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. CHAPTER 1
REMOTE SENSING SYSTEMS

This thesis presents an image proccssing_tcchriiquc applied to remote sensing data.
Remote sensing commonly refers to the remote monitoring of the atmospheres and
surfaces of planetary objects, with special emphasis on earth observations [74]. A
fundamental use of n:mbtc sensing is in the classification aﬁd extraction of information of
land surfaces.

Ih classification, images from remotely sensed land surfaces are segmented into
regions, and the surface type of each region is idcnﬁﬁed. For example, surfaces can be
classified as cultivated, forésted, pasture, urban, or water-covered using synthetic
aperture data [11], and as.descrt, jungle, wet, snow-covered, and ice-covered using
passive microwave data [3,38). That is, élassification is a detection process where
algorithms detect changés in surface types, and locate boundaries between surfaces.

In the extraction of information, the characteristics of surface regions are inferred
from remotely sensed data. For qulé, mﬁo&ly sensed data can be used to estimate
snow depth [16,46], the cxicnt of surface vegetation [19,33], gnd soil moisture content B
[42, 57,64]. That is, the extraction of surface information is an estimation process where
surface information is inferred from previously classified surfaces.

This thesis is concerned with surface classification on the basis of the state of soil

moisture (i.e., frozen ys thawed tcrram) Soil moisture contributes to the energy

- exchange between the air and ground through latent heats of fusion and vaporization.



Whether as boundary conditions for mesoscale climate modelling, or as inputs to an
agricultural productivity model, the amount and state of soil moisture are regional
paramecters that one would like to determine through satellite remote sensing. There is.a
lafge body of literature that addresses the estimation of soil moisture from passive
remotely sensed measurements [9,12,14,38,42,57,62-64,79]. In this thesis, we infer
moisture state from passive satellite measurements, and classify frozen terrain in the |
northern Great Plains. ‘Data used are obtained from the Nimbus-7 scanning multichannel

microwave radiometer satglﬁtc.

1.1 Passive Microwave Measurement Systems

The remotely sensed data considered in this thesis are thermally emitted,
microwave energy of a surface. The systems used to measure these emissions are called
radiometers. The amount of energy emitted by a surface at a given frequency can be: |
represented as a brightness temperature. The microwave brightness temperature, or
radiobrightness, of a surface has the units of Kelvin and is defined as the physical
temperature of an equally briéht bladkbody radiator. Anideal surface (i.c., a perfect
radiator) would have a radiobrightness equal to its physical temperature. The ratio of
radiobrightness to physical temperature for a real surface ranges between zero and one,
and is determined by the electrical and geometrical properties of the surface. A more
detailed treatment of radiobrightness is given in chapter 4.

Radiometers cannot measure radiobrightness directly, but measure gntenna
temperdture instead. Antenna temperature represents the total received energy atthe
output of the radioineter antenna, and includes the effects of atmospheric emissions, |
atmospheric attenuation, surface reflections, radiometer antenna bcamshapc and ohmic
losses, as well as surface emissions. The antenna tcmpcrathre of a radiometer pointed in

the direction (8,,9,) can be expressed as [74],



‘ A x '
‘T,.(e,.¢,,x)=~i-,—fdefd¢sineTA,(e.¢;x)F,(e.¢;e,,¢.,,x) (L1)
o ‘0 _ .

where A is the receive wavelength of the radiometer, A, is the (constant) receiving area of
the radiometer antenna, Tas(-,.) is apparent temperature, and F,(.,.) is the normalized
radiation pattern, or antenna pattern. The spatial variables € and ¢ are radiometer
centered, spherical coordinates (Figure 1.1). The apparent temperature, T,»(6,¢,A),
represents the total received energy at the i'adiomctcr antenna aperture, at wavelength A, |
along the direction (0, ¢). The apparent temperature includes terms that account for
atmospheric effects, surface reflections, and surface brightness. The radiometer antenna
pattern is normalized with a peak value F,(0,0) = 1. A more detailed discussion of
apparent temperature is also given in chapter 4.

At the relatively low frequencies considered in this thesis, atmospheric effects and
surface reflections are ignored'. As a result, apparent tcmpcrature is approximately the.

brightness temperature,
TAP(et ¢;R') i TB(G, ¢;l)’

and (1.1) can be written as,

» AF 7
T,,(G,,¢,,k)=x5fd9fd¢sin9T,(6,¢;7L)F,,(9, $:8,,0.,) 12)
0 0 '

1 See [74] for a more detailed treatment of . atmospheric effects.



V4

Figure 1.1. Radiometer-centered, spherical coordinate system.

For narrow-beam antennas, (1.2) éan be approximated by a convolution integral. |
Consider a radiometer antenna with a beampastern F,, (o, B;A), where angles o and P are
taken with respect to beam-center (Figure 1.2). By approximating narrow-beam antennas

as having limited spatial support, (1,2) is written as,

T.(0,,0,,A) =
8,+D,  ¢,+D,

=£§ f de f d¢sin6T,(9,¢;x)F,,(e-e,,(¢-¢;)sine;,;x). (1.3)

8,-D, 4,-D,

where the limits of integration, D, and D, are determined from the beampattern
Foo(e, BiA), and 6, » D, > 0. We further assume 6, +D, < 12 so that Ty(8, ¢;.) is
determined solely by surface emissions for all (6,¢). We define offset angles T and p by,



6=9,+1
o=¢,+p,
and,
6,»D,=0,»1,1¢ [-D,+D).
Thus,

-~ sin(B, +1) = 5sin@, +tcos 6, = sin6,,

and (1.3) can be re-written as,

T,6,,0,,M) =
e +D
_sin ,A, f it J' dpT,(0, +1,0, + pAE (5, ),
-DP
for,

F (t,p;\) =F,(t,psin6,:A).

(1.4)



,,,,,,,

Z

Figure 1.2. Radiometer beampattern.

In (1.4), T, is approximated as a convolution in spherical coordinates. To express
T, as a convolution in carteasian coordinates for a satellite at altitude H above a planar

surface, a variable r can be given by (Figure 1.1),

r =H tan$,
50 that for small 1,
Huwan,+t)=r,+0c
where,
r, EHtanG,

c=Htanx.



As a result, (1.4) can be written as,

' TA(’,;"g:l) =
+D

_sin 0.4, J: dpTy(r,+ o, 6, +PiMF (0, piA)

+D, :
J‘ dc
A2 S H(A+(r/H %)

pr fdpfa(r,m, O, + PN (0, M),

-5

2n s D, 4D,
cos“0,sinQ,A,
= 3 J‘ do
A 2,

where,

To(r,+06,9, + piA) = T,(tan‘”‘(r° ; 6), o, + P;l)

ruaparnt fur{2)0)

D, =HtanD,.

(1.5)

The radiometer data considered in this thesis is obtained from a satellite that can be

modelled as forward-looking with a fixed incidence é.nglc (i.e., 0, and r, are constant),

narrow field-of-view, and platform motion in the forward (i.e., x) direction. As a result,

we have,

X=r

¥y =r,9,

so that (1.5) can be approximated as,



TA(xgi Yo! 7") =

D, D 5 (v E.
oo O A [ ay ,r %Tn[x, 2 : m)F.,(;;,, 'l)' (L.6)
=D, _‘Di
where,
xo = ra
D =D,
and,
Yo BT ,0,
D,=rD,.

In the convolution integral of (1.6), variations in y, are produced by the scanning of the
radiometer antenna in the ¢ direction, and variations in x, are produced by satellite |
motion in the x direction.

Two-dimcns_ional antenna pattems are usually modelled as circularly symmetric or
separable into products of onhogoﬂal, one-dimensional j)attcms. As a result, antenna
patterns are either given as F,((K, sin 8)/A), for circular symmetric patterns, or by
Fo((K,, sina)/A), (K, sin B)/A)), for separable patterns, where K_, K., and K, are constants
and (Figure 1.2),

tan¢ = cosdtano

tanB =sin¢tanB.

In the case of narrow beam antennas,



sina=q¢
sinB=p

sin8=0=(c*+p?)

and the antenna patterns are given by,
_(K,sinB) o} (8 2]"’
F I=F - o4

55

or,

=F

AT A

F K, sina K, sinp
N AT A

By substituting either of these antenna patterns into the narrow-beam antenna

temperature expression (1.3), the filter kernel in (1.6) becomes,

Fulbi)_1.(18
A2 2T WA

for some function F(.,.). Asa result, (1.6) can be writte_n as,

D, 4D : }.(_ 8) o
Ty Yo W) = C f dyfd&rr(x,+«,, ¥, +8A) ;,”‘ , (1.7
D, -D, _ '

where 7., .;A) is a function derived from the radiobrightness T5(., ;A), and Cis a constant.
In the case where the radiobrightness is independent of A (i.e., T(., ;A) = T(.,.)), the filter
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output is said to be a linearly-scaled with respect to wavelength. Thatis, 3 is lincarly
related to the equivalent low-pass spatial bandwidth of the antenna. Equivalently, there is
an inverse relationship between the antenna resolution and wavelength. The importance
of such a linear scaling property is seen in the scale-space filtering developments of

chapter 2.

1.2 Data Fusion and Multiresolution Systems

The spectral characteristics of surfaces are fundamental parameters in the
classification of surfaces using radiobrightness. For the fixed altitude, constant incidence
| angle radiometer considered in this. thesis, the radiobrightness of a surface is a function of
frequency and surface composition. That is, a surface of a particular composition will
have a uniqué specti'al response, and sensors that measure surfaces at multiple
frequencies are used to estimate the spectral charactcﬁstics of surfaces [35,40]. R_egiqn
classification can be performed unambiguously using such mulrisﬁectral processing if the
spectral response of each region is uniqﬁc for the combination of frequencies used. |
Multispectral systems are a sub_set of a class of systems referred to as multisensor or
multisource systems. These systems are the subject of much current research in computer-
vision and remote sensing, under the heading of multisensor or multisource data fusion
(c.g., see [43,61,66,80]). Multisensor systems, as used in remote sensing systems,
geologic exploration, nuclear mcdicinc. and iobotics, process signals from a variety of
sensors to classify regions within the sensed enﬁronmcnt. As with multispectral systems,
classification is unambiguous for multisensor systems if the response of each region is
unique for the combination of sensors used.
Thc performance of multisensor systems is limited by the response properties of the
" individual sensors, as well as by our ability to integrate information across different |

classes of sensors. For example, antennas, cameras, or acoustic afrays have point spread



D

11

functions (PSF’s) that limit the resolution of the sensor systems that use them. The
resolution of a sensor affects the accuracy with which regional boundary or "edge"
informatioﬁ can be extracted. The rclatibnship between sensor resolution and system
performance is further complicated in multiresolution sensing systems, where systems
integrate information across sensors with different PSF’s. |
In multispectral sﬁstcms, data from M sensors are integrated, whére each sensor

operates at a differcnt (center) frequency [58]. In these systcins, each sensor is scanned
over a surface, and the output signal of each sensor is a function of spatially varying
radiation intensity of the surface and the PSF of the sensor. Because surface radiation
imd sensor PSF’s are fuﬁctions of frcqueﬁcy (section 1.1), multispéctral (classification)
systems are also multiresolution systems. |

. In present data fusion research, effects of PSF (resolution) differences between

sensors on (mulu'resoluﬁon) system performance are addressed in two ways. One

| approach is to assume that all sensor PSF’s are adequate for the job-at-hand, and are not

the limiting factor in system performance [8] (i.c., PSF differences are neglected). A
more common approach is to incorporate the effect of PSF differences indirectly through

"uncertainty” functions, which differ from one sensor to another. These functions,

~ assigned one per sensor, reflect the measurement uncertainty at each sensor, and have the

forms of probability.density functions [23,48], belief functions [69,71], or fuzzy
menibcrship functions [1]. In using these uncertainty functions, the measurements from
all sensors are processed directly, and components common to all sensor measurements
are estimated. These common components are thch related to characteristics of the
environment being sensed. The effect of PSF variation between schsors is to reduce the
amount of information common to all sensor measurements. This thesis ¢ohsidcrs an

alternative approach that first maximizes the information common to all sensor
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measurements, by compensating (equalizing) the PSF’s of all sensors prior to multisensor
system processing, and then recovers information that may have bﬁcn lostin
compensating the PSF’s. |

A model of a general mul:ireéolution systemn is shown in Figure 1.3. In the figure,
the input signal vector I(K(x)) frdm_a sensed region is measured by M different sensors.
Position within the s::ns_cd environmént is denoted by the independent variable x, and

K(x) is the vector signature (response) of the environment at x,

-kl(x)-
ky(x)
K(x)=

| Ky (%)

The j® sensor input, ij(k(x)), is a measurement of the j® component of I(K(x)), and is -

dependent on the j*® component of K. The ideal (i.c., noiseless) output, 1(k;(x),s)), of the

j® sensor is dependent on kj(x) as well as the sensor msolution, 5;(x). Uncorrelated noise

in the j® sensor output is shown as n. The goal of the system is to estimate the signature,

K(x), on the basis of measurements from the M sensors. In the case of multispectral

| processing, i,(k(.)) is the surface radiobrightness at wavelength A, and 5(ki(.),8;) is the

corresponding antenna temperature.

In Figure 1.3, direct processing of the outputs r(k(x),s;) produce ambiguous
(uncertain) signature estimates. That.is, differences in k(x) between sensors can generate
an identical K(x) as that generated by differences in s.. To eliminate the ambiguity, and
increase the common components in the sensor measurements, sensor outputs are |

resolution compensated (pre-processed) so that PSF differences between sensors are
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-equalized prior to signature processing. The inputs for signature processing are then,

resolution.

effectively, the outputs from sensors having identical PSF's, at some pre-determined

Sensor
input

iy ey ()
e

Sensor 1

§ Belky(x)) -
e

SenSor M

| Sensdr
- Output

n

QRS | Processor

Output

y x>

Processor

Ry
e (kag (%), Spr) *

%

- Figure 1.3, Multiresolution system.

One common approach practice in multispectral processing is to'compcnsa‘te sensor

PSF’s to the coai'sgst-resoluﬁon sensor, and perform spectral signature processing at

coarse-resolution [32}. Subsequent to spectral signature processing, regional boundary

estimates are obtained at coarse-resolution. Such boundary estimates are non-parametric

(no modelling is needed), but the resulting resolution degradation can produce significant

localization errors in boundary estimation. In a second approach, sensor resolution can

be compensated to the PSF of the ﬁncst—rcsolqtioh sensor, and regional boundaries

estimated at fine-resolution. Such resolution compensation is performed through .
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model-based estimation techniques, such as linear programm_ing [53] or ARMA
estimation [47]. However, the estimation accuracy of these techniques is strongly
dependent on modclliné accuracy and on the global applicability of a single model. In
remote sensing, globally applicable surface models do not exist. Alternatively, we note
that when measurement differences between sensors are modeled exactly by differences
in PSF (i.e., there are no signature differences between scnsdrs), the multiresolution
data-integration problem reduces to a problem for which scale-space filtering
[76,77,84,85] can be used. This suggests that scale-space filtering can be adapted for
signature processing in multiresolution systems. That is, by applying scale-space
filtering to the resolution-degradation approach above, fine-resolution boundary

information may be recovered.

1.3 Thesis Overview

The thesis describes a scale-space approach for boundaq estimation with
multiresolution systems. This approach is applied to multispectral processing in remote
sensing, and the localization of freézclthaw boundaries in the northern Great Plains using
SMMR data. | |

In chapter 2, the s_tandard results of scale-space filtering Iare first reviewed.
Extensions are derived that allow the standard scale-space results to be applied to more
general multiresolution systems. Some, but not all, of these results are used in the
multispectral application that folldws. _

In chapter 3, scale-space results are applied to boundary estimation in
multiresolution systems. A technique for boundary estimation téchnique is proposed, and
the migration of boundary estimates are shown as a function of resolution. It is shown
that bbundary estimates made at coarse resolution can have significant localization errors.

A modification of the estimation scheme is presented which is derived from scale-space
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filtering and can mitigate the localization errors. Limitations of this approach are also
developed. Both the boundary estimation and migration problems are posed with respect
to 1-D contours along a 2-D surface. That is, wé develop 1-D theory assuming that 2-D
surfaces can be projected onto 1-D contours with minimal loss of information, More
general 2-D estimation results are also developed.

Inthe chapt'et.4, we develop the multispcctral processing used for identifying froicn
and thawed terrain in the northern Great Pléins. We review aspects of passive microwave
remote sensing, and develop a multispectral algorithm and decision criteria for surface
classification. |

In chapter 5, boundary localization is applied to the mulﬁspcctral classification data
of chapter 4 The results of boundary localization are shown and discussed relative to
local ground data measurements. |

Chapter 6 presents summaries as well as discussions of future work derived from

results of the dissertation.



CHAPTER 2
SCALE-SPACE: REVIEW AND EXTENSION

- Scale-space filtering was inti'oduced in the early 1980’s as a technique for signail

| analysis over multiple scales [4,76,77,83,84]. The origins of scalc-space filtering lic in the

edge detection concerns of computer vision. Since its introduction, numerous papers on the
theoretical application of scale-space filtering to problems in computer vision have been
published (e.g., [7,20,41,45,49,60,75,78,81,85]). The potential success of a scale-space
approach to these problems has been tempered by questions of implementation. Forexample,

Lu and Jain [51] consider the use of Gaussian filters with finite spatial support. Schunck

~ [65] ‘and Lindeberg [49] consider effects of filtering scale-space processing of discrete,

rather than continuous, images.
In this chapter, we consider the application of scale-space processing tomultiresolution
systems that use function-crossings and non-Gaussian filtering. We develop our results for

the case of 1-D signals, and extend them to the 2-D case.

2.1 Scale-Space Filtering

'2.1.1 The Original Development

As developed by Witkin [76,77] and Yuille and Poggio [84,85], scale-space theory

descri-bes the effects of filter scale, s, on funcﬁon# e(x,s) of the form,

e(x,s)=L{r(x,s)}, |

16
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where L{.) is a linear, differential operator and r(x,s) is the output of a linear shift invariant

(LS) filter, k(x,s), with input signal i(x),
r(x,s)=h(x,s)*i(x).

In general, X is any continuous, M-dimensional independent variable, but we restrict our
consideration to 1-D and 2-D cases. No r_csl:rictions are placed on the filter input, i(x), which
is an arbitrary function of x. The LSI filter, h(x,s), is modeled as a family of spatial filters
parametrized by the filter scale, s, where s is inversely proportional to filter bandwidth. The
dependence of filter and operator outputs on filter scale is explicitly represented by (x,s)
and e(x,s), respectively. |

In standard scale-space theory, those x which satisfy
e(x,5)=0 o 2.1)

indicate positions where the Laplacian of the filtered signal is zero (i.e., L{.} isthe Laplacian
“operator), the x-s (hyper)plane is the scale-space, and the function e(x,s) is the scale-space
image. The resulting (x,s) zcrb-crossing contours are referred to as fingerprints, due to the
similarity of the shapes of these contours tb the loops and whorls of human fingerprints.
Scale-space theory establishes conditions under which all zbro-crossings in e(x,s) are
directly related to the cho-crossmgs of i(x), whﬂc minimizing the number of zcro-crbssings
of i(x) that are éliminatéd by the Smobdzing effects of h(x,s)". Yuille and Poggio [84,85]

formalized these conditions over variable scale by requiring that the number of

1 These two conditions were examined from the sténdpoint of regularization by Torre
and Poggio for a fixed scale [72] where it was shown that the Gaussian kernel satisfied
both conditions for the Laplacian operator. : '
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zero;crossings df e(x,s) increase monotonically as s Varies from oo (zero filter-bandwidth)
to 0 (infinite ﬁltcr—bandmdth) They showed that three criteria must be met for this

monotonic increase in zero-crossings with decreasing scale.

- {8S1} The filter impulse response h(x,s) must satisfy the following constraints:
{SS1a} h(x,s) is linear and shift invariant so that the definition of
r(x,s) is valid, -

{SS1b} h(x,s) may be written in terms of another linear function p(.)

1
k(x,s)=;;;P(‘§).

where x is M-Dimensional, so that the Fourier transform of

as,

h(x,s) is a linear function of scale with a d.c. response that is

constant over all sc_alc,

{SS1c} lim k(x,5) = §(x),

.so that i(x) is exactly recovered as s approaches 0,
{SS1d} the center location of h(x,s) with respect to x is independent
of s so that the value of s does not effect the sﬁatial position
of h(x,s),
{SSle} lim h(x,s)=0and | h(x,s) [< e for all 5 sO that h(x,s) has

{X|dee
bounded volume.
{852} The first and secand derivatives of e(x.s) exist at all extrema. This

condmon holds for a continuous filter 1mpulsc response by virtue of the implicit

function thcorem
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{SS3} No extrema of fingerprints are minima. 'To enforce this condition for the
1-D case of 'x=x, it is sufficient to constrain the Scale-space image, e(x,s), such

that,

e(x,s)=0 and e/ (x,s)=0
implies
-em(x,-S)<
e x,s)

where,

de(x,s)
e,(x.,-v) =

d’e(x,s)
axz

e;(x,s) =

e;(x,s) Eie%cv_,s_).

~ In the 2-D case of x=(x,y), the scale-space image is constrained such that,

e(u,v,s)=0 and e (u,v,s)=¢,(u,v,s)=0,

implies,
;—e,,“(u,v,.v:)<0 and -e,,(u,v,s)<0.
e (u,v,s) e,(u,v,s)

where u = (i, v), and the u and v axes are taken along the directions of principal

curvature in the (x,y) plane; u is a vector _rotation x [37).
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Given these three (_:riteria, the uhiquc class of filters h(x,s) that guarantees a monotonic

increase in the number zcro-crossixigs with decreasing scale is the Gaussian [4,84,85),

(1 YV e
h(x,s)z[m]"e gl Il)z’

where M is the dimension of x (M=1,2), and k is a constant. As a result, the fingerprints
for a Gauss-Laplacian operator are smooth, continuous curves, and fingerprint extrema are
never minima. Such fingerprints exhibit, what we call, an embedded structure with respect
to scale. Figure 2.1, depicting fingerprints for 1-D x, illustrates that these fingerprints have,

at most, a single extremum per contour, and that these extrema are maxima,

S Scale

P

‘X Position |
- Figure 2.1. Scale-space fingerprints having embedded structure for the 1-D case.

Given the general multiresolution case in which the kernel violates the Gaussian
assumption, we wish to know if is it possible to relax the condition on L{.} and/or the

zero-crossing condition without severely restricting the utility of the scale-space analysis.
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Relaxation of the conditions on L{.} has been addressed by Yuille and Poggio {84,85] and
Babaud et. al. [4] under the condition of Gaussian kernels. They show that standard
scale-space results genci'alizc to any operator L{.} that is a linear combinaﬁon of
integer-order differentiators. Furthcr; Yuilleand Poégio note that the zero-crossing criterion
can be relaxed to include arbitrary level-crossings, and Geiger and Poggio [34] apply
level-crossing to stereopsis. In this bhaptcr, we consider scale-space analysis in greater

detail for arbitrary function-cfossings, and then address the issue of non-Gaussian kernels.

2.1.2 Remarks
Similar to Yuille and Poggio [83,85], we are interested in 2-D Gaussian scale-space

filters, h(x,s), that are rotationally symmelric and, therefore, separable in the (x,y) plane.
Because of the advantages afforded in filter implementation and signal analysis, séparability
of 2-D filters and images are often assumed in image analysis {e.g., 2.24, 2.25]. Moreover,
many remote sensing systems can be approximated as separable (chapter 1), and we exploit
the advantages of filter separability in the development of this chapter. We note, however,
that rotationally asymmetric Gaussian filters can be mapped into symmetric Gaussians, so -
that little generality is lost by assuming rotationally symmetric filters. |

A second remark concemns the effect of noise on scale-space filtering, where noise is
the uncertainty between a filter ';nput signal, i(x), and attributes of the object which generates
it. Such noise can be treated as sensor noise, shown as n, for the i® sensor in Figure 1.3,
and, for the purposes of scale-space ﬁltcring, is a component of i(x)*. For example, a "noisy"
step—cdge in computer vision is an ideal step-edge of image intensity with additive Gaussian
noise [13]. Such edge noise could be introduced either by measurement uncertainties of the
Sensor or by imperfections in the underlying step-édgc. The position of the underlying |

step-edge might be estimated by taking either first or second derivatives of i(x), and locating

2 The scale-space filter, h(x,s), is assumed to be noiseless.
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extrema of first derivatives or zero-crossings of second derivatives. The effect of the noise,
however, is to produce extrema, or zero-crossings, that are not associated with the location
of the edge. Thus, i(x) must be processed (regularized [72]) in concert with differcntiatipn
to estimate the ideal step-edge location. |

The requirements for Gaussian scale-space filtering were originally develop_ed
deterministically. That is, the effects of noise were not explicitly considered. However,
the edge detection work of Canny [13] and Torre and Poggio [72] showed that Gaussian
filtering is nearly optimum for edge detection in the presence of noise. In this chapter, we
also develop scale-space filteﬁng results deterministically, and appeal to [13] and [72] to

assure minimal degradation of system performance for signals in the presents of noise.

2.2 The Fun.ction-Crossin'g Problem

Consider the case of an input signal | ,
ix)=ax)+nx) 2.2)

where a(x) and n(x) are the "known" and "unknown" componénts of i(x), respectively. For

such a signal and L{.} =I{.} (I{.} is the identity operator), the fingerprint of the unknown

component are derived from the expression,
h(x,s)*n(x)=0, 2.3)

provided n(x) can be extracted from the input signal i(x). Alternatively, the fingerprints of
(2.3) can be approximated by fingerprints derived from,

h(x,5)*i(x) =‘£(x,s)*a(x) _ 24
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where £ (x, s) is an estimate of the impulse response bf the scale-space filter h(x,s). The use
of a "good" estimate of h(x,‘s) will result in a close match between the fingerprints of (2.4)
and those of (2.3). However, this may present problems in thosé multiresolution systems
where h(x,s) is not accurately .estimated for all sensof classes. Moreover, a(x) may also bé
estimated, and (2.4) have to be re-calculated for numerous a(x) .estimates. Thus. we consider |
alternative approaches for approximating the scale-space fingerprints of (2.3).

One such approach approximates the fingerprints of (2.3) by fingerprints derived from,
h(x,s)*i(x) = d(x) @3

where 4(x) is an estimate of a(x). That is, the true fingerprints could be approximated by
fingerprints based on crossings of the function d(x). The extent to which this approximation
holdsis reflected, in part, by whether the fingerprints of (2.5) satisfy the standard scale-space
 properties, as reviewed in §2.1.

Appendix A presents a somewhat different, more general derivation for the conditions
under which the embedding property of fingerprints is met exactly. Includcd.arcthc cases
ofa genéral function-crossing and an arbitrary linear operator O{.}, rather than L{.}. These

conditions are summarized by (2.6a), (2.6b); and (2.7),

%Kx)+£;~'y'(x)+c‘y”(x)-cm’-§¢0 (2.62)

for e,(x,8)=1,

-;iz'y(x) +§7'(x) +cy"(x) +_cm2 +-§ #0 | (2.6b)

for e,(x,s)=-1, and




—h(x s)+ —-h(x, s)+ch (x,5)- h (x s) 0. 2.7

That is, embedded structure exists if (2.6a), (2.6b), and (2.7) are satisfied, where ¥(x) is a
desired threshold ﬁmctibn, e(x,s) is given by .

e(x,5)=0{h(x,5)*i(x)},
m is an arbitrary constant, and constants a, b, ¢, and d are to be determined.

2.2.1 Analysis

Equation (2.7_)‘can be solved as a gencralizcd heat equation (d # 0) [84,85], resulting

in constraints on the coefficients,

a=b=0
| cd>0,

and a Gaussian filter,

h(x,s ) (W) '%(5)“"”. - @28

s

From (2.6a) and (2.6b), the 'coefficicnt constraints require the threshold function, y(x), to

satisfy,

c'y”(x)-cm’--g—ato for e (x,s)=1 (2.92)

cy”(x)+cm? +-f- 20 for e,(x,s)=~1. | (2.9b)
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For y(x) to satisfy (2.9a) and (2.9D), it is necessary that,

Y"(x)<0 for e,(x,s)=1 \ (2.102)

¥(x)>0 for e,(x,s)=~1. ~ (2.10b)
However, obtaining a general function y(x) that satisfies (10a) and (10b) for all input signals,
i(x), may be impossible.

To obtain a function y(x) that Satisfics (2.10a) and (2.100), and is ixidcpcndcnt of i(x),

the sign of e,(x,s) must be independent of s. Expressing e,(x,s) as,

5= 52 0] [h0.00tx-n])

- [|200.]ot-mma.

a Gaussian h(x,s) yields,

e,(x,5) = J[(g] (y/s)* - ‘]( m}’%(:)wo{i(x -y)}dy. (2.11)

s

Thus, ¥(x) is independent of s only if the sign of ¢,(x,s), given by (2.11), is indepcndént of
s. The difficulty in generating such an e,(x,5) is seen by considering the relatively simple
example of an intensity image (i.c., i(x) 20) and the identity operator (O{i(x)}=i(x)). In
this example, all sign changes in e,(x,s) are introduced by h(.,.), but the sign of ¢,(x,s) will
still have an s-dependence unless, | |



Thus, the maximum extent of O{i(x-y)},in (2.11), must be less than the spatial width of the
highest résolutiori filter, which elimiriates virtually all reasonable inputs.®

As a result of the coupling of Y(x) to the sign of ¢,(x,s) and to s, general threshold
functions must be input-specific. This coupling can be avoided directly by using a

constrained ¥(x), and forcing ”(x)=0. In this case, either a constant threshold,
Yx)=ry _ | (2.12a)

ora threshold that is a linear function.of X,
¥x) =." 1w*+n 10. ' (2.12b)

satisfies the conditions of (2.9a) and (2.9b). Thus, threshold functions, Y(x), given by either

- (2.12a) or (2.12b) are of practical use with an arbitrary input signal i(x).

‘The alternative method for de-coupling ¥(x) from s, is to consider (2.7) not as a

~ generalized heat equation, as before, but as a differential eqilation with scale-dependent

cocfficients (i.e., fdrcing d=0in thé original constraints on the éocfﬁcients). By substitution

of d=0 into (2.7), a second-order differential cquatiqn results,

%h(x,s)+-i1h,(x,s)+ch,,(x,s)=o, 2.13)

3 The use of a more general operator introduces additional sign changcs on Ofi(x-y)} and
does not eliminate the s-dcpcndencc of the sign of e,(x,s).
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which has the solution,

1 -;;-; 1:,{ 2 - =1x.[/.2
_—— V% = ar amw Y ~-4ac
h(x,s) =3 e {ezu +e= V }

In (2.13), the values of variables x and s are independent, so that x may be an arbitrarily
large positive or negative real number relative to some positive real-valued s. To maintain

a bounded h(x,s) for all x, it is necessary that,

Since the constants b and c are independent of x and s, the above inequality is satisfied for

all x and s only forb=0 and ¢ # 0. Thcfcfore, the solution to (2.13) reduces to,

hix,s)= -:T(eji\ff—_*_ e_j“-‘\E)_ _

The boundedness of h(x,s) also requires that (x/s)(a/c)'? be real, so that a/c>0 and the

solution to (2.13) becomes,
‘ 2 x
hix,s)= : cos(s alc).
with the coefficient constraints,

b=d=0

ac>0.

From (2.62) and (2.6b), the effect of these coefficient constraints on the threshold function
again results in a coupling between y(x) and the sign of e,(x,s), forall ¥(x). Thus, nothresho!d

function can satisfy (2.6a) and (2.6b) in this case.
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- In sumxﬁary, only Gaussian solutions of (2.7) yield a threshold function which can
generaté fingerprints with embedded structure for gcnei'al input signals._ Moreover, the only
forms of threshold function, 'y(x), that are of practical use with general inputs are the cons tant
or linear thresholds given by either (2.12a) and (2.12b), respectively. Although it may be
possible to construct highly constrained input signals which allow the use of nonlinear
thresholds for Gaussian solutions to (2.7), such input signals may be so strongly constrained
that scale-space analysis becomes merely an exercise in confirming that which is already
known. As a result, if funcﬁon-crossings are to be used in analyzing the ﬁngerpﬁnts of
signals with known and unknown coh:ponents, the threshold functions should consist of

- linear and constant segments and the scale-space filter should be Gaussian.

2.2.2 Remarks

The results of the previous section can be demonstrated using a simplified remote
scnsing example, where the objective is to detect frozen ground within a warmer lahd surface
using antenna temperature (radiobrightness) at a single frequency. As discussed in chaﬁtcr
4, physically colder surfaces emit less energy so ‘that where effects of temperature change
on the dielectric constant of the surface is relatively small, frozen surfaces can be located
where antenna temperatures fall below a spcciﬁcd threshold. The antenna temperatures for
a 1-D surface of relatively warm land containing a frozen rc'gion is simply modelied in
Figure 2.2a%. |

Figure 2.2a shows the surface antenna tempetaturc as a function of surface position,
X. The warm land surface extends from -400 Km to +400 Km. and, except for the frozen
~ region, has a constant antenna temperature of 245 K. The frozen region extends from -80

Km to +80 Km, and has a minimum antenna temperature of 235 K at x=0. Also shown in

4 The parameter values used in the model are derived from frozen terrain results
dcscnbed in chapters 4 and 5.
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Figure 2.2a is the constant threéhold function used to detéct the presence of frozen ground;
the threshold value is 244 K. The resultant fingerprints from spatial Gaussian filtering are
shown in Figure 2.2b.

Now consider the case of frozen terrain contained in a relatively warm surface with
non-constant antenna temperature. In the case of Figure 2.3, the antenna temperature of the
warm surface has a known, or easily estimated, decrease in the vicinity of the frozen surface.
Suchan ahtenna temperature decrease could be caused eithc_r by a decrease in the physical |
temperature of the terrain or by an increase in soil moisture. The antenna temperature for
such a surface is shown F:gurc 2.3a. Since the objective in this example is to detect changes
in thc state of the surfacc moisture, wlnch are identical in F:gures 2.2a and 2.3a, we seek a
threshold function that eliminates the effects of the surface variations outside the frozen
region. That i, the effects of freezing on radiobrightness form the n(x) signal of (2.2), and
the radiobrightness variations outside the frozen region for the a(x) signal. A threshold
- function is sought where fingerprints of the antenna temperature of Figure 2.35 approximate
fingerprints shown in Fi'gurc 2.2b. _

Using the.constant threshold function of Figure 2.2a (repeatedin Figure 2.3a), Gaussian
filtering of the antenna témpcratu_rc of Figure 2.3a produces the fingerprints shown in Figure
2.3b. Comparing Figure 2.2b with Figure 2.3b, it is seen that the fingerprints match at fine
scales, but not at coarse. To better match the fingerprints of Figure 2.2b, we use the

non-constant threshold function shown in Figure 2.4a.
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Figure 2,2a, Input sngnal and threshold for warm terrain, at constant antenna

temperature, and frozen region.
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Figure 2.2b. Resulting fingerprints.
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Figure 2.3a. Ihput signal and constant threshold for warm terrain, with varying
antenna temperature, and frozen region. ‘
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InFigure 2.4a, the threshold _fﬁnction is composed of linear segments that approximate
the antenna temperature variation of the warm land surface. For this example, the linear

segments are connected so that the threshold function, ¥(x), is C° continuous. The antenna

- temperature curve of Figure 2.4a is a copy of the antenna temperature curve of Figure 23a.

The resutting fingerprints for the antenna temperature and threshold function of Figure 2.4a
are shown in Figure 2.4b. We see that at coarse scales, the fingerprints of Figure 2.4b better
match the fingerprints of Figure 2.2b, than those of Figure 2.3b. However, we also. see
fingerprint approximation errors in Figﬁrc 2.4b as fingerprints cross over thé connections
between linear segments in the threshold function of Figure 2.4a. As a result, the fingerprint

structure of the unknown component, n(x), of a signal, i(x), may be derived from the

fihgexprints of,
h(x, @) =1x), (2.14)
where,
ix)=alx)+n(x), -
Yx)=d(x),

d(x)is an estimate of a(x), and d(x)isa piccewise linear function of x. However, the degree
of correspondence between the fingerprints of (2.3) and (2.14) depends on the number of
linear segments that comprise ¥(x), as well as on the accuracy with which a(x) can be
approximated by cdinbinations of linear and constant functions.

Previously, it was Shown that Gaussian scalc—spacb fﬂtcring produces fingerprints with
embedded structure for crossings of linear threshold functions. ‘However, embedded
structure does not ncécssarily exist at the knots between linear segments. A breakdown in
embedded structure at knots results in approximation errors between the fingerprints -of_.

(2.14) and those of (2.3). Such a breakdown is evident in the f_ingerpl_'ints of Figure 2.4b.
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Despite breakdowns in embedded structure at knots between lincar segments of y(x), the
resulting fingerprint approximation errors may not impose severe limitations. First, the
locationof the knotsin‘y(x)are known a prxon Thus, the locations of potential approximation
errors in the fingerprints of (2.14) are known and may be avoided. Second, the fingerprints
of (2.3) have kﬁown bchaﬁor (i.e.; they hé.vg embedded sfructure). .Thus, it may be possible
to interpolate the fingerprint of (2.14) over the regions of conncdting points to reduce
approximation errors. Third, the form ah_d, subsequently, the level of approximation errors
depend on how Hhcar segments of y(x) are connected. For example, if the linear segments
are joined at points so that y(x) is C°, then mé implicit function theorem breaks down at
connecting points and thc fingerprints of (2.14) may have discontinuities. If, however, the
linear segments of y(x) are smoothly connected so that y(x) is C* for n 2 1, then the
ﬁngerprihts of (2.14) will also be smooth. Thus, it may be possible to use connecting

functions between linear segments of y(x) that minimize approximation errors.

2.2.3 Two-dimensional‘ Extensions

Previously, the fingerprints of,
O{H(x,s)*i(x)} =1x) (2.15)

for one-dimensional signals were shown to have embedded structure if h(x,s) is Gaussian,

Of.} is a linear operator, and the threshold function is given by,
Yx)=rx+r,

where r, and 1, are constants. This result can be extended to two dimensions, so that the _

fingerprints of
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O{h(x,y.-v)*‘fi(x,y)} =e(x,y,5)=Yx,y) (2.16)

have embedded structure if ©{.) is a 2-D linear opcrator, h(x,y,s) is a 2-D Gaussian filter,

1 ____’2""2
2 b!

hix,y,s)= e

2k s?

and the threshold function is given by,
VX, Y) =+ rXx 41,y +rxy.

The coefficients 1o, 1y, 1,, and r, are constants, and the constant k is non-negative; "**"

represents 2-D convolution. The linearity requirement for the 2-D operator, O{.}, follows

_ directly from the same arguments as used for 1-D signals, which are not repeated here. The

Gaussian filter requirement follows from the ai'gumcnts of Yuille and Poggio. However,
to sce that the above threshold function, y(x,y), gcncfatcs fingerprints with embedded - -
structure, it is necessary to repeat previous derivations for 2-D signals.

Following the approach of Yuille and Poggio, the fingerprints of (2.16) have embedded

structure if,
e(,,5) =Y(1,v) | (2.172)
e(u,v,8) =1,(,v) o (2.17b)
e,u,v,8)=v,u,v) (2.17¢c)
' ‘implies,
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Yusll, V) = €uU,V,5) (2.17d)
Q,(H,V,S) ‘ :

'yw(u,v)-ew(u,v.S)<0‘ . : (2.170)
e,(u,V,S) C

are satisfied, where the u and v axes are taken along the lines of principal curvature.

Equivﬂcnﬂy, coefficients a, b,; b, ¢,, C,, €5, and d must be found such that,

a b b : d :
;-ze +-‘;_—e, +;—e,+c,e,,+czew+c,e,,+}-e, =0, - (2.18)

and,

b b
f;'y-i»}-l-'y,+—.;z-‘y,+c,‘ym+c,'yw+c,yw-glmf—cznlzz—§¢0 for e,=1 (2.193)

b b
%‘H }17" +-;37,, + 01 Yo + €Y + G Y c,m,2 + c,m.f +-:-i- #0 for e,=~1, (2.19b)

where m, and m, are arbitrary constants. The Gaussian filter of (2.16) is éenerated by,

and,

€,¢,>0 and ¢,d >0.

Using these coefficients, (2.19a) becomes,
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€Yo + C3Y,, — 12 = C2 --‘-:—- #0 (2.20a)
and (2.19b) becomes,

cl'y,,+c,yw+c,mf+c2rh§+§-¢0. (2.20b)

As aresult, a threshold function given by
YU, V)= g+ quu +qv +quv, o - 221

where q,, q,, and g, are constants, solves (2.202) and (2.20b) and generates fingerprints with
embedded structure. Because the u and v axes are taken along directions of principal
curvature, thcy are orthogonal [37] and there exists an invertable matrix A such that the u

and v axes can be mapped onto the x and y axes,

Thus, a threshold function given by,
YX,¥)=rytrx +ry+rxy

will give rise to threshold functions given by (2.21) for all u and v, and therefore, generate
fingerprints with embedded structure. |
Two remarks are warranted. First, the use of a symmetric Gaussian filter h(x,y,s) in

generating fingerprints of (2.16) with embedded structure produces no loss in generality,
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because effects of an asymmetric Gaussian filter can be produced by the use of an asymmetric
operator, 0{.}, on a symmetric Gaussian filtcr. Second, while the general form of threshold
function, ¥(x, ), is given above, perhaps a more useful form of threshold function is that of

a plane,
VX, ¥)=Fy+rX +1,).

Therefore, the use of planar threshold functions allows a desired threshold function in 2-D

to be approximated by combinations of planar surfaces.

2.3 Non-Gaussian Filtering

Multiresolution systems éommonly use sensors with épertures to collect received
energy. Since apertures are always of finite size, they are mathematically equivalent to
bandlimitcd filters [10] and, thereforc, cannot be Gaussian. This raises questions of the
extent to wluch the properties of scale-space filtering obtained in the Gaussian case
generalize to the non-Gaussian case. |

In the sub-sections that follow, we consider the scale-space fingerprints generated by

" non-Gaussian filters. In the standard development of scalc-space theory, as reviewed in

§2.1, it was shown that non-Gaussxan filters cannot generate fingerprints with crnbcddcd'
structure. In [81] it was shown that non-Gaussian filtering can be used provided filter inputs
are constrained to bc.polynomials. Alternatively, we show that if the standard constraints
on the filter impulse response are relaxed, then non-Gaussian filters can generate fingerprints
with embedded structure. We also show that while non-Gaussian fingerprints do not match |
Gaussian fingcxprinté at all scales, the non-Gaussian fingerprints are either related to

Gaussian fingerprints, or match them exactly over a range of scales.
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TWO approaches are considered for generating fingerprints with embedded structure

for non-Gaussian scale-space filters. In §2.3.1, a spatial-domain approach of nonlinear

| scaling is considered for generating non-Gaussian fingerprints. By relaxing the impulse |

response condition SS1b}, we show that the resulting fingerprints have embedded structure.
In §2.3.2, fingerprints from scale-space filters with limited frequency support are examined.
By the relaxation of condition {SS1c}, we show that these fingerprints also have embedded

structure.

2.3.1 Nonlinear Scaling

Consider the case of non-Gaussian filters in which the kernels are functionally related
to Gaussian kernels by continuous mappings in the spatial and scale domains. One such

filter is the exponential,
k(x,5) = ofs)e "

where ¢(s) is some function of scale, s. The exponential filter h(x,s) can be transformed

to the Gaussian, g(u,t), _
| - 1 e
8,(u,t) =—=¢e
T W
by the mappings,
§ s =20
{ w?® for u 200}
X = 2 d
—u®) for u<
where,
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a(S)=(-

Al

That is, the exponential filter is a Gaussian ﬁlter that has been "warped" in the spatial and
scale domains, and is a nonlinearly scaled scale-space filter.
More generally, if there exists a non-Gaussian filter h(x,s) and continuous, monotonic

mappings X(.) and 8(), (ie., X'() and §'(.) exist?), and if

h(x,s)=g (X~ (x),S7(s)) = g (u,1), (2.22)

where g(u,t) is Gaussian,

'-ﬁ (.rm)2

1
guty=—=—=e =
Nk
then the non-Gaussian fingerprints given by,
Yx)=hx,s)*ik), | (2.23)
are warped versions of the Gaussian fingerprints given by,

Blu) =g (u,t)*j(u). | (2.24)

In (2.22), k is a positive 'const.ant, and

i '(l‘hc)case of a(s) /s is consxdcred linear scaling due to the frequcncy response of
p &3

6 The existence of X*(.) and S7(,) is easily shown usmg iterations on the chain rule, and
is not developed here,
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Blu) = BX~(x)) = ¥(x)
J@)=jX" @) =i(x).

From the results of [84,85], the fingerprints of (2.24) have embedded structure with respect
to variables u and t. Since X(.) and S(.) are monotonic and invertable, the fingerprints of

(2.23) have embeddcd structure with respect to variables x and s, even though h(x,s) is

- non-Gaussian. In addition, only the threshold function B(x) must meet the linearity

constraints of §2.2 for embedded structure to occur. Thus, Y(x) may be nonlinear, but will
depend on the mapping X(.).
The exponential filter clearly meets the requirements on X(.) and S(.), and would

produce fingerprints with embedded structure with respect to u and t. However, standard

-scale-space theory [84,85] is predicated on linear scaling (condition (SSlb]‘), SO whilc

scale-space theory admits embedded structure for the linear fingerprints of (2.24) (with
respect to u and t), it precludes embedded structure for the nonlinear fingerprints of (2.23)
(with respect to x and s). For scale-space theory to admit embedded structure for the
fingerprints of (2.23), the linearity condition {SS1b) mﬁst be relaxed to accept nonlinear
scaling. |

2.3.2 Limited-support Filtering

Asopposedto warping Gaussian scale-space filters in the frequency domain, truncating
Gaussian filters in the ﬁequcncy. domain will gencrate non-Gaussian filters having
fingerprints with embedded structure. Scale-space filters with limited frequency support,
or bandlimited filters, are of particular interest in multiresolution systems since sensor
apertures exhibit these types of characteristics. Two types of bandlimited filters are
considered: fixed-support filters and relative-support filters.
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2.3.2.1 Fixed-support Filters

In fixed-support filters, the bandlimits of the scaie—spacc filter are fixed and
independent of scale. In Figure 2.5, the frequency response of a fixed-support scale-space
filter is depicted, where the bandlimit extends over frequency from -fyto -+f,. Fingerprints
generated by fixed-support filters differ from those generated by ideal Gaussian filters, since
fixed-support filters do not have the infinite frequency-domain support. However,
fixed-support filters generate fingerprints with embedded s_tructufc.

The soluﬁon to (2.7) that generates fingerprints with embedded structure has a

frequency response, H(f,s), given bf,

G(f,s) for fe 5}

H(f’s)={ 0 for fe 5°

where,

G(f.5)= e-i(zm’{-’k)

kis a constant, and $ is any set of real numbers. Asaresult, the fixed-support filter solution

to (2.7) can be given by,

H(f.s) G(,s) 25,) (2.26)

where I{.) is the rect function,

7 This result is derived from the work Yuille and Poggio [84 85] However, they
consider only the Gaussian solution to (2.7).
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~ | n(j_]s{lfor [fj<f;,}
S 2fo 0 otherwise )

In the spatial domain,
h(x,s)= g (x,5*[2f;sinc (xfy)] 227
where,
1 -ges?
x,8) = e .
g(x,s) ok
— 1
wl
E o6
é 04 |
0.2 |-
0

Figure 2.5._ Family of fixed-support filters; filter response flattens with decreasing s.

Fixed-support scale-space filters are an implicit, bui gcncrally ignored, component of

the original scale-space filter results in computer vision, In the perspective of corhputer
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vision, the optical systcms. that provide images for vision processing also provide the
~ rectangular filtering of (2.26). It is usually assumed that the bandwidth of such rectangular
filtering is adequate to ensure that features (edggs) in the images being processed correspond
to features in the physical scene. This is not necessarily the case in multiresolution
processing, so that (2.26) must be used in analyzing features that exist in signals prior to
sensor processing.

The embedded structure results of [84,85] do notinclude the fixed-support scale-space
filter due to the limiting value of h(x,s) in (2.27), where,

lim & (x,5) = 2f;sinc (e = 8(x). (2.28)

- The impulse response condition {SS1c} is violated by fixed-support filtering; {SS1c) must
be relaxed to admit the use of fixed-support scale-space filters, In the perspective of standard
scale-space filtering, if the "true” fingerprints of a signal i(x) are given by,

20, s)*i(x) = ¥(x)
for Gaussian g(x,s), the fingerprints given by,

h(x,sYi(x) ="x)

are identical to those of

8 (x,s)*i(x) =7(x)
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where f(x)isa ';cormptcd“ version of i(x),
i(x) =iy [ sinc (xf)] .

If f, is large relative to the bandwidth of the inpxit signal i(x), the corrupted fingerprints
generated by the fixed-support filter of (2.27) may approximate those generated by an ideal

Gaussian filter.

2.3.2.2 Relative-support Filters

In relative-support. filtering, the bandlimits of the scale-space filters depend on scale,
and the shape of the filter is unchanged as a function of scale. Such a scale-space response
would be characteristic of a multiple-frequency, single-aperture system. In Figure 2.6, the
frequency response of a relative-support filter is depicted. |

The frequency response of a relative-support filter is given by,

H(f,s)=F(f,s) 5{,70) (2.29)

where F(f,s) is some filter function of interest that approximates the Gaussian over some
limited region of space and scale. In multiresolution systems, F(f,s) is an aperture
illumination function, which often allows the impulse response condition {SS1b} to be

satisfied (see [74] for example),

}ig,h(x;5)=5(x)-
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In order to have a non-Gaussian filter, a5 described by (2.29), yield fingerprints with
embedded structure, a double threshold-crossing (i.e., a hysteresis process) can be used to
calculate threshold-crossings. Canny [13] successfully dembnsu-ated the use of threshold
hysteresis to reduce the ct_‘fccts of edge noise. Lu and Jain [51] apply threshold hysteresis |
to scale-space filtering, but do not discuss it in detail. In our _épplication of threshold
hysteresis, truncation érrors, E, are determined ﬂ}am the difference between the
relative-support (truncated) filter and ideal Gaussian responses. These truncation errors are

then used to generate two threshold levels for defining fingerprints: {y(x) +¢€} and {y(x)—€}.

1

08 -
E 06 |-
g 04 |

02

) 0 R 1 . 1 . 1 .

-20 -10 0 - 10 20
Frequency

Figure 2.6. Family of relative-support fi Iters; filter bandwidth broadens with
decreasing s.
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To determine an expression for the truncation error, a difference function between

h(:i,s) and an ideal Gaussian impulse response, g(x,(s)) is calculated,
b(x,s)=h(x,s)—g(x,t(s)). (2.30)
The variable t(s) is the variable of scale for g(.,.), andis a function of the scale variable s;

the scales of h(.,.) and_ g(.,.) are functionally related. Ateach value of s, 2 function g(x,t(s))

is sought that minimizes the square error,
E= [ Ibtc,s)ar.

Once g(x,t(s)) is found, the minimum E is used to bound the truncation error g, and to define
the thresholder. .

The thresholder is determined from the function-crossixigs of a filter output r(x,s) with
), o

r(x,s)=i(x)*h(x,s), . (2.31)

for a filter input function i(x), a filter impulse response h(x,s), and some threshold function

Y(x)*. The thresholder defines a negative-going function-crossing of r(x,s) to occur at X, if,

r(xp8)=Yx)+€ and Ix,>x, 3 r(x,s)=vx)-¢€ .
and 1(x)—e<r(x,s)<~,(x)+e Vx & (x5 x;). | (2.32a)

8 Without loss of gencrality, the operator O{.) is the identity (appendix A)



48

A positive-going function-crossing of r(x,s) is defined to occur at x, if,

r(x,8)=¥x,)—¢€ and 3x,>x, 3 r(x,5)=Yx)+E

and j‘(x)-5<r(x,s)<'y(x)+g Vx € (X, %,). | (2.32b)

To guarantee that no "false" threshold-crossings occur, the truncation error € used in the

thresholder can be given by

' - N2 pe :
e=li(x) {Lwcx,s)l ’dx) > [liw=ybw.ld, 233

where,
i), EU{ i) de}

and b(x,s) is the function that minimizes E. By excluding all false threshold-crossings,
function-crossings given by (2.32a) and (2.32b) are als_o function-crossings between Y(x)

and a Gaussian filtered i(x),

P =), (2.34)

Thus, as € — 0, the number and location of function«crossings given by (2.32a) and (2.32b)

and those given by (2.34) become identical. :
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Inlightof the definition of the relative-support filter (e.g., (2.29)), the Fourier transform
of (2.30) gives,

B(f,sy=H(f,5)-G(f,1(s)) (2.35)
where B(.,.), H(,,.), ar;d G(.,.) are the spatial Fourier transforms of b(.,.), h(.,.), and g(.,.),

respectively. By the Rayleigh Energy Theorem, the function g(k,t(s)) that minimizes the

square error is the Fourier transform of the functibn G(f,1(s)) that minimizes,
B=[ IBG

Thus, the mmnmzauon of € can be performed in the frequcncy domain, where truncation
limits of rclauve-support filters are defined. |

For example, consider a parabolic relative-support filter’,

HeEs) {1 (fs)? forlfs |<1}’

0 otherwise

where E is given by,

—t—— —— ) '
= {15 2tls V;(tls (t/s )3)2f(tis)+ } NN 2

9 ngc sensor (antenna) models used in microwave remote sensing are mathematicatly
equivalent to parabolic relative-support filters; see [74] for example.
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and,

ul(ﬁl,:-:[fumz'df] .

I(.) is the spatial Fourier transform of the input signal, i(.). Thus, the truncation error for

minimum E is dependent on the power of the input signal and the scale of the filter,

19
E’*“Js—llf(ﬂlz-

-2.3.3 Two-dimensional Extensions

Previously, onc-dimcnsiénal, non-Gaussian scale-space filters produced by nonlinear

scaling and bandlimiting required the relaxation of several impulse response condition (§2.1)

to generate fingerprints with embedded structure. The 2-D filter formulation of nonlinear

scaling follows directly from the 1-D arguménts. If there exigts a separable 2-D map X(.,.),
X(x,y)= (X;(x),Xz(y)). =(u,v) (2.36a)

and 2 map S(.),
S =s S (2.36b)

such that X,(.), X5(.), and S(.) are ,monotonic and continuous, then a filter h(x,y,s) can be

expressed as,
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h.(x.y,S)=8(X1(x).Xz(v),S"(s)) =g(u,v,1)
where [84,85],

2,2

- 1 -%[',j;]
g(u,v,t)=(2nkt?J-e , k>0

and the fingerprints of,

h(x,y,sY¥*i(x,y)=vx,y)

(2.37)

(2.38)

will have embedded structure. As in the 1-D case, the scale-space linearity requirements

of {SS1b) must be relaxed to admit the fingerprints given by (2.38). The separability of

X(.,.) is a direct extension of the separability of 2-D Gaussian scale-space filters, as given

by (2.37).

 'The 2-D filter formulation of limited support filters follows directly from 1-D

arguments for fixed-support and relative-support filters. For fixed-support filters, a filter

with 2-D frequency response H(f,.£,,s) will produce fingerprints with embedded structure

if,

G(fnf,ps) for (F.f) € s'}

H(ﬁ’ﬁ’”:{ 0 for (£, f) € 5°

where,

6F,fypsy me A
dye = )
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k is a constant, and S < R% As a result, a filter with frequency response,

H(fo,8)= G Gl R fy)s e

where,

1 for | £} S£.f) sz}

R( , E{
Fofy) 0 otherwise
for specified f; and f;, will generate fingerprints with embedded structure, provided condition
{SS1c} is relaxed. The fixed-support filter H(f, f,.s) could have rectangular or elliptical .
support, amongst others, in the 2-D frequency domain.
For relative-support filtering, the frequency response H(f,.£,.s) can be expressed as,

H{f..f,,5)=F(£..f,, )R (sf...5f,), (2.40)

where F(f,.f,.5) is a given filter function, F(f,.f,,8) is usually determined by the physical
devices being used and, as in remote sensing applications, is often separable. As in the 1-D
case, hysteresis in the thresholder must account for the non-Gaussian form of H(f,.f,.s). The
level of threshold hysteresis is determined by the truncation error, €, derived from a minimum

mean-square error,

Bx [ [IBG.AoNdd,
and,‘ |
BUofy S = H (G fy 5= GUfo 1 (5). @41
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The calculation of ¢ is made using a 2-D, frequency domain form of (2.33).

In fixed-support and relative-support filtering, the use of separable filters, G(.,.,s) and
F(.,..s) respectively, requires that R(.,.) be separable to make the resulting filter H(.,.,s)
separable; see equations (2.39) and (2.40).



CHAPTER 3
'MULTIRESOLUTION PROCESSING

In this chapter, we present a multiresolution system that is'derived from multispectral
processing, and show that boundary estimates made at coarse resolution can have significant
localization errors. We also present an estimation scheme that is derived from scale-space
filtering and can mitigate the localization errors. Limitations of this approach are also
developed. Both boundary migration and estimation problems are posed with respect to
1-Dcontours along a 2-D surface. In addition, some exteasions for more general 2-D signals

are discussed.

3.1 Background

Asmentioned in chapter 1, scale-space filtering can providc amathematical framework
fordata integration in multiresolution systems where sensors vary along a dimension called
scale. That is, if signai differences between sensors can be characterized exactly by PSF
(width) differences betwcén scnsdrs, then data from each sensor represents scale samples
of the scale-space representation of the imaged object. In this chapter, we extend this
scale-space formulation to multiresolution systems where PSF is not the only characteristic

that differs between sensors.
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We will be coxicem_ed with the scale-dependent locations of threshold crossings, x(s),
calculated from

e(x(s),5) =¥x(s)), | ERY
where,

e(x,s)=0{r(x,s)},

rix,s)=h(x,s)*ix),

O(.} is a linear operator, and (.} is a specified threshold function (this process is modelled
inFigure 3.1). Withoutloss of generality, O{.} isthe identity operator sothate (x,5) = r(x, s).
Standard practice is to denote the threshold crossing contours (fingerprints) in scale-space
as s(x), since scale-space is typically displayed with the scale axis as the ordinate (Figure
2.1). We also display scale-space with the scale axis as the ordinate, but our theoretical
developments are concerned with threshold crossing locations as functions of scale and the
more appropriate notation, x(s), is used. Vertical fingerprints in scale-space displays

correspond to .c_:ases where x(s) — 0, and horizontal fingerprints in scale-space displays

correspond to X (s) < ee,
Input Filter Output Operator Output
| Threshold
——a  Filter »{ Operator >
i{x} hix.s) x5} - o) o(x.8) . Detacior

Figure 3.1. Scale-space system diagram.
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In chapter 2 we showed that the original requirements of the theory can be relaxed and
still prescrve.major points of scale-space theory. However fbr analytical convenience, we
assume Gaussian filtcrihg. Given the use of Gaussian kernels, k(x,s), Gaussian ﬁltedng
can be used to degrade the resolution (broaden the PSF) of fine-resolution sensors in
multiresolution systems to match that of a coarse-resolution sensor prior to processing.
Alternatively, given the féaturcs of a signal measured by a coarse-resolution sensor, it is
useful to register their locations with signal féamrcs measured by fine-resolution sensors.
These two problems represent fingerprint interpolation and exirapolation’, respectively, with
respect to scale. In the sections that follow, we present a formal dcvelopment of fingerprint

extrapolation in scale-space.

3.2 Boundary Migration
In multiresolution processing, regional boundaries can be estimated from threshold

- crossings of what we call an indicator function i(.). Indicator functions are derived from

physical models so that regional boundaries occur between regions having different i(.)

values. That is, regional boundaries occur at x values where i,(.) crosses a threshold,
i(x) = ofx), (3.2)

and a(.) is a specified threshold funt:tion‘._ Indicator functions are commonly used in remote
sensing (see [67], for example) and are often composed of linear combinations of sin gle

sensor data,

1 a(.) is a linear function of x.
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I3 M I3
i) E}};‘,l a;i(.),

where i;(.) is the ideal output signal from the j* sensor, and the a"s are coefficients. The
function i(.) would be the output from the j* sensor if it had infinitesimal (ideal) spatial
resolution. o ' |
In practice, i(.) cannot be thresholded directly due to the finite (non-infinitesimal)
PSF’s of the sensors. Instead, boundary locations are estimated by threshold crossings given

by,

M
Z,a708) =0o), (3.3)

where r;(x, s;) is the actual output of the j® sensor,
rix,s;) = h(x,s;)%i(x).

When resolution compensation is used, the effective scale (resolution) of all sensors are

 equalized and 5; = 5, Vj, where s, is constant. Thus, (3.3) becomes,

ri(x(s,),s,) = ox(s,), 34)

where,

rix(s,),s,) Eg a;r,(x(s,),5,),

and the threshold crossing locations given by (3.4), x(s,), are the regional boundary estimates.

The kernel h(.,s) approximates a delta function as s — 0 and, in the absence of noisé, the
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threshold crossings of r(.,s) approach those of if.). To optimize estimates of boundary |
locations, we seek x(s,) for as small a scale as possible. If 5; is the (finest) scale at which |
data from the j® channel is available, and s, < ... < 5y, theﬁ x(s,) can only be determined for
S, 2 Sy without parametric or model-based estimation. As a result, x(s,) will be in error from
the actual boundary locations, x(0), and first-order bounds on these estimation errors can

be derived from boundary migration analysis.

3.2.1 Analysis

Consider the case of threshold crossing contours, x(s), given by?,

r(x(s),s)=0, | (3.5)
where,

- rlx(s),s) = h(x(s),x)*i(x(s)).
The true boundary l_ocation of i(.), x,, is given by,
r(xy,0)=i(x) =0,

so that the boundary location estimate, x(s), migrates from X, as a function of s. This

migration, D(s), can be approximated using a Taylor expansion as,

=7 (xy,5)

Pe)= r%,s)"

(3.6)

- 2 To simplify the analysis, the thrcshold function in (3.1) is set to 0.
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(—\‘ where,

D(s)y=x(s)—x,.

A bound on D(s) can be determined fr_om,

Ih(xo—y,s)i(y)dy |

|D(s)l =

]'h,m—y,s>i0)dy

and where Gaussian sensor PSF’s are given by,

, (3.7

1 -se6

h(z,s)=g(z,s) E;Ee

Even (symmetric) and odd (anti-symmetric) components of i(y) dictate the behavior of the

boundary as a function of resolution [50]. We use a signal model given by,

i) =wly—~¥)i,(xg=y)+[1 =wlxy—y )i, (x,— ¥), (3.8)

where,
i,{.) = odd component of i(.)
i,(.) = even component of i('.)
w(.) & even weighting factor,

and,

0Sw()<1.
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As aresult, (3.7) can be written as,

[sczot-weigeus

D) =
ng('—z  S)W (Z)ia (z )dz

Lo o
e - weNi e
= — 39
‘ . ' - |
-f;;e Y w(2)i,(2)dz

w—os

so that a first-order migration bound can be given by,

o

f R wiedds |1
|D(s)| < : . (3.10)

Lo
~5(z/s) s
= W(2)i,(2)dz

z
ze

ottt

where,
1£00) 2 =sup | fx)l.

We are concerned with anti-symmetric boundaries, so that i,(.) is guaranteed to exist
ataboundary. Ifi (.} alsoexists, (3.10) shows thatboundary migratioh occurs. The weighting
function, w(.), controls the mixture of i.(.) and i.(.) at the boundary. We consider migration
bouhds for two types of Wcighting functions. In both weighting functions, i,(.) is excluded

close to the boundary, and i (.) is excluded away from the boundary. However, one weighting

 function makes a sharp distinction between these odd-only and even-only conditions, while

the other is more gradual.
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Equation (3.10) also shows that the shape of i,(.) determines boundary migration. We
consider migration bounds for two shapes of i,(.). In both shapcs., i,(.) is constant at each
side of the boundary. However, in ohc case the transition from one regioﬁ to the other is
piecewise linear, while in the other case the transition frorh dnc side of the boundary to the

other is smooth. -

Case 1: The weighting function is given by

1 for |z |SL}
0 otherwise, J’

w(z)={

so that i (.) exists only in a well-defined neighborhood about the regional boundary,
and (3.10) is given by,

2m) LisN2) i | ' '
ID(S)IS[s(ﬁ)Lerfc( sV2)] nz,(z)u,,, a1l

Loer?
f Ze Y 2)dz
0
where,
2 r e
e (z)a——fe"d.
rf = A y

The constant L, detérmin’cs where the change from i (.) to L(.) occurs.

- Case 1a: i,() is piecewise linear,
| | A for z>E
i(z)= Az for |z|€E}.
E
L -A for z<E
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Case 1b: i,(.) is smooth,

iz)=A erf(zlE)s(%)—j—E f a2y
)°

In cases 1a and 1b, the constant E determines the width of the transition in i,(.) from
one region to the other, and the constant A determines the amplitude of the transition.

The migration bound for case 1a is given by,

2 . |
[s(\N2r) erfe (LIsN2)) 1i, )] - LaE. .12

s In E '*E(L/S)z
24 i\ () -

ID(s) =

The migration bound for case 1b is given by,

[s(N2m) erfe (LisN2)] i, ()
24 et ameiy?) e,f[ﬁ)e'iws)z

n+a) @3 E

D) < (3.13)

A———
.

Case 2: The weighting function is given by

1
2Ly
w(z)=e?

$0 there is a smooth transition between io(.)' and i(.) outside the regional boundary, -

| and (3.10) is given by,
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S(‘\[Z—TC)(I - (IL)’]ln] Ik ,(Z)II

) -(m) (zIL)
2“';8’ e

{D(s)| < (3.14)

.
¢

Case 2a: i (.) is the identical piecewise linear function used in case 1a.

Case 2b: i,(.) is the identical smooth function used in case 1b.

- The migration bound for case 2a is given by,

L)

[+ crLﬁ"z)ul‘(Z)"
merf (L {Esy+ &L

(AR )(l-

|D(s)] £— =

[+ L (EsY + ELY

(3.15)

The migration bound for case 2b is given by,

SR )(1-- —L i

| ﬁ o
|D(s)l < fetn) (3.16)

0 +GLyd [1 e +2(EIL)2]

In all cases, the expressions for bound migmtion can be written in the form,

s1iG)
4 (3.17)

1DE) <K,
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where the coefficient K, is case-dependent, but is always a function of E/s and L/E. Values
6f K, for the four cases are plotted as functions of E/s for L/E=1 in Figure 3.2a and for L/E=2
in Figure 3.2b. As expected, Figures 3.2a and 3.2b demonstrate that migration bounds
decrease as scale decreases with respect to the transition width, E. In Iaddition, migration
bounds decrease as i,(.) is eliminated from the neighborhood of the boundary (i.e., as L/E
increases). However, the Shapc of the wcighﬁng function, w(.), is clearly more influential

on the migration bound than fhc shape of i,(.).

3.2.2 Applications

To compare boundary migration with the first-order theoretical bounds of (3.12),
(3.13), (3.15) and (3.16), we simulate the migration for a simple example. Consider the
case of the signal i{x) shown in Figure 3.3. In the figure, i(x) is seen to have a boundary
(i.e., cross the zero threshold level) at two points, x=0 and x=-1.6. The even and odd
components (i,(.) and i,(.), respectively) for the boundary at x=0 are calculated and shown
in Figure 3.4. From Figure 3.4, itis seen that the signal boundary at x=0 is an example of
case la (§3.1), (3.12) can be ;ISCd to calculé.u: bounds for boundary migration wherc,

A=LiQ) =2

E=L=16.

The resulting migration bounds are compared with simulated boundary nﬁgration. in Figure
3.5.
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Figure 3.2, Migratio coefficient value as a function of normalized edge width for
two odd-signal widths. L is the length of the odd-signal, E is the edge transidtion
width, and s is the scale value. _
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In Figure 3.5, boundary locations are shown as a function of filter scale; the abscissa
is the boundéry position and the ordinate is the scale value. The grey region on the plot
represents poésiblc boundary positions thhm the migration bounds calculated from (3.12).
The solid curves are &c boundary migrations detcrmincd from simulaﬁon. Figure 3.5 shows
that fori(x) of Figure 3.3, the boundary at x=0 migrates at its theoretical limit (i.e., maximum
migration). Figure 3.5 aiso shows that despite the fact that the expressions for migration

bounds in §3.2.1 are first order estimates, they can hold over large changes in scale level.

Signal and Threshold

R —— Signal

[ ‘ -—--= Threshold

Signal Level

_4.||!|||'||1|1||||i|
$ 4 3 2 4 0 1 2 3 4 5

Position X

'Figure 3.3. Ideal signal and threshold.
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Figure 3.4. Even and odd components for right edge of ideal signal.
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Figure 3.5, Fingerprint and migration bound for right edge of ideal signal.
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. Figure 3.7. Fingerprint and migration bound for right and left edges of ideal signal.
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Now consider the signal boundary at x=-1.6. At this boundary location, the even and
odd signal components are calculated and shown in Figure 3.6. From Figure 3.6, it is seen
that the signal boundary at x=-1.6is not modelled precisely by any case considcréd in§3.2.1. |
However, the boundary can be approximated by casé 2a,sothat(3.15)canbe used tocalculate
bounds for boundary migration where,

A=Di N _=2
E_=0
L=13.

The resulting migration bounds are compared with simulated boundary migration in Figure
3.7. e | |
As in Figure 3.5, Figure 3.7 shows bouhdary locations as a function of filter scale,
where the grey regions represent possible boundary positions within the migration bounds
calculated from (3.12) and (3.15). The right-hand grey region in Figuxe 3.7 is determined
from (3.12) for the boundary at x=0, and is identical to the grey region in Figure 3.5. The
left-hand grey region in Figure 3.7 is détermined from (3.15) for the boundary at x=-1.6.
The solid curves are the boundary migrations determined from simulation. As expected,
Figure 3.7 shows that for i(x) of Figure 3.3, both boundaries migrate at their ﬂzeoretical
limits. Figure 3.7 again shows that the ﬁrét—ordcr, migration analysis of §3.1 can generate
accurate bounds over significant changes in scale level, even when using an approximate

(non-exact) weighting function, w(x).
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In addition to the example of Figure 3.3, the boundary migration analysis of §3.1 is
applicable to edge detection applications in computer vision. For example, an idcal "smooth"”

edge may be given by [75],

. ] erf(ax) for x20
i) "{-af(ax) for x <o}’

where the parameter "a" controls the sharpness of the edge. Using the Marr-Hildreth edge

detector, edges in i(x) correspond to zero-crossings of i”(x) [52]. Using i(x) above,

2
iﬂ(x) - :3__..3-. (qx)e"(nt)z’

so that zero-crossings of i”(x) are examples of case 2b boundaries and, for the ideal edge
above, | (.Ml , =0. Thus, the ideal edge produces no boundary migration.
Another application of the migration analysis of §3.1 is non-symmetric thresholding

- of boundary regions. Consider the signal and threshold shown in the top panel of Figure

3.8. "Although the signal is striétly odd (about zero), the threshold-crossing of i(x) will
migrate because the threshold is offset from zero. This is seen by determining the odd and
even signal components with respect to the signal boundary (thrcshold—crossing) at x=1.
These signal components are shown in the bottom panel of Figure 3.8, where the even
component produces boundary migration. A migration bound can be calculated using the
analysis of §3.1. However, as opposed to the cases considered in §3.1, the odd signal_
component for the signal of Figure 3.8 is not diminished outside a neighborhood of the
boundary. Thus, the migration bounds given by the analysis 6f §3.1 would be coriservative
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for the migration of the signal of Figure 3.8. However, it is a straightforward exercise to
reformulate the expressions of §3.1 to address cases where odd signal components are not

limited to neighborhoods of the boundary.

3.2.3 Remarks

In some edge detection analyses of computer vision [5,6,17,21,51], edge migration as
a function of scale is calculated exactly by making the (strong) aséumpiions that all edges
can be composed of ideal components, such as step and staircase edge, and that edge

operators, O{.}, are first or second order derivatives. Alternatively, we attribute boundary

* migration to the non-ideal nature of edges. Moreover, nﬂgratioxis can be bounded by making

wezk assumptions, or by using easily obtained a priori information, about the sensors and
symmetric properties of the underlying signal. Forexample, migration bounds are dependent
on the peak level of the even signal component, | i,(.)] _, which is generally Sn'aightforward
to estimate. In addition, migration bounds are calculated for signals that are odd-only in
neighborhoods of boundaries. This is satisfied by signals that are approximately linear in
a neighborhood of boundérics. Moreover, Figure 3.2 shov?s that bounds are felativcly
insénsitivc to modelling variations of the linearity.

The weighting functions used in the migration analysis were considered to be "worst
case", in that odd signal components, i,(.), were excluded from regions far from boundaries.
As seen in §3.2 for non-symmetric thresholds, i(.) may extend toinfinity, givinga boundary
migration that is much srmall‘cr than the bounds predicted from the analysis. However even
for non—symnigtn’c thresholding, the weighting functions of §3.1 will bound the migration.
More accurate modelling of si gnals, in the vicinity of boundaries, is necessary only if tighter
bounds are required. A more Signiﬁcant problem may be in the shape of the weighting

function in the vicinity of regional boundaries.
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It may be possible that a weighting function exists which gives migration bounds that

- arewildly different from those obtained from (3.17) using the curves of Figure 3.2. However,

we assume such weighting functions are unusual for natural signals, and that there is a
monotonic transition from odd-only signals, in the vicinity of a boundary, to a mixture of |
odd and even signals, away from a boundary. A "worst case” condition would have odd-only
signals neara bounc_iafy, and even-only signals away from a bou_ndary.: Such assumptions |

are not unusually restrictive, since similar assumptions are the basis for regularization

~ techniques in edge detection [72). Under a monotonic transition assumption, the resulting

weighting function should produce a migration bound that is similar to those determined by
(3.17) using the curves of Figure 3.2.

Finally, we note that the migration bounds of this section are strictly valid for 1-D
signals. Inthe case of 2-D signals, thisrequires that signal characteristics in the neighborhood
of boundaries can be described using 1-D transects, with minimal loss of information. This
is often the case, as illustrated in chapter 5. In considering more general signals, a 2-D form

of equation (3.6) is given by [36],
T (hn YorS) = 1 Fs Yor ) O = X ) 41,5 Yor ) — Yo, (3.18)

where the point (,, y,) is defined by the zero-crossing of r(x,, y,, 0), and the 2-D boundary
migration is defined as,

Dis)=V(x -z, + (- y,).
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We see from (3.18) that D(s) can become unbounded if, for example,
(%5, Y6,8) = =1,(X,,¥,,5). Thus, the general 2-D migration must be calculated exactly on

a case-by-case basis, which is the approach used in [5,6,17,21,51].

3.3 Boundary Extrapolation

We now conﬁider a multiresolution system, derived from multispectral processing, .
where the objective is to accurately determine the boundary of a frozen surface®. In this
applicatidn, frozen and wet surfaces can look identical to a sensor ata single frequency, and
multiple (frequncy) sensors are used to distinguish frozen from wet surfaces.

‘ The top panel of Figure 3.9 shows the ideal (infinitesimal PSF) response, i,(x), from
a single sensor to a dry surface containing frozen and wet region. The wetregion is centered
about x=-138 Km, while the frozen region is centered about x=+138 Km. Both regions a
approximatly 138 Km wide. From i,(x), it is impossible to determine which are frozen and
wet regions. Alternatively, an indichtor function, i(x), is constructed from the difference

between two sensors,
i) = i (x) - (x), (3.19)
where i,(.) and i,(.) are the ideal responses of the sensors. The response of i,(.) to these

surfaces is shown in the bottom panel of Figure 3.9, where i)(x)<0 indicates the presence of

a frozen surface. Thus, i,(x) clearly shows the existence of the frozen surface.

3 This model is derived, and simplified, from x"esult_s 6f chapter4
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~ The problem with the indicator is that the functions i,(.) and i,(.) are not observed
directly. Instead, their corresponding spatial filtered signals r,(x,s,) and r,(x,s,) are used,
where the sensor PSF’s, h(x,s,) and hy(x,s,), provide the spatial filtering. In this example,

the sensor PSF’s are Gaussian,

1 —jemf

h(x,s)=—=e * " fori=12,
i(x,8) N |

with 5,=30.0 Km and 5,=100 Km. Since sensor 2 has coarser resolution than sensor 1, the
resolution at which i,(k) can locate the boundaries of a frozen surface is limited to the (coarse)
resolution of sensor 2.

The error in estimating the boundary location at the resolution of sensor 2 can be
derived from the migration analysis of §3.2. In this case, (3.12) is used to determine the

migration bound (estimation error) where, from Figure 3.9,

A=li ) _=3K

E=0
L=138 .

As a result, the migration bound at 5,=100 Km is,

100(\27) erfe (138/100V2)

D
ID(s)] < 2|-1 oo

=342 Km,

so that the estimation error is almost a third of the width of the region.
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The error in estimating the boundary location can be reduced by incorporating
fine-resolution information of sensor 1. Such 2 technique for extrapolation-in-scale is

described in the following.

3.3.1 Theoretical Result

Let threshold crossing contours, x(s), be defined by,
h(x(s),5)*i(x(s)) = alx(s)), ‘ (3.20)

where o(.) is a linear threshold function (chapter 2) and i)(.) is an indicator function composed

of a linear combination of single sensor data,
- M »
i(.) EEI a;i;(.)-

The contours x(s) in (3.20) are estimates of boundary locations in if.), where actual

boundaries occur at x values where i(.) crosses the threshold function,
ix) = afx).

According to migration analysis (§3.2), we must determine x(s) for as small a scale as
possible, to minimize estimation errors in boundary localization. If s; is the finest scale at -
which data from the j® channelis available, and s, < ... < 5, then X(s) can only be determined
for s 2 5,, without intrdducing resolution ambiguities. Hoﬁrever, the boundary estimate can

be improved if there exists a threshold function B(.) such that,
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RGt(s), Y44, (u(s)) = Blu(s)), - (321)
where u(s) are the fingerprints derived from (3.21), and
u(s)=x(s) for 5, 2525, (3.22)

That is, x(s) can be extfapolatcd—in-scale from s=s) to s=s, through the function u(s). Note
that u(s), for a particular threshold function B(x), need only approximate x(s) over part of a
single contour and that different threshold functions are used to approximate x(s) fordifferent
contours. The requirements for exact extrapolation-in-scale are given in the following

theorem:

3-1 Theorem (1-D Extrapolation Theorem) _
Given contours x(s) and u(s) defined by (3.20) and (3.21) respectively, then u(s)
is identical to x(s) in a neighborhood of the point x, if,

h (xg, So)* i:.' ir(x)
A = hlxg, 5o)* S (%)

B o 5* S,
B ~ h(xo,50)* L h(x0)

n=2,34, ... .

(A proof of the theorem is given in Appendix B).

In muitispectra.l processing, data from M sensors are integrated, where each sensor

operates at a different (center) frequency and, as each sensor is scanned, each sensor output
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signal is the convolution of the spatialiy varying radiation intensity of the surface and the
PSF (antenna pattern) of the sensor. For the j* sensor, the radiation intensity of the surface
is equivalent to the scale-space input, i,(.), and the PSF of the sensor is cquivalent'to a
scale-space filterimpulse response 6f the j® sensor, h(.,s;). The scale of the impulse response;,
§;, is the width of the ?SF (i.e., the beamwidth), and is proportional to the wavelength of the
sensor,

A standard product mode! of source imaging used in image processing and remote

sensing is given by,
i) =Ix)R(x) .

In active systems, I() is surface illumination and Ry(.) is surface reﬂection._ In passive
systems, I(.) is surface temperature and Ry(.) is surface cnﬁésivity. In both systems, R;(.) is
a function of the surface type andis dependent on frequency. Using this model, the indicator
is given by,

i(x)= 321 (OR,(x), (3.23)

A class of functions that satisfies the theorem are quadratic.functions. Using the
product model of (3.23), such signals occur where I(.) and R(.) vary linearly in the vicinity
of a boundary, and we have,

| Ix)=ox+B;
Ri(x) = ax + By

50 that;
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=5} G0 (39) c24
and
L()=ax*+bx+c, (3.24b)
where,
a; = QyOly;
b;= d,ﬁ,v + B0

| c;=BBx; -
this reduces to é linear case if oy and o; are much smaller than B, and By;, respectively.

3.3.2 Application

We now return to the example considered at the beginning of §3.3. Comparing the
signals i,(ic) and i,(x) in Figure 3.9, the conditions of theorem 3-1 hold in the vicinity of the
frozen surface because iy(x) and i,(x) are translated and scaled versions of each other in the
neighborhood of x=¥138 Km. Thus, i;(x) may be used to extrapolate if(x) in scale. The
extrapolation process can be seen from Figure 3.10.

The bottom panel of Figure 3.10 shows the tlqushold crqssing contours, x(s), of the
indicator, i/(x), and associated threshold (the bottom panel of Figure 3.9); x(s) is shown as
an arched curve. Itis secn that at scales below approximately 60 km the posiﬁon x(s) is at
the actual boundary locations of the frozen surface. However, the minimum scale at which
x(s)canbe calculatedis 100km (i.e.,'thc resolution of sensor 2), as indicated by the horizontal
line in the bottom panel of Figure 3.10. Thus, the estimated boundary of the frozen surface
using strictly x(s) are the positions where x(s) crosscs the horizontal line in the bottom of
Figurc 3.10. As expected, there are considérablc differences between the estimated and
actual boundary positions. |
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The top panel of Figure 3.10 shows the threshold crossing contours, u(s), for the single
sensor signal, i,(x), and associated threshold (the top panel of Figure 3.9); u(s) is shown as
a double-arched curve. ‘While u(s) generéte_s an extra (erroneous) contour as compared with
x(s), the u(s) contour centered at x=+138 km registers with the x(s) contour. Additionally,
the u(s) contours can be calculated to a minimum scale level of 30 km (i.e., the resolution
of sensor 1), as indicated by the horizontal line in the top panel of Figure. 3.10. Thus, the
frozen surface boundary estimates of x(s) can be extrapolated from. a scale level of 100 km
to a scale level of 30 km using the contour u(s) centered at x=+138 km. Moreover, the
extrapolated scale level is small enough so that the extrapolated estimate of boundary

position is equal to the true surface boundary position.

3.3.3 Two-dimehsional Extensions

A 2-D version of the extrapolation theorem is formulated in the following theorem®;

3-2 Theorem (2-D Extrapolation Theorem) - _
Let surfaces (x,s) and (x,t) in 3-space be defined by‘ the function-crossings,

rs)=olx) | (3.253)

&, 1) =B, (3.25b)
where J_: =[x, x]7, and |
rix,s)=h(x,s)**ix) ~ (3262)
P&, 1) =hx, 0)**,(x) (3.26b)
ax)=A,+Ax, +A,.:c2 +Ax.x, (3.27a)
B(x) = By+Byx, + Byx, + Byx,x,. (3.27b)

4 In this section, the (x,y) plane is referred to as the (x,,x,) plane.
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The coefficients Ay, A,, A, A,, By, By, B,, and B, are constant. We define initial

conditions by,

r@® s =a(x"
P’ % =B").

The surface (x,s) is identical to the surface (x,t) in a neighborhood of the point

x°if,
a,‘i]{r@".s") - a(x%)] ;:— &%) —-BE)

Ten &%, 8%+ 1 (2°,5%) B Pas &%) 4P 010 T

and,
M -0 o & -pa"
a“: - ax‘u ' - a“: _—

T &%)+ %57 P @10+ 9, %19

where,

M=23, ..

gy oo iy = 1,2

(A proof of the theorem is given in Appendix C).

To pla;c_thc 2-D extrapolation theorem in a form similar to that of the 1-D theorem (§3.3.1),

we use the following lemma:

3-3 Lemmma



p Condi_tions,
Rlr@ -0 Fpa’O-pa)
rys @8 41 6%5%) o &0 10+ P, (%10
and |
Fiea -ty #e-36)
Py _ ey
Far &5 41 (3%5%) P&+ P 560
where,
M=23, ..
Ly iy =1,2.
are satisfied if and only if,

=@ s-o  Zlpa’ ) -Ba)
2 r@sY-aa’)] 2pa’s)-Ba’

0% -0z’ Hpe’, ) -8:"
& -3y, a

-0l ZlpE%s)-Ba’l’

and,
-0’y Mre’.NH-pe
By, By ‘ &, - &,

=) - o) =% [p&%s%) - P&

(A proof of the lemma is given in Appendix D). | ,
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From (3.278) and (3.27b),

2 09 =4, + A
1

d
5;;0‘@’)=A2+Aaxf

a 0 0
axl B‘£ )=Bl +B:!x2

a .
'é'x';ﬁ(f) =B, +Byx;,
so that,

a0 = h(&°"°’**([5?3"'@°’_
2 fre’ °)—a(a°)];~h | 2o
axz »§ =h@,s axl’ o

*a% P&’ 1) - BE"] =h(’, t°)**a§% i1(£°)_

%Lp@, ')~ B’ = (', r°)**([-a-xa—1a@°)‘

\
-4, "As"%

\
"'Az"Aaxf)

'\
-B, "Baxg}

\
—BZ-B,xf).

(3.28a)

(3.28b)

(3.28¢)

(3.28d)

(3.29a)

(3.29b)

 (3.2%¢)

(3.29d)

By substitution of (3.29a)-(3.29d) into lemma 3-3, and using theorem 3-2, we obtain the

following corollary:

3-4 Corollary
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The surface (x,5) is identical to the surface (x,t) if five conditions hold:

| s’ o] -A-an)
B, So)**q.%i’QO)J - Az’; ij{,)f

_ h(x°, 30)**([£‘-i,(_x_°)] -B, - B,xg)
" ha O 2400 -B,-Bix)’

hetso{( i) -4)
sy ha)] -4, - 4sx)

ne o i) - )
. hLo 0)**&—;1(_) B: Bﬁz)

w5 i) - )
hes °)*_*([;;uu’) - Ay- 4523

s ia)-8)
he, oy 2i@) -B,—B,x,)

st
Rt )] - A= An)
- Rt ")*"‘(axfl i'az,” I'1@.’0))
N G, t”**(li""@o)J -B, -B,x{’) '
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C
hc_c°,s°)**(&,, oy n@) _
0

(5) . Qc_°; So)**q.i-g',@“)J —A; - A_,'xl)

h(x’,1 o)**(azjl .a,wa:," i:(éo))

B h@’, :°)**ﬂ§il(a°)J —Bz—Bax{’) '

where,
M=34 ..

jl’j?.’ v st= 1’2 *

Thus, if there exists signals i;(x) and i,(x) which satisfy corollary 3-4, then the fingerprints

of i,(x) match those of #;(x) in a neighborhood of the point x°,

A 2-D formulation of the quadratic functions of §3.3.1 illustrates an application of
corotlary 3-4. Using the standard prbduct model of (3.23), we consider planar variations
of I(.,.) and R(.,.) in the vicinity of 2 boundary. (Recall that surface reflection or emissivity,

R(.,.), is indexed according to sensor.) For this case,

IG,y)= oy +Bx +yy
Ri(x,y) =0 + Bpx + ¥y,

and the ideal (infinitesimal-resolution) signal from the j® sensor is given by,

£, %) =1(x, )R, (x, )
=q+bx+;y+dxy+ex’+fy,,  (3.30)

where,
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() | a; = 0y 0
b; = o, Be + Botg
€; = Oy Yp; +Yi0p;
d; = Br¥e; + By
- ;=B By

5 =Wt
From (3.30), the indicator funcﬁo_n is given by,

ix,y) = 10, )R,(x,)
=ag+byx +cpy +dpxy +egx*+ £y, (3.31)
where,
%s§q
by= 2 b
7
QE§Q
de= 2 d;
J
q5§q

EEZS
and the signal used for extrapolation to fine-resolution is given by,

Lx,y)=a,+bx +ey +dpy +ex’ +fiy>. (3.32)
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Applying the conditions of corollary 3-4 to (3.31) and (3.32), tlie fingerprints of i,(x,y) will
track those of i(x,y) if, |

ey &
—_—=— 3.33

Thus, when I(x,y) and R;(x,y) vary along the same (x,y) direction, equation (3.33) and
corollary 3-4 are satisfied.



CHAPTER 4
FREEZE/THAW CLASSIFICATION

This chapter prescnts characteristics of the remotely sensed signals used for this thesis.
We review the general expressions describing thermally emitted microwave radiation, and
those for the specific case of frozen terrain. We present an indicator signal for classifying
frozen terrain, and discuss decision criteria. Performance characteristics of the satellite

radiometer used are also given.

4.1 Passive Microwave Radiation

Thermally emitted (passive) microwave radiation from land surfaces can be described
by radiative transfer theory [15]. The fundamental quantity in radiative transfer theory is
the specific intensity. The power dP of non-coherent radiation flowing within a solid angle

dQ throdgh an areada in a frequency interval (f,f +df) is given by [73],
dP =1(F,$)cos 0dadQdf 4.1)
where,

1(r,$) = specific intensity,

7 is the point where intensity is determined, § is the direction of energy propagation at 7,

and 6 is the angle between § and the normal / of da (Figure 4.1). Power has the units of

90
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watts and specific intensity has the unitsof wattsm® Sr?Hz"'. Specificintensity is sometimes
referred to as spectral brightness at microwave frequencies [74], and as spectral radiance
at optical frequencies’. A radiation field is isotropic if the intensity is independent of
direction § ,and afieldis homogeneous if the intensity is the same for all points 7. Throughout
this section, we wﬂl refer to specific intensity as intensity. |

Let a land surface be modelled as an isotropic dielectric, with complex dielectric
constante=¢ — j&”, occupying a negative halfspace bounded at z=0 (Figure 4.2) {25]. The
surface is specular over the frequencies of concern and the temperature within the dielectric,
T(z), is function of depth, -z. The dielectric contains scattering centers of cross section G,
and density N, which neither absorb nor emit energy. The positive halfspacc is occupied

by fnée space.

wm>

—

Fig. 4.1. Specific intensity.

1 Spectral radiance usually denotes watts m? Sr2 per unit wavelength, rather than unit
frequency [82].
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M f . -/
e <
| ¢
_ Free Space
2=0
Dielectric
v~
ds 4
T
| -2
m h ~ Fig. 4.2, Radiative transfer model.

By assuming rotational symmetry with respect to the z-axis, equations of transfer can

be written for horizontally and vertically polarized intensities at wavelength A, as [25],

dlpf;,u’)h%(z! | eE@s
+1 .
m,u | r 2 ’ ”
+(T][,~,§;,v :‘: Py s W) (2, 1)l ], z<0 “2)
where, |
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« = extinction coefficient
E, = emissive spectral power
®, = scattering albedo

P~ = scattering phase function,

p is polarization (either V or H), &’ is the direction of energy propagation and p’ is the
direction cosine (W =cos®), and ds is an interval along the direction of propagation. The

extinction coefficient is the sum of the absorption and scattering coefficients,
o=2B+Ng,,

and the absorption coefficient is given by,

Sy

The albedo is the ratio of scattering coefficient to extinction coefficient,

E,,(z) represents the spectral power emitted within ds, while P, .}, t”) relates the radiation
over all directions j” to that scattered in the one direction p'. Thatis, ei;uation (4.2) shows
that the change in intensity along ds in decreased by the absorption and scattering of the
material in ds, but increased by the self-cmission of the material in ds and by the encrgy

scattered into ds from all other directions.
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The emitted intensity, at microwave frequencies, from a blackbody at thermal

temperature T is approximated by the Rayleigh-Jeans Law as,

1,@)=CT

4.4)

where C is a constant. To obtain intensity per unit wavelength, C is written as C, where

[74]
2ck
G
and,
k= Bbltzmann’s constant
¢ = speed of light.

To obtain intensity per unit frequency, C is written as C, where [74]

2k .
C!="i";-

For either fdrm of C, the emissivc spectral power is given by,

E,=(2B)E)CT.

(4.52)

(4.5b)

4.6)
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The radiation emitted into the positive (free space) halfspace at a viewing angle Ois

given by [25],
I,(+2,6)= [ e"m')]l o,n), ' 4.7

where 0 and 8’ are related by Snell’s Law (Figure 4.2), and R, (") are the Fresnel coefficients,

R O 2
Y W+VENV1 ¢ +e())

R = | et 4.8b
() {u"\fe_' +:/Jl -+ s’(u’)z} @5

I(0, 1) is the solution to (4.2) at z=0, and is the intensity just below the dielectric/free space

(4.82)

interface. By replacing the thcrmal temperature of the dielectric by it’s first-order

approxxmauan
T(z)~ T°+z[-5;)"°, (4.9)
where,
T, = surface temperature,

the scatter-free (@, = 0) solution to (4.2) as z T 0 is given by [25];

LO,W), _o-e’C[T + 2[;(37) n] (4.10)
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Substituting (4.10) into (4.7) aixd nqting, from (4.4), that 7_(+z,0)/C is a temperature, the

scatter-free brightness temperature is given by,

' (aT '
T,,(e)@._o =[1-R,(W) [T, +-2%(-a-;lﬂ]. (4.11)

That is, the intensity observed in the positive halfspace at viewing angle © is produced by
substituting T, (6),,, .o into (4.4).
In the case of isotropic scattering,

P, H") =8, 4.12)

where 8,,~ is the Kronecker delta, Gaussian quadrature is used to approximate the

integro-differential equation (4.2) with a system of first-order differential equations [15,25],

S L N e

where,i =31,12, ... ,4n. © is refered to as optical depth and is given by
TE-02Z,

b;” are samples of the direction cosines 1’ such that j1,” = — 1./, and the weighting coefficients

a; are Christoffel numbers such that,
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a;=a, and Ea-l
i=1

The solution to (4.13) is [25],

’ 1+“’i' Q_T_ s Ly -t
I,(‘t,Ll,-')=£C[T,+( . )(&t),,q]+j§:(l+;p,-} ‘ (4.14)

where 1 are the n positive roots of the characteristic equation,

n a; '
l=0 jzll-r (],1,’)2 (4.15)

The coefficients L, are determined by applying (4.14) to the boundary condition,
L0,~) =R, (W), (0,1, (4.16)

and solving (inverting) the rcsﬁlt'ing matrix equations. The resulting angle-sampled

brightness temperature for isotropic scattering is given by,

[1-R,u) wYory 1. & L,
ne)={IEE () Jo2 el e

$0 that T5,(0) is interpolated from the samples T},(6;). Comparing (4.11) and (4.17), the
temperature difference due to scattering is given by, '

ATy, (8)=T,,(8) - T,,,(e) (4.18)

ﬂ-O



98

This temperature difference, AT, (0,), is always negative andis referred to as scatter-induced
emission darkening {25]. _
The intensity (per unit frequency) observed at a receiver in the positive (free space)

halfspace due to the emissions from the negative (dielectric) halfspace can be expressed as,
[,(+2,0)= T,,P(B ). (4.19)

If the positive halfspace is an atmosphere and not free space, the received intensity is

expressed as,
I,(+2,0)= 2"TM,,,(e) (420)

where T,»,(6) is the apparent temperature at polarization p. Apparent temperature includes
effects of atmospheric emission, atmosphcﬁc loss, and reflected atmospheric emission from
the atmosphere/dielectric interface, as well as emission from the dielectric halfspace. To
determine T),p,(6), equations of transfer are solved for the atmosphere halfspace, with the
dielectricemissionof (4.19) as a boundary conditions. Expressions for apparent temperature,

assuming a scatter-free atmosphere, have been developed in [74] and are sumarized by,

Toon @)= 7y o @)+ RO (6)+ gy B} (4.21)

L.(B.H )

where H is the height of the receiver in the atmosphere, L,(8) is the atmospheric loss factor
(L.(6) 2 1), Tp(6) is the downward-emitted apparent temperture of the atmosphere, and
Tw(6;H) upward-emitted apparent temperture of the atmosphere fromz =0toz =H. To
paraphrase (4.21), apparent temperature is increased by surface emissions (T3), upward
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emissions of the atfnosphere between the receiver and the surface (T,,), and reflected
downward emissions from the entire atmosphere R +Tpn). Apparent temperature is
decreased by atmospheric absorption. From Snell’s Law, the upward emissions of the
atmosphere and the reflected downward emissions of the atmosphere are functions of the

same (viewing) angle 6 (Figure 4.3). In the case of a lossless atmosphere,

Tons (0= T, (B:H)} =0
LO:H)=1,

so that,

Ty, (8) = T, (O).

Fig. 4.3. Apparent temperature.
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4.2 Emissions from Frozen Soil

Soil moisture contributes to the energy exchange between the air and the ground
through latent heats of fusion and vaporization. The processes of thawing frozen ground
or of evaporating soil moisture cause soil thermal inertias to appear anomalously high. There
isa .largc body of literature abbut deriving soil moisture from radiobrightness [e.g.,
4.6,4.7,4.8,49,4.10,4.11,4.12,4.13]. In addition, moisture state can also be inferred from
radiobﬁghméss. Using data from the Nimbus-7 scanning multichannel microwave
radiometer (SMMR), a combination of low 37 GHz radiobrightness, Tg(37), and a low
spectral gradient of radiobrightness, 0T3(f)/0f where f is frequency, becomes an effective
freeze indicator, or discriminant, for classifying frozen terrain. |

The Nimbus-7 satellite, launched on October 24, 1978, flew é 955 Km, sun-synchonous
polar orbit and had local noon (ascending) and midnight (descending) equator crossings
with 26.1° of longitude separation. Its 0rb1ta1 period was 104.16 minutes [55]. SMMR, one
of the components of the Nimbus-7, was a 10 channel, dual polanzanon (H and V)radiometer
with a forward-looking, conical antenna scan of £ 25°, relative to the direction of flight. The
incidence angle was constant on the surface of the earth at aﬁproximately 50°, Performance

characteristsics for the five microwave wavelengths are shown in Table 4.1.

| ] “Table 4. 1. SMMR performance charactenstus

Chaxmcl
Parameter ' 1 2 ]| 3 4 5

Wavelength (cm) 4.54 2.8 1.66 136 | 0.81
Frequency (GHz) 6.6 1069 | 18.0 | 21.0 37.0

RF Bandwidth (MHz) 250 | 250 | 250 250 250

Dynamic Range (K) 10-330 | 10-330 | 10-330] 10-330 | 10-330

Absolute Accuracy (Kms) | <20 | <0 | 20 | <0 | <0
RMS Temp. Resolution (K) 0.9 0.9 1.2 15 1.5
Beamwidth Deg)£2° | 4.2 2.6 1.6 14 0.8
Beam Efficxcncy (%) 870 | 870 | 870 | 87.0 | 870

1 25° Scan Cycle (sec) 4.096 | 4.096 | 4.096 | 4.096 | 4.096
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The SMMR radiobrightness data were derived from CELL tapes, obtained from the
National Spacc;. Science Data Center. The SMMR data on these tapes were averaged and
re-sampled [56], so that cell data dimensions (i.e., data samplé intervals) were 30 km x 30
km for 37 'GI-_Iz data, 60 km x 60 km for 21 GHz and 18 GHz data, 97.5 km x 97.5 km for
10.7 GHz data, and 156 km x 156'km.for 6.6 GHz data. A single image from CELL tape
data covers a 780 Km x 780 Km area on the ground. The radiobrightness data used at each
frequency were averages of H and V channel data, The 21 GHz radiobrightness data were
not used due to equipment problems on SMMR, and the 6.6 GHz data were not used due to

the large cell dimensions.

Test Area
Cavaﬁ::rl
O-Williston ' o 3% Thiet River Falls
Bismarck - Farge
(o}
QMiIea
City

[J-Eureka Waubay |
Aberdeen-O ﬂ f‘)—Mcrri s
v Redfiekd

Newel Miles\)ille ‘

J U Highmore Huron .

Rapid City o Brookings
N :

=

lrl
Cottonwood

- Fig. 4.4. Test area with air and soil temperature data stations. Air and soil stations
are indicated by circles and squares, respectively.
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Using these data, a surface is classified as frozen only if both T(37) and 07 (f)/of are

sufficiently low, where dT(f)/df is a linear, least-square fit to the 10.7, 18, and 37 GHz
radiobrighmcsscs. Frozen surfaces appear cold at 37 GHz, and exhibit a negative spectral
gradient that is largely caused by volume scatter darkening at the shorter wavelengths. This
two parameter freeze indicator (FI) has been applied to SMMR data from a test area that
includes North Dakota, about half of the surrounding states, and partof Canada. This greater
North Dakdta test area is shown. in Figure 4.4 with air and soil temperature data stations.
Data was collected from August 1, 1984 through Deéembcr 31, 1984,

4.2.1 Theory |

By modeling soil as a scatter-free, homogencous halfspace, the radiobrightness
temperature at a constant viewing angle, ©, can be approximated as a function of frequency

f from (4.11) as,

Tp(f) = e(NT,+dT,(f) K (4.22)
where,

e(N=1-RW) i_xt frequency f

ST(N=e(f) (%T;) 0p,'z,(f)

z,(f) 5-2% at frequency f.

e(f) is referred to as emissivity and z,(f) is the effective emitting depth of the soil, where

(1-¢™) of the total emission originates above z,(f) [30]. When compared to thawed surfaces,
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frozen surfaces exhibit characterisitcs of (1) lower thermal temperatures, Tp, (2) higher
emissivity, é()‘). (3) larger emitting depths, z,(f), and (4) decreasing radiobrightness, Ty(f),
with frequency caused principally by volume scattering. |

Characteristics (1) and (2) are well understood, but are generally ambiguous indicators
of frozen surfaces. Ambiguities arise because changes in radiobrightness that result from -
freezing the surface may be either positive or negative, depending upon the surface moisture
content, For example, a dry soil emissivity of 0.9 will yield a 9° decrease in radiobrightness
for a decrease in soil temperatures from +5° C to -5° C. Because the soil is dry, there is
relatively little change in soil cmissivity with freezing. In moist soils, freezing causes an
increase in soil emissivity because water molecules in frozen plants and soils are not free
to align thefnse_lvcs with microwave electric fields. This constrainf upon the rotational
freedom of water causes a decrease in the real part of the dielectric constant, €'(f). A moist
soil emissivity would increase from 0.8 to 0.9 with freezing, so that a decrease in soil |
temperatures from +5° C to -5° C would produce a 19° increase in Tp(f). Because T(f) can
either increase or decrease with ﬁ'eezing, misclassification wﬂl results if T(f) at a single
frequency were solely used to discriminate between frozen soils and soils that are warmer
or drier. These variations in emissivity with freezing are most pronounced at lower
microwave frequencies.

Signature (3).ariscs because freezing reduces the nnagmary part of the dielectric
constant, e”(f), propérﬁonally more than it does the real part, &'(f). Reduced e”(f) means
reduced absorption, so that thermally emitted photons originate dcépcr within emitting
media. Thus, theeffective depthof emission, z,(f), becomes a larger fraction of the free-space
wavelength, Ao [26-29]. The effective emission depth of moist soils is typically 10% of the
free-space wavelength. Frozen soils have effective cmissioh depths that may be 30% or
more bf free-space wavelengths. As a result, the subsurface temperature gradient of frozen

soil contributes more to radiobrightness than does an equivalent gradient in thawed soil.
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The contribution can be several degrees at the lJower microwave frequencies.

Table 4.2 shows the contribution of thermal gradient on radiobrightness, 8Tp(f), and

on spcéu'al gradient, 8(7,/9/), as a functidn of soil moisture content and time of day (noon
y§ midnight). The data of Table 4.2 are derived from a model of typical soil near Bismark,
North Dakota for September 22 [30]. The model used an incidence aﬁgic of 53.1° and
radiomctef frequencies of 10.7 GHz, 19.35 GHz, and 37.0 GHz (horizontal and vertical
polarizations have been averaged). 8T,(f) is calculated at these frequencies, and 8(3T,/3/)
is the least-square regression slope to the three 8T;(f) values. Inthe model, the soil contains
7% bound water, so that a soil moisture content of 10% has a mixing ratio of 0.03 free water.
We see that thermal gradients exert the strongest influence on emissions from frozen or dry
soil. The thermal gradient produced noon-to-midnight shiftin spectral gradiént, ST/ g

is 0.12 K/GHz for frozen soil hnd, as will be shown, is consistent with SMMR observations.

Table 4.2. Contributions of thermal gradient to radiobrightness and spectral
~ gradients for noon and midnight data. Radiobrightnesses, 8T;(f), are in K and

spectral gradients, 5(07;/9f), are in K/GHz; 8(3T;/f),,, is 5(0Tp/0f) at noon minus

0(07;/df) at midnight. _
j 8T,(f), NOON | 8Ta(), MIDNIGHT
i to7 T193s [ a70 [F 17107 [1935 | 370
, » Ty T,
otz | omz | oz | 3] | omz | omz | omz | §3) | o)
35 1 a8 | -0 {ooor | 13 [ 07 | 04 [0028] o012
23 |10 | 05 {0061 | 06 | 04 | 03 | -0013| o007
4 | 06 | 03 {003 | 03 | 02 | o1 | -0007| o005
0 | 04 | 02 {0020 | 02 | o1 | o1 | 0005 | 003
08 | 03 | -01 | 0023 ] 02 ] o1 | o1 | -0003 | 003

As a consequence of signatures (1), (2), and (3), the 37 GHz SMMR radiobrightness

. is more strongly correlated with air temperature than are the 10.7 GHz and 18 GHz SMMR

radiobrightnesses. That is, the 37 GHz radiobrightness should serve effectively as one
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discriminant among frozen and thawed soils. _ 7
Through diurnally heating, the spectral gradients of radiobrightness produced by (4.22)
are always positive for thawed soils, and are slightly negative (typically -0.1 K/GHz for
frozen soils) [30]. However, observed spectraf gra'dients in frozen soils -- signature (4) --
may be more negative than -1.0 K/GHz. The likely cause of such strongly negative gradients
is emission darkcnihg at shorter wavelengths, caused by volume scattering within the frozen
soil. That s, (4.22) does not adequately model frozen soil. In r_elatively transparent emitting
media such as frozen soil, Z, is large and the greater average thermal photon path length
provides a greater opportunity for volume scattering of photons. Scattering is moie severe
at shorter wavelengths because soils and plants appear increasingly heterogeneous at the
scales of these wavelengths [24,27]. In moist soils, z, is smaller and the volume scattering
is less pronounced. Thus, & negative spectral gradient should correlate with frozen soil, and
the radiobrightness spcc&al gradient should serve as a second discrimiﬁant aniong frozen

and thawed soils.

4.2.2 Freeze Indicator

The data in Figures 4.5-4.7 are derived from SMMR radiobrightness measurements
made from August 1984 to Dccg:mber 1984 over seven air temperature (meteorological)
data sites -- Miles City, MT; Bismarck, Fargo, and Williston, ND; and Aberdeen, Huron,
and Rapid City, SD‘ -- within the greater North Dakota test site. The radiobrightness data
are averages of horizontally and vertically polarized SMMR radiobrightness measurements,
and are spatially interpolated to the latitude and longitude of each meteorological site using

a bi-cubic approximation to a sinc function® [54].

2 Data have been compensated to the (coarse) resolution of the 10.7 GHz channel.
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Scatter diagrams of Tg(37) as a function of meteorological air temperature (Figures
4.5a and 4.5b) show a nominal tracking of air temperature by T(37). However, there is an
approximate 4° decrease between the noon and the midnight regression lines caused by air

fempcraturcs that lag surface temperatures. A simple regression model for Tg(37) is,

Ty(37)= e(37) [T + Tpuas (1) 4.23)
where, | |
e(37) = 37 GHz Emissivity
Tz = Air Temperature (K)
Tpis(.) = Temperature Bias.(K)
t = Time,

so that,

Tm(IZ)-Tw(O)=;-g-,~7-)--4.35K. | (4.24)

where t=0 for midnight and t=12 for noon.
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Fig. 4.5. Ty(37) versus measured air temperature at meteorological sites in North
Dakota and the surrounding region. Data were collected from 8/1/84 to 12/31/84.




| ' (b) Midhight data

Spectral Gradient

Noon Data

-

Lit .t

.0
g0
’go
% -0
32
&2

6
4
2
1
£
5
]
27
07
2]
e
67
81
11
2
Ve
8
2

1
-l -

1

-
Qg

T 'iso‘ 7 'ésd 1 |é7o'.l Iéad L) |l29°1‘ 'éool .‘310" L) "320
Alr Temperature (K) ;

(a) Noon data

Spectral Gradient
Midnight Data

1.6 ;
1.47
1.2 ‘
13 ~
0.8
'g 0.6
0.4
¥ 021 .
0 (a2 =lh =
§ 02Tt
g -0.4% Oy
& =0.6 o
! 4-!. -
-1 7
-1.23
“1.¢3
—1-5 AL ] LB LB L L] LA AL ) LIRS LEL L) LR L I LI I I
240 250 260 270 280 290 300 310 320

Alr Temperature (K) -

|

Fig. 4.6. oT,/df versus measured air temperature at meteorological sites in North

Dakota and the surrounding region. Data were collected from 8/1/84 to 12/31/84.
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Fig. 4.7, oT,/f versus Ty(37) at meteorological sites in North Dakota and the
surrounding region. Data were collected from 8/1/84 to 12/31/84.
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(\ : Equivélcnt scatter diagrams of oT/of as & function of air temperature are shown in

Figures 4.6a and 4.6b for noon and midnight SMMR data, respectively. The values of oT/of
are the slopes of linear-least-square regressions, as functions of frequency, to SMMR 10.7,
18, and 37 GHz radiobrightesses at each meteorological site. Specifically, at each

meteorological site we calculate,

aT£ - C&V [Tﬁmsﬂ
of  Varlfi

(4.25)

where Cov[T,(),f] isan estimate of the covariance of 7 (f) and f, and Var[f] is an es.timane'

of the variance of f. We use the estimates [70],

CovITy N =5 TN TP BT -+ U -TH8-H+

+(T(10.7)=T,) (10.7 - F} . (4.26a)
Varlf] =§{(37 -H'+8-7+(107- 1% | (4.26b)

where f and T are estimated mean values,

?s%{n +18+10.7} =219 (GHz)

_'T“,s%{r,(37)+r,(18)+T,(lo.v)} ),

and T3(37), T3(18), and Tx(10.7) are radiobrightness values af 37 GHz, 18'GHz, and 10.7
GHz, respectively. As a result, we obtain,
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T, 3{15.1T,(37)—3.9T,(18)~ 11.2T,(10.7)}
of 11368.661

~0.041 T,(37)- 0.0106 T, (18) — 0.0304 T,(10.7) (K/GHz). @27

The data of Figures 4.6a and 4.6b show the predicted decrease in spectral gradient
with decreasing air temperature (i.c., as surfaces freeze). 'ﬁxcrc are also the anticipated 0.1
K/GHz increase in noon gradients relative to midnight gradients cansed by diurnal heating
and cooling.' In addition, a negative tendency in d7,/df is observed at noon for high air

temperatures, This may be caused by volume scattering by dried surface vegetation. Heat

and plant senescence in late-summer decrease the moisture in the ve getation canopy. This
: |
dry vegetation will act as a scattering layer -- particularly at higher microwave frequencies.

These data (Figures 4.5 and 4.6) yield scatter diagrams of 9T /0f as a function of Tg(37)

(Figures 4.7a and 4.7b). In Figures 4.7a and 4.7b, data labelled as "ﬁomn" have air
temperatures less than 270 K, and "thawed" data have air temperatures greater than 274 K.
Data labelled as "mixcd" have air temperatures between 270 K and 274 K, inclusive. While
air temperature is an imperfect indicator of frozen terrain, we see that low Ty(37) and 9T,/0f
correspond to frozen surfaces.

As a result, a two-parameter (two-dimcnsionai) binary decision criteria is used to
indicate the presence of frozen terrain. This freeze indicator classifies a surface as frozen
if Tg(37) is below a specified threshold Py, and if oT,/0f is below a threshold Pyq. We note
that this freeze indicﬁtor is not strictly a linear combination of sigﬁals, as the indicator
functions discussed rin chapter 3. Nevertheless, we see in chapter 5 that the freeze indicatbf
can be extrapolated over scale, despite the non-linear relation between the indicator and the

signal used for extrapolation (i.e, the 37 GHz radiobrightness). |
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4.3 Threshold Determination

Clustering determines decision criteria for coarse-resolution classification, and the
location of freeze/thaw boundaries. The location of these freeze/thaw boundaries can be

refined by imposing spatial constraints.

'4.3.1 Data Clustering

The decision criteria for Tg(37) and 0T/df were based on clustcﬁng and unsupervised

classification. Unsupervised classification, rather than supervised classification, is used
because of the dearth of accurate ground measurements in our test area. The eighte:n air
and soil temperature recording sites (Figure 4.4) provided the ground data for the entire test
area. Soil temperatures were mféasmed at 5 cm depth and were made at dawn and dusk,
whereas SMMR overflights were at noon and midnight.

To increase the number of data available for clustering beyond that used for Figures
4.5-4.7, all data from SMMR satellite passes that éovered more than 67% of the test area
were incorporated in the scatter diagrams of Figures 4.8-4.9. Sixteen noon SMMR passes
and thirteen midnight passes met this criterion during our August to December test period.
As before, the 18 and 37 GHz averages of vertical and horizontal polarized radioBrighmess
data were resolution cdmpensatéd to the (coarse) resolution of the 10.7 GHz channel, but
unlike the data.of Figures 4.5-4.7, these compensated data were re-sampled on a 97.5 Km
grid (i.e., at the resolution of the 10.7 GHz channel). Spectral gradients were computed as
the slopes of lcast-_squarc linear rcgrcssions. to the 10.7, 18, and 37 GHz radiobrightnesses.
Scatter diagré.ms fbr the noon and midnight data are shown by month in Figures 4.82 and

4.8b, respectively.
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Flg 4.8. Scatter diagram of d7/df versus T.(37) throughout North Dakota and the
surrounding region. Data were collected from 8§/1/84 to 12/31/84 '
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Migrating means clustering determined cluster ccntroicis for the data of Figures 4.8a
and 4.8b [58]°. On the basisof ground measurements and the data of Figures 4.5-4.7,surfaces
were classified into three distinct types -~ frozen, hot (and dry), and wet (and cool) -- and a
fourth type that we call mixed. A frozen surface is characterized by relatively low spectral
gradient and a iow 37 GHz radiobrightness. Due to the influence of liquid water in the
surfaée, a wet surface is characterized by a high spectral gradient [30] and low 37 GHz
radiobrightness [39]. A hot surface has relatively less surface moisture, producing a "dry"
surface dielectric constant similar to 2 frozen surface. Moreover, the relaxation frequency
of free-water increases with tempcraturc;- further reducing the spectral gradients of hot
surfaces. As aresult, a hot surface has a relatively low spectral gradient and a high 37 GHz
radiobrightness. A mixed surface has a combination of frozen, wet, and hot characteristics.

Prior to freezing, a surface region is a combination of wet (and cool) and hot (and dry).
As freczing bégins, the region includes ldcally frozen surfaces, and would be classified as
mixed. A freeze/thaw criterig lies within the mixed surface cluster in decision space whose
components, Py, and Py (section 4.2.2), represents maximum T,,(S?) and 97T,/df values
along the freeze/thaw 5oundary. 'I‘haf is, any surface point on the freeze/thaw boundary has
either Ty(37) equal to Py; or 97,/0f equal to Pys. Equivalently, the freeze indicator (FI)

algorithm requires any surface point classified as frozen to have Ty < Py, and 0T p/0f S Psg.

Cluster centroids determined for the data of Figures 4.8a and 4.8b are given in Table
43. Due to SMMR recording problems, limited midnight data were available during
December of our test pcriod. Within this limitation, the frozen surface cluster centroid has
alower spectral gradientand 37 GHz.radiobn'ghmcs;s atnoon than at midnight. Furthermore,
because there were few wet surfaces at midnight during the test period, the wet and mixed

surface types were not separable for the midnight data.

3 Clustering and classification was performed on a Sun-4 workstation using EASI
software, version 4.1, from PCI, Inc. of Richmond Hill, Ontario (Canada).
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4.3. Cluster centroid in decision space |

| NOONDATA | MIDNIGHTDATA |

7 Bivaﬁétc normal distributions were fitto the clusterdata. All data within three standard
deviations of a cluster centroid were classified l_xsing a Mahanzalobis minimum distance
classifier (maximum likelihood classification). No preferential weightings of surface types
were used. Constant-deviation, singlé—class ellipses were drawn in decision space forfrozen,
hot, and wet surfaces (at noon) and for frozen and hot surfaces (at midnight) using the
classified data. The freeze/thaw criteria were determined by allowing the deviation of all
ellipses to expand equally until all ellipses intérscctcd. Thus, the freeze/thaw criteria
represent a‘p.oint in decision space that is equally likely to be classified as frozen, wet, or
hot. The resulting classiﬁcaﬁon ellipses for noon and midnight SMMR data are shown in
Figures 4.9a and 4.9b, respectively. The corresponding freeze/thaw criteria in decision

space are shown in Table 4.4,

Table 4.4. Freeze/thaw criteria in decision spacé; o are standard deviations of data
within the ellipses.

Deviation at
Intersection

ilo
255¢0
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Fig. 4.9. Single class ellipses of 97,/3f versus Ty(37) throughout North Dakota and
the surrounding region. Data were collected from 8/1/84 to 12/31/84.
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4.3.2 Refining the Decision Criteria
If we view the freeze/thaw criteria derived from clustering as initial estimates for }
determining the freeze/thaw boundary, the bbunda:y can be refined by requiring a minimum
scatter of T5(37) along that boundary. This constraint ensures that boundaries in 37 GHz
radiobrightness imagés correspond closely to freeze/thaw boundaries. The Tg(37) boundary
pixels are those whose 37 GHz radiobrightness equals Py, of the freeze/thaw criteria.

The scatter of Tg(37) along the freeze/thaw boundary is minimized by changing the
T,(B?) component of the freeze/thaw criteria to give aminimum sumof squared error. Using
the freeze/thaw criteria derived from clustcring, a square error of 37 GHz radiobrightness
is calculated at each pixel along the freeze/thaw boundary,

SE, = [T,(37)-Py) 2,
where, |

SE, = Square Error at the i* Boundary Pixel

| Tp(37) =37 GHz Radiobrightness at the i* Boundary Pixel.

The sum of squared error, SSE, is calculated by,

N N ‘
SSE = 3. 55;= 2 [Ty(37)-Pyl’,

‘where N is the total number of pixels on the boundary. The refined Py, value minimizes the

SSE, and is equal to the average 37 GHz radiobrightness on the boundary,

1 ¥ | ‘ : _
Py= i-v-—ElTB,-G?). - | - (4.25)
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The process is first-order since we donot reiterate SSE minimization with the refined criteria.
Applying this process to midnight data from October 24 and to noon data from December
11 yields the refined Py, values shown in Table 4.4, ~




CHAPTER 5§
FREEZE/THAW BOUNDARY PROCESSING

This chapter presents & boundary localization procedure derived from the
extrapolation-in-scale results of chapter 3. The indicator -- the freeze indicator -- and signal

used for extrapolation -- 37 GHz radiobrighthcss -~ are characterized in chapter 4.

5.1 Bouhdary Localization Procedure

Spectral gradients are regression slopes to SMMR 37 GHz, 18 GHz, and 10.7 GHz
radiobrightness measurements, as given by (4.27). The nominal resolutions of these data
are 30 km, 60 km, and 97.5 km, respectively (Chapter 4). Without compcnsaﬁng for the
resolution differences between the channels, thc spectral gradient estimates can be in error.
Forexample, anon-zero gradient estimate can result from radiobrightnesses that are spatially
variant but are locally constant over fxequcncy. To avoid such errors, ihc imagé data were
compensated to one common resolution -- the .(coarsc) rcsoiution of the lowest frequency
channel used m gradient estimation — prior to clustering.

Freeze/thaw boundaries combine 37 GHz threshold crossings and spectral gradient
threshold crossings. Corrcsponding 37GHz ﬁ&cshold crossings occur in fine-resolution 37
GHzimages, butnotall 37 GHz threshold crossingsrepresent freeze/thaw boundaries. Some,
as previously noted, are boundaries between moist and dry terrain. Boundary localization
isathree-step process thatidentifies pixelsin finc-resolution, 37 GHz‘imagcs thatcorrespond

to freeze/thaw boundaries at coarse-resolution.

119
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Step 1: Uncompensated 10.7 GHz, 18 GHz, and 37 GHz SMMR data are compensated to

* the resolution of the 10.7 GHz channel using Gaussian filtering.

Ganssian spatial filtering is appropriate for resolution compcn.sation if the Fourier
transform of the SMMR beampattern is (approximately) Gaussian [10]. Performance data
for the Nimbus-7 SMMR antenna are limited. Some investigators have assumed an antenna
pattern’ baséd upon a uniformly illuminated SMMR aperture {18]. The half-power
beamwidth for a uniformly illuminated circular aperture is approximately A/D, where D is
the diameter of the aperture and A is the signal wavelength [74]. The aperture diameter for
SMMR is 80 cm {55], so that the half-pdwer beamwidth at 37 GHz (A.=0.81 ¢m) for a
uniformly illuminated aperture would be 10.125 nlradiané,_ or 0.58". Thus, uniform
illumination produces beamwidths that are much narrower than those of thg: SMMR.

. Alternatively, we assume that the Seasat SMMR beampattern [56] approximates the
Nimbus-7 SMMR beampattern. Figure 5.1 shows samples of the Seasat SMMR beampattern
and a Gaussian bearﬁpattem at a transmit frequency of 6.6 GHz. Figure 5.1a shows
normalized SMMR and Gaussian beampattcms as functions of (D/A) sin(0), where 0 is the
offset angle from boresite. Figure 5.1b shows normalized beampatterns as functions of
normalized ground position for a nadir-boresited antenna at altitude H (the point X =0 is
directly below the an.ténna). The Gaussian model uses a éircularly symmetric illumination

function. Figure 5.1a shows that the Gaussian model matches Seasat antenna data down to

| | approximately -25 dB of the peak level. Equivalently, the linear response of the beampattern

(Figure 5.1b) suggests that the (spatial) filtering of radiobrightness by the beampattern can
be adequaiely modelled as Gaussian.

Errors resulting from njodclling a non-Gaussian filter by a Gaussian cause the channels
used for generating the indictor signal and associated thresholds, P,-, and Pg, to h#vc
non-indentical spatial filtering. The resulting errors in determining threshold criteria are

mitigated by refining the thresholding process (§4.3.2). The alternative process is to use
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exact, non-Gaussian-filteﬁng in resolution compensation, and threshold-crossing hysteresis
in tracking bbundary locations from coarse-to-fine resolution (step 3). The former process
was used due to the antenna data limitations of the Nimbus-7 SMMR, as well as ease of
implementation. | |

The Gaussian filters used to synthesize compensated data at resolution s, from

uncompensated data at resolution s, are,

H(f,9= P (5.1)

where the filter width, s, is,
s=(s2-5"7 5,55,

and fis spatial frequency. Values of Sfordifferentconfi gurations of resolution compensation

are shown in Table 5.1,

Table 5.1. Filter bandwidths for resolution compensation.

Nominal Synthesized Filter
Resolution, s, Resolution, s, : Bandwidth, §
30 km (Fine) 60 km (Medium) 51.96 km
30 km (Fine) 97.5 km (Coarse) 93.77 km
_S0km Medium) | _97.5 kam (Coarse) 78.885 km
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Step2: Freeze/thaw boundariesare identifiedin coarse-resolution,37 GHz radiobrightness
images.

Using resolution compensated data, T5(37) and 8T,/df are calculated for each image

pixel at coarse-resolution. Boundaries in coarse-resolution, 37 GHz images are identified
where 37 GHz data equal the T;(37) freeze/thaw criteria Py, (Table 4.4). Pixels along these
37 GHz image boundaries with d7,/0f at or below that of the freeze/thaw criteria Py, are
identified as freeze/thaw boundary pixels. |

Step 3: Freezel/thaw boundaries are identified in fine-resolution, 37 GHz radiobrightness
images. | | | _

Fine-resolution, fmcic/thaw boﬁndaries are determined by identifying those pixels in
fine-resolution, 37 GHz data that équal Py, and correspond to coarse-resolution freeze/thaw
pixels of step 2. This process involves tracking boundary locations in 37 GHz images as
the amount of resolution compensation is reduced. The resulting boundary locations in the

fine-resolution 37 GHz images are best estimates of freeze/thaw boundaries, in the sense

| that they are directly traceable to the coarse-resolution boundaries gcncratod by clustering

and maximum likelihood classification. The key to this process is that Gaussian image
degradation of step 1 uniquely permits recovery of some fine-resolution information, as

discussed in chapter 2.

5.2 SMMR Images

Unrefined frecze/thaw criteria (Table 4.4) were applied to SMMR data for midnight
October 24 (Figure 5.2) and for noon December 11 (Figure 5.3). Refined freeze/thaw criteria

- were also applied to the October and December data (Figui‘cs 5.4 and 5.5, respectively).

The dark pixclé in the freeze maps (Figures 5.22, 5.3a, 5.4a, and 5 .5a) correspond to surfaces
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with low FI value -- surfaces which are most likely frozen -- and freeze/thaw boundaries
appear as a fuzzy white lines around these frozen regions. The dark pixels in the 37 GHz '
images (panels b, d, and fin Figures 5.2, 5.3, 5.4, and 5.5) correspond to surfaces of low 37
GHz radiobrightness. The fuzzy white lines around these dark regions are the boundary
piiccls that equal Py, S_ome or all of these boundaries correspond with the coarse-resolution
freeze/thaw boundaries of the freeze maps; Similarly, the dark pixels in the spectral gradient
images (Figures 5.2¢, 5.3¢,5.4¢c, and 5.5¢) correspond to surfaces with low spectral gradient,
and the fuzzy white lines are boundary pixels that equal Pyg. In all images, regioﬁs of no
data are shown as white. | ' |

Freeze maps are composite T(37) and d7,/0f coarse-resolution images, and all

boundaries on freeze maps are freeze/thaw boundaries. The grey-scale values at each pixel

on & freeze map, I, are given by,
Iy, = max(ly,, Iss), (5.2)

where I, and I_,G arc the com:spond.mg 37 GHz radlobnghtncss and spectral gradlcnt
grey-scale values. Iy, and Isg are givenby,

_T,37)-Py,

TP (5.32)
Iy = 00 | (5.3b)

where Ps-, and Psa are the 37 GHz radmbnghmcss and spectral gradient decision criteria
(Table 4.4), and 6y; and ng are RMS values of 37 GHz rad:obnghtncss and spectral gradient

measurement uncertainty (i.e., RMS Tcmperatln'e Resolution in Table 4.1). Iy, Isc, and Iy,
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are siinultaneously determined at coarse-resolution for each pixel, and are clipped at %1.
As aresult, whenever I, Isg, or Iy <-1, the con'csponding pixel is black, and whenever I,
Isg, orIm 2+1, the conespondmg p1xe1 is white.

As mentioned in chapter 4, the sampling intervals for the 37 GHz, 18 GHz and 10.7
GHz SMMR channels are 30 km, 60 km, and 97.5 km respccuvely. and are approximately
the SMMR beamwidth (i.e., resolution) on the surface. As aresult, resolution compensation:
combines approximately (97.5/30’=3.25" fine-resolution data samples, or
(97.5/60)° = 1.625” medium-resolution data samples, to form each coarse-resolution data
sample. Assuming independent measurement uncertainties for each sample, we estimate
RMS values for measurement uncertainty in coarse-resolution 37. GHi, 18 GHz and 10.7
GHz SMMR channels by, -

- Trys(37)
On="325

o _ Trs(18)
™ 1.625

010'7 =_ TM(IO-‘T) = 0-9 K. ’

———=05K

=075K

Trss(37), Trues(18), and TM(IOJ) are the temperature resolutions of the 37 GHz, 18 GHz,
and 10.7 GHz SMMR channgls (Table 4.1). - Assuming independent measurement

uncertainties in each channel, equation (4.27) yields,

o (15.1%02, 4 3.9%% + 11.2%62, )2
6T 368.66

=~ 0,035 K/GHz.

Thus, the fuzzy white boundaries in the spectral gradient images (Figures 5.2¢, 5.3¢, 5.4c,
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and 5.5¢c) correspond to 0T,/0f within 40,035 K/GHz of P, and the boundaries in the 37
GHz images (panels b, d, and f in Figures 5.2, 5.3, 5.4, and 5.5) correspond to T;(37) within
10.5 K of Py;. The white boundaries in the freeze map are comjaositcs of these oT/0f and
T5(37) boundaries. -

Comparing the "unrefined" images of (Figures 5.2 and 5.3) with the "rcfincd".images
(Figure 5.4 and 5.5) shows that refined criteria  generate coarse-resolution, 37 GHz
boundaries that are located more closely to freeze map and spectral gradient boundaries.
Moreover, refined fine-resolution, 37 GHz boundaries (Figures 5.4f and 5.5f) are more
consistent with ground data' than are unrefined 37 GHz boundaries (Figures 5.2f and 5.3f).
Thus, freeze/thaw boundaries derived from refined criteria should be more accurate than
those derived from unrefined criteria. |

In the refined images of Figure 5.4, most secﬁons of the coarse-resolution, 37 GHz
boundary in the northwest corner of the fcst area (Flgure 5.4b) correspond with boundaries
of the freeze map (Figure 5.4a). These sections of 37 GHz boundary would be dcsignéted '
as freeze/thaw boundaries. None of the two other boundaries in Figure 5.4b correspond to
any freeze map boundary, and are probably wet/dry boundaries. The freeze/thaw boundary
in the coarse-resolution, 37 GHz radiobrightness image aiso corresponds to boundaries in
medium-resolution and fine-resolution, 37 GHz images. That is, medium-resolution and
fine-resolution freeze/thaw boundaries are the convoluted boundarics in the northwest corner
of Figures 5.4d and 5.4f, respectively. Some boundaries are formed at fine-resolution that
donot coﬁespbnd to any boundary observed at coarse-resolution. These boundaries appear
around dark mdidbﬁghﬁxéss "iélands" in Figure 5.4f, and cannot be identified on the basis
of the available information. Such boundaries are not part of the freeze/thaw boundary'

estimates.

1 Sce Tables 5.3 and 5.4.
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(a) Freeze map at coarse-resolution
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Figure 5.3. A comparison of reported:ir and soil temperatures with images of
North Dakota and the surrounding region. Boundaries were determined using
unrefined freeze/thaw criteria. Data were collected at noon, December 11, 1984.
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Figure 5.4. coparison of rerte airn il emperaturas with images of
North Dakota and the surrounding region. Boundaries were determined using

refined freeze/thaw criteria. Data were collected at midnight, October 24, 1984.
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(a) Freeze map at coarse-resolution

(b) 37 GHz radiobrightness at
coarse-resolution

(c) Spectral gradient at
coase-rolin

(d) 37 GHz radiobrightness at
m-riution
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Figure 5.5 A comparison of reported air and soil temperatures with images of
North Dakota and the surrounding region.
refined freeze/thaw criteria.

Boundaries were determined using
Data were collected at noon, December 11, 1984.
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In Figure 5.5, all coarse-resolution 37 GHz radiobrightness boundaries (Figure 5.5b)
correspond the freeze map boundaries (Figure 5.5a), and all fine-resolution boundaries
(Figure 5.5f) become freeze/thaw boundary estimates. Midnight and noon fine-resolution
freeze/thaw boundaries (Figures 5.4f and 5.5f) are consistent with midnight and noon ground

data (Figures 5.4¢ and 5.5¢).

3.3 Automated Boundary Processing

Figure 5.6 represents automated boundary localization for SMMR data of midnight,
October 24. Figure 5.6a repeats the freeze map of Figure 5.4a, and Figure 5.6b shows the
associated coarse-resolution, 37 GHz radiobrightness image. As before, 37 GHz boundaries
are composed of pixels whose 37 GHz radiobrightness equals P;,. However, the 37 GHz
boundaries in Figure 5.6b consists of (fuzzy) white and black sections. Pixels along white
boundaries have spectral gradients that are less than or equal to Pg.;. Thatis, white boundaries
are most likely to be freeze/thaw boundaries. Pixels along black boundaries have larger
spectral gradients and are less likely to be freeze/thaw boundaries.

In the medium-resolution, 37 GHz radiobrightness images (Figure 5.6c), white
boundaries are 37 GHz boundaries that are migrations of white boundaries at
coarse-resolution (Figures 5.6b). White boundaries at medium-resolution are (spatially)
near white boundaries at coarse-resolution. To determine boundary migration, we solve a
2-D Taylor expansion in an analogous process to edge focussing [5].

We first determine x and y coordinates of each pixel along all boundaries in 37 GHz,
medium-resolution images. These coordinates are denoted as (x;,y;) for the i boundary
pixel. We also determine coordinates of each pixel along all freeze/thaw boundaries in 37

GHz, coarse-resolution images. These coordinates are denoted as (x;,y,) for the j®
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freeze/thaw boundary pixel. Using the development of Appendix C, a medium-resolution
boundary pixel, (x;, y;), is a migration of coarse-resolution, freeze/thaw pixel, (x;, ), if it

satisfies the Taylor expansion,

ds(x;, y:) - ds(x;,y:)
sz""sl"'T(xj"xi)"'“'d“;“‘(yj‘)’;)s 5.4)

where s, and s, are the medium and coarse resolution Ievels, respectively (Table 5.1). The

function s(x, y) is defined implicitly by (Appendix C),
r(x,y,s(x,y) =Py, (5.5)

where r(,,.,5) is the 37 GHz radiobrightness at resolution S, so that by the implicit function
theorem [68], |

- ds(x;, ¥:) =""x(x;’.Y.'s )
dx r:(xl’l Yis Sl)
dS(X,-,y,-) "ry(xisys"sl)

- . 5.6b
d)’ : ra(xbyilsl) _ ( )

(5.62)

where variable subscripts denote partial differentiation. Rotationally symmetric Gaussian

filtering yields,
r'(xi'yj’sl) = sllrz(xj’yj’ s)+ r”(xjv Yis sl (5.7)

so that the medium-resolution pixel (x;, ;) is a migration of the coarse-resolution pixel (x;, ;)
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- rx(xi: Yi» sl)
sulralxs, i, 81) + ry (%, ¥i 511

Sz=sl

x;-x;)

- ry(xi:ybsl)
Silre(xi, o s) +r,(x;, Yir 5)l

6720 ) B (3.8)

is satisfied. That is, white pixels in the medium-resolution image satisfy (5.8) for white
pixels the coarse-resolution image.

An analogous process is performed for medium-to-fine resolution boundary migration.
In this case, (x;, y;) values are determined for boundaries at fine-resolution and (x;, y;) values
are determined for »\fhitc boundaries at medium-resolution. Also, 5, is the resolution level
at fine-resolution, and s, is the medium resolution level at medium-resolution.

The accuracy of this boundary migration process depends on how accurately s(x,y)
can be approximated as planar in the vicinity of boundaries. This process becomes more

accurate with increased sampling with respect to scale. That is, the use of more images at
smaller scale changes improves the accuracy of boundary migration, but increases the
computationat load. _

All boundary pixels of Figure 5.6 are determined using a hysteresis process to account
for measurement uhccrjtainty. Thatis, black and white boundary pixels are within 20 of Py,
where, from section 5.2, 6=0.9 K for the fine-resolution 37 GHz image (Figure 5.6d),
c=0.75K for_ the medium-resolution 37 GHz image (Figure 5.6¢), and 6=0.5 K for the
coarse-resolution 37 GHz imagc (Figure 5.6b). Moreover, 37 GHz radiobrightness values

must be greater than Py, + © on one side of a boundary, and less than P,; — 6 on the other
side.
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Frozen terrain is identified iteratively using fine-resolution, 37 GHz data. First, pixels
along white, fine-resolution boundaries (Figure 5.6d) are identified as "frozen" pixels.
Second, pixels whose 37 GHz radiobrightnesses are less than or equal to Py, and are
contiguous to frozen pixels, are also identified as frozen. Third, the previous stepis repeated
until no additional pixels are identified as frozen. Fourth, the resulting collections of frozen
pixels constitute regions of frozen terrain. Using this procedure, terrain identified as frozen
are indicated by whitened regions in the northwest corner of the Figure 5.6e. Because
freeze/thaw boundaries must be closed contours, the final freeze/thaw boundary (i.e., the
edge of the identified frozen region) contains boundary sections that did not, previously,
show strong freeze/thaw boundary indications. Nonetheless, the final freeze/thaw
boundaries of Figure 5.6e are the best fine-resolution estimates of the actual freeze/thaw

boundaries using available data.

Table 5.2. Time summary for images of Figure 5.7 through Figure 5.15;
measurement interval is the time interval between present and previous
.

Measurement | Measurement Measurement
Date Time-of-Day Interval (Days)
5.7 October 24 Midnight -
5.8 October 30 Midnight 6
59 November 1 Noon 25
5.10 November 5 Midnight i
5.11 November 27 Midnight 22
5.12 November 29 Noon 2.3
5.13 December 3 Midnight b o
5.14 December 9 Midnight 6
5.1 December 11 Noon ¥ i |

Boundary migration and automated classification was applied to the images of Figure
5.7 through Figure 5.15. These data were obtained at irregular intervals from October 24,
1984 through December 11, 1984. Time summaries of the data are given in Table 5.2, and




weather summaries are given in Tables 5.3 and 5.4. These images show the growth and
contraction of ground-freeze from October 24 to November 5, and again from November

27 to December 9. After December 9, the area remains frozen through the end of December.
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Table 5.3. Air temperatures for October through December measurement dates.

(N) and (D) indicate night and day temperature measurements. Measurement times

are shown with data site names. (S) indicates snowfall at measurement fime.

AIR TEMPERATURES (°C)

Data | 10224 [ 10730 111 | 115 1127|1129 ] 1273 | 129 | 12111

Site M N O® NI EN O] NN D
Aberdeen [ 05 [ -33 [ 61 [ -33]-05] 00 [-155] -11 | +2:8
SEn | ©
Bismark | +05 [ -72 | -89 | -39 [ 28 | 22 [ 94 | -05 | 55
12 (S) (S) ()
Fargo [ +05] -44 | 94 44l+o5] 17 [-177] 17 05
o || @
Huon | +22]-05[-39[-39]-05]+17][-150]+17 ] +44
S | TS
Miles City | +1.7 [-105 [ 9.4 [+22] 78 [ +05 [-194| 33 | -89
Sl ®
R(z;%idﬁi% +22 | 44 | 22 [+05] 22 [+83[-117] +6.1 | +2.8
(D): 11 M
willison | -1.1 [ -12.8 [-139] -50 [ -7.8 | 66 [-128 | 22 [-133
Egg g oh (S) (S) (S)
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Table 5.4. Soil temperatures for October through December measurement dates,
(N) and (D) indicate night and day temperature measurements. Measurement times
are shown with data site names, Measurements at Morris were maximumand
minimum daily temperatures. Measurements at Thief River were at 2 inch depth;
' all other sites were at § cm depth. '

S i Ll L —
] | SOIL TEMPERATURES (°C)
s — = E— ____v——__.___{

+44 1433 - |+05] 11 ] - |-11]-11

+2.8 | 422 | 0.5 | +1.7 } 417 | 405 { -1.7 | 0.0

+1.7 | +1.1 | +7.8}1 00 | <11 | -22 | -- -

060 | -11 | -22]|-22]-331}-33 | -66 | -66 | -55

+17{-11}|-11300}| 00 |-11]-28]|-28]{-1L7

+33]-22 | +50 | +28-05 ] -1.7 | -1.1 | -1.7 | -1.7

+1.11-05|+.7]| 00 {-22}-22|-22} -28 | -2.8

22|33 |-11|-39]-39]-39]|-50]-50]-50
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(b) 37 GHz radiobrightness at
_coarse-resolution

(¢) 37 GHz radiobrightness at

fine-resolution
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(e) Air and soil temperatures (d) Classified frozen ground at
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Figure 5.8. Automated ima w of North Dakota ad the surrounding-region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at midnight, October 30, 1984.
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(a) Freeze map at coarse-resolution
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Thaw O
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(b) 37 GHz radiobrightness at
coarse-resolution

(c) 37 GHz radiobrightness at
fi-resolution

(e) Air and soil temperatures

(d) Classified frozen ground at
fine-resolution

Figure 5.9. Automated images of North Dakota and the surrounding region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at noon, November 1, 1984.
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(a) Freeze map at coarse-resolution (b) 37 GHz radiobrightness at

coarse-resolution

(c) 37 GHz radiobrightness at
fine-resolution

() Air and soil temperatures (d) Classified frozen ground at

fine-resolution

Figure 5.10. Automated iages of North Dakota and the surrounding region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at midnight, November 5, 1984,
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(a) Freeze map at coarse-resolution (b) 37 GHz radiobrightness at
| coarse-resolution

(¢) 37 GHz radiobrightness at
7 e-resolution

m |9
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(e) Air and soil temperatures (d) Classified frozen ground at

fine-resolution
| ——— = === ——

Figure 5.11. Automated i of North Dakota and the surrounding region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at midnight, November 27, 1984.
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(b) 37 GHz radiobrightness at

(¢) 37 GHz radiobrightness at
fine-resolution

o

h

fine-resolution

Figure 5.12. Automated images of North Dakota and the surrounding region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at noon, November 29, 1984,

" (e) Air and soil temperatures (d) Classified frozen ground at ﬂ




144

(a) Freeze map at coarse-resolution (b) 37 GHz radiobrightness at
coarse-resolution

(¢) 37 GHz radiobrightness at
fine-resolution

(e) Air and soil temperatures (d) Classified frozen ground at
fine-resglution

Figure 5.13. Automated images of North Dakota and the su;rounding region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at midnight, December 3, 1984.
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(b) 37 GHz radiobrightness at
i cars-restion

(c) 37 GHz radiobrightness at

fine-resolution
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(d) Classified frozen ground at
fine-resolution

Figure 5.14. Automated images of North Dakota and the surroun

Boundaries were determined using refined freeze/thaw criteria,

at midnight, December 9, 1984,

(e) Air and soil temperatures i

ding region.
Data were collected
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(a) Freeze map at coarse-resolution (b) 37 GHz radiobrightness at
coarse-resolution

(¢) 37 GHz radiobrightness at
fine-resolution

S | Freeze @

Thaw []

Freeze B

o B O

Fat

(e) Air and soil temperatures

(d) Classified frozen ground at
fine-resolution L

Figure 5.15. Automated images of North Dakota and the surrounding region.
Boundaries were determined using refined freeze/thaw criteria. Data were collected
at noon, December 11, 1984.




CHAPTER 6
SUMMARY AND FUTURE WORK

6.1 Summary

This is a scale-space based approach for analyzing spatial features in multiresolution
satellite images. QOur objective was to estimate locations of freeze/thaw boundaries in the
northern Great Plains using multispectral data from the scanning multichannel microwave
radiometer (SMMR). Scale-space techniques were used to integrate (fuse) the multispectral
SMMR data at coarse-resolution, and estimate freeze/thaw boundaries at fine-resolution.

Image data collected by devices such as SMMR were modelled as multiple resolution
data, where the receive apertures approximate linearly-scaled, spatial filters. Variations in
filter scale occur as a result of variations in receive frequency, so that the different SMMR
channels have different resolution. Scale-space filtering is a multiresolution analysis
technique, and was used as a framework for integrating SMMR channel data. Because
standard scale-space theory requires Gaussian spatial filtering, scale-space theory was
extended to signals generated by physically realizable (i.e., non-Gaussian) filters. Without
such extensions, scale-space filtering could not form the basis of data integration.

Extrapolation-in-scale was developed by applying scale-space filtering to boundary
estimation in multiresolution systems. Boundary estimates made at coarse resolution have
significant location errors. Extrapolation-in-scale was used to extrapolate boundary
estimates from coarse-to-fine resolution, and mitigate boundary location errors. The

conditions for exact extrapolation were given in the form of theorems.
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The freeze indicator was deireloped to classify frozen and thawed terrain, and to locate
freeze/thaw boundaries. The freeze indicator is a comb_ination of spectral gradient and 37
GHz radiobrightness from SMMR data. Decision criteria for surface classification using
were derived from data clustéﬁxig. Using the freeze indicator and 37 GHz radiobrighfness
from SMMR data, freeze thaw boundary lpcations were estimated at fine-resolution. In this
process, coarse-resolution, freeze/thaw boundary locations were determined using the freeze

indicator, and then extrapolated to fine-resolution usin g37GHz radiobrightness data. While

there were inadequate ground data to verify the accuracy of this process, the process was

consistent with trends in the ground data.

There are three specific contributions of this ihe sis. First, in the area of remote sensing,
the freeze indicator is a2 new parameter for indicating the presence of frozen terrain. While
the SMMR is no longer operational, the techniques for determining freeze/thaw boundaries
presented in this dissertation can be adapted to the newly operational Special Sensor |
Microwave Imager (SSM/I) [88], which flies on a series of Defense Meteorological
Satellites. Using the SSM/I with these modified techniques, it should be possible to monitor
the state of surface moisture over the large surface areas required by climatological and
hydrological models. _

- Second, in the area of signal processing, scale-space techniques were extended to
Signals generated by non-Gaussian filters. By requiring Gaussian filtering in its original
development, scale-space filtering was constrained to sensing problems where filtering was
compﬁtcr-implcmcntcd (c.g., computer vision). By extending scale-space filtering to
include non-Gaussian filtering, scale-space t&chniqucs can be applied to sensing problems
where spatial filtering is implemented by a variety of physical devices, such as antennas

and lenses.
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Third, alsoin signal processing, extrapolation-in-scale was developed. In general data
fusion problems, data is integrated from sensors of diffcre_nt resolution and fine-resolution
information is often lost. Using extrapolation-in-scale, it is possible to analyze and retain

fine-resolution information in these general data fusion problems.

6.2 Future Work

In this dissertation, decision criteria for locating freeze/thaw boundaries using the
freeze indicator were determined from clustering and unsupervised classification (chapter
4). An alternative and, potentially, more accurate approach would use supervised
classification. Accurate ground data necessary to train a supervised classifier were not
available for the dissertation. Thus, a more detailed examination of emissions from freezing
ground would provide such ground data and, therefore, improve decision criteria for locating
frozen ground [31]. |

Some freeze/thaw boundafy contours produced by the freeze indicator did not register
well with 37 GHz boundary contours at coarse-resolution (chapter 5). That is,
threshold-crossings of 37 GHz radiobrightness did not adequately extrapolate all boundary
locations identified by the freeze indicator. However, it may be possible to formulate other
signals for extrapolating those boundary contours where the 37 GHz threshold-crossings
are inadequate. For instance, zero-crossings of 37 GHz gradients (i.e., the spatial gradients
of 37 GHz radiobrightness) might be used to extrapolate boundaries betwecﬁ frozen and
very moist (thawcdj surfaces. Thus, a series of such "complementary” signals could be
studied for extrapolating freeze/thaw boundaries where conditions of the underlying surface
(e.g., moisture content) vary. However, such complementary signals should be studied in

concert with a detailed examination of surface emissions.
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In addition, estimates of freeze/thaw boundaries did not always form closcd-contours
at fine-resolution (chapter 5). While closed boundary contours were constructed during the
classification of frozen and thawed ground, all such contours may not have been optimal.
Thus, it would be useful to study techniques for. determining optimal closed-contour,
fine-resolution estimates of freeze/thaw boundaries. Such techniques have been developed

for locating the auroral oval in satellite images [59], and are derived from edge contour

models of computer vision [44]. It should be possible to apply similar techniques to the

determination of freeze/thaw boundaries.

Finally, future work'should expand the application of boundary estimation and

“extrapolation techniques developed in this dissertation. For example, these techniques can

be applied to the data fusion of synthetic aperture radar (SAR) data gathered over multiple
frequencies, as well as the fusing of radar and radiometer data [87].
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APPENDIX A: Conditions for embedding structure in function-crossing
fingerprints |

In considering the function-crossing problem, we follow the procedure of Yuille and

Poggio [84,85] but consider equations of the form,
e(x,s)=y(x) | ' (AD)

where ¥(x) is a real, continuous function of x -- which we call the threshold function -- and

e(x,s) is given by,

e(x,s)=0{r(x,s}},
where Of.} is a general linear operator and r(x,s) is a filter output signal. We extend
scale-space rt_:sults for the function-crossing problem by first considering an arbitrary linear

operator O{.}, rather than the differential operator L{.}. The linearity of the operator, rather

than any specific form, is seen as an important restriction by considering

O{r(x,s)} = O{h(x,s)*i(x)} (A2)
 =hx,s)*Ofi(x)}
= h(x,5)%j(x)

for some function j(x) (thf; existence of j(x) is assumed). From (A2)

OUr(t,s)} =0 =  h(x,s)*j(x)=0 @3
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so that applying standard scale-space fingerprint results to (A3), it follows that fingerprints
with embedded structure are generated for any Iinﬁar operator in the same manner as they
are for any linear differential operator. Therefore without loss of generality, the use of a
general, linear scale-space‘opcrator is aSsumcd.

The necessary conditions for the existence of fingcrprinté with embedded structure,
{SS1)-{SS3) (chpater 2), are assumed to hold for y(x)=0. Of conditions {SS1}-{S8S3},
only {$S2) and {SS3} are affected by the shape of the threshold function,'and must be
re-derived for y(x) # 0. In the case of {SS2}, (A1) can be equivalently written as,

f(x,5)=e(x,5)-Yx) =0, - (A4)
so that by the implicit function theorem [36], if

s, = L& o,

at the fingerprint extrema of (A4), then the fingerprints of (A4) are differentiable and {SS2)}
holds for ¥(x) # 0. Since y¥(x) is a real, continuous function (i.e., |y(x)] <o ) and, by
assumption, the implicit function theorem holds for y(x) =0, we have,

f,5)=¢x,5)20 - (A5)

at an extremum of (A4), so the fingerprints are differentiable and {SS2} holds for y(x) # 0.
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In the case of {SS3], a set of constraints must be established to guarantee that all
extrema of the fingerprints of (A1) are maxima (i.e., {SS3} is guaranteed for y(x)#0).
Following the development of Yuille and Poggio, (A1) is differentiated with respect to x,

yielding the expression,
V) =6, 5,)+ (2,5 L) (46)
where,
e‘.‘(x’ S) = M
€,(x,5) EEBe(x.s)
revy . dYX)
for a fingerprint s(x).
| Extrema of s(x) exist at the points where ds(x)/dx=0, so that evaluating (A6) at an
extremum X, yields,
Y (x0) = €, (x5, 5o) (AT)
_ whci‘e.
50=5(xy).
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The existence of an extremum at x, is assured provided that,

1Y) oo
| e(x,8) |< o0

e(x,8)#0

(A8a)
(A8b)

(A8c)

in & neighborhood of the extremum x,. These conditions, in turn, impose restrictions on the

threshold function, filter, and input signal. The inequality of (A8a) is satisfied for all x by

using a real, continuous threshold function. The inequality of (A8b) is satisfied by using a

filter impulse response h{x,s) or an input signal i(x) having non-infinite bandwidth, so that

| 9e(x,s5)/0x |< e=. Condition (A8c) is given by (AS5).

Differentiating (A6) with rcspcbt to x gives,

y”(x)r-en(x,.f)""e”(x,&') +ée (x,S)d 2

+£—[e.,(x,s)+e,,(x,s)?x—],

where

for arbitrary variables u and v. Evaluating (A9) at the extremum point x, gives,

(A9)
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d?s(x,)

sz—. (Al10)

'Y"(x.()) = exx(xﬂ’ so) + ej(xO’ SO)

All extrema of s(x) are maxima if d2s(x)/dx?<0 for all x where ds(x)/dx=0. Applying
this condition to (A1), (A7), and (A10) provides the constraints necessary for all extrema

of s(x) to be maxima,

e(x,s)=yx) (Alla)
e,(x,8) =Y'(x) (Allb)

Y () —enlx,s)
) <. | (Allc)

Thus, the conditions of (Alla)-(Allc) must hold for embedded structure to exist.
Furthermore, the _conditions can be normalized with respect to le,(x,s)l without loss of
generality since, by (A8c), e,(x,5) # 0. The result is a set of constraints for the fingerprints
of (A1) such that for e,(x,5)=1,

e(x,5)=%x) (Al22)

e,(x,5)=7"(x) (A12b)
e, (x,8)>7"(x) {Al2c)
and for e,(x,5)=-1,
e(x,s)=10x) (Al3a)
() =7'0) (Al3b)
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ea(X,5)<yY"(x)

(A1.3c)

Therefore, whenever a threshold function ¥(x), operator O{.}, and filter h(x,s) exist

which meet the conditions of expressions (A12a)-(A12c) or expressions (Al13a)-(Al3c) --

depending on the sign of e (x,s) -- the fingerprints of (Al) have embedded structure with

respect to scale.

The existence of embedded structure for a given h(x,s) is demonstrated by negating a

set of conditions that are complementary to (A12a)-(A12c) or (A13a)-(Al13c). A set of

complementary conditions to (A12a)-(Al2c) is,

e(x,5) =1(x)
e (x,5)=Y"(x)

e.(x,5)=7"(x)~m®

e,(x,s)=1,
Similarly, a set of complementary conditiohs to (A13a)-(Al3c) is,

e(x,5) =)
&(x,s)=Y(k)
e (x,5) =7"(x)+m2

e, 8)=-1

In both (A14c) and (A15¢), m is an arbitrary real number.

(Al4a)

(Al4b)
(Aldc)

(A14d)

(Al52)
(A15b)
(Al5c)

(Alsd)
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Negating the complementary set (Al4a)-(Al4d) is accomplishcd by introducing
constants k,, k,, k,, and k, and combining (A14a)-(A14d) to give,

kie(x,s)+ke(x,5)+ ka8, 5)+ ke, (3,5) = kfx) + iy ') + Ky (x) -k,r}z’-i- )cv
such that,
Y+ kY () + gy ")~ kym® -k # 0 | (Al6a)
for a function e(x,s) that satisfies,
ke(x,s)+ke,(x,s)+ :ge,(x,s) +kee,(x,5)=0. | (A16b)

'_I’hus, finding a solution to (A16a) and (A16b) implies that embedded structure exists for
the threshold function y(x) when e,(x,s)=1.

A similar manipulation of thc expressions (A15a)-(A15d) results in
ke(x,s)+ke,(x,s)+ ke (x,5) + ke, (x,8) = kYx) + kY () + ky " (x) + kym® ~ &,

Thus, embedded structure exists for ¢,(x,s)=-1 if constants k,, k,, k,, and k, and a function

¢,(x,8) can be found Sﬁch that,

kY)Y () kY (x) + kg —k, # 0 . (Al7a)
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and

ke(x,s)+ke(x,s)+ ke (x,5)+ke(x,5)=0. . | (Al7b)

Further restrictions on the constants k;, k,, k,, and k, are imposed by condition {SS1b}

~ onthe filter impulse response (chapter 2). In order that (A16b) and (A 17b) are dimensionaily

correct, k,, k,, ks, and k, must be written as a/s?, b/s; ¢, and -d/s, respectively, where a, b, c,
and d are arbitrary constants. This substitution explicitly incorporates the scaling parameter
s to yield one equation and two constraints for (A16a), (A16b), (A17a), and (A17b). Thus,

the function e(x,s) must be found which solves,

f;e(x,ls)+%e,(x,s)+ce,(x,s)-g-e,(x,s)=0 (A18)
while meeting the constraint,
.%}(x)+-f-'y’(x)+c7"(x)—-cmz—g-#0 | (A192)
fore,(x,8)=1 and,.
a b, ” 2. d '
;—;'y(x)+}-y x)+cy (x)-i_-cm‘ +=#0 (A19b)

for ,(x,5)=-1.
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Given a general linear operator O{.} and input signal i(x), the identity

e(x,5) = O {h(x,s)*(x)}
| =fh<y,s)o{icx-y)}dy.

reduces (A18) to,
a b d
;—z-h(x,s)+}—h,(x,s)+ch,,(x,s)—;h,(x,s) =0 (A20)

Thus, the solution of (A20) for h(x,s) under the conditions of either (A192) or (A19b),
-depending on the sign of e,(x,s), will ensure that the fingerprints of (A1) will have embedded

structure with respect to scale.
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APPENDIX B: Proof of Theorem 3-1 (1-D)

Define the functions r(x(s),s) and p(u(s),s)

r(x(s),s) = h(x(s), s)*ix(s))
PGu(s),5) = h(u(s),5)%,(u(s)),

where the contours x(s) and u(s) are implicitly defined by,

r{x(s),s) = ofx(s))
pu(s),s) = Pu(s)).

A Taylor expansion of x(s) about s, yields,

-— 2 '
x(8) =X (5o} + (s — 5)x"(s) + “—2-@-x”(so) +.uin

By the implicit function theorem [36] and repeated differentiation,

1, (%, So)
U,(xo) -1, x(x()s So)

x'(sg)=

x5y =

(r n(XO! so) - an(xo)) (x'(so))z + 27' s(xm So)x '(so) +7, n(xm SO)

aw(xo) =T, x(xo’ So)

(Bla)
(B1b)

(82)

(B3a)

(B3b)
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and similarly for x®(s,), where,
X =X (5).

(Subscripted variables indicate partial differentiation.) The threshold function o) is linear,
s0 that

alx)=Ax +A4, (B4)

for constants A, and A,, and () =0. The filter kernel h(x,s) is Gaussian, so by solution

to the heat equation,
I, (X0 S0) = SoF (X1 So),
and,
, So7 (X5 So)
X (8,) = —sieo———, BSa
o) Ay~ 1(Xp, So) (®B32)
x"(s) = ' (B5b)

7. (X0r S0) O (50))% + 2507 e O, SoIX"(S0) + 537 sy (X S0)
Al -, .I'(IO’ So)

3

and similarly for x*(s,).
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Repeating the steps above for u(s) yields,

a
(s) = u(sg) + (s -so)u'(so)+-(-{-§5°-)—u"(so)+

where,

SoP x(Mos So)

4=, 50)’

u ”( so) =

D (tg, S6) (1°(80))” + 280D e (Ugs So)tt"(S) + 53D cees (0 S0)
B\~ p.(uo, 30) !

and similarly for u®™(s,), where,

Uy = u(S,).

The threshold function B(.) is linear, so that

B(x)=Bx +B,

(B6)

(B72)

(B7b)

(B8)

for constants B, and By, and B..(.)=0. The constant B, is chosen so that uo=xo. Thus, for

u(s) to approximate x(s), it is sufficient that,

xX'(so)=u'(sp) , X" (s0) = u""(sp) ...
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so that (BSa), (BSb), ... and (B7a), (BTb), ... yields,

Bl so)* i)
A~z s)* S0

B So* iy ()

B —h(x, So)* S s(x0)

n=234 ...

QED
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APPENDIX C: Proof of Theorem 3-2 (2-D)

We are concemed with contours (x,s) and (x,t) in 3-space that satisfy the

function-crossing relation,

r,s)=olx) ()
p&,1)=p), | (Clb)

]

Functions 7 (x,5) and p(x, ) are defined as',

where,

r@,s)=hx,sy*i@)
P, 1) =h(x, 1), (%),

and threshold functions a{.) and B(.) are given by,

) =A+Ax, +AX, +AxX, (C2a)

Bx) =B‘,+B,xl +Bx, +Byx,x,, _ (C2b)

1 "**¥" denotes 2-D convolution.
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where Ao, Ay, A,, A,, B, By, B;, and B, are constants. Equivalently, the implicit function

theorem [68] can be used to define contours s(x) and t(x), in the vicinity of the point x’, so

that (Cla) and (C1b) can be written as,

P, s() = ox)
p(5,4(2)) = Bx).

The constants A, and B, are chosen so that,

5% =1(x").

T#ylor expansions of s(x) and t(x) about x° yield [36], .

0 . |
’@”@o’*é%}@.—)(x‘ -x)+

+l Z azs('!o)(x x,l)(x,-z-— .:)+ ey

2!:,;,-13131

1x)= t(_°)+22 @(x —xf)

s
+2‘,i,,,2_,5$%—’(« -

'n‘z

- where s%) = ¢(x°). Thus,if VX,

s - Fex®
5,3, . 8%, I3, 5,

1 iz,u.,ilegz ’

(C3a)
(C3b)

(C4)

(CS5a)

(C5b)
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then s(x) = r(x).
We define the function I'°(,,.) by

r'a’,s)=ri’,s") - o),
which satisfies thc initial condition,
s =s5(x0.
By the implicit function theorem [68], '

0=T3&"s") +5, @) T&",s"), (C6a)

0=T &"s) +5,6) T’ s"), ~ (C6b)
so that,

—l_g, (x_o’ s 0)
CRG%sY

5,&")

where subscﬁptcd variables indicate partial differentiation, From the definition of I'°(.,.),

s =r@"s9 06" i=12 ,

and,
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L&) =r&s).
For a rotationally symm.t:trit:f Gaussian :kgmcl'hg, 5 (;)),'
r,s)=slr,, @) +r, @s)]

and (C6a) and (C6b) can be written as,

0=[r, &9, +52 [, &%+, 0% )5, (CTa)
0=[r,&" 59~ 0 & +2 [1,. &Y +1,, 6550, (CTb)
where, |
25,60

Repeating this process for t(x), and equating, yiclds,

RE0-06)  p"s)-B ) B _arah 80
r,‘,‘(_:g",s 0) +7, %(x_o, 5 0) B Px,x,(f;s 0) + px,x;@os 5 0) = axl - axl ’ )
and, _

r ,z(lnss 0) - %@0) _ pxz@os s 0) - B&@o) os (&0) - w (C8b)

rx,:,('_t_osso) + r:,zz(x_osso) B Px,x,(x_os 5% +P%Qon 5% = ox, - ox,
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We now define functions I'''(,,.) and I'*%(,, ),

TR0 = T8G9 +5, ) T, 5%,
r!2(£0, SO) = I-lx)z QO’ SO) + sngo) I-:I(E-O’ so).

Applyixig the implicit function theorem to (C6a) and (C6b) yields,

0=T,",s") +5, ") )G 5%, (C9a)

0=T ('s)+s, (&) Q") (C9b)

0=Tx’,s)+s5, TS, (%)

0=TJ",s") +5, &) TR, | (C99)
and expanding terms yields,

0=s,, &) Qs +5, @O I3, @059 +T2, %57 +

+5, @I, 6" 5% +5,6" ff,(JL“,s“)] - (C102)
0=5,, & TE"s") +s,1(£)'r",,,@°.s°)+r’,,,,'(:_c°,s°) +

+5, @O +5,O%sY (C10b)
| 0m G T 5, G TS+, 6
+5,@0[I2,6%5 +s,‘(;°)rf,' °,5%) (C10c)
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0=s5,, &) 00" s +5,6) 17, &5 + T2, 00,59 +
+s;,(&°)[1*’%(£°,S°)+s,,@°) ree’,s9). | (C10d)

As a result, we obtain,

P56 _ 6’,s)
axlla‘xlz I? (&0, s 0)

[ i]si2= 1’2 )

where the function 6{.,.) is composed of first-order partial derivatives of s(x°) and up-to
fourth-order partials of (., ), with respect to x, and x,. Repeating this process for t(x), and
equating, yields,

@ et )-pe’
Tee 88,80 + 1, (2°,5%) - P X% 1) +p, (1)

and

Pre’-ay M-’
a‘:‘l "' .a“u ar‘l "' az"u

Fan &S 1005 P &)+ P 1)
| 7, |

ds Q“) _onx)
a,  ox;

-
-

and

Ps®) P

o, Ox.Ox

" "

&

¥

&

]

where,
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M=23, ..

iy e iy =1,2.

By continuing this process for higher order derivatives, we see that if,

Sratsh-oe)  ZEO-pel

Tagn &8+ 1 @5 Py 651 40,61

and
Pt -o% -y
al“1 - ar‘u ' at‘l e

r xg,@oos O+, :,x,(&oss % = px,x,@os )+ p%@')’ )’

then,

os(x’) _drx’)
x  ox

1

| and
s Y
Ox; 0%; ... ax,-‘—ax,- Ox;, ... OX;,

{

Whem,
M=23, ..
K=23,..
bty v yip=1,2
i, b, v ,iy=1,2.

QED
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APPENDIX D: Proof of Lemma 3-3

We are given,
S U@0-0a  FipE)-Be)

Fn @5+ %5 P, () + P 10

and

M (rz".-“)-aé"x e’ %-8uy
B & B

T @58 41 (250 P, 1)+ D, 6500

where,

M=23, ..
by el =1,2.

From (D1a) we know,

wr@s-o  Zpe’ -

Fen @) 705 P &) 45,1 0)

sres)-0a  Zpe%O-pad)
R85 P &)+, &0

(D1a)

(D1b)

(D2a)

(D2b)

Dividing the right-hand side of (D2a) by the right-hand side of (D2b), and the left-hand

side of (D2a) by the left-hand side of (D2b), we obtain,
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s @Y -oa L O-Be)
=@ s%) - ai’) —il-[p(;“,s“)- RG]

(D3a)

Dividing the right-hand side of (D2a) by the right-hand side of (D1b), and the left-hand
side of (D2a) by the left-hand side of (D1b), we obtain,

Eal P S Lo )-pe't
By e By &, - 25,

= : , M=23, .., - (D3b
Lra"sY-oa’] 20’5 -BE’) -

and,

by v niy=1,2.

A similar division of (D1b) by (D2b) yields,

Kol ey | M fpg’,a")-p@_"j
& -y, &

= . (D3c)
=@’ s-a’ ZipE’sY-pa’)

We define functions R™ and P¥,

u 3T esh - ae”)
R s o,

¥ @, 1)~ B
P,
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fOI'M =2,3, et and

ot o %59 - e
ax,'

pr =22 -BEY.

h

- 80 by assumption,

RY PY
KA 0 0y _ o a 0 .0y _ Ay 0 (D4a)
= r@’s)-e") ZlpG"s)-pa)
R P¥
@) -] Zlpahs)-pet) B
ar, ’ ar, ] .
where, o
iy iy =1,2.
Differentiating (D4a) with respect to x, yields,
RY R D SR
S0 s)-a TG 2P - ParG’s?)
and differentiating (D4b) with respect to x, yields,
R¥ M pY M
X R x P (D5b)

2@ O] 5’ I -PE] P
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By assumption,
RY . P}
2@ s)-aa" 2pa%s)-pa)
RE
lre’s9-o6 £pa’s-pad)
~ so that (D5a) and (D5b) yield,
RM  p |
r‘l’l@o’ so) - pﬁ’: (Eois 0) (DGa)
M M
R - PT . (D6b)

P, (&, 5°) N P (2% 5°)

Combining (D6a) and (D6b) yields,

R P
= : ©7)
T @S+ 1 (10,80 s 59 +p, . (6%,5Y)

QED
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ABSTRACT

SPATIAL AND SPECTRAL ANALYSES OF REMOTELY SENSED IMAGES
USING SCALE-SPACE TECHNIQUES

- by
Brian Zuerndorfer

Co-Chairs: Gregory H. Wakefield, Amhony W. England

- The thesis concerns multiple sensor processing and the development of a unified-

representation for multiple-sensor data. Considered are the images of land surfaces

- generated at different (center) frequencies from a single satellite. Through comparisons

of these multispectral images, surfaces are segmented into regions, and regions are

‘classified. All frequency channels share a common aperture, so that the imageS generated

at different frequencies are of different resolution. To avoid mis-classification, images at
each frequency are processed to compcnSatc; for resolution differences prior to
classification. With no a bﬁori scene information available, resolution compensation is
performed by synthesizing images at all frequencies at the resolution of the lowest
frequency (coarsest) image used in classification. Thus, fine-resolution information is
lost. | | | |
'The thesis presents a technique to recover fine-resolution information in surface
classification. Specifically, if the spatial transfer function of the sensor is approximately
Gaussian, then scale-space techniques of computer vision can be used to estimate
boundaries between different surfaces at fine-resolution. First, surface scenes are
segmented and classified using multispectral processing at coarse-resolution, Sccond.
boundaries between different surfaces, as derived from mu._ltispcctral processing, are

registered to boundaries on high-frequency images which have been resolution




compensated (i.c., coarse-resolution images derived from high-frequency, fine-resolution
images). Third, boundaries on compensated, high-frequency images are tracked from
coarse-to-fine resolution ds resolution compensation is reduced. Estimétes of surface
boundaries are the resulting boundary locations in 'uncompensatcd, fine-resolution

images.



