radial inhomogeneity is con-
sidered as being the coating of a perfectly conducting sphere of radius b.
The outer radius being taken as r = a, the normalized index of refraction
is written as N(§) = Ep, p> -1. In the same manner as in Chapter Three,
a plane wave is assumed incident on the coated sphere with its electric field
given by (1.3). The backscattered electric field is put into an integral form
by applying the Watson transform on the Mie series and the explicit asympfoﬁc
expression for the reflected electric field is obtained by integrating alﬂornhg‘“
the path l"1 (see Fig. 1-3) with the aid of Scott's integrals (Scott, 1949).
The creeping wave contribution is given by the sum of the residue series
as in (1.23). The monostatic cross section is finally obtained from the

geometrical optics reflected electric field and it is computed for different

thicknesses and different values of the exponent p.

o ——

4.2 The Radial Eigenfunctions in thelr Asymptotlc Form \

In solvmg the differential equatlons (1.13) and (1 14) exactly, one ma.y
encounter difficulties in developing their asymptotic expansions to O[(ka) ]
In this case the exact solutions are Hankel functions of complicated argument
and index and their asymptotic forms may be derived from the well known
Debye expansions of these functions. Nevertheless, it is easier | to ogtélg‘“_
these asymptotic expansions by applying the WKB method if possible. In order

to apply the WKB method the normal forms (177 16) and (1. 24) are considered

in S(J) i, (&) and U(J)l/ (5). From these d1fferent1a1 equations, it is seen that
2
Q.. (5 =¢gP_r-li (4.1)
(1) (ka)z 2
and Q@) = 7P~ LiAtnlerl (4.2)

(ka) 2 £2
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have zeros at

1
2 2pt1
£ = [z_-_lé‘%_] (p+1) (4.3)
(ka) T
1
.2 2(pt1)
and £ ___[v -1/4; p(p+1)] (4. 4)
(ka)

+ . P - -
correspondingly. It follows that since v = O[(ka)l/2 6], with 6 <<1 and 6> 0,
> & and therefore if b > 'g‘ _
”1/ (£) and

V-1 (§) which are valid throughout b  § 1. It must be mentloned here

then Elo<< 1 and 520<< 1. For finite p, 820 10

then the WKB method can be used to obtain solutions of S
(J)

that in this case the WKB method is applicable because cond1t1ons (1 27) are

also satisfied for b £ 1. By considering (1.28) valid over the range
_ 1/2+ 8] . . : ] "1/4

v = O[(ka) , it remains to develop the asymptotic forms of[Q(i)(S)]

and perform the integration and carry the asymptotic algebra in the ‘exponential

term, in order to obtain the explicit asymptotic expressions for S(J) 1 () and
- ) o o

Uf/])l / (§). In particular, for the functions SS)V (§), bynoting that
1, =12

o .
-1/4 /2 1 _v 1 2
[agy@] ™~ expn g + 3 = g2pt) + ofta” ]+O[(ka)4]

(ka)
(4. 5)
5 dQ(l)( £) dQ(l)(E)
Y dE Q(l)(E) aE
exp +1kaf }’Q(I) E) {1+ dt+ A
8(ka ) Q(l)( £)
v -1/4 1 v4 [ 1 51 _-3p
~exp + 1ka j_-i + ]1 g +
2ka (p+1)ssp+1 s(ka)® La(prnyg™P ] 48ka

4kp+ 3 4 5 6

i 4 6 8
+ P—(—Pi £ ~(p#) +O[(ka) ]+ o[ ]+ o[ 4 ]+ o[ L4 ]+o[ 4 ]
_ 7 Yka) (ka) (ka) (ka)

(4. 6)
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the solutions

4
§p+1 . V2—1/4 1 v i

) -p/2 -
S (g)N 8 €XD ’_t ika -l_:. 1 ka p+ t
v-/; { o 2 paet T s’ apr

- 2 2
51 i p2p-1) 11 v 1 ( (a2 [ v ]
e + + 1+0{(ka) ]+ 0 +
48ka §3p 4ka pt+il Ep+1 4 (ka)z E2(p+1)} — (ka)3

oo 2] )
+ 0 + 0 + O (4. 7)
k)t l(xa)® (ka)®

o) |

. 1, upper sign
= 4,
] {2, lower sign (4.8)
By proceeding in a similar manner for the eigenfunctions U)ﬁl)l/ () , it is found
/2
that with
-1/4 -p/2 T vz LT -2 y4
[Q(z)(%’)] ~ 1 T2 2m HQL(ka) ]+ ol—l ) » (4.9
-~ (ka) g . (ka)

13 . p+i 2 e

: I .V 1 =

exp <+ ika Q,., (5)dE) ~exp(t ika + i +
{ f (2) } { ~ pHl 2ka (p+1)§p+1_‘

. . 4 ‘ 2
¥ L AP D S L €+0[ L ]+
ska(prygPtl T ke gl T 24 03 Gy [ ke
L2 o255] o[ 4] )
+ 0 +0 +0 s (4.10)
(ka.)4 (ka)5 (ka)6

and
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2
Qp® o T
(2)

5
£ 4 dE 2 (
: dg -5 1
+ika aE~ | F — +
f 8(ka)2[Q2(S)] 5/2 48ka  3p

b (Zp 1) 1 )( [ 2] L2 y |
- 1+0|(ka) - +o[ ]+ o[ } , (4.11)
4ka \ ptil Ep+1 : (ka)3 (ka)4

the solutions

. p+l 2 .

(3) -p/2 N .V 1 i
Uy (&)~ E exp<t ika +i = +
v=rta P T 2k P gra(prngP?

.4

. p 1 . v 1 .5 1 _ p 2p—1) 1

+ i + i Fi + i
2ka §p+1 24(ka)3 (p+1)§3(p+1) 48ka SBp 4ka \ptl Ep+1

1 vz < [ 2] vz v4 v6 V8
+ = ——FE——3M1+0](ka) +o[—] + o[ ]+ o[ ]+ o[ ]
4 (k)22 (ka)® )l lka)®

(4.12)
result and they are valid for the same restrictions as SS)I/ (§). From (4.12),
/2

(3 _ P (i)
Tv_l/z(&’) =& Uv—1/2 €3] (4.13)

is obtained. It is furthermore observed that

D ey = £P R T 6
Ty_l/z('é) =§ exp[j—_lv 2ka§p"1] SV_1/2 &) . (4.19)

4.3 / The Reflected Electric Field

In t?ﬁé“secti»on, the reflected portion of the backscattered electric field

is derived. With the aid of the asymptotic expansions for the radial eigen-

-~

functions the parameters C (8, B, C (¢, B, M (ka) and
v/ v-ify VJA

~
M 1 (ka) are computed. Then the difference of the scattering coefficients
~2
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is found and finally by integrating along the path r‘l in the same manner

as in Section 3.3 the reflected electric field is determined. From (4.7),

(4.13) and the definitions of Cv 1/ (2, B) and Ev 1/ (€, B) one obtains:
~/2 /2

C . (& Bai 28 M explt X T ] sin[g, (5, B]{1+
V-1, R 4 2l 2D 2ot D) [(1) ] |
9 2 4 6 1 8
+ O[(ka) ]+ o[ v 3]+ o[ 14 4]+ o[ v = [+ o[ 4 6] , (4. 15)
(ka) (ka) (ka) 4 l(ka)
T e~ W 1 1 : (
7 - 1 (ka) £ B
2 2 4 8 o
+ oftka) “}+ o{ 3] o[ Ak o[ + o[ v 6] , (4. 16)
(ka) (ka) (ka) (ka)
where
2
’ _ _ka [.pt1_ pr1), v7-1/4 _1 1 1
g(l)("S B =50 (E B )+ oka  p+1 (Epi-l - Bp+1>+

. vt 1(1\_1)_5‘1‘__1)+
24(ka)3 p+1 5355&1/) B3(p+l) 48ka EBp‘}.‘ BBp

p{2p-1) 1 1

* 4ka(p+1) ( prl p+1) (4.17)
3 B

and

(&8 =g (&R + 5 1 _ (4.18)

(2"’ (1) Sp*-l Bp+1 ’ )

From (4. 15, 16 17, 18):
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2
p 1 -2
M,y (k) = S+ (1 Sl 2) cot g, (.9 <1+O[(ka) ]+

(ka) g1
2 4 6 8
+o[ L4 +o["4]+o[ "5]+o[ ] (4.19)
(ka) (ka) (ka) (k )
and

2
M (ka)fv’{—L— (1— L —V—) tan g, (£,f) - —E— <1+tanzg (E,B))] X
v, 2ka 2 (k)2 (2) okafPtl (2)

=]
6 8
x {1+0f(ka)” +o[ ]+o[ L4 ]+o[ 4 ]+ o[ v ]) (4. 20)
( [t (ka) w laa® lka)®

result, where the expansions

3

ag (EJB) o ‘2/”7. | 4
= ——3———;)5 ~ 1= % < o[(ka) ]+ 0[ 4] (4.21)
£=1 (k ) (ka)
and
g (£ ] 5E 2 4
- (1)(5 B)/BB _ 1 (1_ % v [1_ 2(1 1)])+O[(ka)"2 + [ v 4]
H J g (ka) gAPT (ka)
(4.22)
have been used to arrive at (4. 20) and (4. 21).
By writing
8y = g(l)(E,B)Igzl . 89 Eg(z)(E,B)Igzl , (4.23)
g(z) g(l) + €= €, + €, + € ”(4; 24);
with
2
_ka (. ppt1y v 1 [0 1
17 ptl (1 R )+ 2ka p+l (1 ﬁpﬂ) : (4.25)

G170
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4
€2='§£’1Tl(1" 11)+ — (l‘ 3(11))’ 48?{3. (1
P B 24(ka) e

2ka3 (ka)

Loep-n 1
- 4ka(p+1) Bp+1 :
__p(,_ L
€3 Zxa \ ! Bp+1) ’
and by using the‘trigt—lﬁn;;n_el&vic"égp;biimai;c{c;ns
T o7
tan g(2)~ tan El +(e2 +63) [1+tan el]
and
— 2
“ cot g(1)~ cot 61 - 62 [1+cot 61] s
the following relationships are obtained:
~ P 2 1 v2
- - + - = -
MV“I/z(ka) Mv-l/z(ka)~ ka sin2€1 1 2 (ka)z ZGZCOt 261 M

1%

+ —2 __ Jiitan®e t)| 1+0[ (ke %] S, S
€3tan€1 + or1 tan 1 (ka) "]+ O 3 +0(ka‘)4 +

.2
262 2635m 61 ( _

o~
+ —— —
M, _1/2(ka) M, —l/z(ka) sin2e cos2e, sin2e sin2e,
L2 2 e r 2
~ 3 v 5 - Dp+1 (1+tan el) 1+0 ;[(ka) ]+ O[ v 3]+ o[ v
(ka) 2kaf (ka) (ka)

5o 25])
+0 +0 ,
(ka)5 (kat)6

and

(4.28)

(4.29)

(4. 30)

4
41+

(4. 31)
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2 2 4
~ -2 v v
M (ka) M (ka)~ — (1 - -k )(H Ol(ka) |+ 0[ ]+ O ] +
vl vl (ka) o™ )l ket
6 8
+ o[ 4 5]+ o|-% 6] ) (4.32)
(ka) (ka)

With these expressions and the Debye asymptotic expansions for C (ka) and
1/

(1)'

v, (ka) the asymptotic form for the difference of the scattering coefflclents

is foundtobe. [

o

2 _
. v
imv-i — - i2ka+iZe 4
s s ka 1 i .V
a 1 -b 17~ 1+ -1 + 2ie +
v /2 v /2 e T 4ka 12(ka)3 2
1/2
imy -i— +ide_ -i2ka imy -iT— -1i2kal
p k 1 _ k -
+ Ta © Zka © 1+O[(ka) ]
2 4 6 8
+0[ L4 3]+ O[ L4 4]+ O[ 4 5] +0[ L 6] (4. 33)
(ka) (ka) (ka) (ka)
1
andwhenv—--z- s o
i%a [1- —= (1- Bp+1 .
a® -p° =as—b~e - 1m —=— X
v-Y, v-i/, | o T 4ka

1
pt ——
Pl 2 4 6 8
x [———+Bl ] 1+ O[(ka) 2]+ O[ 3]+O[ v 4]+O[ V5]+O{V -6]
P (ka) (ka) (ka) (ka)

(4. 349

results.

The reflected electric field is now given by
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B g - B Pl

2 vz
T 1 i [1—
- ka[1 p+l (1 p+1)] j Zka [I_Bpﬂ]‘[ Je ka
»

e dka © 1+
1
) :
prl Pt 0 %[1—5‘*1] Ve" ka .
Siom dy + Ty e f _TZ—ﬂ-]-/ dy+ 0O (ka)_ ]
e l-.1 1+e

(4. 35)

The!cﬁo_r;iri_bgtioﬁ from each of these integrals is given with the aid of Scott's

integrals (Scott, 1949) as follows:

¥ o
T L oprmel e
e.g. X @y =+ T ¥ gw (4. 36)
' L+ 12 (271) 2 iy 1te ¥
r.l e Tl lzzrye e
o " i
where v=(ka)1/2€, €= - ! , w=1i27y and 0 <y<w/2.

47r2ka

It is easily seen that the integral gn the right hand side of (4. 36) corresponds

to E of (3.31). Then
0,0 -°°
2
A
_. ka - 2
f E':l—z‘ﬂ-v— dy ~ L 2\\‘ [—2—12 - %—J + O(el) , (4.37)
l'i 1+e (2mi)™ :

N
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or
2
\_iy—.
ve . ka 1 -1
f 5 dumi g 24+O[(‘ka) ] . (4. 38)
r 1+e —

Another type of integral occurring in (4. 35) is

L2 [ REEY A
s ka pHl GPHL
-i v e i 1
3 f Si2m d = - 3 6~
12(ka) n 1+e 12(ka)~ (27i)
27rve1y. WSe—ew2
xf ——:w—' dw (4. 39)
i +
—27rve1y 1+e

The right hand side integral of (4. 39) corresponds to the type (3. 30) with
q=2. Then from (3. 33)»:\i7 7

. 1 27rveiy 5 -ew2 . 1 1 T ’1
g ve - dwr + — ; = [—3—]+O(€ ).
P w 12(ka)” (2mi)> b€ 1 T

12(ka)° (21)° iy lte
© (4. 40)

i 1 1
In this case € = [1_ — (1_ __.__.)]
Crifiat PN

By proceeding iﬁ‘_é similar manner, the saddle point method integrations are

completed and théu final result obtained for the reflected electric field is
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1 ptl
bosy 8 RLS 15?—(1- 1 [1 . ]> -1 e—12ka[1 oFl [—B ]] .
= refl. kr 2 ptl Bp+l
i 11 1 ( 1 ) 8 2 1
*C1l+ — | &— — (1- —= -+ = o *
4ka 3 pti 3p+1 3 3 [1_ 1 (1_ 1 ]
pt+l Bp+1
- 1
o [l Y S W R IS S (R T
pt+l ptl Bp+1 12 B3p 2(pt+1)
i 2ka ptl
1
H (1— ——p]-;-l)] + p[l-— ?P’fl—l (1-— —-;_'_1)][e ( - )
B B
i 2ka (1_ Bp+1)
e prl -2
- > - + of(ka) ™ ] . (4. 41)
- 571 )]
This expression is valid for p> -1 and 8> §’ Furthermore it reduces

to the result (3. 36) for the perfectly conductmg sphere when B 1

4.4 The Geometrical Optics Approach

The ray tracing technique, as it was shown in Chapter Three, is very
useful not only becaqscﬁejtﬂ is'ggg)fgl in checking the results obtained by rigorous
asymptotic theory to O[(ka)—l] but. also because it clarifies to a good extent
the physical phenomé;;vgi::?tggéhplace. In this section, the ray tracing
technique is again applied to obtain the optical ray paths in the radially
inhomogeneous coating and the reflected electric field to O[(ka)-l].

It is assumed that a tube of rays of diameter 2d is incident on the coated

sphere. Upon incidence on the inhomogeneous medium the rays divergéir'clway

from the perfectly conducting sphere, as shown in Fig. 4-1. It is expected,

therefore, that, based on physical reasoning, the coating will reduce the
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monostatic cross-section of the perfectly conducting sphere. Indeed, it is
shown in Section 4.5 that this is the case by computing numerically the mono-
static cross-section.

The reflected electric field _1§ rnﬁc_)_w_deter_m'irggg. By assuming that it

is given by
EZ S, El;. S. elkG(E)_j'_lif (3.41)

for ka -+ o when a is finite, the amplitude is found first by applying the
principle of conservation of energy between incident and scattered fields. The

factor 7 in the exponent of (3;-74‘{) is due to the abrupt change of phase which

occurs due to reflection of fhe incident ray at r=b. The relation’ for[ Eg' S
is given by (3.45). In this case the angle p for an arbitrary incident ray is
B B i
p= p(§)dE = — sina , (4. 42)
1 1
or,by integrating
_ 1 -1 [sina] -1,
p= ol (cos B———-p_l_l cos [smoz]) (4. 43)

and it is shown in Fig. 4-1. From (3. 45) and (4. 43) one obtains

b.s._ a sina
E " "=lim |, — ' .
° os0 % sinJe- L (cos_l [292’_]_ cos ! [sina]) T
T pt+l Bp+1 L

By expanding the inverse cosine terms in a series form restricted to principal

values (4. 44) becomes:
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sin o

EX S lim > - —

o} 2r 3 3

@0 sin{(a— - N R - S )}

1

=1 a sin @

= lim or 5 = 3 -

a-»0 sin {Q’(]."' .L [1_ _.L_ + a _-a— + .. .)}

1 ,
_ a2 1
T 2r [1_ 1 (1_ 1 )] . (4. 45)
ptl Bpi-l

In order to computel’the phase 6(£), the eikonal equation (3. 40) is considered,

which in this case gives the following differential equation:

d6() _ P (4. 46)
dg
With the phase reference point being the origin, the solution of (4. 46) is
Caroalio (i p+1)
8(8) = ?i?? [1 oy (1 B ] . (4. 47)

The»reﬂected electric field is then given by

\ eikr—iZka[ - ;}1- (1— BpJ’l)]f

b. s. _')s"_a; /
E M(zr)‘\[l_ p+11l\1"3p11)]

and it agrees with the first order term of (4. 41).

(4. 48)

4.5 Numerical Computations

Based on the expression for the reflected electric field derived by

geometrical optics, the monostaticvﬁcross—section of the coated sphere is

found to be
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o = 3 . (4. 49)

" o bl

By proceeding as in Chapter Three,the cross-section of the perfectly conducting

sphere Gb is normalized to oc. Then computations are performed for

0. ISBS 0.99 and p=1,2,3,4,5. The computed normalized expression is

2

% .2 1( 1)
oNl— > =8 [1— oL 1- Bpﬂ (4.50)

and the_ Es_@—t is shown in a tabulated form in Table 4-1.
It is seen from Table 4-1 that the monostatic cross-section of the per-
fectly conducting sphere of radius b is reduced considerably, as the thickness

of the radially inhomogeneous coating is increased (B decreases) and as the

exponent p increases.| The calculations of O’N and D have been omift—ed for
R 2 R e J—

this case, since it is felt that the results of Section 3.5 give a rather general

idea of the error involved in using geometrical optics down to ka=50 to compute

the monostatic cross-section.
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4.6 The Creeping Wave Contribution

The contribution of the creeping waves to the backscattered electric
field is studied in this section, In chapter one, it was mentioned that this
contribution is given in terms of an infinite summation of residues in the
first quadrant of the complex v-plane, where the residues closest to the
real v-axis occur'qu:_ v near ka. The strongest contribution in the back-

scattering direction comes from the residues nearest the real v-axis. It

is this case which is je}aminé& here, First it is recalled that the asymptotic

expansions of Sﬁ/])l/ (8) and TS)I/(‘g’) valid for v near ka are required,
=72 =2

so that M y (ka) and 'ﬁv 1/( (ka) can be determined from their definitions
-, Yy

in terms of Cv 1/(ka) and Ey 1/(ka). By considering the differential
~T2 ~2

equations (1 1535 ajn_a‘zl_jl}) with Q(l)('g‘) andI Q(2)(S; glvenl;y (1.‘265, (4.1) and

(4.2), it is readily seen that for

(2 12) <1, or p f{finite and (ka)2§'2 >> 1, one can define in approximation
(ka)"&

v

. (4.51)
(ka)2£2

_ _ _ 2P
Q&) = Q(l)(S) = Q(z)(S) =& -

By setting v = ka + mt, where m = (ka/ 2)1/ 3 , and by defining a parameter

T = t/m? (4.52)

such that |7| << 1 for the first few creeping waves, it follows from (4.51) that

D = £P- . (4.53)

It is immediately seen that Q(£) has a zero at
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L
e, -(1+5)" . e>-n (4.5

which is outside the interval 8 < €< 1 but nevertheless very close to it.
Langer's theory is therefore used in order to obtain the solutions. These

solutions are

1/4
B gy = gD N(r_@) 2/3
D@ -l o MER)T v [0 ee)] (4.55)
wa 1, @ P (2) T [02?/3e )] (4.56)
: v-Y, (€) (3) '

with j =1,2 . Also

3 2/3
- [3
g(g) = <2f {Q(%’) d§> . (4.57)
g
op

By followmg the outlme in Chapter One, M (ka) is still’ 1ven by (1.58)
/ g y

with r(i)(s) = §(E),whereas Mv— /z(ka) in thlS case is:

sar!/® B 20

M,y (ka) = o+ My (ka) - P, 1 ( T a@ 1 BQ(B))
s a\e@ 98 " QB 8B
_9 (4.58)
( woylxe] vy (8] -we [8)] Wy [“’(“3)])
+ (/3 28 [(1)[“’(5)]“(2) [®] VYD[“’(B )] "Yz)["’(g)]]
% | p[H®] ey [XB] - [olB] ) [AD)]

with|

W = 23k, we - 3 (4.59)

and it is assumed that 8 # 1 so that
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() [x1)] Wy [AB)] -wyy [us)] %2 f] # 0.

The asymptotic expansions M(t) and IYI(t) of(1.58)7at71»dﬂ§f1.75£) wlll be
developed, so that

v {t)
————:;ﬁgf) = - M(t) m
(1) £
and
w'(t)
s

can be solved numerically with the aid of the asymptotic expansions and

diagrams of Logan and Yee (1962), to yield the zeros tz and 'f:e . To this

end the following procedure is followed. Firstly the integral

£
f vQ(‘s') ds is evaluated.
Eo p

One finds that

5
g ,f ApHl) (.. 7
f ﬁz(p+1)_ (1+1)2 a _If (1+ 2) i
2 3 ]
Eop
T 2pt+l) T 2
el (PG D)
- _p,i_l sin . gpﬂ . (4.60)
from which
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pt1l _ ptl 2

1 ], _7_> T
f VQ(S) dg = —T(1+ 4l o zsin—1 < -7 (1+I))
Eop

results. The asymptotic expansion of (4.61) in 7 yields

23/2
J‘VQ()ds S (1—;4%+0[72]>

from which

1 2/3 ig

&1) = %f{Q(E) ag ~[W (1--616+o[72]>
£ op e

results, With the aid of (4.62) and (4.63) one has

1 (1 o8 1 e\ 1 (,. 2 ) 5/2
4ka (C(E) ) ag) 2ka (1'5[1’*1] + o [?]

£=1
and

9 E(E) ~ 'ig‘g— 1/3 2 191 2 {3]
o8 lg=1 e [2(p+l)] (1+ET'MT) + OlT

Other computations jpeftﬁ%jﬁi to finding M(t) and M(t) are

3P 1o - (4g)?

B
fVQ(E) d§ = ol e sin Bp+1
‘é’op

)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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3/2

. T
p 2 2p+1))
1- 2 3
f VQ(g) g ~ & [3 (£1) [ao+ T+ e, + 0 ['r ]] (4.67)
§0P

with
a = [8 3B ] s
o = 1 [8+ 1982(p+1) 1264(p+1)_:| (4.69)
oo 1- g2
and _ 2pt1)
o, = - s _B [2 - 752(p+1)+ 434(p+1)] . (4,70)
2 8 [g2PD ]2
Also

[2(p+1)]2/3 %

I - o2
5o e o
o 3 [h_g2ery)] 213 <1+|f17+(—2 =2 ’——15 2ol ),
o

L2

1/3 N
'3 1
pep e o Laen] ™ [, [ 1 _ ] o
o8 8 01/3 5 [I_Bz(pﬂ)] 3a_
2 2Ap+l
2 “1 _ 22 B(zl()+)1) 2+ ol ), a2
° & e 1877 ) I ]

and
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1 (1w 1 8Q(B)>N 1 Ly g2
4ka \¢(B) 9B QB 9B 2kag [1-g2PY)]
o, fen ["’1 1 ] (pr1) gD
a, o L% 2[i- Bz(p+1)] [i- Bz<p+1)]
P_+_ ( 1 ) a? BZ(p+1) :l
- +
20 \;_g2p+D) 2 s [1-p2eD ]2
i LY NERSY el N BN ol} . (4.73)
1 g2et) 2 [1-g2EHD] 2

all valid for a_ 0.

By substltutlng (4 69) through (4.73) into (1 58) and (4 58) MV_1/2(ka) and

M R (ka) are obtained asymptotically in 7. Then with 7= t/ni2 and

2
keepmg terms to O |m ] :

3-2p
M(t) ~ ke F C(t) (4.74)
and
~ 3-2p
M(t) T C(t) (4.75)

re sult where :

R 27r
e 1/3 w! [w(l)] w [w(B)] -
(p+1) 2t -4 1l 2
C(t) ~ e <1+ = I—;§+ o) [m ]> [Wl [w(l)] W, [w(B)] _

~w. [wg) w [w(1)
w [8) wy [o(n)] ] , (4.76)

v E"(B)] Wy [w(l)]

and
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.27
e Tt 0] 4 0] -
B~ et ( 2t 4> (1) <2)
2%

Wy [948] 9y [0 1S 173 2t 4

=) [HP] ) [1)] S e I =1 )

X <(1) [w(l) W 9) [w(ﬁ)] Wiy [w(B)] %2) [w(l)] ) -1 (w(l) [w(l)] W('z) [w(Bﬂ -
| - '\ 47

—1-—'

- oy (48] w [“"”]) [1+ ot <“’(1) ERIEACE)

Q

3
1 : ’ \\\-1
- W) [“’(B)] V"(z){“*(‘lf)]_)\ , (4.77)
1+ BZ(p’rl) ZzELl
.. 1/3 0
where aq = Zao 2p + - 32(p+1) . (4.78)

With the expressions given by (4.76) and@.77) the first few;ijeﬁfcgér\ t, and

T canbe found approximately by solving the following equations numerically

2
“ (t,)
(1)(t s 2p '23 - m Clt,) (4.79)
Wt 20m
and
(T,)
(1)(t‘) 23 m T . (4. 80)
1) 20m

Then the approximate contribution in the backscattering direction due to the

first few creeping waves is given by (1.56), where the explicit derivatives

5C(t) 5 C(t)
ot 2md 5y

be noted that in (4.76) and (4.77) the asymptotic expressions for (1) and

can be determined from (4.76) and (4.77). It must ﬁﬁally \,

w{B) are given by
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i L
3 2
1) ~ 2 75 {t- t 4 o(m Y (4.81)
(p+1) 60m
and
e_i_s- 20p+1)] 2/3 2 2%
oy~ e [1-P] 2 St L
(p+1)2 Fe) 3(1/0
: 2
20, fo3 2
2 1 % t -4
+ (3a -9 3 ) —ztom) : (4.82)
(o] ao m

For large b, it is to be expected that the creeping wave contribution is

small compared to the reflected field contribution, Also it must be men-

tioned that by observing the’ éoéfficiehts al, a, and a3 . thos’; values

of B must be excluded for which the denominator of these coefficients

becomes zero, i.e. B#1 and p# -1.

\WY)

-

£
.,
NN
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CHAPTER V
CONCLUSIONS

In brief, it has been shown that the monostatic cross-section of
perfectly conducting spheres is éﬁﬁapﬁcfﬂor reduced, when coated with
radially inhomogeneous dielectrics, depending on whether the radially
inhomogeneous dielectric is of the converging or diverging kind. It has
been verified in the case of the Nomura and Takaku radial inhomogeneity
that the greater the gradient of divergence of the coating, the greater the
reduction of the radar cross-section of the perfectly conducting sphere.
Furthermore, the new class of radially inhomogeneous dielectrics has
been determined to be important in“\;r-l;ij(ﬁb‘alstudies for radar cross-
sections, because it can present converging or diverging properties depending

on the ch01ce of the parameter %Y, and because it reduces the two dlfferentlal

equations|(1. 16) and (1 17) essent1a]1y to one. When this new class of radially

mhomogeneous med1a is cons1dered as the coating of a perfectly conducting

sphere, it has been found that when 0 < v <1 it enhances the cross-se;:tlon,
whereas when v> 1 it reduces it. However, it mustwb; mentioned that the
computations for oNl when 7y Vis very close to 3, based on geometrical optics,
are not very reliable since the condition 0 < Imk << 1 is not taken into consi-
deration. This is verified, if it is recalled that when v = B the rigorous
asymptotic theory to O[(ka)_z_] predicts a very large reduction of the cross-
section, whereas the geometrical optics based computations for O'Nl
enhancement of the cross-section for v = 0.998. The introduced error in

predict

computing the radar cross-section by using the geometrical optics solution for
the reflected electric field instead of the solution obtained by rigorous asymptotic
theory to O [(ka) ] has been found to be insignificantly small, except for the
case where Y= 0.998 and B near unity, In this latter case, the error is as
large as 75 °/o due to the fact that the asymptotic solutions for the radial eigen-

functions are no longer valid since the condition |2ka(1— 'Y)l> > 1 is violated.
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Since this research has been confined to considering bodies whose radius
is much larger than the wavelength of the incident electromagnetic field, par-
ticular emphasis has been placed upon the study of the reflected portion of the
field. The creeping wave contribution is much smaller than the reflected field,

since these waves radiate as they travel around the scatterer and since in

actuality the dielectric coating presents some losses.

Other possible contributions to the backscattering direction, such

as lateral or evanescent waves are not taken into account. These contributions
are waves with algebraic or exponential decay, respectively, and they are
expected to be muchlsrnilfal‘i*é"x" than the reflected field. Such kind of contribution
is given in terms of branch—-cufs of Sz(;jzl/z(g) and TS_)_I/Z(S) in the complex v~
plane; for example, it is seen from equation (2. 14) that two branch points occur
at v = + ka(l-v).

Finally, it must be _mentip:;led‘; that from the practical point of view the
research in this :i{;s»éftatioh\'has possible applications to the study of the mono-

phere. In particular, the black-out phenomenon may possibly be explained by

the formation of a plasma coating around the body, whose index of refraction

) behaveé as a radially inhomogeneous dielectric of the diverging type.

(%

077 7
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