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ABSTRACT

FINITE ELEMENT-BOUNDARY ELEMENT METHODS FOR
~ ELECTROMAGNETIC SCATTERING *

| by |
Jianming Jin, Valdis V. Liepa, and John L. Yolakis

Recent adva.nceis in computer speed and storé,ge have led to an increasing interest
in developing_ new hethodologies to satisfy a need for accurate and efficient numer-
ical simulation of @omplex open region electromagnetic scattering problems. In this
thesis, several hybgid techniques which employ finite element and boundary element
methods are presented.

A finite e]emen;z-boundary element method is présented for computing the scat-
tering by cylindricgml objects. The method uses artificial boundaries that can follow
the contour of the #catteref s0 that the discretization region is minimized. More im-

portantly, the method results in a highly sparse or uniformly banded matrix which

1 The material in this report is also the Ph.D. thesis submitted by Jianming
Jin in partial fulfillmént of the requirements for the Ph.D. degree in the University
of Michigan.



can be efficiently sé)lvéd Vusyin‘g speciai aléorithnis. Results are presented to demon-
strate the accuracf of t;,he method as well as its capability and versatility.

The method is i;hen extended to treat the scattering by coated wedges and half-
planes. In this case, tht% physical optics approximation is employed to approximate
the surface fields avs;*ay_fxom the edge of the structure. Numericél results are presented
to show the surfa.cé field and surface impedance behavior near the edge.

A finite elemenf-béundary element method is also developed to characterize the
scattering and traﬁsmission properties of an inhomogeneously filled aperture in a
thick conducting plane. Of particular interest in this formulation is the use of a
fast Fourier tra,nsfgrm to evaluate the boundary integrals a.ﬁd the use of a conju-
gate gradient method t;)' solve the system of equations. As a result, the method is
particularly efﬁdeﬁt in.' dé&ling with large apertufes.

The use of isoi)araiﬁétric elements is subsequently presented for modeling ar-
bitrarily shaped a.nd curved geometries. This leads to an improved efficiency and
accuracy not shared with traditional elements.

Finally, formulzja.tions for severé,l hybrid techniques which combine the finite ele-
ment method with ?eith‘er a surface integral equation or an expansion of vector eigen-

functions are presented and discussed for three-dimensional scattering problems.
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CHAPTER I
INTRODUCTION

This dissertation deals with the devélopment of new numerical methodologies to

analyze and evaluate open region electromagnetic wave scattering.
] ] l I I . ! L4

In the frequency domain the problem of open region electromagnetic scattering
is usually treated using integral equation methods (see, for example, Mei and Van
Bladel [1963], Riéhmond {1965, 1966], Harrington [1968], and Wu and Tsai [1977a]),
partial differential equation methods (see, for example, Mason [1982]), and hybrid
techniques whichj combine the partial differential equation methods with a surface
integral equatic_mjor an eigenfunction expansion (see, for example, Chang and Mei
[1976), Marin [1982], and Jeng and Chen {1984]). |

The integral équation methods have the advantage of a simple numerical imple-
mentation with a irninimum discretization region, since their formulations incorporate
the ra.diatidn conaition by employing the free-space Green’s function. However, they
have the disédva?xtage of a rather difficult formulation when dealing with complex
media and usuallsr result in large full matrices whose treatment is usually time cdp-

suming and costljr.
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In contrast, the pa;rtial differential equation methods have the advantage of a
simple formula_tiéjn even in the case of complex media and result in a simple numer-
ical i-mplementa.tijon.‘ In addition, they produce highly sparse matrices which can be
efficiently solved jusihg special algorithms [George and Liu, 1981]. Their major dis-
advantage, thougix, is the need of extending the discretization to the far field region
in order to enforjoe the radiation condition and this usually leads to an extremely
large number of unknowns.! |

The hybrid t,eﬁchniques represent a combination of the above two methods. They
eliminate their disadvantages while maintaining their advantages. As a result, the
hybrid techniqueé are more powetful especially for treating large and complex scat-
terers. However‘,3 the formulations and, especially, the numerical implementation
‘of the hybrid tecimiques usua.lly require more effort than for the integral equation
.and partial differéntial equation methods. Therefore, there exists a need to improve
the existing hybrjid techniques and to develop new ones that are more efficient for

pré,ctica.l application. This is the goal of this dissertation.

1.2. Background

There are basica]ly two kinds of partial differential equation methods: finite ele- |
ment and finite difference methods, and both of them can be employed in the hybrid
techniques. The ;hybrid techniques presented in this dissertation employ the finite.
element method faﬁd combine it with boundary element method. Therefore, they
are referred to as ﬁniie efement-boundary element methods. The following is a brief

review of the background of the finite element-boundary element methods in electro-

t Currently, much attention is aimed at employing more complicated radiation
conditions or absorbing boundary conditions to reduce the discretization region
(see, for example, McCartin et al. [1988), Mittra [1988], and Wilton and Richards
[1988)).
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magnetics, while a detailed review for each prﬁblem considered in this dissertation
is given in the reiated ‘ghapter.

The basic idea of the finite element-boundary element methods was first developed
in mechanical enéineering and introduced later in electromagnetics by Silvester and
Hsieh [1971] and McDonald and Wexler [1972] when they were considering the finite
element solution bf exterior or unbounded field problems. The idea is to introduce
an artificial boun;:iary enclosing the séatterer, and express its exterior field by either
an expansion of 'uieigenfunctions or a boundarj_ integral equation involving the free-
space Green’s fulj'lctidn. Such expressions are imposed on the variational equa.tion!
for the interior ﬁéld as boundary constraints. The resultant variational equation is
then solved via i;he finite element method. This idea has been further developed
and improved upon in order to solve two-dimensional antenna problems [Washisu
et al., 1979; Oril;asa'et al., 1983] and scattering problems [Marin, 1982; Jeng and
Chen, 1984; Guo; 1985). These methods, however, were not well-known in the mid
1980°s since their?capability.and computational efficiency were not obvious. A better
known method is the one called unimoment method and was developed by Mei and
his students [Me:i, 1974; Chang and Mei, 1976; Morgén and Mei, 1979]. In this
method, the ﬁnitie element method is used to generate a set of trial functions inside
a mathematical circle encompassing the scatterer. The field .outside the circle is
expanded in terms of Hankel functions and then coupled with interior solutions on
th¢ circle.r.

Recent ddva.npes in computer speed and storage and an increasing need to study
more complicated scattering problems have led to a growing interest in using the finite
element-boundary element methods. As a result, an increasing amount of research
on the subject, inc!tiding that of the Radiation Laboratory of The University of

Michigan, has beén reported in the past two years.
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This dissertatioh includes the part of my research conducted during the past four
years on deve!opmg new finite element-boundary element methods for a number of
scattering problems The d:ssertahon is organized in such a way that each chapter is
self-contained and independent, and can be read without intensive reference to the
other chapters.

Chapter 2 pr&eents a Brief review of some basic concepts of electromagnetic theory
and also conta,ins: pertinent equations that are used in subsequent chapters.

Chapter 3 ﬁrsjt bfieﬂy reviews several methods for solving boundary-value prob-
lems, then preseets some basic concepts of the finite element method, and finally
describes its appiicat.ion to two-dimensionel problems. The chapter is intended for
a reader who is not very familiar with the finite element method Thus, in the later
chapters we can concentrate our attention on the principles and formulations of the
hybrid technlqueg, rather than the finite element formulation.

Chapter 4 deels with the scattering by cylinders. A general review of various
methods is given ia.nd the major shortcomings that exist in each are pointed out. A
new formulation eembining the finite element method with a surface integral equa-
tion is then presented which overcomes those shortcomings, and numerical results
are given to venfy the method as well as to demonstrate its capability. Finally, the
method is compared with other commonly used numerical methods and its adva.n-
tages are clearly shown. The work contained in this chapter was published in 1988
{Jin and Liepa, 1988& and 1988b]. _

Chapter 5 deecﬁbes a technique for the scattering by a coated wedge and half-
plane. This techﬂique is an extension of that presented in Chapter 4 by incorporating
the physical opties approximation for the fields far away from the edge. A brief

review for the preblem is given and then followed by description of the formulation.
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Numerical resultﬁ a.re subsequently presented to show the surface field and surface
impedance behav%or around the edge. The work reported here was published in 1989
{Jin and Liepa, 1989&}. |

Chﬁpter 6 présents a very efficient technique for the electromagnetic character-
ization of the s@tteﬁng and transmission properties of an inhomogeneously filled
aperture in a thi(i‘.k conducting plane. The new technique again combines the finite
element method with béundary integral equations as was done in Chapter 4. Of
particular interest is the use of the conjugate gradient method [Hestenes and Steifel,
1952] and fast ijxrier transform for the solution of the sfstem. The technique is suc-
cessfully used to %solve some problems which are formidable when other techniques
are used, and th;s is shown by numerical reéults. The work in this chapter was
published in 1989 [Jin and Volakis, 1989¢].

Chapter 7 desbribes the application of isoparametric elements in the finite element-
boundary elemen§t methods. The purpose for using the isoparametric elements is to
improve the com;fmtational efficiency and accuracy of the previously developed meth-
ods which usually employ the linear triangular elements.

Chapter 8 preéents several hybrid formulations involving the finite element method
for the thre&diménsional scattering. Numerical implementation of these formulations
is a subject for ﬁﬂhﬂ investigaﬁon.

Chapter 9 coﬁcludes this dissertation with 2 brief summary and recommendations

for future work.



CHAPTER II

BASIC ELECTROMAGNETIC CONCEPTS

The analysis éf electromagnetic scattering and radiation is actually a problem of
‘solv.ing Maxwell’s equations subject to given boundary conditions. In this chapter,
we will briefly ‘re\jriew some basic concepts and equations of electromagnetic theory,
which will be used later on in our formulations, It ahoufd be noted that our emphasis

is laid upon their mathematical expressions rather than their physical interpretations.

- 2.1. Maxwell’s Equations

Mazwell’s équhtions are a set of fundamental equations governing all macroscopic

electromagnetic ﬁhenomena. In differential form they are written as

~95 (Faraday’s law) {2.1)

VxE= ot
e == 0D :
VxH=J+ 5 (Maxwell-Ampere’s law) (2.2)
V.- D=p (Gau.sé’ law) (2.3)
V-B=0 (Gauss’ law - magnetic) (2.4)

where

E = electric field intensity (volts/meter)
6
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D = electric flux density (coulombs/meter?)

H = magnetic field intenéity (amperes/meter)
‘B = magnetic flux density (webers/meter?)
7 = electric current density (amperes/meter?)

p = electric charge density (coulombs/meter?)

Another fundaméntal equation, which is known as the equation of continuity, can be

written as
. __ .
V. I=- o (2.5)

which states the @nscrvation of charge.
| Among the above five equations, only three are independent, and thus called
independent equations. Either .the_ first three equations, (2.1)-(2.3), or the first two
equatidns,' (2.1) and (2.2), with (2.5) can be chosen as such independent equations.
The other two eqhations, (2.4) and (2.5) or (2.4) and (2.3), can be derived from the
independent equations, and thus called auziliary or dependent equations.

The three imjiependent equations are in indefinite form, since the number of
equations is less ;than the number of the unknowns, Maxwell’s equatiohs become
definite when thé constitulive relations between the field quantities are speciﬁed.
The constitutive &elaiions describe the macroscopic properties of the medium being

considered. For a simple medium, they are

D=¢E (2.6) -
B=yuH (2.7)
J=0E (2.8)

~ where the -constifutive parameters ¢, 4 and o denote, respectively, the permittiv-
ity (farads/meter), permeability (henrys/meter) and conductivity (mhos/meter) of

the medium. These parameters are tensors for anisotropic media and scalars for
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isotropic media. l:“or inhomogeneous media, they are functions of position; while for
homogeneous me{lia they are not.
When the field quantities in Maxwell’s equations are harmonically oscillating
functions with a Qingle frequency, using complex phasor notatidns, (2.1)-(2.5) can be

written in a simpiiﬁed form

UxE=—jopll (2.9)
VxH=J+jweE - (2.10)
V. (E)=p | (2.11)

V. (uH)=0 (2.12)

V. T = —jwp (2.13)

where the time convention ¢! is used and suppressed, and w is angular frequency.

2.2. Wave Equations

To solve Maxwell’s equations, one usually first converts the first-order differential
equations involvixig two vector variables into the second-order differential equations

involving only onje vector va.rié,bl_e. By eliminating H or E in (2.9) and (2.10), one

obtains
V x -}‘-V_ X E - wle.E = —jwl; (2.14)
1o 207 = 1
Vv x chx?T-—w pH =V x (%7,) (2.15)

where J; is an impressed or source current, and ¢, (=¢ — jo/w) represents a combi-
nation of induced current and displacement current; however, for simplicity we next
use € to denote cu Equations (2.14) and (2.15) are called inhomogeneous vector wave

equations.
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For two—dimeﬁsional electrbmagnetic fields (the fields have no variation with re-
spect to one Carf;esia,n coordinate, say the z-coordinate), it can be shown that the
z-components of (2.14) and (2.15) become

(618 918 ., . |

(0:1:5, Oz + ay €, ay + koﬁr) H, = Bz (Er J,) + ay (E,J’) : (2-17)

where ¢, (= c/q,) and g, .(= #/po) denote the relative permittivity and relative
permeability, resﬁectivelj, and they are assumed here to be complex scalar func-
tions of position; ;ko (::: w Goﬂo).is the wavenumber in free-spé,ce; Zo (= \/m) is
the intrinsic impc;da.ﬁoe of free-space; and the électric constant €y (= 8.854 x 10~12
farads/meter) a.nd the magnetic constant po (= 4r x 10~7 henrya/meter) are the
permittivity and ;permeability of freé-space. Equations (2.16) and (2.17) are called

inhomogeneous scalar wave equations.

- 2.3. Boundary Conditions

Solving the ixjxliomogeneous vector or scalar wave équations given above in a
domain of intere;t, one may obtain many solutions; however, ronly one of them is
the real solution fto the problem. To find out this real solution, onelshould know
the bounddry conditions associated with the domain. In other words, a complete
description of an électromagnetic problem should include complete information about
both differential équations and boundary conditions. This section presents some
boundary conditions which apply to many practical problems. |
Boundary Conditions at the Interface between Two Media. At the interface
between two media, say medium 1 and medium 2, the boundary conditions can be

mathematically e}cpressed as

ax(Ei-E}))=0 | (2.18)
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;l * (ﬁl —ﬁg) =0 (2'19)

for electric fields, and similarly
fix(Hy—-H)=0 - (2.20)
i-(Bi~Fs) =0 (2.21)

for magnetic fields, where # is the unit vector normal to the interface, pointing from
medium 2 into rﬁedium 1. It is assumed in (2.19) and (2.20) that neither surface
currents nor surfé.ce charges exist at the interface. It is also understood that among
the four bounda.fy conditions only two of them are independent: one from (2.18) and
(2.21), and the other from (2.19) and (2.20). |

Boundary Condltlons at the Surfaces of Perfect Conductors This is a
spech case when one of the media, say medium 2, becomes a perfect conductor.

Since a perfect cpnductqr cannot sustain a field inside, (2.18) reduces to
AXE=0 | . (2.22)
and (2.21) retiuc;:s to
| | 7-B=0 (2.23)

Note that in this case the boundary can support a surface current (J, = 7 x H) and

surface charge (ps =1t - D).
2 I . B 1. ! . ’ E: ]Q I.I

 When the doﬁnain of interest is unbounded (its boundary is at infinity), a condi-
tion can be speciﬁed at infinity. Assuming that the sources and scatterers are located

within a finite distance from an origin, the fields are required to satisfy

lim R [V x +jkRx| || =0 - (2.24)
Rmvoo " H -
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where R = /2% + y” + 2. This is referred to as the radiation condition for general

three-dimensional fields. For two-dimensional fields, the radiation condition becomes

lim r -gr— |+ 5k | =0 (2.25)
i H, H,

where r =z 7.

2.5. Surface Integral Equations

This section presents the general solutions, in the form of integral equations, to
the electromagnetic field problems within a homogeneous isotropic medium. Con-
sider an electric émrent J radiating in a domain V bounded by the surface S. The

electric field inside can be written as [Tai, 1971]
E® = ~jou [ [ [I®)-G®BE)V - [ [{Vx&G®E)
[# xE®)] - jwuGo(R,R)- [#' x H(R)|} ds’ (2.26)

where #i’ is the outward unit vector normal to the surface S, and éa(ﬁ,ﬁ') is the

dyadic Green’s function defined by

& (R,E’) = (1 + —vv) Go(ﬁ,ﬁ')

with - _
e~iklR-F|
G
Om, 4 I-R- Rll
and
1=+ §§+ 23

Similarly, one can find the magnetic field as

H® = [[[G®E)-v'xI@av' - [ J{vxE®E)
[ x B@®)] + jweGo(B E) - |7 x E(®)]} a5’ (2.27) -
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If we cons:ideri the domain V to be of infinite extent, the outer surface, denoted
by Se, recedes tb infinity. Because of the radiation condition described by (2.24),
the surface integrjal. over Se vanishes, and thﬁs, (2.26.) and (2.27) are still valid. In
scattering and radiation problenﬁ, S usually represents the surfaces of obstacles or
scatterers. The ﬁjrst term on thelright hand side of (2.26) and (2.27) represents the
field radiated by ;the electric current in the absence of any scatterers, and thus can
- be referred to as the incident field. The second term comes from the integrals over
the surfaces of sc;a,tterers, and thus represents the scattered field.

Equations (226) and (2.27) can be uniformly written as
I =i - o -
TR = F (R)—jL{v x Go(R,F) - [#' x F(®)]

+ GoBE)- [¢' x V' xFE)|} a5 (2.28)
where f‘(R) denotes the incident electric or magnetic field, and F denotes the corre-
sponding total elf.fctric or magnetic field. Equation (2.28) is re_fe'rred to as the surface
integral equation for the three-dimensional case.

For the two-dimensional case, in an unbounded domain with homogeneous isotropic

medium containiﬁg scatterers, the solution to (2.16) and (2.17) is found to be
=
F(R) = Fir) - [ [ 2F (") Go(r )

where F = E, for E-polarization, F' = H, for H-polarization, and C is the bouxida.ry

~- P22l e (2.29)

of all scatterers. :iﬂso, Go(F,) is the two-dimensional Green’s function given by
GoF,7) = -{-Hé”(k!r -7
and F¥(F) is the incident field given by
B = —jon [ [ Go(r, )85
for E-polarization, and

e = | [our |20 90400
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for H-_pola.rizatioﬁ. Equation {2.29) is referred to as the two-dimensional surface

integral equation or boundary integral equation.
2.6, Radar Cross Sections

The radar cross aéction (RCS) is a quantity characterizing the scattering of an
obstacle. 1t is deﬁned for plane wave incidence, and is also known as the scattering
cross section. In the three-dimensional case, the scattering cross section is defined
by ’
Lk
|Fp

o(6,4) = lim 4x R’ (2.30)

where F* denoteé the scattered field at the observation point (R, #8,4). In the two-

dimensional case,? the scattering cross section per unit length is defined by

o(¢) = lim 2xr ’Ii::: , - (2.31)

where F* is the s{:attered field at the observation point (r, ¢).



CHAPTER II1

FINITE ELEMENT METHOD AND ITS APPLICATION
TO TWO-DIMENSIONAL PROBLEMS

The finite e!eﬁlent method (FEM) is a computer-aided mathematical technique
for obtaining appfoximate numerical solutions to boundary-value problems of mathe-
matical physics. The method has a history of about forty years. It was first proposed
in the 1940’s and its use began in the 1950’s for aircraft design. Theréa;fter, the FEM
has been developéd and applied extensively to problems of structural analysis and
less extensively, but increasingly, to problems in other fields. Today, the FEM has
become recogmzed as a general method of wide appllcablhty to engineering and
mathematlcal problems Many books have been written on the subject, of which
Zienkiewicz’s [1977] is probably one of the most popular reference texts. In this
chapter, we will ﬁ}st briefly review several methods for solving boundary-value prob-
lems. Some basié concepts of the FEM will then bg presented and followed by a

FEM analysis for?two—dimensional field problems.

3.1. Solution of Boundary-Value Problems

Boundary-value problems have long been a major topic in mathematical physics
and nowdays one ha.s many methods available for finding their solutions. A boundary-

value problem can be mathematically defined by a governing differential equation in

14
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a domain )
L¢=f (3.1)

together with the3 associated boundary conditione on the boundary I' of the domain.
In (3.1), L is usually a differential or infegral operator, f is the excitation or forc-
ing function and ¢ the unknown quantity. It is, of course, desirable to solve (3.1}
analytically, wheﬁever possible. However, this is generally the exception since an
analytical solutiorjx can only be attained in a few cases for gi_\_ren I'. To overcome this
difficulty, numeriéa.l methods have been and continued to be developed for obtaining
an approximate solutlon by means of computing ¢ at discrete points. These methods
can be categonzed into three groups: the finite difference method, the variational

method, and the method of welghted residuals.
3.1.1. Finite 'Diﬂ'ereﬁce Method

The finite diﬁ;arence method approximates the differential operator and is best
suited for probleﬁm with regular boundary domains and homogeneous medié.. Using
this method, thegﬁiiﬁ'erential operator in (31) is represented by a difference operator
and thus (3.1) is 3tra,nsfonfned into a set of difference eﬁuations. This method has
been mostly used jfor solving field problems with regular boundaries, such as rectan-
gular waveguides m electromagnetics. However, it is not easily adapted to pfoblems
involving curved c;r iitegula.r boundaries because of the difficulty of enforcing bound-
ary conditions. The method is also not as effective if the problem involve; different
media since the boundary condition at the interface between media réquires special
treatment. As a ’rbsnlt, it is difficult to develop general purpose computer programs

using the finite difference method.



16
~ 8.1.2. Variational Method

Thé variatibné,l method formulates the boundary-value problems in terms of vari-
ational expressioxis, referred to as functionals, with (3.1) as their Euler equations un-
der the given bou:nda.ry conditions. The approximate solutions are then obtained by
minimizing the functional with respect to its variables. Specifically, consider (3.1).

If the operator L jis self-adjoint, i.e.

< Lé, ¥ >=< ¢, L¢p > (3.2)
and positive-definite N 5o 440
<Lé,é> { (3.3)
- 1=0 ¢=0 ,

then the sdlutionl to (3.1) can be obtained by the nﬁnirxﬁza.fion of the functional
[Mikhlin, 1964]
F(¢)=<Lé,¢'>~<¢,f>=-<f,¢> (3.4)

with respect to ¢'L The inner product, denoted by the angular bracket, is defined by
<é>= [ pyrdn (3.5)

where the a.sterisl?c denotes the complex conjugate.

Once the funéfional is found, the solution can .be obtained by t,he. procedure
described bélow. iFor simplicity, let us assume.‘th'at the problem is real-valued and
suppose that ¢' in (3.4) ca.nbe approximated by the expression

¢ = ilc;v.- =cTv=vTc (3.6)
= '
where v; are the chosen expansion functions and ¢; are constant coeficients to be

determined. Also,3 the boldface letters denote column vectors and the superscript T

denotes the transf)ose of the vector. Substituting (3.6) into (3.4), we obtain

F(¢') =cT jn vaTdQc — 2T ./n v fdf : (3.7
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To minimize F(qb’) we let its derivatives with respect to ¢; vanish. This yields the

matrix equation

[Sle=b (3.8)
whose elements in [.S’] are given by
Sy = j v;Lv;dQ (3.9)
and those in b by R _
b= L v fd0 (3.10)

As a consequencé of the self-adjoint property of the operator, the matrix [S] is
symmetric. Solvifxg {3.8), one obtains an approiimate solution for (3.1).

The vari'ation%l method described above has been the basis for Ima,ny finite element
formulations sincia the beginning of the FEM history. It does not apply, though, to
cases where the Bperator Lis not self-adjoint. In that case, a functional can be
constructed leading to an adjoint operator before applying the va.ria.tioﬁal method
prerdure [McDoha.ld and Wexler, 1980]. Finding and minimizing a functional is,
however, not the Eonly way to formulate the ﬁnite. element equatibns. The weighted

residual methods can provide an alternative approach.
3.1.8. Weighted Residual Methods

Based on its déﬁnitibn, the weighted residual method weights a residual. Assume
that ¢'is an approxnmate solution to (3.1). Substitution of qS’ for ¢ in (3.1) would
then result in a non-zero residual

R=L§-f#0 (3.11)

The best appfoximatio’n for ¢ will be one that reduces the’ residual, R, to the
least value at all points of 1. The weighted residual methods enforce the condition

/ﬂ RuwdQ) =0 (3.12)
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where w; is a chosjsen Wéighting function. Different choices of the weighting functions
can result in different formulations as discussed next.
Collocation Méthod. This is also known as the point matching method. Impulse
functions are seleéted as the weighting functions (w; = 1 at some point § aﬁd zero
everywhere else). iThis is equivalent to satisfying (3.1) at specific points,
Subdomain Mejthod.‘ The weighting fuﬁctions here are set equal to unity over a
specific subdomain and zero elsewhere. This is equivalent to making the integral of
the residual vanish over a number of subdomains. |
Least Squares Methbd The least squares method uses the residual as the weight-

ing function and minimizes & new error term defined by
: 2 ‘
€ =../9'R dQ) | (3.13)

The minirnization; is with respect to the unkr;own coefficients in the approximate
solution. | | |

Galerkin’s Metilod._ In this method, the weighting functions are selected to be the
same as thoée useii for the expansion of the approximate solution. This usually leads
to the most accur#te solution aﬁd is, therefore, a popular approach in developing the
finite element equjations. To more explicitly illustrate the method, let us assume that

thg solution is represented as in (3.6). The weighting fuqctions are then selected as
‘ w=v; '.:1;2’3,’”"” - (3.14)
and (3.12).becomés
jn(”iLVTc - v;f)dﬂ =0 i=1,23,.: ‘;,N (3.15)

This again leads to a matrix system such as that given in (3.8), although now the
matrix [S] is not necessarily symmetric unless the operator L is self-adjoint. In that

case, the variational and Galerkin’s methods result in identical equations.
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3.2. Basic Concepts of Finite Element Method

 As stated at ithe beginning of this chapter, the finite element method (FEM) is
a numerical pro§edure for obtaining solutions to boundary-value problems of math-
ematical physics;. Tke principle of the method is to replace a continuous domain by
a number of squomains, which are usually feferred to as elements whose behavior
is modelled by ixiterpolé.tion functions containing a few unknown values at the nodes
of the elements. iThus,' the original boundary-value problem with an infinite number
of degrees of freedom is converted into a problem with a finite number of degrees
of freedom, or in other words, the behavior of the whole system is approximately
represented by a finite number of nodal values. Then, a set of algebréic equations
or a sjrstem of eguations is obtained by assembling all elements and the solution of
the boundary-va;lue problem is achieved .by solving tﬁe system. The most impor-
tant feature of the system of equations is its sparse form due to the highly lbcalized
interaction of nodes. In summary, the usual steps in a finite element soluiion of a
boundary-value i)roblem are as follows: (i) discretization of the domain, (i) deriva-
tion of the eiemént equations, (iii) assembly of the elements, and (iv) solution of the

system of equa.tibns. Below we describe each step in some detail.
3.2.1. Discretization of Domains

In a finite element analysis, the discretization of the domain is the first and
most important %step. The manner in which the domain is discretized will affect
the computer st@rage requirement, the processing time, as well as accuracy of the
numerical results. The discretization involves these essential tasks: (i) subdivision
of the domain i;lto elements, (ii) numbering of the elements and nodes, and (iii)
selection of the éxpansion or interpolation function to model the behavior of the

field within ea.chjelements.



Domain Subdiﬁsion. The boundary-value problem represented by (3.1) may be
solved in a one-dimensional, two-dimensional or three-dimensional space. For a one-
dimensional doméain which is actually a straight or curved line, the elements are
shorter line segments interconnected to form the orginal line. For a two-dimensional
domain, the elements are usually tnangular and rectangular surface areas. The
rectangular element is, of course, best suited for discretizing rectangular regions while
the triangular one can be used fof irregular .regions.‘ In a three-dimensional solution,
the domain ma.yibe subdivided into tetré.hedra, rectangular prisms or triangular
prisms, among which the tetrahedron is the simpleét and best suited for arbitrary
volume domains. We note that the line segments, triangles and tetrahedra are the
basic one-, two- and three-dimensional elements which model the curved lines or
surfaces by straight line segments or planar patches. A better modelling can be
achieved by introjducing isoperameiric elements, which will be discussed in Chapter
7" . . . {
Node and Elemeht Numbering. In a finite element analysis, it is necessary
to label the elements and associated nodes for implementa.tion. purpose. A complete
description of a nede contains its coordinate values, local number and global number.
The local number of the node indicates its pogition i in the element, whereas the global
number nges its pos:hon 1n the entire system. While specifying the coordinate
values is a rather straightforward job, numbering the nodes and elements requires
some strategy. Since the maximum difference between the global numbers of two
adjacent nodes i:ni an element determines the ba.ndwicith of the system matrix, this
bandwidth can then be minimized by pmperly numbering the nodes. Thus, if a
banded matrix method is used to solve the final sysf.em of equations, the computer
storage and prooessmg cost can be reduced significantly. However, in the case that
the bandwidth mmnmzat:on is unnecessary, the numbering scheme can be arbitrary

a,nd is usually chqsen to simplify the programmmg.
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Iﬁterpolafion ﬁndion Selectioxi. The interpolation function provides an ap-
proximation of tlj;e unknown solution within an element. It is usually selected to
be a polynemia,l iof first (linear), second (quadratic) or higher order. High-order
functions, aJthough more accurate, usualljr result in & more complicated fofmulation
Hence, a simple and basic linear mterpolatlon is still widely used. Once the order of
the polynomial is selected one can derive an expression for the unknown solutlon in
an element, say element e, in the following form

ol ) |
¢ =3 Ni¢; (3.16)

| = _ |

where n is the nuinber of nodes in the element, ¢} the field valee at node j, and N¥

the expansion fuﬁction which is also known as basis function or shape function.
| 8,2.2. Derivation of Element Equations

The second step in a finite element analysis is to derive the element equation.
Two popular appi‘oaches exist for this derivation. One employs the variational prin-
ciple and the other uses Galerkin’s method. The least squares method can also be
employed, but will not be discussed here.

Derivation Usiﬁg Variational Method. The element equation can be derived by
applying the va.na.tlonal method, described in Sectxon 3.1.2. The functional of the
system can be expressed as a summation of mtegra,tlons over each element. Thus,

for a real-valued problem one has
F(¢) =3 F°(¢") (3.17)
e=1 .
“where M is the t(%ta! number of the elements and

(") = L ¢eLged -2 ]n _fgean (3.18)
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Substituting (316) into (8.18) and differentiating F** with respect to the nodal field

values, we obtain

1 BFe e e e . y er e ]
.5-@- E[ N:LN?dQ - j FN:dQ =123 (3.19)
This can be writt@ in matrix form as
oF°
- ¢ = [K{¢) - {H°} (3.20)
‘ % ;
where {K*} is an h x n matrix and {H*} an n x 1 ‘column vector with their elements
given by | ‘
K= [ NILN;af (3.21)
and _ |
Hy = [ fNdQ  (322)

We note that the element matrix [K ’I is symmetrib since L is self-adjoint.
Derivation Using Galerkin’s Method. Galerkin’s method is an alternative for
the derivation of the element equation. When using this method, the weighted

residual equationjfoi' the eth element is

j Ni(L#" =) =0 i=1,23,n (3.23)
Substituting (3. 16) into (3.23) then ylelds
j N°L2N‘¢‘dﬂ / FNE=0  i=1,23,--n  (328)
j=1

which can again be written in a matrix form as

(K*}{¢*} - {H*} =0 (3:25)
In this the matri)f elements K{; and Hf are of the same form as (3.21) and (3.22),
respectwely Smcae the operator L is not required to be self-adjoint, here the element
matrix [K*] is not necessarily symmetric. However, when the operater L is self-

adjoint, the element matrices resulting from the variational and Galerkin’s methods

are identical.
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$.2.3. Assembly of the System of Equations

Once the elen:xont equation or subsystem has been derived, the entire system of
equations can be obtained by assembling each subsystem in conjunction with the
boundary conditiono. Either assembling (3.20) for all elements and imposing the
stationary requirej,menﬁ or assembling (3.25) yields

M : '
SRy - () =0 (3.26)
By changing the floca.l number of each node m (3.26) to the corresponding global

number, (3.26) can be written more compactly as

[K){¢} - {H}=0 | (3.27)

where [K] is an N x N matrix, {H} an N x 1 known vector, {¢} an N x 1 unknown
vector whose elements are the nodal field va]ues, and N denotes the total number of
nodes in the system.

Before solvmg (3.27), one has to apply the boundary oonditions.a.ssociated with
the problem There are two kinds of boundary conditions which are often encoun-
tered: the homogeneous Dirichlet and Neumann boundary condltlons Since the
latter is usually satisfied automatically as a natural bounda.ry condition, one only
needs to impose the Dirichlet boundary condition by setting the fields at the appro-
priate #odes equal to zero. The resultant system is then solved via matrix inversion,

LU decompositioil, or iterative approach.
3.2.4. Solution of the System of Equations

Solving the sy#tem of equations is the final step in a finite element analysis. The

resultant system has one of the two following forms:

([A]1-A[B) {X}=0 (32
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or

14 {x} = {¥} e

Equation (3.28) is of the eigeiwalue type and in electromagnetics it is usually asso-
ciated with waveéuide and cavity problems. In that case, X is the eigenvalue, {X}
is the‘correspondi;ng eigenvedor, both of which are unknowns. Equation (3._29) is of
the deterministic ;type and in electromagnetics it usually associated with scattering
and radiation pm?blems. Since we are interested in the latter in this thesis, only the
solution to (3.29)jwill. be discussed here. |

To choose a,n%'a.lgorithm for the solutian of (3.29), one needs to consider the
properties of the jmatrix [A). Theorétic&lly, there are many algorithms available
to solve this matrix eéu#tion. Hoﬁever, since {A] here. is usually large but sparse
and banded provided the nodes are properly numbered, it is instructive to look at
algorithms that eﬁcploit these properties, We describe three bf them here.

One solution é.pproach is the banded matriz method with a variable bandwidth
storage scheme. Uing this method, the matrix [A] is stored as a vector rather than
as a two-dimensiénal array. Only the elements from the ﬁrst non-zero to the last
non-zero {or to thé dia.g‘dnal element for a sj'mmetric matrix) in each row are stored.
The solution proc@s by first decomposing the matrix into an upper triangular form
using Gaussian elimination (however, if the matrix is symmetric and positive-definite,
an LDLT decomﬁosiiion will be more efficient). The solution is then obtained by
back subst.iizutiox:x.é

Another soluti;:m method for sparse systems is the frontal method which was devel-
oped in the early jseventies {Irons, 1970]). This method applies Gaussian elimination
during the assembling process of the matrix [A]. Such progressing continues until
every element and every ‘ﬁode has been processed. The final solution is then ob-
tained by Back substitution. Because the assembly and elimination are intertwined,

the matrix [A] is never formed explicitly. As a result, the required computer storage
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is reduced to minimum. Also, the operations on the zero elements of [A] are avoided.

The Lanczos ﬁzethod is a third solution method which is also referred to as the
“bi-conjugate gﬁimt method” [Sewell, 1985]. I the matrix [A] is symmetric, the
method is actualljr the usual conjugate gradient .n;fxethod. In contrast to the above two
direct methods injvolving Gaussian eiiminatio_n, this one solves the system iteratiively.
The assembly pracess takes place in each iteration and the calculation of the matrix
products [A]{P} are performed by executing the summation "M [A*]{P°} where
[A®] is the element matrix and {P} denotes a vector. Thus, like the frontal method,
the Lanczos method does not actua.lly. form the matrix [A] and, as a result, it avoids
the storage of thé matric [A] as well as the operations on the zero elements _which
comprise most of ;the matrix.

Among the three methods, the banded nxatrix method is the most preferable for
matrices with di:rjxensions up to a thousand or so. However, it requires much larger
storage than the other two methods since the elements within the band of [A] must
be stored explicitly. The frontal and Lanczos méthods are capable of solving very -
large systems with many thousands of unknowns, but at the expanse of computing

time.

'3.3. Finite Element Analysis of Two-Dimensional Problems

In the previoué section we briefly introduced the basic concepts of the FEM and
in this section we ?describe the application of the FEM to two-dimensional problems.

The pertinent differential equation is of the form

~ oz [“("V)M} [ﬁ( T,y )a¢59? y)] + 1z, ¥)é(z,¥) = f(=,y) (3.30)

where ¢(z,y) is'the unknown field, o(z,y), B(z,y) and ¥(z,y) are known parameters
assoc_iated with the physical properties of the geometry, and f{z,y) is the source

or excitation function. The ordinary two-dimensional Laplace equation, Poisson
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equation and Heﬁnholti equation are only special forms of (3.30). To solve (3.30)
via the FEM we Qwill employ linear triangular elements and the system is derived
using the variati@nal and Galerkin’s methods. The results obtained in this section

will be frequently: used in subséquent chapters.
3.3.1. EShape Functions for Linear Triangular Elements

To apply the FEM to (3.30), one first divides the domain of interest, denoted by
S, into a number of two-dimensional elements. If the linear triangular elements are

used, the field within each element is approximated as
¢"(z,y) = a+br+cy (3.31)

where a, b and c are constant coefficients to be determined and e is the élement
numbef. For a Hngar triangular element, there are three nodes located at the vertices
of the triangle. ASsume that thek nodes are numbered counterclockwise by numerals
1,2 and 3 with thé corresponding field values denoted by ¢¢, #§ and ¢, respectively.

Solving for the constant coefficients a, b and c in terms of ¢{ yields

(2y) = o Nz, 0)6; (3.92)

=1
where Nf(z,y) are referred to as the shape functions given by
Ni(z,y) = -2-33(“" +hz+ey) 1=1,2,3 (3.33)
in which
G =23 —Y323; i =y1—Ya;  =zT3~7;
Q=zy1—y71; h=yp-n; a=5-12;

G=I1Y—~¥3; =y —y1; Ga=T—~5
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and

1 ) y;\

1 z; y; | = area of the eth element

B e

I

11 =3 ya

It can be easily shown that the shape functions have the property

~ 1l =3 |
Ni(zsy;) =6 = 3.34
(e50) = b {Mﬁ 6

and as a result at] the nodes the field expression (3.32) reduces to the corresponding

nodal fields 4¢.
3.3.2. Derivation of Finite Element Equations Using Variational Method

As stated earlier, the variational method is a traditional technique for deriving
* the finite element equations. Let us denote the contour enclosing § as C' and assume

that the field on a portion of C, say C, satisfies the Dirichlet boﬁndary condition

$late, =0 (3.35) -

and the field on ﬁthé remaining portion, say Cj, satisfies the Neumann boundary

( ¢z+ﬂa§y) at c;

where #i is the outwa,rd unit normal to C. It can be shown that the solution to the

condition

=0 (3.36)

differential equatton (3. 30) subject to the above boundary conditions is equivalent

to the varla,tlona! problem

| {6F(¢) =0 a3

¢|at (45 = 0

where

Fi¢)=3 / f [ (Qﬂ)z | (.‘?ﬁ)zﬂw] ds — j f fods (3.38)
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The functional F(¢') here is obtained by first substituting (3.30) into (3.4), then
invoking the dxvergence theorem, and enforcing the Neumann boundary condition
(3.36).

Next assume that the region S is divided into M triangular eléments of surface
area S° (e = 1,'2,53,- ++yM). The integral over § in (3.38) can then be expressed as
a summation of M sub-integrals over each element. This in turn allows the subdi-
vision of the functional F in (3.38) into M sub-functionals F* which are identical
to F except that .S' is replaced bjr §¢. Introducing the expression (3.32) for ¢* and
differentiéting eaéh F* with réspéct to ¢ yiefds

dF . o |
{a¢e} AN} + (B} - (8°) (3.39)

where

0P\ _[oFe oF oF|" |
(=15 5 o] s =t s ar

The elements of fhe matrices [A®] and [B¢] are given by

ONg ONg | ONf ON; |
./ ./ ( oz 6:1: +6 dy Oy )d:cdy (340)
= j js AN{Njdzdy i3 =1,2,3 (3.41)

“and those of the &eétor {H®} by

H = f /s fNjdzdy  i=1,2,3 (3.42)

It is noted that both [A°] and [B®] are symmetric here. Assuming now that the
coefficients a, B, v and the source f are constant within each element and equal to
af, f°, y° and f‘? respectively, (3.40)-(3.42) can then be analytically integrated. A

basic result in this process is

imin!

[ L ey vy (V) dndy = 280 (343)

(I+m+4n+42)
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We find
a5 = -—L(a°b-b- +Bac) (3.44)
B = 9- A+8) (3.45)
Hi = -:;-f" | | (3.46)

If a, B, v and f are maintained arbittary within each element, then the matrix
elements must be evaluated numérically
Assembling a.II M elements and imposing the statlona.ry requirement on F yxelds

the complete system

Z([A‘ () + B¢} - (=0 (3.47)

ex=}

Finally, altering ihe local node numbers.to the global ones, (3.47) can be written
in a matrix form of the form the same as (3 27), where [K] = [A] + [B] and is also

gymmetric.
3.3.3. Derivatién of Finite Element Equations Using Gﬂerkin’s Method

In this section, the finite element equation (3.47) is rederived using Galerkin’s
method and compared with the results derived via the variational method.

The residual for (3. 30) is

_ 24 a¢ -
and thus the Weighted residual equation for the element e is
/ /S NjRdzdy=0  i=1,2,3 (3.49)

Substituting (3.32) into (3.48) and then into (3.49) yields

Ef] [ (a;f)_ %(ﬂaajve)-l-‘yN’]é‘dzdy

i=1

= ] js Nifdedy  i=1,2,3 - (3.50)



Invoking the iﬂentitie_s

.8 [ 0N} d( @ . 3N° ONg
N‘ Vil ( Oz ) = 0z (a_ﬁ—LN") B.r 9z
ON¢ d [ ,ON} ONf ON¢
ne D (ONEY 8 (40N kRl 3.51
'ay(ﬁay) 5 (6 3) -0 5, @4
and the divergence theorem |
/ ./ . (8{] BV) dzdy = f (Uz+Vg)-nsdl | (3.52)

(3.50) can be written as

aNeaNe aNeaN; | 1.3, V4 &
E/,/-( 3:1: oz ﬂay oy + NN)¢da:dy

J=1
j j Nt fdedy + ): f NS (a.‘?ﬂz + ﬂ-‘?-’-g:-y) acdl
j=1
i=1,2,3 (3.53)

where C* is the boundary of S° and #° is the outward unit vector normal to C¢. In

matrix form, the ﬁbove equations become
[AH¢°} + [BH#) = (H} + {G°} (3.54)

where the eIemenﬁs in [A°], [B°] and [H*] are the same as those given by (3.40)-(3.42),

respectively. The elements in {G*®} are given by

Q= f N‘( 9%, +ﬂ%f ) Aedl (3.55)

The complete system of finite element equations is then obtained by summing (3.54)
over all elements |

E([A’]{q&‘} + (BN = T+ (6D (3.56)

This system i;S obviously not the same as that in (3.47), since it contains an

additional term (the second term on the right-hand side) arising from an integration

around the sides enclosing the elements. However, since each of the internal sides,
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those lying inside: the domain, is shared by two adjacent elements, their contribution
cancels each other provrded that no source of & Dirac delta function form exists there.
Therefore, the only contribution comes from the integrals along the external sides
lying on C. If the boundary condxtaon is of the Dirichlet type (the values of ¢ are
specified on C), the a,ddxtlona.l term will drop out once the boundary condition is
imposed. Alternatively, if the boundary condition is of the Neumann type defined by
(3.36), the integr%a.nd .in the line integral along C' becomes zero. Similar conclusion
can also be reached when therbo‘undary condit.ion is of the Dirichlet type on portion
of C and of the Neumann type on the remaining po'rtion. Therefore, {G*} drops
out when all elements are assembled and the boundary conditions are enforced. The
finite element equation derived via Galerkin’s method is then identical to that derived

via the variational method.’
3.3.4. Concluding Remarks

In this section} the FEM was applied to a two-dimensional boundary-value prob-
lem with a general governing differential equation in conjunction with the Dirichlet |
and for Neuma.nnfboundary conditions. The finite elemexit equation was derived us-
ing the variationﬂl and Galerkin’s methods with the first order triangular elements.
The derivation u§ing high-order elements can, 'df course, be developed in a parallel
manner, but is more involved.

The equations, obtained here can be used directly to ﬂnd solution of bounded two-
dimensional problems. ‘In electromagnetics, such problems include various waveg-
uides filled with inhomogeneous and anisotropic media. One advantage of using
the FEM for anéguide problems is the easy treatment of the boundary conditions.
Therefore, one ca.ﬁ ea.éily deal with a waveguide of arbitrary cross-section. Another
advantage is the éasy treatment of inhomogeneity and anisotropy of the media. All

one needs to do is to specify different physical properties for different elements. The
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advantages in computational aspects are also notable. The utilization of the proper-
ties, such a8 sparéeness, bandedness and symmetry, are key factors in reducing the
storage demand a%nd increasing the efficiency of the solution. Due to these advan-
tages, the FEM has gained wide applications in bounded problems. |

However, if thje problém is uﬁbounded (its exterior Bound_a,ry is at infinity), the
FEM alone is no; longer applicable, simply because t_ﬁe subdivisioh of an infinite
region will result in an infinite number of elements and nodes. To extend the FEM to
unbounded problems, va.rious kinds of techniques, suéh as infinite elements, boundary
elements, etc., have been developed Though these techniques may appear in qtute
different form, the principle is the same, that is, to truncate an infinite domain into
a finite one wher@ the FEM can be applied.

The electroméénetic scattering and radiation in free-space is a typical unbounded
problem because of the reqmrement to enforce the radiation condition at infinity. To
apply the FEM to such a problem, several techniques have been developed. In the
next chapter, we, w1!l describe a hybrid techmque which combines the FEM and
a boundary element method for a surface integral equation in dealing w:th two-

dimensional electromagnet:c scattering problems



'CHAPTER IV
SCATTERING BY CYLINDERS

In this chapte;', we consider thé problem of electromagnetic scattering by infinite
cylinders for tranéverse magnetic (TM) and transverée_ electric {TE) wave incidence.
The cylinders of jpa.rt'icular interest are those having arbitrary cross sections and
consisting of inht:;mogeneou materials. This chapter is organized as follows: first,
we give a general %eﬁew of the problem; then we introduce a finite elexhent-bounda;y
element method with a detailed description of the formﬁlation; following this are the
numerical :esults,: which verify the formulation as well as demonstrate the capability
of the method; a,nd ﬁna.lly, we compare this hybrid method with other commonly

used numerical méthods.
41. G | Revi

The problem 0be electromagnetic scattering from infinite _c_ylinders has been stud-
ied intensively for many years using exact, asymptotic and numerical techniques.
Among various .s;;lutions, the exact, which are usually in the form of infinite series,
are most desirablcja,.but are only available for very few geometries, éuch as perfectly
conducting and impedance circular and elliptical cylinders, dielectric circulaf cylin-

ders, and d_ielectrijc coated circular cylinders [Bowman et al., 1969; Ruck et al., 1970).

33
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Many geometnes of practxcal interest are not solvable analytically. For electrically
very small and very large cylinders, the asymptotic techniques, such as the Rayleigh
scattering techmque for low frequencies, and for high frequencies the geometrical
optics (GO), the i)hysical optics (PQ), and a more accurate technique, the geomet-
rical theory of dxffractlon (GTD), can be applied to obtain approximate solutions.
However, there are still many problems which are pra.ctxca.lly important, but diffi-
cult to solve usmg either exact or asymptotic techniques. In such cases, numerical
techniques can be used to solve the problems.

As discussed in the first chapt.er, all numerical techniques can be categorized into
three fundamental groups: the integral equation (IE) methods, the partial differential
equation (PDE) methods and the hybrid techniques.

- Among the IE methods, the method of moments (MM) is the best-known [Har-
rington, 1968} for?solving scattering problems. This method is efficient for problems
involving perfectly and imperfectly conducting cylinders and homogenéous dielectric
cylinders. For su@ problems the method utilizes surface integral equations (SIE)
which reduce the? problems into one dimension. The ﬁmthod, "however; is not ef-
ficient for _solviné problems involving inhomogeneous media. This is because the
Green’s functionsj in inhomogeneous media are usually unknown and tﬁus vblumc
 integral equation§ (VIE) have to be used. As a consequence, the whole cross sec-
tions of cylinders need to be diécretized, giving rise to a large number of unknowns,
which may make the problem practically unsolvable due to limited computer storage
and processing time. Recently, various iterative trmei_ﬁhods have been developed to
complex_nexit the MM Among. them, the conjugate gradient-fast Fourier transform
(CG-FFT) methojd appears to be a good candidate. The main advantage of the iter-
ative methods is to _a.voi.d using a large amount of storage, which is a major drawback
of the MM. | |

The PDE mef;hods alone cannot be efficiently applied to finding solutions of
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scattering pro‘blexjhs, since the regions of solution are unbounded or infinite. To
make the PDE m&hods applicable, various hybrid techniques have been developed
to truncate inﬁnit;e regions into finite ones. The best-known of su& techniques is the
unimoment method, déveldped by Mei and his students [Mei, 1974§ Chang and Mei,
1976; Morgan anﬂ Mei, 1979]. In the unimoment method, a PDE method,' either
the finite diffemx{ée method (FDM) or the finite element method (FEM), is used
to generate a set of trial functions inside a mathematical boundary encompassing
the scatterer by %;oliring a sparse or uniformly banded matrix. The field outside
the boundaky is éxpanded in fhe Hankel functions and then coupled with interior
solutions on the ‘b:oundary.' |

Another'examfple of the hybrid techniques is the so called hybrid element method
presented by Jeng and Chen [1984], in which the exterior field is again expressed
by an expansion iof the Hankel functions. Such an expression is imposed on the
variational _equati;)n for the interior field, which is then solved using the finite element
and boundary elément methods. However, this ‘mgthod is less efficient than the
unimoment méthgd, since it results in a partly full and p#rtly sparse systefn matrix.

In addition to it,he aforementioned two methods, we also note several other meth-
ods, including the one developed by Marin [1982] and the finite element-extended
boundary conditit?m method (FEM—EBCM) by Morgan et al. [1984].

In this chapte‘f, we present a finite lelemént-boundary element (FE-BE) method
which is a special jfm‘m of the hybrid PDE-IE method using the FEM for the partial
differential equa.tijons and boundary element method {BEM) for the SIE. The basic
idea of this methbd was introduced by McDonald and Wexler {1972} in the early
1970’s. The method formulates the exterior field using the SIE and the interior field
using the FEM, md then couples them by applying the boundary conditions on the
artificial boundary separating the exterior and interior i'egions. This method has

been further improved and used to solve two-dimensional antenna and scattering
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problexhs [VVashisiz et al., 1979; Orikasa et al., 1983; Guo, 1985).

In the previoufa wo_iks on scattering, two ma_jor shortcomings exist. First, a circle
is often used as an artificial boundary to separate the exterior and interior regions.
Although such anf approach simpﬁﬁes the formulation, it is not efficient when dealing
with non-circularjcylindrical problems, especially those with thin geometries. Sec-
ondly, the systemf matrices resulting from the method of Jeng and Chen [1984] and
the previous FE-BE formulations are'pa.rtl.y full and partly sparse, and such matri-
ces are not easi!y% amenable to banded matﬁx algorithms. These two shortcomings
severely limit thejcapa.bility of these methods.

In the methodl we present here, these two shortcomings no longer exist. The first
is overcome by dé\feloping a formulation which allows the artificial boundary to be
of arbitrary shapé. The second is overcome by modifying the coupling technique, re-
suitihg in & Sparsé or uniformly banded system matrix, as in the unimoment method.
As a result, the method presented here is more efficient and more capable of dealing

‘with complica.ted; two-dimensional scattering problems. A detailed formulation is

given in the next section.

4.2, Formulation

The problem ﬁnder consideration is illustrated in Figure 4.1, where an electro-
magnetic wave is fncident on a cylinder consisting of dielectric and magnetic materials
and perfect conda;lctofs. The constitutive parameters of the materials are denoted
by & complex peninittivity € and a complex permeability g, which may be functions
of position. The axis of the cylinder is assumed to be along the z-direction; hence, .
there is no variation of field quantities and material parameters with respect to the
z-coordinate, | |

We will mnsidér TM and TE wave incidence separately. The solution of an arbi-

trary wave incidence can be obtained from T™ and TE éolutions, since an arbitrary
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Figure 4.1: Geometry of Wave Scattering by a Cylinder. (a) Illustra-
~ tion of Artificial Boundaries. (b} Example of Discretiza-
~ tion.
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wave can be expt&ssed a.s the sum of TM #nd TE waves. Note that the formula-
tion we describe below is for a smgle cyhnder, for multiple cyhndets the formulation

would be snmla.r
- 4.2.1. Interior and Exterior Decoupling

As the first st;ap in thé FE—BE method, the inﬁnite solution region is divided intc;
two subregions: q::e,is an infinite and homog@neous region and the other is a finite
region where the FEM is applied (see Figure 4.1). For this, let the boundary of the
cylinder be I'. We first draw an artificial boundary I'y to enclose I' and then draw
another artiﬁcialgboundaty I's lying between I'y and I' (some criteria for drawing
T4 and T are discussed in Section 4.3). Thé.region inside T'4 is treated using the
FEM, and thus is called: interiof region or FEM region and is denoted by R.; The
region outside I‘B is treated using the SIE, and thus is called exterior region or SIE
region. The ﬂelds in the FEM and SIE regions are coupled by imposing the continuity
conditions over the overlapping region between I'4 and T's. The displacement of I'p
from T'4 avoids the singularity problem typically encountered in the Green’s function
integration. In general to minimize the FEM region, I'4 is drawn in such a way that

only one layer of plements is needed between I'4 and T'.
' 422 Finite Element Analysis

In the interiorj region denoted by Rj, the axial field component satisfies the partial

differential (wave) equation

_jV . ﬂr(f")VE' + koc,(r)E, =0 (4.1)
for the TM case, fa,nd
V.—VH, + kouf(r)H =0 (4.2)

r(')
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for the TE case, where V = 28/8z + jj3/8y is the two-dimensional operator, ko =
2z /A is the free-épace wavenumber, and A is the free-space wavelength. Note that
(4.1) and (4.2) are special forms of (2.16) and (2.17) for the source-free case.
It can'Be sho'sjvn .t_hat the solutions to (4.1) aﬁd (4.2) can be obtained by mini-

mizing the functibnal

F= j jR {”(r)vz' - VE, - - k26, (F)E, - E}d.s- j E,——dt (43)

for the TM case, @nd

— : -...1-- . — 3 '"7 . | —— aH’
F= j jR ,4{e,(r~)VH‘ VH, - ki, (F)H, H,}ds / Hogdl (44)

fof the TE case, Where fi4 denotes the outward unit vector normal to T'4,

Following the FEM analysis described in Section 3. 3, we subdivide R; into A
triangular elements Using the linear interpolation for each element, we can express
the field ¢ (= E, for the TM case, and H . for the TE case) in Ry as

¢(z,y) = EEN’(x V)4 - (45)
‘ exli=1 o :

~ where Nf(z,y) (i: = 1,2,3) is the interpolating function for the‘ eth element and ¢}
is the field at the ith node in the eth element, all well-defined in Section 3.3.1.

Application of the FEM analysis to (4.3) or (4.4) results in the matrix equation

[K{¢} = {¥} (4.6)

where the element expression for the matrix [K] can be obtained from Section 3.3.2,
{#} is a column répresenting the discretized field, and {3} is a column resulting from
the d:scret1za.tlon of the line integrals in (4.3) and (4. 4) In more detailed form, (4.6)

can be written as

Kaa Kar || ¢4 i ¢’4 @)

Kia Kn b1 | ©
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- where the éubscript A denotes the nodes on 'y, I the nodes interior to I's.

The above eq{zation is unsolvable since {14} is unknown. However, such a prob-
lem can be bypa.séed by discarding the first row of (4.7) if we can find another rela-
tionship between {({u} and {¢;}. The surfa.ce integral equa.tlon (2.29) can provide
such a relatlonsh:p |

4.2.8. Surface Integral Discretization

In the exterior region, the field can be represented by the surface integral equation

(2.29) which is rekritten here for convenience as
or) = #7%0) - [ [ootr B2 - g 2Bl gty (a)
_ ‘ ] ng :

where g is on P’;, fip is an outward unit vector normal to I'g, and Go(F,7g) is the
two-dimensional free—spa.ce Green’s function.

Using the BEM, we ca,ﬁ discrgtize (4.8) into a matrix equation so that it can be
‘'solved together wjith (4.7). Assuming that I'p pa#ses through Mg elements, we can
rewrite (4.8) as |

#(F) = ¢;N0(r) Z j [GO(F,FB)3¢ (Fa) ~ (7 )3G'o(r rs)} dl (4.9)

where the qua.ntﬂ;nes in the integral can be expressed as

Go(F,75) = ~LHD (kolF - 75])

g%%__j’;f’) = 4koH )(kolr - 7g|) ('_ ol cos d‘ 4+ Ii : g; sin a‘)
#(5s) = LN (-'BB,UBM =5r z(a. +bizp + ciys)é;
: u-l =1
_a¢e(FB _ 6N| (zB’yB) aN (zB’yB) e

Z(b cos @® + ¢; sin a‘)¢‘

=1

2A°
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Figure 4.2: Nlustration of a Line Segment on I'g.

with
sin a® = (384 -— ﬁgj)/Lf y COS o= (sz — yBi)/Le M Lt = |F82 - FBII

and (zpy,yB1) md (zB2,yB2) are defined in Figure 4.2. In the above expressions,
N¢(z,y) is the same as that in (4.5), which along with a;, b, ¢; and A® is defined by

(3.33). If we use the simplest one point integration, we can write (4.9) as

#(F) = ¢mc(.~)+z{8m5_:[352>(k0|‘;~f3|)(b,.cosae+c..sswe) (4.10)

e=1 f2=1

= koH )(kol?'B - ) (I_ = cos o + E f{’l sma ) (a; + bizg +Ca‘y8)] ¢f}

where (zp,y5) is taken to be the mxd-pbint of I°.
Applying (4.10) to calculate the fields at the nodes on I'4, we obtain the matrix

equation

{¢A} {émc — {Pasl{¢a} — [Parl{¢1} (4.11)
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- Matrix equati%)n (4.11) provides another relationship between {¢4} and {¢;}
We can think it as a boundary condition or boundai‘y constraint on I'y. Since (4.8)
satisfies the ra.diaiion condition at infinity, the solution of (4.11) should also satisfy
the radiation comjiition. Thus, we have converted the .ra.diation condition at infinity

toa boundary-wﬁstraint on the artificial boundary.
. 4.2.4. Interior and Exterior Coupling

In Sections 4.2.2 and 4.2.3, we obtained a finite element equation (4.7) which can

be written as

[Kial{$a} + [Kul{#:} = 0 (4.12)

where the first row in (4.7) is discarded here, and a boundary constraint (4.11) which

can be written as

[Pial{dal + [Partidn} = {41 (4.13)

where [Py,] = [I] + [Paa] with [I] as the unit matrix. A joint solution of above
two equations gi\_;es the numériéal result of the fields at nodal points. There are
several approache;‘s to the solution of (4.12) and (4.13). The simplest is to solve the
(Na+ N;)x(NA + Ni) matrix equation '

P, P | 1 ne _
[ Faa Far} | oa| |94 (4.14)
Kia Kp ¢r 0

where N, is the nﬁmber_ of nodal points on 'y and Ny is the number of nodal points
interior to rA. H&we?er, this a.pprpach is not efficient. In the following, we discus.s
two alternative app:bach.&. ” _

The first, which is the one commonly used, imposes (4.13) on (4.12) and gives

the system of equations

[Kil{é1} ={vi} | (4.15)
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where
[Ki] = [Ku]éle][ aal” ‘[P,u], {1} = ~[K1al{Paal {4

In this approach two matrices have to be solved: one is the complex and full matrix
[P44] having s:ze of N4 %X N4, and the other is the partly full and partly sparse
complex matrix [K 71] having size of Ny x Ny. Usually, Ny is much larger than Ny,
and hence the size of the scatteter to be treated by this method is mostly lumted by
the magmtude of N,-

The second approa.ch, the one proposed in [Jin and Liepa, 1988b], substitutes
(4.12) into (4.13) and gives the equation |

[Pia{¢a} = {¢51C} (4.16)

where
[Pyl = [Poal = [PanK 1) [Kia)

Mathematically, tShis second apptéach is equivalent to the first one; however, com-
putationally it is fnuch more eﬁicient. Here, we also need to solve two matrices: one
is the complex and full matrix [Py,], but now the other is the symmetric and sparse
matrix [K 1l whxch becomes real-valued for lossless scatterers and can be narrowly
banded if one nu;lmbers J’che nodes properly. A more obvious compa.risbn is given
in Table 4.1. Thé difference between the first approach and the second approach
is in the pmperti@s of the matrices [K?};] and [K1s]. Solving the symmetric, sparse
or urﬁformly ba;nded matrix [Ky,] is of course much easier and more efficient than
solving the nonsymmetnc matrix [K7;} with nonuniform block submatrix structures.

Three algonthms, namely the banded matnx algorithm, the frontal algorithm and
- the La.nczos algor;thm, which are discussed in Section 3.2.4, can be well applied to
solving [Kjj)- | | |
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Table 41 Comparison of the Two Approaches.

: Matrix to Matrix . .
Approach be solved order Properties of matrices
» [P4al N, | Complex and full
“lst
approach . (o _ - | Complex, partly full and
| (Kl M partly sparse
[Pid - N4 | Complex and full
2nd —— _ :
: | Symmetric, sparse or banded.
approach - IKnl N; Real for lossless materials and
1 ‘ | complex for lossy materials

Before ending j?I:hiea section, we wish to point out that the above described interior
and exterior coupling is actually a result of the continuity conditions. The continuity
of the field and itsj normal derivative on the artificial boundary I'p is satisfied by using

the same field expansion (4.5) and solving (4.12) and (4.13) jointly.
4.2.5. An Alternative Formulation

As we have séen, the general prin'ciple of 'theiFE—B.E method is first to use an
artificial bounda.r;r to split the whole solution region into an interior and an exterior
region, then to apply the FEM to formulating the interior field and the SIE to
formulating the e:?cterior field, and finally to couple these fields by enforcing the field
continuity _conditijons. Any formulation which oomplieé with the above principle will
be able to solve ti1e problem. The formulation »describéd above is just 6ne version
of this general formulation. In the following we propose an alternative approach, in
which the two utiﬁdal boundaries 'y and FB will not be used.

Let us use R to denote the region occupied by the cylinder and use I' to denote
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the boundary of thé cylinder. In this case the functional to be minimized is

F= j j { (F)VE, .VE, ~ kge,(F)E.-E,}d; f j_)E-?f-'-d: (4.17)

for the TM case, and_

F= | ]{ —=VH, - VH, - B (F)H, - H}d.s j (_) aH;d! (4.18)

for the TE ca.se, where f: denotes the outward unit vector normal to I, and E; and
H denote, respéctively, the electric and magnetic fields on I' when the field point
approaches I’ from the inside.

Applying the FEM analysis to (4 17) and (4.18), we obtain the matrix equation

[Brrl{yr} +‘[KTT]{¢T} =0 | (4.19)

where we use {¢T} to denote the discretized nodal fields on and inside I', and
use {¢r} to denofe the discretized quantities (1/4,)0E; /On for the TM case and
(1/¢,)OH] [0n for the TE case on I. In (4.19), the element expression for [Krr] is
the same as [K;.I]‘ in (4.7), while the element expression for [Byr] can be easily de-
rived. The ma.trixj {Brr] comes from the line integral on I', and hence is & boundary
element matrix. in'addition to (4.19), another relation between {1,bp} and {¢r} is
needed to providé a solvable system. |

The field outsfde I' can be formulated using the surface integral equation
S+ (7 =t
¢(r) ¢IN6'( ) / [GO(- —l) ¢ (f' ) ¢+(-4) 3Gu(f', )] dr (4.20)

where ¢+ denotes;the field on I' when the field point approaches I' from the outside.
The discret.izatioxij of (4.20) using the BEM provides the matrix equation

[Pecl{¥r} + [Prri{ér} = {#EV° - (421)

where {¢7} is th§ same as that in (4.19), and {¢r} here denotes the discretized
quantity 8¢+ /6n
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The boundary eonditions on T' require that

E;=E}Y , H;=H}
1 0E; 8E} 18H; O6H}

————— —4:——-‘_

e On - 6n ' & On an
As a result, the ciiscmtized field {¢} and the quantity {¢} on I in (4.19) should be
equal to the corrtj:spo'nding ones in (4.21). Therefore, by solving (4.19) and (4.21)
jointly, we can obtaiﬁ the sqlution to the problem. The two approaches discussed in
Section 4.2.4 for solving the matrix problem are also applicable here.

- Three dlfferences exist between this alternative formulation and the previous one.
First, the prev:ous formulation uses two artificial boundaries whlle this one does not
use any artificial boux_lda.ry. Second, the previous formulation does not use the line
ini:egral in the functional while this one does_. Third, the previous formulation avoids
the singularity of ‘the Green’s function while this one encounters the singularity in
deriving (4.21); ﬁowever, this éingularity problem can be easily handled. These
three differences ja,re not independent; they are actually intimately x?elated From
computational aspect the two formnlat:ons have about the same efficiency. However,
the previous one ms easier to 1mplement The results presented in the next section

were obtained usmg that formulation.
4.3. Numerical Results

Based on the fonnulation déscribed in Secfions 4.2.1-4.2.4, a computer program
was written for @mputing the nodal fields. Once the nodal fields are found, the far
fields are calculatejrd from the surface integral equation (4.8) using the large-argufnent
approximation fof the Hankel function. The program can be used to cﬁompute-the
bistatic and 'backej:cattered fields from cylinders having arbitrary cross sections and

consisting of inhoinogeneous materials for both TM and TE wave incidence, In this
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section, we will ﬁ?st use this program to investigate two problems pertaining to the

subdivision of the FEM region and then present six numerical examples.
4.3.1. General Considerations

Before the program is used to obtain final results, we need to resolve the following
two questions: ﬁfst, what is the optimum distance between I'y and ', and second,
how fast does the; numerical result converge with respect to the density of nodes?

Let us cénsidér the first question. Since we use linear interpolating functions for
the elements'bet\;leen I'4 and T, the normal derivative of the field on I'p, 8¢/8np
in (4.8), is a.pproScimat_ed by the difference of the fields on 'y and I'. From this
considerat_ion,- to #ﬁake this approximatibn accurately, the distance between I'y and
T should be as le as possible. However, if this distance is very small, it will
result in very nafrdw elements. Such narrow elements will introduce errors in the
FEM analysis. AIso, because of the finite (digit) resolution of computers, a very
small distance c@ produce a so small difference between the fields on T4 and T
that it is beyond the last effective digit, resultiﬁg in a meaningless value. Therefore,

the distance betwleen I'4 and T should bé properly chosen to best approximate the
normal derivative of the ﬁeid, and thus to provide the most accurate result.

To find this oﬁtimum distance, we made computations for a coated circular con-
ducting cylinder ﬁvith a TM plane wave incidence. The radius of the conducting
.cylinder is 0.4, and the coating thickness is 0.06). The coating is a lossy material
with ¢, = 2 — j2;a.nd #r = 2 ~ j2. For computation, we divided the coating into
two layers and th? circumference into 52 segments. Such a subdivision can provide
a sufficiently accurate result for the TM incidence. We computed the error in both
amplitude and pﬁa.se of the far-field coefficient (P) in the backward direction for

different distances (d). The result is shown in Figure 4.3, where we see that a good
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result (error in aixxplitude within 1% and error in phase within 1°) is obtained for
distances of d befween 0.005A and 0.03X. Therefore, a criterion for drawing Iy is
sucﬁ that the distance between 'y and T" is within the range 0.005A to 0.03\. This
criterion is generajlly applicable and is independent of the polarization of the incident
field and the complexity of scatterers.

Considering tﬁe second question regarding the convergence of the result, we find
it difficult to givé a clear answer. _Though we know that generally the numerical
result converges to the exact solution as the density of nodes increases or the area
.of each element d§creases, we cannot find a general criterion to relate the accuracy
of thé result to tﬁe density of nodes. This is because such a relé,tion depends on the
‘ _p§lariza.tion of thia incident wave, the property of the material, and the geometry of
the scatterer, To show this, let us consider thé same problem as that used to generate
data for Figure 4.3. The far-field coefficient in the backward direction was computed
as a function of tﬂe number of nodes (N ) along the circumference and the number of
layers (L) in the ti:oating. The results are shown in Figure 4.4 for the TM incidence
and in Figure 4.53for the TE incidence. In both ﬁgﬁr_eg, we see that as N increases,
the far-field coefficient converges to a constant, and as L increases, this constant
converges to the_Exut golution, ﬁhich is P = 0.3737£14.2° for’ the TM case and
P = 0.3000/ — 142.8° for the TE case. However, we note that the convergence rates
for the TM and TE case are different. For the TM case, the result converges to the
exact solution rapjidly, while for the TE case, such a conVeréence is rather slow. This
is because in the TE case the coating can support a surface wave which is circulating
a.rouﬁd the cylimier_, resulting in a.drasticall.y changing field distribution, while for
the TM case the f:leld. changes slowly since surface waves do not exist. Therefore, we
conclude that the;convergenoe rate of the réult.depend's on the individual case and

one needs to check this convergence for each case.

For a problem ‘jwhose exact solution is unknown, perhaps the best way to assess the
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_convergence of the numerical result is to perform computations for different density
of nodes. To give an example, consider a pla.r_le wave scé,ttering by a square cylinder
with a size of 0.5)?« x 0.5, a perrtﬁttivify of e, =25 and a permea.bility of py = L.5.
If we divide each ;ide of the cylinder into N segments, the resulting number of nodes
is (N +1)%. We yjmmputed the backward scattered field in the broadside direction
for different N's. The results are shown in Figure 4.6 for both TM and TE cases,
where we sce that the results converge as N increases. The result for the TM case
converges faster thaﬁ that for the TE case. Such a difference in convergence rate is
due to the difference in the values of ¢, and p,. Generally, the result for the TM
case converges fast for a small value of g, and slowly for a large value of p,, while
.the result for the TE case converges fast for a small value of ¢, and slowly for a large
value of ¢,.

Though no general criteria can be obtained, less general criteria can be still
developed for cert’;a.in class of problems. For example, for dielectric cylinders involving
no sharp edges, a subdivision of 16 points per material wa.velength can provide an
accuracy of £10° m phase and 5% in amplitude (corresponding to +0.4 dB in RCS)
or better for bavckjwa,rd far-field computation. As experience is gained by performing
various computations, one can deveioﬁ a skill for predicting the accuracy of result

based on his or her understanding of the field behaviour within the scatterer.

4.3.2. Examples

Six examples, selected ffom' numerous computa.ﬁons, are presented here to show
the validity, versatility and caﬁability of the FE-BE method (also called as FEM-
BEM); The first three have unknowns {or ﬁodes) of about one hundred and were
computed_ using t;he first coupling approach discussed in Section 4.2.4. The last

three have unknoﬁvns as many as about two thousand and were oomputed using the
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second coupling approach. In these examples, the incident wave is assumed to be a
plane wave; however, the program can handie non-plane wave incidence as well.
A. A Coated Circjular Cylinder |

This is the cése for which an exact solution is available and hence is used to

verify the progra.x‘n. Figure 4.7 shows the results of our numerical (FEM-BEM) and
exact (series) mﬁputations for both TM.(E-polari‘zation) and TE (H-polarization)
incidence. The dimension-of ihe cylinder, the coating thickness and the coating
electric properties, given in Figure 4.7, are the same as that used for investigation in
'Figures 4.3-4.5. For the numerical FEM-BEM computation we divided the coating
into two. layers aﬁd the 'drcumference into 32 segments. Therefore, the dimension
of the resulting n@a.trix equation is 64 for E-polarization and 96 for H-polarization.
The FEM-BEM results agree with the exact solutions quite well. Better results can -
be obtained By uéing smaller elements and more nodal points as shown in Figures
4.4 and 4.5. | '

Also given in Figure 4.7 are the results computed by using the moment method
(MM) with impe&ance boundary condition (IBC) applied at the cylinder’s surface
[Knott and Seniorﬁ, 1974). In this computation the normal incidence impedance value
() which is approjpriate for coated .conducting plane was used. In this case, the MM-
IBC also 'providesj good results. |
B. A Coated Rect;mgular Cylinder

The second exz}:.mple‘concems the Baékscattering from a coated rectangular cylin-
der. The ba.ckscatjtering cross section, denoted by o, was computed using the FEM-
BEM and MM-IBC, and the results are shown in Figure 4.8, where the dimension of
the cylinder, the éoating thickness and the coating electric properties are also given.
From the figure, we see a large difference between the FEM-BEM and MM-IBC
resul.ts. To assuré the iralidity of the FEM-BEM solution, we computed the same

problem using a rigorous moment method with the volume-surface integral formu-



55

eoo FEM-BEM
E! H
ess  MM-IBC —— T

- analytical

30k

conductor diameter = 0.8

|P| 20} coating thickness = 0.06)
n = 0.8832 4 50.4103
1.0}
0.0
0 160 180
¢, degrees
(a)

180 . H -‘vgol.

E — pol.
90 |
a.rg(P) O‘- ........... .':ou
-90 F
H - pol,
| —180 | Al 1 .q""ﬁﬂg:‘—ﬂ

0 2 40 60 8 100 120 140 160 180

T B T S O S S

'.Figure 4.7: Bistatic Scattering Pattern of a Coated Circular Cylin-
~ der. {a) Amplitude. (b) Phase. :




oy Ll . :ﬁ" w = 0.92)
2' : . h=0.17)
A K t = 0.06
A :! fr == 4 hand j4
af o e =1
(dB) " p = 0.1102 + j0.4368
: m:, l.'
— = i . .. ' *
8 Jﬂ*’% * '.: o FEM-BEM
| ; . sss VSIEM
| «ss MM-IBC
-~16 1 1 1 L ! 1 ! -
0 10 2 30 40 5 60 70 80 90
‘ @, degrees
(a)
10
oF ‘ _‘.-"'/
: &
....10 ._\/ﬁ‘fm&'.
ﬂ/A . .‘-. .
(dB) e s
-20 B
[ v
3 .
Lo o
30 I b .
..‘.
-40 .
: []
] 1 (| ] 1 [ i i
0 10 20 30 40 5 60 70 80 90
¢, degrees
(b)

Figure 4.8: Backscattering Pattern of a Coated Rectangular Cyhn .
der. (a) TM Case. (b) TE Case. ' -



| 57

lation (VSIEM) [LIin and Liepa, 1989b). - As seen, the VSIEM results show a very
good agreement with the FEM-BEM results. Therefore, the large difference between
the FEM-BEM and MM-IBC results is due to the failure of the MM.-IBC. Recalling
the good a,c'curac& of the MM-IBC results for the coated circular cylinder case, we
conclude that the impedance value 5 used for oomputafion, which is appropriate for
the éoated conducting plane, is an improper approximation near edges. Techniques
such as the FE-BE method which is capable of finding accurate near fields can be
‘used to compute jthié impedance value, from which a bettér guideline to predict the
impedance near edges could be developed.
C. An Ogival Cyli'ndcr with Coated Edgés

An ogival cylijnder shape is often used to sttidy the scattering behaviour from
bare and coated édges. Here we présent a sample computation using the FE-BE
method for bare, single- and double-edge coated ogival cylinders. In this case the
coating is homogéneous lossy material, but of varying thickness as shown by a sketch
in Figure 4.9, where the computed backscattering is presented. The ogival cylinder is
1.0\ wide and thé maximum coating thickness is 0.1) at the edge. From the results
we see that the siﬁgle— and double-edge coating has very little effect on the return at
broadside incidem?:e, but at edge-on the double-edge coating decreased the return by
some 5 and 16 dB for E- and H-polarizations, respectively. By examining the return
at edge-on from tﬁe single-edge coated case, it is evident that for E-polarization the
leading edge is thje. dominant scatterer, since coating the leading edge reduces the
return (¢ = 0°), while coating the rear edge the return (¢ = 180°) is unchanged. In
the case of H-polarization, usually the dominant scatterer is the rear edge (due to
travelling wave effects)’,. but in this example such is not obvious, since the ‘cylinder is

00 narrow to sustain and launch appreciable travelling waves.

D. An Inhomogenﬁeous Cifcular_ Cylinder

Starting with this example, we now consider the problems of having thousands of



B
.ﬁ
ot e
)
0 R o’
» ) [

o /A ..o." , "3 %% \‘

(dB) .;-"... * °°o
poonssesst™ ”.«" ss¢ bare cylinder %, M
-8 M wex left edge coated %

- o0 both edges coated %00q |
IM. ) ‘ °°°°°°°°ooo«-

-16 1 ] 1 1 ! I | ]
0 20 40 60 80 100 120 140 160 180
‘ ¢, degrees
(a)
10
i,
0 ff "‘%gew
5 GOD:%”,.:. ‘Eo""gwsno
; () s . ..
: $ ;‘:" ':H' . °::¢:'
; .. L] L] 1] o '.
I B EAS
'. ‘ B ..
(dB) soet® *# oao °::* o.“"
20 E ) 1ax -
i o 9 o Y °W
o 022
S>> E
© [ o °
-30 b o r Lok y .
4000° & =5—345 p =1 ‘000
—40 ] 1 1 1 1 1 ] L
0 20 40 60 80 100 120 140 160 180

Figure 49 Backscattering Patterns of a Bare, Single- and Double-
~ Edge Coated Ogival Cylinder. (a) TM Case. (b} TE
Case. _



59

20.

e,-(a.ga,r)/r 7
. © g0

27

10.

o/A (dB)
o
]

---------

20 ...|?...|.'..|...1...|...|..1|...r...
" 0. 20. 40. 60. 80. 100. 120. 140. 160. 180.

o (degrees)

Figure 4.10: Bistatic Scattering Pattern of an Inhomogeneous Circular
- Cylinder.




60

unknowns. Here is an inhqmogeneous dielectric circular cylinder having radius 1.24
#nd the permittivity of the dielectric varying in the radial direction according to
& = (242 —-r)/ r Since the permittivity tends to infinity at the center, a conducting
cylinder of ra,diusj 0.2 is used to replace the dielectric there. The results for bistatic
scattéring are shojwn in vFig‘ure 4.10. For computation, the cross sectién of the dielec-
tric cylinder is sdbdivided into 3948 triangular elements, result'iug in Ny = 94 and
Np=2068. | -
E. An Inhomogeneous Rectangular Cyhnder

This example is an mhomogeneous rectangular cylmder of size 3.8Ax1.2). The
| permittivity of the cylinder var:es,along the y-direction as ¢, = 1 4 cos(yr/a), with
a = 3.8) being ‘t.:he height of the cylinder; the permeability is a constant, 'having
#r = 1.5. Both .biistatic and backscattering results .a.re given in Figure 4.11. In this
case, the number of triangular.el.ements is 3648, resulting in N, = 200, N; = 1925.
F. An Inhomogcﬁcom Triangular Cylinder

The last exarﬁple is an inhomogeneous triangular cylinder with the length of each
side equal to 2.77A. The permittivity and permeability vary along the z-direction as
& =1.5+0.5z/h and g, = 2.0 —0.5z/h; respectively, where h (= 2.4)) is the height |
of the triangle. The results are presented in Figure 4.12, again for both bistatic
and 'backscatterinjg In this compu'tatiozi, the numbexz of tri.a,ngular elements is 3844,
resulting in Ny = 185 Ny = 2016. |

All above computatlons were performed on an Apolio Domain workstation (using
Domain series 3000 and 4000 machines). The symmetry property of some examples
was not utilized, though it could have been easnly adopted to reduce the number of
unknowns. Although there is no codes available at current to check the results of
.the last three ex&mples,' some computations were perfqrméd using the VSIEM for
similar cylinders ?wit.h reduced size and excellent agreement was observed .bletween

the FEM-BEM and VSIEM solutions [Jin et al., 1988c].
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Tt should be njoted that in the FE-BE method there exists a problem of singular
frequencies due t;) the employment of the SIE. This problem occurs when the fre-
quency of the incitjient field is at the resonant frequency of the interior of the boundary
which is T'4 for the formulation in Sections 4.2.1-4.2.4 and T for the formulation in
Section 4.2.5. At such frequencies the system matrix bgcomea singular and, thus,
near and at these frequencies the solutions may be erroneous, Since the resonant
frequencies depend on the shape of the bounda.ry, the problem can be avoided by
deforming the a.rtiﬁcnal boundary so that the resonant frequency is shifted away from
that of the mc:degt field.

- 4.4. Comparison with Other Methods

In order to givcja an objective evaluatién of our FEM-BEM, we compare it with two
- other methods: the unimoment method [Chang and Mei, 1976] and the conventional
volume integral equation (VIE) method [Harrington, 1968}, both of which have been
widely used in scjattering'computations_ of inhomogeneous cylinders having both ¢
and p different fré)m their free-space values. |

In Table 4.2 wé list the number of nonzero matrix elements that need be generated
and the size of .t'ht?e mak.rioes to be solved in each of the three methods. In the FEM-
BEM, [K;] has a;bout TN nonzero elemehts, gince & node is imuaily connected to
six adjacent nodes;, and due to the symmetry of the matrix, only 4N, 1 elements need
be generated. ‘ZN,; is the number of nonzero elements in [K4], and 2N3 the number
of nonzero elemeﬁts in [P44] and [P4j]. As previously shown, two matrices need
to be solved: one is [P],] of size N4 x Ny, and another one is the symmetric and
sparse matrix [K n] which in banded form is of size Nix B with B bemg the half
bandwidth (mcludmg the dxagonal) of the matrix.

In the ummoment method, as originally developed, an artificial circle is drawn
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Table 42 Comparison of the Three Methods.

Method = | FE-BE method | Unimoment method I VIE met_hod

Elements to generate | 4N7+2N4+2N3 | 4N+2No+4Q? 9N?
Matrices to solve N;xB, NixNy NxB', 20%x2Q 3Nx3N; |

to enclose the ent.;ire scatterer. Assume N is the fotal number of the interior nodes
and .Na the tot#lj number of boundary nodes. One needs to generate 4N nonzero
elements for the njlatrix [Q] and 2N for the matrix [T'] (see [Chang and Mei, 1976},
eq. 21). 4Q%is thé number of elements in a matrix of size 2Q x 2@Q), resulting from the
continuity conditions ‘o.n the circle, fvhere @ denotes the number of harmonics used
to expand the ﬁela in the exterior region. In this method, also two matrices need to
be solved: one is tha.t with the size of 2Q x 2@, and the other is the symmetric and
sparse matrix [Q] which in banded form has the size N x B’, where B’ is its half
bandwidth. ‘ _

In the VIE me{:hod, one needs to generate and solve a matrix of the size 3Ny x 3Ny,
since at each nodej there are three unknown equivalegt polarized current components.

In order to oc;mpare the present FEM-BEM with the unimoment method .we
need to consider three cases. For a scatterer having its cross section close to a circle,
the magmtudes of Ny and N are about the same, and so are the magmtudes of B
and B'. Since thg number 2@ can be smaller than N4 for far field calculation, the
unimoment me_tho:d in this case is more efficient than the FEM-BEM. However,. for a
slender scatterer ﬁvhqse cross section sﬁbstaniia.lly deviates from a circle, N is much
larger than Ny, and B' is also larger t;ha,n B. Even tBOugh the number 2Q is possibly
smaller than NA,i the’FEM‘-BEM in fhis case is expected to be competitive with
the unimoment rﬁethod. Finally, for the case of multiple scatterers, and especially
when the scatterers are far apart, the FEM-BEM may prove to be more efficient.

This is because in the FEM-BEM the artificial boundary I'y can be split into several
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contours, each emj:losing one scatterer, while in the unimoﬁmt method a single circle
is used to encl_ose?all scatterers. Howevei', a modification to the unimoment method,
which uses a bouﬁda.ry conforming to the surface of the scatterer, would enhance its
efficiency. One such modiﬁca.tion, the FEM—EBCM,. was presented by Morgan et al.
[1984] for the case of dielectric bodies of revolution, and if applied to two-dimensional
problems it wouici result in an efficient numerical technique.

Comp_ar_ing thjépresent FEM-BEM with the conventional VIE method, we find
that the FEM-BEM, like the ﬁnimoment method and the FEM-EBCM, is far more
efficient than the VIE method. For the problems of size comparable to .t.hose of last
three examples ct;nsidered in the previous section, ﬁsing the VIE method, one would
have to generate ;llany more ﬁatrix elements, about four hundred times the number
needed in the FEM—BEM The computational differences in solving the matrices is
expected to be even larger, though no accurate number can be stated, sinée the
computing time depends on the algorithm chosen for solving the matrix. We note
that for the case of dielectric (g, = 1) cylinders, the ﬁqmber of unknowns in the VIE
method reduces éo 2Ny for‘ H-polarization and to Ny for E—pqlarization. We also
note that the volume integral equation involving three equivalent pola.rized current
components can }be transformed to an integral equati'onrhaving both volume and
surface integrals .jbut ohly involving one a.xia.l field component [Jin et al. 1988¢].
Such a volume-sﬁrfa.ce iﬁtegra.l equation provides a technique (VSIEM) much more
efficient than the VIE method; hoWevgr, it still would not be competitive with either
the FEM-BEM or the unimoment method.

4.5. Concluding Remarks

In this chapter, we described a technique which combines the finite element

method and a surface integral equation for solving the scattering by infinitely long
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cylinders. This technique relaxes the restriction that the artificial boundaries be cir-
cles to the condition that the boundaries follow the shape of the scatterer, and thus
solves the probler?x numerically more eﬁicienﬂy. Numerical results were presented to
validate the techniqﬁe as well as to demonstrate its versatility and cé.pability.' We
note that the 'conj'es_ponding .computer progfam has been successfully used to gener-
ate solutions to vérify other methods [Jin et al., 1988¢c; Jin and Liepa, 1989b; Riéoy
and Volakis, 1989]. ‘We also note that since 1987 when we presented the technique
at the IEEE International AP-S Symposium/URSI Radio Science Meeting, we have
geen more researcjhers attracted into this technique. As & result, more papers were
presented on this jsubject at 1988 and 1989 AP-S International Symposia/URSI Ra-
dio Science Meetipgs [Wu et al., 1988; Collins and Volakis, 1989; Yuan et al., 1989;
Boyes and Seidl, 1;989]. Though they abpe_ared in different forms and different names,
the basic principk;. behind them is the same as presented in this chapter.



CHAPTER V

SCATTERING BY COATED WEDGES AND
HALF-PLANES

In the prevxous chapter, we presented a hybrid method to deal with scattermg by
cylmders whose cross sections are of finite extent. In tl:us chapter, we will consider
| scatterers whose cross sections are of infinite extent. Two such typical scatterers are
the wedge and half-plane which still attract considerable interest in the field of elec-
tromagnetics. We will show that the method presented in the previous chapter can
be extended to deal with such pfoblems by incorporating the physical optics approx-
imation. The'palfticular problem we consider here is the scattering by conducting
wedges and half-pla,nes coéted with dielectric andfor magnetic materials. We will
first give a brief introduction to the problem and describe a hybrid formulation for
E-polarization. Numerical results are then presented and discussed, followed by a

short conclusion.
5.1, Introducti

Electromagnetic scattering by a perfectly conducting wedge and a half-plane are
two canonical preblems in electromagnetics. Their analytical solutions are well-

known and can be found in many reference books [Bowman et al., 1969]. By coating
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the wedge and thé half-plane with dielectric and/or magnetic materials, their scat-
tering patterns can be changed. This concept is often used for the purpose of radar
‘cross section reduction. For these problems, no exact analytical solutions exist. An
approach to the problems is to model the coated wedge (or the half-plane) by a wedge -
(or a half-plane) of the same geometry, but with an impedance boundary condition
(IBC) applied to ;ts surface, and then to obtain the solution using readily available
methods [Senior, 1952; Ma.liuzhnets, 1958; Tiberio, 1985; Volakis, 1986]. However,
due to the édge effects the surface impedance may not be uniform near the edge,
‘and, even worse, @he impedance value cannot be predicted there Eccufately. Hence,
the applicabilitj 6f the above approach remains questionable. One way to obtain
valid results is to go to numerical f.echniques; |

For many yé#s, numerical techniques have been developed for solving various
‘scattering and antenna pfoblems. Among them, the method of moments (MM) is
‘best known [Ha.rﬁngton, 1968]. However, the finite element method (FEM) has
advantages for dealmg with problems involving inhomogeneous media [Silvester and
Hsieh, 1971; McDonald and Wexler, 1972]. Nevertheless, both the MM and FEM are
only applicable tq electrically small or medium bodies. For dealing with electrically
large bodies, such as wedges and ha]f-_pla.nm', various hybridrtechniques have been
developed. ‘ | |

Following is a brief review of the previous works. In 1971, Morita [1971] applied
the MM to TM sc&.tering from a conducting half-plane by subtracting out the phys-
ical optics (PO) current. In 1975, Burnside et al. {1975] combined the geometrical
theory of di_ﬂ’ractiﬁon‘ (GTD) and the MM to treat a conducting wedge by adding
a diffraction terzﬂ to the PO current. Soon after, Wu and Tsai {1977b] applied the
same technique toa dielectric wedge; however, in their formulation, only the PO cur-
rent was used, sinjce the diffraction current is unknown for dielectric wedges. More

recently, Newman {1985; 1986) presented a MM/Green’s function solution to the
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scattering by a dielectric and/or magnetic cylinder in the presence of a half-plane.
In his formulation, a half-plane Green’s function was used as the kernel of integral
equations. Note that all these efforts employed the MM.

In this chaptexf, & numerical technique is presented for investigating the scattering
by a coated wedgé a.nd half-pla.ne. The basic concepf employed here is similar to that
-used by Morita [11971], Burnside et el. [1975] and Wu and Tsai [1977b], except that
a finite element-bbundary.élement (FE-BE) method [Jin and Liepa, 1988a], instead
of the MM, is used to compute fields near t.he edges. The use of the FEM allows
one to efﬁcientlj handle more complicated problems involving inhomogeneous me-
dia. In Secti.on.5.2ﬁ, a procedure_ of combihing the FE_M with surface intégrai equation
.(SIE) and PO formulations is described for a coated we&ge for E-polarization. The
analysis for a coated half-plane and for H-polarization is similar. In Section 5.3,
numerical results for the surface fields .are presented and discussed to show the valid-
ity and applicability of this technique. Also presented are the corresponding surface

impedances calcuiatéd from the surface fields.
5.2, Formulation

Consider the a;cattering by a coated wedge with a TM (E-polarized) plane wave
ii:cident:e. The coja.ting ié chara.c_terized by complex permittivity ¢ and permeability
#- To solve such an unbounded problem, thé whole solution region is divided into
three sﬁbregions (see_ Figure 5.1). The ﬁrét region, where SIE applies, lies outside
of abede. The second region is enclosed by abAA’ and edEE". The coating in this
region is assume(% to be homogeneous and of uniform thickness, and thus the PO
approximation cax} be used. The interior of the contour ABCDEF A forrms the third
region, in which the FEM is used to compute the field. In this region, the coating

can be inhomogeneous and the geometries can be arbitrary. The problem is finally
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solved by couplmg these three subreglons Following is a detailed description of the
techmque | |
In the FEM xfegion defined by the contour ABCDEFA, the electric field E,

satisfies the wave equation (4.1} which is rewritten here as

v- [,( )VE]+k?,e,(r)E =0 (8.1)

where ¢,{F) and p:..(F) denote the relative permittivity and permeability, respectively.

‘The solution to (5.1) can be obtained by solving the variational problem
§F = 0 (5.2)

with

1 o
Fj = / jR :{#r(F VE,-VE,-koe,(r)E,-E,}ds

= foroor g BV E Al | (5.3)

where Rj denoteé the FEM region, ko is the free-space wavenumber, and # is the
outward normal 1jmit vector. Note the line integral‘ove; EFA is neglected since we
‘assume the wedgé' to be a perfect conductor. The solution to (5.2) can be obtained
‘ only if one has complete boundary information on ABCDE.

If the mterfm between the FEM region and the PO teg:on, TE and DE, are
- far enough from iéhe edge, the fields there can be approximately represented by the

PO fields. As a consequence, one can obtain an approximate boundary condition
VE, -i=UE, (5.4)

where the unknov;rn coefficient U will be derived later. The line integral in (5.3) can

then be written as

' '[_5_5_ 1, E,VE, - hdl
ABCDE pt,(F)

= «’;:I-E, cEydl + fr—-E B+ [ EVE, -#dl  (55)
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where the subscripts 1 and 2 refer to the corresponding parameters on AB and DE,
respectxvely The ﬁrst two mtegra.ls in (5.5) can be discretized while the third one
remains unknown. |
If we use subspnpt B to refer to nodes on BCD and I to refer to other nodes
in the FEM regioi:, application of the finite element analysis to (5.2) together with
(5.3) and (5.5) rpéults in the matrix equations |

[Aspl{¢s} + [Aeil{¢1} = {¥s} (5.6)
[Aig]{¢e)} +[Aul{ér} = O : (5.7)

where {¢} denoté the discretized fields E, at nodes; {¢B'}.in (5.6) comes from the
line integral on m, which is unknown. However, the problem can still be solved
if another relation between {¢s} and {¢;} can be found to replace (5.6). Such a
sidestepping of (5.6) was justified in the previous chapter. The required alternative
relation between ;[4)3} and {4} can be found using the SIE together with the PO
approximation. | |

In the SIE region, which is the outside of abcde, the field can be computed using

a surface integra.ljcquation ;
E(F) = ENO(7) = [ {GoR,FIVEL(F)-# ~ EL(7)VGu(r7) - ¥}l (59

where 7 refers to mtegra.tlon point on a W and ' the outwa.rd normal unit vector.
GolF, ) is the well«known two-dimensional free-spa,ce Green s function. Using the

PO fields to approxunate the fields on ab and de and defining

E:(F) = E,’NC(F) - A{ }dl' - fa:{ }dr (5.9)

one can write (58) as

E,(7) = EX(F) - A_d{ }dv | (5.10)
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In accordance w1th the boundary element method, applymg (5.10) to compute the

fields at nodes on F(‘Jﬁ one then obtains the matnx equation

{45} = {45} + [Posl{¢s} + [Par){¢:} (5.11)

where the subscripts B and I imply the same as in (5.6) and (57) Thus the matrix
equation (5.11) provides the second relation between {¢5} and {¢1}.
By jomtly solvmg (5.7) and (5 11), one obta,ms the fields on BCD

{¢B} [Pes]™ {45} (5.12)

where [Pg Bj = [I]— [Py g]+[PBI] [Af1]7*[A18). The fields inside can then be computed
from (5.7) as | |

{¢ny = ~[An]""[A18]{¢5} (5.13) -

Knowing the fields {¢p} and {¢r}, oné can easily find the scattered field.
To impiementg the above procedure on a computer, one needs to derive the PO
field expression to be used in (5.9) and the coefficient U in (5.4). To do this, consider
“a TM plane wave incident upon a coated conducting plane at an angle  from the
normal (see Figufe 5.2). The total field above the coating is the superposition of the
incident and reflected fields |

EFO(F) = EINO(F) (1 + R e~ i%ovooe?) (5.14)

where R is the réﬂection coefficient given by

A+jB

R=1-35

with

A= ZcosOtan(ktcost'), B = Zocost', k=w /e

| | in?
Z=\[E, Zo=‘/£-q, cosd' = l_sma
. ¢ 7 € ' ‘ Erfir
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: Figﬁre 5.#: Geometry of a Coated Perfectly Conducting Plane. ‘

The coefficient U in this case is then
U= ~jkosinf | (5.15)

and this along w;t.h (54) is valid everywhere (above and within the coating) on the

plane perpendlcular to the z-axis.

To show the Midity and effectiveness of the technique described above, a com-
puter code was developed to calculate the surface fields on coated wedges and half-
planes for unit i.mplifude plane wave incidence. Before the final results can be
obtained, the followmg questions must be first resolved. _

The first one conoerns the mtegrat:on over the PO regions ab a.nd dein (5.9). The
PO regions extend to infinity; however, in computations one needs only to integrate

over a finite section, since the Green’s function and its derivative provide an integrand
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whose _ma.gnitudej monotonically decreases w_'ith an increasing argument. The length

~of the section to be integrated also depends on the dii‘ection of the incident wave.
For a desired acc{xracy this length can vary froin several wavelengths to hundreds of
wavelengths for different directions of incidence. Hence one has to judiciously c_hoosé
a criterion to truhcate the integration In the half-plane case, when the direction of
incidence is near edge-on, the range of integration will be minimum, i.e., the inte-
gration converges ra.pldly However, when the incident angle approaches 0° or 360°,

"the mt.egtatlon range will be maximum. Exploratory oomputatmns show that for
incident angles wnthm 135 < ¢ < 225" 2 10\ (free-space wavelengths) integration
range is sufﬁcneny. This problem is analogous to that of near-field calculations for a
travelling.wave aﬁtenna.

The second qﬁestibn is how far from the edge the PO approximation becomes
valid. To approaich this, one can make an estimate by performing sample compu-
tations. The ana;wer depends on many factors, such as the coating thickness, its
constitutive paraﬁieters, the incidenti field direction, and the desired accuracy of the
results. To give an exa.mp!e, computatxons were made on a half-plane with one face
coated with a dlelectnc material and the other left bare The problem is illustrated
in Figure 5.3(c) where the coating thickness, the dielectric property and the incident
angle ¢ are shoufn. The FEM region is defined over 0 < z £ ! and fhe PO region
over z > l. Computations were made for four different I’s and three of them are
shown in Figure 53 The fourth computation, which is not shown in the figure, for
1= 2.0 shows that if the observatién point is farther than 1.5X away from the ‘edge
the surfa,cé ﬁel'dsf deviate from the PO fields by less than 2%. It is interesting to
observe in Figure 5.3 that even for an inadequately small ! the results in the FEM
region are still valid. However, this only occurs when 90° < ¢ < 270°. If ¢ < 90° or
¢ > 270°, the approximate boun.dary condition (5.4) at 2 = { is not appropriate for

small I, since there are two waves propagating in opposite directions.
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Since l';here are no results, to our knowledge, available for a coated wedge or half-

- plane to validate our results, surface currents of a perfectly conducting half-plane (a

special case of a c@ated ha!f;plane with ¢, = g, = 1) were computed for various angles
of incidence. Verjr good agreemeﬁt was obsérved betwéen the numerical results and
the exact solutiorjts.

To show the feasibility of the technique, four examples are given below. The first
is a coated rightwa;ngled wedge, and is illustrated in Figure 5.4(a). The surface electric
field and its nomjla.l derivative are given in Figures 5.4(a) and (b), respectively. The
fields on the two ;ides of the wedge are identical because of the symmetric incidence
(¢ = 135°). Frofn the results we see that the fields change greatly near the edge,
while far from e%lge they tend to constants which, as one would expect, are the

PO fields. To check the validitj of IBC on such a structure, the surface impedance

{Eqgn/ Hian) normalized to free-space intrinsic impcdance Zy was calculated and is

given in Figure 5.4(c). One finds that at points farther than 0.1X away from the edge,

the IBC providesj a very good approximation. However, close to the edge, the IBC

would be invalid #ince the computed impedance value deviates drastically from that
predicted by PO. It should be noted that in the computafions, the phase reference
point was usuallf shifted to the FEM/PO interface, and as a result the phase data
for the field and ijts normal derivative are shifted by 'a.constant phase. However, this

has no effect on the surface impedance values.

The next exa@ple is a half-plane with its edge and two faces coated by a lossless
material, as depicéted in Figure 5.5(c). The results are presented in Figure 5.5, where
the edge effect o# the surface fields and on the surface impedance is clearly seen. It
is of interest to nbt_e that even for a lossless coating the impedance around the edge
has a resistive oo‘jmponent, indicating energy flowing into the coating. At the lower
(shadow) surfaoe;the' imﬁedance'has a negative resistance, which indicates that the

energy is flowing out from the coating.
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The third ex#xﬁple s‘hows. an inhomogeheousfy coated half-plane. with edge-on
incidence, a.s skei;ched in Figure 5.6(c). The relative permittivity of the coating
varies along the surfa.ce from ¢ = 4 at the edge to ¢, = 2 at infinity according to
& =2.0(1 e X ). The results for the upper surface are given in Figure 5.6 and,
due to symmetry, are the same for the lower surface.

One may note that the examples ptesented above were made for thin coatings
which are not able to support surface waves. As a final example, a half-plane with its
upper face coa,tedjl by a thicker lossy dielectric was considered. For top incidence the
results are showx; in Figure 5.7, and there one clearly sees the oscillatory behavior
of the surface ﬁeids due to the interaction of the incident and reflected fields with
the surface wave éxcite& by the edge. We note that even though the present analysis
does not include?the surface waves in the PO region formulatio_n, the results show
such waves and their correct interference patterns in th_e FEM region. This indicates
that the present jtechnique_is also applicablé to the thick and lossy coating cases.

It should be inoted that for lossless coatings which are sufficiently thick (¢ >
0.25Af (e, ptr — 1)17 N to suppdrt‘surfa.ce waves, the present technique may not give
accurate results. The difficulty will be mﬁre pronounced when one extends the
technique to the tra,nsverse electric (TE) case, since there surfaoe waves are always
present, no ma.tter how thin the coating is. To overcome such a difficulty, one would

need to mcorporqte expressions for surface waves in the PO formulation.
5.4. Conclusion

This chapter presents a numerical techmque for computing TM scattering by per-
fectly conductmg wedges and half-planes coated with dielectric and for magnetic ma-
terials. The techmque combines finite element method with surface integral equation

and physical optics approximation. Numerical results are prdcented and discussed
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for coated half—pl}xnes and a coated right-angled wedge. The tgchnique allows one to
sfudy the scattering behavior of coated wedges and half-planes as well as the surface
impedance behaﬁor around the édges of such structures. From computed data one
can extract diffréction coefficients, which then may be used to extend the GTD to
coated structures. The shortcomings of this technique are also pointed out. Incor-
poration of aurfa;:e waves in the formulation may allow to treat thick coatings and

TE incidence case.



CHAPTER VI

SCATTERING BY INHOMOGENEOUSLY FILLED
THICK APERTURES

The hybrid technique that combines the finite element method and the surface
integral equation% has Béen Well-esta.blished in C‘hapter 4 for scattering by cylinders
and in Chapter 5 it has been extended to solving for scattering by wedges and half-
planes by incorpfi)rating the physical optics approximation. In this chapter, we will
deal with the electromagnetic characterization of the transmission and scattering
properties of an hpertu're' ina thick conducting plane filled with an inhomogeneous
composite ‘material, a problem which is of considerable interest in electromagnetic
enginecring,. The1 priﬁciple of the technique for this analysis is basically the same as
“that in Chapter 4; however, to allow the treatment of large apertures, the conjugaté
gradient 'method? and fast Fourier transform wiﬂ be erhi:xloyed for the solution of
the resulting syéﬁem. querical examples will be presented which demonstrate the

validity, versatility and capability of the technique.

The problem ?of electfomagnetic diffraction by a slot ina perfectly conducting

plane of finite thickness has been studied extensively, Lehman [1970] and Kashyap

84
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and Hamid [1971] employed asymptotic techniques; Neerhoff and Mur {1973] consid-
ered a for_mulatioh of coupled integral equatione; and Hongo and Ishii [1978] utilized
the Weber-Schafi:xeitﬁn integral technique. Also, Auckland and Harrington [1978;
1980] considered modal and nonmodal formulations where the method of moments
was employed to solve the coupled integral eqﬁations. These ﬁolution approaches are
usually restricted to rectangular slots or slots of arbitrary cross section filled with
a homogeneous ér at most partially homogeneous material. Also, except for the
asymptotic solutions presented by Lehman [1970] and KaShyap and Hamid [1971],
all others, espedally the one by Auckland and Harrington [1980], require excessive
storage to invert_j the resulting matrix. In this chapter we present a method that
alleviates both of those limitations. |

The method combines the finite element method (FEM) and the boundary inte-
gral equation forinﬁlation. The FEM [Zienkiewicz, 1977] is known to be well-suited
for dealing with material inhqmogeneity and geometry irregularity and resulis in a
very sparse matriix. It 'hag recently been used by Jeng [1988] to compute the ad-
mittance matrix of an air-filled ca.vity-backéd aperture for transverse electric (TE) |
incidence. In thié chapter the FEM is employed to formulate the fields within the
slot and establislf a relationship with those at the aperture. The fields external to the
slot are expresscd as an integral over the aperture and a system of integral equations
is then obtained by enforcmg field continuity across the aperture. These are solved
via the conjugate gradient method (CGM) and in the process the boundary integrals
are efficiently evﬂuated via the fast Fourier transform (FFT).
| The ca,pabiliéy of the FEM to treat structures of arbitrary geometry as well as
material composi%tion and that of the CG-FFT method to deal with large systems are
demonstrated hejrein’. Although this combined methodology is applicable to a wide
class of mnﬁguf#.tions, in this chapter we restrict its application to tht_it of a two-

dimensional slot iin a thick perfectly conducting plane with TE or TM (transverse
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magnetic) incidejnce. To show the versatility of the combined FEM and CG-FFT
method, mmputé.tions are presented for slots filled with multilayered dielectrics that

may also supporﬁ embedded conducting strips.
E 2 I] . » ]{ E ] !c

Consider the geometry illustrated in Figure 6.1, This specific configuration con-
sists of an inhomogeneous material slab inserted between two metallic half-planes of
the same thickhe%ss. The relative permittivity and permeability of the material will

be denoted by ¢.(F) and g, (F), fespectively. For further reference, we will denote the
upper half'-spa.cei(y > 0) as region I, and the lower half-space (y < —t) as region
IL. Also, the cross section of the slot (0 > y > —t) will be referred to as region IIL
In the following, we first present a general formulation for the scattering by such a

structure and thén give detailed formulations for TM and TE cases, respectively.

6.2.1. General Formulation

For the problém of scattering by an aperture in a thick, infinite ground plane,
it is customary t§ decouple the fields in the three i'egions by closing the upper and
lower apertures ‘Z;f the slot with a perfect conductor and introducing the equivalent
magnetic currents M, aﬁd M, over the extent of the apertures, as illustrated in

Figure 6.2. Based on the equivalence principle {Ha,r:ingtoh, 1961},
M, =FE,xj, My=E;x(~f) ' (6.1)

where E, is the ﬁeld at the upper aperture (y = 0) and likewise E; is the field at
the lower a,pertur?e (y = —t). Both currents reside on the surface of a ground plane

which can be removed by application of image theory.
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- The field in region I can now be.expresséd as the radiation caused by M, and the
impressed sources.; (7' ’ -AT) We will denote the tangential (to the aperture) magnetic
field at y = 0 as Tf{ (]71,7',]?') ‘Similarly, the tangential fnagnetic field at y = —t
in region II will be denoted by A (M,) as generated by the equivalent magnetic
current T\Zg ‘over i:he lower aperture. Enforéing continuity of the tangential eléctric
fields at the upp«iar‘ and lower apertures of the slot, the fields within region III can
be expressed as the radiation of the equivalent magnettc currents —M; and —M,
as illustrated in F}gure 6.2(c). _
The fields in ea.ch reglon are coupled by requiring continuity of the tangential
magnetic fields a.cross the slot opemng We then have

1 ﬁ‘rth F) ﬁfln("ﬂh"nn) (6.2)
R A Hfz"(—ﬁx,-—Mz) . (63)

where ,I{ T and ,I: T denote the tangential magnetic ﬁelds in region IIl at y = 0 and

= -1, respectlvcly.

~ Traditionally, ?(6;2) and (6.3) are employed in constructing integral equations for
the solution of tile magnetic currents My and M,. In this procedure, the fields
in each regi-on aré expressed as an integral over the aperture currents utilizing the
apprdpria.te Greeﬁ’s function applicable to each region. In regions I and II the free-
space Green’s 'fuiiction is required, whereas in region III the appropriate Green’s
function must be fderived to satisfy the pertinent boundary conditions. Clearly, for a
slot of arbitrary céross section and filled with inhomogeneous material the derivation
of the Green's f9nction for region III may not be possible and this is the major
limitation of tra(iitional approaches. |

In the propdséd formulation the variational etjuation

_ §F =0 | (6.4)
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with |
’ | 11 w111 111 | 11T ==IIT
F = | —(VxE"Y} (VXE Y =keE " - E ]d:cd
L[ %) (7 xE") -5 v
~2jkeYs [ Wy Ty'de - 2jkoYo Lm‘if‘,‘:’dz (6.5)
; T _ 3
or

Foe [ [ [E@xE™) (9 xT™) - B B oy
~2jko¥o jp 1 M, B4 - 25koYo jp ’ M, f;"dx (6.6)
is employed in région III, where ky = 2x /) is the free space wavenumber and Z; =
1/Ys is the free épace intrinsic itﬁpedance.' Also, ) denotes the cross sectional area
of region III, I‘,jS is the line segment. specifying the upper aperture and I'; is the
corresponding lir?xe'segment specifying the lower aperture. Equation (6.4) can be
discretized in the standard manner employed in finite element techniques to generate
| a matrix relationj between the apefture and internal fields. The incorporation of the
boundary conditions to be satisfied by the internal fields is rather straightforward
after a disCretizaj,tion' of (6.4). Eésentially, the intrédﬁction of (6.4) eliminates a
need to find the Green’s function associated with the interﬁa,l structure of the slot.
More importa.ntl&, the application of (6.4) is independent of the slot’s cross sectional
geometry and miaterial filling once the appropriate finite element mesh has been
generated.
The boundarj conditions (6.2) and (6.3) in conjunction with (6.4) and (6.5) or
(6.6) imply a system of equa.tiohs for the solution of the magnetic currents M, and

M, to be employed for the computation of the scattered and transmitted fields.
6.2.2. Formulation for TM Case

For TM (E'-péla.rization) incidence, the impressed or incident electric field Ei‘"c



91
is z-directed a.ndj thé equivalent magnetic currents M, and M, may be written as
My = iMy(z) = —2E] = —2EM" onTy (6.7)
My = iMy(z) = 2E" = 2EI"" on T, (6.8)
The electric ﬁeld in region I is now given by
: Et(x’ ) E"”(z, y) o+ Efeﬂ(z’ y)
1= j M, (x')H"’ (ko\/(z —Pti)dd (69)

where Ef¢f! is tﬁé electric field reflected from the infinite ground plane in the absence
of the slot and H ® is the zeroth order Hankel function of the second kind. The
corresponding tangentlal magnetic field at the aperture is given by

koY ( 1 8

l(o,0) =202(0,0) = 228 (14 2 2) [ a0kl — e (610

where H,‘,"" denot.es the z-’oomponent of the incident magnetic field.

Similarly, thejelectric field in region IT is given by

EM(z,y) = -—-—- f My(z')HY (ko\/(:rm— )=+y=) dz’ (6.11)

and the correspmj:ding tangential magnetic field at the aperture is found as

L kY. 18
H (2, 0) = --%-2 (1 + 'k'g'é?-') jr 2 M,(x')Hé”(_ko;x - 2'|)dz’' (6.12)

The functional F to be employed in (6.4) becomes

AR (5] -ve e

;-2jkozo j My Hdz — 24k Z0 j MyH Mg (6.13)

By further moorporatmg (6.2), (6. 3) and (6.7), (6.8) along with (6.10) and (6. 12),

can be more exphcxtly written as

SRR ()]st
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+3 '/1:1 E.(z) [(kg + -;5;) /l‘: E,(x')Hy)(kqlm - z’])dm"] dz
43 [ @) [ (K+ ) [, B bl - o]
HjkoZy ]r Eu(e)Hi(z,0)de (6.14)

where the _supersfcript IIT on E, has been omitted for convenience. A numerical
solution for E, can then be obtained by solving the variational equation (6.4).
Once the apertjl:ure electric fields are obtained, the scattered field can be computed
from (6.9) and (6;11) and the scattering radar cross secfion (RCS) can be evaluated
from [Bowrman et al., 1969] | |
o=—IPE)P (6.15)
Ko
where ¢ is the objservation angle measufed from the z-axis and P(y) is the far field

coefficient P(y) given by -

P(y) = -’529- jp ’ E(z)e®**¢sinpdz 0<e@ <7 (6.16)

P(p)

--k-qf E,(z)e"" ™ ¥sinpdz 7 <p<2r (6.17)
2 Jry _ ‘

The time average power per unit length (in the z-direction) transmitted into

region II th_rougﬁ the slot is given by
Perans = —Re j H(2)E.(z)dz (6.18)
sy . ‘

where the asterisk denotes the complex conjugate. From this, the transmission co-
efficient T of th¢ slot, defined as the ratio of Piqgn, to the time average incident
power Pj,. intercépted by ['; per unit length, can be calculated in a straightforward

manner.
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-8;2.3. Formﬁlétion'for TE Case

For TE (H -p&la’r‘ization) inéidenoe, the impressed or incident magnetic field F:
has only a z—component implying that the scattered magnetic field will also be 2-

“directed. The equwalent magnetic currents M, a.nd Mg may then be written as

W, = iMy(e) = 3Bl = $EM onT,  (619)
- M;= zMg(a:) =~3E" = -zE"" on T, {6.20)

Thé magnetic ﬁeld‘.in region I due to M, is given by

| ﬁI(F) = $HI(f) = EH"ic(z .y) + sH™(z, —~y)
| —zﬁ’fﬂ j M (2 HD (kolf - 32')ds’ (6.21)
~and ,similaﬁy, thei magnetic field in region II due to M; can be expressed as
77”(:») = tHU(F) = -z""Y" f My(z ’)H(’)(kuh' - &2'|)dz’ (6.22)
Tile functlonal F to be employed in (6.4) becqmes

- L] (5o

L2jkoY, /r My H{dz ~ 2jkoYo jr M1l (6.23)

In this case, it i; impossible to find an analytical expressioﬁ for the functional F
which couples the _ﬁe]dé in the three regions by enforcing the boundary conditioné
(6.2)-(6.3),. as is ijn the TM case. The coupling of the ﬁel’c_ls‘or the enforcement of the
boundary conditions can only be carried out after we_di;cretize (6.21)-(6.23). This
is the main diﬁer;ance between the formulations for the TM and TE cases.

Once the equivalent magnetic currents M, and M, are computed, the RCS of the
structure is again given by (6.15) with P(gb) given by

P(¢) = koYuj Ml(:c)e""’””"’d.r 0 <p<T (6.24)

P(y)

-t / M, (z)e"“’"““’dz T<p<2nm (6.25)
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" and the time average power per unit length transmitted into region II through the

aperture is givenéby_

Pirans = —Re jr Hj(2)My(z)dz | (6.26)

‘;53 N lD'. izati

In this sectioxi the functional expressions and integral equations will be discretized
using the finite e?ement and boundary element methods and systems of linear equa-
tions will be deﬁved. For discretization, the cross sectional region ) is subdivided
into M small triangul’u or rectangular elements. Aiso, the line segments I'y and
I'; are broken into L; .and L, short segments, respectively. On the assumption of a
linear field distri!jmtion within each element, the field within the eth element having
n nodes can be e;cpanded as ' |

B (or H) = S Ni(e)di = (N (#) = (817N} (620

=1
where Nf(z,y) #.re the shape functions and ¢; represent the nodal fields. In the
following we will discuss the TM and TE cases separately since their formulations

are different.
6.3.1. Discretizafion for TM Case

For the TM case, we need to derive a system of equations by discretizing and
minimizing (6.14). For the discretization of the line integrals in (6.14), we use the
mid-point field value to represent the field on the segment. Thus, the field on the

sth segment becomes

El=g(¢"+47)=¢ (6.28)
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where ¢*! and ¢'¢ denote the electric fields at the ends of the segment.

Substituting (3;27) and (6.28) into (6.14), we obtain

z{¢=}T[K=1{¢=} + zwl + 4, S 6P

e-l 1=l
+ Z(qb" +¢")8, Eé‘P.: +2jkoZo ):;(sﬁ“ ¢")H"‘°(wu0)5 (6.29)
t=1 "= .

where 6, denotes athe length of the sth segment and z, is its mid-point. The n x n

matrix [K¢) is gi&en by | o -
w = LG G G
- H{NHNY }dedy | (6:30)

in which Q¢ denétes the area of the eth element with (¢f, u¢) being the relatively
permittivity and bermeability of that element. Finally,
62 rg+61/2 (2) : \ '
Py = -- = [(k’ o 2) L‘_w (ko |:c - a:'l)d:r - (6.31)
Fdr constant € ahd pe, the element.s of [K*] can be evaluatedk analytically, resulting
in the slmple expresswns given in Section 3.3.2 for lmea,r triangular elements. The

integral in P,; can also be evaluated analytically to find

Py = é-kg_p—-?Tflog(o.maskoa.)] b —ikoHP(ks,f2) s=t (632)

P, = %kgﬂéﬂ(kolz',__ zof) + %ko {ﬂ:H{z)(ko'l:!:, -z — 6/2|)
:l: Hfz_)(kohc T 5:/2”] “-Z(% £6/2) s#i (6.33)

where Hlm is the first order Hankel function of the second kind.
In accordance with the Rayleigh-Ritz procedure,.diiferentiating F in (6.29) with
respect to each nodal field and equating the resulting expression to zero yields the

system of linear equatlons

[Al{¢} = {} | (6.34)



where [A] is an N x N squé,fe matrix with N being the total number of nodes within
0 and on Ty and T3, {#} is a column vector representing the electric field at the
N nodes and {b} is & known column vector representing the excitation. It is not

difficult to show 1j;hat [4] is a partly sparse and partly full sjmmetric matrix.
6.3.2. D_iscretiiation for TE Case

‘For the TE cése, we néed to discretize and nﬁninﬁ?e (6.23) with respect to HI!

to 'dérive a set of 31ineaﬁ- equations which, together with another two sets of equations

“derived by discréil,izing (6.21.) and (6.22), forms a system of equations for the solution
of the prob!efn. | |

~ Substituting (6;27) into (6.23) and employing a pulée basis expansion for the

magnetic currenté M; and M, we _ha.vé

M Ly L
F=3{¢YIKN Y =73 (6" + 6645 -5 3 (4" + ¢")6.¢5 (6.35)

e=1 =1 =1
where {¢°} repre;aents the nodal magﬁetic fields within the eth element, ¢! and ¢*?
denote the magnétic fields at the ends of the sth segment, and #{ or ¢ denotes the
quantity (kngMj:_) or (koYoM:) on the sth segﬁmt. The matrix [K*] is given by
(6.30) prov'ided-cﬁ and ¢ are interchanged. Minixﬁiz‘ihg (6.35) with respect to the
nodal fields yield% the matrix equation

[K1{#} + [Bi}{#1} + [Bal{t2} =0 ~ (6:36)

where {¢} is a co;_umn vector representing the magnetic field at the N nodes within

region Il and on I'y and I';. Also,

{1} = koYo{M,} e.n& {1} = koYo{M:} (6.37)

are column vectors having Ly and L; elements, respectively, equal to the number of

segments employéd for the discretization of I'; and I'y, respectively. The quantities
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in the brackets répresent sparse matrices assembled as

K] = Z[K°}, (8= SN, (B = SOBY (639)

=1 : .-l

where the elements of the column vector [B?] are given by
B =B = 5-56._

Néte that the su?bmatrices [K*®] and [B*] are properly augmented when assembled .
using the global jnodél numbers. We also note that [K] is an N x N square matrix
whereas [B] a,ndj [B;] are rectangular matrices having N x L; and N x L; elements,
respectively. |

We now proceed with the discretization of (6.21) and (6.22) to derive another
two sets of linea.jr equations. Multiplying both sides of (6.21) and (6.22) by (—j)
and applying Ga.jlerkin’é technique to the resultant equationé, we obtain two matrix

equations

[Cil{#1} = {¢"} = [A){¥1} | (6.39)
[Cal{¢2} = ~[Pa}{ta} _ | (6.40)

where {¢} and {453} are column vectors having L, + 1 and L; +1 elements, respec-
- tively, representing the nodal magnétic fields on I'y and I';. The sparse matrices [C;)

and [C,] are assembled from

G]= Z[C'] , [C'z] = ZIC’] | (6.41)

=1 =1

where [C?] is a row vector whose elements are given by

Ci=C5= —?2-5.

Again, [C*] is projperly augmented when assembled using global numbering. We note
that [C;] and [C;)] are rectangular matrices having Ly x (Ly + 1) and Ly x (L; + 1)

elements, respectjively. The column vector {¢**} has L, elements given by

$ine = 2; H'”“(z.,())& (6.42)
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where z, denotes the mid-point coordinate of the sth segment on I'y. Also in (6.39)
and (6.40), [P,] a.ncl [P;] are square matrices having L, X L, and L; x L, elements,
respectively, gwen by

Py = [x log (0. 1638k05.)] £ s=t (6.43)

P = ~§Hé”(kolz. —zlab sEt (644)

The final sysfj,em of equations is obtained by enforcing (6.2) and (6.3) on .(6.36),

(6.39) and (6.40). In doing s0, we have

K B B || ¢ 0
Bl A, 0 |yt (=)™ (6.45)
BT o {lva]| 0

for a numerical solution of the magnetic fields and currents. Note that the superscript
Tin (6.45). denotés the transpose of the associated submatrix and, thus, the operator

in (6.45) is symmetric. -

6.4. CG-FFT Implementation

While the sysi‘.ems of equations (6.34) and (6.45) can be solved via a direct matrix
inversion, this al;pfoé;ch requires a memory of O(N?) for (6.34) and O(N+L +
L,)?) for (6.45). ‘If the sparsity property of the matrices is efficiently utilized (not
necessarily a simble task), the memory demand caﬁ be reduced to O(N) + o(L}) +
O(L2?) which sth may exceed the capacity of the avaxlable storage. An approach
in dealing with. tlul difficulty is to employ an iterative solution process such as the
CGM and exploxt the oonvolutxonal nature of the boundary :ntegra,ll to reduce the
memory demand to O(N). In th:s sectlon, we describe such an approach.

Rewriting (6.34) and (6.45) as

Az=b | (6.46)
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and assuming an initial solution vector z;., the CG algorithm [Hestenes and Steifel,
1952] for the solution of (6.46) can be outlined as follows.

Inifiaiiie the residual and search vector:

rn = b— Az (6.47)

1 | |
- I ve—— 6.48
ﬁO (A"rl,A"rl) ( )
= fA’n (6.49)

Iterazje for k=1,2, N for (6.34) or N + Ly + L for (6.45):

1

O = m—— 6.50

_ - (AP],, Apk) ( )
Zrpr = 2+ oupy (6.51)
Tepl = T —apAp,; (6.52)

' 1

= 6.53

b (A%ri41, A%riga) (6:53)
Perr = P+ BeniAlripn (6.54)

Tern:fnate at k= N for (6.34) or N + Ly + L, for (6.45) or when

liresalla < tolerance | (6.55)

‘ Tl
As seen, in t};e imp!eménta;tion of the CG algorithm the coeficient matrix A is
only involved in jthe cdr_nputation of the two column vectors Ar and Az, where z
is a known colun'ln vector and the superscript @ implies the adjoint operator. This
computatioh ca,n: be accomplished rather efficiently without generating matrix A
explicitly and to illustrate this process, let us consider the computation of Az for the

TM and TE cases separately.

TM Case

The contribution of the M area elements to Az is

; |
YK {#°) (6.56)

e=1
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and since the exﬁression for [K *] is quite simple, the above summation can be carried
out very fast. The contribution of the L, and L; line segments to Az can also be
computed eﬂicie:%ttly via the FFT. For example, if we assume that each segment has
the same length § and define f, as

‘Li az +58; /2 ; | ’ '
=% [( 3::’) fa:-m Ho'kole = /l)dz ]

t=1 =T,

s=1,2,.,L (6.57)
then,
{f} = FFT™! {FFT{g} o FFT{G}} (6.58)

in which the symbol o denotes the Hadamard product. The elements of the column
vector {g} are defined by _ |
‘ e t=1,2,.,L

= {o t=Li+1,L +2,...N, (6:9)
and those of {G} are given by ‘ _
(k3 [1 — (27/m)log(0.1638ko6)] 6 — 2koH (P (kob/2) t=1
¢ o | BHE( ~ Dkat) + ko [HE (¢~ 3/2)808) 660

= HP(t-1/k8))  t=23,.,N/241
lGrpatsa  t=N;/242,N,/243,..,N,
where N, > 2L, -1 o |

TE Case |
The first N e!ement's of Az are 'attributed to (6.36) and can be computed as

| Z[K°1{¢°}+Z[B'1{¢l}+Z[B’1{¢z} - (661)

:—1

The next L; elements of Az are attributed to (6.39) and can be computed as

SNCHHY +FFTFFT(A)oFFTGY  (682)

‘zl
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where the elements in {G} are given by

(G121 - 25/x)og(0.1638K,8)] # =1

Gy =4 ~(i/2)H ")(k,,(t 188 t=2,3,.,N,/2+1 (6.63)

| GN,_,H N2 +2,N,/243,....N,
and $f = 0 for t =Ii+1,L +2,. <y Np. Similarly, the last L, elements in Az are
attributed to (6. 40) and can be computed as

| g[c']{qs,} + FFT™! {FFT{¢:} o FFT{G}} (6.64)
The computation of A°z can be accomplished in a similar manner. But, since A
s symrhetric,. tht%n A®z=A*z, where A*z can be computed using the above formulas

with [K*], [B*], [C"] and {G} replaced by their complex conjugates.

Based on the formulation described above, a general computer code was developed
and in this sectiojn we present some numerical results which validate the formulation
and demonstraté the code’s versatility. In all cases a plane wave illumination is

assumed.

6.5.1. Results for TM Case

For the sake of verlﬁcatlon, Figure 6.3 shows the equivalent magnetic currents
(normal lncndence) and backscattering RCS for a rectangular groove, depicted in
 Figure 6.3(a), and Figure 6.4 shows the equivalent magnetic currents (normal inci-
dence) and tx‘a,nsrjnission coefficient for a rectangul#r siot, depicted in Figure 6.4(c),
both filled with diiferent materials. The resﬁlts presented are those computed by this

method and the method of moments in conjunction with the modal Green’s function
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o/A (dB)

180.

¢ (degrees)
(c)

Figure 6.3: Equivalent Magnetic Current at Normal Incidence and
. Backscattering RCS for a 1A Wide and 0.25\ Deep
" Groove. (a) Magnitude. (b) Phase. (c) RCS. Solid Lines
Correspond to ¢, = 1 and g, = 1; Dashed Lines Corre-
~spond to €, = 4—j1 and g, = 1. Solid and Dashed Lines:
This Formulation; Circles and Squares: Mode Matching

Solution. ’
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Fxgure 6. 4

100. 110. 120. 130. 140, 150, 160. 170. 180.

¢ {degrees)
o)

Equivalent Magnetic Current at Normal Incidence and
Transmission Coefficient for a 1.6\ Wide and 0.25) Thick

;SIOt (3) ¢ = 1, p, = 1; Solid Line: Current on the

Upper Aperture; Dashed Line: Current on the Lower

~Aperture. (b) & = 2.56(1 — j0.1), g = 1; Solid Line:

Current on the Upper Aperture; Dashed Line: Cur-
rent on the Lower Aperture. (c) Transmission Coeffi-
cient Corresponding to ¢, = 1, g, = 1 (Solid Line);
& = 2.56(1 — 0.1}, g, = 1 (Shorter Dashed Line); and

= 2.56(1 — j0.1), g, = 1.2 — 70.35 (Longer Dashed
Line). Solid and Dashed Lines: This Formulation; Cir-
cles: Mode Matching Solution [Wang, 1984]..
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Figure 6. 5 Nlustration of an Aperture Filled with Three Dielectric
Layers and a Strip Grating. Top and Bottom Layers:
= 2.56, p, = 1.0, Thickness = 0.2 cm. Middle Layer:

c,. = 4.0, g, = 1.0, Thickness = 0.2 cm.

of the cavity [Wa.ng, 1984] It is clearly seen that the both methods give identical
results. _

To demonstx;ajte the versatility and capability of the combinéd FE-BE and CG-
FFT formulation as well as the pertinent computer code, we consider the compﬁtation
_of the plane wav§ scattering by the geometry_‘shoﬁ'n in Figure 6.5. The illustrated
configuration depicts # wide slot in a thick conducting plaﬁe filled with three dielec-
tric layers with a perfectly conducting strip grating embedded in the center layer.
The specific geon:jaetrica.l and material properties associated with the dielectric and
‘pertinent strip grjating are given in the figure. Figure 6.6 shows the electric fields
at the upper apérture, th_é center line containing the strip grating and the lower
aperture oomputt;:d at 10 GHz and for normal incidence. We note that the field
distribution wnthm each period of the strip grating is very similar and as a result,

the approximate scattermg solution for the trunca.ted periodic array proposed in [Jin
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and Volakis, 1990] will be of reasonable accuracy fdr large apertures. Some bistatic
scattering patteﬁxs are given in Figure 6.7 for three different incidence angles, The
higﬁer order Braég diffraction effects are clearly seen in Figures 6.7(b) and (c). Fi-
nally, Figure 6.8 ishc_nws' the tr#nsmission coefficient as a fundion of the incidence
angle at 10 GHz ?and as a function of frequency at nornial incidence. Note that in
all Figures 6.6-6.8, we have included infoniiation relating to the discretization and

convergence of the iterative solution.

6.5.2. Results for TE Case -

For the sake éf verification, Figure 6.9 shows the equivalent magnetic currents
M, and M; as co:mputed by this method and the method of moments in conjuction
with the slot's G#een’s function [Aucland and Harrington, 1978]. It is clearly seen
that both results ‘%are practically identical.

Next, we mngider'the computation of the plane wave scattering by the geome-
tries shown in Fisure 6.10. The illustrated configurations depict wide slots in a thick
‘conducting plane containing a (truncated) perfectly conducting strip grating embed-
ded in a multi‘la.yjér dielectric that fills the entire slot. Specifically, Figure 6.10(a)
shows a single strji'p grating centered in the slot and residing within a 0.1 cm gap
that éeparates two dielectric layers. The slot shown in Figure 6.10(b) contains two
strip gratings, ea,ch embedded in the center of a dielectric layef. The specific geo-
metrical and ma_térial properties associated with the dielectric and pertinent strip
grating are given m the figure. Figures 6.11 and 6.12 show the equivalent magnetic
currents computejd‘ at 30 GHz for Figure 6.10(&) and 9 GHz for Figure 6.10(b). We
again observe th;t the current distribution within each period of the strip grating
.is verjr similar. Séme bistatic scattering patterns for the geometry in Figure 6.10(z)

are given in Figure 6.13 at three different frequencies, all for normal incidence. Also,
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Figure 6. 7 Bistatic Scattermg Patterns for the Geometry in Figure

6.5 at 10 GHz. (a) ¢™ = 90° (Normal Incidence), 139 .
Iterations. (b) ™ = 60°, 176 Iterations. {c) ™™ = 30°,
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Squares: Data from [Aucland and Harrington, 1978}.
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Figure 6.14 includes three bistatic scottering patierns oorresoonding to the geometry
in Figure 6.10(bj at 9 GHz for different incidence angles. Finally, Figure 6.15 shows
the transmission coefficients for the two geometries as a function of frequency at

normal incidence.

6.5. Concluding Remarks

A hybrid technique was developed for a numerical characterization of the scat-
tering and trmsoﬁssion prooerties of an inhomogeneously filled aperture in a thick
conducting pla.no with TM and TE incidence. The technique combines the finite
element method %and boundary integral formulation. This resulted in a system of
equétions _whose?solution was obtained via the conjugate g.radient‘ (CG) method
employing the fa?st Fourier transform (FFT) for the evaluation of the convolution
integrals over thej aperture. The use of the CG-FFT eIixhinated & need for an explicit
generation of t’he?pertinent matrices and thus reduced the memory demand to O(N)
for the implemen’\jtla,tion of the entire system,

Differing from other téchniques, the proposed methodology can efficiently handle
any slit cfoss seotion regardless of its material properties and geometry. New ge-
ometries can be simply accommodated by 'ch‘anging the finite element mesh without
aﬁecting.thé solujtion 'proc_ess. It is,. therefore, a promising approach for treating
: large and complek radiation and scattering problems that are often formidable with

traditional techniques.
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Flgure 6. 10 NMustration of an Aperture Flﬂed with (a) a Single Lay-
- ered Strip Grating and (b) a Double Layered Strip Grat-
ing. d Denotes the Thickness of the Associated Dielectric
Layer or Conducting Strip.
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Figure 6.1i: Magnitude of M; (Solid Line) and M; (Dashed Line) for

the Geometry in Figure 6.10(a) at 30 GHz and Normal

Incidence. L, = L; = 252, N = 1771, Tolerance=0.005,

389 Iterations.



MAGNITUDE

20

115

15 F

05

:’u

10 .bﬁ

x (cm)

Figure 6. 12 Magmtude of M, (Solid Line) and M; (Dashed Lme) for

the Geometry in Figure 6.10(b) at 9 GHz and Normal

Incidence. Ly = L; = 248, N = 1743, Tolerance==0.01,
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Figure 6. 13 Bistatic Scattering Patterns for the Geometry in Figure
- 6.10(a) at Normal Incidence. (a) 3 GHz, L, = L, =
126, N = 508, Tolerance=0.005, 97 Iterations. (b) 10
GHz, L, = L; = 189, N = 1140, Tolerance=0.005, 118
Iterations. (c) 30 GHz, L, = Lz = 252, N = 1771,
Tolerance=0.005, 389 Iterations. '
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Figure 6.14: Bistatic Scattering Patterns for the Geometry in Figure
~ 6.10(b) at 9 GHz. L, = L3 = 248, N = 1743, Toler-
ance=0.01. (a) ©™° = 30°, 102 Iterations. (b) ¢ = 60°,

201 Iterations. {c) ¢'™ = 90°, 159 Iterations.



120

08

Figure 6.15:

Plots of the Transmission Coefficients versus Frequency
at Normal Incidence. The Circles Represent Actual Com-
putation Points. (a) For the Geometry in Figure 6.10(a).
(b} For the Geometry in Figure 6.10(b).



CHAPTER VII
APPLICATION OF ISOPARAMETRIC ELEMENTS

There are basjically two approaches to achieve more efficient and accurate compu-
tation of electrorﬁagnetfc scattering. One approach is to develop new methods. The
development of .sévera.l hybrid'met';hods di_s;cussed in fhe previous three chapters are
some examples m this direcfidn. An aliernative approach is to improve the existing
methods, and hefe we will consider this approach. Specifically, we will describe the
application of is_o;garametric elements in the finite eIenient—boundary element method
presented in Chapter 4 to improve the efficiency and accuracy of the solution for the

scattering by _cylihders.

7.1. Finite Eleinent-Boundamy Element Formulation

To illustrate the use of nsoparametrlc elements in finite element—boundary element

methods, we choose the formulation presented in Section 4.2.5 as an example. For

_convenience, we introduce the following notations

| 1 BE(F L1 N
W)= B, W) === W)= s v = el

- for TM mc:denceiand '
4(7) = H(r), ur) = o200, “W =y o0 = m)
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for TE madence Then, (4.17) and (4.18) can be unxformly written as

F= / / {u(f)w 7)- VH(T) = Bo(F(r) - (7))} ds - j SR (1)

and (4.20) as

47 = _ g - - [t vty - o 20T ar (2

- Note that in (7.1) and (72) the boundary conditions on I' have already been enférqed
by neglecting. thé superscripts in (4.17), (4.18), and (4.20).

In ‘aaccordanczje with the finite element-boundary element method, we need to
transform (7.1) into the form of matrix equation (4.19) and (7.2) into that of (4.21)
.to form a linear sjytem. For this, we first subdivide R into M elements and assume
that L is the number of segments on I' resulting from the subdivision. Then, we
expand ¢ in -ea.cl; element as

¢°(F) = §V°(F)¢‘ = {V’}T{¢°} {¢'}T{V°} e=12.,.M  (13)

and expand ¢ and ¥ on each segment as

) = zlv'(r)qs'-w*}‘-’w} =Y wk  (14)
() = Z,U'(r)sb,—{v'}w'} WYY s=1,2.0L (15)

where V* and Uf are the known ~expans:on functions and ¢f, ¢! and 9! are the
Corresponding unknown coefficients. ‘
Substituting (‘7.3)-_(7.5) into (7.1) yields
F= Z;{w}’[ff’ ¢} - Z:{qb'}"[B'l{w'} . ~ (7.6)
= a=1 :

in which the elenjents in [K*] are given by

ks = [ [ {uAVVE@ - V) - Bo@VE VIR s g =1,2,0m (17)
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and the element§ in {B’] are given by |

By = [ UneUiGHl hi=hol (7.8)

where 02° denotes the area of the eth element and I the length of the sth ‘segment.
Apphcatxon of the Rayleigh-Ritz procedure to (7.6) w111 then produce a matrix equa-
tion in the form of (4.19). .

Now subst:tutmg (7.4) a.nd (7.5) into (7.2), we have

L4(r) - ¢'"G(f)-;;7£, [Gotr 7)) (9 |
—{U* YT {¢*}V'Go(F,7') - #'] &I forFonT (7.9)

 where F denotesj the Cauchy principle value integral. Application of the boundary
~ element method jto (7.9) then provides a matrix equation in the form of (4.21);
From the for;ﬁulation above, it is clear that the accuracy of the solution depends
on how accurate k7.3)~(7.5) can represent the fields and how accurate the integrals in
(7.7)-(7.9) can bé evaluated. The second problem is closely related to the modelling

of geometry.

7.2. Isoparametric Elements

As we have séen, to obtain an accurate numerical solution one is required to
model both the ggometry and the fields acéﬁrately. Isoparametric elements were de-
veloped to provicie such an accurate modelling. Th&se:elemcnts bélong to a special
group in the fa.mgly of paraﬁletric elements and particularly refer to the discretiza-
tion elements whlch have the same order shape {unctlons as the field representation
within them. When using lsoparametrlc elements, the region R can be broken into
a number of elements whose sides can be curved. Figure 7.1 shows two examples of

breaking a cu'cular region into five and 12 quadrilateral elements, respectively, with
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(a) (b)

Figure 7.1: Two Examples for Breaking a Circular Region. (a) A
- Five Quadrilateral Element Model with 20 Nodes. (b) A
12 Quadrilateral Element Model with 45 Nodes.
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Figure 7.2: A Quadratically Curved Segment in the zy-Plane Can
~Be Transformed into a Straight Segment Lying on the
£-Axis. : o

quadratic shape a.nd expansion functions. In this section we will describe the for-
mulation for qua.dratica.lly curved line elements and that for quadrilateral elements

with quadratically curved sides.
7.2.1. Curved Line Elements

It can be sho;wn .t_h.a.t a quadratically éurved segment in the zy-plane can be
‘transformed into a. straight segment lying on the £-axis (Figure 7.2) using the trans-
formation | - |
3 3
2= LUz y=3 Lw (7.10)

with the quadratijc shape functions L{ (i =1,2,3) given by

L=—30-06 Li=301+66 L3=1-£ (.11)
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It is observed thai: L#(€) is unity at the ith node and thus by choosing (7.11) for the
expansion functidns in (7.4) and (7.5), i.e., Uf = L, then ¢! will coincide with the
nodal values of tﬁe field ¢°(7) and so will nﬁ,‘ It can also be shown that the field is

a quadratic expar;sion of z and y. From ('7..10), we find -

@ \I (%) + (&)=t (.12)

and the normal u:nit'vector fi is given by

. .8y l— |
- ( 3 - i% ) | (7.13)

With these relations the line integrals in (7.8) and (7.9) can be evaluated numerically.

Specifically, |
:‘ . . ) ‘
By = [ U RUiRd = [ LAOLE @)l (14
and the line integral in (7.9) can be written as |
1 _ _
I'= / B AU = [ BEALEOW©OIE (1)

If a four point Gaussxan mtegratlon formula is employed, then

Bj; = ?__; Wi L} (&)L (6::)IJr *(&)] (7.16)
= 3 WB A LENIE) o

where & = —£ = ~0.8611363116, & = & = ~0.3399810436, Wy = W, =
0.3478548451, W, = W = 0.6521451549, and 7| = z(&)% + y(&)§ in which z(¢)
and y(§;) are givén by (7.10).
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722 Quadrilateral_Elements with Curved Sides
Similarly, it can be shown that a quadrilateral element with quadratically curved

sides in the zy-piane can be transformed into a square in the £n-plane (Figure 7.3)

using the tra.nsfozrma.tion

z= iN Enzi, y= ES:N.-‘(EQ n)yi | (7.18)

=1 =1

with the shape functxons NP (i =1,2,...,8) given by

N‘-—'U~fXL-wG+W+IL §= 0+~ n)E-n-1)
N =0+ O +n)E+n=1), Ny =51 =61 +n)(~E+n-1)
N3 =31 =€) 1=n), Ng=3(1+6)(1-17)
P=50-@)1+n), M= 20-O1-7) (719)
Again it can be shown that Nf(¢,) is unity at‘ tfxe ith node and thus by choosing
them for the ex'pansionl functions in (7.3), i.e;, Vi# = Nf, then ¢ will coincide with
the nodal values %of the_ﬁeldﬁ‘(i‘). Also, the field expansion can be shown to be a

quadratic function of z and y. From (7.18) the area element ds can be expressed as

9z8y 8z dy S ye
ds = (3{6 o af)d.qu |J¢|dédn (7.20)

where |J®| is the deterrmnant of the Jacobian transformation matnx The area

integrals in (7.7) m then be evaluated numerlcally. Specifically,
= j j {uAVVEE) - VVR(R) ~ Re(AVE )V (7)) ds

_ // u(7) ONf N; aN;aN;
-1 Or 8.1: dy oy |

~ Ku(FYNE (€, m)N3(6,m)} 1I5(¢, m)\dedy (7.21)
where |
_61_V.-=.,-___ 1 (8ydNg; 8y dNg;
=7 (an T af"a':‘f‘) (722)

- - +-—---L) | (7.23)
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By using a 3 x3 point Gaussian integration formula, (7.21) can be evaluated according
to the formula

j [ Aendan=Y S wwdg,n) (29

i=1 j=1
where §; = n; = -—U 7745966692, £3 = 13 = 0.0, {3 = : 3 = 0. 7745966692 W’, = Wa =
0.5555555556, and W3 = 0.8888888889. '
We note th_ati the numerical impléfn_entation of the above formulation is rather
straightforward. | The quadrilateral elements are just one type of two-dimensional
isoparametric elefments'. Another type of elefnents is trilateral element which is also

often used and iﬁs formulation can be found in the book by Zienkiewicz [1977].
1.3, Conclusion

In this chapter we have descrlbed two types of i 1sopara.metnc elements: a quadrat-
:cally curved hne element and a quadrilateral element with quadratically curved
sides. The use of these isoparametric elements in the finite element-boundary ele-
ment methods ca?n lead to an improved efficiency and accura,cy not shared with the
traditional elemehts. Since such an improvement is well-quantified in mechanical
and structural engmeenng, it is expected that snmla.r improvement can be obtained

in electromagnetlc scattering problems




CHAPTER VIII

FORMULATIONS FOR THREE-DIMENSIONAL
| SCATTERING

For long ‘cylin?drica.l geometries with axial excitation the electromagnetic wave
scattering can be well-approximated by two-dimensional models where one deals
with only scalar fields. However, all practical geometries are finite. For the situation
where there is a ajrmme_try, such as a body of revolution with axial or circumferential
field excitation, tjhe pro.blem can ‘be still reduced into a two4dimensional one, But,
for the geometriejs; having no such a symmetry, a description by three independent
coordinates and cjonsequently 2 full three-dimensional treatment is required. -

The nutnericat a.nalyéis of thre&dimensional scattering has been investigated us-
ing integral equaiion appréachés with the method of moments (see, for example,
Schaubert et al. [1984]) The rap:d increase of the number of unknowns in the
three-dlmensmnaf case, however, prohlblts such a method for scatterers havmg a size
comparable to-thg wavelen_gth of the excitation field. Recently, the high sparsity of
the matrices produced by the finite element method has attracted more people, and
an increasing amount of effort has been concentrated on developmg various finite
element solutxons The vector property of the electromagnet:c fields, however, makes
such a development very dxﬂicult In this chapter we will propose several techniques
where the finite element method wxll be employed in con;unctxon with either a surface

integral equation pr an eigenfunction expansion.
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Figure 7.3: A Quadrilateral Element with Quadratically Curved

{b)

- Sides in the zy-Plane Can Be Transformed into a Square

. in the £7-Plane.
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8.1. Problem Description

Consider a tﬂree-dimensiona.l sca.tt.eﬁng problem illustrated in Figure 8.1, where
the volume Vis occupled by an electrically and magnetlca.lly permeable body with
const:tutnve pa.ra.meters ¢ and g which are complex if the material is lossy. The
surrounding medlum is assumed to be frec-space with constitutive parameters ¢
and po. An elect?romag‘netic wave excited by a source with -harﬁmnica]ly oscillé,ting
angular frequencj w i8 ,impinging upon the body and theﬁ scattered. Let us denote
the infinite voluxﬁe exterior to the volume V as V., and the closed surface separating
Vand V,as S. | | _

The electroma.gnetxc fields (E,, H,) inside the volume V satisfy the following

vector partial dlﬁ'erentxal (wave) equations
V x %V_xfl - w’eﬁ; =0 : (8.1)

V x -I-V XHy~wpHy=0 | (8.2)

which actually a,re the special forms of (2 14) and (2 15) for the source-free case. The
fields (Eg, Hj) outsxde the volume V satisfy the free—spaoe wave equation

VxVXxE ~kE =0 (8.3)
VxVxH,—kH; =0 . (8.4)

where ko(= w\/'e'oﬁ) is the wavenumber of free-space.

The general princi;ile of the various methods for solving such a problem is as
follows: a three—ciimensioné.l finite element method is used to formulate the fields
inside the volume V while a surface mtegra.l equatlon or an elgenfunctlon expansion,
which is a solutmn for the fields in V., is used to provide a necessary boundary
constraint on the purfa.ce S for the finite element solution. We will address the finite

element formulatibn first in the next section.
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Figure 8.13: Geometry of Wave Scattering by a Permeable Body.
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In this sectioix we déscribe the formulation of the finite element method for the

fields inside the fvolume' V.
8.2.1. Stationary Functionals of Fields

To solve (81) and (8.2) using the finite element method, we first find the corre-
sponding functionals in the volume V. In the entire domain V + V,, the functional

for (8.1) is [Silveéter and Ferrari, 1983)

_. 2///[ —(VxE) - (VXE,)~¢€E, - E]dV
+§ / j jv°° [m(VxEl)-(V xE)-eE.El]dv (8.5)

Substituting the ivector identity
1 1 —
E(V xf,)-(v XxE) = E;-Vx (mv.x E)
. 1 o
-V. [-(:’-2-,-‘-(‘7 x Ey) x EIJ - (8.6)

into the second iﬁtegra.l of (8.5) and applying the divergence theorem, we obtain

e %j/jv[;%;(VxE}(VxFl)-—cFlaFl]dV
+%/L;%;{(fo;)x3’,]-ﬁd5’ | | 8.7)

where # is the nbrmal unit vector pointing from V to V.. Equation (8.7) is the
functional expressed in terms of the electric field. A sumlar expression can be derived

in terms of the magnetxc field, which is

Ej// [;,—(Vxﬁl)—(vm)--m-m]dv
+3 j / [(VxH,)le] 7 dS , (8.8)
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Note that the smi'fa.ce integrals in (8.7) and (8.8) are the same and they can be written

as

%//S(Ex'ﬁg)vﬁds - (89)

The scalar foxmsi for (8.7) and (8.8) are respectively given by

e ) ()

+ (‘-9;;’1 -_-%g-—) ] c[E’+E’+E’]}dV

oy f js (EiHn— EnH)dS (8.10)

and

o 3 - (-

BH 6}:{ 1 2 2 )
() o

+.!2; f js (EH,, - EH))dS (8.11)

where the subscrfpt “1” on both E and H has been dropped for convenience. Also,
i and i1 are two orthogonal unit vectors tangentlal to the surface § and they are so

oriented that (1 m #) form a right-handed system.
8.2.2. Finite Element Discretization

Let the volume V be subdivided into a number of three-dimensional elements
which can be eitixer tetrahedra, rectangular prisms, or triangular prisms, or even
better, isoparameiric elements. Within each element, the fields can be expressed as

n

=Y Niew,JE;; H =Y N? (_w v, 2 H; (812

=1 i=1
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where n is the néumber of nodes within the element, Nf are the interpolation func-
tions, and (E"e ,'H”) represent the fields at the ith node Substituting (8. 12) into
(8.10) or (8.11) amd applying the Rayleigh-Ritz procedure, we can obtain a system
of linear equa,txons For example, application of the three-dimensional finite element

discretization to (8 10) results in the matrix equations

R 2+ Rl =0 1
and _

Rl (B} + R (B} + [ T} =0 a0

where {-E;} denchtes the electric field at the nodes interior to the surface §, {Es}
denotes the tangential electric field at the nodes on S, and {Tfs} is the tangential

‘magnetic field atf the nodes on S. Also, [f(] denotes a matrix having three dimen-

sions.

It is obvious that the finite element equations, such as (8.13) and (8.14), do not
form a complete system and another matrlx equation relating {Es} to {H s} is
required. In the next sect:on we will discuss several formulations to provide such a

relationship.

- 8.3. Hybrid Formulations

In this sectio:i we present several formulations which combine the finite element
method with elther a surface integral equation or an elgenfunctlon expansxon for

solving the three—dunens:onal scattering problems.
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| .8.3.:1. Finite Element-S_urface Integral Formulation

In this fonnuiation-a surface integral equation, either (2.26) or (2.27), is employed
to provide a mafrix equation relating {Es} to {—I?s}. For example, (2.26) can be

written as

B = 5~ | {9 xBRR): B0
! ijﬂ&o(ﬁ’ﬁr) . [ﬁ' i ﬁ(ﬁ')]} ds’ . '(8.15)

The discretizatio?: of the above equation on the surface S provides a matrix equation

in the form of |
(B (B} + [B] {7} = {2 (810)

where {‘E‘-_;Nc} isi the tangential incident electric field at the nodes on S, and again,
[ﬁ] denotes a m;trix of three dimensions. Equations (8.13), (8.14) and (8.16) then
form a complete ésystem for the solution of the nodal fields.

Clearly, this ft;rmula.tion is the same as that presented in Section 4.2.5 for the two-
dimensional ca,se Another formulation corresponding to the one in Section 4.2 can
also be d.evelopedi fdr the three-dimensional case by introducing two artificial surfaces
to enclose the sceixtterer and, as a result, the singularity problem in discretizing the

surface integral eﬁuaf.ion can be avoided.
8.3.2, Fihité Element-Eigenfunction Expansion Formulation

It can be shown [Stratton, 1941] that the scattered field outside V can be ex-

panded in the splierical vector harmonic functions 7* and N* as

B'®) = XD, [ 7L(kF) + .4 (keR) (817)
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where f, and g, éare the unknown expansion coefficients, D, is a normalization con-
- sta'nt,.and visa %combined index incorporating the three spherical harmonic indices.
The scattered m:fa.gnetié field is then given by
H'(R)= LvxE®) = %D, [LN.(kB) + o F(kE)]  (818)
Who v

and the total ﬁeI;ds in the exterior region by

ER=E"®+F®  (819)
HE) =F"°(B) +T'(R) (8.20)

Next, using (8.19) and (8.20) to evaluate the tangential electric and magnetic

fields at each nofde (point-matching) on the surface S, we obtain the two matrix

equations
_ [ ) _
(B} = (B} + [P * | (621
s .
( P \ _ _
{Bs}={T5}+[F)¢ " } (8.22)
\ glJ F,

where {f,} and {g,} are column vectors representing the unknown expansion coef-
ficients properly fmnmted from the infinite series. From (8.21) and (8.22) a matrix
equation rela.ting?{-Es} to {Fs} can be found as
] [ 1-1 - -1
(B} [P (P {8} = (B2} - [P [P () o
which together with (8.13) and (8.14) also forms a complete system for the solution
of the nodal fields. |
It should be njoted that in the above formulation the number of harmonics used
in (8.17) must be equal to the number of nodes on the surface S. However, the
necessary numbexé of harmonics to expand the exterior fields can be much smaller.

‘Ob_vioﬁsly, the ab}ove formulation does not exploit this advantage. In the following

we propose an alternative formulation.
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Let us first e:fcpa.nd the tangential fields on the surface S as

{ES} = z“:c.u {ESu} i {FS} = ;c“ {ﬁs‘,} (8.24)

where {Es“} anid {—I'{-s“} are the coupled basis functions, and c, is the expansion
coeflicient. The% number of expansion te‘x_'ms_in (8.24) is equal to the number of
the harmonics m (8.17). {E‘sp} and {Fsy} can be generated by selecting a set of
orthogonal known bases for {Es} in (8 13) and (8.14) and then solvmg (8.13) and
(8.14) for {Fs}

Now let the gurface 8 be divided into some smaller surfaces S; whose number
‘also equals the niumber of the harmonics. Substituting (8.24) into (8.19) and (8.20)
and integrating dver S; (subdomain method) yields

// EC#ES.«: Sﬁ// EINGJS-I-// E%dS - (8.25)
/ /S_.%Zc..ﬁs,,ds / [ as+ | j H3dS i=1,23,. (820)

These two equations, after employmg (8.17) and (8.18), can be transformed into the

two matrix equations

[Ro] e = e+ 7] | (821)
9 |

(R fed = G5y + 7] { ™} (8.28)
| 9 |

from which one can eliminate {c”} and then solve for {f,} and {g,}.
8.3.3. Finité Element-Extended Boundary Condition Formulation

This formuiati:on was proposed by Morgan et al. {1984] and applied to the case of
axisyrhmetric inh@mogeneous penetrable scatterers. In the formulation the surface

integral equation éembodied in the extended boundary condition method {(EBCM)
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[Waterman, 196§ a_!.i:d 19791 is combined with the finite element method, as shown
below. ?
According to Stratton [1941], the incident ﬁeld can be expa.nded in the spherical

vector harmonic funct:ons M and W‘
E’”"(R) =XD, [ay {(kF) + 8,F N, (koF)] (8.29)

where @, and b,, ‘are the known expansion éoeiﬁcients.' The scattered field is again
expanded as (8.1:7). In acéorda.nce with the EBCM, one can find the following four

basic lntegral equa.tlons

B f j (™, By YoM, - ‘Es) dS = jxa, (8.30)
k2 / js (M) - Es - jY%oN, Hs) dS = jrb, (8.31)
and |
irf = B / /S (IV;4E5- jmﬁ,‘,-ﬁs) ds (8.32)
irg = B [ [ (M, Bs~ j¥%;N,-Hs)ds (8.33)
Now assume éhat
Es =2 c ?_fp +2_d, __E_%“ | (8.34) -

ﬁs ] # .Hs“ L HSy

where {Fs‘,} and {Es,,} are again the coupled pairs of basis functions, and ¢, and
d, are the expanéidn coeflicients. {_Es,,} and {'ﬁs“} can be generated in the same
manner as discusézed in the previous subsection for (8.24). The expansion in (8.34)
is actually the saérne as that in (8.24) except that it is now split into two parts for
description conve;xienée. | |

Substituting (8.34) into (8.30)-(8.33), one obtains the two matrix equations
1 n, Ji ¢, a,

- = ' : (8.35)
IT LKL, LA, d, b, :
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and
fed 20w Juf) e . (8:36)
| gv J# Kl}‘l L}m d# A
where
L, = B [(F B -iwH, H,)ds (8.37)
= B[ [(FEL - ivH, - T,)ds (8.38)
K, = R j / s Fy, ~ jYoN, - T3,) dS (8.39)

?L* = kgj/(ﬁ' E}, - j%N. - H3,)ds (8.40)

with ¢ = 4 in (8. 35) and ¢ =1 in (8.36). Eliminating {c,} and {d,} from (8.35) and

(8.36), one finds :

; -1
S Rl | Il B @1
Lo Kju L, K3, L%, | &

and then the scattered field can be computed from (8.17).
8.3.4. Discussion

Among the ab;)ve three three—dirﬁensional hybrid formulations, the one in Section
8.3.1 has been veriﬁed in the two-dimensional case in this thesis and the one in Section
8.3.3 has been venﬁed in the case of 2 body of revolution {Morgan et al., 1984]. Only
the one proposed in Section 8 3.2 has not yet been verified.

The major shyrtcomxng in the finite element-surface integral formulation is the
‘need to generate two full matrices [ﬁgs] and [is], whose dimensions are propor-
tional to t‘hé numi)er of nodes on the surface S. These two matrices can be so large
that their memorsr demand can easily excéed the capacity of a computing facility. A
remedy for thxs is o use a rectangular box as the surface S, then compute the sur-

face integrals via the fast Founer transform and solve the system of equations using
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the conjugé,te gfadient method, as demonstrated by Collins and Volakis [1989] for
the two-dimensic%.onal case. One obvious advantage of this formulation is that there
is no need to cqxtinpute the spherical vector harmonic functions, s in the other two
formulations. | |

The finite eleiment-éigenfunctim expansion formulation with point-matching ap-
pears very simplie; however, it is not efficient since the matrices [FI] and [-I-’}] are
also full and havé the same dimensions as [Es] and {ﬁss] The alternative formu-
lation with subdé)m'a_,in method is more efficient though it involves one more matrix
‘inversion. - _

Instead of usfng delta fﬁnctions (point—;hatching) or subdomain functions (sub-
domain method)éas the testing functions as in the previous formulation, the finite
clement-eﬁctendedj boundary’ condition formulation employs the spherical vector har-
monic functions as the global testing functions and utilizes the orthogonality of these
harmonic funcﬁo_ias. As a result, this approach can be more efficient than the previ-
ous one. Its intefnal field corriputation, however, méy be less #ccumte than that of
the finite elementi-surface integfal method. |

In‘. all three foirmulations, one encounters the problem of dealing with the matrix
equations (8.13) and (8.14). Generating these matrices and then solving them are
the tfvo major uéeéts of the problem. Also, selecting a set of known bases for {Es,.}
to compute the c{)upled ba.ées {ﬁs,,} is another important issue in the second (with
subdomain method) and third approaches. These could be the subjects for future

studies.




CHAPTER IX
CéNCLUSION AND FUTURE WORK

In this thesis several finite element-boundary element methods were developed
for solving the prbblem of open region electromagnetic scattering.

!

A finite elemént-boundary element method was developed in Chapter 4 for the
numerical analysiis.bf the scattering by cylindrical objects. The method overcomes
two major shortcior_nings which existéd in the previous methods. First, it relaxes
the restriction thga,t the artificial boundaries be circles to the condition that they
follow the shape <§>f the scatterer and thus substantially reduces the solution domain.
Second, with a Iﬁiodiﬁcation on the coupling procedure it results in a highly sparse
or uﬂifor_m]y ba,nided system matrix which can be efficiently solved using special
algorithms. Nunflerical results were presented, showing the high accuracy of the
method as well a.s its‘ notable capability _#n'd versatility. Through a comparison with
other numerical niethods, it is concluded that this n.xetho_d provides one of the most
accurate and efficient means to solve complex two-dimensional scattering problems
involving inhomoéeneous media. _

Wé need to note that, though the computer code was developed based on the

formulatidn 'usingj two artificial boundaries, the alternative formulation proposed
| | 142 |
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in Section 4.2.5 grm:zy turn out to be theofeticéﬂy more atiractive since it can be
interpreted using the equivalence pr_inciplé‘ iHar’rington, 1961]. Nevertheless, from
the domputatidn}zl aspect both formula.tioﬁs‘ have the same efficiency.
‘'The finite elexfnent-bounda,ry element method was th_en extended in Chapter 5, by
incorporating thtia phyéica.l optics approximation-,‘to treat the scattering by a coated
wedge and haH-j;lane. Numerical results were presented for the transverse magnetic

case to show the ésurface field and surface impedance behavior around the edge. It is

-demonstra.ted that the impedance boundary condmon is invalid at a point close to

the edge, though it provides a very good approxxmatlon when the point is about a
tenth of a wavelength away from the edge. |

In Chapter 6, a finite elément-bouﬁdary element method was developed and ap-
plied to charactérizing the scattering and transmission properties of an inhomoge-

neously filled aperture in a thick conducting plane. Of particular interest in this

-chapter is the us:e_ of the fast Fourier transform to evaluate the boundary integrals

and the use of th;a conjugate gradient method to solve the system of equations. The
high a.ccur#,cy, cé.pability, and versatility were demonstrated by the numerical re-
sults.z Some of .thie results, such as those for the truncated strip gratings embedded
in dielectric layer%a, ;would‘ be impossible to obtain using the conventional techniques.
It is felt that thi; _téchnique is a promising approach for treating large and complex
radiation and sca;:texing problems.

In Chapter 7, the a',pplication‘ of isoparametric elements in the finite element-

‘boundary elemenit method was described in order to more accurately model the

curved and arbitria.rily shaped scatterers. The use of the isoparametric elements can
further enhance the efficiency and accuracy of the method.

Chapter 8 preéented and discussed several hybrid techniques which combine the
finite éelement méthod with either a surface integral equation or an expansion of

vector eigenfunctions for three-dimensional scattering. Some are just the extensions
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of the previouslyz_developed methods for the two-dimensional case or for the case of

a body of revolution.

9.2, Future Wor

- An obvious, iﬁteresting, challenging, and very useful as well as very difficult prob-
lem is three-dlmenslona.l scattering from arbitrarily shaped electrically and magnet-
:cally permea,ble bodies which may contam conductmg surfaces. This is a subject
which is currentty attracting more and more people and will become & popular field
in the near futuz%e. The finite element;urfa,ce integral equation method, proposed
in Section 8.3.1, fis felt to be a promising approach for attacking the problem when
it incorporates tﬁe conjugate gradient method and the fast Fourier transform as de-
scribéd in Chapt;er 6. While the theoretical formulation is available, its numerical
implementation, whlch needs a tremendous effort, is the most difficult. The imple-
mentation of the%ﬁnite element-extended boundary condition method, described in
Section 8.3.3, is also very wdrthWhile sinoe it could be more efficient for the far field
computation. |

As a special éhree-dimensional probleni, the scattering by an inhomogeneously
filled finite aperture in a thick conductmg plane, in contrast to the two—dzmensxona,l
one treated. in Chapter 6, is also a problem of practlcal interest. The formulation
given in Section 632.1 is applicable; however, a numerical implementation is necessary.

The finite elexfnent-boundary element method combined with the physical optics
approximation, as described in Chapter 5 for coated wedges and hali-planes, can be
applied to treat the scattering by verjr large two-dimensional gedm’etries. While the
physica.l optics al;proximation (and surface wave formulation, if necessary) can be
employed to apprt;:dmate the fields on the smooth portion, the finite element method

and boundary intégra.l equation must be used where there is a surface discontinuity or
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coating inhomogeneity. The incorporation of the physical optics approximation and
surface wave forrhulation can remove the problem of singular frequencieé introduced

by the employment of the surface or boundary int.egrai equation.
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