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CHAPTER 1

INTRODUCTION

Because of their fundamental importance to earth climate dynamics and the at-
mosphere’s carbon cycle, forest vegetation has in recent years justifiably attracted
the majority of interest in the field of microwave remote sensing of vegetation targets
[14, 15, 8). However, another vegetation class which must not be overlooked is the cat-
egory of grassland vegetation, both natural and cultural. At approximately 30 million
square kilometers, this vegetation type covers 20 percent of the earth’s dry surface,
accounting for more than 30 billion metric tons of total biomass. These facts alone
attest to the importance of grassland targets to the overall understanding of earth’s
climatic, hydrologic, and atmospheric dynamics. An understanding on a giobal scale
of the biophysical parameters which describe this vegetation is thus highly desirable,
parameters which include soil moisture, biomass, and leaf area.

Additionally, a significant amount of the cultivated land on the earth’s surface is
occupied by members of the grass family. The most impertant of these crops are rice
and wheat, however many other plants such as barely and cats are included in this
category. Add to this the pastureland used to graze cattle and other domesticated
animals, and it is readily apparent that a vast amount of the world’s food supply is
dependent, either directly or indirectly, on grassland vegetation. This fact leads to

another motivation for determining on a global scale accurate and timely descriptions
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of the earth’s cultural grasslands; the detection of drought and desertification, and
the prediction of crop yields to detect famine potential or to stabilize agricultural
markets.

To obtain this global understanding, electromagnetic sensors can be placed on
spaceborne platforms such as satellites. Sensors of this type include hardware operat-
ing in the optical, infrared, and millimeter wave speciral regions. However, the scope
- of this study is limited to mictowave sensors only. It has been demonstrated that the
backscattered energy from a microwave radar is sensitive not only to the biophysical
parameters of vegetation, but to the parameters of the underlying soil surface as well.
This sensitivity is a function of radar parameters such as frequency, incidence angle
and polarization, and therefore multi-frequency polarimetric radars are desirable to
obtain the maximum information about an illuminated vegetation target.

However, the difficulty arises when interpreting this backscattered data; mapping
the scattering data correctly into a vegeiation parameter space which includes the
desired biophysical parameters. Adding to this problem is the fact that the backscat-
tered energy is sensitive to muliiple vegetation parameters, parameiers which may
be of little interests to the interpreter. Among these parameters are those associ-
ated with plant structure, an entire class of descriptors which can significantly if not
dramatically effect the scattered energy. To accomplisk this mapping, a necessary
(although far from sufficient) step is to determine the relationship between all the
biophysical parameters of a vegetation canopy to the observed backscattered data.

This relationship can be achieved by two means. The first is by observation;
collecting scattering data over a sufficient collection of known targets to accurately
define the relationship between scattering and target class. For simple targets with

& small number of significant parameters, this method is possible and perhaps even



desirable. However, as the target class becomes more and more complex, this method
becomes impractical, as no reasonably sized collection of observations can centain
the information required to define the relationship between scattering and a complex
target. In this case, deterministic scatiering models must be implemented, scattering
models which computationally evaluate the electromagnetic interaction with a phys-
ical analog of the vegetation structure. It is the goal of this study to produce such a
model for grassland vegetation, to validate itz performance, and to implement it to

study the microwave backscattering from grass canopies.

1.1 Grassland Botany

Although grasses would seem to be the simplest of plant structures, the general
plant family consists of thousands of species, exhibiting multiple sizes, shapes, and
structures of varying complexity. It would be impossible to construct a model to
accurately comprehend them all, so this study is limited to structures which can
be described as a set or subset of the elements shown in Figure 1.1. This figure
exhibits three elements; a stemn or stalk element which protrudes from the ground,
leaf elements which grow out from along the axis of the stem, and the caryopsis
or grain which extends from the apex of the stalk. The grain is considered to be
approximately cylindrical, whereas the leaf is assumed to be “biade” shaped. The
stalk element can either be modeled as a circular cylinder or as a structure with a
grass blade cross-section. These elements can be combined in various ways to model
a variety of grassland canopies, as shown in Figure 1.2. The top illustration (a) shows
a structure which is an accurate representation of such grass species as wheat, barley,

oats, and fescue. The middle illustration (b) shows a structure suitable for modeling



grain

Figure 1.1: Illustration showing the basic structure of the grass model, includ-
ing the stalk, grain, and leaf elements.

the previously mentioned grasses in their immature stages, before the grain element
emerges from the plant. The final illustration {c) represents the simple grass blade

structures which often make up the vegetation of prairies and savannahs.

1.2 Scattering Solutions

As vegetation is a random medium, that is a medium which can be described
only in a statistical sense, the various techniques for determining the scattering from
randorn media must be empioyed. Basically, these technigues can be divided into

three categories, analytical wave theory, radiative transfer, and discrete scattering
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Figure 1.2: Illustration showing the us types of vegetatio wh ch can be
modeled using {(a) all th 1 ements, (b} stalk and leaf elements,
and (¢} stalk (blade) eleme ‘tk only.



theory [30]. Analytical wave theory involves representing the scattering layer as an
inhomogeneous dielectric. The value of the dielectric within the layer is modeled as
a stochastic process of position variable 7, and thus defined in terms of its statistical
moment as a function of position. The scattering solution is thus iteratively solved
using successively higher statistical moments. This method is relevant to media such
as sand and dry snow, where the dielectric at each point is on the order of mean and
the correlation statistics can be accurately determined. However for vegetation, plant
structure leads to complex correlation relations, and the dielectric contrast is large.
As a result, multiple iterations would be required to provide an accurate solution,
and therefore this technique is rarely applied to vegetation.

A technique which has been widely and successfully used for modeling vegetation
is radiative transfer [3]. Radiative transfer is a heuristic solution which accounts for
the power lost {from chmic loss and scattering) and gained (from bistatic scattering)
over an incremental propagation path ds through a random collection of scattering
particies. In its scaler form, radiative transfer is defined by the following differential
equation.

dI(7, 3)

- (7 2 s NI (5 SNdO 1
7 nef.j,.s)—i-j;pi P&, HI(#, §)d (1.1)

The value . is the extinction coefficient accounting for the loss, and P(3, 3} is the
phase function describing the coupling of intensity I(,3) from direction & into &.
The phase function is determined from the averaged bistatic scattering coefficients
of the particles which make up the layer, and the extinction coefficient is likewise
dependent on the scattering of the individual particles. As this is an incoherent

scattering solution {power, not fields are considered), the scattered fields from the



-1

particles must be uncorrelated. Since the bistatic scattering coefficients of the indi-
vidual elements in the collection is implemented in the solution, the effect of shape,
structure and orientation of the particles is accounted for. For example, a radiative
transfer solution for forest vegetation may model a tree as a collection of cylinders
and disks of random sizes, shapes and orientations, representing branches, needles
and leaves. In this way, the scatiering layer is treated as a collection of individual
(and uncorrelated) scatterers, and the radiative transfer sclution seeks to describe
their interaction with each other and the incident electromagnetic energy. As with
analytic wave theory, equation(1.1) can be solved in an iterative manner, with the
first iteration corresponding to the first-order, or single scattering terms. This first-
order radiative transfer solution has been utilized in the majority of cases to model
the microwave scattering from grasslands[34, 29, 1, 31].

The third method which will be considered is discrete scattering theory{30, chp§].
This method is similar to radiative transfer in that the scattering layer is considered to
be a collection of particles of random shapes, sizes, and orientations, each described
by a bistatic scattering coefficient. However, in this case the scattered fields are
considered, and the total scattered field from the scattering layer is the coherent
summation of the scattered fields from each element. Thus, instead of determining
the extinction coeflicient for the layer, an effective propagation constant, describing
the mean or coherent wave in the layer must be determined. One advantage of
-this approach is that the scattered fields from dissimilar elements no longer must be
uncorrelated. For example, Yueh et al.[37] demonstrated a coherent scattering model
for soybeans where the correlation between the constituents of a single plant was
considered. For grass scattering, this method has alse been used to determine the

incoherent, first-order scattering power, a solution which mathematicaily is identical
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to first-order radiative transfer[25].

1.3 Applications to Grassland Scattering

When applying any of these scattering techniques to grassland canopies, several
unique problems arise which must be overcome. The first is the structure of the plant
constituents. When modeling the scattering from forests, trees are often modeled as
a random collection of circular cylinders. This is of course a good analog to the actual
structure of a tree, the branch being roughly circular and straight before subdividing
into smaller branches, each in turn oriented in a2 new and random direction. This
mode] has the added benefit in that the bistatic scattering from a circular dielectric
cylinder is well known.

Determining an equivalent structural analog for grass canopies, however, is prob-
lematic. The elements of a grass canopy (with the exception of the grain) can be
considered as long, thin dielectric elements. However, unlike tree branches, these
elements are often neither straight, nor circular in cross-section. For example, the
leaf and stalk elements are often have the “v” shaped cross-section of a grass-blade,
and the leaves almost always display significant axial curvature, resulting often in a
complex curve of the type displayed in Figure 1.1. Additionally, the width of leaf
elements often taper at the end of the structures, coming to a point at the end, in a
shape similar to that of a beat or ship. Thus, it becomes difficult to approximate the
structure of grass plants as a coliection of simple canonical elemenis where the scat-
tering is well known. Investigators have generally modeled these elements as circular
cylinders, ellipsoids, or ellipse shaped discs [25, 29, 1, 34]. However, the accuracy

of these models is at least open to question as neither considers curvature nor blade



shapes.

In addition, the stalk element adds even more significant problems when attempt-
ing to model grass canopies. Again comparing the problem to forests, the cylinders
representing the branches of a tree are randomly distributed throughout a scattering
layer which is much larger than the individual elements. Instead, as demonstrated by
the illustration of Figure 1.2, the stalk element begins at the bottom of the scaitering
layer and traverses vertically to the top. In the vertical direction, these structures are
barely random in the vertical dimension, and certainly not random over a distance
equal to the canopy height. Although often treated as such[34, 25, 29}, modeling these
elements as random over the canopy height actually reflects the case demonstrated
in Figure 1.3.

It is more strictly correct to define the locations of scatterers by their local refer-
ence, so in the case of long stalks the scattering layer could be defined as a thin band
in the center of the scattering layer (Figure 1.4), providing that the local reference is
defined as the center of the stalk element. However, the local reference is completely
arbitrary and thus the other illustration of Figure 1.4 is equally valid. The problem
thus occurs when attempting to applying radiative transfer to this definition. The
intensity of the incident wave on the stalks as determined by radiative transfer would
be far greater in case {b} than in case (a), as for case (b} the attenuation due to
the vegetation would not be considered. Thus, for radiative transfer, or any model
where the stalk elements are considered as point scatterers, the solution is dependent
on the arbitrary definition of the stalk reference. If the constituent elements of a
scattering layer are small in comparison to the scattering layer, this ambiguity causes
tittle problem, as the intensity of the incident wave is approximately constant over

the scattering element. However, for elements such as the stalk, the colierent wave

iy
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actual canopy
z=l} =

ﬁi&éb

uniformly distributed model

g=f} =

Figure 1.3: IHustration showing the structure of a grass canepy, as compared to
the structure actually modeled if a uniform distribution is applied
over the canopy height.
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Figure 1.4:
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(a)

NMustration showing how the stalk layer is dependent on the arbi-
trary definition of the local scattering reference. Figure (a) shows
the layer if the reference is at the center; (b} where the reference is
defined at the top of the stalk.
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intensity can change markedly from the top of the stalk to the bottom.

This leads the the next problem associated with grassiand scattering, that of the
non-uniform illumination of grassland elements. A long thin element of a grassland
canopy, such as the stalk or even the leaf, can extend from the top of the vegetation to
near the bottom. Since vegetation attenuates the incident wave {with both absorption
and scattering), the coherent wave illuminating the element is non-uniform, that is
the intensity of the wave illuminating the element varies over the scattering element.
Moreover, this variation is a function of the overall canopy description (i.e. the
parameters which influence extinction), as well as the position and orientation of
the element within the layer. Thus, the concept of a scattering matrix element is
eliminated, as the scattering from the element is dependent on more than just the
parameters of the element, and the incident wave on the particle is not a uniform
plane wave, but instead is arbitrary. A scattering matrix can be defined for the overall
system; an element with a specific location and orientation in a specific attenuating
layer, but not for the particle itself. Note that the scatiering from an long element
within this layer is not simply an attenuated version of the scattering in free-space, the
arbitrary illumination will modify the form, as well as the magnitude of the induced
currents, thus modifying the overall form of the bistatic scattering pattern.

Ancther problem associated with the large length of grass elements as compared
to the canopy height is revealed when developing a formulation for extinction. The
extinction through a canopy is generally determined by evaluating the energy lost
(both absorption an scattering} when the coherent wave encounters a particle within
the layer. A problem occurs when applying this logic to elements such as stalks, where
the coherent wave propagating through a given distance of the canopy layer encounters

not multiple particles, but merely a fraction of the entire element. In other words,

-
i
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the difficulty lies in determining the extinction due to propagation, for example, 25.
50, or 75 percent down the stalk length. This problem is further complicated by the
fact that the optical theorem, commcply used to evaluate particle extinction, is found
from the fer-field forward scattered field, whereas the propagation path through the
vegetation is often far shorter than the far-field distance of the vertical stalks.
Finally, perhaps the most significant problem when dealing with grass canopies
is due to potential for the scattered fields from dissimilar elements to be correlated.
Even at the lowest frequencies of the microwave region, the size of forest vegetation
is generally on the order of multiple wavelengths. This electrically large scatiering
volume, coupled with the complex and random nature of tree structures, lead to
a case where the scattered fields from dissimilar scattering elements are virtually
uncorrelated. However, both the stature and the structure of grassland elements
lead to a case where field correlation can occur. The small stature of grasses can
result in an electrically small scattering volume in the microwave region, and the
simple structure of grass plants can lead to significant physical correlations between
dissimilar elements (i.e. the grain is always at the apex of the stalk). As a result,
the total scattering power cannot be reduced to a summation of the scattering power
from each separate plant element, the plant structure as a2 whole must be considered.
To illustrate this, consider two scatterers lying in an arbitrary scattering V' volume.
Assuming no coupling between the elements, the scattering from the volume can be

written as:

Sy = Syethohfi 4 G, gthob T (1.2)

where S, represents the scattering from the first element relative to its local coordi-
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nate system, and the complex exponential term represents the relative phase of the
scatterer lying at location 7. Now assume that size, shape, orientation and loca-
tion of the two scatterers are random variables with know statistics, and the average

scattering power from the volume is thus:
(151 = (15:) + (1521%) + 2Re{(S1)(S3)(e =) (13)

where it is assumed that the size,shape, and orientation parameters are independent
of location and the other scatterer. The first two terms of the above equation are
simply the average scattered power of each element individually. The remaining term
is the inner product or coherent term, since it involves the relative phases between
the two elements. If, as is often tﬁe case, the locations of the two scatterers are
independent, the phase term (exp[zkg!:: - (F; — 72)]) can be separated such that the
term equals (exp[zkgf&-ﬁ}){exp[—zkgk=F2]). If the location of each scatterer is uniformly
distributed throughout the volume, and the scattering volume has significant electrical
size {greater than a wavelength} in all dimensions, the value of (exp|—ikok - 73]} will
be very smali, and the coherent term of (1.3) will be insignificant when compared to
the other two terms. These two terms can be considered as the inccherent scattering
power, as the relative phases of the two scattering elements do not contribute to the
solution, only the absolute scattering power of the elements are relevant. Thus, for
this case, incoherent scattering formulations such as radiative iransfer are applicable.
However, if the scattering volume is electrically small, or the elements are physically
correlated, the coherent term of {1.3) can be a significant portion of the total scattered

power.



1.4 Research Goals

The goal of this study is to therefore develop a microwave scattering model which
resolves these problems and accurately predicts the polarimetric microwave backscat-
tering of grassland vegetation. More specifically, this study will focus on developing

a scattering model with three main attributes, fidelity, accuracy, and utdlity.

1.4.1 Model Fidelity

The attribute of fidelity refers to the modeling of the grass structure, the physical
analog to which the electromagnetic scattering theory is applied. This attribute
is arguably the weakest trait of many scattering models for natural targets. The
formulation for the eleciromagnetic scattering from a layer of cylinders and discs may
be nearly perfect, but the relevance of a layer of cylinders and discs to the natural
target might be questionable. This fidelity not only includes the physical structure of
the elements, but the statistical description of the medium as well. Therefore, a goal
of this investigation is to accurately mode! the structure and statistics of grassland
vegetation. Examples of this include the blade shaped cross-section of the stalk or
leaf elements, the complex curvature of the leaf elements, the distribution of plants
within the scattering layer, the physical correlation of the elements of a grass plant,

and the physical correlation of the grass plants in a canopy.

1.4.2 Model Accuracy

The attribute of accuracy corresponds to the electromagnetic scattering formula-
tion which will be applied to the physical analog. The initial problem arises from the

complexity of this analog. The scattering from circular cylinders and discs is known,
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however, the evaluation of scattering from a leaf blade, a structure with both complex
cross-section and curvature, does not appear in the literature and thus its formulation
must be derived. Additionally, these elements can be illuminated by an non-uniform
wave, and an accurate scattering formulation for this situation must be determined.

As discussed in the previous section, coherent effects can be significant for mi-
crowave scattering from grasslands. Thus, a formulation for these terms must be
developed and accurately implemented. To accomplish this, the overall canopy scat-
tering formulation must be coherent, i.e. fields rather than power must be used, and
thus a discrete elements scattering approach will be taken. This introduces the a new
set of problems, as the coherent model requires that phase be used and accurately
evaluated. Finally, the extinction of the coherent wave as it propagates through the
scattering layer must be properly evaluated, a difficult problem as the elements the

grassland canopy are often of the same size as the vegetation layer.

1.4.3 Model Utility

One reason that greater accuracy and fidelity is not often added to vegetation
scattering models is the fear of reducing model utidity. The attribute of utility is
defined as any characteristic which increases the usefulness of the scatiering model.
A chief characteristic is computational speed; the usefulness of a model iz dependent
on the volume of information produced by a model in a given time, as well as its
accuracy. By adding fidelity and accuracy to the model, the computation time will
inevitably suffer. However, the trade may be worthwhile if the improvement in model
accuracy outweighs the reduction in speed. A model which instantaneously produces
erroneous data is no more useful tha,l‘; a model which takes forever to calculate a

perfect sclution. Thus, solutions will be sought which increase computational speed
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while minimizing the impact to model accuracy and utility.

Another aspect to the mode] utility is the parameterization of the model. That
is, how many input parameters are required to specify vegetation scattering. For
example, to define the structure of a straight circular cylinder, only two parameters
are required, diameter and length. However, how many parameters are required to
define the arbitrary curvature and cross-section of a leaf element? Clearly a method
must be determined to parameterize a leaf element with just a few parameters while
still preserving the information about the structure of the leaf. The approach will
thus be to add fidelity and accuracy first, and then seek methods to increase utility

while minimizing its impact on fidelity and accuracy.

1.5 Dissertation Outline

This dissertation consists of six major chapters. Chapter 2 provides a scattering
formulation for the long thin dielectric elements found in grassland vegetation, a
formulation which is valid for elements with axial curvature and non-circular cross-
section. This solution will likewise be modified to handle to case of a non-uniform
incident wave.

Chapter 3 uses the formulation of Chapter 2 to solve for the specific case of blade
shape elements. A general blade shape is defined and parameterized, and a polynomial
relationship is determined between these blade parameters and the corresponding
numeric solutions using the formulation of Chapter 2. In thie way, the ulility of the
formulation is increased while preserving the fidelity and accuracy.

Chapter 4 provides the scattering solution for a long thin cylinder in an extinction

layer over a dielectric half-space. Using the formulation of Chapter 2, a coherent
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solution is determined for the propagation and scattering in this layer, accounting
for four first-order scattering mechanisms. Additionally, the complex extinction of a
layer of long, thin elements is determined.

Chapter 5 utilizes the results of Chapter 4 to construct a scattering formulation
for the grass plant of Figure 1.1. The scattering covariance terms are presented, as
well as the correlation terms of the dissimilar elements of the grass plant. A scattering
formulation for an entire grass canopy is then presented, including a coherent mode!
for the row structures associaied with cultural grasses.

Chapter 6 presents the data collected during an experiment which observed the
growth of a wheat field with a multi-frequency polarimetric scatterometer. Both
scattering and ground truth data is presented, along with the methods and procedures
for collecting each.

Chapter 7 validates the scattering model by comparing the results of its software
implementation with the measured data.of Chapter 6. The accuracy of the modei
over frequency, polarization, and incidence angle is examined, and the effect of the
coherent terms is quantified. Additionally, the extinction predictions are compared
with measured data from other sources, and the effect of structural parameters suck

as cross-section and curvature is examined.



CHAPTER 11

A SCATTERING MODEL FOR THIN

DIELECTRIC CYLINDERS OF ARBITRARY

CROSS-SECTION AND ELECTRICAL LENGTH

The initial problem which must be solved in regards to grassland scattering, is to
determine the scattering behavior of 2 single element within the canopy. Aside from
the grain element, the grassland constituents can be described generally as long, thin
dielectric cylinders of arbitrary cross-section. In the microwave region, the radius of
these cylinders are usually very small compared to the incident wavelength, whereas
the electrical length may take any value. This generality in structure precludes the
implementation of specific scattering solutions. The arbitrary value of electrical length
kf eliminates asymptotic solutions such as Rayleigh {kf{ << 1) or Physical Optics
(k€ >> 1}, and the generally non-canonical cross-sections leave inapplicable solutions
for circular and elliptical structures. Thus, a scattering solution is required which
accurately comprehends these arbitrary particles, and additionally, a solution which
is applicable to cylinders with axial curvature.

One relevant analysis is that of Sarabandi and Senior i21], who explicitly derived

the scattering solution of an electrically thin but infinitely long dielectric cylinder
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of arbitrary cross-section. This work provides a general solution for the internal
electric fields, and demonstrates that the far-field scattering can be expressed in terms
of a dipole moment per unit length.l Using the high frequency approximation, the
scattering from a finite but electrically long (k¢ >> 1} cylinder can be approximated
by truncating the solution of the equivalent infinite length case. Although this solution
is correct for arbitrary cross-sections, its validity can apparently be justified only for
cylinders of large electrical length k4.

A solution which is often employed to model circular cylinders of smaller &€ is the
Generalized Rayleigh-Gans approximation {GRG) introduced by Schiffer and Thiel-
heim [26]. In this approximation, terms of the Borne {or Rayleigh-Gans) approx-
imation are modified by the Rayleigh solution of a long thin spheroidal particle.
The GRG approximation is said to be valid for electrically small, circular dielectric
cylinders, provided that their normalized length £/a is very large. No constraint
is explicitly placed on electrical length k4. The GRG appreximation was presented
by first hypothesizing the solution and then successfully comparing the results to
the asymptotic solutions known for botk the long (k€ << 1) and short (k¢ >> 1)
wavelength cases. On this basis, it was inferred that GRG validity is independent of
electrical length. Whereas this presentation provides evidence as to the accuracy of
the GRG approximation, it does not prove its general validity; the scattering from
objects with dimensions on the order of a wavelength is often quite different from
-either the short or long wavelength cases. In addition, the analysis does not address
the issue of cylinder cross-section, only circular cylinders were considered.

In this paper, a scattering solution for the general case of an electrically thin
dielectric cylinder of arbitrary cross-section and electrical length will be presented.

The solution will be explicitly shown to be the unique asymptotic solution to the
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scattering problem as the electrical radius ka converges to zero. A moment-method
solution will likewise be implemented to quantify the convergence of this asymptotic

solution.

2.1 An Analysis of Thin Cylinder Scattering

Consider an infinite length dielectric cylinder lying along the z-axis. This cylinder

is illuminated by a uniform plane wave given as:
Ei(F) = & ek (2.1)
where é- k' = 0, é = e,7 + e,§ + €,%, and k' is the propagation direction vector:
k' =sinfcos¢p & +sinBsing j+cosf 2 (2.2)

If the maximum radius of this cylinder(a) is small compared to a wavelength (ka <<

1), then the total electric field in the interior of the cylinder can be written as [21]:
E(F) = (e, Ea(p) + &y Ea(p) + €; ) eR0072 (2.3)

The terms E;(5) and Ey(p) are Rayleigh scattering solutions describing the electric
fields transverse to the z-axis. The first expression E;(p}, is the interior field induced
by a unit amplitude, z-directed incident field (E' = £), while the second sclution is
induced by similar y-directed field. In general, E;(5) and E(p) contain both & and
§ components, with the total transverse field, as shown in equation(2.3), consisting

of the superposition of the two solutions, weighted by the amplitude of the relevant



incident field component. Since the Rayleigh scattering formulation is essentially an
electrostatic problem over the cylinder cross-section, its soiution can be expressed in

the form of an electro-static potential:

Ei(p) =-Vi®@i{p) and E2(p) =~V D:(p) (2.4)

where the transverse gradient operator V; is defined as:

o~
E\f}
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The potentials &;(5) and ®,(5) are specified by Sarabandi and Senior as the solution

to the following integral equations [21]:

- 6,-—’1) ’ - i - eef| g F
aE+e+h = SN [ Vi) vinp -7 da

- 67-_1 I - - 3
G +y+h = T [ Vi) V-7l (26

where b; and by are arbitrary constants and A defines the cylinder cross section.

Equation(2.3} can thus be written as:
E(F) = (- e V&1(5) — ¢, V®2{p) + ¢, 2 )ethocosb (2.7)

Using the integral equations of {2.6), an analytical solution for a circular cross-section

can be found:

~ V8i(p) = = VO,(5) =

Y]
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This solution is identical to the solution for a spheroidal Rayleigh particle as its
normalized length £/a converges to infinity [26]. As such, equation (2.7) for a circular

cylinder is identical to that provided by the GRG approximation, namely

Ey + e, é)eskocosﬁ: (29)

Although the formulations for both approximations agree (for a circular cylinder},
the general validity regions are in conflict. The GRG approximation claims that the
above expression is valid for all electrical lengths kf, whereas the infinite cylinder
approximation has only a high-frequency justification when k¢ >> 1. The require-
ment for the normalized cylinder length (£/e¢ >> 1) is implied in the infinite cylinder
approximation (since ka <<, kf/ka >> 1), and explicitly required by GRG.

If the assertions of the GRGC approximation are correct, it suggests that the validity
limits placed on the truncated infinite cylinder solution are too restrictive. That is,
in addition to the high-frequency limit {k€ >> 1), the infinite cylinder solution could
likewise be applied to finite cylinders with electrical lengths in the resonance (ki = 1)
and Rayleigh (k! << 1) regions. However, given the heuristic nature of the GRG
approximation, this is strictly conjecture, particularly with regard to non-circular
cross-sections. Thus, we sesk to determine under what conditions equations (2.3}
and {2.6) define a valid scattering solution for thin, finite dielectric cylinders. Are
they valid only for electrically long cylinders, or does the validity extend to cylinders
of other k¢? If so, is this true only for circular cylinders, or is the solution generally
valid for all cross-sections?

If a formulation E(7) is a valid electrormnagnetic solution, then it will uniquely

satisfy the integral equation which describes the scattering problem, E(F} = EYr) +
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E*(), where the scattered field E*(7) is given as:
E(F) = (B2 + vvu]j{/(c?w 1) E(7) gol |7 — #|) dv’ (2.10)

and go(|7 — 7'|) is the free space Green’s function. For a given type of scatterer
(e.g. thin cylinders), a function E(7) may in general satisfy the integral equation,
or perhaps satisfy only under specific conditions, such as a circular cross-section or
infinite electrical length. Therefore, to determine the validity of the truncated infinite
cylinder solution, equations (2.3) and (2.6) will be inserted into the integral equation
for a thin finite cylinder and evaluated.” The conditions under which the integral
equation is satisfied will then be determined, thus defining the validity regions of this
solution. .

To begin, the electric field scattered from any dielectric body can be represented

in terms of Hertz potentials as:
E*(7) = VV . II°(F) + ki TI°(F) (2.11)
where TI°{(F) is the electric Hertz potential, defined as:
120

() = 2 f, 57 Gollr = 71 & (2.12)

and Go{|F—7"]) is the free space Green’s function. Since a dielectric body is considered,

the current J(7) is the polarization current induced in the bedy:

3(?) = mZkoYo(C,— - 1)E('f) (213)
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Combining (2.11}, {2.12) and (2.13), the scattered field field expression can be written

as:

E(f) = VV- J/;,(c,, —1) E(7) Go([F — #]) 4o’
+ kgj (e, — 1) B{F) Go(ff — 7|} dv’  (2.14)

;
v

The first term can be re-written using the identity:

V- [B(F) GollF - 7] = E(F)- VGollF - 7))
= ~B(F)- VGollF - )

= Go(If - 7|) V' E(F) — V' - [B(F) Gof|F — #|}2.15)
However, given that the divergence of the electric field is zero, this reduces to:
V- [B(7) Go(IF — 7)} = V' - [E(F} GoliF — F{}] (2.16)
The scattered field can thus be written as:

B () = —(e — 1)V L V' - [E(7) Gol|F — #1)} dv’

+ e — l)kSAE(%’) Go([f — 7|} dv’ (2.17)

Implementing the divergence theorem, the first volume integral can be represented as

as surface integral:

E*(7) = —(¢ — 1) VLﬁ’ CE(7) GollF ~ 7)) ds'

+(€,.—1)ngCE(f-f) Gollf — #) dv' (2.18)
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Likewise, moving the gradient operator into the integral to operate on Gol|F — 71}

gives:
Vj;ﬁ"vE(F') GollF — 7|) ds' _—.,j A E() VGo(iF — 7|} ds'
-w] E(F) Y'Gol [ — 7|) ds"
(2.19)
However,
- 8G0 !T ”
\% GQ(IT | 8!7‘ K’I V ET
=(tho = 72 })Go(h - ) V= 7
(2.20)
Since
e F—F ,
v "!' -7 I = IE" ?,—.r!) (22;)
the gradient of the free space Green's function can be written as:
v e ey —tko Golif = PN [F = 7] | Gollf = 7] [F — 7]
ViGolir = 1) = 7 — 7] + F = 7|2
{2.22)

Evaluating the derivatives and applying the divergence theorem, the previous
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expression is presented as:

1) ~ zxgtF—Fg
F) = ! dv'
B(7) = 4 [ E(7) IF — 7 b
3k0( 1) f N Y :kolr—r § '
— id
. Sn E( |F-——=F’|2[T 71 ds
(e, =1} 1 ., v AT
— 7| ds
T s ( Ef-—=f’§3[r 7] ds

where S defines the surface of the cylinder. To emphasize the dependence of electrical
size on scattering, the variables kz, ky, and kz are substituted for the quantities koz,

koy, and kgz. The integral can therefore be equivalently written as:

— & —1 1|kr-k7- { )
Bk = [ B k) o i
2(6,.-—1)] al ] e‘fk" -5 — ey 2 ¢
-l : o) e (BT — Er ) dk
= L B B ko) = IF’P( r—&r ) dik*s
etlkr—kr|

(Ef - 1) f gy 2.,
+ = [ AR o) = (Fr — &) di%s

2.1.1 TE Solution

For a cylinder lying along the z-axis, an incident plane wave with an eleciric field

transverse to the cylinder axis can be described within the thin cylinder as:

E‘(7) sin ¢; & — COS ¢; | ) gthokt T

(smc& & — cos ¢; ) tkozcos

(2.25)
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within the thin cylinder. Comparing equations (2.25) and (2.1), the hypothesized

internal field (2.7} becomes:
E(7) = (sin ¢ V:®1(F) — cos ¢ Vi@a(p) Jeho> e (2.26)

Again performing the substitution kr = ko 7, the above expression can be equivalently

rewritten as:

E*(F) = (sin & Via®1(kp/ko) — cos ¢ VieBa(kp/ko) )eikzcos,ﬂ

(2.27)

The operator Vi, is a result of the variable substitution implementied on V,, and is

defined as:

ko8 kol

Vi = &"'57;3' +y-§];§

(2.28)

Without any loss in generality, ¢; is assumed to be —n/2, thus inserting equation
(2.26) into (2.24) gives:
eu’cz" cos 8 ezl'ig—j;']

V,u®1(kp /K M —'} P 'S
J/;;A ke®1{kp /ko) e o ] zak 4

(e~ 1)
47

i(e, — 1} .t et
# S [ V) [,

B (Fr ko) = —

tkz' cos 3 ealg¢F'§
—_—TEE
T —Er P

tkz' cos 3 EEIE;FF{E

€

(Fr — &'} dica’ died’

;(,EZ‘,_.:,}.) 57 T, sl e 7 ¢
- j:;cn Vs (57 ko) | (Fr — T) diz' dke

4 Jee  Jr—Fr 3

(2.29)
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To evaluate each integral over kz, the phase functions are first re-written as:

e:kz’cos,@ e:\/ﬁp—zp'lzei-(kzmkz")? —_ eskzcosﬁ e—akzcosﬁ e;kz'ccsﬁ ez\/r};p='§pi[2+(kz—l::’)?

ey -
= gtkzcosh ei\//[kp-akp [+ {kaks' Jimilkamkat)eos 8 (9 30)

Evaluation of the first integral over a cylinder length £ is therefore:

dkz’

kef2 et\/l.ic;wk_pfl2+(kz-kz’)z—a{kz—kz')ctx&ﬁ
tkzcosﬁ/
— =t
—kE/2 \/Ekp —kp |* + (kz — k2')?
k2 iV (Ro=kp P4{ka!=kz)? (ks ~k2) cos B
- e:k:cosﬁf
: B I
kz \/!kp ~ 1% + (kz' — kz)?
\/_kp—kp Ri{kzmkz’)? —elkz—kz')cos B

j w2 \flkp —Top 2 + (kz — k2')?

dkz’

+ e:kz cos 3

kef2-kz oV Eo=Fp (ke +1(kz") cos B
dk
kp 12 + k,ﬁ)
ktf2+kz ¢ Ikp—kp 2 (k") =i (kz"") cos §
mzcosﬁf J
VIFp = Ep'12 4 (kz")?

eskzc s 5

(2.31)

The integrals of k2’ cannot be evaluated. However, since the integration is over
a finite region kf, the exponential term can be approximated in the region k{/2 <
kz < —k€/2 by:

(2]7%:? —%&r' | + k2’ cos ﬁ)n

ni

(2.32)

N
Er—kr |41k2’ cos @
2 >
n=0
As N approaches infinity, the error associated with this approximation becomes arbi-
trarily small. Since both N and k/f are finite, the order of integration and summation

can be interchanged. Performing the integration on each term results in a series whose
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Epm"};p’i. For exampie, the &z integral from: the first term

coefficients are in terms of

of equation (2.28) can be approximated as:

kef2—kz otV [Rp—Fp [P+ (k2" )2 +s(kz") cos 3
J/ e dkz"
° Vike ~Ep'2 + (h2")?
N rkt)2-kz (z\/%p —%p' 12 + (k2")? + 1kz" cos Er

=3 —— (2.33)
no /0 nly/[Ep — B’ 12 + (k2)?

Performing the integration on each term results in a series whose coefficients are in

terms of [kp — kp'|. Eliminating the terms of first order and above, an approximation

to the integral when the cylinder diameter is small can be found.

kefa—kz otV [Ro—Kp P+ (k)2 4e(kz"") cos 8
j e dkz"
’ Vike =o'l + (kzt)?

N (1ey(RE/2 — kz})"

r ~In [[kp - &7| +In [2(ke/2 - k2)] = 3 e (2.34)
=} "
where ¢ = 1 + cos #.Similarly,
ké)2+kz g3V Ro=Fp [P4(ka'")? =1 (ke"}cos 8
J[ S dicz"
0 VIkp —kp [2 + (k")
s N {aco{kl/2 + kz V"

~ In [kp — kp'l] + In [2(ke/2 + k2)] - (sealkt/ ) (2.35)

n(n!)

n=l

where ¢; = 1 — cos . These equations can likewise be written in terms of the expo-

nential integral function Ei[z], where:

o0 e"t

Fifz] = — j’ € dt (2.36)

-z 1
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Since

3 (2(:;)' = Eifer] — ‘:r%r- — Infz] (2.37}

=

n=l

where v is Euler’s constant, the sum of equations (2.34) and {2.35) can be written as:

VR —Fr | 4+1ka’ cos ke — &r | + k2’ cos _@)ndkz’

N (
—dkz’ = e
J/kt [kr — k7| ahz Zjiz rllEr — Fr |

n=0

- e*k““ﬁ(Ei [ea (k12 = k2)] + i aca(kif2 + kz)] = 20y +7/2)

~2In [sinmE;mE’Vz}) +0(Fp-Fp) (238)

where ~ is Euler’s constant, ¢; = 1 +cos 8, ¢; = 1 —cos § and Ei[z| is the exponential

integral function defined as:

PR
Eilz] = ~ f ert {2.39)

-

Discarding the higher order elements O (EZ—E’) , equation(2.39) provides an accurate
analytic approximation to the integral if 1 >> ka > |E—-7§?‘] Figure(2.1} graphically
displays this, showing both the approximation and the numerical solution to the
integral. Combining the second and third terms of (2.28), the resulting integral
over kz can be divided into two parts, a component with the axial coefficient 2 and

a component with the transverse coefficients £ and §. Expanding as before and
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discarding the higher order terms, the transverse component can be approximated as:

fkf/? ei[FmE’szz'ccsﬁ( i -+ 1 ) di-‘.‘*'
—_— oy T —— provmsn -
~kf2 lkr — kr'|? . |kr —kr 3

N egkzcosﬁ 2 + ZCQetq(H/'zwkz} + zclescz(kI[Q-é-kz) B etc1(ki/2-=kz)

~ T | ARJE - k) | RkIj2 4 kz) | RS ReY
excz(kl'f2+kz) y 2 skz cos 5 . b A (1 - Qﬂ?’)

#W)-*—Sln ge ( [snnﬁlkpmkpg/Z}-%——?———

O [zc;(klﬁ - kz)] Ei [zcz kif2 + kz) ‘}

3T 2 * 2

2 /

P4 P

Likewise, the axial component can be written as:

]’kf/? etlz;-F'Hikﬁ' cosd (—i{cz jzf) (f’? _ﬁ')) dks'
—kL/2 lkr — kr |2 |kr ~ kr |3

£y e‘k”"’ﬂ(cosﬁ{z? In [sin Bikp — Z‘P;’[/Z] + (:2v — ) —Ei [zc1(k!/2 - k’z)]
e:q(k!/?-—k:) etcg(k!/2+kz) \
Kl[2—kz  kij2+kz }

— iEifaca(k1/2 + kz)]) + (2.41)

Inserting the approximation of equations (2.38), (2.40), and (2.41) into (2.29), the
scattered electric field is expressed as integrals over the cylinder circumference and
the cylinder area only. As the electrical size of the cylinder cross-section reduces fo
zero, the integration involving higher order terms of (Fp—Ep ) likewise reduce to zero,
providing that the interior field is non-singular throughout the region of integration.
In fact only a single term, the first term of equation (2.40) (2/[kp — %p ?), converges

to a non-zero value after integration. Thus, the scattered field expression of (2.40}
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converges to an expressicn involving this single term as ka — &

. - (€ = 1) horcost { af ot @& (T 2{kp — kp )
lint kgmo B :—W”’””f’-‘?d?kk \BP R0 ) gkt
im gdeso B'{7) p € kcn x®1(kp (ko) o — “’P’iz c
— G =t
= — (514?r 1) eekgzcosﬁjﬁt.véél(?) “I*EP #1:12) de’
< p—=p

(2.42)

However, the question remains whether this expression is a valid solution the

equation B(F) = E{7) + E*(F). To determine this, we first recognize that:
q ] J g

)

-7 —
—p = Viln|p ~ 7| (2.43)

el

Therefore the scattered field can be expressed as:

T “"1 N "
E(r) = — LT et [ 00, Vila g - 7]

(67‘ = 1) kozcos - ; - =t /
=°="’”’72f7r—2€k° BV:L”!’VQQI(?)mlP“PldC
67‘“’1) cos = &

—- (&2 s 3, [ 9 a7 Vi)
(67'“’1\ skoz cos =

:—-—2—;—)’8;"’ ﬁvtﬂ{viq’l(ﬁ)’vélﬂlp—:ﬂl*'

ln[p~ 7| Vi- Vi&y(7)] d4’
(&

-1 thoz cos 5. (5 -7 !
= - _--57?—)3'% ﬁVva;@l(p’)vlt?lH‘p—p’dA

(2.44)
But, from equation {2.6) it is known that ®;(7) is the solution to the equation:

2
(e — 1)

[ Vi2u#) Vilnp - pldd’ = (@@ +z+h)  (249)
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Using the above equation in (2.44). the scattered field reduces to:

ES(F) = — Vz (@1(‘5) +z + bi) eﬁkgz cos

_ (vtél(tﬁ) + ;’E‘) eikgzcosﬁ

(2.46)
The total field is the sum of the incident and scattered fields,
E(F) = E'(F) + E°(7)
= eskozcosﬁ - (VtQI(E) + .‘i‘) e;kzcos,ﬁ
— eikuzcns.@ vt®1(_ﬁ)
= E(7)
(2.47)

the original hypothesized total field. Thus, for the incident field of (2.25) we have
explicitly shown that the scattering solution for a finite dielectric cylinder converges to
infinite cylinder solution of equation (2.7} as its electrical radius approaches zero. No
constraint was placed on cross-section or electrical length &f, the solution is equally

valid for cylinders of all electrical lengths and cross-sections.

2.1.2 TM Solution

If the magnetic field of the incident wave is transverse to the cylinder, then the

incident electric field within the thin cylinder is given as:

E{F) = (cos deos B T +singcos B¢ —sinf3 ;3) gthozcos {2.48)
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The infinite cylinder solution thus leads to the following hypothesized internal field:

E(F) = ( — cos ¢pcos § V,$1(p) —sin pcos f V $2(F) — sin ,[3:‘:') giko cos Bz

(2.49)

The previous section has demonstrated the validity of the transverse solution. Yor the

axial component z, the hypothesized solution is just the Z component of the incident

field E'(7). It was shown in the previous section that the transverse components of

the incident field do not produce axial components in the limit as ka — 0, thus we can

consider only the z component of hypothesized field, £ exp{tks cos §z] The divergence

of this term is non-zero,

thus additional terms will be generated by equation (2.14).

Adding these terms, the expression for the scattered field is written as:

E(7) = kg(zﬁ 2 J{, E(7) dv’
zkg(zr 1) j;ﬁn CE(7) r:il’;;;; [F — 7] ds’
P [ T
2’%(; D | V' E() ,e,.k:,i [F 7] dv’
B {erlim - J{/’ v'-E() r:iir—'flﬂi fporld

(2.50)
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Inserting the axial component of (2.49), the scattered field becomes

J— (Cr - 1) j . tks 8 e'ikv‘-gl 3
s Lo} == 1kz' cos di-2v
E(hriko) = =5 Juv® € =

- i ) s|kr~=kr i
_ i(ﬁ )j Y ezkz cos 3 e (}gr —_ kr) dkgb"
x2S Er

49 ]k?“ —
(ﬁr - l} st a _tha'cosf e!lk"‘"h l_,, T — L b2g!

+ e jizs'n Ze iy (kr——-m‘j dk*s
— o8 ﬁ(ﬁr - 1) ez’ cos B _e’lkr’kr | (z;; - ?5;:’) dkat)’

47 1 34% |?$; - TE'F’P

_ , s|kr—kr

__1cos Bie, — 1) otk cas i _f______,,_,,_, { Er — kr) dkv

47 Jx1% [Er — = |3

(2.51)

The surface integrals reduce to integration over the end caps of the cylinder evaluated

at kz = +ké/2:

— {e; — 1} otk cos B osfFr T |
E*(krfky) = N ’
( T/ 0) 47T k24 Jke Ik?‘ m?‘; l

e, — 1} f
4r k%A

{e- ~ 1)
4 k24

dkz’ di* 4

kéf2 e:kz' cmﬁeu{E&Fr_iE

(EF . E’) dk? 4’

- T .
~ktfz kT — kr|?

" ké/2 6tkz' cos,@ezﬁ:’;-kr

S (Er dik? 4’
—kt/2 Eim‘—l’éﬂ"flz3 \ )

COS ﬁ\ﬁf - 13 ) j&qz e:kz cosﬁes]krwkr |
K24 J-ktf2  {kr — o |2
jkyz @:kz cosﬁeﬂkrukr |

(kr —Fr') dkz’ dik4’

(%r — E‘F’) dicz’ dk? 4’

zcosﬁ(ef——l
- j sz [kr -k N

k2 A

(2.52)

AN

The integrals involving kz' are those examined in the previous section and therefore

the approximations derived for thin cylinders (equations {2.38) to (2.41)) can be
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implemented in (2.52). Again integrating and taking the limit as ke — 0, we find
that for this case that every (kp — %p ) term reduces to zero, not a single non-zero
term remains. The scattered field equation thus reduces to:

kefe etkz’ cos 56‘37;“’7;’]!

— —,
~kt)2  |kr — kr{?

kif2 etkz’ cos 6eii7¢=:=-‘-:;li

~ktf2  |kr — 7%?]3

. o —2{e, — 1}
limigg o E*(krfko} = ——%rﬂﬁi J/;;s

(€r — 1)
+ 4 k28

(Fr — %) dik*a'

(‘k—r ~ EF’) di? 4'

(2.53)

The above equation represents charges lying at each end of the dielectric cylinder,
generating scattered fields which fall off rapidly as kz becomes a few ka distances
removed from +k€/2. This region is insignificant if ka is small, and the value of
E*(kz) approaches zero at all kz # +k£/2 in the limit as ke —. Thus, the scattered
field E* converges to zero as ka becomes small, resulting in neither an axial term nor
transverse terms. Again notice that no assumption is made nor constraint placed on
electrical length kf. Therefore, the total scattered field resulting from the incident
wave of equation {2.48) contains no axial component, and the transverse solutions,

using equation (2.46), lead to a scattered field expression:

E(F) = “’( cos pcos B(V.0,(B) + £) + singeos F(V,82(p) + ) )e"‘“"‘ﬁz

(2.54)
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Adding the scattered field to the incident field, the equation for the total field is

determined:

E(F = (-—- cospcos 5V 91{p) — sindcos 3 V$,(F) — sinf :E) gtko cos 2

(2.55)

This expression is again equal to the original hypothesis of {2.49), the infinite cylinder
sclution.

Thus, it has been explicitly demonstrated that scattering selution of a finite dielec-
tric cylinder converges to the infinite cylinder solution as ke — 0, a result independent
of either cross-section or electrical length k4. It should be noted that for any finite
kf, as ka approaches zero the normalized length kf/ke = {/a converges to infinity,
in fact £/a — oo and ka —+ 0 are equivalent statements for a fixed kf. Therefore,
the infinite cylinder solution is valid for finite cylinders only if both ka << 1 and
ka << kf. Since this approximation is independent of kf, it is likewise valid for
Rayleigh cylinders where k¢ << 1. Thus, the electrostatic solutions ®(p) derived
for infinite cylinders (2.6) are the asymptotic sclutions for a Rayleigh cylinder as
£/a —+ co. The GRG approximation, which considers circular cylinders, is therefore a
specific case of the more general approximation defined by equations (2.6) and {2.7).
As such, the validity regions of the GRG approximation, being identical to the re-
quirements stated above (ka << 1, ka << kf for all k€), have been explicitly proven

by the analysis of this section.
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2.2 Asymptotic Error Evaluation

As this solution is asymptotic, it will exhibit a finite error which becomes dimin-
ishingly small as ka = 0. In order for the solution to be useful in modeling physical
structures, this error must converge to insignificance at reasenable values of k¢, ke,
and ¢.. To evaluate this asymptotic error, we can compare the solution to formula-
tions of higher fidelity which approach the “exact” scattering solution for the cylinder.
To this end, a general moment-method solution was constructed to accurately model
thin (ka << 1}, circular cylinders of both arbitrary &¢ and £/a.

Ideally, a general three-dimensional numeric scattering formulation would be used
to provide this “exact” solution. However, the extreme conditions of the problem,
such as ka << 1 and £ >> a, make generation of an accurate, high fidelity solution
of E{F) problematic. Instead, we note that for the infinite case, each component E(7)
can be separated into functions of z and g (E(F) = —~V&(p) expltkoz cos F]). We then
assume that for finite cylinders the terms are likewise separable, and that the form
of the p function is the Rayleigh solution for £ >> e¢. Thus, for a circular cylinder,

the internal electric field can be represented as:

2 fe(2) gfﬁ______fﬁ)) + 2 ful2) (2.56)

The expressions f.{z}), f,(2), and f.(z} are unknown complex scalar functions which
are dependent on the spatial variable z only. Comparing the above equation with

(2.7), the values of the functions f(z} predicted by the infinite cylinder approximation



are:

L(2) = ez %o = EL

fy(z) 2.6!, eskncosﬁz = E;

fz(z) = e, e:kocusﬂiz —_ E;

——
I
&
)

p—

Thus, the vecior F{z), defined as F{z) = &f:(z) + {fy(z) + £f.(z}, will equal the
incident field axis if no approximation error 1s exhibited.

The ability of the moment-method solution to accurately reflect the exact scatter-
ing solution depends on the general validity of equation (2.56). To test this accuracy,
the moment method code was used to determine the vector F{z) for Rayleigh cylin-
ders (kf >> 1) at a variety of dielectrics and normalized lengths £/a. Since the

solution E{F) is independent of p, the pelarizability tensor elements can be calculated

as [21}:

miv-—* -qj;

f

f wlz)
-£]2 €y

o

{2.58)

where w € {z,y, z}. The polarizability tensor of a circular cylinder is know {21}, and
thus can be directly compared to the tensor elements determined from the moment
method solutions. Figure(2.4) displays the results of this exercise, both for the axial
element P,, and a transverse element F,.. The moment method solution matches

the exact values reasonably weil over all dielectrics and normalized lengths £/, thus
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providing evidence as to the accuracy of {2.56).

291 Transverse Moment-Method Solution

Due to the symmetry of a circular cylinder, the solutions for both transverse
components fz(z) and f,(z) identical. The z directed term F — z(2) was arbitrarily
selected for this analysis, with the results applying directly to f.(z). To facilitate a
moment-method solution, the unknown expression j.{z) is first approximated as a

summation of pulse basis functions, given as:
Fl2) ™ folz=2n) = folza) from (2.~ A) < 2z < (zn + A)

thus,

2

N
E,;(Z) ~ 1) fo(zn) (259)

(¢

Inserting this approximation into equation(2.24), the scattered field resulting from a

single element n (2}, — A < z' < 2}, + A}, as observed along the z axis (p = 0), is
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derived.

E;(F) =
(Er"" f(z; ka¢ jzw jka 3 \/kp2+(ku—k6) dkp’ 48 did
" J okt (& + 1) ‘J;cp’z + (ku — k&)
2 eV ko (kumks)
(e +1) (fhp? + (ku — k6)2)?

(5,. f( ,,)fkmj (cos ¢'& + sin &'g) -

1 7:14

( — kacos ¢ — kasin ¢'§ + (ku - k)2 ka d¢' dkd'

(Ef — 1) kAL pom . e 2 et‘/ko'g-l-(ku—kz‘f)-"
+3 f(zn)f f (cosd'Z + sin ¢§) -
s -kag Jo {e, + 1) (\/k.pIZ + (ku — ké)?)3

(- kacos ¢'z — kasin¢'§ + (ku — k6')2) ka ¢’ dkd’

{2.60)

In the above expression, ku = kz — kz, and ké = k2’ — kz, so that kz — k2’ =
ku — k6. In addition, the direction vector normal to the cylinder surface is given as
fi = cos ¢’ + sin &'y,

Performing the integration over the cylinder cross-section leaves an expression for

the scattered field which is non-zero for the & component only:

E: () = f( )]icae 1/ (Fu—ké)? _ e"\/m Jis

k&d
+1 ka? ) f{zn JJ/'W VIR
(e, + 1 kot (V[kaz + (ku — k6)2)2
I C ) f(z)ko ot /Rt (k)

(& +1) kot (\Jka? + (ku — k§)?)

dké’

(2.61)

Thus, the scattered field from a transverse {Z) source component does not couple
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into either of the other directional components (¢, £). The scattered field can thus be

re-written in terms of an integration over the variable k4.

Es(i:\ - 3 (f—r )kai (261\/(ku—k5)2 - 1€ kal4{ku—k6)?
ALy,

(e, + “) f vae
kgl & Jm%(m-k&)? k; 2 o'/ kot (hu=ke)? )
dks' (2.62)
2 (Jka?+ (ku — ké)2)? (fka? + (ku — £6)2)? R

To evaluate this expression, we first consider the off-cell case wherein Au = kz —
kz, > kA. Assuming that kA << 1, the first term of the above equation can be
approximated by expanding the integrand around &4, then integrating and keeping
both the first and second order terms. In addition, the second and third terms
of the above expression can be directly evaluated, provided that the phase term is

approximated as:

2 . 2 2
ea\/ka +{ku—kE&) . e‘z\/ka ey (253)

Again, a valid approximation provided that kA << 1 The resulting expression for

the off cell scattering term is therefore:

E.(F) = EE - § flza) { 12k A (e\/!w_"’-_ e‘m)
Zka:’kﬁ:“ 51\/m7 k&2 kA3 egm

3 (vVka* + ku?)? * 3 (Vika® + ku?)®
3 tka e‘m[tm*l (k& - ku) + tan~! (kA + ku)}

2 ka ka
_ ze,m< k& — ku + RO+ Eu )} (2.64)
2 Jka? + (kA —ku)?  ([ka? + (kA + ku)?

Considering now the self-cell case, wherein kz —kz, = ku < kA, the expression for the

scattered field can likewise be evaluated by implementing the proper approximations.
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The first term of equation(2.62) can be approximated as:

o (Eu=k6)2 Shal b ku—k8)2
1 et (bu=k8)? e ka? +{ku—k8} ~ 3¢ fku] zeu\/ka!+ku§

: et ko +ku ku
Vka? + ku?
2 1.2 -
L kR ( . + ! ) (2.65)
3 (VEa? + ku?)?  (Vka®+ ku?)?

since Vka? + kd? << | in the self-cell region of an electrically thin cylinder.
As with the off-cell case, the second and third terms of equation(2.62) can be

directly evaluated by recognizing that the phase term is approximately unity when

VEa? + kd? << 1. The self-cell expression is therefore:

SR} = (67‘ ) e g 2 7 2
E:(F) T f(z )(kA\/La TEAT - kA

3 EA N 12 ka® kA
Vka? + kA2 3

) e

2.2.2 Axial Moment-Method Solution

The scattered field resulting from an axial or z directed source can likewise deter-

mined with using the pulse basis approximation where:

N
E(2) = Y fu (2.67)

H '{w
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Thus, the scattered field resulting from an arbitrary cell centered at z, can be deter-

mined by inserting equation{2.67) into equation(2.50).

kal ]21: ka etV kp'? {ku—~k§)?

E (7} P dkp’ d¢’ dkd’
( kat Jo \/kp’? + (ku — ké)?
- ]) f i j'ku j?ﬂ - etV ko' 4 {ku—k6)?
~kas (kapfz + {ku — k&)2)?
(—kp' cos ¢’ — kp'sin @' + (ku — ké")2) kp' dd
( ka2 -‘/kp"‘f-é-{kuhkﬁ}z
+ f(z j /
~kb

(\/kpfz + (ku — k§)?)3
{ — kp' cos¢'t — kp'sin @'y + (bu — k5’)§) ko' d¢'

(2.68)

The surface integrals for the axial case require integration over the top and bottom
surfaces of the cylindrical cell, where k§ = +kA. In this case the normal vector 1s

# = 3 for the top surface of the cylindrical cell, and fi = ~2 for the bottom surface.

Performing the the cell cross-section, the previous expression reduces to:

E:(F) = .éiil%ll_) Flzn) (me ot/ (hu~kf)? SV EROP grg

kA ezﬂku-k&i (ku — ké) \kA £ fke? 4 {ku—kb)? (ku — k‘g)) 2.6%)
—EA tku — kd| kb \/&2 + (kv — k6)? 2.68)

As with the transverse case, there is no coupling of the # directed source into the other

-+

(transverse} directional components, the scattered field expression is a coefficient of
Z only.
Tn contrast to the transverse case,the evaluation of only one integral is required.

Although there is no analytical solution to the integral of equation({2.69), an approx-
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imation to the integral can be derived for the ofl-cell case where ku > kd. Expanding
the integrand around ké and then integrating, an approximation to the integral is

given as:

kA
J[ eV RumkE? _ ayfhat s {ku=kSF gp.c
—kA

o 2 kA (eikuz _ e!m + ka2 kAS esv‘kaz-i-kui ?‘)
3 VEka? + ku?

(2.70)

Note that this is a second order approximation in k4, an improvement of the first order
approximation normally used in moment-method solutions. This additionally fidelity
was added to provide excellent accuracy for predicting the near-cell &z = &z, + 2kA
scattering over a wide range of values for ka and kA. The scattered field for the

off-cell case is thus given as:

E;(F) = 3 (61- ; 1) f(zn) {22 EA (etikui _ ew’W)
zka2 kA3 ez\/kai+ku§ ka2 k&s ez\/ka§+ku7
T8 (VEd + k) T3 (VEa® + ku?)?
Al (hy — kAY  eVFRRRTEAT (b kA

N LS
gku-f"kAl \/ka2+<ku+k&)2 .

For the self-cell condition ku = 0, since vka? + ké? << 1, the integral can be ap-

proximated as:

L, 2
g eV RO gr/hateleuki) o D28 ’; + Vka® T k8? — k]

(2.72)




on
ey

1329
f y eV ku—k) o oanJhat (ke grg o g ka? EA
k 2
+ ko (VEZ T EA? — kA)+ --§- in {v’ka2+k.ﬁ2+k.&]
_ kel [VEka? + kAT — kA (2.73)

The scattering expression for the self-cell case is therefore:

E(F) = 2 flza) ("';’1) (z ka® kA + EA(VEE + EA? — kA)

k
L ke * [VEa? T RAT + kA| - --g— In [Vka? T kA - kA
wVEai 4 kDL 1.
" g9 f-——E} (2.74)
Vka? + kEA®

— Ze

The evaluation delineated above does not predict any coupling of the source di-
rection into another directional component. A z directed source will produce only 2
directed field along the cylinder axis; an « directed source will similarly produce an z
directed filed. Because of this, the solutions for f.(z), fy{#) and f.(z}, can be found
independently of each other. Provided that the point matching is accomplished at
the center of each cell(z = z,, such that z, = 2z, for m = n), the elements of the

impedance matrix are given as:

—E*z=25)/flza) ifm#n,
Lmn =
1 — E*(2= 2}/ f{zn) Hfm=n.
where w € {z,y, 2}

{2.75)

Using this formulation, the total electric field for a thin, circular dielectric cyiinder
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can be determined for arbitrary values of incidence angle, dielectric ¢, normalized
physical length £/a and electrical length &4 (providing ka remains small). The results
af this analysis can then be used to determine the validity of the GRG approximation

across these parameters.

2.2.3 Numeric Error Evaluation

The proof provided in section(2.1) is independent of cylinder electrical length, thus
implying that the infinite cylinder approximation is valid for all ££. We seek first to
verify this assertion with the moment-method model, as well as examine the relative
accuracy of the infinite cylinder approximation as a function of kf. The physical
length of the cylinder £/a, is set at a large and constant value, and the MM solution is
then determined for various values of &££. The electrical radius ka will likewise vary so
that kf/ka remains constant; essentially we are fixing the geometry of the cylinder and
changing the wavelength. The results of this a,nalysi_s are displayed in Figure{2.5), and
confirm the results of section{2.1). The the isfinite cylinder approximation (|f(z)] =
1) matches the MM solution very well, with the exception occurring at the very ends
of the cylinder where a perfurbation occurs. Interestingly, this error is also apparently
independent of electrical length &¢.

The analysis is now reversed, fixing k¢ at a constant value and evaluating the
MM solution for various normalized lengths £/a. In contrast to the response as a
function k{, the scattering solution exhibits a strong dependence as function of £/a
{Figure(2.6)). The result is a conformation of the requirement that the normalized
length £/a be large to ensure a valid approximation. As the normalized length be-
comes smaller the MM solution divergés from the infinite cylinder approximation of

|f{z)| = 1. To examine the behavior of MM solution, the same data is again plotted
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in Figure(2.7), this time as a function of (/2 — z)/a. In this figure, it is appar-
ent that the perturbation at the end of the cylinders is a function dependent only
on the distance away from the cylinder ends, as normalized to the cylinder radius.
Thus, changing the normalized length £/a does not effect the behavior of E.(z) at
the ends of the cylinder. As a result, as £/a becomes smaller, the region where E.{z)
diverges from the infinite cylinder approximation, while remaining a constant length
(as normalized to @), becomes a significant portion of the entire cylinder longth. At
this point, the infinite cylinder approximation no longer provides an accurate repre-
sentation of scattering behavior. From this data, it is apparent that the scattering
phenomencn is very localized. The scattered field is the same for all points on the
cylinder, except for the points too close (a few radius distances) to the end-caps of
the cylinder. This is true for all cylinder lengths ¢, from very long to very short.

To further examine its performance, the accuracy of the infinite cylinder ap-
proximation is examined as a function of both incidence angle and dielectric con-
stant. Figure(2.8) displays the MM solution calculated for an oblique incidence angle
(B = m/8). Although the solution f{z), is dependent on incidence angle 7, almost no
sensitivity to this parameter was detected in regards to approximation accuracy; the
errors exhibited at the ends of the cylinder remain constant regardless of incidence
angle. Conversely, accuracy is greatly influenced by dielectric constant €,. Figure(2.9)
displays the MM method sclution for various dielectric constants. It is quite evident
that as the value of ¢, is increased, so to does the region of significant error at ei-
ther end of the cylinder. Thus, for larger values of ¢,, the constraint on the smallest
physical length £/a required to ensure accurate impiementation (2.7) will likewise in-
crease. This sensitivity to dielectric constant is observed almost entirely for the axial

component f,(z); the transverse components displays only a slight sensitivity to ¢,.
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By comparison to a moment-method solution, we can conclude that the accuracy
of the infinite cylinder approximation is dependent largely on the physical length £/e
and dielectric €., but only slightly on incidence angle £ and electrical length k{.

For a given criteria, the numerical results of the MM solution can be used to de-
fine the validity limits of the infinite cylinder approximation. The upper bound on
ka is determined by the error of the Rayleigh approximation, a topic which has been
addressed previcusly and therefore will not be examined here [11, 28]. Since approx-
imation error is independent of k{, the remaining cylinder parameters, normalized
length ¢/¢ and dielectric ¢,, will define the validity region. The MM solution demon-
strated that for all conditions the axial component £ exhibited significantly greater
error than the transverse component. Therefore, the axial soclution will be used to
define the limits on £/a and ¢,.

The far-field scattering is a function of the total internal field E(F} convolved
with the free-space Green’s function. Therefore, the metric selected to define model
accuracy is the average internal field, determined by integrating its magnitude over

the cylinder length:

Yy

Jo

This definition takes on a special significance when the electrical length of the cylinder

E.(z)

€2

| dz (2.76)

1
=7

is small (k¢ << 1), and thus entirely in the Rayleigh region. The value E.{z)/e, is
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entirely real, and the and the metric is equal to the normalized polarizabiiity temnsor:

1 gtz E,(2)
m = z ’/;5/2 l . dz
_ 1 2 E(2)
~ e J{z/z e, dZE
1 ¢ E.(F)
=ly J, @
— Pzz
" e~ 1) V‘

(2.77)

Inserting equation{2.7) into (2.76}, we find that the infinite cylinder approximation
results m = 1.0, regardless of the cylinder parameters.

If the form of |E.{z)| is independent of kf, the metric given by eguation{2.76)
should likewise be independent of electrical length. Figure(2.10) demonstrates this
fact, plotting m as a function #/a for various values of k¢, with the constraint that
k¢/(£fa) = ka << 1. Since the metric m is independent of k¢, from (2.77) it can
be concluded that for ali k¢ and e, the metric m is numerically equal to the value
{P,./{e, — 1)V for an equivalent Rayleigh particle. As a result, the polarizability
tensor P, is a sufficient parameter for determining when the infinite cylinder approx-
imation ({(m = 1.0} diverges from the exact solution, as defined by the metric m.
For a circular cylinder, a validity requirement can thus be inferred for equation (2.7),
as a function of the relevant parameters £/a and ¢,. I 2 maximum error of 5% is
arbitrarily placed on m, the infinite cylinder approximation will satisfy this criteria

only if:

€/a‘> 20:/le.| (2.78)
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2.2.4 First-Order Solution

Returning to section(2.1), where the GRG approximation was shown to be correct
in the limit as ka approached zero, we can see by observing equations {2.29) to (2.52)
that as consequence of proving GRG validity that an analytic, first order solution
to the scattering from a thin cylinder was generated. That is, if the lowest order
solution is considered to be the GRG approximation given as equation{2.7), the first

order solution can be found as:

E; = E' + E{(Ey) (2.79)
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where Eg is the GRG approximation, and E}(E,) is the scattered field due assuming
the GRG approximation. Often, although not always, a first oder scattering solution
is a more accurate scattering solution than the lower {or “zeroth”) order solution.
From the MM solution, we have determined that the GRG approximation breaks
down at the end of the cylinders for the axial polarization case. Perhaps a first order
solution can provide a better analytic approximation for the cylinder current, partic-
ularly for physically short cylinders where £/a is not large. To determine its accuracy,
a first-order solution was constructed by inserting equation(2.40) and equation(2.41)
intc equation{2.52) to find E:(E,}. The results of this first-order solution are demon-
strated in Figures(2.11}. In the middle of 2 cylinder, where (£/2 — |z]}/a is large, all
three formulations, GRG, moment-method, and first order solutions, provide nearly
identical answers. However, as |z| approaches £/2, the GRG and first-order selutions
diverge, with the first order formulation continuing to match the MM solution. Thus,
in this region, the first-order solution meets or exceeds the accuracy of the GRG
approximation, while still providing a strictly analytical formulation. However, for
regions of the cylinder very near to the end (a few radius distances}, the first order so-
lution quickly diverges from the MM solution. This divergence is so great as to result
in a huge error at the ends of the cylinder. Thus, when integrating over the cylinder
length, the GRG provides a better match to the MM solution than the first-order

approximation, with the exception of tenuous cylinders where ¢, is small.
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2.3 Far-field Scattering from Thin Cylinders

The far-field scattering from 2 long thin dielectric cylinder can be determined by

using the familiar far-field scattering equation [28]:

B = —k k* x b x IT%(¥) (2.80)

where II°(7) is the electric Hertz potential vector. This potential vector can likewise

be approximated in the far field:

ngf I8 _=f
€ 12 J(Fi)ewskok“" do’ (2,81)

() = r A4nky Jv

The current density J(7) for a dielectric is the polarization current induced by the

interior field {J(7) = tkoYo(e, — 1)E(F)}, therefore the Hertz potential can be written
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in terms of the interior field as:

tkor \
e {e, — 1}

T 4w

(7)) = -

j; E(#) etk5 ¥ 4! (2.82)

Since the cylinder is electrically thin, the phase kernel exp(tkgics -7} Is approximated
as exp{1kiz’). Thus, inserting the infinite solution of equation(2.7}, the electric Hertz

potential is:

lkaf

() = o [ ] (e V8i(p) — e T8s(p) + o 2] conme gy

(2.83)

r 4rn

Using a form of the divergence theorem:

jf V®(5) da = f ®(p) # de (2.84)

this equation can be re-written in terms of the polarizability tensor elements:

skor
I°(F) = =

1 8
y ji (ac(P%3 + P2§) + a,(P2% + PBg) + P¥z ;) et (himko con )’

(2.85)

iy
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The coefficients P?¢ are defined as the polarizability tensor elements per unit length

of the thin cylinder, defined as [21]:

PH = (¢ —1)];@175 £ de’
P2 = (e, —1) C@gﬁ & de’
p n\ef—-l)j;élﬁ § de’

(2.86)

Equation(2.85) can therefore be succinctly written in terms of the polarizability tensor

P,

eikur

IE(F) = S— [P e himhemal (2.87)

dmr

and from {2.80) the scattered field is comnputed as by evaluating the integrai of length

£
eikor " " 2 F
B(F) =~k k' x B x P4 j'; g kimho cos )2l gt (2.88)
etkor .sinl

ics g}s gzdnr
- x ® P 4 77

2
—&?

(2.89)

il

tm
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-

where the value U is the expression U/ = -{‘g-{(ks -& —cos 3). From this expression, the

elemnents of the scattering matrix can be expressed as [21]:

k? - L] -
Sy = ﬁ_;}-fpzdw f 3 lki—ko cos B3’ 1 (2.90)
4
k2 . - sinlJ N
= E%X.gﬂpzd P g (2.91)

A definite physical interpretation can be can attached to ihis formulation. The
scattering from a thin dielectric cylinder can be attributed to electric dipoles lying
along the cylinder axis. The total scattering from the cylinder can be thought of as a
coherent addition of the scattering from elemental or incremental dipoles, each with
a dipole moment described as p?%dz = ¢P*dz - &, lying along the cylinder axis. The
scattering from an incremental dipoles at a given location is a function the cross-
section and dielectric the cylinder at that location, as well as the incident electric
field at that lecation. It is important to note however, that the dipole moment of a
short thin cylinder, length Az, with identical shape and cross-section is not p*Az
as the end-caps of the short cvlinder will dramatically effect polarizability. Thus, the
incremental dipole of moment p®3dz is merely a construct to describe the scattering
from a long, thin structure, denoted hereafter as a line-dipole element.Like the Dirac
delta function, polarizability tensor P?*dz has no physical meaning, it must appear
only in an operator in an integration.

The reason that the concept of a polarizability tensor can be implemented for thin
cylinders is that the scattering solution is essentially an quasi-static sclution. As this
chapter demonstrated, the solution for small ka is not a function of the higher orders of
ko, hence its independence on electricallength k. It was also shown that the solution

given by equations (2.6) and (2.7) is the result of a very localized phenomenon, as the
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moment-method and first-order models demonstrated that the solution is valid for all
locations along the cylinder except at the very ends (a few radius lengths) , where
the end-caps perturb the solution. Equatbions (2.6) and (2.7} provide an accurate
solution for the internal electric field that is independent of total cylinder length £.
The field at an arbitrary point on the cylinder is dependent enly on the incident field
at that point and the dielectric material immediately surrounding it. The remainder
of the cylinder may be very long, or relatively short, the field solution is unaffected.
Returning to the incremental dipole concept, this means that the incremental dipole
elements do not couple; that elements can be added or subtracted from the cylinder
without perturbing the others.

If the fields at a point on a thin cylinder is unaffected by the scattering from
regions of the cylinder cutside its immediate vicinity, then it could logically inferred
that perturbing slightly the scattering from these distant regions would likewise have
no effect at the observation point. These perturbations could reflect a change in the
shape, dielectric, or even orientation of the cylinder region {i.e. the incremental dipole
moment). Thus, the solution of (2.6) and (2.7} can likewise be applied to cylinders
with axial curvature, provided that the cylinder is locally straight throughout an axial
region of several radius lengths. Thus, equation (2.91) can be modified to reflect a

general curved cylinder:
K d 2 kg (ks
Spw= 5 j'; 4 PU(FY . g o B =FF gp (2.92)

where L defines the contour of the curved cylinder. Likewise, the scattering from a
distant location of the cylinder can be perturbed by changing the incident field at

that point. Thus, the incident field must only locally be a uniform plane wave, in
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general the phase term of {2.82) can be more represented as an arbitrary propagation
function $(7) so that:

kg

S0 = i

j 5 - PHEEY - &(F 1de (2.93)
L
This approximation is analogous te the Kirchoff or tangent-plane approximation in

rough surface scattering, where the scattering from a given location is determined as

if the surface al that point uniformly extends into infinity.

2.4 Conclusion

The preceding analysis has provided a scattering solution for long, thin dielectric
cylinders of arbitrary electrical length. The truncated solution of a thin, infinite
length dielectric cylinder is shown to be valid provided that the normalized cylinder
length £fa is large. Although this is an obvious result for electrically long cylinders
(k{ >> 1), the solution is explicitly shown to be asymptotically correct as ka —
0, regardless of electrical length kZ. As such, the formulation is likewise a valid
Rayleigh scattering solution for particles whose length £ far exceeds their radius a.
The generalized Rayleigh-Gans approximation, as applied to a circular cylinder, is
thus a specific case of the infinite cylinder approximation. As a result, the assertion
of GRG validity for all k¢ was equivalently demonstrated by the analysis this chapter.

The moment-method solution provided a numeric tool for analyzing the accu-
racy of the infinite cylinder approximation. The infinite cylinder solution exhibits
significant error only as the cylinder ends are approached. This error is apparently
dependent on only the distance from the cylinder ends, as normalized to the cylinder

radius. Thus, the normalized cylinder length £/a, must be large for this error to reside
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in an insignificant portion of the cvlinder length. Although independent of electrical
length, the magnitude of this error is strongly dependent on dielectric, enlarging as
the dielectric value is increased.

Finally, it was shown that the scattering from thin cylinders can be attributed
to dipoles on the cylinder axis, and thus the structure was defined as a line-dipole
element consisting of incremental dipole elements. From the results of this chapter, it
is evident that the scattering from these incremental dipoles are uncoupled, thus the
solution can be extended to cylinders with moderate curvature such that all regions

of the cylinder are locally straight.




CHAPTER 111

A SCATTERING MODEL FOR THIN
CYLINDERS WITH BLADE SHAPED

CROSS-SECTIONS

The scattering model of the last chapter provided a microwave scattering model
of arbitrary cross-section. The relation between cross-section and cylinder scattering
is revealed in the integral equations of (2.6), which specifies the radial component
of the cylinder electric field. These equations contain and integration over a region
defining the cross-section of the cylinder. This region is completely arbitrary, and
the the scattering solution is dependent on the cross-section shapes of the cylinder.
As was demonstrated in in section 2.3, the effect this solution in regards to far-field
scattering can be comprehended in terms of a polarizability tensor per unit length
P 5 parameter which therefore is also dependent on cylinder cross-section. The
exception being the tensor element F2?, which is dependent on total cross-section
area but not on shape (2.86).

The practical problem with this formulation is that analytical solutions for equa-

tion (2.6) is limited to canonical cross-sections such as circles and ellipses. Other

more complex cross-sections require that the integral eguations be solved using nu-
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merical methods. This presents a conflict between two of the stated goals for the
model. To preserve the fidelity of the physical analog, the complex blade shapes en-
countered in grassland vegetation should be accurately modeled. However, to do this
would require solving numerically the integral equations, a procedure which requires
significant computational overhead, thus reducing the utility of the scattering.
However, whereas the blade cross-sections of grasses may be complex and random,
they are not arbitrary. The term “blade” refers to a generally “V” shaped cross-
section, a thus a set of parameters could perhaps be defined to describe a family of
these shapes. Additionally, this blade description parameter space can be numerically
limited, constrained to the values which are involved in nature. Defining the problem
in this manner greatly reduces the complexity of the problem. If the polarizability
tensor elements are numerically evaluated at a significant number of sample points
throughout the constrained parameter space, then perhaps a relationship between the
parameters describing blade shape and the corresponding polarizability tensor can be
inferred. I an analytic approximation is the result, then both goals of fidelity and
utility can be satisfied. The complex shapes of grass blades can be accurately reflected
in the model, while the resulting scatiering {in terms of polarizability tensor) can be

swiftly computed.

3.1 Grass Blade Geometry

The fine geometry exhibited by most grass blades occurring in nature can be
approximated by a set of five description parameters as shown in Figure 3.1. These
five parameters, thickness ¢, width w, blade angle §, radius of curvature r, and blade

length ! can be combined to produce five new independent parameters, two of which




parameter | symbol | expression
Area A = 2w
Length ¢ {
Aspect Ratio a t/(2w)
Curvature v wfr
Biade Angle & 8

Table 3.1: The five parameters describing blade geometry, including two pa-
rameters (length [, and area A) which specify blade size, and three
dimensionless parameters {aspect ratio @, curvature v, and blade
angle ) which specify shape.

describe the size of the blade while the other three describe its shape. The first two
of these parameters, as shown in Table 3.1, are the cross-sectional area A and blade
length {, which together specify the blade size. The three remaining parameters are
dimensionless quantities, and thus specify only the blade shape. The first, aspect ratio
a, is defined as the ratio of blade thickness to blade width. The second parameter,
curvature v, is the arc angle in radians of the arc formed by the curvature of the
blade on either side of the center rib. The final parameter, blade angle 0, is the angle
formed by the vector normal to the grass blade surface at the center rib, and the
vector tangent to the blade curvature at the center rib. In addition, for purposes of
the scattering formulation, the grass blades are assumed to be both long and thin,

such that 2w << Aand [ >> w.

ihy
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Figure 3.1: Diagram of grass blade geometry including blade cross-section
(showing width w, thickness ¢, and blade angle §) and overhead
view (showing radius of curvature r and length [).
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3.2 Polarizability Tensor Evaluation

A moment-method solution to the integral equations of {2.6} was likewise provided
by Sarabandi and Senior {|. This solution was implemented in computer code so that
the polarizability tensor elements of grass blade cross-sections could be numerically
evaluated. The parameter of interest in this case is the normalized polarizability
tensor P*¢/A. Bach element of the polarizability tensor is directly proportional to
the total cross-section area A, thus the normalized polarizability tensor P*¥/A is
independent of area. Therefore, P?¢/A is a function of only the dielectric constant
and the shape, as described by the dimensionless shape parameters, curvature v,
aspect ratic e, and blade angle §. For cylinders with symmetric cross-sections, the
off-diagonal tensor elements ng and P2¢ are both zero, providing the local coordinate
system is aligned with the axis of symmetry. Since the blade shapes introduced in
the previous section are of this type, the polarizability tensor is diagonal with the
elements P2¢ and P2¢ dependent on shape. In general, the elements P27 and Py are
respectively proportional to the projected area of the blade shape onto the (z,z) and
(y,z) planes. Thus, the parameter which most affects the normalized polarizability
tensor elements is aspect ratio, followed by blade angle and then blade curvature.
Figure 3.2 demonstrates this dependence, showing the effect of aspect ratio and blade
angle on the real part of P2¢/A for both a relatively flat and a relatively curved grass
blade geometry.

Although these figures demonstrate the dependence of polarizability tensor, and
hence scattering on blade geometry, the larger question of whether these shape pa-
rameters significantly affect scattering from an entire grassland target can not be
inferred. Therefore, a radiative transfer scattering model [31, 13, 30} was imple-

mented which modeled a layer of scatterers consisting of cylinders of a given length




-3

o

200 v T f

15.0

¥

v

180 -

Re{P_/A}

500

0.000 »
6.00

200

15.0

100

RelP_/A]

500

0.00 .05 0.10 0.15

aspect ratio
(b)
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and cross-sectional area. Two cases were examined; in the first case, the cylin-
ders were of circular cross-section, while in the cther a blade shaped cross-section
{(a = 0.045, 8 = @, v = 0.01) of identical area was implemented. Figure 3.3 displays
the results of this model at twe frequencies for two dielectric constants and three
incidence angles. The difference in the cross-section shape results in a difference of
as much as 5 dB in the value of o§,. This contrast is largest at lower frequencies and
for drier grass blades. Although this data represents a iimited test case, it does show
that for electrically small cross-sections, blade shape, in addition to blade size, can

significantly affect the observed scattering from grassland targsts.

3.3 Algebraic Model

For a cylinder of circular cross-section, an exact analytic sclution to the integral
equations of (2.6) exists, thus leading to an exact solution of the normalized polariz-

ability tensor elements as a function of the complex dielectric constant {21, 28]:

Pee Py e—1
A A e-+1

(3.1)

As shown by Sarabandi and Senior {21}, this equation can be modified to provide an
approximate algebraic sclution for cylinders of semi-circular, triangular, and square
cross-sections which, although not an exact solution to the integral equations, matches

the numeric solution with exceptional accuracy. This modified expression is given as:

Ple) e—1 e+o

A #;coe-i-l €+ ¢

(3.2)
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where the values of constants g, ¢;, and ¢, are unique for each of the three cross-
sections. This expression is valid for both P22/4 and PX/A, although the three
constants are of course different for non-symmetric cross-sections (semi-circular and
triangular).

To determine if the validity of this expression extends to grass blade shapes,
data was generated with the numerical model for a given blade geometry across a
wide range of complex dielectric constants. Three constants ¢;, ¢, and ¢3 were then
selected in an attempt to match {3.2) to the generated numerical data. As shown in
Figure 3.4, constants were found which provided a match with good accuracy between
the approximation of {3.2) and the numerica! data. Thus, equation (3.2) appears to
be valid for not only simple geometrical cross-sections, but for more general cross-
sections (grass blades) as well. The constants ¢g, ¢;, and ¢y, denoted as vector ¢, can
therefore be selected to relate the dielectric constant to the polarizability tensor for
a given blade gecmetry. Since these constants are dependent only on cross-section
geometry, and since cross-section geometry for a grass blade has been defined by the
three shape parameters v, a, and #, a more general algebraic approximation relating
grass blade geometry, in addition to the dielectric constant, can be hypothesized:

P penisd chaten
A T e+ 1 e+ a{f,a,v)

(3.3)

The expressions relating ¢ to the shape parameters v, a, and # must therefore be

determined.
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3.4 Coeflicient Estimation

To determine these relationships, the numerical model was used to determine the
normalized polarizability tensor P?¢/A for varicus dielectrics for each of 512 separate
blade geometries. These 512 geometries were uniformly selected from the parameter
space shown in Table 3.2, describing the limited domain of geometries and dielectrics
which, in general, are observed for grass blades. For a given geometry, six constants ¢,
must be determined, three for each P2¢/A and P;f /A. Using the results of the numer-
ical model at three distinct dielectric constants, a non-linear system of three equations
(P2 )/ A, P¥(ez}/A, P*(e3)/A) with three unknowns (¢;, ¢, ¢3) is formed using
(3.2). Thus, nonlinear inversion techniques can be used to determine the three el-
ements of ¢ [18, ch. 9]. However, because (3.2) is merely an approximation, and
not an exact selution for P¥/A, inversion techniques may lead to erroneous results.
Inversion techniques force a solution which produces zerc error at each of the three
data points P*(¢;)/A, P*{(eg)/A, and P*¥(e3)/A, however in so doing may severely
affect the accuracy of the approximation at other dielectric constant values.

As an alternative solution, the polarizability tensor elements were numerically
computed at additional dielectric constants (six were found to be sufficieni), and the
three coefficients of ¢ were then determined by locating those values which minimized
the sum of the squared errors between {3.2) and the numerical data at these six
dielectric values. Although the resulting algebraic approximation may exhibit non-
zero error at all six dielectric values, the solution does maich the numerical model
results across the entire range of dielectric values. To determine an optimum selection
of the vector ¢, the conjugate gradient technique [18, ch. 10] was implemented which

iteratively converges to the values of ¢, ¢;, and ¢3 that minimize the total squared

ith
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parameter min. | max.
aspect ratio (a) 0.015 | 0.12
blade angle (6} 0.0 | 50.0
curvature (v} 0.01 2.0

dielectric constant (¢} | 5.0 | 45.0

dielectric constant (") 2 25

Table 3.2: Model input parameter space estimating those values generally ob-
gerved in nature.

error equation:

& -1 €, 4 \?
PZd n A - €n L ]) . 3.4
3 (Pitn(en)/A~ ey - 220 (34)

where P24 (¢,)/A is the polarizability tensor element of a specified blade geomstry
with dielectric €,, as determined by the numerical model. Figure 3.5 contrasts the
difference in the solutions obtained by using both an inversion and a minimization
technique on the same set of numerical data. The rinimization {conjugate gradient)
technique selects coefficients ¢ which result in a2 model matching all the numeric
data points, whereas the inversion {(Newton - Raphson) method results in a range of
dielectric constants where (3.2) produces erroneous values for P24/ A,

Therefore, the conjugate gradient method was implemented on the selected 512

eometries to provide two sets of vector ¢ {one set for each P*/A4 and P2%2/A) for
% zz yy
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each of the 512 cases. Figure 3.6 shows a histogram over the 512 geometries of the

average rms error between the numerical model and the analytic approximation, using

the coefficients as selected by the conjugate gradient technique. The average error

M

for P2/A was 0.07 %, whereas the average error for P2 /A was determined to be
approximately 0.7 %. For each of the 512 geometries, a set of constants was found
which provided an accurate model of the relationship between the dielectric constant
and the polarizability tenso

The conjugate gradient method converges to a set of coefficients ¢ which provide

‘5%7

a model with a minimum total squared error. However, this minimum may not
be the global minimum, as the conjugate gradient may converge to any number of

local minima, depending on the initial value of ¢ used by the conjugate gradient
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routine. These minima can be thought of as different “modes”, with each mode
producing a slightly different curve for (3.2}, each matching the six numerical data
points { P2 _(e,)/A) in a slightly different fashion. For instance, one mode may result
in a model which slightly underestimates the first three data points P¥{¢)/A and
slightly overestimates the last three, whereas for another mode the reverse may be
true. Many of these modes may produce acceptable accuracy, but the desired solution
is the mode associated with the smallest error {the global minimum}. However, the
mode associated with the global minimum at one geometry may not be the mode
corresponding to the global minimum at another. Since we are uliimately seeking
an expression relating c;, ¢;, and ¢3 to the shape parameters v, a, and 8, a solution
involving a single mode is required to avoid discontinuities in ¢ across the demain
of Table 3.2. For example, Figure 3.7(2) shows a solution for constant ¢; versus
aspect ratio for various blade angle values. For blade angle values from & = 0° to

® and

§ = 35°, the minimum is associated with a single mode, however for § = 42
49° the conjugate gradient algorithm converges to a different minimum, resulting in
significantly different data and a large discontinuity in ¢; versus §. Figure 3.7(b} shows
the single-mode solution, a solution which is well behaved and continuous across both
aspect ratio and blade angle.

If, for various regions of the blade shape parameter space {Table 3.2}, the global
minimum is associated with separate modes, then the selection of the “optimum”
mode becomes a compromise between minimizing the average error across the pa-
rameter space and minimizing the maximum error occurring at any given point. In
addition, forcing the conjugate gradient routine to converge to the same mode for

all blade geometries may also prove to be difficult, as mode selection is determined

only by the initial value of ¢ of the conjugate gradient algorithm. This initial value
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must be “close” enough to the correct solution for the conjugate gradient method to
converge to that minimum rather than to another. Since the correct solution is un-
known, selection of the initial values of ¢ for a given geometry is problematic. Often
several trials were required to force the conjugate gradient to converge to the correct
mode. However, as ¢ was determined for a significant number of blade geometries, an
approximate relationship between the elements of ¢ and the shape parameters v, a,
and § was inferred, and then used to properly determine an initial value fo: a given

geometry.

3.5 Polynomial Fit

Once a single-mode solution for ¢ for both P2 and P2’ was determined for all
512 sample geometries, the mapping between ¢ and the shape parameters v, a, and 8,
could be replaced with a polynomial expression used to estimate the values of ¢ across
the domain of Table 3.2. These polynomials can then be used in (3.3) to provide a
complete algebraic approximation of the numerical scattering formulation of Section
3.

To match a polynomial approximation to the data ¢, a solution is assumed which
is a linear combination of M basis functions, each basis function being an expression
involving the parameters v, 4, and 6. The number of basis functions is a compromise
between the complexity and accuracy of the polynomial approximation, and for this
application a third order expansion consisting of 20 basis functions was chosen. For
the polynomials associated with the normalized polarizability tensor P24/A, the basis

functions {as determined by trial and error) are expansions of the parameters v, (1/a),

&
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and cos §; the general polynomial approximations for ¢ are therefore given as:

3

e L "
1=0 =0 k=0

such that 1 + 7+ &£ <3, m = 1,20, and n = 1,3. For the polynomials of P /4 the
chosen basis functions are an expansion of the parameters v, (1/e}, and sec#, thus

the polynormnials are given as:

%}; Z b, oY v secj 9 (3.6)

0 k=0

suchthat i+ 7+ k<3, m=1,20, and n = 1,3.
Using orthogonality principles, the values of the coeflicients b,, are determined by

solving the linear estimation equation [18, ch. 14]
(XT.X)-b=XT.C (3.7)

where b is 2 20 element vector containing the polynomial coefficients, C is a 512 ele-
ment vector containing the conjugate gradient estimate of ¢, at the 512 test geome-
tries, and X is a 512 x 20 matrix containing rows of the 20 basis functions evaluated
at the 512 test geometries. The coefficients b determined by this computation are
given in Table 3.3. Thus, (3.3), (3.5), and (3.6), along with the coeflicients listed in
Table 3.3, provide a fast algebraic approximation to the siower numerical model of

Section 3.




P/A Pi/A
b, o ¢y €2 o €y 2
5 -11.18 13.2% 17.82 -12.94 28.02 -9.268
by -(.8747 -3.469E-02 1.769 0.2781 9.4470E-03 -0.2167
by | -1.307E-02 | -3.569E-05 | -1.466FE-02 | -1.768E-03 2.574E-03 | -4.961E-03
by | 1.031E-04 | -1.287E-06 | 1.108E-04 | 1.253E-05 -1.111E-065 | 5.296E-05
&5 50.81 -24.15 -48.43 16.92 -16.94 21.39
be 3.444 8 537TE-02 -1.197 -0.461 -5.920E-02 0.595
b, | 5.384E-04 | 1.068E-04 | 8.748E-04 | 4.137E-04 | -1.204E-03 | -1 .098E-03
b -85.25 15.15 44.45 -0.9688 -2.717 -4.099
5o -1.611 -5.654E-02 0.5463 (.2635 -2.507E-02 -0.1640
bio 46.74 -3.189% -13.91 -2.435 3.558 -1.006
by -16.16 -0.3726 -7.273 24.61 -38.03 38.43
b2 1.5011 2.250E-02 -0.3542 0.1876 -0.2218 6.614E-02
bz | 6.520E-04 | -4.893E-06 | 5.482E-04 | -1.720E-04 | 7.368E-04 1.796E-04
bg 42 .69 -8.406 -1.913 -37.74 55.67 -54.33
bys -0.6183 -2.045E-02 0.2870 -0.1915 0.1518 -8.175E-02
bie -31.18 8.512 10.01 12.74 -16.36 15.16
by -3.462 0.6613 6.350 -0.5466 1.885 -1.887
bis | -6.594E-02 | -3.032E-03 | 5.077E-02 | 3.487TE-02 | -1.413E-02 -2.532E-03
big Z2.133 -5.807E-02 -4.617 1.855 -4.746 5.115
by 0.2449 4.,645E-02 -0.5782 -(.3788 8.7838 -0.9007

as given by {17} and (18).

Table 3.3: Values of the 20 coefficients b, for each of the six expansions of c,

S
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3.6 Results

To test the accuracy of this algebraic approximation, 3125 test points, covering
the range of shape parameters and complex dielectric constants found in Table 3.2,
were selected and used to determine the complex elements of the polarizability tensor
with both the numerical model and the algebraic approximation. The magnitude of

the vector formed by P2 and P2, defined as:

Eprzd' = \/}:mdpazd + P;gdpzd (3.8)

T ¢ TT wy !

was calculated for both models, and this data was used to build the histogram of Fig-
ure 3.8, showing the percent error of the algebraic approximation of |P*¢} as compared
to the numerical model. As estimated from 3125 test cases, the algebraic approxi-
mation exhibited little bias, with a mean error of 0.2 %, in addition to producing
an acceptable rms error of 2.5 %. Figure 3.9 shows the accuracy typical of the ap-
proximation, displaying the predictions of both the numeric and algebraic models for

Re[P2!/A] versus aspect ratio at a number of blade angle values.

3.7 Conclusions

Using a numerical solution to solve the scattering problem of cylinders with arbi-
trary cross-sections, it was determined that blade shape, in addition te blade size, can
significantly affect the scattering solution for a long, thin grass blade structure. Like-
wise, a simple radiative-transfer model demonstrates that the calculated backscat-
tering coefficients for grassland target can also be significantly affected. The nu-

merical scattering model is required for characterizing scattering by complex grass

o,
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blade shapes. However, direct implementation of this numerical model into a larger
radiative-transfer solution for grassland targets can result in a mode! of unaccept-
able computation time and complexity, especially when the radiative-transfer model
is used in an inversion algorithm.

Although the complexity of the numerical model is necessary to describe a cylin-
der of arbitrary cross-section, the cross-sections associated with grass blades are not
arbitrary but are instead limited to those described by parametefs a, v, and 4, and
by the domain of Table 3.2. These limits greatly reduce the information require-
ment of the numerical scattering model, thereby allowing for its replacement by a
relatively simple analytical approximation. By combining the relationship of P?¢/4
with ¢ (3.2} and the relationship.of ¢ versus ¢, v, and § inferred from a small but
representative sample of numeric solutions {3.5,3.8), an analytic approximation was
developed that can predict the scattering response of blade shaped cylinders both

rapidly and accurately.

a8



CHAFTER IV

SCATTERING FROM THIN CYLINDERS IN

AN ATTENUATING LAYER ABOVE A

DIELECTRIC HALF SPACE

Chapter II examined the scattering of a thin dielectric cylinder in free space,
demonstrating that the result is a coherent addition of incremental or line dipoles
along its axis. We now seek to implement this knowledge to determine the scattering
from typical structures found in grassland media. However, the long thin elements
found in grassland differ from the elements analyzed in Chapter II in two respects.
First, the structures are not residing in free space but instead are embeded in an
attenuating vegetation layer. As a result, the elements are not illuminated by a
uniform plane wave. The effective propagation constant of the coherent or average
wave within the vegetation is complex, thus a long element may be illuminated with
an incident wave of varying amplitude at each point along the element. The second
difference is the presence of a soil boundary beneath the surface, & dielectric interface
which resuits in additional scattering from the energy reflected at the surface.

In fermulations such as radiative _i:ransfer? the free-space scattering of a single

particle is used to determine the scattering and propagating intensities of a random
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collection of these particles. In this chapter, the concept of an incremental line dipole
will be used to directly determine the far-field scattering of a thin dielectric element,
buried in an attenuating layer over dielectric half-space. As such, the solution will
depend not only on the size, shape, and orientation of the element, but on its location
in the layer as well. To determine this sclution, the scattered fields from the various
scattering mechanisms must be added in a coherent fashion, carefully accounting for
the relative phase of each.

Once the scattering from an element has been determined, expressions for the
average scattered power and average scattered field can be directly determined for a
thin structure with random parameters such as shape, size, orientation and location.
Additionally, the extinction due to this element can be determined, both for scattering

and absorption loss.

4.1 The General Solution

The reflected energy from the dielectric soil boundary creates backscattered energy
in addition to that scattered directly form the plant. This formulation will consider
only the first order scattering mechanisms, that is the scattering terms which interact
with the vegetation just a single time. For sparse media such as vegetation, these
first-order mechanisms dominate and have been shown to be sufficient in predicting
the scattering][13]. There are four of these mechanisms, a direct scattering term, two
ground bounce terms, and a double bounce term (Figure 4.1}. The total scattered
field is therefore the coherent surnmation of these four terms. Because vegetation is a
relatively sparse random media, the eflective propagation constant is not significantly

different from that of free space. Additionally, the air-vegetation interface is a diffuse




Figure 4.1: The four first-order scattering mechanisms considered in this for-
mulation: (a} the direct propagation path, (b) the ground-plant
path.(c} the plant-ground path, and (¢) the ground-plant-ground
path.

boundary, and therefore for these reasons refraction is neglected in this formulation.

4.1.1 Propagation Paths

To correctly determine this value, each of the four scatiering mechanisms must be
referenced to a single equi-phase plane. The propagation by each of the four scattering
mechanisms can be modeled as a sum of two complex propagation paths, the direct
path and the reflected or image path. Figure 4.2 shows the geometry of the direct
path, denoted @,, where the equi-phase piane is arbitrarily taken to pass through the

origin. Using ray optics, the propagation from the equi-phase plane directly to the




96

particie is therefore:

Bu(F) =i~ ) o+ (F = 1) -

2?—‘1‘0&;04“(1;;“51)']61 (41)

where 7, defines the location where the ray intersects the top of the vegetation layer,
and 7, defines the location where the ray intersects the equi-phase plane. The vector

k; specifies the propagating wave in free space, and is defined as:
ko = kg + kiy + k32 (4.2)

where k¥ = ko cos ¢sin 8, ki = kysin¢sin 8, and kZ = ko cos . Note that kg - Fp =0,
which leads to the second equation of (4.1}. The propagation vector k;, specifying
the propagation through the attenuating layer, is given as the same form as equation
{4.2), with the real propagation constant kg being replaced with the complex effective
constant k;. The two terms of (4.1) have an obvious physical interpretation; the
second term represents the complex propagation through the layer, whereas the first
term shifts the relative phase to the equi-phase plane.

To determine @;(7'}, the vector ¥} = x% + y§ must be specified in terms of the
location of the scatterer ¥ = 2’2 + y'y + 2’2. To determine this, we observe that 7
is uniquely defined as the vector which makes ¥ — 7; perpendicular to the equi-phase
plane. Thus, if vector 7, is any arbitrary vector lying on the equi-phase plane, then
Fep (F'— 7y} = 0. An expression for vector fep = z& +yf + z# can be found by likewise

noting that k;g) - Fep = 0. Therefore,

0 = cos ¢sin fz + sin Psin by + cos bz {4.3)
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equi-phase
plane

Figure 4.2: The propagation geemetry for the direct scattering path ®,. The
propagation in the media with effective dielectric ky (F; to #') is
shown, along with the propagation path it free-space {¥, to 7}
from an arbitrary equi-phase plane.




Using the above expression to define z, the vector 7, is written in terms of the

arbitrary variables z,y as:
Fop = TT -+ Y — {cos dtan fx + sin ¢ptan 6y)2 (4.4}

The vector #; can now be found by enforcing the condition 7ep - (F — 71) = 0. Thus,

if z and y are defined by 7| = zZ + yi:

- - —f =
T‘I'TQPZT‘ '?"gp

2% 4 4% = z(z’ — 2’ cos ¢ptan #) + y{y' — 2’ sin ¢ tan §) (4.5)
Solving for r and y, vector 7; can be written in terms of # as:
7y = (' ~ 2’ cos ptan 8)F + (y — 2'sin dtan 6)g (4.6)
Thus, the term #; - ko can now be evaluated:

71 - ko = kE(z' — ' cos ptan §) + k5 (y’ — 2" sin g tan d)

i
4

= ki’ + kiy' — ncsg(kg cos Psin 6 + kf sin ¢sin 8)

1.2
Z'k:

e ‘A
ko cos 8 (4.7)

=kiz' + Ky —
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Additionally, the second term of (4.1} can be derived:

(F—F) by =k¥(z' — 2"+ 2 cosdptan6) + k{(y' — v + 2'sin ¢ tan 6) + ki 2’

=kfz' cosgtanf + kfz'sin¢tan d + k2’
(P (R (k)P
T cosBky | cosBk;  cosbk

kyz'
zc;sa (4.8)
Thas, equation (4.1} is given as:
kzzi Ly ot
&, (F) = kZz' + kiy' — = ! (4.9)

kocosf  cosé

The second propagation path includes a reflection from the soil surface, and is
most easily determined by considering the image of the scatterer, as represented in
Figure 4.3. Equation (4.1} is still valid for this propagation path, however the location

vector 7 is now given as:

o= a'd + Yy — (2 + 2d)2 (4.10)

where the Z is modified to account for the additional propagation length of this path.
Note the same physical interpretation can be given to equation {4.1) as before; the
second term considers the complex propagation through the vegetation layer and the
first term adjusts the phase to the equi-phase plane.

Using the same sequence of steps as shown for &, the image term is determined

s
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equi-phase
plane .~

Figure 4.3: The propagation geometry for the ground-bounce scattering path
®,. The geometry more easily determined by considering the image
of the scatterer below the dielectric surface.
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to be:

K2z +2d) k(2 2d)

7} = kyz' + k3y' - 4.11)
QZ(T ) i"O'T + "’Oy + ka COSQ COS@ ( )
The coherent wave at # after propagating through path 1 is given as:
E{#') = Epexp[t®,(F')]
. kzzf [ kq = \
— X ¥, 7 - _,_,,,"’:,,__ e
= Egexp 1(kiz' + Ky P COS&)] exp lz(cosﬂj] (4.12)

where Ej; is the coherent wave at the equi-phase reference.
For the second, or ground bounce propagation path, the coherent wave is likewise
modified by the refiection off the dielectric half space. Denoting the complex reflection

coefficient as R, the coherent field at # after propagating through path 2 is given as:

E(#) = EoRexpl1®(F)]

= Fg exp [2(k§$’ + k3y' + M)} exp L___ z( kyd )]Rexp [M z(kh(zf + d))}

kgcos 8 cos b
(4.13)

The preceding equation was written to explicitly show the propagation through the
attenuation layer to the dielectric boundary at z = —d, the reflection off the dielectric
boundary {R), and the upward propagation to the scatterer {—ki{z + d) sec ).

Up to this point, nothing has been stated about the general form of k; and R.
Certainly these parameters are dependent on the polarization of the coherent wave.
Additionally, however, propagation may be sufficiently complex that %; and K may
not be accurately represented in scalar form. If the polarization state of the coherent

wave is modified as it propagates from the equi-phase plane to 7, then k; and R
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must represent not only the propagation of two orthogonal polarization states but
the coupling between the two as well.

For example, if the orthogonal polarizations are denoted as m and n, the general
propagation of a wave through and electrically anisotropic layer is described by the

following coupled differential equations [30, p. 461}

dFm,
- T - LT e . 1 4
= = "y o+ 1K™ E (4.14)
dEﬂ nn TITL
= = k" B+ k™" B (4.15)

where § is the direction of propagation. Making the following definitions,

Em . ekmm 2Ii{:'rﬁﬂ
E= K= {4.16)

the differential equations can be re-written as:

dE -
— =KE (4.17)

The solution te this equation is of the form:
E(s) = E{s = §) exp[Ks] (4.18)

Comparing this solution with equations (4.12} and {4.13), it is evident that % is in
its most general form a 2 x 2 complex matrix.

Although though the above solution is mathematically concise, it is in a form which
cannot directly be evaluated. To expréss {4.17) in a form which can be evaluated,

we first determine the eigenvectors (v;, 02) and eigenvalues (A1, A2) of K, and then
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rewrite this propagation matrix in the following form:

K =[or, 5] M0

[Ul 5 ii?j

0 A

=Q 1DQ (4.19)

Multiplying € by (4.17), and defining Y = QE, the differential equation can now be

written as:

dY
—=DY (4.20)

Since D is a diagonal matrix, the differential equations decouple and the solution is

easily determined:
Y = = L(s)C (4.21}

From the definition of vector Y, an expression for the coherent electric field can be

determined:
E(s) = @71L(s)C (4.22)

Both @' and £(s) are determined from the eigen analysis of propagation matrix K.
However, the value of vector C remains unsolved. To determine C, we set s = § so

that £{s = 0} is equal to the identity matrix Z. The vector C is therefore equal to
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@E(s == 0), and the coherent electric field is thus determined to be:

E(s) = Q7 L(s)CE(s = 0)

= e E(s = 0) (4.23)

As with the preopagation, the specular reflection from the dielectric half-space

must be expressed in a general polarimetric form, specifically:

E* = RE' (4.24)

where E' represent the polarization state of the wave incident to the dieleciric, E*
similarly represents the specular wave reflected from the boundary, and R isa 2 x 2
complex matrix which specifies the boundary reflection in a general, polarimetric
form.

Denoting the free-space phase term as:

. k2 ,
&{k;z) = exp [z (k""’:zt + k¥y —~ i cfosé’)] (4.25)

where the dependence on z,y is implicit, equations (4.12) and (4.13) can likewise be

written in a general polarimetric form:

E(F) = ®(ky; 2) Q1 L(2 sec 8) OF (4.26)




for path 1, and for path 2:

E(F) = &(ko; —(2' + 2d)) @7 L(~dsec ) QRQTL(~ (' + d) sec §) OE

(4.27)

For sparse random media such as vegetation, where the volume fraction of the
material is typically < 0.01, Foldy’s approximation is most often employed to deter-
mine the elements of the propagation matrix K. These elements are given as[30, p.

461}

E™™ = 1k — tMmm ™ = —iMopn

E™™ = 1kp — tMny B = —tMem (4.28)

where the M is a complex value related to the average forward scattering of the

constituents of the media:

Y 12rn, |, :
Muiks) = T(wa(kg = ky}) (4.29)
where (S, (ki = k3)) is the average forward scattering of the constituents for the
polarization pair x¥, and n, is the number density of the constituents. Using the

results of (4.28), an eigen analysis of K can be performed to provide explicit {orms of

eigenvalues A; and Ag,

Mmm + Mnn - r )\2 = Zko + Mmm + Mnn +r

Ay = kg + 5 3

(4.30)
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as well as matrix @

Mumm=Mpg~r 0
Q= | (4.31)
0 My Man+r
2Mam

and its inverse:

Q= | T v (4.32)
Mo  Magm—Mandr
s 2r
where 7 is:
r= \/(Mvv - Mhh)2 + 4 Momn Moo (433)

4.1.2 Dipole Scattering

The previous section examired the propagation to a point within an attenuating
layer above a dielectric half-space. This section will examine the scattering which
occurs at this point. Chapter 1T demonstrated that the scattering from thin dielectric
structures such as those found in grassland canopies can be attributed to line dipoles
along the length of the structure. Accordingly, the concept of an incremental dipole
moment p?df and a line dipole element was introduced. Therefore, the scattering
from arbitrary dipole elements will be examined in this section.

A scattering matrix element for a dipole element with polarizability P is given as:

Sxp=Xs"F -t (4.34)
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X, ¥, and P is the complex 3 x 3 polarizability tensor which completely defines the

scatiering of a dipole element. The entire scattering matrix & can thus be written as:

§2
S =2 APB 4.35
yp A (4.35)
where matrix 4 is:
m*-& Wm°-§ m*-z
A = {4.36)
n*-x nt-g Atz
and B is likewise:
M-z mt-g w2
B= {4.37)
Aoz A-§ Rtz

The polarizability tensor P is defined in global coordinate space z,y, z. However,
the tensor is often the result of a well defined structure or element {such as an ellipsoid)
oriented in arbitrary fashion. The polarizability tensor of the element (P’) is most
easily defined in the natural local coordinate system of the structure (', ¢/, z*), with

the global tensor P then determined by translating the local coordinate coordinate

system into the global system:

P=TP'T (4.38)

In this case, P is a function of element parameters only, namely size, shape, and

dielectric. Conversely, tensor 7 is a real, 3 x 3 matrix which is dependent on particle
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ortentation only.

ti»

&

s

2]
2,

T=l¢-2 ¢-90 ¢35 (4.39)
#or 2y ¥z

If the rotation of the element from the global (unprimed) coordinate space te the
local (primed) coordinate space is specified in terms of Eulerian angles «, 8 and +,

the translating matrix 7 is easily specified using the relations:

&' = {cosy cos ff cos a — sinysin a)F + (cosy cos fsina + sin v cos a}§j — cos ysin 5%

(4.40)

§' = (—sin~ycos fcos e — cosysina)f + (cosy cos o — sin vy cos B sin a)§f + sin y sin 2

(4.41)

?' = gin B cos @t + sin Bsin ay + cos B2 {4.42)

Collecting all of the above formulations, the bistatic scattering matrix for a dipole

element is described as:

.2
S = 4%,47’%"7'3 {4.43)

4.1.3 Scattering Mechanisms

We have thus examined the propagation of a coherent wave to/from an element
in an extinction layer, as well as determined the scattering for that element if it is

an arbitrary dipole. The two will now be combined to provide a complete scatiering

solution for a thin dielectric element residing in an extinction layer over a dielectric

'.-‘iw



The total scattering from this dipole element is therefore just the coherent sum

of these four terms:

B d
S= 3 Smen (4.48)

mech=a

Similarly, if the scattering dipole described by polarizability tensor P’ is in fact an
elemental line dipole described by P??d{, then the scattering for each mechanism
from a complete line-dipole element can be determined by integrating the scattering
from the incremental line dipoles along the length of the thin element, and the total
scattering from 2 line dipcle element is found by summing coherently the results of

the four scattering mechanisms.

d
S= % A S de (4.49)

mech=a

Several points should be emphasized about this formuiation. The first is that this
solution provides the coherent addition of the scattered fields for each of the four first-
order scattering mechanisins, rather than the scattered power, the parameter most
often evaluated. The importance of this can be seen when multiplying (4.49) by its
complex conjugate. Sixteen terms will result, four of which represent the scattered
power associated with each mechanism. The remaining twelve terms are the “inner
product” values which can significantly increase or decrease the total scattering power.
Thus, these terms must be considered if an accurate representation of scattered power
is required.

Another important point about this solution is its completeness, This is not a
solution for the scattering of a thin aielectric element, but instead of a dielectric

element in an extinction layer over a dielectric half space. The effect of the extinction
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extensive numerical evaluation is often required. Thus, in this section, the general
solution will be applied to a specific and limited scattering problem, resulting in
significant reductions in model complexity.

To begin, we shall limit the problem to backscattering only, setting ky = —k;. In
addition, the formulation will be limited to scattering elements that are azimuthally

symmetric, that is, the azimuthal orientation of the element (Eulerian angle o} is

random and uniformly distributed over 2« radians. Finally, we chioose the orthogonal

il

polarizations to be the standard horizontal {(h-k = k-3 = 0} and vertical (b-k =0-h
0) convention. From a polarimetric standpoint the choice of polarization basis vectors
does not matter, as the response from any polarization can be synthesized from the
final result. However, since the elements of the media are azimuthally symmetric,
the choice of © and & as basis vectors will greatly simplify the evaluation cﬁ' the wave

propagation, as will be shown later.

4.2.1 Propagation Paths

The combination of an azimuthally symmetric media and &, h polarization ba-
gic vectors lead to simple but significant result when determining the propagation
through the media. For such situations, the average forward cross-pol scattering is
zero ({Shy (k3 = ki) = (Sun(k$ = ki) = 0), therefore the terms My, and M, vanish.
As a result, the propagation matrix X is diagonal, and the eigen analysis leads to the
¢rivial solution @ = 7, Ay = 1k + M,, and Xy = thy + M,,. The polarizations in
effect decouple, each propagating independent of the other.

This leads to a physical interpretation of the eigen analysis of matrix K. For
a medium with an arbitrary propagat-ion matrix K, there exists two polarizations

where the propagation decouples. That is, the propagation occurs without changing

TR T AR EY S T W S T B e
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where m € v, h. Likewise, equation (4.27) can be similarly expressed as:

ﬁf.;,.i,(:' + 2d)

E¥(#) = ryy exp [’ (iﬁ?gfﬂf + kGy' — k(= + 2d)) - cos 6

=

(4.54)

The above equations are valid for homogenecus regions where the particle density ng
is uniform. In random media such as vegetation, however, particie density is often a
variable quantity dependent on vertical position 2 (ng = ng(z)). To account for this
variance, researchers often employ a layered model, determining the value MJ, for
each of N layers of size Az,. Using this approach, equation (4.53) becomes:

E¥(7) = exp [z (kgz' + &3y + kgz’;l] ﬁ exp {%l EY

feplie i cosé

NoM? Ay
—-1"‘——&} EY (4.35)

= exp {z( S+ Ky + kf,z'):] exp Ez

n=0

cos ¢

Therefore, as the layer thickness becomes incrementally small, the summation in
the above equation can be replaced by an integration {dencted as 7(z}) over the

continuous function Myy(2):

N 2
Jim 37 M3, Az, = J{J Myp{z)dz = ,(2) (4.56)

n=0

Expressions {4.53) can thus be rewritten as:

ot
EY(#) = exp [z (kﬁx' + kgy' + k;zl) + Tl )} iy (4.57)

i P R T A £ A EE R R e AN R o =
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Figure 4.4: Diagram defining the direction of the propagation vectors at the
scattering element. The vector associated with the ground-bounce
path (¢, ¢') is related incident direction of the direct path as ¢' = ¢;

and #' =7 — 6;.
as
Bg = cos ¢ cos@'E + sing’ cos 8'f — sin §'2 {(4.62)
by = ~ sin¢'s + cos ¢’ (4.63)

Again referring to Figure 4.4, the primed direction parameters can be related to the
incident angles as ¢’ = ¢; and ' = = — 8;. Using this in equation (4.61), Az and B,
can be explicitly determined:

—cos¢;cosf; —sing;cosf; -—sin 9,--?

Ay = By = _ (4.64)
— sin ¢ cos @y 0
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is found:

P, = cos® acos® BP._ + sin® aP,, + cos? asin® GP., {4.66)

- - : 2 s : P . s 2 ot
P, =P, = cosasinacos* P, — cosasinaf,, + cosasinasin’ P,

(4.67)
P, =P., = —cosecos Fsin 8P, + cosacos Fsin 8P, (4.68)
P,y =sin® acos® P, + cos’ aP), + sin’ asin® BP,, {4.69)
P,. =F,, = —sinacos Bsin P, -+ sin e cos fsin P, {4.70)
P, =sin® B, + cos® BP., | (4.71)

As stated before, the scattering dipole in this formulation can be an incremental line
dipoles with polarizability tensor P = Pozdf. This incremental dipole lies along a
contour defined by the larger element upon which dipole lies, as shown in Figure 4.5.
Thus, the local {primed) coordinate system of the incremental dipole is dependent
on the shape of this larger element, as well as its location 7; on structure. Thus, the
Euler angles o and f, defining the local coordinate system, are a function of location
7s. Since the total element scattering is determined by integrating along the contour
L, the relationship of o and £ with #; must be determined.

At this point, an assumption about the shape of the scattering element defined
by L must be applied. It is assumed that for all points aleng the element, there is a
single plane in which both unit vector z and 7, reside. That is, the element curves
only in two-dimensions, its general shape being able to be expressed as function of
two single dimension variables (i.e. z = f(z)). This is shown in Figure 4.6, with the
location of the plane containing the St‘;attering element being specified by angle ¢..

The value of azimuthal angle o is therefore easily determined, being o = ¢, for all

sk
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Figure 4.6: Geometry of a line-dipole element residing in a vertical plane de-
fined by ®.. The vector 7 defining the element contour resides

entirely in plane.

points defined by #..
The remaining angle, J can be determined using differential geometry. I the shape
i/

of the element can be expressed as a function of cylindrical variable p as z = f{p)

the derivatives of f(p) exist at every point along contour L, then cos 3 and

and if
sin 3 can be derived using the differential geometry shown in Figure 4.7
dz dz
cos B = - (4.72)
V&I + dp? \/1 + gj;
{4.73)

sinff = dp =
Vdt+dpt 14 (g—-f; 2

where dz/dp is the derivative of z = f(p) with respect to p. H the element is instead

expressed as a function of z (p = f(z)}, a similar result is ocbtained. From the results
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4.2.3 Scattering Mechanisms

The results of the previous two sections can again be used to determine the scat-
tering from each mechanism shown in Figure 4.1. Combining equations {4.57) and
{4.58), the propagation paths associated with each of the {our scattering mechanisms

can be expressed in terms of arbitrary polarization pair y¥ = {vv, hv,vh, hh}.

a il ity pilE T, {2) + 7y (2Y)
&7, =exp EzQ(L:x +hyy + k2 ) ey (4.78)
b (it gy T2 = (2 » O 27y(~d)]
., =Ty exp .22 (A:x + KLy ) v exp 12kld + oy
{(4.77)
¢ N [ i £ i 4 "’e/f(zf)""”x(zf)q ] X QTw(“d)h
DL, =Txexp _zz{kﬂ + kiy ) + po d exp ., —2kid + Troid
' (4.78)
d _ AT WY Ty (2°) + (2% i 21y (~d)
By =TTy EXp [z?(er + kLY - k2 ) - py exp | —2k,d + —
{4.79)

the scattering matrix elements for a line dipole element can be expressed for each

mechanism as:

=£§¥ f Ra(k) - Paa(Fe) - fu (k') @3, (k' me)de (4.80)
’%—- [ alB) - Pastr) - o) @b (4.80)
St =88 [ Sall) - Pastr) - (k) 0y (K r)at (4.82)

52, o = sz(k) Pra(Fe) - (k') @2y (K 72)dt (4.83)
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pairs can be synthesized, either directly or more typically using other constructs,
such as the real-valued Mueller matrix, which are sbtained from the elements of the
covariance mairix C. Note the diagonal terms of C are real valued and represent the
average scattered power for each of the four polarization states. Due to reciprocity, for
the backscattering case the cross=polarizations are equal (5, = S, }, resulting in the
equality of the four center terms ({|Sru{®} = {|Sui®} = (Sr S5, = {(Sur S, Of the
five independent terms rémaining, it has been shown that only one is non-zero when
backscattering is considered from a statistically azimuthally symmetric scatterer[22].
This term 1s {San S, ), 2 value which provides statistics about the co-polarized phase
difference, defined as arg{{SixS5,)) = dnn — $u[22]. Thus, for the backscattering from
a collection of azimuthally symmetric random scatterers, the polarimetric response is
defined completely with just five real values, {|Syu|®), ([Sanl®), {IShe]?), Re({ShnS2,)),
and Im{{SiS;,})-

From equation (4.84}, the average scattered power can be expressed as:

d d » 5
(Sl = 3 3 (Sgetsuee™) (4.86)

mech=a mech'=a

There are thus sixteen terms required to deiermine the total power, four (mech =
mech’} of which represent the “incoherent” power, the scattered power from each
scattering mechanism considered independently. The remaining twelve inner product
terms can either add to, or detract from, the incoherent power value, resulting in the
total scattering power, where the correlation between the scattered fields of dissimilar
scattering mechanisms is considered. For many cases, the correlation is smali, and
the twelve inner product terms are insignificant when compared to the incoherent

power. However, this is true only for certain specific situations, and thus for this
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Fach of the sixteen scattering elements described in (4.80) to (4.83) can now be
expressed explicitly for all receive/transmit polarizations v, hv,vh, hi and scattering

mechanisms a, &, ¢, d.

39: j &2, (i 7o) cos? 6: P24{Fe) — 2 cos B, sin 8 PA(7,) + sin? 6, P2(e) ) d

(4.92)
. K2 - o _
S8 =4ﬁ_ f ¢ (i'; 7o) (= cos® 8, PE(Fe) + sin® 6; P2(7,))df (4.93)
g = ] &2, (¥, 7) = cos? 0; P24(Fe) + sin® 6, (7)) de (4.94)
S§v=4ﬁ / B2, (s 7e) cos? 0:P2Y(7y) + 2 cos B sin 6, PR(Fe) + sin® 0, P2 (7)) af
(4.95)
Sz, —r—--j o7, (cos§ P23(Fy) — sin 6, Pu(n))df (4.96)
2
st k j & (k:‘ Te (_,, cos 6; Pgd(r,g) — sin &sz‘i(rf))df (4.97)
2 ;
Shu fﬁj @ ; [)(COS& Pgd(’r‘g «~sm9 P2 (Tg))df (498)
st =2 | )  cos 6, PE(7e) — sin 8:P24(F)) df
by = jL — COS (Fe) — sin; P; {n)) (4.99)
k2 g
=S [ (K57 (cos8uPE(R) — sim B.PL() ) (4.100)
Sb =,£[ @ih(i}igr‘g ){ — cos Pzd(n) — sin #; sz(f"g))df {4.101)
¢, = - f s, (cos 8, P2(re) — sin 6: P2(70)) df (4.102)
St =72 i &9, (k' m( — cos 6, P2} — sin 8, P2(7) ) Ydf

(4.103)

T
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4.4.1 Scattering Loss from Rayleigh Elements

As a coherent wave propagates through a media consisting of random particles, the
power of the wave is continually reduced. For a homogeneous medium, the relation
between attenuation and propagation distance is expressed as dP = —x.Pds, the

solution of which is:
L (4.108)

where P(s} represents the power density of the wave at location s. The extinction
coefficient «. defines the extinction of the layer, however this extinction is attributed
to two separate physical phenomenon. The energy removed from the coherent wave is
either absorbed by the lossy elements of the media (converted to heat), or scattered by
the elements inte other directions. Thus, the extinction coefficient can be represented
by the sum of two separate coeflicients, the absorption coefficient x, and the scattering
coefficient &, (k. = ko + #,)[31, p. 212].

For a sparse collection of independent scatters, the extinciion coefficient k. can
be determined from the average extinction cross-section (o,) of a single particle as
Ke = ng(@.). The extinction cross expresses the energy loss due to a single particle,
and likewise can be expressed in terms of absorption and scattering loss, 0. = 0, +0,.
The extinction cross-section of a scatterer can be determined by calculating its forward

scattering and applying the optical thecrem{30, {p.137]:

0¥ = L im]Syg (ks 1] (4.109)
ko

This equation is similar to that derived from Foldy’s approximation (4.29) to
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the extinction calculation is invalid. For both low absorption and larger electrical
radiuses ke, the erroff of the Rayleigh solution is evident. Therefore. to accurately
determine the extinction due to Rayleigh particles, the extinction due to scattering

musi separately and explicitly be determined.

4.4.2 Extinction of Incremental Dipole Elements

As explained in Chapter I, the scattering from a thin dielectric structure can
be attributed to incremental dipoles with polarizability tensor Pyydf lying along the
structure contour L. This of course includes forward scattering, and since & — k* = 0,
equation (2.92) becomes:

K

Sxw = | T2 Pulf) - Pt (4.111)

Again to emphasize the concept of an incremental dipole element with polarizability
P = Py4dl we consider a collection of & dipole elements with polarizability P, =
Pj4Az, each located at an arbitrary position in space denoted by 7,. The forward

scattering for this collection is therefore:

N
Sx‘!j:zzgax= ZdAZ'weik k)'ﬂ
n=1 T
=§:k—§£cp§d-¢ﬁz (4.112)
el i




coefficient can be calculated as{9):

0¥ = f;; j:, (Susd+ Sugh) - (Suyé + Siuh) sin 6.d0.do,

2 E4
— 1o 2 2Y o
- JQ J/; (1506 ]? + |Shaf?) sin 6,d6,de, (4.115)

If we consider a straight line dipole element lying along the I axis, the scattered

field is found from (2.91) to be:

kE ~sin U
Sy = Z‘*k s Pogl i (4.116)
where value U is a phase term given as:
U= %f(cos é, — cos ;) {4.117)

The scattered power |Syyi? is therefore a function of sin® I//U?, which becomes very
narrow with respect to §, as the electrical length of the cylinder becomes large, be-
coming a delta function as kgf approaches infinity.

. sin® I/
im
ki—co [J2

= C8(U) (4.118)

where C is a normalization constant. To determine the value of C' we integrate (4.118)

from 6, = 0 to 8, = =. Since du = —(kof/2)sin 0,d8, we can write:

s*n L
e
-2 ~kof gin? [J
= im ———— dt/
koboo gbsins O, Jrot U2
2

YETY)

(4.119)
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2 = g,/{. The extinction cross-section per

section per unit length can be defined as o
unit length is thus ¢2¢ = ¢2¢ + 629, and the extinction cross-section of an incremental
dipole is 6?*dz. Note this incremental cross-section has no direct physical meaning, it
is merely a mathematical construct whick has physical meaning only after application
in a definite integral.

Using (4.114) and (4.124) to explicitly write the extinction coefficient, it is appar-

ent that the expression can be conveyed in a2 more compact form:

o2 =21 [ (P2(z - )7 + P2 - ) +P35<£»«L>2)]

ko
E(l+cos 0:)| Poef2( - )% + (1 + cos? 6:)| Py 1*(5 - 4)? + 2sin 03] Poc (3 - ¥0)?)
4m kX, . P R
:zlm[ 8 (prte - 01+ PG 9+ PR )
e ' Y A . 4.
kﬂlm[ﬁw P {4.125)
where again ¥ € {v, h}, and the primed tensor elements are given as:
2
P =P34+ "R PH(1 + cos”8) (4126)
Pp'=Fp + ZgﬂiPzdel + cos” 8) (4.127)
PR =pi gy %IPE;‘FQ sin® & (4.128)

Note that (4.125) provides an expression for o2 which is in the form of the optical
theorem, with the only change being the introduction of the new primed péiarizability
tensor elements. Thus, equations(4.126) to (4.128) provide a new set of polarizability
tensor elements, modified such that the optical theorem is valid when applied to the
forward scattering solution. This modification is possible because the new primed

tensors are independent of polarization %, although an addition complication arises
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Figure 4.8: Plot displaying the normalized extinction cross-section (per unit
length) of a circular dielectric cylinder. Shown are the exact so-
lution, the Rayleigh solution (.}, and the solution of equation
{4.125) {0, + &,). The dielectric for (2) is ¢, = 10+:0.1 and for (b)
¢, = 10 +:12. Polarization is horizontal and #; = 45°.

£
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dependent on a and [, as well as incidence direction &*.

cos bl =k' - 2
={sin §;Z + cos §;2) - {sin § cos aZ + sin Fsin af + cos 33)

= sin 6;{sin F cos @) + cos §; cos f§ {4.129)

Again using the concept of an incremental dipole element, the effective propaga-
tion constant of a collection of line dipole elements can be computed. We first consider
a layer of thickness Az with a collection of line dipole elements passing completely
through the layer, as shown in Figure 4.10. The section of each line dipole element
passing through this layer can be considered an elemental dipole with polarizability
tensor P*AL. The particle density of these elements, defined as ng particles per unit
volume, is therefore ng = Nepa Oz, where Ny, is the average number of elements
intersecting a unit area of the layer. Therefore, the propagation value M, defined

in equation {4.29) can be expressed as:

tne Lt 1N, ak3 2 s AL

My (k) =‘3§f‘f¢ - P ) (Z;)Az {4.130)
inespiy _ NV epaky | » . (AL

155 (k) =2 P2 ) (22 (4131)

Likewise, the propagation value my(Az) given by (4.56) is equal to MFAz. If the
layer described in Figure 4.10 is one of N sequential layers stacked upon each other,

then 7:(z) can be described as:

N
T(NAz) = 3~ M Az (4.132)
=1

If the value d = N Az is fixed, then taking the limit as Az approaches zero (N — o)
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It should be emphasized that this propagation solution is only valid for layer
structures as depicted in Figure 4.11 where the element length is of the order of the
layer height and particles are located in the far-field of each other only in the two-
dimensional sense. That is, in the region of the scattering layer, the propagation is
basically a two-dimensional problem, with the scattered fields propagating as cylindri-
cal waves, and the real power flow occurring primarily in the 27 space of the ferward
scattering cone. Thus, the two dimensional extinction solution of Section 4.4.2 is valid
for determining the propagation of a wave in a layer of this type. However, if the
scattering layer is of the type in depicted in Figure 4.12, the particles reside generally
in the far-field of each other, and the scattered fields are therefore spherical within
the layer. Even if the particles are line dipole elements, their scattering cross-sections
cannot in general be modeled as o2%¢. It must instead be explicitly be determined
by integrating over 47 space, as given by equation (4.115). However, if the electrical
length &£ is large, 02%( is a good approximation for the scattering cross-section, as the
power flow in this case is again primarily in the forward-scattering cone. Additionally,
the absorption cross-section of (4.114) is also valid regardless of &£, as the value is

directly proportional to length.

4.5 Comparison to Dielectric Slab Model

The propagation model derived above assumed a diffuse boundary between the
extinction layer and free-space; the wave assumed to travel straight into the region
using a ray-optics approach. Conversely, other examinations of scattering from ran-
dom media have treated the layer as a dielectric slab, such that the coherent wave is

refracted at the upper boundary. If sparse scatiering media is considered, the effective
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propagation constant is given from (4.28) as ky = ko — ¢ M. and using the formulation

of this chapter, the propagation to point 7 is expressed as %4 where @, is:

® 5 = 2(kosin iz + ko cos iz — 1M secd;z) (4.136)

Whereas, if the layer is modeled as a dielectric slab, the nropagation to 7 is e'¥B

where[12, p. 119]:

&g =kosinbiz + k¥ — ko sin? 8,z

ko sin 8,z + \/k§ — 12koM — M? — ko sin® 6z

ko sin 8z + \/kE cos? §; — :2koM — M2z (4.137)

These two eguations appear disconcertingly different. However, if we recognize that
for a sparse media the value M is small compared to kp, an approximation to the

square root term of (4.137) can be found by taking a Taylor series expansion:

B =kosinbiz + \/ ki cos? 6 — 12koM — M2z

sec §; tan® ;M%z
2kg

mwkg sin 9,z + kg cos 6;2 — 1M secbiz +

. 20 Af2
—o, 4 secd; tan’ §;M*z {4.138)
kg

Therefore, to the first order in M these two approaches provide identical results. This
is significant because, as stated before, M is generally smal! compared to ko for sparse

media.

@
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mulation was used to determine the complex propagation of the coherent wave in the
media as a genera! function of vertical location =. In Chapter I it was demonstrated
that the scattering from thin dielectric elements of arbitrary cross-section could be
modeled by a line dipole element. In Chapter Ii, the polarizability tensor elements for
cylinders with grass plant cross-sections was determined. Adding to this the results

of this chapter, the scattering and extinction of grassy vegetation can now be derived.




146

all dissimilar plant elements is now required .

Finally, the covariance terms for a complete grassland canopy will be derived,
again including the coherent effects due to plant location. The effects are particularly
significant for the case of the row structured canopies often found in cultural grasses.
Tt should be noted that all these models include only first order scattering effects.
It could be argued that a first order scattering model is insufficient for describing
the scattering from long vertical stalks, as for all but the most sparse canopies the
elements would reside in the near-field of each other and thus likely have stronger
inter-element coupling. However, studies have demonstrated that the average scat-
tered power for 2 collection of randomly located vertical scatters can be sufficiently
modeled by considering only first order effect[20], although this is iess true for the

cross-polarized power than the co-polarized scattering.

5.1 Scattering from a Grass Plant

Implementing the definitions expressed above, the scattering from a single grass
plant can be formulated. Using first-order discrete scattering theory (i.e. no com-

stituent coupling), the scattered field from a grass plant can be expressed as the

coherent sum of the scattering from its constituent elements:

N
plant __ ggrain crstalk leaf n
wa My Sxw T Z an’f (5.1)

n=1

iy,
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essentially compute {5.2) as:

plant oyveplanty __
(Ske Saw =
d d ' . d N leaf toa £
grain wgrain i stalk =stalk eafn wleaf n
Z (erjn mechSAp 'mecﬁ) - Z (wa mecksz\;@ mech) + Z z<5,\u mechSAu mech)
mech=a mech=a mech=g n=1}

(5.4)

If the plant contains four leaves, then the number of terms in (5.4) totals 24. This
is contrasted to the coherent formulation of (5.2) and {5.3), where 24° = 576 terms,
including the 24 of (5.4), are represented. If the covariance element is a real power
value, then the 24 terms of {5.4) represent the incoherent scattered power. These
incoherent terms generally the dominant terms of equation (5.2}, and this fact is often
used to justify using the simpler form of (5.4). However, the question is not whether
the incoherent terms are dominant but whether the remaining 552 coherent terms are
insignificant when taken in total. Perhaps the smallest coherent term is, for example,
an order of magnitude larger than the largest coherent term. The coherent terms may
still be significant as their quantity (352} is more than an order of magnitude greater
(552/24 = 23). Theoretically, these coherent terms can reduce the total power to
zero, or increase the total power to as much as 13.8 dB (10log;, 24} higher than the
incoherent scattered power.

Both the stature and the structure of the grass plant may lead to conditions where
the coherent terms are significant. As explained in Chapter I, the coherent scatiering
terms of two random scatterers will reduce to zero if the expected value of their phase
difference is large. A situation where this occurs is when the position of the scatterers
are independent and randomly distributed throughout an electrically large scattering

volume. However, this is not always the case for grassland vegetation. Both the
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tensor elements derived in Chapter 11l or the tensor elements of a circular cylinder
given Sarabandi and Senior[21]. The other item requiring definition is the vector 7y,
which defines the contour of the scattering element. For a stalk element, the shape

is modeled as g = f(z) = a(z + d), so that Fy.u is:

Fo = Foraik = CO8 Qgrati @2 + d}E + sIn Qprarx afz + d}f + 22 —d <<z

{5.5)

The transformation matrix 7 (z) from (4.65) can now be determined, explicitly writing

the trigonometric terms of Euler angles & and f.

COS ¢t = COS Pstalk sin v == SiN Pgtaik (5.6)

cos 8 = \/iT? sin 3 = ﬁ (5.7)

Therefore, the stalk is modeled as a straight element, originating at —dZ. Although

-1

straight, the element is tilted at an angle § = tan™* ¢ in the azimuthal direction @sak.

The length of the stalk element is thus v/1 + ¢%(z¢ + d). Additionally, the diameter
of the stalk is not constant, but instead tapers with height, so that its diameter can
be generally represented as dm({), where £ is the distance along the stalk contour
from its base (2 = —d). For example, cbservation of natural elements leads to the

following expression as a representative analog :

dmi{z) = dmg (1 - dmmw[ (5.8)

w5 )

e



z=7{) -

p=a{z+d)

L1

6= atan [a}

Figure 5.1: The geometry of the stalk model, demonsirating the variables zp,
a and @galk
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we

Figure 5.2: Geometry of leal model, showing variables z,.5, $ieas, €1, €2 2and po
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transformation matrix 7 (p) can be determined using the following relations:
COS ¢ = COS Blegy SIN @ = SiN Pleqy

8.2
¢y — 2c5p sin § = 1
V1 (e = 2cp)? Y1+ (e —2dp)

{5.12)

cos 3 =

However, the vector 7.,y does not equal the vector 7 of equation {4.74). From 5.5,
it is apparent that the leaf originates {p = 0) at the global reference. However, the
structure of the plant model indicates that the leaf originates from a location along
the contour defined by equation (5.5); that is, from the stalk. The spatial variables
of (5.12) are therefore defined in the local coordinate space of the leaf, located at
its origin. The vector defining the leaf contour in global coordinate space, 7., can

therefore be given as:

Fo ey + Pl
Py = Cos ¢atal}c a(d + zrej)i' + sin Dstalk a(d + Zref)g + Zrejé -+ F;egf

(5.13)

where 7,.;, more specifically z,.s, defines the location of the leaf along the stalk
contour. The plant is modeled such that the leaves reside along a region of the stalk
defined as 2 — Deas/2 < Zrey < 2 + Dieas/2. Thus, the leaves reside in a layer
of thickness A,;, with leaf center at z = z,. If the propagation value My(z) is
approximately constant throughouti this leaf layer, then the integrated value To{2)

can be expressed for 2 = 2.5 + 2’ as:

TlZres + 2') R Tyl zper) + MY (5.14)




with 75 (2') as:

. L . ' M (2 + My
;w(z’) = exp 12(1:_,'5 COS Preqsp’ + k, sin Dstati ' + k;z") + <7) v )J

cos 8
(5.21)
» r , o M (2" — My
¥y (=) =exp [12(k] cos duras’ + K sin duainse’) + . iose “ )E
(5.22)
c ok ‘e My(z') = My(2')
‘pxw(zt) = exp .32 (kz: COs (}f)_,mlkp’ + ky sin d?s!alkpi) + - cos B X
(5.23)
e - Ly M)+ My
\Pi¢(2ﬁ) = exp {12 (k; COS Qytainp’ + k, sin Pstairp’ — fﬁizf) - = ios ¢ = )]
(5.24)

and 2’ = ¢1p — ckp?. Since df = \/1 + (¢ — 2c3p)?, the scatiering from a leaf element

for an arbitrary mechanism mech can therefore be written as:

Smech — q)'m.ech - po ~ ‘Pl'ﬁﬂ-f N ah !Iimech{ : \/1 — 9¢2 ot YV2ddp’
A (2ref) A Xmech " Pag " (0"} Ymech b W1+ (e c3p')2dp

(5.25)

For the leaf model, the variables which are assumed to be random from leaf to leaf
are Queays, €1, €2, po and z..z; all other variables are assumed to be constant throughout
the canopy layer. The leaf model, with five random variables, is implemented with
two more random variables than the stalk model. The covariance terms (5.2} are
determined by computing the expected value over these random variables, an evalu-
ation which generally will be completed numerically. Since the time to numerically

evaluate a N-fold integral increases roughly as the power of N, the value in limiting
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matrix C can be writien in terms of a diagonal matrix:

A 0 0‘]
-1
C=QDQ " = [else%e\?} 0 X O EelanseB] (5.27)
LO G /\3’

where e, and ), are the eigenvectors and eigenvalues of . The matrix € represents
a linear transformation of the parameter space | into a new parameter space denoted
v = {v;,vy,va}, such that v = @'l and 1 = Qv. Matrix D is thus the covariance
matrix of v so, unlike the elements of 1, the elements of v are linearly independent
(D is diagonal), and the value A, is therefore the variance of variable v,,. The leaf
curvature can be equivalently expressed in either parameter space I or v. However,
in v, the methodology for reducing the parameter set becomes apparent.

Essentially every parameter describing a leaf element is a random variable, as no
two leaves of a given canopy are exactly alike. However, for many parameters this
variation is small, and thus the variance is assumed to be zero. Only the parameters
with large variances are considered random. Similarly, the two elements of v with
the smallest eigen values {variances) can discarded, approximating their variances as
zero. The variable with the largest eigen value (denoted v.) will still be regarded as
random, but the other two variables will be set at their mean value (v = m, = 0).
Thus, the total number of random variables in the leaf modei is reduced from five
to three Geas, Zres, Ve Lhe variables ¢;, ¢z, and gy are now direct functions of v,
found by translating from v back to | using matrix €. Since two of the elements of

v are zero, this transformation is simply | = Qv = e.v. where e, is the eigenvector




¢; mean c; variance Cp Mmean ¢ variance
po mean po variance ¢, €3 covariance ¢, Pp COVAriance
Po, €2 covariance cross-section ' dielectric blade width
blade angle blade curvature biade taper blade thickness
leaf laver size  leaf layer location leaves per plant leaf spacing
1

Table 5.2: Leaf Model Parameter List

scattering model without adversely effecting computational speed.
Finally, we note that the cross-section of a leaf structure is not constant along its
axial extent. Instead, its width w tapers to a point at the end of each leaf. The effect

can be modeled with the following function:

w(t) = wg(l ~ [“" ) D (5.31)

where 1wy is the leaf width at its base p = 0 and £{p) is the distance along the leaf

contour from its base to a point denoted by p

: R -1
oy = [[ae= 5t~ en/i+ '_f:j; e oimh ]
where dz = ¢; — 2c2p and 80 = /1 + dz%. Similar to stalk taper, the leaf width w can
be determined at each point along its length, and the appropriate local polarizability
tensor P}, can be evaluated using the model of Chapter IHI. As with stalk taper, this
calculation adversely effects computation speed, and its effect on accuracy is scenaric
dependent. Therefore the approximation w(f) = wyp is used as the default model.

The entire set of variables can now be defined for this leaf model, and are listed in

Table 5.2.2.

“ibs
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where & and &' are the polarization vectors determined using the local coordinate

space:

3 %k

1 ef :l_:;__zj {;if :ilsf % j;,:- (5.35)
' x K

. 3t x ks . .

ke = 59 =h x b (5.36)
A o i

' Note that ¢ 5 © and ¥’ # 0. To complete the solution, unit vector &' is represented

in terms of grain orientation angles o and £3.

3 = sin Bcos af + sin Gsin o + cos B2 (5.37)

Unlike either the leaf or stalk, the relatively small stature of the grain element
allows it to be accurately modeled as a point scatterer, iliuminated by a uniform plane
wave and occupying a single location in space. If the grain element resides therefore
at location g,in In an extinction layer above a dielectric half-space, the scattering
for an arbitrary polarization (y%) and scattering mechanism {mech) is found using

(5.34) and (4.64) as:

a

B0, B) = S ecn BT (Forain) (5.38)

Xy mech © xv

£

Ftd

ngin (

X1 mech

Of course, Fyrain 1s not an arbitrary point, as the grain is modeled as resting at the
apex (z = zg + cos Bhgrain/2} of the stalk structure. Furthermore, it is assumed that
the grain lies directly along the stalk axis, that is the stalk and grain orientations

are identical. Therefore, the Euler angles defining grain orientation can be defined in
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b

I

Rgrain MN€AL  Agrain variance Ageain pdf ||
dielectric diameter

Table 5.3: Grain Model Parameter List

term of the previously examined stalk parameters:

o= Pae O = tan'[a] (5.39)
and the vector Fyrqin can be derived from (5.5) by setting z = zp + cos Bhgrain/2 =~

26 + hgrain/2 so that:

Fyrain = COS Pstatk @(z0 + Bgrain/2 + d)d

+ sin ¢stalk Q(ZG + hgrmiﬂ/2 + d}?:f -+ (ZO + hgrain,/g)ﬁ (54(3)

where the extra cos Shg.:n/2 added to zp refiects the fact that the scattering origin
in {5.34) is at the center, not the bottom of the grain structure. Since the tilt angle
of the stalk/grain is generally small, cos § & 1 and the approximation cos Bhgrain/2 =
Bgrain/2 introduces little error.

The parameters with significant variability in these structures are grain length
hgrein and orientation angles a and 3. Since the orientation angles are directly de-
pendent on stalk random variables a and ¢geatic, only one new random variable, figrain
is added to the overall plant model. An entire list of the parameters defining grain

structure is given in Table 5.2.3.
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Sixteen terms must therefore be determined for each of the four required covariance
elements {15 |2), (1Sha]%), (1Sksl?) and {8xs S, ). However, the total computation time
can be significantly reduced by noticir}g that many of these terms are either equal to,
or the conjugate of, other terms. This is particularly true for the two ground-bounce
terms, as the propagation traverses the same path, albeit in opposite directions. The

precise relationships are dependent on polarization and are given as:

(S;:;ech S::wch‘} = (S;g,ech's:;nechy (Sb Smmech’} ( g gtmech)

L7 Pl Pa v Uy T Ve
(Sg;iechsmmech’> ( vmech’ umech)* \Shh Samech’) — (Sizf Szmach}
- (3 h
mech gwmech’ mech’ smech - § wmech’y __ amech
(Sh S ) - <S hv ) \ShhSm: ) - { hhSuv

{5.42)

These relations represent a reduction in the nurmber of calculated terms from 64 to 31.
Additionally, if the inner integral over 2y is numerically evaluated, the computation

time can be likewise reduced if the scattering element S, is computed as:

;ﬁliﬁ.ech —-_[ Xmech * smlk( ) wmechq)me‘:h )VI + aidz

zn

+ /\,mech vpsialk(z . mccP@me;h Z /1 ¥ aldz 5.4.\

X
T zg

where m,, is the mean value of random variable zg. The first term of the above
equation is independent of zg, and thus can be calculated just once for each iteration
of a and Pyaik. Since the value zg —m,, will likely be significantiy less than zg+d, the
computation time in determining the second term will be much less than if numerically

integrating over the entire length of the stalk.
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can be directly evaluated. The @;f‘j:h covariance term can thus be expressed as:

mech smech’ 3
(@xiér (Zrtf)q}.\p (zref»

L e encyg
Dijeay J=Bicas/?
eQAIed_f/2 — 6"9*’3&:»}/2

Q«Aleuf

= O7h (21) D3 (2uc)

= A7 1) BT (2ee)

(5.45)

where the substitution z,.; = 2. + ¢ was made so that Tyl zres) & Tylzie) + Mif”j{;.
The term ! is a complex constant dependent on the polarization and scattering
mechanism of each of the two applicable scattered fields. [t can be generally expressed

as 1 = w(xy, mech) w* (A, mech’) where w is

w{xh, mech = a) =e2ki + (M 4+ ME ) sec; (5.46)
w(x, mech = b) =(MI/ Mi‘?af) sec (5.47)
w(x®, mech = ¢} =(~M* + ] faf)sec é; {5.48}
Wi, mech = d) = — 12k — (M 4 M )sec; (5.49)

Finally, the equality relationship provided in equation(5.42) for stalks are likewise
valid for the leaf and grain covariance elements, thus reducing significantly the total

computation time.

5.3.3 Grain Covariance

The grain covariance calculation is similar to the leaf covariance calculation, as
both are elements iocated on the contour defined by the stalk. The difference is

that the grain location is denofed by zp rather than z,.f, and of course the unique
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the terms of the stalk-leaf covariance can be writien as:

stalk sleaf —
<wa mech SAu mech’) -

j Xmech pStulk( ) ' "lmechémaah \’ 1+ adz q)tmech (“Tff))zve_f P stalk 20

PG

(L7 R P - e BT (W + (1 = 2680000 vy (5:52)

The expression is written as the product of two expected value operations, the first
over stalk variables ¢k, a and zg, as well as leaf variable z..;. Unlike the the cases
examined in the previcus two section, this term does not reduce further; all random
variables are present and must be evaluated. However, the integration over z,.y can be
evaluated as shown in equation (5.45), provided the requisite assumptions are valid.
The second product of (5.52) is essentially the average scattered electric field of the
leaf element without the propagation path represented by @m"Ch(H,e 7). Note this is
not, however, the average free-space scattered field, as the value M'*/ in W77 {p)
modifies this feld solution. Because of azimuthal symmetry, this average scattered
field term is uniquely zero for cross-pol polarizations Av and vh.

A result equivalent to (5.52) is likewise derived for (q‘re“‘f Systalky and given the

fact that Sfe“"{ Sraalk = (‘%'“a”‘S“imf }* it is apparent thai only portion of the 32 terms

required for each covariance of four covariance matrix elements are required. The
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5.3.6 Leaf-Grain Covariance

Again, the scattering from the leaf and grain are both dependent on the staik
contour @ and @, Recalling that $'°7 is additionaliy dependent on v. and Zref,

the required covariance terms can be written as:

!eaf =gra'm . lea f wgrain
<‘=’xw mech Ap mech’) - ((SM‘, ﬂnech/‘mv:reh¢lea!790 (‘S)\p mech’ /~00h>a'¢’smlk

Since il of the random variables defined in the plant model are involved, this is the
most computationally intensive scattering term. Conversely, because the grain-leaf
element pair is the physically least correlated element pair, its numerical significance
is questionable. Thus, the utility of adding this term to the plant scattering model is

uncertain.

5.3.7 Leaf-Leaf Covariance

The formulation of Section 5.3.2 provides the covariance for the scattered helds
from a single leaf. However, the grass plant model assumes that the plant may
consist of more than one leaf element. The correlation between the scattered fields
of dissimilar leaf elements will be considered here. Assuming the curvature v, and

azimuth angle ¢,y of dissimilar elements are independent, the covariance terms can
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Pzvess Zhey) = PA=repizres 1P 2res) where the conditional density function is defined as:

( e — & Zte + Diea
for lc : leaf + 5‘2”}, < ,_if,,_,_;,.ii;‘: -4
1 ZIC - Alﬁ&f o .
A;Mf_‘zg and - “"2"'— < "rej’ < L - 5
Ze— & Zie + Qe
for le 5 lec f 4 8%res < _‘:__?_iﬁf_,{ —_&
x
1 ; 2 + Aéea_f
FompsT] and z 4+ 6 < 2,y < 5
ze + 8 2+ A
p(z:'cftzrcf) = { for Ji..m.gmﬂ -8 < Zeef < ._’.fi.w.;.__?.;ﬂiﬂ
-2\ “
P T Teaf ", _ PR
A!enflz*(zref"'&) an(l 2 < “ref <z 5 \5(5‘)
zie = A fte = Dicas . -
for _if_,,&ﬂé__.sz;f. < Zref _ifmw?:ffi + 6
— e o' Zle + Aieaf
Aiea_f/Q'(zre]‘{"s) aﬂd < + 5 < “ref < 2

Q eisewhere

This expression states that for a leaf located at 2.5, the probability that another leaf

at 2/

!.; is within distance & from z,es is zero, while the probability that z , resides

outside this region is uniformly distributed across the remainder of the stalk from

Zie = Apeay 16 2ic + Bieay. I 2ees is likewise uniformly distributed across the leaf

1
Aéeai

) the expected value term (@;‘j"h(zref)@j’;f“h‘(z’ Y eref zrejr 18

ref

layer (pz{z,,c =
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v{xy, mech = c) =z‘2ic§. -+ (Fﬂfi”j + Afi,f’“f‘. sec b, (5.64)
v{xth, mech = d) = — 2(k% + E) — (M=) 4+ M ) sec 6, {5.65)

and &(hu,mech’) = *(Ap,mech’). The expression of (5.61) is a function of both «
and Ggax. Therefore, a two dimensional integration over these two random variables

is still required to complete the evaluation of (@m“h((,mf)@‘”"hp( Sref D sres itey @i’

5.4 Scattering from Grassland Canopies

The preceding sections have provided a solution for the average scattering from
a single plant residing in the vegetation layer. However, the desired solution is the
average scattering from an entire grassland canopy, a random collection of individual
plants. Similar to plant scattering, the scatiering from a canopy can be modeled as
the coherent sum of the scattering from individual plants. Consider planar ares A
contairing N grass plants, the location of each denoted by vector ;q.... The scattered
electric field can be represented in the far-field as:

q;::;zopy Z S'Pk“'t ‘2k°“'p ppmm.(pgmﬁt) (566)

xyn
n=1

where the term Sii;f is likewise the coherent sum of all four scattering mechanisms
and ©(pins) = exp[szgfcf, « Pltams) 15 the relative phase of the plant. Note the prop-
agation vector i;; = ¢os ¢; sin §;% + sin ¢; sin 6;§ is in its most general form, with ¢;
as an arbitrary variable. Recall the assumption ¢; = ¢ was used in Chapter IV to

simplify the derivations, although the results are equally valid for all ¢;, providing

the plant is azimuthally symmetric. Thus, letting ¢; be an arbitrary value does not

:
e



180

5.4.1 Average Scattered Field

Appearing in equation (5.67) is the term (§Pant) | the average scattered field of a
grass plant; a value determined as:

(SPlanty = (S2i0ik) 4 (S + Nicar{Syis! (5.69)

where the expected value operations are performed over the relevant random variables
of each plant element. For electrically large and very random vegetation, the average
field (57"} will likely be small and thus the coherent power can be disregarded.
However, the small stature and simple structure of a grass plant can result in a
significant average scattered field.

If the scattered field of a random particle over all states is represented as a phasor
in the complex plane, it is apparent (Figure 5.5) that the average field will be ap-
proximately zero if the vectors are uniformly distributed over 27 radians. However,
the average field will not be zero if the vectors are distributed over only a fraction
of 2 or if the scattering from a single state dominates in magnitude the scattering
from all other states. The first cases occurs if the scatterer is restricted or confined to
a region which is electrically small in regards to propagation direction. The second
can occur when a specular scattering point cccurs within the domain of the expected
value integration, or when a single point scatterer dominates.

Both situations are plausible scenarios when considering scattering from grass
plants. At low frequencies, random variables such as zp, zres, ve and e, constrained
to the relatively small volume of a grass plant, modify the propagation functions
geimt (F) functions only slightly if the resulting physical variation is small com-

x¥ mech

pared to a wavelength. Even at higher frequencies, if random variable 4 s approxi-

A,



5.4.2 Scattering From Uniformly Distributed Plants

Assuming that the average scattered field (S7'*™} is significant. the remaining
portion of the coherent power term is the function {8(g5")@*{5™)), the correlation of
the relative phases of dissimilar planis due to their position on the planar surface A.
Variables which effect this function include canopy structure {i.e. the distribution
of the plants on the soil surface) and scattering area A (i.e. illumination spot size},
neither of which effect the incoherent scattering term. Two cases will be examined,
the first where the plants are uniformly distributed over the planar surface, with the
second considering the problem of cultural grasses planted in row patterns.

If the location of two plants residing in area A are both independent and uniformly

distributed, the relative phase term (©(5}),,,)0" (Fmien:)) can be expressed as

. 1 Lé.=m 1 i: =t
» Y 3% { 7 - [V 1] A =5 —32kg b7 =1
((ppicmt) (pplant» - ”@ ./;4 g e Ppiant dppiam "? j‘; € 082 Ppiant dpp!ﬁm

(5.70)

For an area A electrically large in terms of the radial phase constant &, = kpsin &;, the
integrals in (5.70) are insignificant, and the total canopy scattering power is expressed
in terms of the incoherent power only. However, the assumption of independence used
in the above equation is approximately valid only for cases where the plants sparsely
populate the region A. As with a forest canopy, grasslands are often continuously
populated, with the area defining the location of one plant immediately adjoining
the area of another. Again similar to forests, this does not mean that the scattering
volume is dense, it merely reflects the fact that nature soon fills open spaces in the
canopy with new plants, For this rea;lity‘, the independent assumption is invalid, for in

a well populated region independence would result in many instances of plants being
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straight, periodic rows. The coherent scattering term can be greatly influenced by
this structure, and thus the coherent solution for this distribution will be presented
here. To begin, we first consider the scattering from a section of a single row, located
at x=0 and extending from Ymin < ¥ < Ymas. 1he plant locations are assumed
to be uniformly distributed in y, with & gaussian distribution in . The scattering

covariance from this row section can be expressed as:

(Srow ,.fow)) — (Sp!anf 5:piaﬂ.2) +

NN, — 1Y{SPEm (S50 ) expla2kok, + (Br — m Wnzm  (5.74)

were the two term can again be interpreted as the incoherent and coherent scattering
terms. Since the scattering from a single plant is independent of its location, the row
structure will numerically effect only the phase function {exp|12kok, - (fn — Pm)]ingm
Again assuming that the # and § components of 5 are independent, and that the

plant locations are independent of each othes, this phase term is evaluated as:

={exp[12kok, - (Fn = B )]} ntm

2 2

§ 1
i fi¥max
1 i3

ay

j iZk“ '—x /(2611
-0 O‘;\/g

2
\/fz’e—Q{kiax 32

j 2kLy
¥min Ymar = Ymin
z(eﬂk;ymn, _ 612k;ym;‘n) 2

k; (ymiﬁ - yma:r)

(5.75)

This function, and thus the total scattering expressed by (5.74), is highly dependent
on incidence angle and the statistics of the row section. H koo, is small, then the
collection of plants behave like a linear array of scatterers. If the illumination is
perpendicular to the row direction (e;b;: = 0) then the plants along the row segment

produce backscattered fields which are in-phase, so thal (5.75) is nearly 1.0 and the
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the rows generate a Bragg scattering phenomencn{i2, pp. 515-325]. with the av-
erage scattered field from each row constructively adding in phase at a set of spe-
cific incidence angles. If ¢; = 0, then this occurs when kg siné; X, = nm, where
ned{.,—2,-1,012,. ..} and defines the Bragg scattering mode. Mode 0 occurs
when 6; = 7, the other modes are dependent on the frequency and rew spacing. Note
only a finite number of non-zero modes can occur between #; = x/2 and §; = 7, and
if koX,uwo < ™ then no non-zero modes occur. For large spot sizes, these coherent
effects will be observed only at the incidence angle associated with the Bragg mode.
As the spot size decreases and the number of illuminated rows N,., becomes small
however, the scattering beam width associated with this effect will broaden. From
equation (5.76), it is apparent that the eflect of this Bragg scattering on the total

scattering depends on the relative magnitude of (S5;™")

. If the average scattered
field of a single row is smali, then no Bragg eflects will be observable.

Equation {5.76) describes the scattering from an arbitrary coliection of Nroy row
segments, each with arbitrary length y], ., — ¥, This general equation can be made
specific if a general form of the illuminating spot size, defining area A, is selected.
In this case, a simple antenna model of a circular beam of uniform intensity wiil
be assumed. As shown in Figure 5.6, the pattern subtends a circular area A at the
target, and thus projects an ellipse with area Asec(w — ;) onte the target plane,
with the major ellipse of the target lying in the direction of propagation k; The
basic geometry of this problem is displayed in Figure 5.7, where R = \/27;' Thus,
the problem is to determine from a given area A and propagation direction ki the

number of rows N, intersecting the ellipse, as well as the beginning and ending

pPOINtS Ymin, Ymas fOr each.

i
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canopy height (d) plants/meter? plants/row meter
FOW Spacing row plant z-location variance row plant z-location pdf

Table 5.4: Row Model Parameter List

5.5 Canopy Propagation

If the canopy is a uniformly distributed collection of plants, then the propagation
through the canopy as expressed by Ty{z} is determined in a straight-forward manner
using the concepts introduced in Chapter IV. Since 7,{z) is determined from calculat-
ing the forward scattering of the plant elements, where the relative phase 1{k' — k®) .7

is equal to zero, coherent effects are not a consideration and the propagation in the

canopy is simply the sum of propagation effects due to each element:

Tianopy(z) — ’T:;aj(Z) + Tiztalk(z} + Tg{rain(z) (581)

For this model, both the grain and the leaves are considered point scatterers dis-
tributed vertically through the canopy layer. The particle density is determined as
nolz) = Nppa NeppP(Zetm:) where Ny, is the number of plants per unit area,Ne,, the
number of elements (such as leaves) per plant, and p(zeim:) is the pdf of the element
location in z (i.e. p{zs) for leaves). These values and thus 7o{2z) are then deter-
mined from equations (4.29) and {4.56). The stalks however, extending from the
surface to the top of the scattering layer, are considered strictly as line dipole, with
the formulation of Section 4.4.3 implemented to provide 7y {z).

However, if the plants are not uniformly distributed over the surface, but are

instead planted in row structures, determining the propagation value ty(z) is more
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density over a single row period X,o,

Xrow/2
M(z) = j’j_ o Mylz,2)de (5.83)

and use this average to compute 7y{z). If again no z dependence is assumed, this

becomes the familiar function:

z=0 dz M,z
T(z=0,2)¢.=/ S (5.84)

f‘/fd/ - -
—ztané cosd sin@; cos¢; cosb;

Essentially, equation (5.83) models the row structured vegetation as a continuous
canopy independent of variable . Figure 5.5 demonstrates the validity of this ap-
proximation, using the example density function. This approximation greatly reduces
the complexity in evaluating 7y, as it can be considered as a one-dimensional function
of just variable z only.

Finally, to provide an accurate representation of the incident intensity on a row of
piants, a final problem must be addressed. Figure 5.9 represents a periodic structure
consisting of stalk and grain elements. [t demonstrates that the grain elements and
the very top of stalks have a direct optical path to the radar. No extinction occurs
before reaching this portion of the vegetation. However, Figure 5.5 shows non-zero
extinction for all z < 0. This is due to the fact that half of the extinction due to
propagation through the center row is applied to the coherent wave af the center
row. That is, the ccherent wave encounters a portion of half the center stalks before
reaching the plane r = 0. Although this is a correct mathematical interpretation
arising from the continuity of 7y(z) (if Ty{—4) =0 and 7y {8} = 1, then 14{0) = 0.5},
it is not a correct physical interpretat'ion, The sparsely distributed elements of the

linear row greatly effect the intensity of the wave illuminating the next row, but it is
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physically suspect to assign half this effect at r = 0. For a layer with small extinction
or at large incidence angles, this error is slight. But if the counter examples occur.
then the effect is significant. A better model is to therefore consider Lhe extinction
at r = 0 to be a result of the adjacent row only.

The effect of this is that the extinction curve of Figure 5.8 is shifted to the right
by an amount =X, tan8; cos$:/2. This result has a physical interpretation; the
zero value of ry{z,z = 0) for 6 < z < —X,,, tanb;cos ¢;/2 indicates that the top
of the canopy is directly illuminated. At z = —X,,. tan b cos ¢ /2, the propagation
begins to see the effect of the very top of the adjacent row. This effect is essentially
that observed with an optical shadow, an effect illustrated in curve of Figure 5.9.

This model is thus easily implemented by first computing the values 77*%*(z) and

ff“"(z) and then shifting this value downward by making the substitution 7(z} =
76(2 + Xrow tan 6; cos ¢;/2). With this substitution, the propagation equations will

correctly account for this shadow for all four scattering mechanisms. Effectively, this

model shortens the stalk layer depth by — X, tan §; cos ¢;/2.

5.6 Conclusions

A microwave scattering model for a grassland canopy has thus been completed.
This model is an improvement on early scattering models in that it includes the
coherent scattering effects of & single plant, including the field covariances between
dissimilar scattering mechanisms and dissimilar plant elements. It accounts for the
non-uniform illumination of the plant elements, and accurately determines the scat-
tering from elements which are curved an/or have non-circular cross-sections. It

accurately determines the extinction in a layer of these long elements, including the
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scattering loss often neglected in Rayleigh formulations. Finally, the solution accounts
for the overall canopy structure, including the coherent effects of both row and uni-
formly distributed canopies. The effect of row structured canopies on the extinction
calculation was also determined.

Although this results in a model of significantly improved accuracy. it will have
little usefulness if the computation time increased proportionately. Therefore, sig-
nificant effort was placed in increasing computational efficiency. Among these steps
included reducing the number of dependent random variables by transforming them
into a new parameter space were the “randommness” of the system could be adequately
represented by a single random variable. With this method the fidelity of the struc-
ture model is preserved while its utility is increased. To determine the validity of
this model, or any model, its must be compared with a robust set of measured data,
collected over a wide sample of relevant grassland vegetation targets. The method-
ology for satisfying this requirement for the grassiand scattering model described in

this Chapter will be discussed in the next.
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the piant changes dramatically from the beginning to end. beginning as a lush, green
plant and ending as a dry, brown structure. Thus, each measurement opportunity
consisted of observing a canopy which was significantly and sometimes dramatically
different than the previous measurement. Additionally, data diversity was achieved
by utilizing multiple sensor parameters. Polarization, frequency, incidence angle, and
azimuth look angle were all variables at which multiple data points were collected.
This was facilitated by the use of the the University of Michigan’s polarimetric radar
test unit. This fully polarimetric scatterometer operates at L, C and X band, and is
mounted on a hydraulic bsom to allow for arbitrary incidence and look angles.

However, this diverse set of scattering data cannot alone satisfy the of this ex-
periment. A thorough set of ancillary data, precisely describing the grass canopy
is likewise required. Often ancillary, or ground-truth data is collected with an eye
to the parameters that are of ultimate interest to the user of remotely sensed data,
parameters which include soil moisture, biomass, and leaf area. Although important,
these parameters would represent an insufficient set of data. Instead, all parameters
which effect the microwave scattering must be evaluated and quantified, regardless

{ there ultimate significance to remote sensing users. For example, leaf curvature
and cross-section may be of no ultimate interest, but must be quantified since they
{presumably) effect plant scattering. Thus, each of these parameters was evaluated
at every test session.

The results of this experiment are presented in this chapter. A description of
the scatterometer and its calibration is discussed, along with the methodology of
ancillary data collection and results. Finally, the backscattering data is presented,
and a qualitative analysis of the results’is provided, satisfying the second of the stated

test goals. The first goal, that of validating the scattering model, wili be presented
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6.1.1 Calibration

The procedure which transforms a radar inte a scatterometer is calibration. I
correctly done, calibration maps the arbitrary magnitude and phase of the radar
measurements into an accurate representation of the scattering matrix. Much has
been written about this topic, but in regards to calibrating scatterometer measure-
ments of distributed targets, the most complete work has been provided by Sarabandi
[23, 24]. For a distributed target, t.hé total backscattered energy is the a complex in-
tegration of the energy transmitted and received over the entire antenna pattern, not
just the from the antenna boresight. In addition to the obvious variations in ampli-
tude, the relative phase and polarization likewise varies over the antenna beam width.
Since a full complex scattering matrix is desired, this variation must be accounted for.
Thus, the antenna patterns for the Michigan scattierometer were measured, not only
in terms of relative magnitude, but as a function of phase and polarization as well.
Sarabandi shows how this antenna measurement can then be used in the calibration
process to provide an accurate polarimetric scattering measurement, independent of
antenna performance.

The amplitude and phase of the antenna pattern is provided relative to the bore-
sight measurement. This relative measurement of the passive antenna element is
assumed to be constant over time. However, the relative amplitude and phase of the
radar measurement is of course not constant. The active devices, along with the long
IF cable lengths traveling from the antenna front ends to the truck, make the radar
a dynamic system, with the amplitude and electrical length of the transmit/receive
path varying as 2 function of time. This problem is made all the more difficult by the
four polarization states, each with uni;zue {but not independent) paths. Add to the

mix the problem of polarization coupling and the problem becomes quite difficult.

B



204

field, parallel to the row structures.

The testing began on May 10, 1993 and ended on July 22, when the test field was
measured just after the wheat was harvested. Data was collected on a tolal of 15 test
days, spaced any where from 3 to 7 days apart. The observed canopy was planted in
the late fall of the previous year {i.e. winter wheat), where they grew a small amount
(% 4 to 5 cm) before going dormant as the winter set in. In the spring, as the weather
grew warm, the plants emerged from there dormancy and began to grow again. A
general description of the wheat growth during the test period, as referenced to the

specific test day (date; day of year], is given below:

May 13; 133 Testing begins, the wheat plants are approximately 13 cm in height
and are very green and lush. The plant consists of a single vertical stalk of

circular cross-section, and protruding along its axis are 4 blade-shaped leaves.

May 28; 148 Plant still green and moist. Stalks are now averaging 43 cm in height.
“Booting” begins, wherein the top of the stalk thickens as the grain begins to

form inside.

June 4; 155 Grain emerges from stalk. Leaves at bottom of plant begin to turn

brown.

June 10; 161 Plant growth ends. Average plant height is approximately 85 cm.

Lowest leaf has completely dried.
June 18; 169 Grain begins to show signs of dryness.
June 25; 176 Grain element is “milky” when crushed.

July 7; 188 All leaves are nearly dried. Grair is compietely brown; no lenger milky

but still soft. Stalk showing some dryness but appears green overall.
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Parameter Value Units

Plant Density 427.4 plants/square meter
Row Density 82.7 plants/row meter
Row Spacing Xow 194 cm
x-deviation o, 1.2 cm

Table 6.2: Canopy Parameters

300 points was then determined, and from the square-root of the variance ¢, was

determined. These values are presented in Table 6.2.1.

6.2.2 Soil Surface Data

Twe parameters are sufficient to characterize the soil surface under the wheat
canopy|16], the first being surface rms height o,. If the surface height 2{p) is mod-
eled as a stationary random process, then ¢, is the square-root of the variance of this
process. The statistics of a random process can be estimated from a sample process,
and thus the surface height h was measured along a linear trace lying between, and
running parallel to, the wheat rows. This was accomplished by use of a laser pro-
filometer, a system using a modulated laser to measure a linear surface profile. This
laser is mounted on a level rail approximately 10 cm above the soil surface. The laser
is used to measure the vertical distance to the surface, and then a stepper motor
precisely moves the laser along the rail a specified increment, where the height mea-
surement is again repeated. The procedure is completely automated, including motor
control and data logging. For this experiment, a height measurement was taken every

1 em over five, 1 meter sections. One of these sample sections is ploited in Figure §.2.
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Parameter Value Units
RMS Height 8.31 cm
Bulk Density 1.34 g/cc
Soil Type Sandy Loam
Volumetric Moisture na
5/13 0.089
5/17 0.675
5/20 0.080
5/25 0.113
5/28 0.095
6/01 0.114
6/04 0.093
6/10 0.229
8/15 0.134
6/18 0.115
6/22 0.236
6/25 0.162
6/29 0.223
7/02 $.194
7/07 0.145
7/15 ¢.156

Table 6.3: Soil Parameters

latter dried and weighed again to determine M;"“. If density is expressed in grams
per milliliter, then because pyqier = 1.0 the volumetric moisture can be expressed as
M = Mypsoa.

For the scattering model however, the required parameter is not the soil moisture
but the soil dielectric. This parameters are certainly related, and Hallikainen et al.
[5] has defined this relationship as a function of specific soil type. This model was
used to convert soil moisture to dielectric for the sandy loam: of the test field. The

complete set of soil surface ancillary data is presented in Table 6.2.2.
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6.2.4 Leaf Data

Of the three plant elements, characterizing the wheat leaves were by far the most
dificult. The structure of these elements, with a complex cross-section and axial
curvature, lead to multiple, difficult measurements. Add to this the fact that there
are multiple leaves on a given plant, and thus the distribution statistics of their
location must be characterized.

In Chapter ITI, the scattering from thin cylinders with a blade shape cross-section
was considered. The polarizability tensor elements where presented in terms of four
shape parameters, aspect ratio e, curvature v, blade angle §, and cross-section area
A. Aspect ratio and cross-section are functions of leaf width w and thickness 1.
The average value of these parameters were found directly measuring a sample of
wheat leaves from the plant canopy. These values were assigned to all wheat leaves,
regardless of position. The remaining two parameters, curvature and blade angle, are
harder to quantify. The leaves of a wheat plant are basically flat, exhibiting little
of the curvature or angie that v and @ define. Thus, these values were estimated
by a direct observation to approximate the basic shape of the leaf cross-section; no
numerical data or estimate was used to determine these values.

From ChapterV, the parameters ¢, ¢z, and po where defined to specify the axial
curvature of the leaf elements. As stated in that chapter, these random variables
are correlated, and thus an entire 3 x 3 covariance matrix is required to specify
curvature. To estimate this covariance, leaves in the wheat canopy were evaluaied
by measurement of the vector (angle and distance) from the base of a leaf element to
three points spaced along this element, as shown in Figure 6.5. These three points

were then converted to (pn, 2n) pairs, and the values ¢; and ¢ defining the curvature



Figure 8.5: [llustration showing four vectors 7 which can be used to estimate
curvature parameters c; and ¢;.
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Figure 6.6: A collection of leaf models, each generated by a different value of
v, selected over the 3 o range of the variable.
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these include z;, and Apay, which respectively define the position and size of the leaf
layer; the hole-pair distribution parameter 4, which specifies the minimum distance
between any two leaves of a wheat plant; and N,y which specifies the number of leaf
elements residing on a given plant. To estimate these pa,ra,meters., the height above
the surface for each leaf on a collection of leaf plants was recorded for each test day.
The heights of the lowest and highest leaf on each plant was then used to determine
the average highest leaf location Apign and the average lowest leaf location Ripy. The
leaf layer size can then be estimated as Ajeas = Rgigh — Riow, and its location specified
as zj+d = (?z,a,-gh, — hiow), where the soil surface is located at z = —d. The hole-pair
value § is defined as the minimum distance between leal elements. Therefore, this
value is estimated by simply using the minimum observed distance between any two
leaves of the test sample. Finally, determining the the number of leaves per plant
(Nieas) is straightforward for wheat, as each plant contains 4 leafs {there is a small
fifth leaf which is located at the base of the plant, but it quickly dies and thus is
ignored). However, as the wheat plant matures, the leaves begin to die, starting from
the bottom. When a leaf loses all significant moisture, it is ignored and the leaf count
Nieqs is reduced (this also alters z;. and Qg £)-

The final required parameter is again moisture content. Estimating the volumet-
ric moisture content of wheat leaves, however, is accomplished in a manner sightly
different than described for the grain. The difficulty arises in finding the density for
leaf vegetation. Studies have shown that the dry density pif;;f for vegetation of this
type is approximately 0.33 grams/ml, and this value is assumed here[4]. Dry density
differs from bulk density in that dry density is the ratio of the dry mass to dry volume,
i.e. the volume of the leaf after drying. Since the leaf shrinks as it loses moisture,

dry density is not equal to bulk density, which uses the wet volume as a basis. Using
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6.2.5 Stalk Data

The parameters describing the position and density of the wheat stalks were pro-
vided in Section 5.2.1. The remaining stalk parameters deal with the structure and
moisture of the stalks, parameters which vary dramatically throughout the experi-
ment. The first parameter considered is stalk height {zo — d) and its deviation o,,.
These were determined by simply measuring the height of a collection of plants each
test day.

From equation {5.8), it is evident that two parameters are required to define the
diameter of the stalk as a function of height. As stated eariier, the diameter of the
stalk remains approximately constant over the length of the stalk until it tapers sig-
nificantly at the very top. Value dmg specifies the diameter ai the base of the stalk
and dmyaper defines the taper. For a given stalk, these values were estimated by mea-
suring the diameter at four points spaced over the stalk length, denoted dmpeqs{2n)
where n € {1,2,3,4}. The values dimg and dmiape, were then found which minimized

the squared error:

N 32
3 {dmmm,(zﬂ) — dimo(1 = dmiaper [£(2)/U(z = 0)14}‘3} (6.3)
n=1

By completing this procedure for a collection of stalks, the average value of dmg and
dMiigper WETE determined for a given test day.

The final geometry value required to define the structure of the stalk 18 @sai,
which defines the ilt in elevation of the stalk (Euler angle § = tan " {auqe]) Recall
the stalk is modeled as a straight element, although in reality the angle of the stalk
with respect to the vertical axis Z changes 3 or 4 times over the length of & stalk. This

angie was measured at four stalk location for 20 stalks, and the average angle Bove
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was collected as shown in Figure 6.8, with the boom swept in azimuth from an angle
of approximately -60 to 60 degrees. To insure independent scattering samples, while
still maximizing the data collected in a single sweep, the antenna footprint was moved
approximately one spot-size {L-band) radius between measurements, allowing for as
many as 100 measurements in an single azimuth sweep. While illuminating a single
spot a complete set of frequency and polarization data was collected. To provide
additional independent samples, the radius of the boom was altered, and an azimuth
sweep was again performed along a different arch. Typically 2 or 3 such sweeps
were required to measure the the more than 120 independent spots illuminated for
each frequency, polarization, and incidence angle. From these 120 measurement, as
well as the calibration, estimates for {|Syy|?), and therefore backscattering coefficient
o2, = 4n(|Syul*}/A (A is illuminated area}, was determined. Estimates for the
compiex term {555, where not found however, as relative slowness of the network
analyzer radar, coupled with the time-varying wheat target {due to the wind), made

the coherent measurement between Sy, and S, unreliable.

6.4 L-Band Data

At the conclusion of this experiment, when the data began to be processed and
analyzed, it became obvious that the L-band data was exhibiting surprising results.
The variation that was being observed as a function of azimuth was dramatic, with
significant changes from ai least -40 to 40 degrees. An example of this is shown in
Figure 6.9, displaying a more than 13 dB change from the peak at § degrees azimuth to
where it flattens out at approximately 40 degrees. The variation is similar to asinz/x

pattern, and suggests a coherent effect in the data. Another interesting behavior is
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Figure 6.9: Azimuthal response of L-band backscattering, showing a large scat-
tering lobe when the radar propagation direction is perpendicular
to row direction.

the fact that the variation is quite dependent on elevation angle. The center “lobe”
of the pattern is barely discernible at 70 degrees incidence, increases sharply (as
much as 15 dB) to a maximum at 40 degrees, and then falls off slightly at 30 and 20
degrees incidence. This is shown clearly when plotting the backscattering at ¢ degrees
azimuth as a function of incidence angle, as shown in Figure 6.10. This provides even
more evidence as to a coherent effect, as the first Bragg mode for a periodic scatterer
of period X,,, = 19.4 at the L-band center frequency is approximately 40 degrees.
At large azimuth angles such as 45 degrees, the scaitered data is out of the center
lobe and much less dependent on incidence angle. This is demonstrated in Figure 6.11,

which shows how the backscattering decreases just a few dB from 30 to 70 degrees
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Figure 6.11: Backscattering versus incidence angle at ¢; = 43, with no effect
of Bragg scattering in evidence.

incidence, in definite contrast to the data of Figure 6.10. At the peak occurring
at 0 degrees azimuth, oy, is generally larger than ons for nearly all test days and
incidence angles. The cross-pel value is significantly less than the co-pol coeflicients,
approaching 25 dB less for data at 40 degrees incidence angle. For data at 43 degrees,
the co-polarized coefficients are closer to even, with the cross-pol on the order of 18
dB less

A result of the unexpected sensitivity in azimuth angle was that the number of data
sets collected for L-band was less than the ideal quantity. One hundred twenty data
points is more than sufficient for estimating a single value of o, but for estimating an

arbitrary function of azimuth angle 0%(¢), multiple sweeps in ¢ are ideal, rather than

i
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greatly increased soil moisture and thus soil dielectric. By observing the scattering
data, we note that the horizontal co-polarized backscattering coefficient has increased
on the second day for every incidence angle. The vertical coefficient has likewise in-
creased for small incidence angles, but at large angles oy, is nearly identical for both
sets of test data. The inference derived from this data is that o}, is significantly
effected by scattering mechanisms which involve scattering from the soil surface. Re-
call there are two such mechanisms, the direct scattering from the soil surface, and
the ground bounce terms off the grass vegetation. It cannot be discerned from the
data to what extent each of these soil terms contribute. The same is true for o,
at small incidence angles, which likewise shows significant sensitivity to the change
in soil moisture. However, at incidence angles of 40 degrees and above, the lack of
sensitivity to soil moisture indicates that the scattering directly from the vegetation
dominates in this region. Thus, the distinctive convex curve exhibited by the vertical
data appears to be a result of separate scattering mechanisms; a mechanism which in-
volves soil scattering for the decreasing portion of the curve and the direct scattering
mechanism for the region increasing with incidence angle.

This interpretation is further enforced if the data is plotted as a function of test
day. Figure 6.16 shows this data for 30 and 70 degrees incidence. Comparing this
data with Figure 6.17, which displays soil moisture and wet biomass, the sensitivity
to soil moisture is apparent for 30 degrees, and at 70 degrees incidence the sensitivity
to biomass is equally apparent. This likewise is apparent when viewing the same data

in terms of the co-polarized and depolarized ratios, as shown in Figure 6.18.
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6.5.1 X-Band Data

The description of the X-band data must be divided into two groups, the data prior
to the grain head appearing and the data after the event. Prior to the grain arrival,
the data is similar to that presented by Figure 6.19. Both co-polarized coefficients
are approximately equal and approximately constant as a function of incidence angle,
with the cross-pol data approximately 8§ to 10 dB smaller. After the grain appears,
the contrast in co-polarized data I‘e;;umns3 with o}, as much as 5 dB larger. Initially,
9, still exhibits little variation with incidence angle, and o2, increases slightly with
incidence angle in a response slightly resembling the C-band data (Figure 6.20). How-
ever, as the leaves begin to dry and die, the data begins even more to resemble the
C-band data, with the horizontal decreasing and the vertical coeflicient increasing
significantly (5 to 10 dB) from 30 to 70 degrees incidence.

Plotting this data as a function of test day, the decrease in the co-polarized ratio
62, /a9, as the wheat growth progresses is apparent, particularly for the smaller inci-
dence angles{Figure 6.21). Again, significant sensitivity to the canopy parameters is
detected, with the a given backscattering coefficient changing by as much as 10 dB
over the test period. However, similar to the I-band data, is is difficult to make a
direct correlation with a single canopy parameter. The exception to this is possibly

¢, at low incidence angles, where a clear sensitivity to soil moisture is evident.

6.6 Conclusions

A significant result of this experiment is the behavior of L-band data as a function
of azimuth look angle. Although it has long been reported that backscattering changes

at specific incidence angles [31, ch. 21], this data is perhaps the first showing this
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data as a general function of ¢;. The dramatic changes in backscattering with azimuth
angle strongly suggests a coherent effect due to the row structure. This raises the
question as to weather this phenomenon can be adequately predicted /modeled by the
coherent formulation of Chapter V. It also leads to the question if the other coherent
effects modeled in that chapter, such as dissimilar element correlation, are likewise
significant in this scattering phenomenon.

The non-standard behavior of o,, in the C-band data has been reported by other
researchers [2]. The data taken in this experiment suggests that the rise in backscat-
tering with increasing incidence angle is a phenomenon which is insensitive to soil
moisture. This could only be true if the response is due to the direct backscattering
from the plants. Conversely, the data suggests that o is sensitive to soil moisture
at all incidence angles, which would occur if the ground-bounce terms or the direct
scattering from the soil is significant. The constant increase in ratio af, /oy, with
plant growth is perhaps the most interesting artifact of the X-band data, interesting
for its potential use as a potential determinant of plant maturity. The challenge now
is to determine weather the model of Chapter V likewise predicts these results, and
to infer from the model the specific mechanisms and scattering phenomenon which

lead to their occurrence.

Hy
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meric integration of a complex integrand. Add to these computations the evaluation
of the propagation parameters, canopy scattering and programming overhead, and
the final mode! required more than 20,000 lines of FORTRAN code to implement.

A major concern of any software code of this size, particularly one where multi-
dimensional numeric integration is required, is computation speed. As stated in the
introduction, the utility of this model is 2 major goa! of thie study, and the steps
to reduce and simplify the computations have been related in the previous chapters.
However, it is difficult to provide a general description of the general speed of the
program. Using a SUN sparc20 workstation, the computation of & single term can
take from a fraction of second to several days, depending on the term, incidence
angle, frequency, polarization, and numerical tolerance. Generally speaking however,
the terms which take the longest computation time are very small, and thus can be
ignored without adversely effecting model accuracy. These terms are most often the
inner product terms, where the correlation from dissimilar scattering mechanisms
and/or elements are evaluated. Unlike the inccherent scattering terms, these inner
product terms are complex, with the real and imaginary portions of the integrand
changing in a sinuscidal fashien. If the relative phase of the scattered fields varies
over multiples of 27 across the region of integration, then the integrand will exhibit a
corresponding number of sinusoidal periods. Numerically integrating several periods
of an oscillating function such as a sinuscid is computationally difficult, however,
as discussed in Chapter I, a variation of several wavelengths will result in a small
value for the integration. The inner product or coherent terms will be significant only
in the computationally simple case where the phase changes only marginally in the
integration region.

Thus, for efficient computation, the coherent terms were made optional in the
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had doubled height, but still consisted of just leaves and stalks. On June 12 the wheat
had nearly doubled in height again. and the grain head was now prominent. Finally,
on July 7, the structure was identical to that of June 10, but the plant moisture
had changed from green, lush condition of early June to the dry, brown condition of
mature wheat. It should be stressed that the data provided here is determined from
the original ancillary or ground truth data; no effort was made to “tweak” the ground

truth to better match the scattering data.

7.2 L-Band Data

The data presented in the previous chapter demonstrated the unique scatiering
response exhibited by the L-band data as a function of azimuth look angle. The
dramatic change in scattering with azimuth angle was attributed to the the coherent
effects of the plant canopy, that is the coherent effect of the plants being planted
in straight rows. In Chapter V, a formulation was presented which described the
scattering from these canopy structures when illuminated by a finite antenna pattern.
Thus, 2 major question of this section is whether this formulation can accurately
predict the scattering cbserved in the experiment. However, the most important
question of this section concerns the coherent terms of the plant. As the lowest of
the three test frequencies, L-band should exhibit the largest coherent plant scattering
terms. The question is whether these terms are significant in comparison to the
incoherent power, and whether the model can accurately predict these incoherent

terms.
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This value, however, includes all the inner product or coherent terms resulting from
the correlation between dissimilar mechanisms or elements. The difference between
this total plant power and the incoherent power is as rmuch as 5 dB. Thus, the coherent
scattering terms not only are significant, they actually are in aggregate greater than
the incoherent power.

The scattering lobe exhibited by the L-band data centered at azimuth angle ¢; = (
is wider for the measured data than that predicted by the model. This indicates that
the illumination spot-size used by the meodel is too large, resulting in a narrower
scattering lobe. Recall from Chapter V that the illumination pattern of the row
scattering formulation is a simple circular model, with uniform: illumination within the
pattern and no illumination outside the pattern. Of course, the actual scatterometer
antenna pattern is a more complex function, and selecting the spot-size for the simple
model is an arbitrary decision. The 3 dB beamwidth of the actual antenna pattern
was used to determine the spoi-size of the simple model, a selection which appears to
provide too large a value. Figure 7.6 shows a solution for May 25 where the diameter
of the spot size is reduced by half. The result is a widening of the lobe to better
match the measured data.

To provide a better data match however, & formulation is required which uses the
actual antenna pattern of the scatterometer. This leads to a major difficulty which
arises from the ccherent effects of the row siructure. Specifically, the backscattering
coefficient becomes a function of the measuring sensor. If the plants were uniformly
distributed over the surface area, then the total scattered power from an illuminated
area is proportional to the size of that area. Thus, the measured backscattering
coefficient, which is the scattering cross-section of a distributed target normalized

to unit area, will be identical for all sensors regardless of illuminated area. This
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of course is a requirement for remotely sensed data to be widely useful. However.
for the ccherent effect of the row structure, the scattering is not proportional®to
the ilumination area, otherwise the resuits of Figure 7.4 and 7.6 would be identical.
Thus, different sensors will measure different values when the row coherent effect is
significant.

Examining the scattering as a function of incidence angle is difficult, as the re-
sponse changes dramatically with azimuth look angle. Therefore, the response as a
function of incidence angle was evaluated at two specific azimuth angles, 0 and 43
degrees. The 45 degree case is shown in Figures 7.7 and 7.8, and with the exception
of May 17, shows good agreement with the measured data. These figures likewise
show the contribution to the total scattered power for each of the scattering formu-
lations. The lowest plot is again the incoherent power, with the next trace being the
power with the correlation between dissimilar scattering mechanisms of single element
added in. Note that these terms are & significant addition, increasing the power by
as much as 2.5 dB. The next plot provides the total power with the correlation be-
tween dissimilar elements included, an addition which can increase the total scattered
power by as much as 3 dB. The final trace shows the total scattered power, including
coherent effects of the row structure. Note at 45 degrees, the contribution from this
phenomenon is relatively small, although it can increase the scattered power another
dB.

Figures 7.9 and 7.10 display the scattering as a function of incidence angle when
the radar is looking perpendicular to the row structure {¢; = 0). Both co-polarized
responses, hh and vv are presented in these figures. In this case, the coherent effect
due to the row structure is the dominant scattering contributor in all but the largest

incidence angles. The Bragg scattering effect is evident, peaking at 40 degrees and
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(a)
direct ground-plant plant-ground ground-plant
-ground
direct -19.56 -31.00 -31.06 -39.43
ground-plant | -31.00 -18.30 -19.30 -34.77
plant-ground | -31.00 -18.30 -19.30 -34.77
ground-plant | -39.43 -34.77 -34.77 -36.53
-ground
(b)
direct ground-plant plant-ground ground-plant
-ground
direct -16.48 -23.96 -23.96 -31.38
ground-plant | -23.96 -11.69 -11.69 -28.17
plant-ground | -23.96 -11.69 -11.69 -29.17
ground-plant | -31.38 -28.17 -28.17 -27.41
-ground

Table 7.1: The radar cross-section (hh) of a single plant, listed in terms of the
magnitude of the 16 covariance terms associated with the 4 scatter-
ing mechanisms. Table {a) corresponds to May 17, while (b} provides
the June 10 data.
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displays again the importance, if not dominance of the correlation terms between
dissimilar elements, as compared to the incoherent power. For the June 10 data, the
size of the leaf elements are essentially the same, and thus the scattering involving
only the leaf elements are similar to the earlier data. However, the height of the stalk
is nearly four times as large, and a grain element has appeared. Thus, the stalk and
grain elements are the largest contributors to the plant scattering for this date. The
coherent terms are again a major portion of the total scattered energy, although they
are less dominant than for the May 17 canopy.

An interesting outcome of this analysis is that the model never predicts a signifi-
cant contribution by the rough soil surface, even for small incidence angle and low-loss
canopies. This is a very different result than many interpretations of grassland data
[28]. Of course, it is very difficult to make a general pronouncement, as the soil ob-
served in this experiment was relatively smooth and generally dry during the test
period, and the grass vegetation was comparatively dense. However, the extremely
small contribution of the soil surface scattering predicied from this data appears to

be a departure from many other interpretations.

7.2.3 VV Polarization

The scattering power for the vv polarization pair ({{5..]*)) exhibits the same
type of row coherent effect that was displayed for the horizontal co-polarized data.
Figures 7.11 and 7.12 again display the scattiering as a function of azimuth angle
for an incidence angle of 40 degrees. The error for this polarization can likewise be
reduced if the selected spot-size is made smaller, as shown in Figure 7.13. As before,
the difference between the coherent effect of the row structure and the incoherent

scattering power is great at azimuth angles near ¢; = 0. However, the error of the
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May 17 June 10

total -11.79 -2.35
leaf inco -18.36 -21.21
leaf cohe -40.33  -37.29
stalk inco -15.98 -6.83
stalk coho -19.93 -7.11

grain inco -10.32
grain coho -17.86
stalk/leaf | -20.90 -14.5
grain/stalk -12.23
leaf/leaf -36.83 -30.3

Table 7.3: The rcs {vv} of a single plant, listed in terms of the magnitude of
the various coherent and incoherent scattering terms.
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extinction, which seemns to be underestimated by the model. For the June 10 case, the
extinction due to the leaves causes the ground-bounce mechanisms to decrease with
incidence angle, as the increasing propagation path length attenuates the scattered
energy. However, for the July 7 iest day, the leaves are dead, and thus the grain
ground-bounce mechanism is not sufficiently attenuated with increasing incidence
angle, and the response stays erroneously flat with incidence angle.

The results of the model for hh polarization likewise confirm the general results
observed in the measured data. The measurements suggested that the scattering is
sensitive to soil moisture for all incidence angles. The dominance of the ground-
bounce term for this polarization confirms this, as the ground-bounce scattering is
directly proportional to the reflection coefficient of the soil surface. However, this
value is likewise dependent on the size of the wheat vegetation, sc that the scattering
is essentially a reflection of both biomass and soil moisture.

Finally, recall that both the cross-section shape, as well as leaf curvature, are con-
sidered in the leaf scattering model. The model data of May 17 provides an excellent
opportunity to test the importance of this added fidelity. The model data not only
matches the measured data well for this date, but also shows that the leaf scattering is
the major contributor to the response. Therefore, the data was again computed with
leaves of the same cross-sectional area, average length, and angular distribution as
before, however this time the cross-section was assumed to be circular, and the leaves
to be straight. The results are provided in Figure 7.22, and graphically demonstrate
the tremendous difference between the two cases. For the straight, circular model,
the direct leaf scattering drops by as much as 25 dB, with the leaf ground-bounce
term likewise reduced approximately 5 dB. Conversely, the stalk ground-bounce has

increased 2 to 3 dB, and has thus been moved from the least significant scattering
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Figure 7.22: The measured and modeled backscattering coefficient ¢}, at C-
band, evaluated with straight leaves of circular cross-section.

diminishes. For moderate incidence angles therefore, the scattering is attributed only
to the direct leaf scattering. Then, as the incidence angle increases, the vertical po-
larization of the incident wave begins to couple more and more into the vertical wheat
stalks, and the direct scattering from the stalk element begins to rise dramatically as
the incidence angle approaches 60 and 70 degrees.

The importance of correctly modeling the non-uniform illumination of the stalk
element is revealed in this data. If the amplitude of the incident wave on the stalk
element was determined by its value at the stalk reference (center), then the extreme
attenuation of the vegetation layer would result in little predicted direct scattering
from the stalk. With the scattering model that correctly applies the intensity of the
incident wave at each point along the stalk element, the model evaluates the scattering

from the upper portion of the stalk element which is still significantly illuminated by
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Figure 7.25: The measured and modeled backscattering coefficient ol at C-
band, evaluated when the leaf layer of May 25 is raised by 7 cm.

by observing where the leaf attaches to the stalk, although the leaf can extend above
this value by several centimeters. In a high extinction environment, this seemingly
insignificant ambiguity can make a significant difference. In Figure 7.25, the results
are again presented for the data of May 25, this time with the leaf layer location
increased by 7 c¢m. This increase, which essentially defines the leaf layer by the top
of the leaf elements, significantly increases the direct leaf scattering while reducing
the direct scattering from the stalk.

For the later test days where the grain head is evident, the general scattering
response is well matched for most incidence angles, although the numeric error is
large for the June 10 test day. The model shows that at small incidence angles, the
scattering is due to three mechanisms, the ground-bounce terms of both the stalk and

the grain head, and the direct scattering from the grain. The leaf scattering is not a
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Figure 7.26: The measured and modeied backscattering coefficient o3, at C-
band, evaluated for June 10 data with a lower shadow boundary.

To demonstrate the importance of correctly calculating the extinction, the shadow
boundary, which defines the vertical boundary the where the extinction from a given
row begins to effect an adjacent row (Figure 5.8}, is changed from a value of X,y tan 8;/2
to Xyow tan 8;. It could be argued that this is a more accurate approximation for the
high extinction cases, and the resulting model data does indeed produce a better
match to the measurements, as shown in Figure 7.26.

Finally, it should be noted that the model confirms the measured data presented
by Figure 6.15. This data suggested that the scattering at C-band is sensitive to soil
moisture at all incidence angles for ¢f,, but sensitive only at incidence angles of 20
and 30 degrees. As discussed earlier, the model confirmed the o}, behavior, and this
section has likewise demonstrated this for the vertically polarized case. The model

showed that the ground-bounce scattering mechanism is significant only at 20 and 30
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is reduced while the Ah data increases with the decreasing attenuation of the long,

ground-bounce propagation path.

7.4.3 HYV Polarization

Determining the cross-pol component for X-band with the numeric model turned
out to be preblematic. At incidence angles greater than 50 degrees, the model takes
a prohibitively long time to compute the data. Figure 7.33 shows data to 50 degrees
for the two early test days. As with the other frequencies, the model under estimates
the cross-pol data, by an error of as much as 5 dB. The main cross-pol contributor for
these cases is shown to be the direct leaf scattering, although this clearly is insufficient
to explain the measured data. As before, the cause of this erroneous data could be

the lack of second-order scattering mechanisms within the model.

7.5 Conclusions

The L-band data demonstrated the importance of the coherent effects on the over-
all accuracy of the scattering model. Not only was the correlation between dissimilar
mechanisms and elements important, but the correlation between the plants of the
row structure where shown to dominate when the incidence propagation direction is
nearly perpendicular to the rows. The incoherent scattering alone was shown to be
inadequate to correctly predict either the magnitude or the behavior of the scatiering
at L-band, especially for hh polarization. Additionally, the Bragg scattering model
for periodic row structures was shown to be quite necessary to adequately predict the
scattering from the wheat canopy.

For the C and X-band data, the coherent terms were not significant, and thus only
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the incoherent scattering was evaluated {with backscattering enhancement). For the
hh data where the grain head was not present, the model provided an excelient match
to the measured data. However, the grain scattering model used for this formuiation
was apparently insufficient for at least the hf polarization, as the maodel did not fit
the measured data particularly well for the days where grain elements were present.
The match to vv data was mixed, with the errors attributable t¢ the breakdown of
the Rayleigh approximation at high frequencies, grain model error, and errors in the
extinction formulation which occur for extreme attenuation cases. Additionally, it
was found that generally the low attenuation of the hh polarization resulted in a
sensitivity to the soil moisture, whereas for vv the backscattering is independent of
soil moisture for all but the smallest incidence angles.

Another important result of this chapter is that the scattering from the rough
soil surface was found to be insignificant for all frequencies, polarizations, and inci-
dence angles. However, perhaps the most significant outcome of this chapter is the
dernonstration of the importance of the shape, in addition 1o size, of the vegetation
elements. Although the structure of elements such as the leaves are often simplified,
the model suggests that this can have a tremendous effect on the accuracy of the

model.
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s not extreme.

However, to determine the polarizability tensor elements required for this formu-
lation, the numerical solution of a set of integral equations is required. The time
required for this numerical computation would significantly Iimit the utility of this
foermulation, and thus in Chapter III a method for providing the same electromagnetic
accuracy at far greater speed was determined. The cross-section shapes encountered
in grass canopies are far from arbitrary, generally being either circular or the “vee”
shape of a grass blade. Just as a circular cross-section can be defined with a single
variable (radius}, the general shape of a blade cross-section can be parameterized
and defined with a set of variables. In Chapter 111, this was accomplished using four
variables. By limiting the values of these variables to those observed in nature, a
parameter space was therefore defined and bounded. The numerical solution for the
polarizability tensor elements was then evaluated a points throughout this bounded
space, and the results where used to derive a polynomial approximation relating the
blade shape parameters to their polarizability tensor elements. This approximation
provides an accurate evaluation of the polarizability tensor for arbitrary blade shapes,
but provides also the answer in a fraction of the time required by the numerical so-
lution. In this manner, an element scattering model with great fidelity and accuracy
was implemented without harming model utility.

Thus kaving an accurate scattering model for the elements of a grassland canopy,
the next step was to determine the scattering from a collection of these elements
above a soil surface. Since a vegetation layer attenuates the incident wave as it
propagates through it, the general problem was to determine the scattering of a line
dipole element in an extinction layer above a dielectric (soil) half-space. For a number

of reasons, radiative transfer is not applicable to grass canopies, so instead a discrete

%.
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A clash between accuracy and fidelity again occurred when considering the scat-
tering from the leaf element. The arbitrary curvature of the lcaf is considered, but the
three random variables used to define this curvature lead to expected value operations
with prohibitive computational length. However, it was recognized that these three
parameters are correlated, and therefore by performing an eigen analysis on their
correlation matrix, the three correlated parameters can be transformed into a new
parameter space consisting of independent variables. The variable associated with
the largest eigen value will effect the curvature of the leaf the most, thus the other
two variables were set to their mean value while the expected value integration is per-
formed over the remaining single variable. In this manner, the fidelity and accuracy
of the model is again mostly preserved without adversely affecting model utility.

In addition to the coherent effects which occur between elements, the scattering
from the individual plants of a canopy can be significant. This is especially true
for row structured canopies, where the periodic vegetation can lead to Bragg effects.
Therefore in Chapter V the coherent scattering from this vegetation was likewise
determined, in addition to a formulation for the extinction associated with these row
structures.

To validate this model, an experiment was conducted in which polarimetric back
scattering data was coliected for a wheat field over its entire growing season. To pro-
vide a wide range of data, measurements were taken at L, C and X band frequencies,
as well as incidence angles from 20 to 70 degrees. In addition, an extensive set of
ground-truth data was measured for each test day. The measured data showed that
at L-band, the scattering varied greatly over a wide range of azimuth angles. Addi-
tienally, the scattering peaked at around forty degrees incidence, and then dropped

precipitously as incidence angle increased. Another scattering behavior much differ-

.',,g
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at high frequencies) was significantly reduced when the grain elements were present.
Therefore, it is recommended that a better formulation be developed and tested.
Additionally, the dielectric values for these elements should be determined across fre-
quency, as the starchy material exhibited by grain elements may not fit the El-Rayes
dielectric formulation, and thus could alsc be a source of model error. Another prob-
iem which should be addressed is the improvement of the extinction approximation
for row structures. Perhaps an approach such as that used by Whitt [36] <ould be
implemented, where a periodic canopy was evaluated by implementing a Fourier se-
ries. The opportunities for improving cross-pol are uncertain, generally this is done
by adding second-order effects, but a second-order, coherent scattering moedel would
be prohibitively complex. Finally, it is recommended that the data be taken on a
simpler vegetation structure than wheat. Specifically, one with ne grain element, no
row structure, and no thick stalks. This would allow for greater examination of the
main theory of this work, and would replicate more closely the non-cultural grass

canopies found on the earth’s surface.
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