
ASH-3: A DISTRIBUTED FILE SYSTEM OVER DISTRIBUTED SHARED MEMORY

Hani Jamjoom, Steve Raasch, Andrew Shih

Department of Electrical Engineering and Computer Science
University of Michigan

{jamjoom, sraasch, ashih}@eecs.umich.edu

April 21 st, 1998

ABSTRACT
The use of distributed file systems (DFS) has been popularized by systems such as AFS and NFS.
They allow users to share system resources from any location in the network. They also increase
the reliability and availability of these resources in that underlying changes are transparent to the
user. Concurrently, much research has been undergoing in the area of distributed-shared memory
(DSM). The concept of DSM is similar to that of DFS, in that it can allow many users to share a
common base of resources. In DSM, however, the resource is not disk storage, but rather memory.
Like DFS, DSM allows all users to have the same view of the resource that is transparent when
moving between machines. Because these two systems are so similar, we combine the power of a
DFS with the ease of development available from a DSM system. We quantify the performance
lost by using the DSM layer and will also demonstrate the gains in ease of development.

1 INTRODUCTION
The benefits of a DFS, such as AFS, lie in the ability of a large distributed network of users to share common
information resources. With a DFS, files can be located on a few central machines (or distributed broadly), but will
appear to the user as being a local file. This transparency allows easy integration with the local file system and ease
of use. In addition, location transparency is possible because data locations are not defined by the naming scheme.
Data is allowed to migrate between servers without large difficulty. In this way, reliability and availability can be
maintained by adding additional resources or by migrating clients when resources are unavailable.

Unfortunately, nothing comes freely. Having a DFS generally means that there could be multiple users sharing
the same file. In this case, it is necessary to maintain some form of consistency between access to shared files.
There is an overhead for maintaining consistency, which includes design complexity. In general, messages have to
be sent back and forth to get the location of data, fetch the latest copy, and maybe invalidate or update the contents
of memory.

The idea of DSM is not very different from a DFS. DSM allows a network of users to share a common memory
space. This memory space, while distributed, appears to be contiguous and local to the user. This system also
maintains location transparency as memory can belong to any of the connected systems. The DSM library functions
will maintain all of the data synchronization, caching, and locking that is required to maintain a consistent memory
space.

We can make use of the DSM abstraction to take care of most of this work associated with consistency in a
DFS. This way, building a distributed file system is simplified. The distributed-shared memory will act as a global
file cache while automatically taking care of data consistency. Memory updates, for instance, would be unnecessary
because the DSM would handle synchronization for that memory location.

Another important aspect to this system is scalability. By using a DSM, the ability to scale may be hindered to
some degree. We attempt to minimize any such degradation in performance by relaxing the consistency
requirements to the minimum required to maintain file integrity. In addition, we try to minimize the amount of
traffic necessary at the servers, both in terms of network traffic and disk accesses.

2

2 GOALS
In designing ASH-3, our most important goal is creating a simple and lightweight architecture for implementing a
distributed file system over distributed-shared memory. One important aspect of this design is location transparency
of files. That is, files can migrate between machines without affecting the user’s view of the overall system
structure. This is particularly important in load balancing, replication, and failure resilience. Even though none of
these aspects have been implemented, a good design should allow adding such extensions fairly easily.

Another important aspect of our design is caching and client operation. Even in a DSM approach, certain
machines will act as the servers, containing the majority of useful files and information. These servers will therefore
have a much larger amount of communication traffic than other machines. To minimize this scalability limitation,
we offset as much work as possible to the client machine. By utilizing DSM, we can cache the files in shared
memory. In this way, frequently accessed files need not be reread from the server, thus reducing the load on the
servers.

We also measure the performance of our system in relation to traditional DFS. Because we are utilizing DSM
as a separate package that is not an integral part of the DFS, we anticipate some reduction in performance. Section
7.2 provides a comparison between ASH-3 and NFS and also gives some insight on the network traffic that is
generated.

3 FEATURES
In this section we give an external view of the system. That is, we present the system from the perspective of the
end user. Where issues are closely related to the architecture of the system, however, we present them separately to
allow easier understanding of the system in contrast to other file systems.

3.1 File System API
For portability and compatibility, we support a file and directory interfaces similar to that of UNIX operating
system. This way, users need not modify their applications to be able to run on top of our system. Instead, they
only need to relink them with the ASH-3 library. Of course, there might be some small behavioral changes that are
due to differences in the semantics of file sharing.

3.2 Directories
We use a single name space for files that looks the same on all participating machines. This directory structure
always resides in global memory. The main motivation for this is design simplicity. Currently, we back up the
directory structure on one “root” machine. However, since this structure can grow to be both large and very critical,
it might be important to divide it into smaller parts, or replicate it in its entirety so that it can be stored on different
machines. Finally, we provide name transparency of the actual location of the file to the user. The directory
structure must, of course, allow the system to know where each file resides in stable storage.

3.3 Semantics of File Sharing
In our design, we assume that concurrent file sharing is rare. We thus follow a weak consistency model. We
implemented shared and exclusive mode locks. That is, we allow multiple readers and/or a single writer. The
writers' updates are not visible to processes concurrently reading the file unless specifically requested be the user. In
that case, all other copies of the file are invalidated and the latest update is propagated. This update usually occurs
only when a writer closes the file. This is similar to session semantics, where updates only become visible after a
modified file is closed.

4 DISTRIBUTED SHARED MEMORY
This project consists of two major parts: First, a DSM which runs on a number of workstations and provides the
abstraction of a global address space, and second, a DFS which uses the DSM abstraction to provide users'
applications with a global file system. In this section we will give a brief overview of the DSM system because of
its importance in our project.

In DSM, the system looks identical to a traditional multiprocessor with a global space that is visible to all of the
machines. Applications’ communications and synchronization are done through this shared memory with the actual
message passing that is required to implement the shared memory being transparent to the user.

Currently, Rice University's TreadMarks[1] is used to provide an efficient shared memory abstraction for
implementing ASH-3. We chose this package because of its completeness and availability over a wide variety of

3

platforms. There are many important issues surrounding any DSM. However, we will limit our discussion to two
main aspects of the system: the memory model and the synchronization primitives. These will have a big influence
on both the design and performance of the resulting application.

TreadMarks uses a release consistency memory model. This means that explicit synchronization must be
performed in order for modifications to shared memory to be reflected locally. Two primitives are used for
synchronization: locks and barriers. The reason that TreadMarks follow this model is that constant or immediate
updates will exacerbate the effects of the communication overheads associated with transferring the data from one
machine to another. This is particularly undesirable in a false sharing situation. Using lazy release consistency, in
particular, will allow the system to delay communications and batch the transfers, providing greater network
throughput.

This shared memory abstraction will provide a convenient environment to build a distributed file system. With
the simplification of data sharing and updates, most of the difficulties of constructing a DFS are alleviated.

5 ARCHITECTURE
We can divide ASH-3 into three software components:
Application Library, Client Daemons, and Server Daemons.
(figure 1). These components address the three primary
design issues in the system: communications, the directory
structure, and data handling issues.

The application library calls allow applications to utilize
the ASH-3 system by communicating with the client
daemons. They are the interface to the system and are fairly
similar to traditional UNIX calls. These calls communicate
with a client daemon that exists on each machine. The client
daemons are the first-level of the DFS. They are responsible
for directory activities, moving file data into the
application’s address space, and requesting files from
servers. Server daemons are responsible for serving files
from stable storage. They are needed because we are
assuming that the shared memory is not persistent, thus, the
files may not always be available in shared memory. In
addition, storing files on a stable store is necessary to ensure
system recovery and reliability.

In designing the system, our initial goal was to utilize
the DSM for communications and synchronization. After
discussing the main components of our system, we will
discuss how the directory structure and our data handling
combine with the DSM.

5.1 Application Library
The role of the application library is to provide the necessary API for an application to communicate with the client
daemon. As mentioned earlier, this API is similar to the one supported by the UNIX operating system. These
functions allow the manipulation of both files and directories.

An application communicates with a client daemon via a local socket. Each call to the library moves the
application’s request into a packet and sends it to the client daemon for processing. It then does the reverse for the
reply packet from the client daemon. An open call, for example, will send the name of the file, the open flags and
the mode to the client daemon. The client will then reply with an open file descriptor to use for reading or writing to
that file.

There are also some internal calls that the application library makes to the client daemon that are transparent to
the user. These calls are responsible for making and destroying socket connections to the client daemon. A
connection is made to the client on the first open request and closed on the last close request. This way, we do not
need to establish a connection for every file request. We define a session as the period from the first open to the last
close request. The application library keeps a count of the number of files that are opened by the application, when
this count reaches zero, it destroys the connection to the client daemon which ends the ongoing session.

Figure 1: Architecture overview of ASH-3

4

5.2 Client Daemons
The client daemon pays two roles. It communicates with application to provide access to the DFS, it provides
directory services, it moves file data from shared memory to the application’s address space, and it also
communicates with the server to retrieve files from stable storage. We will describe each part separately.

When an application initiates an ASH-3 request, it first establishes a connection to the client daemon. This
marks the beginning of a new session. The client then initializes a session table for that application and returns a
unique session ID that identifies the application to the client daemon. This table holds all of the necessary
information about the connecting application, including the socket descriptor and a list of all of the files that are
opened by the application. The information in the session table provides a layer of indirection from the file
descriptors that an application holds to the location of data in the opens files table, which is a list of all of the open
files in shared memory.

The second role that the client daemon plays lies in accessing the shared memory. Shared memory is used to
hold data that the application needs. This includes all open files and the entire directory structure. Client daemons
can access shared memory directly to read or write files. There are no explicit messages that have to be sent to
achieve consistency in the system, because the DSM is designed to handle the synchronization.

5.3 Server Daemons
Server Daemons are simply client daemons with some added functionality. This way, we only need one server or
one client daemon on each machine. An application that exists on a server machine can communicate directly to the
server daemon instead of communicating with a client daemon. The added functionality that a server daemon has is
the ability to receive file requests from other machines, and to move the requested files from its local storage into or
out of shared memory.

Figure 3: Example of a cache hit, i.e.,
client daemon finds the requested data in
shared memory (1) Application library
makes call to client daemon (2) Client
daemon gets file if present in shared
memory (3) Client sends data to
application

Figure 2: Example of a cache miss, i.e.
the client daemon does not find the
requested data in shared memory. (1)
Application library makes call to client
daemon (2) Client daemon does not find
file in shared memory (3) Client sends
request to appropriate server (4) Server
puts data in shared memory (5) Server
send client reply (6) Client reads data
from shared memory (7) Client sends the
application data

5

5.4 Communication in ASH-3
We can think of the DSM as a global cache in which
files are moved in and out according to the applications’
needs. As mentioned earlier, files need not exist in the
DSM all the time. Instead, they may reside on the
servers' stable storage and are moved into shared
memory when applications need to read or write to them.

Since we are viewing shared memory as a global
cache, a cache hit occurs when the client finds the
requested file in shared memory. In this case it can
handle the application’s request directly from shared
memory. The problem comes when a cache miss occurs.
That is, when a client daemon does not find the requested
file in shared memory. In this case, the server that has
the file in its stable storage will have to load the file in
shared memory. Once that is done, the client daemon
can access the file directly from shared memory to serve
the application’s request.

There are two options for dealing with the problem
of asking servers to place files in memory. The first was
to have each server poll on shared memory for such
requests. This is a bad idea since it is not only CPU
intensive, but also generates a large amount of
unnecessary network traffic. The other alternative is to
send a small message via sockets to the server requesting
a file to be opened (or closed). We chose to implement
the second solution. Though we are migrating slightly
from using DSM for communication, it is clearly the
better approach. Therefore, on a cache miss, the client
daemon looks into the directory structure to find the server on which the file is stored (more about this later) and
sends the server a small message requesting that it to place the specified file in memory. The server then reads the
file from disk and places it in shared memory. The server replies to the client with a packet informing it that the file
has been successfully placed into memory. The client can then serve the requesting application's needs. The cost of
this forwarding of requests is two extra messages, one is the request from the client to open the file and another for
the reply from the server. We only forward open and close file calls; once the server places a file in memory,
clients can perform any read or write operation on shared memory.

One important thing to note is that clients do not block after sending a server an open file request. Instead, they
continue serving other applications, thus improving throughput. The client continues to serve the requesting
application when the server places the file in shared memory. Figure 2 illustrate the interactions that take place
when a file is first read into memory. It shows the behavior of the system on a file cache miss. Once the file is
placed in shared memory, figure 3 illustrates the behavior of the system for file cache hits.

5.5 Directory Structure
Probably one of the most important design aspects of the file system is the implementation of the directory structure.
As mentioned earlier, one of our design decisions was to implement a file system that provides a single, global file
name space. This simplified our design somewhat, because we could store a single structure in shared memory
which would serve all users. Another decision is to allow any file to be stored on any server, and to allow files to be
easily moved between servers.

Our solution is to maintain a unique global numeric file identifier and numeric server identifier for each file. A
file's directory entry is accessed by traversing a tree consisting of nodes representing directory names, as is common
for UNIX file systems. The directory node holds information concerning owner and group identifiers, file size and
allocated space, and the server and file identifier. The file is retrieved from stable storage by contacting the
appropriate server and requesting that it return the data associated with the file identifier. The server then finds the
file on the host's native file system.

Figure 4 : Directory structure and Memory
organization

6

Using this approach, we can place all files for a server into a single host directory; the stable store does not need
to be concerned with the directory structure of the ASH-3 file system. Since each file has a globally unique file
identifier, any file can be placed on any server. The only bookkeeping necessary when moving a file is to update the
server identifier field in the file's directory entry.

There are many different ways to allocate files to servers in a distributed file system, and our system can
accommodate most any of them. For simplicity, we chose to associate a default server with each directory. The
default server can be specified when the directory is created, or when the directory is moved to another server. When
files are created in a directory, they are stored on the default server, unless another server is specified.

Our system does not currently have a way of maintaining a "current" directory, though one could be
implemented by storing the current directory name in an environment variable, and pre-pending it to all non-
absolute paths.

As mentioned previously, the file system directory is stored in shared memory. A global pointer is used to
locate the root directory table. Each directory table is composed of eight table entries. Each entry has one of four
states: Empty, Sub-directory, File Entry, or Open File Entry (figure 4). An entry marked as a sub-directory points to
a (possibly empty) directory table for the sub-directory. A file entry holds the server and file identifiers for the data
on stable storage. An open file entry is identical to a normal file entry, except one field of the entry points into the
global open files table. This table is used locate the file's data in shared memory and to keep track of the size and
number of applications that are accessing it.

Since the file system directory is a shared resource, locks must be used to protect it from unsynchronized
changes. In order to reduce the impact of one machine modifying the directory on another machine’s ability to
modify or read valid data from other sections of the directory, we decided to lock the directory at the granularity of a
sub-directory. To properly support removing directory trees, a lock on a directory effectively locks all files and sub-
directories below it. Unfortunately the TreadMarks DSM provides a limited number of locks. A file system using a
fine-grained lock policy like ours requires a lock for each directory. This was clearly not possible with TreadMarks
locks. Our implementation includes a "lock" field as part of each directory entry. Locking a directory sub-tree is
accomplished in four stages: First, the entire directory tree is locked with a TreadMarks lock. Second, the directory
is traversed from the root to the node we want to lock. If any node along the way is locked, then this lock attempt
fails. Third, the entire sub-tree below the node is traversed to see if a lock is in place. If any node in the sub-tree is
locked, the lock attempt fails. Finally, the directory node lock field is set, and the TreadMarks lock is released. The
directory lock is released simply by clearing the "lock" field.

5.6 Data Handling
When file data is placed in shared memory, it is placed in a linked list of individually allocated blocks. Each block is
made up of a fixed-size data area and a pointer to the next block in the chain. Since blocks are allocated one at a
time, they can also be de-allocated one at a time. This allows us to grow or shrink the file's memory image easily.
The linked list requires some effort to traverse, but this is not visible to the user, as the file access functions like
ash3_read() and ash3_write() return a single contiguous block of data to the user.

6 PLATFORM
We have implemented this project over a cluster of Sun SPARC workstations since these machines are wildly
available in the EECS department's labs. We also used TreadMarks as the choice for the DSM software package.
This will run on the workstations to simulate the global shared memory.

7 PERFORMANCE

7.1 The influence of DSM on performance

7

Much of the design and performance of the ASH-3 file system is a result of the underlying TreadMarks DSM
package. Briefly, TreadMarks is a user-level library that provides the DSM abstraction via message passing. It uses
a lazy release consistency model to synchronize data between its client machines. The lazy release consistency
model has been shown to allow TreadMarks to transfer fewer, larger packets than other consistency models.

TreadMarks uses an invalidate policy to force a client to demand-page modified pages back into memory.
Invalidates are sent to a client when it acquires a lock that was held by another client. The client that most recently
released the lock is responsible for informing the lock-acquiring client of pages that have been modified by it and
other clients. The implicit assumption that makes TreadMarks’ consistency work is that all modifications to shared
data are protected by TreadMarks locks. Only if this is done will TreadMarks forward the proper invalidation
information to the next client.

Our DFS system design is made more complex because it does not lend itself to the TreadMarks model.
Examples are the fine-grained directory locking, access by several clients to disjoint portions of the same data
structure (like the open files table), or multiple read-only clients (as seen when independent read operations are
performed on file data). We solved the problem by placing lock_acquire();lock_release(); pairs at
critical points in the code. The effect of this was to cause all machines to be continuously updated with current
information.

TreadMarks does, however help to minimize the amount of network traffic by computing deltas on pages of
data in which multiple machines have made modifications. These deltas are shipped to the interested machines,
where they are merged to form a single, coherent picture of the data.

Another point of interaction between TreadMarks and the ASH-3 DFS is in the page and buffer size. Since
TreadMarks relies on the host machine's virtual memory system to trap access to shared memory, it also uses the
same page size as the virtual memory system. The data block size used by ASH-3 has a dramatic effect on the
amount of data that TreadMarks must pass in order to maintain consistency. The exact relationship is not yet
understood, although tuning of ASH-3 has resulted in minimal overhead performance with a data block size of
1KBytes.

7.2 ASH-3 vs. Traditional DFS
To quantify the performance of our system versus a traditional file system, there are a few important aspects to
measure. The first was to measure the time required to transfer files of varying sizes from a remote host. This test
helps to indicate what level of delay the user will encounter when reading files from a remote host. In figure 5, we
note that as file size increases, the added delay is approximately 20%.

File Transfer Time

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

File Size (KB)

T
im

e
(S

ec
on

ds
)

NFS

ASH3

Figure 5 : Average transfer latency for a remote read
operation. Measured 1000 times and standardized for
the average latency encountered.

8

To move a file from a remote host to the local machine did involve some extra time, as more data handling is
required by TreadMarks. In addition, the choice of file block size in ASH-3 is very important to the performance of
the system. For instance, a file block size of 512 bytes will result in 33% less traffic than a file block size of 520.
We believe this has to do with the internal handling of blocks by TreadMarks. With a block size of 520,
TreadMarks was not able to place as many blocks within a TreadMarks page and more pages were transmitted.

To study the amount of overhead involved with using TreadMarks for data communications, we used a
TreadMarks tool to display the number of bytes transmitted. This is a good indication of the amount of overhead
involved in using the DSM. This overhead must be carefully controlled, as any increase can reduce scalability. To
perform our testing, we used a completely empty directory structure and ran copy commands to a remote server.
This requires reading a file from the remote server, reading it on the local machine, and then writing the file back to
the remote location. For these tests, the minimum number of bytes transferred should be twice the actual file size.

From figure 6, we can see that there is about 30KB of overhead for copying any file. This is roughly the
communications cost of distributing the open files and directory tables. Beyond that point, however, there does not
seem to be much additional overhead for larger files. At 10KB, for instance, we need to transfer a minimum of
20KB of file data and 33KB for directory and open files information. That only leaves about 10KB of additional
overhead. We believe that this overhead is the amount needed for synchronizing the memory pages within
TreadMarks. On much larger files (512KB – 1MB), we noticed that that the overhead grew slightly (9%). For
instance, with a 1MB file, there is a minimum of 2MB to transfer. Instead of the 10KB overhead from before, we
noticed a 60KB overhead. This is because with larger files we are amortizing the fixed cost associated with
maintaining internal control data over a larger number of data blocks.

8 CURRENT STATUS AND FUTURE WORK
At this point, we have fully implemented the application library and a set of simple utilities to verify and manage our
system. Unfortunately, we have only been able to implement some basic tests on lightly loaded systems. The
problem lies in the unavailability of workstations with enough available resources. Because of this, we only know
that the system runs reasonably well with few clients. There has been very little stress testing of the system. It
would be interesting to see how TreadMarks handles a heavily utilized shared space. In addition, we do not know if
our current method of locking the directory structure and handling the open files table is easily scalable. With a
heavy load on the system, there may be changes needed to relieve those two bottlenecks.

Another potential bottleneck that needs to be addressed is the amount of traffic at the servers. One way to do
this would be to utilize some sort of persistent memory. This would allow us to reduce the strain on the stable store

Treadmark's Network Overhead

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000

File Size (Bytes)

N
et

w
or

k
T

ra
ffi

c
(B

yt
es

)

Actual Transfer Minimum Transfer

Figure 6 : Network traffic overhead for a remote copy
command versus the amount of data copied.

9

and reduce that bottleneck. If it were then possible to hold everything in memory, some sort of load balancing could
be implemented whereby all machines act as servers.

Future work also needs to be done in making this file system mountable. We must place wrappers around all of
our system utilities so that files in ASH-3 are viewed as easily as are in NFS or AFS. With this in place, we will be
able to run more complete tests to simulate real-life workloads. To give ASH-3 a fair test as a real DFS, we would
also require that at least 128MBs of memory be placed on each workstation. With 64MBs of memory, there simply
isn’t enough free RAM to test the benefits of a global shared cache.

9 CONCLUSIONS
In the future, as memory prices continue falling and access to high-speed networks continues growing, the concept
of distributed shared memory will only become more practical and achievable. With the DSM abstraction, much of
the synchronization and caching needed to have a consistent and scalable distributed resource is already developed.
To create a file system over such an abstraction reduces many of the difficulties in creating a DFS.

The main benefits are that the DSM handles file consistency, files can be cached in global memory, and
scalability can be increased by removing server bottlenecks. There are, however, some limitations to using such a
system, including additional overhead to the network, and required synchronization at the servers.

With the DSM model, we can use the calls provided to lock and synchronize our data. In this way, handling
consistency was a matter of locating the best places to lock our system and to determine when syncs where
necessary. For scalability, it is useful to treat the global memory as a global cache of file data and metadata. In this
way, we can bypass the servers whenever possible, alleviating the bottleneck there. In fact, with a DSM that is
tuned for file operations, it would even be possible to use it to do load balancing, replication of metadata, and as a
smart cache. This would further reduce the workload at the servers, which tend to be the bottlenecks in a distributed
system.

Along with these advantages comes the ability to utilize persistent memory as a form of stable store. While this
would require even more memory for global storage, it would eliminate the need to have servers that require disk
access. Because disks are much slower than memory and even the network, it would greatly help overall system
performance if all files were available somewhere in shared memory.

With all of these benefits, however, are some fairly stiff limitations. First of all, there needs to be free memory
at each workstation to serve as global memory. In order to have a good global memory hit rate, the amount of
memory needed may be as high as 10% of the disk size. This is assuming that an average user will access around
10% of their files during normal usage. With file sizes growing all the time, the amount of memory needed to
handle the data flow is obviously non-trivial.

In addition to the memory requirements, there is also an additional burden on the network. While the amount of
traffic to the servers can be reduced, the overall network traffic will necessarily increase. This is due to the extra
metadata that resides in shared memory as well as all of the synchronization that must be done. After any write
operation, the openfiles table and directory table must be updated. This will involve updates whenever a subsequent
user wishes to access a file. Fortunately, network bandwidth is increasing all the time. 10Mbit Ethernet lines are
now moving up to the Gigabit range now.

With further testing and fine-tuning of our system, we will be able to get a better grasp of the benefits and
limitations of TreadMarks. Even small changes to our file system structures can result in drastic impacts on
bandwidth consumed and memory utilized. ASH-3 demonstrates that with the DSM abstraction, the complexity of
creating a DFS is greatly reduced. The difficulty lies, however, in attaining traditional DFS speed with another layer
of abstraction.

10 REFERENCES
[1] Amza, Cristiana, et. al. "TreadMarks: Shared Memory Computing on Networks of Workstations." Rice

University
[2] Gozani, Shai, et al. "GAFFES: The Design of a Globally Distributed File System." University of California,

Berkeley, 1987.
[3] Satyanarayanan, Mahadev. "Scalable, Secure, and Highly Available Distributed File Access." Computer May

1990: 9-21.
[4] Tanenbaum, Andrew S. Distributed Operating System. New Jersey: Prentice Hall, 1995.

