Differential Operators in Vector Analysis and the
Laplacian of a Vector in the Curvilinear
Orthogonal System

C.T. Tai, Radiation Laboratory, Department of Electrical
Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48108-2122

Abstract

Some long existing misunderstandings of the meaning of the del operator
in the curvilinear orthogonal system have been pointed out in this work.
One misunderstanding results from a false manipulation of the notations for
the divergence and the curl introduced by Gibbs. A proper analysis shows
that there are three distinct differential operators in a curvilinear orthogonal

system, and the Laplacian of a vector function is a well defired entity.

1 Introduction

Vector analysis is an indispensable tool in the teaching of electromagnetics,
hydrodynamics and mechanics. Unfortunately, there have been some mis-
understandings which have been in existence for a long time. In this work,
we attempt to clarify them by a critical examination of these problems.

The del operator (or the Nabla operator, or Hamilton operator) in a
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Cartesian system is defined by
5 .
V= ;a‘-ﬂ_z-:: (1) .
where z; and a; with ¢ = (1,2,3) denote, respectively, the coordinate vari-
ables and the unit vectors in that system. The gradient of a scalar function
f can then be written as
8f
Vf= Z‘: a,'-a—z—i : - (2)
which has no ambiguity .provided that we accept the distributive rule in such
an operation. For the divergence and the curl of a vector function f, Gibbs,

one of the pioneers in vector analysis, introduced the potations V - f and

V x f for these two functions and defined them as [Gibbs, 1881]

f < -
Vit = Tap=r gk | (3
- of I ATE
Vxf = z‘.:a'-x-é;:;('%“a_zfi)a" | (4)

where (i, 4, k) = (1,2,3) in cyclic order. These are well known expressions.
It should be pointed out that if one treats V - f, the notation for the

divergence, as the ‘scalar product’ between V and.f, then

s ‘
V.-f= — -

(Feqk) <

This is meaningless because the member at the right side of (5) consists of an

assembly of functions and symbols, and is not a mathematically meaningful
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expressiop. We can not arbitrarily transport the dot to the frontr of the
differential sign nor transport the vector a; behind the differential sign in
order fo éreate a‘meaningful expression of our choice. This is not a matter
of interpretation; it is a false manipulation. We are not aﬂowéd to do this
in mathematics. The situation is as if Qe have an assembly of numbérs and
signé in the form of 2 + x3 which has no meaning in arithmetic. But if we
mové the plus sign to the front we créatgé 2 well defined number +2 x 3,
and if we move the plus sign to the back we create 2 numerical operator
(2 x 3)+ = 6+. Neither of these expfessions is equvalent to thé original
assembly. Urfortunately, many authors treat (5) to be equivalent to (3) and
this creates a lot of confusion and misunderstandings. For example, Moon
and Spencelr 1965 a] state: “...A scalar product (between V and f ) gives.

the divergexfce

wtov.go O 0% 0L
divf=V.-f= 81+8y+02

We have changed their notation for the vector function to f. They did the
same for V x{, treating it asra ‘vector product’ between V and f. Later, they
apply the same ‘interpretation’ to V - f in a curvilinear orthogonal system
that leads them to a wrong conclusion. We should emphasize here that

Gibbs introduced V.f and V x f merely as the potations for the divergence
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and the curl, and were not meant to be the ‘séala.r produét’ and the ‘vector
product’ bet.wéen V and f. The false manipulation was imposed upon theée
notations by later workers. There are dozens of authors who did the same as
Moon and Spencer. Most of them are authors of books on electromagnetics,
vector analysis, and calculus. The history_ behind this misunderstanding is
long and interesting. ‘The story will be covered in a separate article.

In a curvilinear orthogonal system with coordinate variable denoted by

v;, unit vector by u; and metric coeficients by h;, the del operator is defined
by
). A o
V= ; h‘i ov'_ . (6) .

The gradienf, still denoted by V£, can be written in the form

Vi= 2': %g—i (7)
It is understoqd that the distributive rule has been forced upon the operand
of the del operator. The meaning of V in (7) has no ambiguity. When this
vector differential operator is applied to a scalar function the resﬁlt yields
the gradient of that function. It is the use of the del operator in divergence
and curl that has created many problemS.

For example, in the book by Morse and Feshbach [1953 a], we find the

following statement: “...The vector operator must have different forms for
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its different uses:

. & . )
vV = ? P T for the gradient

'5132“‘5%7 (-i?-) ; for the divergence

é,nd no form which can be written for the curl.” .

We have used ) to represent khihoh3 and have changed their coordinate
variables £; to v; and their notations a; to u;. It is obvious that the ‘operator’
introdur.;ed bsr these two authors for the divergence can produce the correct
differential expression for the divergence only if the operation is ‘interpreted’

as

[%Z‘:uia—i: (?—)]f-_—%z%({luf) ®

Such an interpretation is quite a.rbitrary. and it does not follow the accepted

rule o.f a differential operator because their V for the divergence is a differ-
entiated function not an operator.

In the book by Moon and Spencer [1965 b] the two authoré, presumably

following their notion that V - f is the ‘scalar product’ between V and f,

inferpreted V- fas

V~f=z%-%(u;-f) | (9)




and then concluded that it does not yield the correct result. Furthermore,
in commenting.on the work by Phillips {1933] they asserted that Phillips
manages to use the del operator in curviljnear system for divergénce and
curl, but only by the trick of redefining the scaia.r and vector products for
these particular applications. Actnaﬂy, Phillips’ method is not a trick at all;
it is very ingenious and he did not redefine the scalar and vector products ‘
under consideration. He obtains the correct expressions for the divergence
a.ﬁd the curl based on the differential expression for the gradient and some
‘.vector identities. By doing so, there is no need for him to discuss the role
played by the del operafor in V-f and V x f when they are éxpfessed in
the curvilinear system. Tfle preceeding introduction clearly indicates that
we need a better understanding of the role played by the del operator in a

curvilinear system.

2 The Differential Operators in Vector Analysis

To avoid repetition in writing down equations of similar form, we will in-
troduce a unified definition of the three key functions in one formula [Gans,

1932; Javid and Brown, 1963a; Tai, 1986] which is independent of the coor-




dinate system. The formula can be written in the form:

;i (ni+f) 85;

Vel= e,

The ineaning of the asterisk “*” and the function f with tilde is as follows:

Av

* | flVef| name
null | f| Vf gra.&ient
f| V.f | divergence
x |[f]Vxf curl

' In (10), ﬁj denotes a typical unit vector pointed outward from a surface
AS; = n;AS; which is a part of the surface enclosing an elemeﬁtary vol-
.ume AV. By considering an elementa.ry volume boundedrby the constant
coordinate surfaces in a curvilinear orthogonal system and taking the limit

of (10) we obtain

. le 8 /Q
vei = 58 (e )
o ICOREE I

where Q) = hyhohs as before,

It is known that the derivatives of the unit vectors in a curvilinear or-

-

thogonal system satisfy the following relations {Morse and Feshbach, 1953



bl: -

¢9u_,'j | 8

' .
du; Ohi Oh;
& - (h By T " b ) (13)

with (i,7,k) = (1,2,3)‘in cyclic order. Based on these relations it can be

shown that

FEEY-

" Equation (11) then reduces to

Vaf= }:h av. | ' (15)

The differential form of the three key functions, therefore, can be written as

Vi = z:'gi (16)
Vel o= Zh 'au. o (17)
Vxf = “' gf- = (18)

When applying these formulas to a Cartesian system_with hi = 1,y =
z;, ¥ = a;, we obtain the expressions used by Gibbs to define these func-
tions. The proper mea.njng of the operators in the curvilinear system is now
shown explicitly in (16) to (18). There are three distinct differential opera-

tors involved. For the gradient, we have the ordinary del operator. For the
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divergence, we havé a differential operator which will be denoted by ¥ and
designated as the divergence operatbr or the Dot-del operator. It is defined
by
V= 2 "%‘ B (19)
and for the cﬁrl we have another d:ﬂ'erentia.l operator which will be denoted
by ¥ and designated as the curl operator or thg Cross-del operator. It is
defined by _
¥ = Z X e L (20)
The three key functions in vector ana,lysns can now be written as V f, Vf,
and Vf. Thése notations are very descriptive. There is, of éourse, very little
hope that we can change the long established not#tion of Gibbs. We shall
still use Gibbs' notations in this work.
The derivatives of the vector function f in (17) and (18) can be evaluated
explicitly to obtain the weﬂ known differential expressions for these two

functions. Thus,

af rel

Bu = B2l |
(L 122) e
J

With the aid of (12) and (13) the derivativés of the unit vectors in (21) can

be expressed in terms of the unit vectors themselves. After some straight
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forward reductions we obtain

1 8 /8 - |
vi=iy 2 (1) (22)
and |
. _ 1~ [00usn) 8(hif],
/ VXf-ﬁZ[ avJ -— aék" ]’hui (23)
where

(i,j,k) = (1,2,3) in cyclic order. -

The eXpression for both V-f and V xf can be obtained more conveniently
from the second. term of (11) before its decomposition [Javid and Brown,
1963a; Tai, 1986]. With this much discussion of the meaning of the operators
in curvilinear system we turn to another related subject dealing with the

Laplacian of a vector function and its identity.

3 The Laplacian of a Vector Function

In Cartesian system, it is well known that the following identity exists

V.VF=V(V.-F)~Vx(VxF) (24)
where |
e .
V-VF= z.: (%}?) a; = Z.: (VzF.') a; (25)
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The Laplacian of the scalar functions F; has the meaning of l
ViF, =V (VF)= divgrad F; (26)

The fact that (24) is an identity indepéndent of the choice of the co-
ordinate system, including oblique system,' has been proved by Ignatowsky
- [1925a] and Javid and Brown.[1963b] based on the integral representation
of the del operator [Ignatowsky 1925b Gans 1932) correspondmg to our
equatmn ( 10). Ignatowsky ] proof requires some additional mterpretatlon :
for curvilinear system while the proof by Javid and Brown in clear-cut.

In this .w<.>rk, we .will prove (24) more specifically in a curvilinear orthog-
onal system bage& on a functional analysis. |

Let us first examine the structure of V - VF based on the diﬁ'e;ential
forms of the gradient, the divergence and the curl 2s described by (16 - 18).7
Thus, P | _ |
V.VF= Zh i (Eh ) (27)
It should be observed that VF is not a vector; it is a dyadic defined by

vF=Y L0F

= (28
7 h; Bv; )

The positioning of the two terms in (28) must be kept in that order. Then

uj 6*F 8 (u;\ oF . '
8v; VF Z[h 0v;0v; 61:; (E,—) 5;;] (29)
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henée
s~ [5 OF 0 (u)0
V-VE = ;ZE [h av.av,+6s(’*i) "f]

0
EE{(3 ) o 5o (1)) 2}

_ — 18F w, 9 fu)|oF
R E TR 2 b (h:' ] v o

By interchanging the roles of ¢ and j in the last term of (30) and with the

aid of (12-13) we have

i J '
hence
18 18 [OQ)\8F
V-vE=2 Hfa‘“*ﬁb“(h—)*a"
18 (Q8F
=2 am ('f?‘a_) @Y

which is the Laplacian of F and can be written in the form of V2F with the

Laplacian operator defined by
18 (Q @ '
2 — —
V=2 a5 (h? av,-) | (32)
The operdtor applies to the entire function of F, including its scalar com- .

ponents and the unit vectors. Actually, this form can be obtained in a very

simple way by starting with the differential form of V2F in Cartesian system
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and then convert the Laplacian operator to its form in a curvilinear system

as follows: | :
| 18 (Q0F,
VET(VE)y=T T2 (...2..3_4) a;
J s '
18 (QoFY
2 Q8 (‘}:?-5;,) | (33)

- where _
F=) F,a= >_ Fu;

3 J S
The structure of V - VF in the form of (30), however, is needed later to -

prove identity (24) in a curvilinear system.

The two functions at the right side of (24) can be written in the form:
u; & u; GF
v .F) N Z-h_.-avz h;  Bv;
OF u; O°F
] — L
= ZZ [Bv. (h ) av; T au.-au,] (34)
% x
VX(VXF)= X o (;h Bu;

OF u; #F
= — ....!.
ZZ [31’. ( ) X Ov; - TR Bv.av,] (35)

\..___/

The triple products in (35) can be decomposed into vect".ors using the identity

‘cx(axb)=(c-b)a-(c-a)b (36)
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The subtraction of (37) from (36) yields.
' ' OF |u;, 8 fu;
‘F)- =V-. —_— —_ ==
V(V'F)-Vx(VxF)=V VF+Z|.:;BU,- X [h‘ X 7o (h,-)] (37)
~ where we have used (30) to represent two of the terms in that resultant

equation, and the last term in (37) results from a recombination of another

two terms. With the aid of (12-13) it can be shown that

w, &8 [u;
ol (#)] -0 o

Alternatively, we can treat (38) as a vector identity, viz.,

~m 8 (Y o (%) s oo
;h;xav; (hj)—Vx(hj)—Vva,-o (39)

Hence (37) reduces to the identity
V. VF=V(V-F)-Vx(VxF) (40)

which is valid in a curvilinear orthogonal system including the Cartesian
syster;l as a special case, _In' view of this analysis there should be ﬁo more
misunderstanding about the ineanixig of V.-VFina cﬁrvilinear orthogonal
system [Moon and Spencer 1955]. I one accepts our newly suggested no-
tations for the divergenée and the cu;l, (40) can be presented in a rather

compact form, namely,

YVF = VUF - YVF (41)
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In ;:oﬁch_xsion, we Bave clarified sevéral misunderstandings in vector anal-
ysis which have been in existence for a long time without a critical exami-
natioﬁ. It is hoped that the analysis given in this paper will facilitate the -
teaching of vector analysis in the futu.re. It should be mentioned that fhis
work. is motivated by a recent study of véctor analysis based on a symboﬁc '
opera.fional method. This new work will appear elsewhere.

The valuable comment and suggestion by Prof. H.C. Ko, of Qhio State
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