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' PREFACE

This dissertation expounds on tlie thesis that nu.merica‘l methods and models can be de-
veloped which are sufficiently accurate to enable a microwave engineer to design inicrostrip-
fed slot dévices, without resorting to the empirical or semi-empirical techniques character-
istic of more traditional methods. This possibility is of importance since ihc traditional
aﬁproaches are typically tinie-cc.msuming an;i therefore expensive. The advantages of nu-
merical models are widei‘y recognized, not oh_ly in the microwave industry, but in niauy
other fields as well. With the rapid devglopmént of personal Eomputers and workstations
in terms of availability and processing power, computer-aided design (CAD) capability is
becoming even more important for the development of technology.

Slots have been used in microwave design.s for maﬁy years, par.ticularl_v in waveguide-fed
aﬁtenna arrays. Stripline, and more. recently, microstrip line has also been used frequently,
especially when there are active microwave components involved. It is now recognized that
combinations of these types of structures and devices offer many significant advantages

and will be needed to meet the requirements for advanced, state-of-the-art systems which

have recently been proposed. Additional changes in technology have created the need

for the ability to analyze structures with multi-layered substrates and superstrates and.,

increasingly, there has been a push toward higher and higher operating frequencies. For

these reasons, we have developed the analytical and numerical methods t6 be presented
here. It will be shown that many of these issues can be addressed in terms of computer-

aided design and a considerable advancement and improvement over previous work in this
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area has been achievcd.

In Chapter I, we begin by introducing various historical a5pec.ts of the use of slots in
microwave antennas. Thrdugh an examination of these devices in the context of present
thinking, we will define the types of problems to be analvzed in this work; specifically,
microstrip-fed slot antenna elements and cdﬁplers. The basis for the numerical models will
~be formulated in terms of integral equationé. Full-wave analysis by means of exact Green's
functions is used with a view toward application of these methods at high frequencies where
other methods generaLll_\' fail.

Chapter 11 will present the derivations of the necessarf; dyadic. Green's functions which-
will be used throughout the remainder of the work. The approach will use a ‘field expansion
method’ in terms of vector wave functions which will be explained and defined. The method

of scattering superposition will be used and a method, not previously presented for this

approach, employing impédance boundary conditions and field matching proceedures will .

be developed. The entire approach is in contrast to the.more widely used, and perhaps
more familiar, ‘vector potential method’. Some comparisons to and deficiencies with past
usages of the latter approach Q’ill be pointed out. To further illustrate the differences, the
method of scattering superp;’sition with impedaﬁce boundary conditions as applied to the
vector potential method will be illustrated by example in the appéndix, since even for this
method, there are significant advautage_s tha_xt have not previously been presented.

The application of the method of moments to the integral equations is detailed in
Chapter I1I. The treatment will be generalized to include variations on the main thrust of
the work, to show ljo“{ slots and lines can be modelled with.a.rbitrary orientations relative
to each other and the shielding structure. Although the applications diséussed in later
chapters impose some simplifying assumptions on the geometry, the material here lays the

. groundwork for further extensions to the work which may be implemented at a later date.
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Also included in Chiptef 111 is soifie (iigétiSSibn of mathematical relations and programming
techniques which have been used to greatly reducé the computation time for ‘generating
the required matrix elements.

Several applications are introduced in Chaptef IV, This.chapter is devoted to the
discussion of problems which c#n_ be reduceij] to Itwo dimensions. .Th‘e‘ first part demon-
strates the proced.ures for treatment of la&ered struct‘ures through analytical field matching '
. throughout the layers. Aﬁplications discuss’é& include the evaluatjon of transmission line
~parameters for microstrip lines and the visﬁalization of field behavior for both.shielded
strip and slot lines. The_act:uracy of the technique is verified for microstrip by comparing
to data available in the literature and a commercial computer.-a.ided design package. The
seéond part deals with the developmer_\t of a model for scattering from vertical wires in
waveguides. For small diameter wires, the rh_odel can be greatly simplified compared to
approaches used in the literature. The validitg;' of the model is verified by comparison to
experimenta.l measurements. The motivation for the work in this cﬁaptef is to support the
modelling of applications discussed in Chapter VI.

Chapter V_presenl:s the analysis of microstrip-fed slot couplers. Expressions for the
S-parameters which characterize their behavior aré derived based on network analysis of
even- and odd-mode excitations of the structure. The procedure is referred to as the
‘Standing Wave Method’ and involves an interpretation of the method of moments solution
for currents on the microstrip lines. This has become a sort of ‘standard’ approach to a
variety of similar’ problems but has some.drawbacks as will. be pointed out. Also bresented
in this chapter is a discussion of the fixture design and experimental results which verily .
the accuracy and validity of the method.

Chaptér V1 introduces the radiating slot or antenna element problem by deriving an al-

ternative approach for finding network parameters. The method is based on an application
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of the Recibrocity Theorem and IS here referreci to as the ‘Reaction Tlicorem Method® or
‘Reaction Method’. The requirement for a new approach is a consequence of the limitations
of the Standing Wave Method discussed in Chapter V., Histoficall_\" the Reaction Method
was introd’uced many years ago for application to simple waveguide- fed slots; however, for
our use, the structures are more complex and as a result, thé application of the method
is also. The details of how the technique is ap.plied are discﬁsséd in this chapter, together
with experimental results which demonstrage the capability of the numerical methods.

In Chapter VII, a variation of the radiating slot is explored. In this case. a siot of
finite thickness is introduced. Instead of sirﬁply making the slot thickcl;. which can also be
modelled by this approach and has been treated through more approximate methods in the
past, the case where the strip-fed slot couples to the radiating slot through an intervening
section of rectangular waveguide is presented. In this case, we find the important result
that the slots can be detuned to extend the bandwidth_ of the element. |

The dissertation coﬁcludes with Chapter VIII which summarizes the techniques devel-
oped. The points where the effort is judged to have succeeded are outlined as well as where
the numerical models fail. In the latter cases, the suspected _ca.ixses for deficiencies in the
approach are discussed along with recommendati‘ons for remedies. These issues form the
basis of suggestions for the extension of this work and exploration of related areas. Specif-
ically, the treatment of a ‘T-bar’ fed slot is discussed. This is a slot fed by a microstrip
line terminated in a T-junction, whose branch arms are short-circuited to the cavity side
walls. A similar device has been previously shown to provide extended bandwidth for
cavity-backed aperture antennas,

A few final comments about the mechanics of this. work: A‘ number of programs were
developed for the numerical modeiling and aﬁalysis of the stru(;tures discussed as well as for

post-processing the data. These programs were written almost exclusively in FORTRAN
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and run on a variety of naaéili;néé; ilidﬂding the ﬁnivéisit_v of Michigan IBM 3090/600E
mainframe and IBM RSGOOG woricstations for the numerically intensive operations. A
majority of the remaining processing was perforrn_ed on ‘HP/Apoll_o‘ workstations, primar-
ily a DN2$00. The manuscript was -typeset' using XTpX text processing software with
macros developed at the Univérsity of Michigan for dissertation formats. Rectangular tﬁvo-
difnensional plots used throhghout were broduced in PostScfiﬁt by a menu-driven plotting
program developed jointly by the‘\ author an& Dr. Leland Pierce. Smith Chart plots were
produced by sin.ﬁlar programs developed by ;llc author. Most of the dra.véings were gener-

ated using either XFig or directly with PostScript and incorporated in PostScript form.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The use of siots in microwave cifcﬁits can be traced back at least as .fa,r as the 1940's
to the resvcarch, efforts associated with World War II. This is particularly true in antcnné
designs where sléts have been u‘sed extensively as the primary radiating elements, but also
in feed networks as couplers. With the adven; of monolithic microwave 'éircuit teéhnology
and aJs§ for more tradi_tional constru_ction méthods, transitions from microstrip to slotline
are also becoming increasingly important in the design of microwave and millimeter-wave
circuit elements. Two such transitions can be combined to form interconnects between
lines ‘a.t.ld by using lines on opposite sides of the slot plane, a vertical transition can be
made without the use of via-holés. The basic structure, in a variety'of forms, has a wide
range of applications to both Eroadband and ‘narrowband .connections and can be used
as a building block for interconnects [35] phase shifters and inverters [30], directional
couplers {80] ﬁll.ers [50], and many other microwave components [2] Whether used as a
coupling element between gulded wave structures or to free space, both applications require
accurate analys:s and design tools in order to mmxmxze costly, time- consummg empmcal
techniques and reworL

Many papérs have been published on the ‘design' of slotted waveguide antenn# over

the past forty-five years including “classics” by_Ste_vensoh (71} and Oliner {57), among

e



others [51, 4, 5]. Elliot and his associates have contribuled many important works on the
analysis and design of slotted rectangular waveguides and arrays [22. 23, 58, 70. 40]. More
recently, slots which are fed by microstrip or stripline have re;eivod attention [59. 62, 7]
due to advantageé in cost, size, weight and conformaﬁility, among others.. The development
of variations and new an_alytical. techﬁiques is ongoing (16, 8, 17, 87].

Numerous investigatbrs have also preseﬁted approximate analytical techniques to char-
acterize these types of structures With applications to circuit elements [12, 49, 50.. 41, 2].
For example, a quasi-static analysis has bgen_provided in [89], however, this fna_v not

be sufficient, particularly for higher frequencies where end effects and higher order mode

coupling become more significant. A more recent paper [66] presents a transmission line

analysis with excellent results, however, similar shortcomings would be expected. Hybrid

" methods which combine two-dimensional full-wave analysis with transmission line theory

as in [56], shouid certainly extend the validity of such models, but still may not account
for all discontinuity eflects. Exact methods for microstrip;to-slotline transitions have only
recently begun to appear, such as thelcase reported in [91] which has applications to upen
structures.

For couplers, practical considerations suggest that a shiélding structure will almost
always be present. [n fact, in many cases; a shielding structure must be introduced in
6rder to reduce crosstalk and to control undesirable coupling to other structures in the
package (for example, DC control lines in phase shifters _ha.ve been known to unexpectedly
become part of the microwave circuit). For antennas, 'cavity-backed slots have been used
for similar reasons; for example, to reduce:internal mutual coupling on the feed network
side of an array. This often both simplifies the design pro?:ess and improves the achievable
performance.  For instance, it has been shown that tﬁe internal isolation of the slots in

phase steerable antennas can significantly improve scanning performance {47].



For these reasoﬁs, the slots studied here will be enclosed by a cavity at least on one
side. The dimensions of the cavity can.have a strong influence on the electrical behavior
of the slot. In some cases, these dimensiong are used to control the slot characteristics and
in others they are used to suppress u_ndesirable eflects. In practice, slot antennas are often
covered by a protective dielecfric sheet. The capability to hhnd]é- these cases will also be
‘included in the analysis discﬁésed here by emp]éying the exact Green's funiction for an infi-
nite covered ground plane. This function will be evaluated by é combination of numeric‘a,l
and auaalytical techniques as described in [36], however, tlie details will not bé reiterated
here. Also included is the capﬁi:ilit)' to model multi-layered substrates and superstrates
which is becoming increasingly important for monolithic circuits and for systems which.
may combiné mdny circuit functions th_rough three dimensional imégration over multiple
layers. |

An example of a‘hypnl‘thetical structure which employs hume_rous transitions of the type
to be analyzed is :illustrated in Figure 1.1. Shown is a siot antenna array loosely based
on a conventional w_aveguide fed slot array. Conventional arrays 'typically use waveguide-
to-wéwéguide slot coupling to feed slotted waveguide branch lines. Here we assume tile '
individu.al slots are fed by microstrip-to-mi‘crqstrip slot coui)lers as illustrated by the lowest
three layers of Figure 1.1. Each radiating slot is internally isolated by a cavity which may
contain active devices for power generation for example. The feed network may contain
additional active sources coupled by combinations of microstrip aﬁd slotlines and may
be built on multilayered substrates for integration of additional antenna functions, such
as phase control, frequency conversion, detection, etc. This example illustrates just -one
application with features dra\\;'n from topi;s being considered in the current literature which
also verifies the need for more accgra;e and advanced analysis and design tools for the types

of structures to be considered.



Radome

Radiating Slots

Cavity Isolation
and Cooling Walls

Power Generation
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and Bias Circuits

Phase Lock,
Frequency and
Phase Control
Circuits

'Figure 1.1: A hypothetical integré.ted antenna employing numerous slot coupling struc-
tures. ‘
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1.2 General Description of Analysis Approac.h :

For cbupling through slots, time distri‘bution {shape, amplitude and-phasc) of the field
in the slot is vital to the deterﬁination of the slot‘ coupling behavior. F@r radiating slots.
this distribution has been inyestigated by Elliott [23] and othe.rs (59, 67, 70] by treating the
‘case of an isolated slot in an infinite ground plane. With the Green’s function for a half
space and the fields .in rectangular waveguide, they were able to write an integral equation.
The equation was solved by the Methéd of Moments to determine the field distribution.
Subseﬁuently., the sﬁattering parameters of the slot were fo'und by an application of the

Reciprocity Theorem.

Thé same approach will be useﬂ here for radiating slots, .referred to here as tho"lloactiun
Theorem Method’ or ‘Reaction .'Method'; although the presence of the strip and.'cspeciall_\.'
for microstrip, the‘inhomogeneous filling of the rectangular -cross section precludes the use
of simple rectangular waveguide ﬁe]d solutions. In previous works [67], the presence of
“ the strip has béen negiectea by assuming a similarity between the strip modes au_d empty
waveguide modes‘. This not only. places certain restriétions on the position of the strfp
betwgen the ground planes but also dbes rot take into account the inﬂuénce of the strip on
the fields near the slot. Here, the formulation will be generalized to include not only the
case of stripline where the cross section is homogeneousl_;y filled, but also the possibility of
multiple iayer‘substrates and super#trates, allowing microstrip. or more complex structu res
to be analyzed. This will réquire the .solution to tht‘e'two-dimensional‘ ‘Qaveguide‘ problem
in addition to.the three-dimensional -‘pavity’ éo]utién which is the primary focus of this
work. The relative position of the strip within the shield will aiso be unrestricted which.
has not been the case in some of the previous works. |

For coup.lers, the same shielded strip substrate/superstrate capability will be included.

However, in this case, an alternative method will be used to extract the coupling paranie-
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ters. This will be referred to as the ‘Standing Wave Method” and is Based on a more detailed
modelling of the strip Cl.:rrern_... The ;cattering parameters are extracted from the positions
of peaks in the strip current standing wave pattern, evaluated for even and odd excitations
of the structure. A_]thbugh the Reciprocity Method is more general, the Standing Wave
Method is somewhat simpler and therefore may bé more con;'eniént. |

In many cases the tbickness qf the ground plane is very small and the slot can be

considered ihﬁnitesimally thin. However, for both types elements it may be necessary to

‘make a ‘thick’ slot for structural purposes ot heat dissipation, for example. In fact, we

have found that this feature may be used to another advantage which is to broaden the
operating bandwidth of the element. These cases can be treated by the same techniques
and will be included in the formulation.

Highly accurate models are needed to reliably design-these types of elements. There-

fore, a full-wave space-_domajh integral equatibn approach solved by the Method of Moments

will be used as opp.osed' to quasi-static, modified quasi-static dispersion analysis, or other
similarly limited techniques. This #pproach is preferred since we can find exact Green’s
functions for the strﬁctures described which account for all possible electromagnetic inter-
actions. It also allows application of these techniques to probiems without restriction as

to the size of dimensions relative to wavelength.
1.3 Integral Equations and Notation
In this section, a;ifiropria.te integral equations will be derived. One of the primary

purposes of this section is to introduce the notation and conventions used throughout the

text and some of the fundamental equations and relationships which will be needed.

B



1.3.1 Dyadic Green’s Functions for Physical Quantities

1t is well known that time harmonic electromagnetic fields must satisfy Maxwell's Equa-

tions ( €?*! time convention assumed and suppressed throughout):

Vx E=-jup® B BENEEY

Ux H=J+jweE (1.2)

where the constitutive relations D = ¢E and B = pH have been assumed. Also, J is

defined in terms of the movement of electric charge with time by the Continuity relation:
V.J = —jwp (1.3

Understanding these to be the governing independent equations, by taking the divergence

of Equations (1.1) and (1.2), it is found that the fields also obey

-
-—

(1.4}

~ D

v.-E
v-H

0 a9
That the fields must satigfy the Helmholtz wave equatiop is readily derived by taking the
curl of Equation (1.1.) and substituting (1.2} into_the result, yielfling |
f?xVx E-HE= —jwp.j ' (1.6)
where k? = Q’yc. Similarly, it can be shown that T must satisfy
VxVxﬁ—Nﬁ:VxI._ .‘ (.

Dyadic Green’s functions can be introduced to represent the solutions to these equations
for infinitesimal current sources. For instance, Ga; will be used to represent the solution

to Equation (1.6) in the form

Gey=[E¥z 4 EWy+ B3 (1.8)



el

Here, £ is tlie field resulting from an # directed current source

o _ _8R-R)
Jwu

I ' (1.9)
- and so forth for the § and Z components so t_hat
UxVxGey—k2Cey= T6(R- ) | (1.10)

where

TR - R) = —jun[JTi + TV 4 75 ENTRTY

Likewise, for the magnetic fields, the dyadic Green’s function must satisfy

XV xGmi-kCm =V x[T6(R- R (1.12)
where ém_] represents
Gmy = —jup Tz 4 TV 4 T3 (1.13)

From Equation (1.10) and (1.12) it is seen that &g_; is related to ém_] by

TxGey=Cmy . (1.14)
VxGmy= 16(R- R+ K*Ges (1.15)

The terminology and notation which we use to refer to these functions is that C=;eJ is
the dyadic Green’s function of the electric field type (subscript ‘e’) for an electric current
(subscript ‘J"). Similarly, Gmy represents the dyadic Green's function of the magnetic field

type (subscrip' “n’) for an electric current.
1.3.2 Dyadic Green’s Functions for “Dual” Quantities

The Duality Principle entails the proposal of a system of equations where

Vx E=-jupuH - K (1.16)

V x H=jweE : (1.17)
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—

K representing a fictitious magnetic current. This current in introduced as a matter of

convenience by which we can represent tangential electric fields in terms of equivalent

magnetic currents according to the Equivalence Principle. We then can take advantage of

the duality between these and the “physical” quantity equations to generate solutions 1o

the equations [32, pp.98-116]. The Helmholtz wave equations for this system are

Using the representation
Gmy = [Fﬁ’“":& + B4 ﬁ”é] |
émK satisfies |
"_\" x V x‘ér.n_x - k’ém;{’: TE(R - II—?')'
where the inhomogeneous term represents

=

(R~ B) = ~jud K% + K5+ K4

\ g _dR-R).

\ = - I
Juwe

with

and so forth for the § and # components. Similarly, éeK satisfies
T x 0 x Eex - k’é';x =V x (k- R)
where (=}e;< fepresents
éex = jg)c[-EI-(:)i + f(”’ﬂ + Emé]

Here it is evident that

(1.18)

{1.19)

(1.20)

(1.21)

(1.22)

{1.23)

(1.24)

(1.25)

(1.26) |

(1.27)

it
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The notation and terminology are the same as before with the magnetic current represented

by the subscript ‘K.

1.3.3 Integral Solutions to Helmholtz Equations using Dyadic Green’s Func-

tions

Once ée}, el ml éex and émx are known for a particular geometry and set of bound-
ary conditions, it is possible to find the corresponding field quantity for any distribution of
electric or magnetic current. The relationship to be used can be derived from the vector-

dyadic Green’s second identity:

| j//[?'.v.xvgé-(VxVx F).G§1av
: =-/L{[ﬁxVxF]-§+(izxF)-\’xé}dé‘ (1.28)

To find the integral solution to
UxVUXx E-KE= —juul (1.29)

we use the electric dyadic Green’s function with an electric current source, Ges. By letting

P = E and @ = Ges in Equation (1.28), we find that
ER) = —jwy/jjj( ). Ge(R, R)aV’
- [[{sx v x E(R)) - Ges( R R)
+[i x E(R)]- V' x Ges( R’ R)} 45 (1.30)
Noie that in the process of deriving this result, the notation of R and R’ has been inter-
changed in keeping with our conventional usage of R’ as the source position vector and

R as the observation position vector. (Primes throughout will be used to indicate source

coordinates.) Using the vector-dyadic identity of triple products:

oll

- (bxH=~b-(axT =(zxDh)-z : (1.31)
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Equation (1.30) can be re-written as
ER) = —jop [[[IR) Gas( R, R) V"
+//5 {1v' x E(R")]-[7 x Geal ', R)]

~[7 x E(R)]- [V x Ges( R', R))} 457 (1.32)
In our aﬁplication, Gej is used in a cavity with impedance walls representing the source
layer. It is assumed that the region outside this layer is bounded, by the impedance walls
and a surface which requ.ires either the radiation condition or the Dirichlet condition for
the E and Ge functions so that the [2x ] terms in Equation (1.32) evaluate to zero.on

the boundary. We also assume that this regibn contains no sources. If such is the case, the

surface integrals of Equation (1.32) disappear and we are left with

E(R) = -jwp // Ges(R, R')-J(R'yaV’ o (1.33)
Hére, the symmetry 'prc}perty of the dyadic' Green’s function:

Ga(R.R) = [Ges( R\ B)" (1.34)

has been applied { ‘T indicating ‘the transpose’), which can be shown using dyadic-dyadic
Green’s second idéntity as outlined in [76) under the assumptions stated above.

We can find the integral solution to
'v'xVxH.-k?ﬁzvu‘ - - (1.35)

by returning to Equation (1.28) which with-P = T and 6 = &ml_y, reduces to.
HR) = fff Emil R, R)-J(R)av’ | | (1.36)

using assumptions similar to those for the E fields with the appropriate radiation or Neu-

mann boundary conditions enclosing the impedance walls. Alternatively, Equation {1.36)
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can be obtained directly from Equation (1.33) by using

HR) = _ 2 vx E(R) ' (1.37)
Jwp :
and
VXEIeJ:amJ ‘ (1.38)

The procedure for the magnetic currents is exactly ‘;he same ‘resulting in
WR) = —joe[[[Bma(R.E)- R(RYGV (139)
and o
ER) = - [[[Ge(R ) R(R)aV (1.40)
1.4 Formulation by Application of Boundary _C(;nditions'

We now derive a set of integral equat.ion_s by enforcing the boundary conditions for the
problem. To begin, we replace the slot openings in each region by a tangential, conductor-
backed equivalent magnetic current in accordance with t.he Equf@ence Principle as illus-
trated in Figure 1.2 (all conducting walls \u;rill be a.ssum.ed to have perfect conduciivity).
The problem is thereby separated into inde.pendent regions, coupled together by the mag-
netic currents as shown in the figure which also illustrates the treatment of .ﬁnitc.‘ slot
thickness. Since K = —# x E, using the same cu?rent on either side of the slot openings
enforces the continuity of the eleétric field in the slot. |

In addition to the boundary conditioﬁs at the caviiy walls, slot walls, ground plane
surface and dielectric interfaces which will be satisfied by finding the appropriate Green's

functions, we must also satisfy the following boundary conditions:

-

axEM=E& (1.41)
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Figure 1.2: Cavity layout and equivalent magnetic currents for a radiating slot.

on the microstrip;

Ax B - x I = # | (1.42)
ét the slot opening to the cavil;,y; and.

2 X ﬁ"’ow-—ﬁ‘x = ?'-i. : .(1.43)

at the slot opening in the dielectric. covered pléne. Thg £ funétion is a vector d‘escﬁbing
the source and is normally set t:o zefd excebt when a gap genera-tor is uéed to excite the
line?. Th.e H function is used in Eqﬁation (1.42) whén the slot is excited internally?,
or in Equation (1.43) when the source is éxternai". When £ is set identically to zero,
Equation (1.41) enforces the boundary conditiﬁn th#t the tangent.ial electric field is to be

zero on the strip. Equations (1.42) and (1.43) enforce continuity of the tangential magnetic

fields over the slot openings when 7 is set to zero. The ‘v’ and ‘L’ subscripts wiIJ be used

"The gap generator is used only for the coupler problem as a mechanism for even and odd excitation of
the lines.

*The right hand side will be set to the incident H field of the dominant strip mode for the Reaction
Method formulation.

3The right hand side can be set to an incident plane wave field for the analysis of the slot as a scatterer

or receiving antenna, however, this problem will not be discussed further in this work.

e
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throughout to indicate the upper and lower slot openings for the general case of a *thick’
slot. | |

The electric field, F“', in the interior of the cavity can be written as an integral in
terms of the electric and magnetic currents in the cavity using the relationships outlined

in Section 1.3.3:

E™ = -—jw,uc/ _ ée]jm -J, d§' - j éeK.im -Kp 48 (1.44)
‘ atrip sloty,
Similarly, ™ anywhere in the cavity is given by
H-m‘ = / ém.l.im : ju d§' - ijc/ éml&'.im ’ KL ds’ (1.45)
;trg'p : lIOlL . )

For a thick slot as shown, the bi field in the slot can be written as

B = jwe, j /“ Gmkator - K1 45" = jwe, / Bk Ky 48 (1.46)
‘ sloty

sloty

The external H field is given by
= Jwed jj amK.ext - Ru d8’ (1.47)
sloty : i

Using these expressions in the boundary conditions given by Equations (1.41-1.43), we

arrive at the integral equations for the problem:

. . sIire ' . .mstri ; -
-Jw,u.,:// SR X e;.',’;“j, das’ f] n X eKtzm' KL ds'= £ (1.48)
strip sloty
. toty, ot . . saloty '
j . n X mJ.int . j' dS jUCC // nx mK."“t . -KL ds
strip slotp
. R w=slot 3 . =alot . -
- jwe, / f i X Grkaior* KL 5" + jwe, j / A X Gt - Ku dS'= H
oty sloty - !
(1.49)
) . msloty ” P . . galot '
JUG‘ // nx mK.llOt * KL ds ]UE, jf nx ':llg..lo‘- " KU ds’
sloty . sloty
. . =slot ; -
Jweg /j ft X n:lg.ex: Ky d§'=H
sloty ‘

(1.50)
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where the superscrip:ts on the dyads imply evaluation (;f the dvad at the indicated location.
Throughout this work, Ecjuatioﬁ (1.48} and similar t_vpes‘wil} be referred to as an electric
field integral equation (EFIE) since it is derived f;om a bbundary condition on the electric
field. Similarly, both Equations {1.49) and (.1.50) are magnetic field integral equations‘ _
(MFIEs).

Since each of Equations (1.48-1.50) involve the {Aax ] term, from here on it will be
dropped with the understanding that ‘only the tangential combone,nts of the \'ar]nﬁs dyads

are used. Equations (1.48-1.50) can then be written:

. =stri - smsirs - ; _ N ‘ -
»juucj/  Gepim T dS' - // Getime - KL dS' = & (1.51)
atrip i : slot _ ‘ ‘
‘sslot . [ zslotj lot] , ,
' '/j! . G-'m.lfim. J, d§' - Jw /./1 . ch’mK.im"" €l€m|\'.slot] : Kl, das
strip S o‘ L
: =siot . .
: - ‘ +  Jwe, //.m 6;;12',10,, : Ku ds'=H (1.52)
‘ v « .
s =sloly - . . . [ msloty =sloty — -
Jwe, /./‘ . G'mlg.llo: . r\_L } ds’ - Ju//l t (.G’ml(.’lol + €4 ml\'.c:u] .- l\[, dSl = H
sioty C sloty L . B

' : | (1.53)

where all the terms involving Z are excluded®. The unknown currents J,, K, and Ky can
have only tangential cdmponents on each of _their respective‘structures,'we therefore have
six scalar unknowns. Since only the ta.ngentiai corhponents of & aré used, Equations (1.51-
1.53) repreéent six scalar intggral equations which are sﬁfﬁ;:ient to solve for the unknowﬁ

currents.

For convenience of notation, we redefine Equations (1.51-1.53) as:

mo. oo, 2(13) . - | o
f/ 5{ )-J, d5'+j/ -C(m--,KL ds'= £ - (L34
strip : sloty ‘
31 : = — .
[f &5 s+ [[ &g, asty [ &Ry ds'= R(58)
: atrip sloty : 7 sloty )
=53 L ] - :
_ // .G( )-KL ds’ +// ‘é{“)-ﬁu d5' = H o (1.56)
slot;, sloty .

*Throughout most of this work we will consistently use # = i where # will be crthogonal to the currents

involved. Therefore, no integral equation or Green’s function evaluation will invoive the i components
which will subsequently be ignored.
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=(11)
G =
2(13)
G =

=({31)

G =G

=(33
G( )

=(35)

G

=(55)
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: = tv.'ip

“JchG'eJ.im :
trip

“WeK.int

=sloty ,
Tmlint -

‘ loty
"J"" ‘f"ml( mt

=SlolL

= Jwe,G mK slot

| =(53)
G =

, laty
JU‘-G‘mK.-lot

=sloty

—Jw [ mK.slot

(1.57)
{1.58)
(1.59)
Crasae (1.60)
(1.61)
(1.62)

lot
+ ch' ,.';’m] © (1.63)

For the radiating slot problem, it remains to find the various dyadic Green's function

components, solve the equations for the unknown currents, and interpret the results to

obtain parameters which characterize the slot’s electrical behavior and properties.

The coupler problem differs only in the final equation. Equation (1.56) which involves

the Green's function for the half-space is replaced by an EFIE as follows. The field on the

upper slot is now contained by another cavity which may also have a conducting strip as

illustrated in Figure 1.3. Under these circumstances, we then have the following integral

equations:

_atrlm,
—Jwp Ges
stripy

Galot;_ ‘
‘ mJ
sripy

/j Io!u
stripy

tﬂ'pu
~jon | j
atripy

.J. d§’'

-Jp ds’

Jy dS’

-Ju ds*

- j/ Ce“-Krds'=¢ (1.64)
IOIL

- ff
JJsloty L
+ ju‘alot/’/‘-

+ jw f /
« ' slotyy L
- Jweslor jj

=sloi lo —
Gy + e,,,,,G' m’lé] KL dS’
I -
Cox -Ruds' = H (1.65)
oty

ot l I3 '
P i RPN i ] Ry ds’

lolu

mi - R dS' = H . (1.66)

+ /j """ FydS'= ¢ (1.67)
slotyr

- The subscripts U and L here indicate whether the source is associated with the upper or

i,
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CHAPTER II

DYADIC GREEN’S FUNCTIONS

| In this chapter, the dy'adic Green's functibn's needed to evaluate the integral equations
are derived. The method used in all cases is a ‘field expansion method’ using Vector
Wave Functions (VWFs) as opposéd to the perhaps more conventional, ‘vector potential
method’. Some of the Green's functions derived will not be needed in the later analysis
but are included in this chapt.er for ;omplet.eness.

. The use of vectof wave functions with dyadic'analyﬁis is presented as an alterna.ﬁve.
It has the advantage of producing the complete dyadic Green’s function in one solution.
The process also 'may involve a reduced nhfnbe: of simult‘anet.)-us aigébraic equations which
must be solved for unknown coéfﬁcients as cdmpa.red to the vecto.r potential method. The
disadvantage of the approach is ‘that it requires dfa.dic analysis which may be unfamiliar,
although it is quiie straightforward.

Thg field expansion approach using VFWs has been extensively detailed by Tai over an
extended period of tifne [72]-[79]. Nevertheless, the method is not widely employed which

may be due to several factors including:

1. Early development of the _teclui_ique involved the use of the vector wave functions
designated L, M and N. As will be shown, the M and N functions have clear, physical

interpretations, however, the interpretation of the L functions is somewhat obscure

18
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and its handling. at times, somewhat difficult. Consequently, the approach may have

‘been avoided.

2. An oversight in {72] but corrected in {77}, stirred up some controversy which may have

caused some to avoid the method (see {11] also for details and a list of references).

The current method is more mature, having evolved to a stage where the previous difficul-
ties have been eliminated. Problems can now be solved in a methodical and straightforward
manner with no difficulties in physical interpretation (the need for the L functions can be

avoided).

2.1 Impedance Boundary Conditions for Layered Structures

It can be shown that a plane wave in a homogeneous region exhibits a constant wave
impedance defined by the ratio of a compo.nent of the electric field to an orthogonal com-
ponent of the mégnetéé ﬁeld, both transverse to a given direction {6, p142] A ‘plane
wave expansion' of the field is convenient in fna.ny problems due to this property. For
many canonical stru'ctures, the expansion itself is unnecessary siﬁce wave impedances can
be derived directly.._For instance, modal wave impedances for homogeneously filled rect-
angular waveguides are well known. In somewhat more complex structures such as those
treated here, the boundaﬁes are still always planar owing to the rectangular geometry. As
a result, wave impedance surfaces can be chosen to conform to the boundaries and the
wave impedance concept becomes a vehicle through which the boundary conditions can be
applied in a simple way.

The dyadic Gregn‘s functions for all of the structureé treated here will be derived using
this approach. As the Equivalence Principle states, the fields in ‘a' given layer depe.nd
only on the fields at the boundaries and internal sources. We therefore can derive the

Green’s function for the source layer alone with the other layers represented by impedance
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béundary conditions applied at- the layer inteﬂaceé. In this way the Green's fl;nct.ion can
| be generalized"to represent any number of layers aBove or below the source layer. The
- approach greatiy sirﬁpliﬁes thrf.> analysis of the total structure by allowiﬁg the fields to be
found first fof ﬂze«source layer aléne.. 0ﬁce they are found; expressions for the ﬁelds in

the remaining layers can be immediately written in terms of the homogeneous solutions

by matching tangential components on the boundaries. As in [13], this process is greatly .

facilitated by expandiﬁg the solutions in terms of ‘Longitudinal-Sectioh E]ect:_-ic’ (LSE)

znd ‘Longitudinal-Section Magnet.ic' (LSM) ﬁe]ds because the field matching procedure

can then be done on a one-to-one basis. (An individual mode on one side of an interface .

matches an identical mode on the other side exactly, with an apmopriate coefficient.)

The impedance .boundary conditions, as used here, are not to be con‘fused with the ap-
proximate impedance boundary conditions discussed in [63, 64]. Both usages may be exact
under certain circumsta;.nces. The present usage is in the context of the modal imbedances
of various structures and is exact under the assumbtion of pérfectly conducting walls where
applicable. F‘or‘example,-the approach‘ is exact for a clt;Jsed. perfectly-conducting rectangu-
lar cavity with uniform side walls. A countér-example is a cavity with perfectly conducting
- side walls, but which is open on one end: terminating the open end‘ with the impedance
of free-space as proposed by some, is ‘no_t. exact since this condit.ion is not exact. Fc;r all
structures studied in this work, the geometries are such that the representation is exact to
‘the extent that perfectly conducting walls can be assumed.

In our structures, the impedance boundary conditions requife the fields to satisfy

For electric currents; this becomes
-Gey - VxG . .
— e 20 or — mi _ jwen (2.2)
y Cmi wp v GmJ

i
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Similarly for the equivalent magnetic current Green's functions, the impedance boundary

conditions are; -

2 Gex = jwen or ‘z-GeK =11 (2.3)
7 Gmk -V xGex WH

For simpler notation, 7, will be the wave impedance associated with the LSE modes and
7jm Will be used for the LSM modesT Furthermore, fj. and %, will denote normalization to

the intrinsic modal impedance in the layer and are defined as

. kit ' '
fiei = -f;-Z— | (2.4)

- WENmi ' .
Tmi = _kn_m ‘ {(2.5)
23

where i is an index associated with the #** layer.
We can then evaluate the impedance conditions using transmission line analysis and

wave impedances for the various layers as illustrated in Figure 2.1. The impedances on a

]

U

]

*]

Figure 2.1: Impedance boundary condition representation of a multi-layered structure.

given layer’s upper boundary are found by the transmission line equation

y ki { Tle(i-1) + J tan ky(io1)l(i-1 ] . (2.6)

Ka(ivty {14 Flegiony tan kygimyliio1)
- €ikz(i-1) [ Tim(i-1) * J tan ko nyl(ieny
qml . -

' 14 Ifim(i-1) L2 Kogiogplion)

PR | (2.7)
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where the index i is iterated from the top layer through successive lower layers to the layer
of interest with {; the thickness of the i*# Jayer. (We have assumed that i, = 1 throughout

this work.) Similarly, for the lower lavers, since the wave impedance is negative,

. by [ fleti+1) = J ta0 K eyl } (2.8)
e kaiary 11 = J0egivn) tan keianyliinn) :
. ko) [ Timee1) = J 120K eyl(ien) ] (2.9)
ms €at)fzi |1 = Jfimpany tan kel '

where here the iteration proceeds from the lowest layer upwards.

2.2 - Dyadic Green’s Functions for an Inﬁ_n.ite' Covered Half Space

We begin with the derivation of the Green’s function for an infinite cbvered half-space.
The method of solu;ion closely para.llels thai of the other cases, except for the boundary
conditioﬁs, so that by covering this case in greaier detail Sorﬁe of the steps for the later .
cases may be ohitted. For completeness, we also i;nclude the ysolutions for electric currents
in this section, although 'this function is not needed for the characteriza;tion of the slot. It

is, however, widely used in the analysis of open microstrip and microstrip patch antennas.

2.2.1 Magnetic Current

The dyadic Green’s functions for the slot problems use a magnetic current ( K) as the

~ source. They are the solutions to the dyadic Helmholtz equations:

VxVx Gk ~kCmk = 16(R-R') (2.10)
VxVxGex~kCek =V x I6(R-R) (2.11)

The key to ehmmatmg the need for the L vector wave functions, and thus mmphfymg the
a.nalysm is in the choice of which of Equatnons (2.10) or (2. 11) to solve ﬁrst

The functions L, M and N form a complete set of solutlons to the homogeneous equation
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V xV x F—&?F =0. They are defined in the general forms -

I = vv (2.12)
M = Vx‘Pi;:%VxN (2.13)
N = i.vXVx\pi@%VxM (2.14)

where ¥ is a scalar function solution to the equation lV"I’ + K2¥ = 0 chosen to satisfy the
boundary conditions of fhe problem; Z; is a unit’ vector Ealled thg ‘piloting vector’; and x
is the separation constant x? = k2 + k2 + k2.

Following the Ohm-Rayleigh method as described by Tai {72], we can find the pafliéulér
solutions by expanding the right hand sides of (2.10-2.11} in terms of the eigenfunctions
L,Mand N with unknown vector coefficients; deriving the values of the coefficients usihg
the orthogonaﬁt& p‘ropert.ies of the VWFs; expanding ihe dyadic in terms of the same
functions with scalar coefficients; and enforci.ng the equations by performing the derivative
ope;'a.tions. From Eﬁuatiens (2.12-2.14) it can be seen that only L can have a non-zero
divergence and since .the right hand side of (2.11) has no divergence, the L function is not
needed in its solution. We th.erefore find the solution of (2.11) first. It can also be shown

that émk and éex are related by

V x Gmk = Gek | (2.15)
V x Gek = 16(R - R") + k*Gmk (2.16)
so that émx can be found from (2.16) once écK is known. This is the essence of the

method described in [77)].

As with the vector potential method (see Appendix C), we begin as if the space were
infinite and homogeneous. We therefore expand the field in terms of VWF’s for free space

defined by

U = e-ilksztkyy+kiz) ' (2.17)

ok
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To simplify later application of the boundary conditions, we choose the piloting vector to

be i. The orthogonality properties of these functions are then

f/ Mo, by k) - K- kL, =k =K. )dV = 0 (2.18)

/_[L M(k,,k,;'k,) V(=KL ~ KL kL) dV
: // [ B(ke, by k) - (=R =y, =k @V

(27 )0k2 + K3)6(ks = kL)6(ky — K} )6Ck: = &) (2.19)

U

where the volume of integration corresponds to the entire space.

To find Gex we first let
= . o poo poo ' - I _
v x [l6(&- R = fJJ dbgdkydky [M(ks. ky ko) A + Nk &, k2) B)(2.20)

By taking the anterior scalar product of Equation (2.20) with I\-'I(—ki.y—k;.-—k':) and
N(-—k',,-—k;,-kf,) respectively, and integrating throughout V, we can determine the un-

known vector coefficients A and B through the orthogonality properties. The results are

= KN'(wkg, =k, ~k.) '
A= 1 v z )
CRNCET 221
= kM'(=ks, —ky, ~k;) :
B - X v z .
(@r o (kE + K2) (2:22)

in which the primed functions are defined with respect to (z',y', z*), the site of the source

at R=R" Thus,'.

eelit- ) - oy [

: [M(k,,k,,k,)N (=key —ky k) + Nba, by KM (= =y ~k,)] (2:23)

Now we let

B /J 0 r.dL,dl. dk,
Gex = (2,,)3 oo k2+k7)

- [2M ke by k)W (ke =y, ko) + DN(Ez, by, kW (ke — k., —k.)| (2.24)
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with a and b unknown scalar coefficients, and substitute into Equation (2.11) vielding

1 1 ,
SR R R )

a=b= (2.23)

The integration with respect to k, in Equation (2.24) can now be carried out in closed

form by applying Cauchy’s theorem:

= {‘ di, dL _ ., | _ .,
1ol - \ x k; kz M kz

227 (2.26)
where k. = m (note that & becomes k). As indicated, the top sign applies
when z > 2’ and the bottom sign when z < 2. This condition is a result of requiring -
the solution to satify the radiation condition at inﬁﬁity which determines whether the
contour of integration is closed in the ﬁpper or lower ha.lf-plane.. Alsp, from here on it will
be understood that the primed' funct.i'ons, M' and N', have =&, —ky or =k, argumeﬁts,
uniess indicated othérwise.

We now can write ém;\- ‘hy performing the operations _indicated by Equation (2.16).
.This can be done almost by inspection using the relations between M and N from Equa-
tions (2.‘13) and {2.14) except for the discg:‘\tinuity which occurs at z = 2. Asin [77], it
can be shown that these relations apply b_u!. a,n‘ additional term is needed to account for

the discontinuity at the source; specifically,

= - Jl.? j poo dk,dk _ _, | ) o .
v % Gex T 8n3 oo Fa(F2 1 K2) [M(ik,)M (Fke) + N(xk )N (Fk2) |
+15(R - R) ’ a2 (2.27)

where the transverse idemfactor, I, = £ + §j, appears in this case as a result of the
combination of the choice of the piloting vector Z and the partit‘ioning of the z dependence.
Notice that the singular terms come from the second derivative of

e=iki(z=~2") > 2
f(z)= (2.28)
eki(z-2') 2 <z



26

or the first derivative of

. . V —jk.(!—:' S :’ i | .
g(z)xg.‘g.g:l-]k { - \ (2.20)

La%
3]

eikalz=3) L
which is
-l

. 2 e'jk:("'z') z >z .
Qg(:) 66{2-(?2) -2 { - 25k,8(z - 2) (2.30)

eﬂ‘l(z"z') < 2!

This term has sometimes been overlooked in the potentia! function method as well, as

-

d:scussed in Appendlx B. Thus, Equatlon (2.16) leads to

SRS R &) dkzdk,
mk = R R /mlwk(k+k

.[M(ik,)M (Fhe) + Rk N (Fh)] 220 (231)

‘cf)n

We now divide the infinite space into layers surrounding the source point above and
below. The layered structure can be represented by impedance boundary conditions for

the source layer as previously described and as illu.strated in Figure 2.2. We then apply

 E=_—_————_—.

' ml s 5] ok o
1 2= 8 T, '“L—l ‘

§§ )

Figure 2.2: Layered infinite space as represented by impedance boundary conditions.

the method of scattering superposition to this case by letting

=P) =) - .
Gm—C + Gex | | (2.32)
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P . ' N ,
é‘e,i is the particular solution found above for the infinite space which may be referred to
| =(S5) . :
as the primary term, and Gy - the secondary or scattered fields - is made up of solutions

to the homogeneous equation as follows:

| dk,dk
el‘ N E‘irr2 /a.[-co ki (k2 + kj)

Mk AT 4 M(=k)AT + R(k) BT + R(-k.)B7 (2.33)

where A, A”,B* and B~ are unknown vector coefficients to be determined. The physical

interpretation of this procedure is that the + coefficients represent the waves traveling in

. the +3 directions as a result of reflections, i.e.. scattering, from the interfaces. In evaluating

the boundary conditions, it is also useful to find G mx through ¥ x_é ex = k*Gmk which

is the source-free version of Equation ('2.16).» !ience,‘

= 5) « - dkgdk,
Cmic = 81-’/ o FTE T D)
[Rek) A* + R(=k) A7 + M(k) B + M(-k) BT (234)

Note that additional boundary conditions need only be imbosed at the newly introduced
interfaces and not _ai the source, since the primary fields satisfy all boundary conditions at
the source and the secondary terms are continuous there.

Applying the boundary conditioné at ille top and bottom of the source layer, we derive

the following set of algebraic equations for the unknown coefficients:

(et = l)e_ffk'c At - (fets + l)ejk"c A~

(e = De™ R (=k,)  (2.35)

(er + 1A (k,) (2.36)

I

(fler = 1)e™ T A% — (Giop + 1)e?¥d AT
and

(ﬂmU - 1)e” dkye B+ (UmU + l)eJkycB = ’(ﬁmU - l)e-jkvcml("kz) (237)

AL ~ 1)e-1'=vd BY 4 (fimr + 1)e?™¢ B ~(fme + De? M (k,) (2.38)
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Here the ‘" and ‘L" notation indicates the upper and lower inteffaco conditions respectively.

‘ These four equations decouple into two pairs due to a jﬁdiéibus .choico of the piloting
vector in the VWFs. .Bécause the piloting vector was (':hosep as the unit vector normal to
thé_ layer ihterfacés, tﬁe M and N VWFs apbearing in‘ éml\' correspond to the L.SM and
LSE modes of the stiructure’ respectivel}'. {In contrast, it_shoﬁld be notéd that M and N
correspond to the LSE and LSM modes, r_espectively. when t_hef appear in éeh-.) Asis well
kno_wn, the LSE and LSM modes are decoupled on the interfaces, that is, the tang‘enti.al
components of an individu‘a_l mode on the interface can be’mat.ched by an identical mode
in the adjacent layer, therefore the coefficients are decoupled. That there are opl_v four
equations is a result of the fact that the field in a given layér'depends only dn the field in
the adjacent layers.

-The solutions are easily found to be

_ M (e = DFer + 174N (ko) + (s + Dfer + DR (k)]

AT = (et + (et — yerkele=d) — (7 - I)(n,L + 1)e=tkyle=d)
, . ; (2.39)
| i - _e'jk"c [(ﬁeU ~ 1)(fer, = 1)e™ N (=k.) + (fler = 1){dieL + 1)€jk"dN'(k=)]
(flev + 1M(fier = 1)e? v =8 — (foyy = 1)(fper + 1)ethvlemd)
' {2.40)

go_ & [Uimt = Dlimt + DM (=) = (imos + (s + Vet (k)]
) (mtr + Vim, = DeMET — (s = Diomt, + 1)e=IRal=4)

‘ - . (2.41)
fo € [t = Dt = e A (k) = (s = Dl + 1N (k)]
(fmer + 1)(Amr = 1)e*=8) — (finyy = 1)(fimp + 1)e=Iks(e=d)

(2.42)

With some algebraic manipulation and use of the relations found in Appendix A, we now |

can write

C)ll

__3__[] _dkedk,
K=ot I.z(L?+L?)



[fkum,[k,(z - o)) = Malku(= — c)}} [ﬁebﬂ’,lka:"—_d)l AN RINES —d)l]
< 7 [ﬁeLl\-'Ié[kz(z - d)] ~ jl\-'lq[k,(z - d)]] [ﬁeuﬂi[k,(:' -c)] - FRL[~ke(' - C)]]

(Tie = TleL) cOs ko€ = d) = j(Tlet:Tler, — I_)Sin k.(c = d)

.

( {ﬁmUﬁo[kz(z - C)] +jﬁe[k:tz - c)]] ﬁmLM;[kz(z’ - d)] + jm;[“’h(:, ... d)]]

-

‘ - ) \
\ [ﬁmLﬂo[k:(z - d)] + jﬁe[kz(z - d)]} ﬁmU M;[k,(!' - c)] + ch["k=(:’ knd C)]]

(ﬁmU - i)mL_) COSkz(c- d) - j(ﬁml’ﬁmL ~ 1}sink, (¢ - d)

for z22' (2.43)

where the M, and N, functions are defined by

cos(k,z)e"(k'”k”’.)
Uu(k,) = (2.44)

sin(k,z)e~(ker+iy)
This expression contains all components of the dyadic Green’s function 50paratcd into LSE
and LSM modes. Note that our convention will be to denote even and odd trigonometric
dependence by the substripts ‘e’ and ‘o’. In order to avoid any ambiguity when these
subscripis are used, the corresppnding kg, ky or k, arguments will be shown explicitly in
the same order, sometimes followed by other arguments as ippropriate (see Appendix A)

The magnetic field type is given by

iofe o dkgdk,
ar? | oo S (2 K2)

ﬁmuﬁlo]k,(.z = ¢)] + iM[ky(z - c)]] {ﬁmdﬁ;[k,(z' — )]+ M [~k (2 - d)]]

{ o - - -
{ﬁmLMo{kz(z - d)] + jMe[kz(z - d)]] [fl‘mUM;[kz(zl - o)+ jM:[-—k,(z' - C)]}
l

(fimu = fime } €05 kz(c = d) ~ j(fimufime —~ 1) sink,(c - d)
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[ﬁe(’ﬂe{kz(: - C)] - jﬁo{kz(z - c)]] [ﬁebﬁ;[kz(z’ - d)] - jﬂ;[-—kdz' - d)]}
+ . . R _

{fk[‘ﬁ’,[k, d } JI\O[Lz(z - d)]} [ﬁeUN:[kz(*" -] - J'I:"::["kz(:’ - ")]]

(ikU - f]cL)COSkz(C - d) ""j(ﬁcUﬁcL - I)Sinkz(c - d) -

~for 222 (2.45)

When applied 1o the case of a slot on an infinite, perfectly conducting ground plrane.

L is set to zero. For a single dielectric cover layer, on the upper interface we set

ko
7 = e ' 2.46
L ~ {2.46)
LIS, - - (2.47)

corresponding to the normalized impedance boundary conditions for free-space above the

slab. For a slot in the ground plane with its axis along #, we take the = > =’ terms which

results in

G dk,dk e ,[k,(:-:')+k,(y—y')].
mizzr = ar? oo ks (k2+k2 ,

[c,kn sink.(z ~ d)-+ Jk, cosk,(z — d)} k2E2 [k, sink.(z — d) + jkpcosk,(z - d)]
€-kncosk,(e ~d)+ jk,sink,(c - d) k? |k,cosk,(c—d)+ jk,sink,(c~- d)

(2.48)

By transforming thé spectral integrals tb a cylindrical coordinate system the double integra-
lions can be rep]aLced by a single‘.radial integral on recégnition of the integral representations
.of Bessel functions in the angular va.fiable. Through some very tedious algebraic manipu-
latnons the result can be transformed from the present form, whlch separates the LSE and
LSM modes, to a hybnd form whlch can be compared to the result in Appendix C or with

previously published forms {38, 36]; although not ne;essary for numerical evaluation.
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2.2.2 Electric Current

For the case of the electric current source, the steps are exactly the same as in the

preceding section, except here the Helmholtz equations take the forms:
VxVxGes~k2Gey = T6(R- R') | (2.19)
VXV xGmy-#CGmi=VxI6(R-R) ; (2.50)

where now we solve for émJ first. Due to the similarity to the ;Srévious set of Helmholtz

equations and because of the way the VWFs have been defined - particularly the symmetry

introduced in the curl relationships - the solution proceeds with identical equations but

with the following notational replacements:

MeN | (2.51)

Gex = Gmy _ (2.52)
Cmk =2 Gey - (2.53)

The protess is similar to replace}ments made under the guidance of the Duality Principle,
however, it is ifnportgnt‘to note thé difference. The replacements dictated by the Duality
Principle alone would result in functions which satify ‘dual’ boundary conditions, i.e., the
electric ﬁeld dyadic.s would satisfy the Neumann rather than the Dirichlet conditions on
the conducting bouﬁdariés [13, pp- 29-39). By replacing the M and N functions with each -
other, the true bound‘ary cond_itioné remain valid since these functions are complementary
with respect to these boundary conditions. Although it would be interesting to more gen-
erally state and define this process under a heading such as say, the ‘Similarity Principle’,

the development and probf is beyond the intended scope of this work, however, we will use

it repeatedly.
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* The final result then is

/ / di. dk,
47r2 S (JL2 + k7

C)ll

nmuMo[k (2 —c)}+_7M,[L (z - c)]] [r;mz,l\o[k (' - d ]+J1\¢[ ke d)]]

ﬂmLMo[kz(z - d)] + JMQU":(Z - )]} [ﬁm[fﬁ;[kz(zl - C)] + jf\'i[—l_c,(z' - C)]] |

(fimU = fime) cos k(¢ = d) = j(Gjmtiime — 1)sink,(c — d}

neUNe[L (’ - c)] - ]No[Ly(- - C)]] ereuz(: - d)] J‘M I—kU(' _ - d}]]

neLNe[l»z(z - u')] Jl\o[k (:- a')]] [ UM [k:(2' = €)] = TM[=ky( )l]

(et = fer) coskz(c — d) = F(fetrifer, —~ 1)Sm’~ (c—d)

el

for 227 o (2.54)

ée,y can be found by substituting the coefficients into equations similar to Equations (2.32-

2.34), but also can be derived from ém_] directzly, applyihg Equé.tion {1.15) with special

care in performing the derivatives at the source discontinuity. The final expression is

IR TP _dkedk,
GeJ_-FzzA(R-R.H j/ ET

‘ [fkume[k:(z - )] - mo[k,,(z - c)]] [ﬁeLM:[kz( 2 = d)] - jM{,t-‘ky(z‘ - d)]}

{ﬁme[k,(z - d)) - ¥l (2 - d)l} ["kum"*(" — o)l - IML[—ky (2 - ‘”]

Afjerr — n,L)cosk,(c— d) (n,un,[, - 1)sink,(c - d)

[ﬁmuﬁo[kz(z -c)l+ jﬂ,[k,:(z - C)]] I:ﬁmLﬁ;[kz("" - d)] +’jN;[——k,(z' - d)]]
+ _
[ﬁmz,ﬂ.,l(c,(z ~ d)] + jNelke(z = d)l] [ﬁmuN;lkz(z' - )]+ N[~k (2 - c)l]

(mt = fimL) €05 k£ (¢ = @) — (AmUAmL - 1) 5in Fa(c — d)

v

for 222 (2.55)
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2.3 Dyadic Green’s Functions for Layer Filled Rectangular Waveguides

The electric and magnetic dyadic Gfeen_’s functions for an electric current source in
rectangular waveguide are needed for the radiating slot problem. As will be shown later,
the electric type is used in an integral equation approach“ to solve for the propagation
constants of the structure. Once a propagation constant has been determined for a selected
mode, both the electric and magnetic fields on the entire cross-section are required to apply
the Reaction Method to the three-dimensional ca'vity problem. Tine magnetic current case
is not needed in the main body of this work but will be discussed briefly in Chapter IV.

As in [79], the solution for the multi-layeréd v?aveguicie problem is built upon the
solution for the paraliel plate problem. The paralle] plat_e waveguide solution has already
been obtained in the previous section if we set 1‘1& = 1']?_ = 0 on the source .layer boundaries.
However, although the parallel plate solution we need.is based on VWFs defined with
respect to a piloting vector 2 as was used above, the desired planes for the parallel plates
are defined by z = 0 and z = a which do not correspond to the impedance boundaries
used previously. Therefore, the paraliel plate soiution will first be derived based on the

appropriate conducting planes followed by the layered rectangular waveguide solution.

2.3.1 - The Parallel Plate Green’s Function

A parallel plate waveguide shown in Figure 2.3 is formed by bounding walls at z = 0
and z = a filled with a uniform dielectric ‘material represented by the wavenumber k,,
where ¢ will ultimately represent the 2 layer of a waveguide containing a source. We now

define the fuﬁcticms

Mo(ks) = VX Wo(ks)s =V x [sin(mrz/a)eilkwkes)s) (2.56)

K

Ne(kz)

]

V XV x U(ks): = {:v x V x [cos(mm/a)e-ﬂkmmu] (2.57)

]
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X . '
X=a ) : ‘
o)D)

x=0 - ' . z

Figure 2.3: Parallel plate wavéguide coordinate systcm.‘
which satisfy Vx ¥V x'f-x?? = 0 where h= \/E:-k—a-i-—“ and the l.)oupdar_v ?ondition
£ % F-.”:d -.(i..e., _éxE:O) | . (2.38)
at z = 0 and ¢ = a. The wavenumbers k, and &, arc two c'o.ntinubusly distributed

eigenvalues and k; = mn/a where m is an integer including m = .0 for N..

The orthogonality properties of these funétions are
/] Mg (m, kyo k) - Re(m', K K )dV = 0 (2.39)
v o

for any combination of even and odd functions and for any two sets of eigenvalues (m, ky k)
and (m’,k,,k;). The volume of integration corresponds to the entire space inside the

parallel plate waveguide. The normalization constants of these functions are stated by the

following relations:

/ / f M, by k) ( (K kL) dV
j / fv Ne(m, kyoks) - Ne(m?, =k0, kL) dV
. |

{(1 + 8 )27%a(k] + KBk, — K)ok, — K))  m=m'=0,1,2,.

it

m#Em
| (2.60)



[] Btatmty ko) - Kot~k =kl v

»// v RO(msky‘ kz) ' Z‘;;o("n" -‘k;f’ “k’z)d'v

0 m#Em
= { ‘ ' {2.61)
2r2a(k§+k3)6(ky-k;)6({:, - k) m=m'=1.2,...
‘ i m=10
where é,, is the Kronecker delta function defined by é,, = {
0 m#0

To find émj we first let

v x [T6 R - ) / / dk,dk, Z[Mo(m,ky,L)Ao-i-l\,(m kg ks) Be) (2.62)

m=0
By taking the anterior scalar product of Equation (2.62) with I\T’Io(m’, —ky, —k) and
Ne(m', =k, =k ) respectively, and integrating throughout V', we can determine the vector

coefficients Ao and Be through the orthogonality properties. They are

i _ (2= 6m )N (m, —k,, —k,)
Ao pp k,‘,) (2.63)
o (2= 6 )k ML(m, ~ky, —ki)

In Equations (2.63) and (2.64) the primed functions are defined with respect to (z',¢’, 2'),
the location of the source. Although for m = 0 the function N, vanishes, m = 0 is
included, as impIied by the factor (2 ~ §,,) in Equation (2.63), to put.it in a form similar

to Equation (2.64).“Sub'stitu'ting Equations (2.63) and (2.64) into (2.62) we obtain

. —— (2~ 6 K
?x [I6(R- R = / / dk,dk, Z 41r’a(k2 k?)
: [MO(M. kyy kz)No(m‘ -—kyv "k:) + Ne(mvky* kl)Me(m' _k”' —kz)] (265)
Now we let
(2-6m)k
j / dk,dk, Z T 1 )

[aMo(m kg ks )No(m,-—ky,-—k )+ be(m, &y, ko) ML(m, —ky, k. 9 (2.66)

£k
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Substituting Equations (2.65) and .(2.66) into (1.12), and making use the relations given

by Equations (2.13) and {2.14), one finds

t .

* as before. The integration with réspect to k, can be carried out in closed form by applyving

the residue theorem together‘with the radiation condition yielding

. © (2= bn)ki
= - dk -
Gy = - [ v & Tk (F 4 kD)

'..[Mo(m,ky,ik,)ﬂg(m,-ku,';k,)+N,(m,k,,,:tk,)ﬂ;(m,‘-‘k,,,;k,)] 222 (2.68)

where k, = \/kZ — k2 — k2. Again, the top sign applies to = > z’ and the bottom sign to
; x v g _ 7 _ g

!

z < 2. Now applying Equation (1.15), again through use of the relationships given by

Equations (2.13) and (2.14), and taking into account the discontihuity at the source, we -

can write

. N [P e (2= bn)
: ) - / dk J m
k? —oo mzﬂ araks(k2 + k2)

) [Me(mv kyv ik,)ﬂi:(m, ""kw :sz) + No(maky; ik:)NL(m, -—ky, :F:k,_)] 222' (2.69)

o

[

-

]

H

lll

+h L
2\1 . .
T

]

=h

" The solutions for the magnetic current follow the same procedure yielding

= b oe e R & i(2-6)
Gk = -—i26(R—- R -j dk N2 Om
mk k?z ( ) oo yﬂg‘iﬂak;(kg“*'kg) ‘

-[Mofm,k,;,ik,m;(m,~l;,,,;k,)+N,(m',k,.ik,)N’,(m,-ky,;k,) 22z (2.70)

<4

5 [P e~ 2=k
Gexk = [,wdk"z‘i"ﬂk:(ki-%iﬁ)f

m=0

[Me(m, by £hs)NL(m, =k, k) + Ro(m, ky, 2k My (m, —ky, Fhe)| 222 (2.71)

Note again that this can also be obtained from the previdus case by simply replacin‘g

Ges = Gk, Emi=> Gex, and M = R..

‘fl‘i:!
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2.3.2 Rectangular Waveguide with Electric Currents

We now construct the dyadic Gréen’s function for the sourcé'layer of a multi-layered
rectangular waveguide (see Figure 2.1) by using the parallel plate Green’s function solutions
above and the metho.d of scattering superposition. Let

Erms= G+ G5y (2.72)
where é::_), is the parallel plate solution and é‘,i)J is defined as .

=(5) _ e & (2= bk
Gm = ”]uodky z dxak (k2 + kZ)

m=0

* [Ne(mp ky‘ kz)A++ ﬁt(makyi "kz)A‘- + Mo(m,k;u k:)B+ + Mo(m‘kv, “kz)g-](2.73) ’

representing fields which are scattered from the dielectric layer interfaces located at z = ¢

and z = d. The unknown vector coefficients, A, A”,BY and B”, can be found by
applying the lipper (nv) and lower {mL) impedance boundary conditions for the layer. This

produces two pairs of equations for the unknown coefficients:

(fev — 1)e™* ¢ A% — (o + 1) A™ ‘= —(f — 1)e™*°M(m, k. k) (2.74)

(et — 1)e™7%1¢ AY — (ficr, + 1)e7*9 A7 (fier + 1) *My(m, —k,. —k;) (2.75)

and

{fimy = 1) B 4 (fimy + 1jeé*-°B‘ = ~(fimy — Ve N (m, k. k;) (2.76)
(ime = D" BY + (fjmg + 1) B™ = (i + DR k) (277)
Notice that these equations are identical to Equations (2.33-2.35) with the replacements:
) M'(2k,) = M (m, —k,,xk.) | (2.78)

N'(£k,) = ﬂ:,(m, ~k,, k) (2.79)

This féature is characteristic of all of the solutions we will be dealing with, #nd should be

expected since the functions differ only in whether the functional dependence is exponential

w
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or trigonometric. As a result, the solutions are identical to Equations (2.39-2.42) with the
corresponding notational substitutions.

Algebraic manipulation of Equations (2.68,2.72) and (2;73) and use of the relations

given in Appendix A then leads to

= [ & (2= 6k
Gmy = /m‘”‘” 2 2rak, (k24 k3)

’ m=0
Mo_[ﬁmu; m, ky(z = €)) Nolfimu;m, k(2 - d)].

Mefiimei my k(2 = d)] Nlfimus my ka(2' = )]
(imu — imL) cos kz(e = d) = j(fmUTime — 1}sink,(c — d)

Nelfiewi m, ka(z = €)] Milfer; moko(2' = d)]
+

Nelfieri myko(2 = )] Mi[fiew; m, k(2" = ¢)]
(ﬁeU - ﬁcL)COS k:(c - d) - j(ﬁeUﬁeL - l)sm k:(c - d)

for =22 (2.80)

where we have now defined the new operator functions, Mg and ./Vg, for the sake of compact

notation:

Mlnia) = nl\.do.;[a] + jM“[a]' (2.81)
' Memia] = NM..[a] - jMeqla] : (2.82)
Nolme] = nNgofa] + jReela] (2.83)

‘N’elflva] = ﬂﬁee[a]-jﬂeo[a] 7 . (2-84)

“Since o here is [m,k.(z - ¢)] and m is associated with k,, we recognize that the ‘e’ and
‘o’ subscripts in this case imply trigonometric functions of z and z. Also recall that the

primed functions use —k,.

-~ We can find Gej as we did in the paraﬂgl plate case, by performing the derivatives
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indicated by Equation (1.15):

= 5 © J(2 = ém)
Ges = k R - R’*/ aky szk (T + K2
e[Tku.m k 2~ C]] M [neLsm kz(‘ —d)]

Melier: mo kil z = &)} Miliews m. k(' = 0)]

{fletr — Ter) cOs k(€ =~ b) ~ j(HetsTier, ~ 1) 5in kz{c — &)

Noliimus m. kx(z = €)] Alffimei m, ko(2 = d)]
. .

Nolimpim. ko(z = d)] Nl fimus m, k(2 = ¢)] i
(imtr = fimL)COskz{C = b) ~ J(TmufimL ~ 1)sink;(c - b) J
' ' for  zZ:' (2.85)

Both ée] and ém_] involve a spectral integral which can be reduced by Cauchy’s Theorem,
once the impedance functions are specified. -
2.3.3 Rectangular Waveguide with Magnetic Currents

The magnetic current cases can be found through the same method or ‘Similarity

Principle’ substitutions (section 2.2.2) to obtain

. 1, i(2 = 6)
G = j . ™
mk = -gif(R- R + [ :é_:o Trak, (K1 + kZ)

Molﬂmuz m k(2 = €] Mliimes m. kol = d))

Moliimim, k(2 = d)] M{[fimps m, k(2 = ¢)]
(TmU = fimL) cOs ky(c = b) = j(Amuiime — 1) sink,(c - b)

. Nelfewimy kil z = )] Nilfie m, ky(2' - d)]
Kelfierim, kol z = &) Ml[fewsm, ku(2 - ¢))

(et = fjeL) cOS ko(c = b) = J(TeUfeL = 1)sink,(c - 6)

for z:z' (2.86)
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and’
& (2 = 6 )
Gel( = '/. dl\. Z 21rak L2+k2)
M [fkuim kz(Z*‘-C)]/\ [Ue.'..‘m ky(= ....d)]

Me[fier;m, k(2 = d)] N’[neu.m k(2 - ¢)]
(ﬂev fler )cos k;(c - b) — J(r),un,L = 1)sink,(¢c - b)

[nmthm k (Z - C)] Mo{ﬂmh m, kz(z - d)]
+

\ Noliimeim, & (z - d)] K, s m, ka2 = C)I
(tmy = Gmr)coskz(c = b) = j(fimtrfimr — 1) sink,{c - b)

2.4 Dyadic Green’s :Functions for Layer Filled Rectangular Cavities"

The scattering superposition approach can now be applied to the result of the previous

-section directly to obtain the dyadic Green's functions for the cavity problem by introducing

conducting walls at y == 0 and y = b and applying scattering superposition to the ¢
direcfed waves. As an alternative, one c#n take‘a some\;vhat simpler approach by first
deriving the dyadié Green's function for a Waveguide wit.ﬁ its axis along the 2 direction
(k, becomes mr/b) Then scattering superposition is apphed along the Z direction with
|mpedance boundary condmons to obtain the result for the cavny (see also [72, 75, 79]

This will be the approach demonstrated here since the intermediate Green s functions wnll

also be,needed in Chapter IV,

2.4.1 | Homogeneously Filled Rectangular Waveguide: TE and TM Modes

As with the use of the half-space solution asa building.-.block for the }Srevious solutions,

the preceding modal representations of layered rectangular waveguides are not in a con- -

venient form for the formation of the cavity solution. Again, the VWFs there are defined

£
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with.the rormal to the layer interfaces, resulting in the LSE and LSM mode representa-
tion. What is more convenient here is the solution for a homogeneously filled rectangular
waveguide expressed in terms of VWFs defined to'represent the modes Transverse-Electric
. . . . = (W)
(TE) and Transverse-Magnetic (TM) to the waveguide axis. We again will first find G,
=Wy o |
from which G~ will follow.

Cin J) must satisfly the wave equation:
o ow L
Vx U x8my ~ k8 = V x [T60R - ] (2.88)

To construct the solution we will need the vector wave functions satisfving the Neumann

boundary conditions which are:

Moolkzrky) = VX Woolkz, ky)s | (2.89)
Reolkerky) = =V XV x Veelke ky)2 (2.90)

where

cos k .z cos kyy

Ve (koo ky) = i (2.91)

sin kprsinkyy
with k; = km = mr/a and ky = &, = nr/b. |

Following the Ohm-Rayleigh method as before, we expand the source term as
m=0n=0

v x [Té(}'z- }‘z')] = /°° dk, i i [Moo(kzyky) A + Nee(kz, k) B) (2.92)

The coefficients A and B are found from the properties of the vector wave functions to be

(2 - 6,,.,.)}; |

x N
Ao ram Ry et i) &5
& (2- 6,,.,” v
B= L MLo(kzy kyo ~ks) (2.94)

Tab(kE, + k2)

where the Kronecker delta function &, is equal to 1 for m =0 or n = 0 and 0 otherwise ‘

(the case where both m = 0 and n = O is the trivial, zero field solution for this case). Thus,

4,



Equation (2.92) can be written as

Z e (2= bpmn )k

Vx[I(R-R) = /_x‘”‘ Zzwab KL+ &%)

m=0n=0
: [N{oo(kr;kyo kz)Noo(kzs ky, "’Lz) + Nee("m ky’ k:)mie(kr' ky' ‘"I":)] . (2.95)

To find Cm} we let .

W) (2-6 )u
G‘“J N /. ks Z_oz%wab(kzm:kz)

) [aMoo(kzv kw k;)Noo(k;, kw "kz) + b&ee(kzq kya kz)m’ee(k:n kyw _kz)]‘ (2-96) .

Substituting into Equation (2.88) we find as usual

. 1 : ‘ .
a= lé ey~ B (2.97)
so that
=(W) _ (2= bmn) K '
Omy = j dk: mz_o;: 7rab k2 + k?) [ sz

[l\ioo(k,,ky,k N, (kzoky, —ks} + N (L,,L,,,L WL (ke Ky —,)] (2.98)

~ The Fourier integral can be eva,luated in closed form by means of contour integration and

the radiation condition leading to

(W) o~ Jki(2 = bmn)
Cmy = ZZabL,(L? + k2)

m=0n=0

Moo(ks. ky £k, )Noo(kzy kys Fhs) + Neel ko by 2he ) Mee(Ks, by ;)

for z2 ¢ -{2.99)

where k? = k? ~ (k2 + k2), Using Equation (1.15):
. = (W) - '____1__ :,; J(2 6mn)
e = kg‘” Z 2 abk,(kZ, + k2)

m=0n=0

* [Moo(kr' kV' ikl)Noo(kt* kv» ¥kz) + Nee(kxv kyv :tkz )M;(krc kyv ¢kz )]

' for 222 - (2.100)
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2.4.2 Cavity .with Opposing Impedance Walls: Electric Current
We now introduce impeda.née walls at z = ¢ and z = d where the added boundary

conditions given by Equation (2.1) are to be enforced. Using the method of scattering

superposition we let

- W S .
Gms= C” ” (2.101)

where
(5) 7ki(2 = bmn)
Cmi = mz_o';)abk,(lﬁ +k3) |
: {Moo(k,.k,,k.)fx* + Moolkz, kyy ~k:) A™ + Neelkao, by ks) BY + Nee(ke, by, —k:) BT
(2.102)
Evaluating the boundary conditions given by Equations (2.1) we get the same system of

equations as (2.33-2.35) except this time with
M'(2k,) = Mo (ks ky, 2k,) o (2.103)
N'(k,) = Nyo(ks ky, ££;) (2.104)

Again we already have the solutions for this set by changing the notation of the VWFs.

With some algebraic manipulation and use of the relations in Appendix A the results are

e abL,(u + k? )
Moo[f}mu; kr- kyskz(z - C)] J\—{;o[ﬁmb; krs kyskz(z' - d)]
Moolime: ks by ke(z = d)] Ato[imo: ke kye k(2 = )]

(fimv = ime) coskz(c = d) = j(fimufime — 1) sink,(c — d)

ee[ﬂerL:s kyv ke(z - ‘)] M [nei.» kz, kys L,(Z - d)]
+

Noeelfiers kzr by ky(z = )] Miliievs ke, kys ko(2' =€)
(e = Tlez) €08 kg (¢ = ) = 3 (Hewfler — 1) in k(€ — d)

for 222" (2.105)

Ty
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1. TN =r) &, 2](2"’6mn)
Ges = pi26(R- R) +Zzabk(k7+k2)

Mee[ﬂem Ltu Lyv Lz(~ - C)] M ['7:1.' ":1 LV*L (" = d)]

Meelfier; kzy by k(2 = d) M. [fevs ke, ky ko(' =€)

(v = Mer ) cos kz(c — d) = J(Reriter — 1)sin k(e — d)
( —oo[ﬁmvik:-ky\ k:‘z - C)] -"{':;o[ﬁmi.;k:o ky' kz(:’ - d)]

Voolfime: Kzv by ka2 = )] Niy[fimus kzy kyoko(2' = €))
(fime = ﬁmL)COSk:(F = d) = j(moime = 1)sink:{c — d)

for z> ! (2.106).

The operator functions are defined by the relations

Moo[mie) = §Mocole] + jMeoela] | . (2.107)
Melnie] = n¥Medo] = j¥eolal (2.108)
Rooltia] = 1Neoslo] + jNocla] (2.109)
Relnia] = nfeedo] = Reuefa] (2o

243 TE and TM Modes in Homogeneously Filled Rectangular Waveguide

and Cavntles with Opposmg Impedance Walls: Magnehc Currents

To model the slots, we aiso need the cavity dyadic Green’s functions of both types
for magnetic currents. The derivation could [oilo_w the previous case explicitly, however,
because of the way the functions hé,ve been deﬁned we can take advantage of the symmetry
of the equations and write the solution by makmg simple notational replacements (The
only exception is the treatment of the (2 = émny) term which here is e\panded as (2 -
dmH2 - 6,.) since the m = n = 0 case may produce non-zero field components.) Using

this approach we can write the TE and TM solutions for magnetic currents in rectangular

b



waveguide as

g k(2 = 6m )(2 — 6n)
=__Zz.7 )

Gex L et T GbE(KE, + K2)

. [Mee(k:, ky, ik;)ﬂ;(kzg ky, :Fk ) + RT(N)(“cti kys ik )I&;o(k:o ky- :sz)}

wy - 1. = J(2 - én)(2 = én)
Om "“R ;0,2 abk, (k2 + k2)

’ [Moo(kzs kllv ik:)Moo(kzhklh q:kz) + Nee(kf’ k]l’ :hk:)Nee(kr. ky’ ;k; )]

The cavity solutions are

_— 2,1:(2 bm )(2 = 6n)
Gk = 33 ~abky (k2 + K2

m=0n=0

Mee[nevs L:yky, ,\-;(2 - C)] -A ['7:1.' kg, Ly,l\ (z - d)]

Mee[ﬂel,; ke, k,,, kz(z - d)] Ne'e[fkv; ks, kva k:(zl - c)]
(flevr = Ter)cos k(e = d) = j(fevtter ~ 1) sin ky(c - d)

Noo{’)mu'kzs kys kz(z - C)] M [nmh kg, kwk (Z - d)]
+

A‘foo[ﬁmz.; ke, kw kz(z - d)] M:;.olfimu;-kz-s ky! kz(3’ - c)]
(Gimy = fime ) cos k(e = d) = j(fimpTime = 1} sink.(c ~ d)-

=22 (2.111)

=22 (2.112)

for Z< 4-’ (2 113)

o = LisReo )+ B T U2 6n)2-6a)
= (R R) Z=§ abk,(KZ, + £Z)

Moo[’?mU' kr;kw kz(z - C)] M [ﬂmh kr’kyskz(z - d)]

Moo[f?rnb;k.-.vkys ky(z - d)} M::o[nmu;kre ky» k,(i’ -c ]
(nmu = fime) cosky(c = d) = j(fmufims — 1) sink.(c — d)

ee[neth Kz, kw ki{z - C)] A [TkLv k;, ky' k (z - d)]
+

-’Vec[fkl.;k:v kyskz(z - d)] ﬁe'e[ﬁev;kkaya kz(z’ - C)]
(v n,,_)cosk (e—d) - (ﬂeufk:. - 1}sink,(c ~ d)

>
for 222

(2.114)
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We now have derived and specified the dvadic Green’s functions for all tvpes of struec-
tures to be treated in this work. The integral equations are therefore fully defined and the

task remaining is to solve for the unknown currents in each case and interpret the results.







- CHAPTER III

METHOD OF MOMENTS FORMULATION

" A general methadology for application to the various problems treated will be presented :

in this 'chabter for the ca_se where two components of current will be allowed on both the
strips and slots. Later, we will restrict our attention to strips and slots which are narrow
so that only the longitudina] component of -curreni need be considered. This assumption
is sufficient to yield a.ccul.'ate results for the experimental cases to be used for verification,

and thus simplifies the numerical implementation without loss of generality.

The solutions to the presented integral equations can be found by choosing basis func-

tions to apbroxim;ge the various currents. The efror in the approximation is minimized
by app]ying the well known Method of Moments, resuiting i.n.highly accurate representa-
tions of the currents from which the electrical behavior of the‘structures can be deduced.
Furthermore, the method of morﬁents formulation will be discussed in the context of the
radiati'ng siot problem only, since this problem contains all the essential eler_nents' of the

coupler problem as well.

3.1 Definition of Coordinate Systems and Basis Functions

Let us expand the current on the strip in the following manner. We first define a

strip-fixed coordinate system as illustrated in Figure 3.1. The currents on the strip in this

47
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" Figure 3.1: Cavity (z,y) and Strip-fixed (v,») Coordinate System.

coordinate éystem can now be exbanded as
I, =J,o+J0
Jo=W(v) Y e(v;Hy,
| J
Jo= o) 3 1L
‘ ]
where & are piecewise sinusoidal basis functions defined by

®la) = — '
sin Kol | gin ky{cgsy — a)  for 0<a-a,<,

and [, is half the subsection length defined by

lo = [aq+l"aq-l]/2

1 {sinkb(a—a,-l) for -l,€a-0,50

(3.1}

(3.2)

(3.3)

{3.5)

The subscript q is an index identifying basis functions at various points along the strips

and slots. Actually, k, will always be chosen so that kyl, € /2, making the function

basically a triangular pulse. This way, because the basis functions overlap, the current will

essentially be approximated by piecewise:‘linea.r‘ segments between sample points (see [32]

for an introduction to the method of moments and basis functions). The sampling rate is

determined by field phenomena, phase resolution requirements or numerical limitations, as
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will be shown later. Typically, the sam p]ing'.ra,l.e will Vbe at least 20 samples per g-a\relc11gli1.
often .mucl.l. higher, so we generaliy set ky ~ k; which is more than sufficient to ‘linearize’
the basis functions. The'moti;'ation for the sinusoidal dependénce is lo_simplify later
integrations and evaluation of the resulting functions.

The ¥ fundion will be either a ‘Maxwellian’ dist_ribution or a ‘pulse’ basis function

defined as :
' |

'll’r!t"la:welhan(ﬁ) = ‘ 2
¥(3) = ,:,;}1-(.@/:5) B =Byl € 1p (3.6)

q"pul:e =1

-

The Maxwellian function is often used since it closely approximates the true solution for
narrow strips or slots [52. 88]. These expansions are further illustrated by Figure 3.2 where

the sinusoidal functions are exaggerated for clarity.

Longitudina!

[]
'
[
1
]
[l
*

%

L2 piecewise sinusoidal LR W . w2
‘ . Maxwellian
Transverse

.

L2 _ puise - rectangular - wn w2

Figure 3.2: Current Expansion Functions.

In this work, we will deal exclusively with strips and slots which are narrow with re-
spect to wavelength so that only one basis function will be used to represent the narrow
dimension. For wider structures, rooftop functions are commonly used, involving similar

overlapping basis functions in the direction of each component of current, but using the

e



30
puise basis function for the transverse dependence. Because our strips and slots are nar-
row, we will typically only model the longitudinal component of current, however, both
components are discussed here for generality and ‘to form a basis for future efforts. The
primary motivation for the use of piecewise functions is that they are very efficient in terms

of changing strip or slot lengths as opposed to entire domain basis functions.

The strip-fixed system is related to the cavity coordinate system by

v= (::'— To)cosd + (¥ = Yo)sing (3.7)

v=(x—2,)8iI0¢+(y—yo)cose (3.8)
We also define a slot-fixed coordinate system as illustrated in Figure 3.3 where

X
- Figure 3.3: Slot-fixed Coordinate System ((,§).

(= (z-38,)cos8 4 (y=~1t,)sind (3.9)

E=—(z-5,)sin@ 4+ (y~1t,)cos8 (3.10)
The slot currents are now written as

Ki = KreC+ Kpeé . (3.11)

Ry = f\"u((: + l\'ugf | (3.12.)
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where the ‘L’ subscript represents the slot epening to the cavity and the U subscript

represents the slot interfacing with the dielectric cover. Assuming similar expansions for

these currents,

ki = w4(s)2¢(c,_)m, = e

Kue ="I’(€)Z¢(L;)‘Lc1 | | (3.14)

Kie = f)Z\u S (3.15)

Kye = ¢(£)Z_\'u< B (3.16)
P

Equations (1.54-1.56) can be written in matrix form

Zy,
Zy
2y
Zg

0

0

Ziz Yi3 Yy O 0 I; &
Z; Yau Yo O O | L, <
Z32 Y3z Yz Yas Ya Vi H ,
= (3.17)
Zaz Ya3 Yaa Yas Y Vies H
0 Yss Ysa Yss Yse Vug, H
0 Yo Yes Yes Yes | | Vi, | | H |

where each term in bold face is a submatrix described by integrals such as

/f Gz, y.2, 119 (1) ®(v;)dS
Zi, = /j GLL”(I,.!/-I‘y)‘I’(Uj)‘I)(U).dSJ-
vh= [ / G, v, ¥ ()8(4;)dS,
to= [ W vges,




52

or in a more compact form as

[ G gl ¢l 6P o 0 ()80

¢ ¢l G‘”’ GW o 0 ¥(v;)®(0)1,;

[

/v/S, G(“) 6(4‘2) G(43) G(44) G(dS) G(46) ‘I’(CJ)Q(E)VLEJ dy;

0 o G868 GE G || wOR()Vu

= S G S

. 0 G Y 6(65) G‘Gs’ V()P (&) Ve,

N . od b i o - -

(3.18)

The functions on the right ha,od sid_es of Equation (3.17) an(_i (3.18) are discussed in Chap-
ter I and are fufther defined in section 3.2.

Note that S; is the j& ‘source’ seginent of the corresponding strip or slot. We also have
a triply mixed coordinate system which must be accommodated using the transformations
given by Equations (3.7-3.10). For example, computation of G"a) involves both G“a) and
G(Elca) - In addition, the derived 'Green’s functions are in the cavity-fixed coordinate system.
Consequently, all terms must be transformed to a common coordinate system before the
integrations can be performed. Treatment of these integrations and manipulation of the
various G terms will be discussed in a later section.

The évaluation of the elements of the matrix at the positions where the boimd_ary con-

ditions are being imposed has not yet been discussed. Following the conventional method

of moments formulation, we introduce a weighting function and impose an inner product

to be evaluated at each subsection on the strips or slots. The inner product is defined as

//a ‘b ds | C (3.19)

where @ = @, the weighting function, and b will be the vectors represented by Equa-

Q"!

tions (1.54-1.56). Note that the elements of Equation (1.54) are to be evaluated on the

_ strip as indicated by (1.57) and (1.58). Similarly, Equation (1.55) is evaluated on the lower
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slot.as indicated by Equations (1.59—1,61_)a.nd' Equation (1.56) on the upper slot as implied
by (1.62) and (1.63).
Following Galerkin’s method we can choose‘tb to have the same form as the basis

functions used‘in the expansions of the currents. Thus, for Equation (1.54)
= W(;yb(u)u Y()®(w | (3.20)
Similarly, for Equations (1.55) and (1.56) |
B OO HVOREOE (3:21)
The elements‘of the.mat‘rix in Equation (3.17_) are then changed to
- / W(v)cb(u)z{,ds
zi = f ¥(v)8( v)Z",dS-.

v = [[, woson;

where the 7 index represents the ‘field’ point integration locations.

For certain cases we will use point matching on the slots dri.ven by considerations in the
evaluation of the Sommerfeld integrals of the half-space Green’s function. In this case the
weight. function for the transverse dependence of the longitudina! component of magnetic
current on the slot becomes a delta function résulting in the evaluation of the field at a

point at the center of the slot.

3.2 Excitation Models

The final element to be discussed is the excitation vector represented by the right hand

side of Equation (3.17). As mentioned previously (Section 1.3), the & terrhs represent
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non-zero values in the excitation vector corresponding to gap generator locations on the
strips. Likewise, the  terms will be non-zero for the incident H field excitation used with
the Reaction Method. In this case, the incident field must be weighted the same way as

the left hand side so that the right hand §ide terms become
H; = //S @ T™ ds; o (3.22)

For the gap generators, the corresponding field for the gap subsection can be designated

E,. Application of Galerkin’s method then, results in the integral .

| 5,—:/]5 @-E, dS, (329

on the right hand side of Equation (3.17). E; is an unknown caused by a source at that
location on the microstrip. If we assume E, = E,,0, then we can set £ =0in the second
‘row of Equation (1.54).

In most cases. we can arbitrarily set the integral of (3.23) so that &£ of the first row
of (3.17) becomes a zero column vector excépt for one element correspon&ing to the position

of the gap generator of the form
£=[0 -~ 010 --- 007 (3.24)

where T denotes the transposition operator. Setting .the magnitude of E; is érbitrary be-.
c:;use the Standing Wave Method used witﬁ the gap generators uses relative interpretations
of the resulting currenf., not absolute quantities. |

For certain problerﬁs, however, we need the use of the gap generator model to determine
absolute values of current on thé Iines. If we .set the field in the gap such that the voltage

over the gap given by

V, = -/m E, dl - en)




55

is equal to 1 Volt. the input impedance at the feed point is givell by Zin = 1/I, 10 first
order. A similar ‘model can be uged for slots with a coaxiai feed, as in .[‘21, p-360] for
example, by replaciﬁg the goaxial feed with '# current source on the siot.

Before moving on, it is worthwhile to examine this process a little more closely in the
context of some of the terminology a.nd phys.ical interpretations of gap generator models
found in the litera.t.ure‘. ' Iiestricting this discussion to one dimension, at the source our

system of equations represents the enforcement of the boundary condition

/ wf(z) dz=K (3.26)

where w is the weight function, _f(:c) is the field quantity and L is the constant specified
on the right hand side of the matrix equation row corresponding to the location of the
source. It is clear that the only non.zero contribution to the integral can occur on the
~domain of w for which w is non-iero 50 that a.ny’physica.l interpretation is confined to
that region. It should also be noted that there may'bé .an.inﬁnite number of solutions
f(z) satisfying this equation and that this equation. does not force further constraints on
what f(z) fnight be, i.e., the right hand side does not specify how f(z)‘ beha.ves. on a
scale smaller than the domain over whi.ch w is non-zero. We then also have no basis for
a physical interpretatidn which imagines the terminals of the source within this domain,
but rather we should interpret the termin#ls to be at the domain’s end.point.s. ‘Obviously,
K will depend on the nature of w. The physiéal interpretation of the nature of the source
then also depends on w. For simple cases such as a pulse weight function, the delta—gap.
physical interpretation is appropriate since Eqﬁation (3.26) reduces to a form similar to
Equation (3.25). The point match case, or delta-function source can be interpreted in
the same manner by taking the lirﬁiting case of the pulse weight function,'srhrinking its
width.to an infinitesimal gap whil‘e. keepihg the area constant. For more complex weight

functions, the physical interpretation is unclear except that we can consider the source to
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be ‘distributed’ over the domain of the weight function.
The system of equations represented by Equation {3.17) is now fully specified. The
unknown currents J,, Kz and Ky can now be found by solving for the matrix elements

and inverting the matrix.

3.3 Expansion of the Dyadic Green's Functions for the Cavity

| To evaluate the elements of the matrix. we need to expand trhe ti)'adic Green's functions
into the components corresponding to the electric and mggnetic curreﬁts which arein z-y
blanes. All of the required terms can be separated into frigonometric functions of z,z'\y
and v’ multiplied by a complex coefﬁciem which contains the : and 2’ dependence. The
Green’s funcuons can then be wmten ina condensed form as follows. Also, a constant
complex coefficient Cyn can be factored out which appears in all Green's functions for the

cavity and is defined by

2](2"‘ 60)

2 (3.27)
abk(k2, + k2) :

Cmn

Cavity EFIE - Electric Currents J

The electric field integral equation contribution of the electric currents involves the z-y

components of Gej which can be written in the form

oo o
Gelxx = Z Z Cran Getxx €08 k2 sin kpy cos kpyz' sin kpy'
' ' m=0n=0
[+ =] (> o]
Geyyx = Z Z Cmn Gedyx sin kpz cos kpy cos kmz'sin kny'’
m=0n=0 ’ ’
Geixy .= Z Z Cemn Gelxy €08 kmz sin knysin kmz’ cos k3
m=0n=0
o0 o '
Geyyy = Z 2 Cmn Gelyy sin kmz cos k,y sin kmz'co_sk,..y' {3.28)

3
[}
o
a
]
=]

Tk,
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‘where k, = k,, = mr/a, k, = k, = nx /b, and

GeJxx = [ n-'ee(ne) + (ka ) zec(i]m)] : ] {3.29)
. L L . .
geJyy = [kmwee(ﬂc) + ( k; ) ‘-’ee(qm )] (330)
) . kz 2 . i
gelyx = ge.lxy ” "kmkrﬁ [zee(ﬁe) - (‘E") zee(nm)] (331) .

The z dependence of the Green's function is contained in the Z.. function defined as
[y cos k,(z — ¢) = jsink,(z — ¢)] [fiL cos ko (2 — dJ =~ Fsink,(z" - d)]

Zee(7) = [r}Lcosk (z=d) = jsink,(z ~ d)] [ cosk,(2' =€) = jsink,(2' - ¢)]

(v — L) coskz(c — d) v - 1)smk (c—d)
Cforz2z2 . (3.32)

Here again we use the ‘ee’ subscript notation to imply the trigonometric dependence of the
function.
Cavity EFIE ~ Magnetic Currents K

The contribution of the magnetic currents involves the components of Gex which can

be written as

Z ZC,,,,.. G eKxx €0s km 2 5in Lny sin knz’ cos kny

- Gekxx =
' m=0 n=0
: o0 o0
Gekyx = Z Z Crmn GeKyx 8in kp z cos k,y sin kp, 2’ cos kny'
mz=0 n_D
Gel{xy = z Z Cmn Gexxy coS Lmz sin kny cos km 2’ sin kny'
e |
Gekyy = z Z mn ge;(yy 8in k;mz cos kny cos k2’ sin k3’ (3.33)
with
Gexyx = k. [ksnzeo(ﬁc) + kizea(ﬁm )] T (3.34)
‘gel(x)' = ’kt [kzzeo(ﬁc) + kfn zeo(ﬁm)] . (335)

Gekxx = = Gekyy = kmknk: [Zeo(fle) + Zeo(Tim)] (3.36)

i
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The 2., function is defined as
[ cos ko(z = €) = jsink,(z = ¢)] [ sin k(s —d)+ jeosk (s — d)]

Zeo = [ cos k(2 = d} - jsinkz(z ~ d)] [ sin ko (2" = ¢) + jcos k(2" = ¢)]
(fw = AL) cos kz(c — d) = j(fuiL = 1)sink:(c - d)

for 222 (3.37)

Cavity MFIE — Electric Currents J

The magnetic field integral equation contribution of the electric currents involves the

components of Gmy which can be written in the form

Comn G ekxx 5i0 kmZ €08 k¥ €08 k' sin kny'

™8
s

Gmixx =

2
H
°
hd
1
o

Crmn G elyx €08 kmz sin kny cos kmz'sinkny'

agl
(s

GmJyx =

3
it
(=]
N
L]
o

Comn Gekixy it kpz cos Ky sin kmz’ cos kay'

H
s
™Ms

3
#
o
A
[)
o

Gm.lxy '

Cmn GeKyy €05 kmz sin kny sinkma'coskny (3.38)

s
s

Gmiyy =

E
it
o
3
it
o

Notice that the coefficients are the same as for the Ge case. It is not difficult to show

that upon application of Galerkin’s method,
(R.Gmid) = (1.Gex.K) (3.39)

where the double inner product notation is defined by

(@, t,E):jja-//%-E ds' dS - (3.40)

This implies, because of the signs of Equations (1.58-1.59), that the submatrix associated
with the electric current contribution to the MFIE is the negative of the submatrix for the
magnetic current contribution to the EFIE (diagonally opposite for the order given). This

observation reduces the computational effort required since only one of these submatrices




39

needs 1o be calculated to fill their respective positions m the matrix. However, for the

‘radiating slot problem when we use the Maxwellian transverse distribution. evaluation of -

the Sommerfeld integral has been alccom’plished through point matching which does_noti
produce this symmetry. lience, in that barticular' case, we cannot take advantage of this
property.

It can also be .sﬁown that the electric curren‘t‘ EFIE terms form a submatrix which ‘isr

diagonally symmetric as are the terms in the diagonal submatrix- representing the MFIE

contribution of the magnetic currents. Therefore, these also can be formed by calculating -

only about hall of the terms, however, as will be seen later, taking advantage of other
mathematical relations for these terms produces far more significant improvements in the

fill time for these submatrices.

Cavity MFIE —.Magnetic Currents K

- The cavity magnetic current AMFIE terms are associated with a Green’s function which

can be expressed as

(- <] o0
GCmKkxx = z: z “mn & mKxx Sin kT cos kny sin Lm:r cosk,y'
m=0n=0 .
, - :
Gmkyx = Z Z mn O mKyx €08 km 2 sin kny sin k2’ cos k3

3
T
o
k-
H
(=]

{
8
Ms

Gmkxy = Cmn & mKxy 8in km c0s kny cos kmz’ sin kny'

m=0n=0
. [+ <] o0
Gmkyy = Z Z Cmn G mKyy €05 km T sin by cos kmz' sin kny' {3.41)
' m=0n=0 . .
where
G . 29 (= kmkz 2 .- | .
mKxx = kiZoolfle) + & Zoo(Tim ) (3.42)
G = K2 Z00(7 knks\? 5
mKyy =. mZoolTie) + T“‘ Zoo(Tim (3.43)
k

ngyx = Gm§§xy = —kmkn [“oo(ﬁ'c) - (f) woo(nm)] ‘ (3.44) .

+
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The Z,, function is defined as

(A sin ks(z = €) + j cos k(= = ¢)] [fiL sin k(' = d) + j cos k(' = d)]

Boo = [ sin ku(z = d) + j cos ky(z = )] [ sin ks (' = €) + j coske( ' = c)]

(v — fiL) cosks(c — d) - j(fufiL — 1)sink,(c - d)

for z24' {3.43)

Slot MFIE - Magnetic Currents K

\\
_For the slot, the transverse components of G mk for a homogeneously filled cavity are

needed which can be written in the forms:

G mKxx Comn G mKxx Sin km T €08 kny sin kynz’ cos kny’

H
Ms
s

3
i
o
3
n
-

Cmn G mKyx €08 kn T 8in kny sin k2’ cos Ky’

Ms
™Ms

CGmkyx =

3
1
o
3
]
-

Ms ;
™8

Gmkxy = Cmn ¢ mKxy sin k2 cos kny cos kmz'sin kny'

3
1]
o
3
1]
[=]

M8
s

G mKkyy Crmn @ mKyy €os knzsin k,;y cos km ' sin kﬂy' (3.46)

3
1]
o
=
[
)

where

_coskz —d) [, KL
CmKxx = m[kn+ e

cosk (2 —d) [,, KZk?

mkyy = She—9 ™18
o L, eosk,(2 - d) k2 :
_ Gmhyx = = Gmey - ”Lmknm .l - kg (3.47)

These expression are valid for currents on one end of the slot coupling to field points on

the opposite end when :' = ¢. For currents coupling to the same end, 2’ is set equal to d.

Half-Space MFIE ~ Magnetic Currents K

Although the Green’s function for the half-space was derived in Chapter II, the nu-

merical treatment is quite involved and will not be detailed here. It consist of a rea! axis

i
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Gaussian Quadrature scheme ﬁ’ith singularity extraction of the branch poiut and §prfaco
wave poles and asymptoti; evaluation of large argument:s...The methodology hé.g been
outlined by Katehi and Alexopoulos in [36]. The numerical implementations used to eval:
uéte the haff—space admittance elements of the matr.ix were provided by Katehi fér the

Maxwellian transverse distributions and by Harokopus [31] for the rooftop functions.

3.4 Identification and Reduction of the Integrands

- The eiements of each of the submatrices of Equation (3.]7). involve double surface
integrals as shown earlier. The inner sgrfa,ce imégrations a,re.over ‘source’ region;deﬁned
by the current expansion basis functions.” The outer surface integrals result from the
application of the weighting functions and cover the "observation’ or ‘field” regions of the.
_ problem where the boundary conditions represented by the integral equa‘t_‘ions"(section 1.4}
are being enforced.

Using the condensed notation we can now write expression.s for the impedance elements
in a general forrﬁ which will identify the iniegrations to be performed _for ea;ll term. To
illustrate,. only t‘he EFIE expansions for the current on the stfip will be presented. The
MFIE for the strip and slot currents are handled in an exactly the same manner.

The EFIE:electric current terms can be written as fol}ows:'

Z9 = i 5;/ V(v)e(w1) j GUINe(v,) ds,dsi

z¥ = i; if/s w(v.-)«b(u)//s Gﬁ,”q,(u)«b(z},)ds, ds,

z8 = ii/] V(v)(v;) fj G2 g (v, )0 (v) dS, dS;

zi = % /j q:(v.)cb(u)]j GG (v,)b(v) S, 45, (3.48)

m=0 n=0

As before, the superscripts i and J represent the & Yfield” subsectlon and the £ ‘source’
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subsection. The Green’s function terms can be transformed using the relations

i = {cose— isind ' (3.49)

y = Usind+icosd ‘ (3.50)
The transverse Green;s function, |
éeJ = Gexxff+ Getyxii + _Ge.l'xyfﬁ‘*' Geryy iy k (3.51)

-

can then be written for the strip-fixed coordinate system as
ée.! = G ejovil + G edvv? U+ G eyun 09 + G eduvitd (3.52)
where

Ge.lx:é cos® ¢ + (Gesyx + Gejxy)Sin dcosd + Geyyy sin? ¢

G eluv

G eivv ~(Geixx = Getyy)singcosd+ Geyxcos’ ¢ — G esxy sin": 2
G ejuv = —(Gexx ~ GeJyy)Si“ ¢cos¢ ~ GeJyx sin? ¢+ Gejxy cos? ¢
Gewr = Geixx sin? LR Geﬁyx + Geny)Sin ¢cos¢+ GeJyy cos? ¢

(3.53)
When the coordinate systems are mixed, such as the case of the magnetic slot current

contribution to the EFIE, the Green's function terms are also mixed. The relations for the

slot-fixed coordinate system unit vectors are

]

] fcosﬂ— Esine (3.54)

L]

fsin0+fcosﬂ (3.55)

Substituting these into the posterior positions of Equation (3.51) and (3.49,3.50) into the

anterior positions, the Green's function terms for this case become

G ekue = G eJxx COs P cos b + Ge_;y,g sin ¢ cos & + Ge]xy cos ¢sinf + Geyyysinpsind .

&)

i*
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G eKuf =~ Ge_]xx cos @sinf ~ Gejyx sin ¢~sin g+ GeJ_‘;\- cos@cos@ + Gedyy sin o cos @
Gel.;,,c = - Ge_]xx sin¢pcos 8 + Ge‘]y)‘ cos¢cos b — Geh\ sin ¢sind + eJ\\ cososinf

GeK,,E = Gelxxsingpsind — Ge]yxCOSQfﬁSIBe" Ge_u,\ysmocost9+ G esyy €Os @ cos b

(3.56)

Returning to the EFIE:electric current case, we can now write the terms of the associ-
ated submatrix terms as (omitting the Crun constant)

Zy = z Z Gelxx cos’ ¢!,o(v.,u.)1,o(v,,u,)+ GQJ}X sin r.bcom»[,,,(tI i ){m(v )

m=0n=0
+ geny sin ¢C°5 ¢Ieo(v1's Vi)Ioe(UJs VJ) + geJyy Sinz ol.lv.y ”oe( ;. U))

Z Z geJxxsm¢C05¢Iea("n‘Ua)[eo('u)-”;)+ GGJ}ACOS oLt tiMleo(v, 1))

m=0n=0

- gt!.b‘c_\/.sm2 ¢Ico.("is U M oe(vj, v5) + GeJyy sin ¢ cos Qloeif’;- v oe(v; 0 0y)

.,

212 - Z z geJm sin ¢COS¢I¢¢(U”V.)I¢0(UJ‘ UJ) - GeJyx sin éloe(vn Vl)Ieo(' -'-'_a)

m=0n=0

+ Geixy cos? ¢I,o{v;,ug)I,=(rf,, v;) + Gelyy sin & ¢05 O el Va1 ) el 1), )

oo oo :
ZZJQ = Z Z GCJXX Sin2 ¢]co('yis vi)Ieo(vj 5 Uj') - geJyx sin @ ¢os @lo. (1. 1, )Ieo{V_;' ty )

m=0n=0

- GCny sin ¢Cqs¢1_-eo(”ia Ui)loe("jv u;) + ge.lyy cos? Oloe(vi, 1’i)’oe(”}1 ;)

(3.57)
Now it can be seen that the only terms involved in the ihtegration are of the form
kme sink v
Ieo ' // [COS m n ]
z#{a ﬁq S, Lsin kmz cosk,y ®(ag)¥(B,)dS, | (3._58)

where (ag, 3,) could be either (vq,uq) or (v, v,) with dS; = dvdr for the strip or (a,,8;)

would be replaced by {(;.&;) or (&.,(,) with dS; = d(df for the.slots_.
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3.5 Integration

We will ultimately assume, as is commonly done, that the strip and slot are Qufﬁciently
narrow so that the _longitudinal ccrﬁponents of current are much greater in magnitude than
the transvefse components. The latter cart then be neglected which, as will shortly become
apparent, greatly simplifies the book-keeping required to keep track of various Green’s

function and current components, coordinate transformations, cross-coupled terms, etc.

" The assumption is further justified in that, at this point, there is no known advantage ot

requirement for the microstrip or slot structure to be more complex. For the moment,
however, the complete expansion will be retained so that the numerical model can later be
extended based on these expansions, by evaluating the additional terms of the matrix.
Now the [ee{ g, Bq) function is stiﬂ a mixed coordinate system function, therefore, to
perform the integration the function must be transformed f.o a cémmﬁn system. The sim-
plest approach is to transform the cavity-fixed coordinate system functions into the strip-
fixed system by solving Equations (3.7-3.8) for z and y and substitute into Equation (3.58)

giving
r = veos¢—-vsing 4z, - {3.59)

vsing + v cosé + Yo | (3.60)

-
"

Equation (3'.58) then becomes

Iee(ag, f,) = : /j {coS[km(vcostb ~ vsin @ + o)) sinfkn(vsind + vsing + vo)]
HACPRPES Js, \sin[km(vecos ¢ — vsin ¢ + z,)] cos[kn(vsin ¢ + vsin ¢ + yo)]}

®(axg)¥p(By) dvdy (3.61)

By introducing the notation,

k¥ = kpcos¢ knsing - (3.62)

k¥ = kpsingdkncosg o (3.63)

-3



Vo = kpZ, o (3.61)

EnVo . (3.65)

Vo
we can reduce these_iritegrais to the form
Ie(aq,B;) = 3 // [sm(i."'v + v, ) cos(kT v - uo) - cos(k"’v + vo)sm(k V-,
e ;sm(l. v+ v,) cos(L*u + 1) % cos(kT v + v, ) sin(k} v + v,)] 7
.ib(aq)\I'(ﬂ,,) dvdy .. ) o {3.66)
It is now clear that there are pnly two integral form‘s which must be evaluated:

/ / sin(koa + @) cos(kgB + B,)®(a)¥(B) da df
/ ] cos(koa + @) sin(kpfl + 6,)®(a)¥(f) dadf (3.67)

The integrals involviﬁg ®(a) are expanded and evaluated in straightforward fashion to give

sin kypl, | cos

j [s"‘ (ka + ao)] ba)da = —Pla_ [53“ (ke ‘:}; ao)] sinc [(k + kb)%‘—] sinc [(k - 1.-,,)%“]
| (3.68)

where sinc(z) = sin(z)/z.

For the case where ¥(3) is the Maxwellian distribution,

sin ‘. _‘I le [sin, dg .
[ oz s = o [ [ 08200 =L a0

s

Using the substitution -,% = sin v, we have

1 /2 [sin

Ii = T { . ]

ot " cos(klg siny % 8,)| dvy
cos(f,)

Rl

sin(£8,) [7/? [cos ]
- ~ { n(klgsm'y)] dvy

/2
[sm (I.Ig sin '7)] dy £ ———
-tr/2 -nf2

(3.70)

This form can be reduced to

Cos

o= 2] ﬁ.,][“cos(uasinv)d-f o (:tﬁ,,)] () : (3.71)
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For the rooftop functions, the transverse weighting is 1/2!3 so that

j[s‘“(wiﬁo)] (5145 = 5 j [:‘o"s( 5i50] d3

[s“‘ (iﬁo)] sinc(kslg) (372)

]

I¥

With these results, the integratiou of Equation (3.66) is fully specified and we can

proceed to evaluate the terms of the matrix.

3.6 Numerical Evaluation Considerations

Before proceeding to the apphcatlons. some comments on the numerical implementation
should be made. At this point we are in a position to go ahead and program the previous
expressions .to evaluate the matrix elements as they stand, however, just a brute force
approach, without some consideration of the algorithms to be_used, would undoubtedly
result in a very inefficient program which takes muclﬂ longee to run than need be. In this
section, some ‘common sense’ features will be pointed out in addition to some mathematical
identities which can be used to significantly improve the convergence rate of the summations

involved.

3.6.1 Precomputation

By writing out the complete expression to be evaluated for the self-impedance on the
strips, the main points can be illustrated whick also apply to other elements of the matrix.
Let us assume that the stnp is oriented along the Z axis in the cavity with a width of W

and is centered at the point {z,,y,).- A typical element of the [Zy,] can then be written as

SE[f. o0 f[ cWein) ddy as'ey

= 33 Con Cerxxleolzi vidleolz) 4l) (3.73)

(1)
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Assuming the Maxwellian transverse dependence, the /., terms are evaluated as in the

previous section and Z.’_, becomes

I3

. . _—
7 zf;” = Jupzz m:;k"',’ Gelxx CoS[km(Z; + Zo)] coslkm(z; + o)) |

sin® Eniod2(knly Jsinc[(km + ko)L Jsine[(kn = ks)2)(3.74)

The most basic rule to optimize the speed of the computations is to perform any operation
or function evaluation as few times as possible. Immediately we recognize then, that the
constants should be factored out and the outer loop factors should be removed from the

inner loop:

‘ Fak2p
Z.'(;” = 4 ksl Z (2= Om )cos[Lm(z, + .ro)] cos[km(z, + 2o)]

absin® kyl, < 2

sinc?[(km + ko)lz]sinc?[(km = ks )]

: {Z Geuxx sin? knyoJf(k,.l,)} (3.75)

Now in this expression, althougi{ evaluation of the sine and Bessel function J, in each
cycle of the loops is'imp_lied. in pracﬂce these are computed and multiplied external to
both loops and storéd as a vector dimensioned to include the maximum‘ value of “n’ to be
evaluated. Thus, these functions afe evaluated only once per Qa]ue of ‘n’. Similarly, the
(2 = 6m)/2 factor ( = 1 for m # 0 ) appears only in '1;he ‘m’ ]opp, since for n = 0 there
is no contribution (note aiso that the conditional statéinent which tests for m = 0 can be

eliminated by calculating the m = 0 terms separately}.

3.6.2 Transformations

Finally it is noted that the ‘m’ loop implies m x N evaluations of the cosine terms and
with the inner n loop implies m x n x N? products of these terms and the remaining terms

where N is the number of basis func’tionsrun the line. This can be dramatically reduced

(e
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by making use of the relation
cosAcos B = -;-[cos(A + B) + cos(A - B)] (3.76)

so that our expression becomes

.2 04 - &m
z) = afi l’;’;b::l 3 (2 . )(cos[km(:r.- +2; 4 22,)) + coslkm(z, ~ 7,)])
I m )

sinc?{(km + kb)l,]sihc’[(km - ky)l:) {}: Gelxx sin? k,.ya.]}(k,.l,,)} 3.77)

We ﬁow need at most m x (3N — 1) cosine evaluations, on the order of m X n x N producf.s
and N? simple additioﬁs which greatly improves the computation time, especially as N
increases. The sum resulting from the application of Equ#tion (3.76) is performed after
the m and n summations are complete. This is the key to the speedup since a factor of N
" is removed from the number of product evaluations. A factor of N'? additions are added,
however, this is inconsequential since the additions are simple (two complex numbers)
whereas the previou;sly required product evaluations also involve the calculation of other
non-trivial coefficients. If the matrix elements are to be stored _in'data files, sto?ége of the
cosine sum and difference ferms also greatly reduces the file size - now on the order of
(3N — 1) rather than N?.

This technique also applies to the slot self-impedance terms. For the coupling terms
{slot-to-strip, etc.), the same principles are used except the sum and diﬁérence scheme no
longer applies due to mixing of kn, and k, wavenumbers. ﬁowever, in these cases, due to
the separation of the #tructurés in the 2 direction, sine or cosine factors in the denominators
become hyperbolic for large values of m and n and improve the convergénce rate so that
the upper limits of the summations can be reduced.

Other.factors can be considered, however, the above points are thought to contribute
the most significant improyements in program efficiency with minimal effort. Of course,

there are other issues which have not been addressed since they often depend on the avail-

it 3
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able facilities; memory limits for example. There are also schemes available 10 improve
convergence through auxiliary series transformations, however, these are often only possi-

ble at the sacrifice of generality. For example, for uniformly filled cavities. e.g.. stripline

problems, techniques such as those found in [13, Appendix A.6]) can be applied but then |

multi-layered cases would require separate treatment. Admittedly, the full extent of these
possibilities have not been adequately explored and may offer further improvements in pro-
gram efficiency. Rather, the emphasis has been focused on phenamenological exploration

of the applications in the discussion to follow,

3.6.3 Convergence, Algorithms and Run-Time

As with other eigenfﬁnction expansion methods, consideration of the convergence of
‘the modal summations i§ an important process in establishing reliable results. For these
types of solutions it would be desirablé to analytically examine the expressions involved
and derive formulas for acceptable upper limit.s‘of the summations. Ideally these formulas
would be provided for each type of Green's function and .would be fﬁnctiqns‘of all the
relevant geometric and electrical parameters and the desired accuracy. To develop such
a system, however, is a major undertaking in itself and would really only be worthwﬁilc
after a more thorough investigation of possible serieé transformations alluded to a:bove.'
In addition, convergence behavior generally varies 'd_epen‘dihg. on which output variable is
squght, further complicating the situation. | |

Nevertheless, it was necessary to investigate some aspects 6!’ this quest‘ion_in order 10
produce feasona.bly efficient programs, the intention 'here'then being to pa.sé along some of
the info?mation gained to those who may extend the scépe of this work. Also it should be
-recognized that although it has becoﬁe common practice to discuss convergence by sﬁowing

the behavior of particular parameters for the structure at hand as a function of the number

=
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Figure 3.4: Convergence behavior for several parameters of a centered shielded microstrip
transmission line. Dimensions a = b = .25, w = 'h = .025, ¢, = 9.7. Terminal
values at 1000 modes were Z, = 49.63%, €, .7y, = 6.90, Hx = 12.45A/A,.

of mod.es used in their 'célculation, this information is really of limited vaiue since when
the technicjue is applied to a different structure, there is usually no guarantee of similar
results. The plots given here are therefore provided only to illustrate some intuitive points
)and to give the reader an ‘order of magnitude’ feeling for the required range of upper limits.
Unl‘ess‘some analytical guidelines are developed and become available for these problems,
similar numerical experiments must be vperformed for each new application.

To illustrate, let us first look at the convergence rates for several transmission line
characteristics. The theory behind the calculations is presented in Chapter IV. Figure 3.4
shows the convergencé behavior for three key transmission line parameters of a shielded
microstrip line. As can be seen, the rate of convergence depends on which characteristic

is to be computed. We re-emphasize that these features may vary as a function of the

ik
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geometric and electrical specifications. It should also be mentioned that this application
does not present any practical difficulties since not only docs. the convergence appear to be
quité rapid but these parameters are c.cnmputed by a two-dimensiona_.l formulation involving
only a single summation. The efficiency of evaluating the summation fof this. problem is
not a significant issﬁe gi_ven today's desktop computer capabilities. For example, the data
in the_ i’igure_ﬁere'eﬁiciently computed on an Apollo DN2500 workstation®.

This brings us to the considerati§n of the two dimensional summations fequired m
the analysis pf | three dimensional problems of the type discussed in Ch#pters V-VII. The
requifed nuinbef of term§ in the double summations depends on thgir behavior in the
ﬁn~pla.ne. where m and n are the two parameters of summa.tion. Tlle rea! problem is in
predicting or aﬁticipating this behavior a-priori so that the corresponding limits can be
set. Some progress in this direction can be a?:hieve’d by reéogniziﬁg that these sum‘matibns
are similar ‘i_n many respef:ts to the Fourier series. By drawing on our understanding of this
topic, we can gain some intuitive understanding of how the modal summations behavé. For
example, it can easily be shown by numerical experiments that the closer two elements are
in spatial coordinates, the greater will be the extent of the mode spectrum as in Fourier
analysis. In addition, there.ma,y be no sign changes for the sell coupling terms so that we
can immediately conclude that these terms will display the slowest tonvergence. Thué, we
~ could potentially monitor only the self coupling and nearby terms 10 deterinine_whether
‘the summations havé cohverged or not. There is also a potential ‘sav‘ings in time, il we
can’ monitor the convergence of the series as a function of one direction (réferred to as an
‘eigendireﬁtion’); the dire;tiori of m say, while the other (n) is constant. Thereby we can

potentially eliminate significant fractions of individual rows or even entire rows, depending

'The Apollo DN2500 is quite slow relative 1o most other engineering workstations, perhaps comparable
in speed to standard Intel 80386 based personal computers. The above data was computed at a rate of
approximately one minute cpu time per 1000 modes. The relation is approximately linear since there is
only a single summation.
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on the behavior of the functions involved.
While these ideas have an attractive generality to them in that we might be able to
develop an algorithm for monitoring the convergence of the sum, making the convergence

question invisible to the user, there are serious difficulties when we try to put it into

practice. Most significant of the pitfalls involved include the fact that the final resul; is not

known e-priori so it is quite difficult to establish a criteria for convergence. To illustrate,
consider what happens if a ‘percent change’ ¢riterion is used. Suppose some of the terms of
series at the early stages of summation éontribute very larg: values which are lﬁter canceled
by similar terms of the opposite sign. At the early stages then, the sum will be large and
a fixed percentage of the current sum may be qﬁité large compared to the final result.
Thus, truncating the local contributions to the series based on the cufrent percent change
may prevent important terms from making their contributions which in the end leaves a
significant error. Another problem is that, as with Fourier analysis, the mode spectrum
may have extended gaps along the eigendirections so that a summation in that direction
may appear to be ;onverged when in fact there are addition terms farther along which are

needed.

Some time was invested in pursuing an algorithm which takes these factors into account -

based on observations of the spectra 6f various cases. In the end, however, it was found
that while some progress could be made by instituting various monitoring schemes, the
final conclusion was that the overhead required for keeping track of the progress of the sum
and the periodic testing of sum"s status, more or less offsets the gains made in reducing the
. #
number of actual terms added to produce the result. However, one scheme that emerged
does bear mention here since it‘ is straightforward. It shouid be recognized that the cancel-

lation of terms generally occurs along both eigendirections and also the largest terms occur

near the origin. Then, one can readily accumulate the bulk of the sum by making sure

I



73....

" to sum the low index terms near the origin at the onset. thus providing a good estimate
of the final result and alleviating the problém of not having a good estimate of the final
result in advance. A véry simple aigorithm accomplishes this scheme by simultaneously
incrementing ei‘ther m or n while décrementing the other and sﬁccessively moving away
from the origin, thereby summing in # direction nofmai tb the diagonal of the ma-plane.
However, because of the tradeoff mentionéd? the final versions did not use any of the de-
veloped sﬁhemes but #imp!y scanned the mn-plane in a gtraightfor.ward, raster-like fa.qhioq
with terminating condition‘s set by experiencé.

Genefally, to avoid any question of convergence while other investigations were under-
wéy émd_ bec;cwse s.ufﬁcient'prqcessing power was available, far more terms than necessary
were used anyway, typically on the order of 1000-1500 modes in thé eigendirection associ-
ated with the directions of the Hnes or slots, and half as many in the other direct'ion.. For
the cases studied hgre, not nearly as many modes in the one eigendirection are nceded as
in‘ the other. This is due to the fact that in the particﬁlar cases studied for comparison to
experiments, the strips and slots were always parallel to the sidé walls of the cavvili.es SO
that one coordinate describing the position of the basis functions is constant. This tends
to cause the spécira] variations in the corresponding eig.eenlﬁalue to be similar for all basis
functions, althbugh the varia.iion of the other coordinate prevents this from Being strictly
true. If, for example, the y coordinate is' constant for all basis functions and n is the
associated eigenvalue, _the spectra in n at a fixed value of m will be identical except for a
constant scale factor which’ depends on z. Truncation error in n then tends to get averaged
out by the variation in z. To illustrate, let the aspect'fa;io in this example be defined by |
N/M, ie., the denominator is the maximum eigenvalue corfesponding to the c_oordinate
which varies and N is the maximum of the other eigenvalue (1\ < M). Figures 3.5 ‘and 3.6

demonstrate a typical convergence experiment in ‘which the aspect ratio has been fixed
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Figure 3.5: Convergence behavior for peak normalized resistance versus maximum mode
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at 0.5. The quantities examined are key.parameters to be introduced in Chapter VI.
As always, other parameters may converge at different rates and the rates may vary as
geometric.or electrical parameters change. The key point here is that at Jeast for this éa.se.
when the maximum m value is set to M = 600, the changes which occur as N/M is reduced
from 1.0 to 0.25 are less than 0.1% for the resistance and 0..03% for the resonant length.
Thus, far fewer modes are needed in the n direction. |

. For subsectional basis functions, the spatial sampling rate also requires convergence
criteria. Siﬁce the quantities we are dealing with, e.g., impedance, are typically highly
sensitive to the.Behavior of the near-field and .a.lso often depend only on the fields in a
small region, the required spatial sampling rate is generally substantially highe‘r than what
is required for {ar-ﬁeld type problems (or non-uniform sampling is needed which is more

complex to implement). Again, the actual requirements depend on the circumstances

i1
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- Figure 3.6: Convergence of resonant slot length as a function of the number of modes.

and t.ech.nique‘s used so it is difficult to provide general statements on these requirements. ‘
Twenty samples per material wavelength is often used as a ‘rule of thumb’ for far-field
probléms which we generally increase to the 30-4d samplés / wavelength-range for sampling
on‘ strips or non-resonant slots. For the resonant slots, we often increase the Sampling to
100-125 samples pér wavelength making sﬁre to overestimafe the resonant length of the
slot by a significant amount. This pr#ctice is not driven so much by cdnvergence criterion
as it is by practical matters. It takes far longer to generate the matrix elements than
it does to invért and process the cases studied here. -Ché.nges in length or the relative
positions of slots and lines for example, can easily be ‘a.ccomplished by loading a matri;c
wit.h longer tﬁan needed Ié_ngths and scanning the behavior of the structure ‘as a functioﬁ of
lengths or distances by successively removing the appropriate rows and colu?nns; inverting

and solving for the appropriate parameters at each stage. Thus, the matrix elements
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need to be generated only; once for a given frequc.;ncy, allowing a widé variety of geometric
variations to be studied as long as the cavity dime‘nsion.s are not changed. We also use this
technique to provide greater resolution of lengths and relative distances without requiring a
regeneration of the matrix. The upper limit of the spatial sampling rate when the elements
of the matrix are computed with double precision seems to be .on the order of about 250
samples per material ;wavelength. This numBer. attributable to.round-oﬂ' and truncation
error, is machine and algorithm dependent which brings us to the final point on this subject.
* For problems of these types. it is common practice to quote run times typical for certain
machines, often‘ not very well identified. It is common knowledge that machines vary widely
in their ability to execute codes. espc’cially. from machines of one type to another, but even"
for the same type of machine with different hardware configurations. In addition, the
information p_rovided can quickly become dated and irrelevant since available computing
facilities are changing rapidly. Not only this, but also the execution time of the.same
analysis implemented with different algorithms and different degrees of generality can vary
| widejy‘(ea.sily on the order of a 10 to 1 variation, depending on both the abilities and
knéwledge of the programmer as well as the time spent in- optimizing the algorithms for
speed). Undoubtedly, there are techniques which can be used, in addition to thos@ discussed
above, i_o improve the run time of codes déveloped for this analysis. The real issue comes
down to a tradeoff between time.spem_on optimizing codes versus pfoducing and examining
results. Of course, the outcome of this tradeofl depends on available resources, the objective
in producing the codes, and their intended end use.. Suffice it to say that the key element in
the current approach is the generation of the matrix, which for a typical three dimensional
structure at a single frequency, c#n be generated in 45-60 minutes or less on a ~ 25 million

instructions per second machine such as the IBM RS6000/320. This amount of processing

time has been sufficient for our needs.



CHAPTER IV

ANALYSIS OF TWO-DIMENSIONAL STRUCTURES

The treatment of multiple layers can be illustrated in greater detail by presenting the
methods used to analvze structures which are uniform in one dimension. Complex three-
dimensional problems are often treated initially in this manner by analyzing their more

fundamental elements - two dimensional transmission lines — with lumped elements added

- to represent discontinuities. The total problem can then be treated by network analysis if

the ‘basic prqberties pf the individual structures are known.

The objective here is to show how these fundamental properties can be obtained, for
in#tance, the propagation constants and characteristic impedance.s of transmission lines.
These qu.anti“ties are directly tied to the so.l_utions for the fields .in the structﬁre wﬁich
thus becomes the main objective of this chapter, that is, to demonstrate the procedure for
matching field components through multiple substrate and superstrate layers as applied to
two-dimensional probiems. The presentatiop also serves to illustrate how the technique can
be applied to more general three-dimensional _probl'ems since the procedure is the same.
Some éxamples of ﬁeld solutions are given to demonstrate the'ut.ility of the approach. The
work in this cha.ﬁter is als§ needed in later chapters which deal with the micrbstrip-'fed slot
antenna elements. |

| The scatterin.g of waveguide modes by ve_rtica.l wires is aléo _studied ih this chaptef. This

problem reduces to two dimensions for the homogeneously-filled waveguide case which
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is relevant to the experlmental worl\.on stripline to be discussed later. The problem is
umque in this work in that the currents are normal to directions of the other curronts
discussed. The treatment of wires inserted through multiple layers cannot be redgced toa
two-dimensional problem and will not be discussed although, as will be seen, the s.olption to
this problem would be needed to complete the generaﬁ analysis of waveguides and especially
cavities formed by inserting wires thrdugh the ground planes of multi-layered parallel plate
waveguides. It is also noted that even for the homogeneously-filled case, the problem of
vertical poéts ‘or wires has not been extensivély treated in the literature, especially fpr
parallel plate structures, even though they are often used in pracﬁce for the suppression

of unwanted higher-order modes.

4.1 Apphcat:on to General Mu]tl-layered Shielded chrostnp Struc-
tures

The objective of this section is to show how the fields in the various levels can be calcu-
lated from a known form of current density on a single microstrip line in a straightfdrward
way. Also, although to this point we have considered multiple components of current, the
applications to be discussed will be restrlcted to narrow str:ps with one current component
to minimize the complexity of the presentation. There is no restriction on the piacement
of the current or the number of strips which can be used, however, a simple case here
will better serve to outline the method. The procedure for the treatment of more complex
muiti-layer coupled strips can be found in [83] which serves as an example of the use of
potential theory with impedance boundary conditions to generalize multiple layers in a way
similar to what has been done here. This reference also addresses the modelling of strip
conductor loss. In additon, we compare to a muﬁh eatlier work on this type of analygis
by Yamashita [90], whose method of non-uniform discretization would be appropriate for

wider strips where the form of the current density cannot be assumed.

o-*
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In order to calculate the characteristic impedance. the deﬁnﬁion Z = P/I? is used
where.P is the time ave;age of power propagating along the guide. Thﬁs. if wesot [ =1,
the characteristic impedance is simply Z = P which can be comp.utcd ahal_\'ticaily by‘
iﬁtegration of the a:,verége Poynting vector on the cross section of the waveguide. Also. in
some céses, the reaction of the ﬁelds4(R) on the waveguide cross section.is‘ needed whic:h
can be.computed in the same way.

For our purposes, let us assume a geometry such as shown in-Figure 4.1 with a longi-

z=c}s
2=d<"». LI

P T I I I O I I NI LN

Figure4.1: A shielded siripline, uniform in the g direction with multi-layered substrate
and superstrate.

tudinal current component on a single narrow strip of the form
. ' 52 —

g ‘ .T(z', v, =13 2z - d) =
o | Caw1-a(25)

etk 2oz ] < W2 (4.1)

i.e., a Maxwellian transverse variation of the current density which satisfies the edge con-
ditions on an inﬁnitesimally; thin narrow strip. The propagation constant kg represents the

set of characteristic complex phase constants associated with shielded micrbstrip modes.
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These complex constants are the eigenvalues of the equation
-Ez=—jwﬂ//jﬁxéeJ-Jd\"=ﬁx_Z_,-.T - {4:2)

which enforces the appr.opnate boundary conditions on the surface of Lhe microstrip line [83].
A particular value for k; must be found ﬁrst before the fields of a parl’.lcular mode can be
calculated .

Using Equation (4.1) in (4 2) the #§ component of Ce; as derived for layered rectan-

zular waveguide in Chapter 1I; and the integral representation of the delta function,
oo , a
/ % emilke=kal gyt = 2x6(k, - k,) (4.3)

we find that the § component of the electric field can be written as

2~ & )6(ky . .
E,, = Eaﬁ - dL Zo( k;Fk)"'(-i-kz) )smk,xsmk,z,Ja(k,W/?)

_{kz[ flet[fiets cos kz(¢ = 2) + jsink, (¢ - 2)) ]
F Uffer = fle ) coskp(c ~ d) = J(flerfleL — 1) sin ka{c - d)
k32 [ fimi[fimt €08 kz(c = 2) + 7 sin kz(c — 2)] ]} (4.4)
(fimu = fimL) €OS kt(c - d) =~ H(mUTmr — 1) sink;{c - d}

where the Fourier integral can be eliminated 'using the sifting 'property of the § func-
tion. Then, using Galerkin’s procedure to enforce the boundary condition given by Equa-

tion (4.2), we can write

wy (2= 6m) 02 2 kW
a Zk,(k?-}-l.?) kezolol{=5—)

,{kz[ et et 05 k(¢ = d) + jsin kiy(c = d) ]
* {{fiew = fieL) cosks(c = d) = j(fievfier = 1) sinky(c - d)

ki [ . fimL[iimu cos kz(c — d) + Fsin k.(c - d)} ] } (45
k7 L(imu = fimL) cos ks(e = @) = j(iimuTime = 1)sinkz(c —d)] | °

+

We now numerically search, using Muller’s method for example [60, p.262], to find the
values of k; which satisfy Equation (4.2) and thus correspond to microstrip modes.
With the propagation constants known, the fields in the i*» iayer can be easily found.

By inspection of Equations (2.80) ahd_ (2.85), the fields can be written in a general form
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in terms of the homogeneous solutions to Equations (1.10) and (1.12). Thus, the fields in
the i** layer can be written as

O J(2 = 8m)k;
o = Z2xa}.,(1.g+kg)

: ( [ﬁmUMoo[km kz(z - C)] + J‘Moc[k:,‘kz(z - c)]]
B; 1 ‘

\ [ﬁmLMoo[kz_y k:(z - d)] '{;jMoe{kz, k,(z - d)]]

N [ﬁwﬂ"[km k,(.z "'C)] - jﬂeo{k:sz(“z.— C)]]

o+ A s s (4.6)
\ [ﬁe[.ﬂee[k:a kz(z - d)] - jNeo[k:» kz(z - d)]]
. and |
_ J(2=bm)
‘ E, = Z 1, 2mak, (k2 + k)
[ﬁeumee[kn ky(z - c)] - jMeo[k.;» kz(z - C)]]
Ai ' ' .
[ﬁ ee[kﬁ kz(z - d)} - Jmeolkm kz(z - d)}]
Ul\oo[km k (z —-c)] + JNoe[kmk (z- C)]]
(4.7)

[ LNoo[k:n kz(z - d)] + jNoe[k,',_k,(z - d)]]
which are valid for all layers except the source layer. Some of the leading constants are

preserved for convenience in later notation.

4.1.1 LSE Modes

E‘xpanding‘ the VWFs we then find that the LSE mode fields in each layer can be

written in the form

' ‘ 2w . n . T .
Euse = A,[m] [:cyjk,k,, cos k,? sin k,;’ ~ §9k? sin k. z sin k’?’]
] { cos kzi(c; = 2) [flevi + jtankzi(ei — 2)) (1< 0)
d;)

“cos ki (c; ~ d; (4.8)

cos k(2 - d;) [fleLi = jtank;(z —d;)] (i > 0)
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Hise = FA; [;-(-’:-52—1—@] [a‘:ﬁkz sink zsink,z’' + §yjkok, cos k1 sin k,z’]
z T vy

1 cos kyi(c, — z) [fevitan kzife; — 2) ~ j] (i < 0)
“cos kyi(e: — dy) {

cos kyi(z — d,) ['r-],[,g tank,i(z - diy+7] (> 0)

+4; [-—ij—] [20k; cos ko2 sin k,z'}
(2N
1' : cos k,;(c,- - Z)lﬁcUi + jtan k(e - 2)] (:<0)
cos ksi(e: — di) coskzi(z — &;) [fleri — Jtank(z - 4d)] (i >0)
R (4.9)
where i = 0 for the layer containing the strip and
Ag ~Telo (4.10)

(ﬁcUO e ﬁeM) Cos k:(CO e dO) - j(ﬁcUOfkw - 1)5in k:(CO - dO)
By matching the tangential components of the field at the interfaces above and below the

strip layer the remaining coupling coefficients are found to be

_ kz1 [flevo + j tan ko(co ~ do)
A= aopt [16 = Ttanka(a =l (+11)
, " Aicrkaifler(i1) (i> 1)
4 = ko(im1) cos kyiqy(ciza — d.‘-_l')[ﬁem — jtank(c; ~ d;)]
Aisrkzifieu i) (i < 0)
ksivr) cos kygian)(cinr — diga{flevi + 7 tan k(e - d))]
(4.12)
For computation of power (P), the needed component of Poynting vector is §- %E x H

while for reaction (R) we need - E(k,) x H(~k,). For the case of LSE modes, power

density and reaction are given by

P=E.H" = 2wp | Akgk, Atk | cos? kyz ([ sin k2]
e a? kzi(kg- + k?,) k:i |COS k,,-(c.- -_— dl.)[2’

{ et cos kai(ei = z) + jsin kgie; = 2)|° (i < 0)

lieti cos kyi(z ~ di) = jsin kai(z — di)[? (i > 0)
{4.13)
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. ' A - $ A.)e 2 R 14?
R = Eo(k,)Ha(~ky) = 4wu[ jAikzk, ][JA,k, cos? kpz ([ sin kr2')

a? k,;(kg + k;) k. cos? kzi(c; -‘d,').

{ [flevri cos kpi(ei — 2) + jsin kui(es — ) (i< 0)
. ‘ (4.14)
[ﬁepi cos kyiz — d;) — jsin kzi(z - d))? (i>0)

4.1.2' LSM Modgs

Similarly, the LSM mode fields can be written as_

2jw”kz:'
ak? (k2 + k3)
1 cos kyi(ci — 2) [lmui + jtanksi(e;i ~ 2)] (1 £0)
)

“cos kyi(ci — d;

Ersy = -5 [ ] [:i:f;jkzkv cos k. sin kzz’ + ﬁ;}k: sink.z siﬁ k,z’]

coskzi(z = di) [fimei - jtank.i(z = )] (i>0)

:i:B.- [-2-‘%9-&] [2§7ky sin koz sin k2]
1 cos kyi(¢i — z) [fimuitankgi(e; — 2) - 51 - (¢ £0)
) .

Coskni(Ci =€) | g ki(z - d;) [fimeitanksi(z — di) +5] (6> 0)

(4.15)
Woow = #Bi| =] [69k sin kuc sin kec — gikek in kya!
LsM = FB; ok + E3) [zy y sink-zsin koz’ — §ijjksky cosk T sin kzz]
1 { coskyi(ci — 2) [imuitan k(e — 2) = j] (1€ 0)
coskzilci = d) | coskyi(z — d;) [fmzitanka(z — di) + 5] (i > 0)
| : | (4.16)
where the coefficients are defined by‘
© T it = fmin) cosFuleo = do) = Himvotmio = Demki(eo = do) 17
\ ksok? [fimuo + j tan kso(co — do) -
B, = B . [."‘ . = ] ‘
' ®ka1ky Lfime1 — j tanka (e — d1) (418)

Bi_rk(io1yk?iimL(i-1y

B = k,,k{' —1) €08 kai-1)(€i-1 ~ diw1 YiimLi — j tan k,,(c, - d;)]
B=+1kz(:+1)k fimU(i+1)

kztk(,.ﬂ) cos kz(t-i—l)(cw-l ~ dig1){flevi + J tan kzi(ei — d; )]

{(i>1)

(i< 0)

(4.19)
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To caléulate the ﬁeld_at a particular point in the iX layer, we then calculate only the
coupling coefficients (Ap...A;) and (Bo...B;) while evaluaﬁng Equations {4.8.4.9) and
(4.15,4.16). | |

For the LSM modes the required terms for calculating power density and reaction are

given by

P=-EH} =

2wu | Biky B;(k;)? | sin? k.2 [f sin koz')?
a? | k? (k2 +K2)*| leosksi(ei —di)]?

{ |fimui sin kzi(6; — 2) = jeos kzife; = 2)F (i < 0)

[mLisin k(2 = di) + jeos kpi(z = &P (1> 0)
: (4.20)

4wy [jBiky ~jBik?  sin? k,z [f sin k.2')
2 k? (k2 +k2)|  cos?kyiei — di)

{ {firmyi sin kyi( 6 - z) — jeoskzi(ci — z)]2 (:<0)

" R= —E,(k))H~k,)

fl

[Fimpisin k(2 — &) + jeos kyi(z — )2 (i > 0)
S (4.21)

4.1.3 Cfoss Terms

There are also two sets of cross-terms from the Epsy x Hrse product. The power

terms are

P = E:H;z—

2wy | Bikskyks | [Atkz] cos® k.2 [[ sin .*'s:,:z:']2
a? | k(K2 +k2}| | k5 | |coskailei — di)f?
{ [fimui cos kai(ci — z) + jsin kzi(ci = 2)} [fewri cos kzi(e; — 2) + Fsinkyi(ei - 2)]” (1 £0)

[fimLi €08 kyi(z = d;) = Fsinkyi(z — ;)] [flezi cos kyi(z ~ di) — jsin ky(z — &))" (i >0)

2wy | Bik Ak ] sin? koz [[ sin k,2')
P = ~E,H, = Y - = -
ET a2 [ k? l (k2 + k)= | |cosksi(e; — d;)l?

{ [fimui sin kyi{ci = z) = jcos kzi(c; - 2)fevisin kyi(c; = 2) — jeos k(e — 2)]° (1'. <0)

[fimLi sin kgi(z — di) + j cos kyi(z — d;)) [r';c_[,.- sinkzi(z~d))+jeoski(2-d)]" (1>0)

-y




- For the reaction we have

vy wp [<iBikekykyi J'A.'k"'] cos? ko [[ sin k-2
R = Edk)Hi(~k) = — [k'z(kg+k3) [ ~ cos? kyi(ei — di)

{ [fimyi cos ksi(e; = ) + j sin kai(ei = 2)) [flevi o8 kzi(ei - 2) + jsin keiei = 2)] (i< 0)

ks

[fimLs co;s kyi(z - d;) - jsin kyi(z = di)} [Feri c:os ki(z —di)— j’sin ki{z —d)] (i>0)
_ : . ' : {(4.24)

dwp [jBik, ] | =jAik2 | sin® kpz [ sin koz')?
R = "Ez(ky)Hz(_ku)= g [ y] {(k§+k§) cos? k(i — d)

{ [fimus sin ksi(ci = 2) — €08 kzi{c; = 2)] [Fevi sin keilei — z)—-jeosks(ei—z)] (i<0) |

[fim i sin kzi{ 2 — di) + 7 cos kzi(2 = d)] [flerisin kai(z — di) + jcoskai(z — di)] (i > 0) -

, (4.25)

4.1.4 Integration of Power and Reaction terms

The e{ra.luatioﬂ_ of total power can be done analytically by integrating the powef density
on the waveguide cross-section. integration of the z dependence is trivial and has been
indicated in fhe previous ekpressions. The z &epeﬁde'nce appears in two forms, t};e first of
which is |

_ e | Imcosk(c~z) + jsin k(e — 2)][n2cos k(e ~ z) + j sin k(e — 2)]"
Ipp = : L dz

[m cosk(z — d) — jsin k(z — d)][m2cos k(z — d) — 7 sin k(z - &))"

o M=l el &) F i L Gin? Re(k)(c - d)

4Re(k) 2Re(k) :
SRS sinh 29m(k)(e ~ &) go Tl sinh? Sm(k)(c - 0  (4.26)

where Re(k) and Sm(k) symbolize the real and imaginary parts of k respectively. The

second form is

jc [r,-l sin k(¢ — z) -~ jeosk{ec— z)][ﬁg sink{c ~ 2} - jcosk(c - 2)]"

Ipy = dz

[ sin k(z — d) + jcos k(z - d)][ryg sink(z — d)+ jcosk(z — d)]"

-t iE ni sin 2Re(k)(c - d) + jh—Th % gin? Re(k)(c - d)

232 (k)

___slnhzs}m(k)(é d)*gg (k)

smh2 Sm(k)(c - d) | (4.27)

N S
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For reaction we also have two types of integrations to perform. The first is

m cos k(c — 2) + Fsin k(c = z)][nz2 cos k(c — z) + jsin k(c — z)]

ol , |
,/:i . .dz

Inmv =
[m cos k(z — d) — jsin k(z — d)][n2¢cos k{z — d) — Fsin k(z ~ d)]
= 17%.'—1-@ -b)+ M;-kil sin 2k(c - b) & Jm;;m sin? k(c - b) (4.28)
Similarly,

¢ | [msink(c - z) - jcosk(c — 2)][n5in k(c - z) — jeosk(c - z)}
. IRN = ’ ’ o dz
' [ sin k(z - d)‘+ jeosk(z = d))[nasin k(z - d) + jcos k{z — d)]

= ,_..._.__._."1'122“ 1(¢:'----¢'1)-- g%ﬂsin%( d)?Jm;;:m sink(c—d) . (4.29)

4.1.5 Applications

With these analytical results, thé fields, power flow and reaction, characteristic impedance
a;nd propagation constants can be readily found for shielded strips with any combination
of layered substrates_ahd'superstra.tes. An example is shown in Figure 4.2 w.here results
of the present ‘_technique are compared to a commercial CAD package ( Touchstone [20))
and experimental measurements prov.ided by Dunleavy [19]. The relatively large error bars
-provided by Dunleavy for’this case do not provide for any conclusion on the comparative
accuracy‘ of the full-wave approach since the agreement is excellent.. The gorresponding
characteristic impedance_ is shown in Figure 4.3.

We con.clude that the accuracy of the full-wave iﬁplementation is excellent since the
accuracy of Touchstone is well established and has been furtl;er_ verified by Dunleavy for
this case. One can argue that the fuﬂ-.wave implementation with its greater cbmplexity is
not needed, however, most CAD packages, including Touchstone, are based on approximate

formulas which, although they can be quickly evaluated, generally decrease in accuracy as

frequency is increased. Also they deal almost exclusively with the dominant propagating
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‘modes which sometimes is insufficient. These features are similar to the behavior of "quasi-

static” analyses although today's CAD packages generally go bej.'bnd “quasi-statics” by
employing higher-order, albeit still approximate techniques. The results. of course. are
very efficient routines for each component in a microwave circuit which make these packages
very powerful and efficient for circuit design.

Full-wave techniques have their greatest promise where the other methods Exil. for exam-
ple, analysis of high frequencies c.omponents,. systems with multi-mode interactions. radia-
tion problems and applications with geometries and accuraQy requirements not amenable
to simpler analytical techniques, i.e., the type of structures studied here. For instance.
Figure 4.4 s.hows the multi-mode propagation constants for fhe even modes on a shielded
microstrip line produced by a program generalized to handle arbitrary layered structures
as discussed. The simple_ case of microstrip is shown since t.here is available data for con-
parison and verification. The curves overlay the data supplied by Yamashita [90] with
the exception of the dominant mode. Taﬁchstone resulté aré also shown for the dominant
mode which are in .exact agreement with the present method. T is presumed that the
Touchstone results are cofrect for this mode since the dimensions are not extreme in terms

of wavelengths; thus, quasi-TEM assumptions, as used by Touchstone, should be adequate.

- Most likely, the discrepancy for Yamashita's approach is attributable to the use of pulse

basis functions at the s;rip edge which do not satisfy the edge conditions, althoﬁgh his
discretization over the strip impro&es the capability to a.pproximate the true current. Nev-
ertfneless, the form of current assumed with the bre_sent method is the exact form for the
static case which‘should be very close to the true solution and therefore is more likely to
give better accuracy. Since the exact details of the discretization are not supplied in [90],
it is difficult to make a judgerﬁent. however, the real poiht here is the ability to model the

higher order modes. (To represent the odd modes, a higher order expénsion of the current
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is needed such as Yamashita's ;pproach or possibly, exp;'-:.nsion by Chebyshev polynomials
as in [83].)

Besides the obvious utility of this type of information for circuit design and _the need
for these quantities to be demonstrated in later chaf)ters. the a_bility to visualize the field
or power distribution often provides important insights into why certain structures behave
~ as they do, and also, how the behavior might change when the structure is modified. For
example, we later will extensively discuss the special case of a stripline (homogeneously
filled shielded strip} which passes fhrough an'apertﬁre in the wall of a cavity. The field
distribution in the vicihity of the strip as shown in Figure 4.5 giye; a clear indication of the

constraints which must be placed on the size of the aperture. One can see that the larger

E Field on waveguide cross section
Arrow scaled to logarithm of field magnitude

0dB ——»-
-20dB =
-40dB -

Figure 4.5: Stripline field distribution for the dominant propagating mode.

field magritudes are tightly confined to the immediate vicinity of the sirip as expected

(the tails of the arrows are the field points). For a ‘pass—thru’ aperture then, the opening
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onc of the benefits of this type of analysis: enhancing our intuitive understanding of the

behavior of these structures as well as providing quantitative information.

4.2 Application to Multi-layered Slotline

A similar process can be used to evaluate slotlines or coplanar waveguide. Since copla-
nar waveguide can be treated as coupled slotlines by a simple extension of the method.
only the single slot case will be discussed here. We assume the magnetic current is of the

same form as in the electric current case which then is valid for narrow slots:

28(=' — d)

zf—Jkgy’ Iz’ — z,| < W/2 (4.30)
T /1 - 4 (E)

The variable k&, here represents the set of characteristic complex phase constants associated

with shielded slotline modes. They are the eigenvalues of the boundary condition equation:

B - = ‘j“"//f [é+mx ~Gmk| KdV' =0 (4.31)

which enforces continuity of the tangential magnetic field { H;) in the slot. As before, a
particular value for kg is found first, before the fields of a particular mode are calculated.
The procedure is the same as before except that the field expressions are changed to reflect

the change in the source terms and complementary boundary conditions for the dual fields.

4.2.1 LSE Modes

Expanding the VWFs we then find that the LSE mode fields in each laver can be

written in the forms:

- 1| (2-é6,) ..
E A‘_,_ s Tm/ .2 . I3 S A R Lt
LSE . [a(kfr n L‘Z)] [kay cos krzcoskoz’ + gyjk ok, sin kpx cosk.z }
1 {COSku(Cl‘“ z)[r']CU,-qutankz,'(c.—z)] (1 <0)
cos kzi(e, — d;) €08 ko (2 — ) [fleri — jtanku(z — d;)] (i > 0)

(4.32)



94

(2 = by Jwbok s
IR TR
1 {cos koi(e - ) [fevitank.i(ei—2)— 7] (i £0)

"cos k(e — di)

Hise = A, [ } [igktk, sin kzx cos kzx’ + §§jkZ cos kzx cos k,:r’]

cos kyi(z — d;) [’-kLi tan k,(z ~ d;) +.7} (1>0)

—A;' [(2 — b Jweo

a7 ] |29k, cos kpzcoskz2']

1 { cos kyi(e; ~ 2) [flevi + Ftan kyile; - 2)] (i < 0)
cos kzi(e; — di) cos k(2 — d;) [Feri — jt;n kx(z—dj)] (i>0) .
. (4.33)
where ¢ = 0 for the layer with the slot so that
. —e

A = = - ' 4.34

° flevo + J tan keg(co — do) (4.34)

A = o (4.35)

fleL1 = Jtanky(ey — dp)
By matching the tangential components of the field at the interfaces above and below the

strip layer the remaining coupling coefficients are found to be

JAin Exgin) 7 (i>1)
A = ) k,.‘k?‘-‘_n cos k,(,-_n(c.‘_l - d.‘..1)[fk[,.‘ tan k,.-(c.- - d,‘) + J]
T kyienyk?
—i A DT - (i<0
i kxikfiy1) €08 kaign)(Cir — diga)[fieri tankyi(e; — ;) = 4] ( )
| (4.36)

-The expressions for power density and reaction of the LSE modes are

P =E_H* IA-[2(2“5"")2“"° [ kz ] [ k; ] COSkzz [ICOS‘CII’]z

2 (k2 + ke | |(B7)?| leosksie; — di)?
{ |fievri cos kei(ei — 2) + jsin kyifc; = 2)]> (i < 0)

[fleLi cos kzi(z — di) — jsinki(z — )] (i > 0)
V ' (4.37)

2= bp)we, | - K2 ky | cos® kyz [f cos k. z')?
R= E(k)Hi(~k,) = A?2=Sm)we L = = >
k) H(-k)) = Al [(kg+kg)e,-] [k?} <052 koi(e; — dy)

{ (evi cos kyi(ci — z) + jsin kyi(e; — 2))2 (i < 0)

(flezi cos kei(z ~ di) — jsin kui(z ~ &) (i > 0)
(4.38)

i,



4.2,2 LSM Modes

* Similarly, the LSM mode fields can be written as
(2 - ém)
a(k2 + k‘-’) ;
‘1 cos kaifc; = -)[nmu. +jtank(ei~2)] (i<0)

d;)

Ersmy = =B [ J [i‘;‘/fcg cos ky7 cos kpz' — ﬁﬁjk,ky.sin k,.r cos k,:r’]

cos ksi(e; = di cos k{2 — d;) [fimpi — 7 tan 'k,,-(z -d;)] (i>0)

] [29k2 sin kpz cos ko2’
1 { cosky(c; — 2) [ﬁmUitankzi(ci" Z)_j] (4 <0)
di)

cos kx(c; = d;

:!:B[

cos ki z — [nmL.t.anL,.(z—d)+3] (i >0)

(4.39)
2-6 o .. . .
Hisye = FB; [W_{%‘f{ﬁ} [:cykrk,, sin b z cos l;,x' — §§7k2 cos ksz cos k,z’]
! coskzi(ci — 2) [fimyi tankyi(e; — 2) - j] (1 £0)
coskailei = di) | cos kyy(z — di) [impi tan kui(z — &) + 5] (i > 0)
' (4.40)
where -
-£p . .
By = = - 4.41
- fimUo + J tan kyo{co ~ dp) . (4.41)
€1 : .
By = = - e 4.42
! imL1 — jtanky(cy — dy) (4.42)
Bi_ Iksi (i>1)
B = k*(: 1) Cos"z(x—l)(ce—l - diy )f’?mL: tan&;;(c; ~ di) + J]
B ') Isi (i<0)
i+ ,‘-z(n+l) cos "‘:(|+l)(ct+l = dt+1 )[’7mU1 tan th(cl - d ) = ] .'
(4.43)

For the LS M modes the required terms for calculating power and reaction are

2a*(k2 + k2) k3 feos kzie; — ;)2
{ [imui sin kzie; — 2) = j cos ki(e; ~ z)l2 (i£0)

€Kz

P=_FE.H" ‘__ }B"Z(Q = ém )?we, [ ke ] [kz'k;] sin? k.z ([ cos ko2']?

[imLisinkzi(z = di) + jeoskyu(z~d))? - (i >0) |
- (4.44)
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_ 2(2 - 6 )2we, | ke keky 1 sin?k.z[fcosk.z')
R= —Ez(ky)Hz("ky) = m‘?i a2 E{kzi kzl(kg + ks) cos? kzi(ci _ d,)

{ [fimui sin ksie; — 2) — 7 cos k(e ~ )] (i <0)

[Imeisin ki(z — i) + Feoskyi(z ~ d)* (i > 0)
(4.45)

4.2.3 Cross Terms

There are also two sets of cross-terms from the' Ersa x Hise product. The power

terms are

- -_ p 97(2 = bm )?we, k2 ky | cos? k.z [ cos k,z)?
Pro= EH:=BA 2q? (k2 + k)i | | (KD)?] |cosku(c: - d)F

{ (fimui cos kyi(c; ~ 2) + jsin kzi(ei — z)] [r)eU. cos k,i(¢c; — 2) + Fsin k,.(c, -2))" (i<0)

[imLi €08 kpi(2 ~ ;) — jsin kp(z — di)) [feLi cos ki 2 — d;) — jsin kyi(z - d)]” (i>0)
' ' ' (4.46)

sin® k.7 ([ cos k,z')?
ki (k2 + (k')’) | cos kxifei - d))]?
{ [fmui sin kyi(c; ~ 2) = jeos kyi(ei — 2)] [fevri sin kuic; ~ z) — j cos ki(ei-2)° (:<0)

P = -EH, =Bl % )%[ ][
. keie;

[imrisinkzi(z ~ di) + j cos kyi(z ~ i)} [fleri 6in kyi(z = d;) + j cos kyi(z — a))" (i>0)
(4.47)

Similarly, for the reaction we have

_ . g (2~ 6n)we, k2 _}:‘! cos? koz [[ cos ko2
Bo= Ex(ky)H'( ky) - B.A' Gz (kz + k2)€| C032 kzt(cl - d; )
{ [fmui cos kuilei = 2) + jsin kyi(ci ~ 2)) [fei cos knifc; — 2) + Fsinku(e; ~2)] (i <0)

[fimLi cos kui(z — d;) — sin ksi(z ~ d;)] fleLi cos kyi(2 — ;) ~ J sinky(z—di)] - (i>0)
(4.48)

= - (2= 4m ) we, kek, sin? k.z [f cos kpz']?
R = —E (k )Hz( kv) B A [k;,é;] [ zi(k2 + k2)} COS k,.(c. — d )
{ [imu:sin kyi(e; — 2) = jcos ksifei - Z)] [flevrs sin kyi(c; = z) = §cos kn(c, -2)) (i<0)

(imrLisin kzi(z ~ d;) + j cos kei(z = di)} [feLisin k(2 — d;) + jeosk,(z—di)] (i>0)

(4.49)

The integration of these terms on the cross section involves the same forms as for the

.
R
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electric currents which have already been given.

4.2.4 Application to Finline and Suspended Finline

As with strips; the distribution of the field provides insight into the behavior of the
structures. Two examples illustrate by showing the change in the field structure for finline
without a substrate compared to the case where a dielectric substrate (¢, = 2.2) is added.

These cases are shown in Figures 4.8 and 4.9
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4.3  Scattering from Pins in Rectangular Waveguide

The insertion of wires or pins througl the gfound planes is a technique used for many
years to suppress parallel plate waveguide modes in stripline and for stru.ctural suﬁport. It
is also a convenient way to form waveguides. cavities or isolation walls in stripline circuits.
'The- experimental work discussed in Chapter VI is an example of the formation of a cavity
where our particul#r_ need for this analysis will become evident. Other applications inélude
the use of posts (or strips) in a rectangular waveguide as reactive elements in filter and
matrching networks [9, 10. 68 and for active device mounts and tuning elements [7, 24].
These types of applications have been the focus of most of the t.heoretica.i and e:;:perimen-
tal work‘appearing in the literature. In contrast, Qhat we _aré interested in here is the
effectiveness of a ‘wall o.f wires’ as a short circuit.

Analytical techniques in early works are primarily based on variational methods [54,
48, 45). These approaclies. howevér, become impractical for more than a few bosts or posts
with irregular spacings and are limited in accuracy at high frequeflcies. Even later works
focussed primarily the studg of th.ree posts at most with emphasis on accurac_\ for post of
relatweiy iarge diameter [43 44, 3]. The emphasis on a limited number of larger posts is
the opposite of what we require here where_we will tend to use wires of small diameter and
of greater number (and density). It is a}so evident that larger posts require more cdmplex
formulations and numerical treatments than is desirable for our situation?®. Image theory
or grating formulations as in [29] or especially [46] would seem to be appropriate for this
problem but appear to be excessively complex and have limited potential for combination
with other structures. The approach developed here_will therefore be in spirit of the

approach given in [43] which offers a good balance of simplicity and flexibility. In addition,

"Unless one already has a numerical code to treat the problem at hand, it is always desirable to use
the simplest formulations which can produce results of sufficient accuracy and therefore can be quickly
implemented. Another consideration is whether the Tesuiting numerical model can be efficiently evaluated
which usua]ly, but not aiways, favors the simpler formulations.
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the method will be even further simplified for wires of small diameter.

4.3.1 Reﬂectioﬁ Coefficient Formula Derivgd from the Reciprocity Theorem

Consider a grid of wires appearing in the cross section of a rectangular waveguide as

illustrated in Figure 4.10. Let us assume that the diameters of the wires are sufficiently
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Figure 4.10: A grid of vertical wires in rectangular waveguide.

small to allow us to represent the current on the wire as an infinitesimal filament located

at the center of the wire, j.e.,
J = #6(z - 2;)6(y ~ ;) | (4.50)

Furthermore, the waveguide dimensions are deemed to be such that all modes but the
dominant one are cut-off. The current on the wires is also assumed to be excited by the
dominant mode field which has no : variation. This fact justifies our assumption that
the current also has no : variation. For multilayered structures this assumption would no
longer be valid and the formulation must be made more general, however, it is sufficient

here since the present need for this eflort is restricted to stripline in support of Chapter VI.




101

We can derive a reflection coefficient representing the scattering of the dominant mode
by an application of the Reciprocity Theorem [33] in the form

/j['}s’:axm_-—ﬁbx-m].ﬁds =j//{EbJ_EJb A s

The locations of the surfaces defining the volume of integration are coincident with the
side wa.l_ls of the waveguide an& two transverse planes on either side of the grid éf wires.
~ The transverse planes are assumed to be far enough aﬁray from the grid wires so that only
the dominant mode has significant field strength. Now let the E, and T, fields represent
thg normalized fields of the dominant mode. incident from along the -y a#is. haviug no '

'source terms within the volume of integration, i.e., J, = 0. Then these fields are given by

E, = Ep= .;sin(k_,,,i)e*i"vv (4.52)
H. = Hio = -é;’i:—lsin(kmz)e‘f*w (4.53)
where k, = mr/a, m = 1 for the dominant mode and k, = V/ET=kZ. The E; and
H, fields will be produced by the currents on the wir_es and radiate in both the +y and

—y directions. If the currents on the wires. /;, are those which are excited by the above

incident field, then we can write

E, = TEp=iTsin(knz)eti*w C o (4.54)

H, = IHp=i F;’f—;sin(kmr)e*ﬂ‘” | (4.55)

where the top sign is for y < y’ and the bottom sign for y > 3. Equation (4.51) now

// Ero-JdV
r = - -
2/] Em XHlo'ﬁ dzdz

Note that to obtain this result, the surface integrations over the walls of the waveguide

reduces to

(4.56)

were found to be zero, since the tangentia! E fields are zero there for perfectly conducting
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walls and also the surface integral over the waveguide cross section on the +y side of the

wires evaluates to zero. The remaining integrations are readily performed to give

2r fiu,

= e e———emee—— Y Ijsin(wz;/a 4.57
ak—(ﬁ/a);’ (vz;/a) ' (4.57)
We thus need only determine the unknown currents from which the reflection coefficient is

produced by this simple summation.

4.3.2 Method of Moments Formulation

~ In the previous .section,‘ the assumption of constant current ‘on the z dimension has
already been stated. In the parlance of the Method of Moments this is a ‘puise’ basis"
function which in effect has reduced the problem from three dimensions to two. For small
diameter wires as freazed here, the problem can be further reduced to one dimension, if the
gr.id of wires are all contained in a transverse plane, however, this produces no significant
advantage.
Since we have previously found the dyadic Green’s functions for homogeneously filled
rectanguiar waveguide (section 2.4), we can use Eqﬁation (1.33) to derive the electric fields
in the waveguide. With the current as stated by Equation (4.50), thé z component of the

E field produced by the j** current filament is given by:

Wit

= 1. \ - -
E. = ~—;—-Ijzz-sun(km:)sln(km:,)e Ikyly=yy! (4.58)

m=1 ¥
It remains then, to find the set of I;'s which produce a total electric field that satisfies
the boundary conditions on the wires, specifically E, + - E;o = 0. The simplest way to
enforce this condition is to use point matching on the surface of the wires which is to L;se a
delta weight function. Although found to produce identical results, a two point matching

scheme was used to provide symmetry balance in which the field is taken as the average
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over two points of the wire surface. The resulting expression for the field is

Eni = Loy, Y El-sin[km(z,-:&:r,-)]sin(k,,.g_,-)ﬁ{"ﬂu-*wl {4.59)

m=1"¥ '

where i is an index indicating the field evaluation points and r, is the radius of the i"* wire.

The %r; notation is taken to imply the averaging of the field contributions at these points.

‘The combined field expression can be written in matrix form as

Zigll] = [- Byl ' (4.60)
which is solved by matrix inversion for the unknown currents.

4.3.3 ‘Validation

In order to investigate the validity of this formulation we first compare to the data of
Marcuvitz [48] for singlé posts. The accuracy of this data is well established for diameter
to waveguide width ratios (d/a) of up to 0.25. The equivalent circuit for the single post

is as shown in Figure 4.11. From this equivalent circuit we can convert the values given

Xp | Xp
| | | \ . S
Port X, | Port
1 : : _ 2

4 ®
Figure 4.11: Equivalent circuit for single post in rectangular waveguide.

by the formula in [48] to a reflection coefficient which can be compared to the results of

Equation (4.57). Since our formulation is a simplified version of the method found in (43],
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Figure 4.12: Magnitude and phase of reflection coefficient for a singlé co_nducting post
in rectangular waveguide. Point match Method of Moments {MoM) results
compared to the data of Marcuvitz [48] (A/a = 14).

we would not expect the range of its accuracy to extend as far; thus, we will limit the
range of our discussion to d/a < 0.1. Moreover, we are specifically interested in thin wires
with diameters (d). much smaller 0.1a, on the order of 0.02a, the approximate value to
be used later in Chapter VI. The results over this range is givén in Figure 4.12 which
shows the magnitude and phase of the reflection coefficient of a single post in rectangular
waveguide as compared to Marcuvitz's data. As can be seen, the comparison is excellent
with a ma.xifnum phase error of less than four degrees for the largest wire diameter. _Thu's,
we have a first indication of the accuracy of the method.

Before proceeding to further results, it is instructive to further examine the single
post case. The behavior of the element values of the equiv.alen't circuit follow the curves
illustrated in Figure 4.13. By evaluating the input impedance for one of the ports with
the second port matched and plotting it on the Smith Chart as in Figure 4.14, we see that
the input impedance progresses from inductive to capacitive as the diameter is increased.

We also note that the single post makes a surprisingly good short circuit at a2 diameter as
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Figure 4.13: Behavior of element values for the equivalent circuit given by Marcuvitz [48]
(Ale=14). ' '

small as d/a = 0.15, the diameter at the 180° pha.se shift point.

Not surprisingly, as more pins are added the wires form an even better short circuit
producing ever higﬁer shunt susceptance values. For example, Figure 4.15 shows how
the shunt susceptance value increases rapidly as the number of equally spaced wires is
increased. In this case we ha,ve-lumped the reactive behavior of the grid int?:o a single
shunt element on the transmission line, i.e., replace the series capacitors of the equivalent
circuit of Figure 4.11 with shorts and the shunt inductor with a general reactive element.
(Note also that all wires in this investigation will be located in the same transverse plane
of the waveguide whicli is the reference plane for the equivalent circuits.) I; is interesting
to observe that the normalized pin diameter (d/a), where the susceptance crosses over
from inductive to capacitive, depends on the number of wires and generally moves toward

smaller post diameters as the number of posts increases. This suggests that for a given

Y
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Figure 4.14: Input impedance as a function of post diameter with a matched load port.
Post diameter increases in the counter-clockwise direction from d/a = .005 to
d/a = .25 in .005 steps, demonstrating the transition of the input impedance
from inductive to capacitive, '

4,



107

2000 T | , ‘[nl 1
b —— OnePon : \ .
1500 - . ' LT
_ +neeane-: Three Posts : | L]
1000 - weee- Five Posts : \, ' ~
= SR Seven Posts o, . k% ]
o s00f : ET TMeeae g
N . . ""~--?'-‘i'v.-.,-1
R ]
g 00 F eerormms LT
& T —n
8 -50.0 & 0 ! 7
g . . \ Y
[Zr} ' \ .
2 -1000 f : \ % r
= ' H H 4
& : : : ]
-150.0 I ; ! | r
M 11 i 4
b . ., ! ‘:
-200.0 b ] L M i 1 3
0.000 0.020 0.040 0.060 0.080 0.100
Nommalized Pin Diameter (d/a)

Figure 4.15: Shunt susceptance behavior for up to seven wires placed evenly spaced across

waveguide cross section.

number of wires equally spaced across the guide, there is an optimum post diameter which
most nearly produces an effective short circuit. Similarly, it implies that additional posts
do not necessarily improve the capability to simulate a true short circuit at the reference

plane.

With these large shunt susceptance values, the real part of the input impedance becomes

regligible so that the network can be treated as a one port terminated with this reactive '

element. As such, the one port can also be modelled as a true short circuit located at a

distance from the reference plane determined by the calculated value of susceptance and

the transmission line equation:

B = cot(fl) | | (4.61)

where B is the susceptance, { is the distance from a true short to the reference plane and
B = 2x[Ag, with Ay the guided mode wavelength. The argument Sl is the phase angle of

the reflection coefficient for the line. The accuracy with which we can determine this angle

.
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is 5. measure of how well the grid of wires is treated by the simplified model. thus becoming
the focus of the experimeﬁtal results and comparisons to follow.
To further confirm the accuracy of this method, measurements were made with an
"HP8510 Network Analyzer on various combinations of wires in X-b#nd wravegui.de (0.4x0.9
inches) at 12 GHz. A series of seven equally spaced holes where drilled in a line on the
~ broad wall, transverse to the axis of a section of waveguide. The holes thémselves were
small enough in diameter and sufficiently spaced so that they did not significantly perturb
the propagation of the fundaménta.l mode, a fact verified by subéequent measurements.
The reference plane was established and the fixturing de-embedded by performiﬁg a one-
- port calibration with two short circuited wavéguide sections of different lengths and a
précision waveguide load. To make the measurements, different patierns of wires were
inserted through selected holes and the reflection coefficients recorded. The patterns used
will be denoted by a series of ones and zeroes, for example the case of the single ceptered
post would be designated by the pattern ‘OOOIOOD'.

The results of one set of measurements are shown in Figure 4.16. In this and the fol-
lowing charts, data marks correspond to the three wire diameters used (d = .025,.033..039
in.), the filled-in marks fepresentir_xg the corresponding measured points. As.can be scen
by drawing a line from the center of the chart through the various points, the accuracy
of the predi.cted phase angle is quite good. Similar results are found for wires in pairs as
shown in Figure 4.17. | |

Figure 4.18 is an experimehta.l demonstration of the case discussed above where the
number of ‘pins is progréssively increased. This is perhaps the worst case where errors in
phase angie are on j.he order of five degrees for some points. Some of these errors are
attributable to experimental error due to variables such as mis-alignment in the transverse

plane and tilting of the wires in the holes, which necessarily must be larger to accommodate
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Figure 4.16: Reflection coefficient measurements for a single post at various offsets from the -
: centerline compared to predictions from the simplified model. Wire diameters
(d = .025,.033,.039 in.) increase in the counter-clockwise direction.
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F;gure4 17: Reflection coefficient measurements for pairs of wires at various offsets
from the centerline compared to predicted values. Wire diameters (d =
.025,.033,.039 in.) increase in the counter-clockwise direction.
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Figure 4.18: Measured reflection coefficients for centered wire grids of equal spacing and -

increasing number. Wire diameters (d = .025,.033,.039 in.) increase in the
counter-clockwise direction. :
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different diameters. Nevertheless, the overall results suggest that the method is capable of
predicting the phase to within a few degrees.

The final plot, Figure 4.19, is an illustration of a case very similar to one which will

——C-  Partem : 0111111
! eeefD=+» Pattem : 1011111
~ad---  Pattem: 1101111

-~ap - Pattern:1110111

Figure 4.19: Measured and predicted reflection coefficients for wire grids with a single pin

missing in the sequence. Wire diameters (d = 025,.033, 039 in.) increase in
“the counter-clockwnse direction.

be encountered later. In this instance, an evenly spaced row of wires were installed across
the waveguide cross-section, however, one pin was removed at various locations in the
sequence. As will be seen in Chapter VI, this type of approach is used to allow a strip to

pass through the pin curtain. The ability to predict the refiection coefficient for this case
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is very important for certain situations as will be seen. Although the comparison for this
case looks reasonable, it is pushing the limits of the experimental errors involved with the
fixture. However, a consideration of the previous results leads to the conclusion that the

results are reliable.

4.4 Summary and Conclusions

~In summary, wé have seen ho§v problems with uniformitj' in one dirﬁension can be ana-
lyzed with a high degree of accuracy. The uniformity allows the structure to be represented
" by a single modal series which can be numerically evaluated efficiently. |
The usé of impedance boundar)"conditions and a LSE and LSM expansibn of the fielda
greatly simplifies the modelling of multilayer substrates and supérstrat.es. Tl;is particularly
facilitates the computation of fields throughout the structure since most of the evaluation.
can .be done analytically. Application to shielded strip and slot geometries yviclds both
reliable quantitative information as well as visual representations of the fields providing
insjght into the behavior of the .structure.
A simple model for scattering from wires in rectangular:waveguide has also Boch de-
_veloped. The simplicity of the model is in contrast to methods discussed in the literature
which are oriented towards fewer posts with relatlvely large diameters. The present method..
however emphasxzes posts of greater number and smaller diameter. Experimental results
were obtained to verify the modglling ability of the technique. The need for this model in _

the context of the present work appears in Chapter VI.






CHAPTER V'

COUPLING THROUGH STRIP-FED SLOTS

A class of structurés which couple from one guiding structure to another throﬁgh an
aperture is important in microwa\;e circuits, aside from the radiating slot. In fact, for
antennas, the coupling of waveguide to wé.veguide through a narrow slbt in.a common wall
has been used for many years in the design of corporate feed networks for slotted waveguide
arrays. As discussed in Chapter I, the case of coupling b‘etween‘shielded strips in a similar
manner is becoming equally important in current and future systems, includiné similar féed
networks. In this f.hapter, the analysis of these types of couplers will be presented along
with exherimema] verification of the numerical results to demonstrate the applicability of

these techniques to microwave and millimeter wave devices.

5.1 Network Analysis

The basic structure of the coupler to be discussed is as shown in Figure 5.1. Variations

-on this geometry include cases with microstrip lines on the same side of the slot; multi-

layered substrates/superstrates; reverse couplers where the lines exit on the same wall;

additional paralle! slots and lines; and 3- and 4-port networks, among others, but all can

be analyzed using the same approach.
lhtegral equatibns have been formulated for this problem in Chapter I and are solved

as outlined in Chapter III for currents on the slot and strips. Therefore. in this chapter

114
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Figure 5.1: Geometry of basic coupler.

we need only discuss the interpretation of these currents in order to extract the network
parameters which characterize the coupler.’s_ behavior.

Solutions for the currents are found with even and odd gap generator excitations at the
line ends. These are sufficient to characterize thé twa-pori problem since all excitations
can be decomposed into even and odd components. The approach can be generalized using
N-port network analysis [14; pp. 157-158] but this aspect is beyond the focus of this work..

From the even and odd currents on the microstrip lines, even and odd impedances
are found by measuring the relative distance (d) f;om a standing wave maximum to the
location of the slot as illustrated in Figure 5.2. We can also es_iimate the guided wavelength
for the even and odd modes from the standing wave patterns by measuring the spacings
between minima or maxima. If fhe materials are iossless,.a.s we typically can assume for

most microwave circuit applications?, the expression for the reflection coefficient referenced

'For slightly lossy structures, the estimation of the attenuation constant can be easily determined from
the ratios of successive current maxima or minima[55]. For larger losses the situation is more complex,
since not only the envelope of the standing wave current but also the spacing between maxima and minima
vary along the line [27, sec. 5.4]. In this case one must resort to a parameter estimation scheme to find the

Hig
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Figure 5.2: Measurement of location of current peak relative to the slot for standing wave
calculation. ‘ S

to the slot reduces to
[ = —eitrdld (5.1)
which produces an impedance according to
z = 21 - 52

The even and odd impedances are then combined to form the Z-parameters which, in the

symmetric case studied here, are given by the simple expressions:

Zo+ Ze ' o
Zn = ——g_-i = Zq2 : {3.3)
In = "'"—2—— = Z12 (5.4)

Finally, the even and odd impedances may be combined to produce S-parameters through -

the transformations:

Zh-2Z3H -1
2121 +221; ~ Zgl + 1 -
Sy = 272y _
‘ ‘ Zf,+2211-Z§,+1

5:1 =

S22 | (5.5)

Si2 ' (5.6)

optimum fit to the current with the attenuation and propagation constants as parameters.



117

which are used to characterize the coupling behavior.

Before proceeding, the limitations of this technique should be noted. Transmission line
analysis of the curreﬁt in this way assumes that there is only one prépagating mode on the
line at some distance from the discontinuities. For thg shielded structures treated here,
this requires that the cross-sectic;nal dimensions of the feeding microstrip lines be such that
all higher-order modes are cut-off or, looked at anbther way, a given cross-section restricts
the maximum frequency for which circuit parameters can be reliably produced with this
technique. Also, in order to estimate the phase constant, the line must have 2- minimum
length, typically on the order of the wavelength. Moreover, for good numerical stability of
the results over a wide range of p'araineters, it hasr been found useful to average a number
* of estimates on a line approximately three wavelength long, discarding the maximum and

minimum values. This restriction demands more unknowns and hence greater computa-

tion time, however, the results are quite reliable. The alternative method based on the

Reciprocity Theorem developed in Chapter VI, overcomes these limitations at the expensc

of a more complex formulation.

5.2 Fixture Design

To verify the results, we have designed and constructed the fixture shown in Figure 5.3.
Sample substrates with various line and slot dimensions are installed in the fixture in
different combinations to allow frequency response measurements. A number of circuit
boards were made: One set of boards was double-sided with a microstrip line etched to
a certain length relative to a slot etched in the ground plane on the opposite side.. The
second set was one-sided boards designed to be held against the boards of the first set by the
fixture, with microstrip lines of corresponding_leﬁgths. The lines are excited by Eisenhart
connectors which prqvide a réasonable match over a broad frequency range, even when the

contrast in ¢, is high (¢, = 1 for the conrector, ¢, = 10.6 for the substrates). In our case

I
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cavity length was fixed at 2.0 inches for the measurements and varied for the numerical
results to allow an approximately constant 3X feed-line length. This dimension does not
affect the results since for all frequencies considered here, tne cavity is below the cutoff
frequency of the higher order microstrip modes and the reference plane was fixed at the
location of the slot.

To illustrate the behavior of the coupler, we first examine the influence of various
parameters at fixed operating frequencies. The effect of the line stub length (/) is shown

in Figure 5.4. It can be seen that the stub is initially too long for an ideal match at this

0.0
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Figure 5.4: Effect of the line stub length (/) on S2; and §;, magnitudes (s = 0, L, = 0.25
inches and f = 12.0 GHz).

frequency. However, as the stub is progressively shortened, a certain length “matches” the

two port coupler and with further shortening the match gets progressively worse. We can

interpret this effect by examining the equivalent circuit shown in Figure 5.5. Variation

of the stub length has the effect of changing the position of the current maxima (virtual

shorts) and minima (virtual opens) on the lines relative to the slot, thus varying the degree

of coupling through the slot represented by the coupling transformers. Consequently, the
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Figure 5.5: Equivalent circuit for a 2-port coupler.

peak coupling occurs when line stub length places a current maximum below the slot
or lengths in odd multiples of ~ A/4. The opposite effect occurs when the line stub is
approximately in multiples of A/2 in length so that there is a virtual open circuit beneath
the slot, in which case there would be very little coupling between the line and slot.

A similar effect is observed for variations in slot length (L,) as illustrated in Figure 5.6
Again using the transmission line analogy, one can interpret this effect by transforming the
impedances at the ends of the slot to the center. These end impedances are nearly short
circuits, the difference being due to fringing fields which extend beyond the ends of the slot
line, fully accounted for by the full-wave analysis. At the matching length, the resuiting
transformed reactances at the center cancel the reactance associated with the junction,
thereby matching the two ports. As the slot becomes very short, the field in the slot is
effectively “short circuited™; thus, coupling is reduced. 53, then tends to zero while Sy
approaches unity (since the structure is closed and assumed lossless). All of these effects
would be expected to repeat as the slot length increases in multiples of A, however, for the

case studied here, the maximum slot length is limited by the dimensions of the shielding
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Figure 5.6: Effect of the slot lengtll on S; and S;; magnitudes (s = 0, = 0.049 inches
and f = 18.0 GHz). : :

package which have been chosen to allow propagation of only the domina.nt. microstrip
m_ode.

To generate a freﬁuency response, the programs are run at each freéuenc_y of interest
and the slot and line lengths are varied to form a parémetric database. The database is
then scanned and interpolated to a.ssémble frequency response plots as functions of the
geometric parameters. Measurement of one of the assemblies is shown in Figure 5.7 in
comparison to corresponding numerical results for a stub length of I = 0.115 inches. The
position of the high frequency corner of the response was found to be very sensitive to the
length of f.he line stub. As discussed above, this corner is controlled by the length at which
the stub is approximately A/2. Since the effective dielectric constant for the microstrip
is approximately €..ss = 7.8 at 17.0 GHz, a null is predicted in the coupler response for
that neighborhood, in good agreement with the results shown. The error bar on the high
end indicates the sensitivity of the high frequency corner to a :hS mil error in line stub

length which is well within the expected tolerance errors for positioning the stubs relative
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Figure 5.7: Comparison of theory and experiment for S3; magnitudes with s = 0.1 =
0.115 in., L, = 0.250 inches. The error bar indicates the influence on the high
frequency corner of a £.005 inch change in stub length. '

to the slot. In view of the abbve, we conclude that the theoretical results are in excellent
agreement with the experimental data. In fact, we were able to move the upper board
slightly toward the slot to_gxtend the stub length sbmewhat, s_hifting the high corner to a
: loﬁer freqi:ency as expected. However, this also created problems with the match at the
Eisenhart microstrip launchers so.these results are not shown.

The ‘sidelobe’ which can be seen at the high {requency end, is also attributed to toler-
ance errors for the line stub lengths. A diﬁ'e;ence in lengths would produce multipie nulls
in the response at the high end resulting in undesirable sidelébes in between. Because
of the high sensitivity to line length, owing in part to the high dielectric constant, the
amplitude and span of the sidelobe is a strong function Qf the rel'ative'iine stub lengths, a

fact which can be observed when the boards are slightly shifted as described above. The

sidelobes do not appear in the theoretical result since a difference in stub lengths between -

the upper and lower lines introduces an asymmetry which has not been included in the

“k
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current numerical model and contradicts séme of the assumpi.ions stated for the network
ana]y#i;. A more general model can be produced by extending the network ahalysis to tho.
non-symimetric case. .

The ripple in all the measurements can be Shown to result from mismatch at the mi-
crostrip launchers. The measurements are particularly sensitive to this connection because
of the high dielectric constant of the substrate. Ripple occurs to varioﬁs degrees throughout
the measurements ahd is also influenced by small air gaps between the connector assembly,
fixture and substrates. It could .be removed by more sophisticated de-embedding tech-
niques, however, this requires additional fixtures. Nevertheless, the ripple shown in the
results presented here is not substantial and does not signiﬁcéntly interfere with the fun.
damental behavior of the devices. Also, the broadening of the low frequency response is

typical in the measurements. We were not able to identify 2 direct cause for this effect,

however, we suspect that it is related to the fixture/connector interface, since we have not

de-embedded these transitions. We also postulated that some of the anomalies might be

caused by the side-wall grooves in the fixture which hold the double-sided board in place.
This possibility was eliminated, however, by installing movable side-wall shorts which are
visible in Figure 5.3. |

Tﬁe remaining discrepancy is perhaps a slight additional loss found in some of-the
“measured results. To de-émbed the losses for the structure, a through line was measured
and the remaining measurements were post-processed to coinpen‘sate for conductor and
dielectric losses on the microstrip lines. This process does not correct for losses associated
with the slot including bqth conductor and dielectric losses, additional losses on the cavity
walls, and losses due to the added line lengths. The remaining differences are attributed

to these factors together with measurement errors and are judged to be within acceptable

Limits.

i
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Measurements on a different line stub length -are shown in Figure 5.8 again showing
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Figure 5.8: Comparfson of expériment and'theory for Sn magnitudes with s = 0,/ =
0.080 in., L, = 0.250 inches, illustrating the control of the high frequency corner |
with the line stub length by compar:son to F:gure 5.7.

good agreement with the theoretical results. In this case, the shortening of the stub length

has moved the high.frequency corner out.of the range of the measuremenis. What is

interesting to note about t;his case is thé.t the lov;' frequency corner of the response is quite

insensitive to this change in stub length. Also of particular interest_ is the wide bandwidth

of this transition.

Fi;gure‘5.9 illustrates the effect of sﬁortexting the slot iength. One consequence is reduced
coupling in the passband which was also demonstrated in Figure 5.6. We also see in this
result, some movement of the high frequency null due to a shortening c;f the line stub
length.

The final plots, Figures 5.10 and 5.11, show the influence of the line separation pa-
rameter (s) on the frequency response. These figures are to be compared to Figures 5.7

and 5.8, respectively, and in general show a narrowing of the frequency passband as s
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inches, showing the effect of shortening the slot length.
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Figure 5.11: The effect of line separation with shorter’ hne stub length [ = 0.080 in.,
Ly =0.250 in. and = 0.125 inches.

is increased. This is to be expected, since we have now introduced an additional length
parameter which can influence the response through its relationship to wavelength. Here
again, the numerical model is judged to have correctly predicted the coupler behavior after

the experimental artifacts are considered.

5.4 Summary

The frequency response plots shown demonstrate the utility of the structure as an inter-
connect. With proper selection .of the geometric parameters such as iine and slot widths,
lengths, line separation, substrate heights and materials, the frequency response can be
tailored to give the required center frequencj, bandwidth, shape, etc. As has been shown,
very wide bandwidths can be achigved which makes the structure very versatile. Avoid-
ance of via-hole transitions and their. inherent limitations by the use of planar structurés
to form vertical inierconnects, together with the ability of the model to accurately predict

the coupler behavior as demonstrated by experimental results, are especially important
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considerations for design of monolithic circuits. In addition, although the approach dis-
cussed here uses certain simplifving assumptions about the symmetry of the structures,

the technique can be readily adapted to the general case.



CHAPTER VI

ANALYSIS OF STRIP-FED RADIATING SLOTS

Arrays of slots héve been widely used in antenna design for nearly fifty years. The most
common approach has been'to cut slots in the walls of _réctanguiar wavegpidc forming a
linear array. An arrangement of linear arrays, fed by gdditional slotted waveguides, has fre-
quently been used for two-dimensional arrays. The design and analysis of these approaches
has proceeded over'inany years io the point where accurate numerical techniques are now
available so that costly, time-consuming empirical techniques can be bypassed [23, 61).

More recently, complex systems have imposed new antenna requirements with dcmmids
for éompact conformability,‘rédu.ced weight, and higher order antenna functions such as
electronic beam steering, polarization control and power genefat'ion. A suitable #ppro%ch
empioying stripline-fed series ;lot_s isolated from higher order modes by shorting pins, has
been analyzed by Shavit and Elliott tﬁ?]. Their approach, together with an alternative
coupler feed arrangement, is illustrated in Figure 6.1. The isolaﬁ'on-of the slots hy the
cavity \_valls, in addition to simplifying the design, has Been shown ﬁo provide signiﬁéant
advantages for phase steerable antennas [47). Other variations on this ;pproach may be
adapted to fit system requirements including the incorporation of active elements and
vertical integration of more complex circuits on multi-layered subst.rate‘s.

As indicated in earlier chapters, we extend the analysis to include strips on multi-

layered substrates and superstrates, as well as to include the effect of a dielectric cover on
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the slots. As will be seen the present formulation substantially improves accuracy. to the

point where one could expect to perform the design without empirical methods.

- . : »

6.1 Equivalent Slot Impedance

In order to produce a slot whose resonant length is less than the width of the cavity, the
cavity dimensions must be such that the first higher order mode in the cavity cross-section

~ the TE;p mode - is not cut-off. In this case, since more than one mode can propagate on

-

the microstrip line, the method used to extract circuit parameters in Chapter V cannot be

- -~

used. In addition, these cavities are typically on the order of one-half wavelength in leng't'h

so that the lines would probably not be long enough to get reliable circuit parameters '

using the Standing Wave Method. The scattering parameters for the slot can, however,
be derived through applicétion of the Reciprocity Theorem [33] to the cases illustrated in

Figure 6.2. resulting in

slot.
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‘Figure 6.2: Two cases for application of the“Reciprocity. Theorem.
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// y {ETEM x Hy — En X ﬁrs,\f] d§ = / o Hream-KdS  (6.1)
waveguide : _ slo

where we have assumed the incident wave is the dominant TEM-like mode on the microstrip
line. The pins forming the walls of the cavity are sufficiently spaced at the microstrip line
so that they do not disturb the dominant mode fields. In this manner, the dominant
microstrip mode can pass through the wall unperturbed. while the higher order modes
are reflected by effectively, a peffectly conducting wall. The ﬁel_ds for the reﬂected mode,

extefna.l to the cavity are then given by
Ex = T (erem -1 Eresm) e® ' (6.2)
Hy = -T(hrem - I-Trear) ™ ' | (6.3)

where & and & are the field components transverse to the propagation direction, L

Rearranging Equation (6.1) we find the reflection coefficient to be
/ Hrewm- R dS
r = __l . slot
. 2_[/ " (Erea x Trear) - (=1) dS
waveguide )

This is the central equation needed to produce the equivalent impedance of the siot from

(6.4)

which the equivalent scattering parameters can be derived.‘ In order to evaluate this ex-
pression, we note that field components from thé soiﬁtions to the two problems illustrated
in Figure 6.2 are required. The first case ~ which will be referred to as ‘the waveguide
problem’ - is a shielded microstrip line with layers matching the cavit}; structure, and pro-
- vides the transverse .édmponents of the field on the entire cross-section. From these we can
calculate the reaction integral in the denomiﬁator of Equation (6.4) which, for the lossless
case, is twice the characteristic impedance of the line. Additionally, we will have the Hresm
term in the numerator at the location of the slot which is used as the excitation for the
second case; ‘the cavity problem’. In this case.we need to find K, a conductor-backed,

equivalent magnetic current, which replaces the tangential electric field in the slot through

the Equivalence Principle [33].
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With assumptions on the symmetry of the field in the slot as in [67], the cavity-backed
slot can be treated as a two-port series impedance element. Once T is known. we can

determine the equivalent slot impedance (normalized to the microstrip line impedance):
Zy = ——= ' {6.5)

from which the equivalent. circuit scattering parameters can be derived bj' standard net-
wark theory. The integral equation fo;mulations for these problems and the solutions for
the currents by means of the method of moments has been described in the previous chap-
ters. We therefore can proceed to the verification of the theory and numerical model by

presenting the experimental results,

6.2 Numerical Results and Measurements

The solutions for the waveguide problem are obtained as outlined in Chapter IV. The
cavity problem is solved using .con‘ventional Method of Moments techniques, as outlined
in Chapter III with the Hrgas ﬁeld from the waveguide problem as the incident field on
the slot; Both the strip and the slot are a#sumed to be sufficiently narfow so that tiw
transverse co.mpon.ents of current can bé neglected. The .longitudinal components on the
strip are expanded in terms of piecewise sinusoidal basis functions with the Maxwellian
transverse distribution as used for the waveguide problem. Galerkin'’s method is used to
enforce the boundary conditions on the strip. For the slot, we have investigated the use
of both the Maxwellian and uriform (rooftop) transverse dependence, using Galerkin’s
method for the rooﬁop functions and point matching for the Maxwellian case. In the
latter case, point mlatching is required due to numerical considerations in the evaluation
of the Sommerfeld intégra.ls for the ha}f-sp#(:e. ‘This requires additional computation since
the matrix loses its symmetry. We would expect the Ma.xwellian results ‘for narrow slots to

be more accurate since the edge conditions are satisfied, however, in the end the differences
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Figure 6.4: Resonant length as a function of slot offset compared to measurements {67].

leads to certain assumptions about the enforcement of the boundary conditions on the
strip, whereas we have used the exact expressions and enforced the boundary condition

explicitly. The number of modes used in the summations (convergence) can also be an

important factor. H.igh mode numbers are needed. especially since the critical field behavior

occurs in the region where the strip ahd slot are most closely spaced.

Since making aécurate measurements for these types of slots is quite difficult and con-
sidering that these measurements were made almost é decade ago, we have performed
extensive measurements on a new set of slots, with and. without dielectric covers. In the.
process, we have uncovered new factors not 'previously recognized which can.signiﬁcantly
influence the results. Individual test pieces for several combinations of slot lengths and off-
sets have been built. The pieces were constructed using two copper-ciad dielectric hoards

(31 mil thick 2 inch square Duroid 5880 ¢, = 2.2 with 0.7 mil thick copper-cladding). The
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and an estimate of potential.s.\'stematic calibration error due to variation in the substrates.
By comparing the measured resistance values with the correspondihg points predicted by
the numerical model, it can be seen that virtually all predicted resistance values are low.
Furt.herinore, 'it should be nofced that the error-Baré are conservative, since they do not
account for slot and dielectric cover losses which caﬁnot be calibrated out, or variations
in fabrication such as dimension changes. Also, the plotted offsets have been ar_tiﬁcia]l_v
staggered £1 mil for clarity and do not indicate an erfor éstimate. Fabrication variations
are blamed for points which deviate from the trend of the data. for example in this Figure,
the case wheré 5= 0;0?;5 and Ls = 0.305 inches is particularly sugpect.

Figure 6.7 displays the predicted resonant lengths for the sé.mc frequency range. Here
the crosses indicate the physical parameters for the measured slots. One can then estimate
the error in either resonant length or frequency by correlating the measured resonant
frequencies listed in the téble with the curves. A comparison of the resonant lengths shows
that the predicted lengths are all too long. (Equivalently, predictpd resonant frequencies
for a gfven slot length are too high.)

These comparisons, together with other observations rﬁade in making the measurements
and numerical param.etric studies, led to the important realization that a compensat;non
must be made for the aperture in the wall which allows the strip to pass through. In the
past it has been assumed that if the pi'ns are sufficiently far from the strip, the dominant
mode can pass throﬁgh the wall unperturbed. At the same time, it has been assumed
that if the p'm spacing is sufficiently dense, the higher order modes - particularly the TE;p
mode - will effectively encounter a perfectly conducting wall allowing us to use the closed
cavity Green's function to model the walls. Although the first assumption is valid, the
second. may not be and is of crucial'importanc:e because the behavior of the slot is strongly

influenced by the TE;o mode, leading to the above discrepancies.
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The sensitivity of the slot’s behavior to the relative position of the walls parallel to the

slot is demonstrated in Figure 6.8. We see that the resonant slot length for the uncovered
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Figure 6.8: Sensitivity of resonant length to cavity length dimension ‘a”.

case depends on the position of these walls on a nearly one-to-one basis. Thus, a 1% error
in the position of the walls wiﬂ‘produce approximately a 1% error in the resonant length.
Assuming that our average fabrication tolerances are better than that, implying that we
should emphasize the trend of the data, the discrepancy between theory and experiment
can be traced to ignoring the apertures in the walls for the TE,o mode. (Note, however,
that just the diameter of the wiré used to construct the walls of the cavity - 10 mils - is'on
the order of 1.5% of the electrical length of the cavity.) It is observed that the covered case
~ is less sensitive to this dimension because the magnitude of tlhe slot field in the covered

case is not as large, implying a smaller excitation of the TE;y mode relative to the other
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‘Figure 6.9: Compensated peak normalized resistance as a function of slot offset compared
to measurements for uncovered slots.

Slot Length (inches)
Slot Offset |  L,(actual) = .305 Ly(actual) = .320 L,(actual) = .335
(inches) || fres L, (model) | fre, L, (model) | fres L, (model)
s=.030 || 14.165 .3045(-0.2%) | 13.74 3234 (+1.1%) | 13.39  .3409 (+1.8%)
s=.045 || 14.145 .3000(-1.3%) | 13.845 3139 (-1.9%) | 13.38  .3361 (+0.3%)
s=.060 | 14.17 .2057(-3.0%) | 13.80 - .3120 (-2.5%) | 13.31  .3351 (+0.0%)
s=.075 | 14.045 .2076 (-2.4%) | 13.61  .3175(-0.8%) | 13.285 .3331 (-0.6%)

X

Table 6.1: Measured resonant frequencies (GHz) and predicted resonant slot lengths for
uncovered slots with compensated cavity length. (Deviation from actual slot
length listed in parenthesis in percent.) ‘
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Slot Length (inches)

Slot Offset L,{actual} = .305 Ls(actual) = .320 Ly(actual) = .335

(inches) Sres L, (model) Sres L, (model) Sres L, {model)

s=.030 [ 1240 .3123(+2.4%) | 12.00 .3318 (+3.7%) | 11.75 .3453 (+3.1%)

s =.045 || 12.35 .3125 (+2.4%) | 12.03 .3274 (4+2.3%) | 11.61 .3489 (+4.1%)

s = .060 12.35 3107 (+1.9%) | 11.83 .3353 (+4.8%) | 11.56 .3493 (+4.3%)

= 075 | 12.35 3092 (+1.4%) | 11.81 .3348 (+4.6%) | 11.54 3487 (+4.1%)

Table 6.2: Measured resonant frequencies (GHz} and predicted resonant slot lengths for
covered slots with compensated cavity length. (Deviation from the actual slot
length listed in parenthesis in percent.)

to the slot. It should also be not.ed that because the resonant lengtﬁ of tile slot is controlled
by factors which do not scale identically with frequency, these errors do not indicate the
expected error of pr_qdicteci resonant frequencies. In fact, for the geometry studied here,
the expected error in resonant frequency for a given slot length, is roughlj half of the

prediction error for resonant lengths. This feature can be deduced from Figure 6.7 for the

uncovered slots, and similar parametric plots for the covered case, by calculating the slope -

of length over frequency. Tlie case for resonant lengths has been shown in the tables, since.
these errors are more relevant to initial antenna designs.

Finally, we point out that the fixtures were built by varying the position of tile strip to
achieve different slot offsets while in the numerical model it is moré efficient to vary the slot
position relative to the strip. A comparison of nuﬁ‘nerical results for the actual dimensions
has show.n that the relative positions of the strip and slot in the cavity have ;some influence
on the slot characteristics, however, the variations are within the bounds of the experiment,

indicating the true accuracy of the approach is at least as good as suggested above. In fact,

LY
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length for the feed-through aperture. This can be found b_\'_cxtension.ol'. the 'wavcgﬁide
problem’ approach as described above with wires or apertures modelled in a manner similar
to [43] or [3]. | | | .

For the type of fabrication techniques described in this experiment, it was found that
‘the numerical model produces accuracies on the order of that for the éxperimentrs. This
suggests the method has sufficient accuracy to replace many of the empirical steps used in

the design of antenna arrays, which can significantly reduce design and development costs.

hy



 CHAPTER VII

MODELLING OF THICK-SLOTS

It has been suggested that strip-fed radiating slots may play an import.am‘role in
the recent trend towardsl more complex antenna systems. This is particularly true [or
monolithic phased array applications where active devices are integrated with the radiating
eleménts for phase control and in some’ca.ses, to generate power. One of the practical
difficulties which arises with the introduction of active devices is the dissipation of heat.
Oﬁe solution is to increase the i‘.hickness of the antenna face for use as a heat sink, which
also adds the possibility of cooling channels. This has an influence on the electrical design;
however, since the slots mayrno longer be considered infinitely thin as is commonly done.
On the other hand, we c?m take advantage of the thickness to improve bandwidth, which has
tradit_ionally been a fundamental limitation of slot arrays. This possibility is the primary
topic for this chapter. |

While semi-empirical and abprbxima.te correction factors for finite thickness slots have
been introduced and rﬁay be adequate and appropriate in some circumstances [39], it is
desirable to develop exact methods to improve the accuracy and generality of numerical
design tools. The ft;l_ll-wa.ve integral equation technique which has been presented is also
applicable to this class of anténna.s, allowing nqi only the analysis of thick slots [84, 85],
but also slots which couple through a section of waveguide as shown in Figure 7.1. This

latter case also provides the mechanism for improved performance. By adjusting the slots
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apparent bandwidth is increased tdgethef with a change in resonant length, but the coupling
resistance is simultaneously reduced.. Since the resistance is normally a fixed value dictated
by the feed design, we can compensate for this either by increasing the slot offset or
adjusting thg waveguide length as indicated by Figure 7.4. However, because apparent

bandwidth reduces in a similar way with increased offset, it is difficult tojudge whether any

gains in bandwidth can be prodﬁced. To evaluate the improvement in bandwidth for the .

largest slot length difference of Figure 7.3, the oﬁ’se.t was varied while the waveguide length

was fixed at Ly = 0.5 inches. The normalized resistance curves were then re-normalized
' to the peak value to remove any remaining discrepancy (R/Z, = 0.294 vs. 0.295). Slot
lengths were also normalized to the resonant lengths to remove variations. A suggestioﬁ of
an increase in bandwidth is now obvious as illustrated in Figure 7.5.

The apparent bandwidth interpretations so far have been based on the slot length. As

kI



7.2 Summary and Conclusions

In conclusion, the‘lhick slot has been modelled by treating the slc.)l‘apertures as sepa-
rat.e slots coupled through a section of rect‘angular waveguide. It has been sh.own through a
parametric study that, based on the theoretical model developed, the apparent b;ndwidth
of the element can be enhanced by stagger-tuning the coupled slots. Although this part of
- the analysis has not been verified by experimental evidence, the cﬁncept is a simple exten-
sion of the models verified previously and the behavior of the structure follows intuitive
expectations.

Within the limited range of pararﬁeter variations used here, apparent bandwidth in-
creases of 50% are'poséible. The true bandwidth would depend on the external circuits
actually used to feed and load the élot. [t seems likely that with a more detailed study
of the inﬁuence of various parameters on the impedance characteristics, even greater im-

provements in bandwidth could be obtained.

b



CHAPTER VII

' CONCLUSIONS AND RECOMMENDA’I‘IONS FOR
FUTURE WORK

The class of structures treated in this work involves rectangularly shielded microstrip
and slot lines. An integral equation formulation for the analysis of these structures in
various combinations has been shown to provide accurate characterizations of a variety of
elements. The capability to analyze multi-layered substrates aﬁd superstrétes has been
included through the use of impedance boundary cbnditions and provides an exact repre-
sentation by modal analysis of the geometries in?olved.

' Splutioﬁs to the integral equations require the specification of Green's functions for e;Lch

case. A number of Green’s functions of different types have been derived by a extending

and generalizing a dyadic analysis technique to incorporate the impedance boundary con-

ditions. This approach greatly simplifies the treatment of multilayered structures through
fhe use of transmission line analysis. The impedance boundary conditions have thus been
incorporated into thé exact dyadic Green's functions making the analysis “full-wave”, there-
fore all electromagnetic interactions are taken into account. For all structures treated, the
derivation of the Green’s functions reduces to a straightforward procedure producing all
components of both the electric and magnetic field dyads in one exercise. Because of the

normalization of the functions used for the expaﬁsions of the fields, the approach also pro-

duces the dual Green’s functions by a simple change in notation, similar to the application '
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we first need oﬁly consider the Bounda.r_v conditions in the region of the strip or slot. The
remaining lavers are l;epresented by ;he impedance conditions, simplifying ‘the‘ numerical
implementation. Once the propagation constant for a particulﬁr mode is known, the fields
in the remaining layers, and‘ hence the characteristic impedance of the line, can be found by
a summation of modes Wi*.h coefficients specified by analytically matching the modes across
layer interfaces. The matching procedure results in simple expressions as a result of the
use of the LSE and LSM modeé. The fields throughout all layers can be efficiently found in
the same manner; allowing a visual representation of the field structu.e wh.ich‘is useful for
intuitive as well a quéntitative inforfnation. Compafisons with available data were made
to verify reliability. The presentation also serves as an illﬁstration of the technique when
applied to other structures such as cavities, parallel plate waveguides, or open structures.

We also developed a sfmple technique for the evaluation of scattering from vertical
wires or pins in a rectangular waveguide. The. method is a simplification of more complex
routines discussed in the literature, allowable in our case since we are concerned wéth
wirés of small diameter. This work was needed in support of Chapter VI but also led to
certain observations which .have not been widely.discussed. The validity of the results was

verified by experimental results and published data. The specialization of this problem 1o

homogeneousl_y filled rectangular waveguides allows it to be treated as a two dimensional

problem which precludes its use with multilayered structures; however, the extension to

the three dimensions is not difficult.

8.1.2 Couplers

Chapter V contains a study of coupling from microstrip to microstrip through a narrow
slot aperture. The unique feature of the treatment of this problem is the use of the Standing

Wave method with even and odd excitation analysis to extract the circuit parameters. This
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openings in the cavity wall which allow access for the strip cannot necessarily be ignored as
has previously been assumed. A technique has been developed. supported by the models
discussed in Chapter TV, which compensates for the effect of the opening. The resulting

data shows excellent agreement with an extensive experiment.

8.1.4 Modelling of Thick Slots

The motivation fc;r making a thick slot may be for-stru.ctura.l, purposes or 1o act as a
heat sink for active de;/ices. The :original formulation in Chapter I outlines the modelling
of thick slots by replacing them with a closed cgvity and equiva.lent magnetic currents on
the slots. Thus, the cavity dimensions do no have to correspond to the dimensions of the
slot, allowing greater flexibility in applying the model to different appiications.

In Chapter VII, we nﬁmerically investigate the behavior of a structure in which the
strip-fed slot couples to the radiating slot through an intervening section of Tectangular
waveguide, dimensioned to aliow the dominant waveguide mode t.o’ propagate. The most
significant feature of this chaptgr is the study ﬁf the eﬂ‘eét of allowing the strip-fed slot and
radiating élot to have different lengths. This detunes the structure by stagger tuning each
slot to a slightly diﬂ"ér_ent frequency, resultling'in an apparent increase in bandwidth. In
order to achielve a constant slot impedance, the strip offset and/or waveguide length must

be adjusted simultaneously with the alteration of slot lengths to compensate for a change

in resonant resistance. This is significant, since bandwidth is one of the primary limiting'

factors for these types of antenna elements.

1]

Experimental verification of this result is left for later work. However, it is expected to

be correct since it is a relatively straightforward extension of the remainder of the model
which has been validated by experiment. The result is also appealing from our intuitive

understanding of the slot behavior.

b
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may sngmﬁcamlv alter the field on the slot. The effect would be enhanced for a ccmered
strip since, not only is the TE;o mode more strongly excned at ‘the slot, but also it is
more strongly coupled to the feed-through aperture, Thus, the field on the slot may not
be correctly determined under these condi‘tions ahd will lead to incorrect slot impedance
values. The rectification of the situation is, of course, to expand the model to include an
explicit represent.ation of the feed-through apertures, which would fully account for their
in’ﬂuence. E : N

Otﬁer limitations of the modéls are not unique to this particular approach and need not
be discussed in detail. For examplg. all numerical models iﬁvolw'e‘ﬁnjte approximations to
reality and therefore involve some errors in thejr representations. Nevertheless, ful]-wgve
integral equation techniques such as used here, have been pfoven to pfovide some of the

most accurate and reliable models available for the simulation of a wide variety of problems.

8.3 Recommendation for Future Work

Several applications should be further investigated based on the formulations presented
and form‘the_ basis for extensions to this work. The first instanée would employ the trans-
formations derived in Cihapter Il to .study the case discussed in [62]. This case is of interest
because the sensitivity of the impedance t-o the’strip offset for the geometry of Chapter VI
may place ﬁnduly st.ringent tolerance requirements on the fabrications process. The appli-
cation of the full-wave techniques to this problem may make possible the elimination of the
semi-empirical factors used in [62] Since the feed-through apertures could be significantly
offset from the caiity centerline, the apparent problem with their neglect in the present
model may be avoided.

Another case to consider is the 'T-Bar’ fed slot which has the geometry illustrated

in Figure 8.1. The formulation for extracung the m]pedance of the equivalent nnpedance

could follow the React:on Method used in Chapter VI by applying the Reciprocity Theorem

AR &
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Figure 8.2: Two cases for application of the Reciprocity Theorem for the T-bar fed case.

of the slot. The reflection coefficient on the line is now given by

1 //w Mrgar- K dS _

Te = Y3 (8.5)

We now also need to know Iy from which we can find Hypy, which we then use as an
excitation for the cavity problefn to find K, as before. Accurately knéwing all these
terms, we should be able to produce the réﬁeczion coefficient for _thé slot from which the
slot impedance and circuit parameters can be derived. One ‘difﬁculty in this approach is
forseen to be the determination of I'y. This problem would be straightforward except for
the fact that for the dimensions of the cavity, more than one modé can propagate on the"
line. To derive Iz for the ddminant mode on such a line wouldr require further development
as discussed above. Also the question of the effect of the feed-through aperture needs to

be resolved which by itself can be viewed as an extension of the treatment of wires in

Chapter IV.
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APPENDIX A

Vector Wave Function Expansions and Relations

By convention, L, M and N are used throughout the text to denote the Vector Wave

Functions (VWFs) defined by

L = vv (A.1)

M = wae.:%vm (A2)

N o= lyxvxus=lvxm (A3)
K K ‘ :

These form a complete set of solutions 1o the homogeneous wave equation ¥ x ¥ x F-
K?F = 0 when ¥ is the scalar function solution to the equation- V¥ + x?¥ = 0. The
particﬁlar solution for ¥ is chosen to satisfy the boundary conditions of the problem. The
Z; unit vector is called the ‘éiloting vector’ which determines the forms of L, M and N and
K is the sebaration coﬁstént K? =. k2 + k2 + k2. In this appendix, the expansions of various
vector wave functions (VWFs) used throughout the text are provided as a convenient
reference. In addition..some identities used to reduce some of the derived expressions to
simpief forms are provided. |

By conve.nt'ion, L, M and N are assumed throughout to be formed from the generating
function ¥ = e~i(ksx+kyy+kez) withi % as the piloting vector unless indicated otherwise by
additional subscripts, éuperscripts or in the text. A common superscript to be used will be

a prime (') which will iniply both that the z,y ahd z dependence will be z’,y" and 2’ corre-

i
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i . L i
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-}:»[—i kek, cos kox sinkyjysin k,z — § kyk, sin k,; coskyysink, s

+5 (k2 + kf,)sin k-2 sin kyy cos k; z} (A.29)
Identities;

_ejerlC{(kt) + e--’k‘cl\-'l(—kz) = M[k,(z - C)] + M[-kz(z - C)]
‘ { +2M,Ik=(2 - c)].

~2iMofks(z ~ €)]
Mk.(z = ¢)] £ M[—k.(z = ¢)]
{ +2Me[kz(z - ¢)]
~2jMo[k.(z = ¢)]
ejk'cﬂ(k:) t C-Jk'cﬂ(—kz) = N[kz(z -e))k N["kz(z - ¢)]
' : { +2N[k.(2 = ¢)]
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Nlk.(z - ¢)] £ N[=k:(z - ¢)]
{ +2N [k (z - ¢)]

_--23‘519[1:,(: - )]
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Cjk'cm(k:) t e-jk'cm("kz)

(A.31)

(A.32)

it

ek N(k,) £ e H N (k)

(A.33)

Me[k:a kz(z - C)] + Me[k:y "’.kz(z - C)]
+2Meelkz, ko(z - ¢)]
= (A.34)

| ) —szeo[kzv kl(z - C)]
5 Mo(ke ko) & €™M0 Mo(hay —ke) = Wolke, kalz = €)) & Molkz, —ks(z - ¢)]
. . : { +2Moe[k:s kz(z - C)]

. —=2jMoolks, k2(z — ¢)]

5N (ke ko) £ €N (b =k, = Nlky ka(z = ¢)] £ Nofky, —ks(z - c)]
{' +2Nee[kzy kol z = €)]
| | . =25 Neolkz, k{2 = )]
% No(ks, k:) + e *  No(ks, ~k,) = ﬁoik,,k,(z - )] £ No[kz, k(2 - ¢)]
{ +2Noe[kn kz{z - C)]

~2jNgolkz, ks(z = ¢))

ejk'cMe(kts k)% e‘-"k'cMe(kzv —k;)

(A.35)

{A.36)

;]

(A37)




APPENDIX B

On the Use of Vector Potential Functions for the
‘Derivation of Green’s Functions

In previous literature there has been considerable discussion on the treatment of sources
in w.aveguides or cavities, particularly the problem of a longitudinal slot in the broad wall of
a rectangular guide. It has been stated and generally accepted that an additional “mode”
needs to be included in the Green’s function for the waveguide to #ccurately represent the
currents at the slot [86]. Hoﬁrever; the origin and derivation of this mode is somewhat
unclear. |

The difficulty arises from an incomplete treatment of the potential theoty in the source
region fér these problems. It is ident.ica.l to the difficulty associated with the vector wave
function or direct ﬁeld.expansion formulations for which the problem has been adequately
resolved after much discussion in the literat.ure over an extended period of time (81, 65,
42, 15, 77, 11]. Because the use of vector w;cwe functions as used in this work is perhaps
somewhat unfamiliar and since the difficulties for the vector potential method are very
closely related, this appendix presents a discussion of the ﬁse of potential theory for source

regions to demonstrate the origin of the required ‘additional’ terms.

B.1 Potential Theory Solutions for Electric Currents

To examine the method, we will first consider the fields in a rectangular waveguide

excited by a point source of longitudinally directed electric current. The waveguide axis is
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Equation (B.T) to a form for which the solution is either known or may be rcadii_v found.
This step is really the quintessential motivation for the use of the vector potential method.
since the overall pro.blem is reduced to the solutién ofa singlé1 presumably simple, equation.

The selection of two conditions \;vhich specify A or ¢ may bé familiar. Thé first is the
Co_ulomb condition, or Coulomb ‘géuge’, in which A is assumed to satisfy ¥+ A = 0. From

Equation (B.7) it can then be shown that & satisfies Poisson’s equation:
Vo= -Lv.] '  (B.8)
- we ‘

however, this does not lead to a simple equation for A. Thus, this approach is not generally
used [53].
The Lorenz gauge [82] is by far more commonly used in which it is assumed that

V. A = jwped. This reduces Equation (B.7) to (V3= -V x ¥V x +VV. )
VA4 KA = —ul . {B.9)

To satisfy this vector equation reguires that we choose A with a component in the same
direction as J, reducing it to a scalar equation. In our case, for example, we set A = A,

reducing Efqua.tion (B.9) to
VA, + kA, = ~ub(R - R) (B.10)

the solution of which can be found by separation of variables and is the primary topic for
much of the remainder of this appenkdix.

Before prqceeding howeyer, we‘ must pause to distinguish this approach with other ap-
proaches involving ﬁotential functions. It is widely recognized that the fields in waveguide
can be expressed in terms ofa variety of combinations of poteﬁtial functions, most not;aBIy
in this context., the X and F potehtia]s. For éxample, the complete set of homogeneous

solutions for rectangular waveguide can be written in terms of A = 4,7 and T = F,:




written in the form

A, = [Ajcosk,z + Agsink,z]{B;cosk,y+ B;sin kyy][Cle"’"“(""‘) + Cae~dhsta=a)

(B.13)

where k* = k2 + k2 + k2. Applying the boundary condition # X E = 0 at the walls of the

waveguide reduces (B.13) to
A, = sin ko sin kyy[Cle+5"‘t’."') + Cge ki (3=21 C(B.14)

where &k, = mr/a, kp = mr/b; and (m,n) are any integers. The eigenvalues k,, and k,
are thus infinite discrete sets while &, has a continuous spectrum.
Before proceeding, it is instructional to verify that this solution satisfies the homo-
geneous form of Equation (B.10) which can be readily done by direct differentiation. In
tangul dinates the V? is V2 = 25 + £ + £ which allows ul
rectangular coordinates the operator Is = 373 + 57 + 3z which allows the z and

y partial derivatives to be performed by inspection leaving

s .
..kan,-kﬁA,+%£%’-+k2A, =0 (B.15)

Since k? = k?, + kZ + k2, Equation (B.15) reduces to

A, | '
- +kiA; =0 - (B.16)

Since A, is continuous in z, the second derivative can be performed without difficulty so it

is pbvious that (B.16) is satisfied and (B.14) is confirmed as a solutioh to the homogeneous

equation.

We now proceed as usual and impose the ‘radiation condition’ on the solution; that is,
E—0, H~0, as |z~ o (B.17)

with finite losses. (Or equivalently, require outward travelling waves outside of all source

regions.) Of course we have anticipated this condition in the form of the solution’s z
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Figure B.1: The derivative of an arbitrary discontinuous function.

‘Using Equation (B.22) in (B.16) we find that Equation (B.18) is indeed a homogeneous

solution for A, except at the point z = 2'. Notice that this result was obtained by imposing
the radiation condition alone. The continuity condition was also used but effect$ only the
nature of the singularity in the second derivative at z = Z’, that is, whether the delta
function is produced or its ﬁrst. de:;ivative. Thus, as is intuitively obyioﬁs, imposing the
radiation condition dictates that the potential must satisfy an inhomogeneous equation
with a driving function (source) located at some location between —00 < z' < 0o. Notice
that we arbitrarily chose the form of the z depehdence so that the discontinuity would fali
at z = 2’. Thisis, of éourse, the most reasonable choice, since.we ultimately are attempting
to solve the source problem and we do not expect discontinuities in the fields in the sou.rce-
free regions. However, we have not yet attempted to satisfy the original nonhomogeneous

equation given by Equation (B.10).

7Y
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On applying Equ.ation (B.22) then, we are left to find Cpny such that (B:10) is satisfied.
that is,
- =23 z Crmrk, sinkpzsink,y 6(z - ) = —pb(z -2 )o(y - y)o(z - ") (B.2.5j‘
m.n _ : ( . ‘
or

S Crnnsin kmzsinkny = -8z =2)6(y-) (B.26)

We can find Crn by multiplying Equation (B.26) by sin kmz sin kqy and integrating over

the cross section of the waveguide getting

o= ' -
Cmn = Fab sin o'.»m:r sin kny | (B.27)
Equation (B.26) thus implies
' Z ;‘%sin kmz sin kyysinknz'sin kny' = 6(z — 2}y - ¥') (B.28)
mmn ) “
or
2 ,
z - sin kmzsinknz' = 6(zx-2') {B.29)
-2 . ’ '
Z 3 sin kpysinkp,y' = 6(y-y') (B.30)

which can be shown independently. The particular solution is then
. - ‘k,(z—z') ~ !
) 2 . o . . e™? 2>z
A, = - z -Z--}-‘-— sin kyn x sin knysin b1’ sin by : (B.21)
- abk. ehilz=2') 5 o

B.2 Field Behavior -~ Electric Current

Now that we have the particular solution for the potential, our interest turns to the

behavior of the fields, particularly near the source. The H field is determined by evaluating
Equation (B.4) which yields
e"jk;(l"!') > z’

ok .
H, = - z '-1—513 sin kT cos kny 5in k2" sin kny' (B.32)
m.on GUR: : eJk,(z—z') s <2
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where T is a field or.pbtential and G f is a dvadic Green’s function of the appropriate type.
In the case where F is to be a potential, the singular term does not appear directly but
should appear when the Eis found by careful!y performing the second derivatives indicated
by the VY - A operation. Similarly, if F |s to be the E field, the correctly constructed
dyadic Green’s function will be of the electric field type and, in this case, will have the

form

) ot —a =2y =
Gp = ICREAL et SLICRES Y (B.40)
| ~ Jwe

where éo is a modal expression.

Finally, we noi,e that the solution found is the complete solution for J = 36( R - ﬁ'_)
in rectangular waveguide which can be seén to excite only the TM modes. The TE modes
can be found by assuming E = 1V x F Wilich are excited by currents in the other two
directions. The point also illustrates the benefit of the vector wave function approach with
dyadic analysis. Both the vector potential method and field expansion methods employing
auxiliary potentials, when performed on a vector level, require each component of current
to be considered separately. In.contrast‘, the dyadic analysis produces the entire Green’s
functiop at once. Since all of these methods cont.éin the same pitfalls when the derivatives
at diéconti‘nuities are.nOt carefully performed, this is the only fundameﬁtal difference. Of
course, depending on the structures involved, when other beneficial techniques such as the
use of impedance boundary conditions and scattering superposition are not employed, the

difficulty of the various derivations may increase dramatically.
B.3 Potential Theory Solutions for Magnetic Currents
The necessity of the singular term is particularly evident in the literature pertaining to

the analysis of apertures in rectangular waveguides and cavities. In these cases, the problem

has a ‘dual’ nature in that we usually represent the apertures with magnetic currents. The
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Following a procedure identical to the previous case, the particular solution is found to be

+

: BEALA St R Y
F, = 2 37 Z c,zcn cos k,y, z cosk n¥y €0s kmz’ cos kny' (B.50)
a z e"“("’"') i<

where ¢,, and ¢, are the Neumann numbers de‘ﬁned as
2 P40 |
€ = : : . (B.51)
' 1 1=0

Note particularly in this case that for m = 0 and n = 0, the potential function is non-zero,
unlike the previous case, and is the term referred to as the (0,0) ‘mode’ in [8G]. However, as
can be seen from the field expansion below, this mode does not make the key contribution

at the source, but rather, the additional contribution comes from the singular term.

B.4 Field Behavior — Magnetic Current

The fields produced by the infinitesimal magnetic current source are the following: The

E field is determined by evaluating Equation (B.48) which yiclds

Jemenk {eokele=) 25

E. = —-i_—iab—" €0S kp 2 sin kny cos k2’ cos kny' : (B.52)
v“n z . ejk,(z—:') pd < z’

. ) ~jk:(z=—2") =
k. _ e’ z>z B
E, = '7—(2'-"552-3-’35111 kT cOS kny cOS k' cos kny' ' {B.53)
m,n L ’ eJk;(!-Z') s < z" '
Ez = 0 ) ) ' (B'54)

The ¥ field can be found from Equation (B.49) and is

. : p=Jke(z—-2") ’ .
Emenk e’ 2>z
H, = Z—Hsin kmz cos k,y cos ky,z’ cos k' (B.53)
e Sk ekea=2)
. o e=-1kilz=2") 2
€€k ) -e Ik T >z
H, = %i—")—';—bncoskm:sin knycoskm:r'coskny’{ (B.56)
mmn e.?kl(z“z') s < z’
1 8%F,
H, = -
z []upe 8:2 JUF]

e_j‘ki(z'z'} z> P

- -Lz J m€n€ , ,
Z (Jwe - ) 2%, qh 0% Fm3 coskny cos kmz' cos kny

ejkC(z"z‘, 72 < 2' :

1 €m€n€
Tope mz‘“ prs €08 kT €O kY COS k2’ cOS kny'6(z - 2 )



185

-in Chapter IV, it is far more cdnvenient to express the.Green's function in terms of LSE
and LSM modes and partitibn the problem parallel to the planes of the dielectric interfaces.
Although the radiation condition was not iﬁ)posgd on that solution, the singular term ap-
peared for the component of current normal to the interface for the normal field. Imposing
the radiation condition in that case, amounts to choosing a contouf for the Fourief integral
which does not produce additional singularities. It can thus be seen that the singularity
does not depend soley on the imposition of the radiation condition, but moreso on the
combination of partitions and the manner in which the fields are expressed. Therefore, we
can avoid the appear:{hﬁe of the singularity in certain compo.nents if necessary, by careful
formulation, now that we understand the origin of the singularity.

These observations, however, raise a possibility which has not been addressed. Through-
out this work we have emphasized the simplicity in the applicé.tion of boundary éonditions
which results from the use of thé LSE and LSM modes to expand the fields in various
structures. This practice also avoids the singulaf term in the Green's function, since it
appears in a component which is not reeded for the planar circuits treated hére. However,
it is not clear that this is necessarily the most desirable form from the point of view of
convergence for the modal sums. It may be that the explicit extraction of the singularity
may improve the convergence of the remaining modal sums for that direction. If this is
the case, it may be _mbre desirablé to retain the singularity in the direction of the curreﬁt
being modelled, even though enforcing the boundary conditions becomes significantly more

difficult analytically. This question should be considered for future work.
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APPENDIX C

On the Use of Vector Potentials with the Method of
' Scattermg Superposxtmn

For a magnetic source Maxwell’s equations take the form
VxE=-juul-K A : (C.1)
V x H=juweE | (C.2)

where the constitutive relations D = ¢F and B = uH have been assumed.  Since from

Equation (C.2) V. E = 0, E can be expressed in terms of a vector potential function F as
1
E = -;V X F (C.3)
Using Equation (C.S) in Equation (C.2) and the usual Lorenz condition [82], F must satisfy
VF+kF=¢K = (C4)
and consequently,
H=jwF+-1-vv.F (C.5)
wep

For an Z directected infinitesimal magnetic current in a homogeneously filled infinite space,
K=26(R~- R" . (C.6)

so that Equation C.4 becomes

Vé'F_+ k*F = teb(z ~ 2"V6(y - y')6(z - 2') 7 | (C.7)



where u, = /A2 = k2, k? = w?p0¢, and o is the angle makes with the  axis. It should

be noted that the functional forms have been chosen in anticipation of derivative operators

which will be applied when the fields are evaluated at the boundaries. The solution in the _

slab then is
F o= PO LaF + FO)+3F + FT) (C.16)
while in the infinite space above
F = iFC4:F° (€T

In view of the expansions of Equations (C.3) and (C.3),

A= :ﬁ; [-;r (kF‘, + %v. ‘F) ¥ g%v Fas (kF, + %v -_ F)] (C.19)
We apply the following boundary conditions at thé. interfaces:
:xE=0 at z=0 ~ (C.20)
ixE' =ixE at z=h (C.21)
ix A =:x A at z=h (C.22)

Here the = superscripts imply evaluation of the field on either side of the interface (not to
be confused with the + waves used earlier). No additional boundary condition is needed
at the source plane, since the particular solution a_iready satisfies the source conditions and
the scattered potentials are solutions to the homogeneous equation.

This leads to the following system of equations::

AT +A7 =0 (C.23)

AY - A7 = | | (C.24)

i
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These‘expressions are identical to the results in [37] from which the fields can be found by
applying Equations (C.3) and {C.5). The ficlds correspond to the 2, . 7 components.
of the dyadic Green's functions. For § and i directed currents, the process must be repeated

(although the § terms can be obtained by a coordinate rotation due to symmetry).
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